
TECHNOLOGY AND CODE
published: 08 June 2021

doi: 10.3389/fmicb.2021.645972

Frontiers in Microbiology | www.frontiersin.org 1 June 2021 | Volume 12 | Article 645972

Edited by:

George Tsiamis,

University of Patras, Greece

Reviewed by:

Lubos Polerecky,

Utrecht University, Netherlands

Alexandre Fioravante de Siqueira,

University of California, Berkeley,

United States

*Correspondence:

Carlos Garcia-Perez

carlos.garcia@helmholtz-muenchen.de

Keiichi Ito

keiichi.ito@helmholtz-muenchen.de

Specialty section:

This article was submitted to

Systems Microbiology,

a section of the journal

Frontiers in Microbiology

Received: 04 January 2021

Accepted: 12 April 2021

Published: 08 June 2021

Citation:

Garcia-Perez C, Ito K, Geijo J,

Feldbauer R, Schreiber N and zu

Castell W (2021) Efficient Detection of

Longitudinal Bacteria Fission Using

Transfer Learning in Deep Neural

Networks.

Front. Microbiol. 12:645972.

doi: 10.3389/fmicb.2021.645972

Efficient Detection of Longitudinal
Bacteria Fission Using Transfer
Learning in Deep Neural Networks

Carlos Garcia-Perez 1*, Keiichi Ito 1*, Javier Geijo 2,3, Roman Feldbauer 2, Nico Schreiber 1

and Wolfgang zu Castell 1,4

1 Information and Communication Technology Department (ICT), Complex Systems, Helmholtz Zentrum München,

Neuherberg, Germany, 2Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria,
3 Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria, 4Department of Mathematics, Technische

Universität München, Munich, Germany

A very common way to classify bacteria is through microscopic images. Microscopic

cell counting is a widely used technique to measure microbial growth. To date, fully

automated methodologies are available for accurate and fast measurements; yet for

bacteria dividing longitudinally, as in the case of Candidatus Thiosymbion oneisti, its cell

count mainly remains manual. The identification of this type of cell division is important

because it helps to detect undergoing cellular division from those which are not dividing

once the sample is fixed. Our solution automates the classification of longitudinal division

by using a machine learning method called residual network. Using transfer learning, we

train a binary classification model in fewer epochs compared to the model trained without

it. This potentially eliminates most of the manual labor of classifying the type of bacteria

cell division. The approach is useful in automatically labeling a certain bacteria division

after detecting and segmenting (extracting) individual bacteria images from microscopic

images of colonies.

Keywords: bacteria division, longitudinal bacterial fission, bacteria classification, deep learning, transfer learning,

image processing, image segmentation

1. INTRODUCTION

Bacterial cell shapes can vary from cocci and rods to more exotic shapes such as spirals or
branches (Kysela et al., 2016). Diverse activities influence the bacterial shape such as division,
or adaptations to local physical constraints. Microscopy approaches are commonly used to
observe and classify different microorganisms according to their different morphological features.
Microscopic cell counting is one of the most common techniques used to measure microbial
growth. This approach usually relies on automatic microscopic cell counting using digital image
analysis software in order to determine division rates (Daims et al., 2006; Nekrasov et al., 2013).
Longitudinal bacterial division (or fission) is a rare feature among bacteria (Pende et al., 2018).
Thus, discriminating between perpendicular and longitudinal division requires novel approaches
in image analysis to differentiate those cells undergoing a division, whereby they widen instead
of elongating.

1.1. Convolutional Network
This is what is called a binary classification problem. Our contribution is in using machine
learning (ML) to automatically classify the two types of bacterial division (i.e., longitudinal and

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2021.645972
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2021.645972&domain=pdf&date_stamp=2021-06-08
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:carlos.garcia@helmholtz-muenchen.de
mailto:keiichi.ito@helmholtz-muenchen.de
https://doi.org/10.3389/fmicb.2021.645972
https://www.frontiersin.org/articles/10.3389/fmicb.2021.645972/full

Garcia-Perez et al. Efficient Detection of Longitudinal Bacteria Fission

non-longitudinal) from microscopic images of the bacteria. It
has a potential to substantially alleviate manual classification
and counting of exotic cell splits, just like the automatic hand
digit recognition system did to the postal services. ML is a term
that refers to algorithms that model a relationship or a map f
between input x and output y such as in y = f (x,w) from
given sets of data. If this model is determined from multiple
examples, say N input–output pairs [xi, yi], i ∈ 1, 2, · · · ,N,
it is called supervised learning. Specifically, the array of model
parameters w, often called weights in artificial neural network
literature, is optimized (i.e., learned) by minimizing some error
measures calculated from the discrepancy between target output
value yi and predicted ŷ = f (xi, ŵ), where ŵ is an estimate of
the optimal model parameters w. This process of searching for
the optimal w through the data is called training and requires
an optimization algorithm. The training normally includes a
validation and test process in which data not used in generating
ŵ are used to compute the error. This is done to estimate the
prediction accuracy with the hitherto unseen data and serves as
stopping criteria for the training.

In our case, the data consist of individual bacteria images (i.e.,
instances of x). For each of the images, we have a corresponding
label (i.e., instances of y) to identify whether it is a longitudinal
division or not. With the data, we want to train a model f .
Using Python as the programming language, we can use existing
codes in PyTorch (Paszke et al., 2019) to perform the ML task
of training f . That is, a selection of data reading function, the
model f , and optimization algorithms to obtain ŵ are furnished
by PyTorch.

In particular, we use Residual Network (ResNet) (He et al.,
2016), one of the state-of-the-art deep learning (DL) architectures
in image classification. An important advancement in the
network architecture was due to the convolutional neural
network (CNN) (LeCun et al., 1998). CNN learns an appropriate
set of kernels (each having a set of weights for the pixels in a
square region) that swipe the image from left to right, top to
bottom shifting at a constant stride of pixels (Figure 1). The
kernel performs an inner product with the receptive region in
the input image to generate an output pixel and the resulting
2D image is called the feature map. In essence, a kernel creates
2D image features. Convolutional layers can be stacked one after
the other to learn increasingly complex features as the layer

FIGURE 1 | Convolutional neural network (CNN) 2D architecture. A stack of convolutional layers precedes the fully connected neural network architecture. Each set of

blue squares represent a layer of the network. In the first layer, the network learns some features of the input image, which then passes a feature map to the next layer

to learn new features, and so on.

goes deeper from the input layer. Placing the convolutional layer
before the traditional fully connected layer enables the automatic
learning of features effective for the task of image classification.
CNN also has pooling layers that downsample the input image to
smaller dimensions.

To illustrate the convolution layer (Figure 1), let us suppose
we have a 4 by 4 pixel image like the following matrix.

0 1 0 1
0 1 1 0
0 1 1 1
1 1 0 1

Then, suppose we sweep a 2 by 2 kernel, with weights denoted as
a, b, c, and d,

a b

c d

on the image at a stride of one pixel. At each position, an inner
product is calculated. For example, in the first position at upper
left corner of the image, we have

〈(

0 1
0 1

)

,

(

a b
c d

)〉

= 0 · a+ 1 · b+ 0 · c+ 1 · d = b+ d.

Next, we move the kernel one pixel to the right and compute

〈(

1 0
1 1

)

,

(

a b
c d

)〉

= 1 · a+ 0 · b+ 1 · c+ 1 · d = a+ c+ d.

Likewise, the last position of the kernel in the first row generates,
0 · a+ 1 · b+ 1 · c+ 0 · d = b+ c. The next kernel position goes
one pixel downward and starts again from the leftmost position,
0 · a+ 1 · b+ 0 · c+ 1 · d = b+ d.

We continue the process until the kernel reaches the bottom
right corner. In this example, we obtain a feature map of 3 by 3 as
in the following matrix.

b+ d a+ c+ d b+ c

b+ d a+ b+ c+ d a+ c+ d

b+ c+ d a+ b+ c a+ b+ d

Frontiers in Microbiology | www.frontiersin.org 2 June 2021 | Volume 12 | Article 645972

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles

Garcia-Perez et al. Efficient Detection of Longitudinal Bacteria Fission

FIGURE 2 | ResNet-18 architecture. In addition to the convolutional layer stacking, it has forward skipping connections that is added to the output of every few layers

that enables a “residual” learning.

The actual values of the kernel weights a, b, c, d are learned
during the training. Depending on the values of weights, different
features can be extracted from the same image. Thus, each feature
map is a consequence of a particular instance of kernel weights.

1.2. Residual Network
CNN substantially reduced the number of weights (i.e., model
parameters) to be trained while also extracting topological
information or features of 2D images more efficiently compared
to the conventional feed-forward deep neural network (DNN)
with vectorized inputs. Deep networks show increasing power
in learning complex patterns with the number of hidden layers
inside the network. However, optimizing weights in very deep
networks becomes more difficult at the same time. The advent
of ResNet mitigated this limitation. ResNet employs a so-called
“identity shortcut connection” that skips one or more layers
(see Figure 2). This creates network paths of different depths,
which in essence form an ensemble of shallower models that are
trained simultaneously (Veit et al., 2016). This made ResNet very
accurate and easier to train compared to the classical CNN.

To see the reasoning behind the skipping connection in
ResNet, consider learning a function h :X → Y , or

y = h(x,w) (1)

from many instances of input x and output y by tuning the
weights w. Let us assume X and Y have the same dimension and
represent the input and output space of certain hidden layer(s)
of a neural network. The problem in DL is that you run into a
situation where input and output becomes similar or very small
in magnitude (y ≃ x) as the number of layer becomes larger.
Beyond certain number of layers, the numerical inaccuracies
outweigh the benefit of added complexity of themodel even when
trained with abundant data. He et al. (2016) reasoned that it
would be easier to learn the residual f (x,w) = h(x,w)− x rather
than Equation (1). That is, we subtract input x from both sides of
Equation (1) to obtain

y− x = h(x,w)− x (2)

= f (x,w). (3)

This shows that f (x,w) represents only the difference (or the
“residual”) between input x and output y. This gives

y = x+ f (x,w). (4)

Thus, the skipping bridge in the ResNet diagram in Figure 2

realizes (Equation 4) every few layers (e.g., every two layers in
the figure). He et al. (2016) also reasoned that if a layer was
insignificant, the formulation as in Equation (4) would more
easily drive w to “zero” and establish the relation

y = x.

Formulating the stacking of feature learning layers as learning of
“residuals” is rather Copernican. However, the idea of capturing
the residual separately and using it for compensating for the
loss of accuracy is not new. It has been in use as a technique to
avoid the cancellation of significant digits. For example, consider
a rather common case where one would like to compute a large
sum of floating-point numbers xk, where k ∈ {1, 2, 3, · · · ,N}

is an iteration counter and N is possibly very large. One would
normally do a for-loop of the following recursive equation:

Sk+1 = Sk + xk. (5)

However, one soon faces a situation in which the partial sum Sk
does not get updated or accumulates a substantial error in the
resulting total sum SN . Then, a possible remedy is to set a residual
term Rk in the recursive equation of the partial sum. Thus, the
for-loop runs the following. Setting T and U as dummy variables
and initializing S1 = R1 = 0,

T = Sk (6)

U = xk + Rk (7)

Sk+1 = Sk + U (8)

Rk+1 = U − (Sk+1 − T) (9)

Equation (7) is analogous to Equation (4). The residual term
Rk keeps a record of the errors and corrects for the cumulative
discrepancy. The above method is known to produce double-
precision-like results even if computed in single precision (Iri and
Fujino, 1985, p.18).

Frontiers in Microbiology | www.frontiersin.org 3 June 2021 | Volume 12 | Article 645972

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles

Garcia-Perez et al. Efficient Detection of Longitudinal Bacteria Fission

1.3. Related Work
Among the many areas where computer vision is applied, health
is a very important one (Yadav and Jadhav, 2019; Sharma et al.,
2020). Training a CNN from scratch requires a large amount of
labeled data as well as high computational power. To overcome
this challenge, the knowledge of a previously trained CNNmodel
can be transferred to train new data with similar features. This
technique is known as transfer learning.

Transfer learning (Pan and Yang, 2010) consists of passing
previous knowledge to classify new objects. For example, we
can transfer the knowledge of the shape of an object to another
similar one. This reduces the learning time for the new object.
The use of transfer knowledge has been successfully applied
in the classification of X-ray images (Yadav and Jadhav, 2019;
Rahman et al., 2020; Sharma et al., 2020). Moreover, in bacteria
classification we also find the application of transfer learning as
in Buetti-Dinh et al. (2019), Lin et al. (2019), Treebupachatsakul
and Poomrittigul (2019), and Talo (2019). Nevertheless, for the
classification of longitudinally dividing bacteria, we have not
found any work or publication to our knowledge. Encouraged by
this gap, we decided to apply a deep learning approach to solve
this type of problem. Despite these advancements, the quality
of the trained model is strongly influenced by the number and
quality of data (images). To make the best of our limited number
of bacteria images, we used data augmentation and transfer
learning. CNN and ResNet have feature learning capabilities such
as curves, lines, or more complex topological features. Many of
the features are common regardless of the objects in the images
that these models were trained on. So, even if ImageNet contains
no cell images, the features that the models learned are to a
varying degree useful. In brief, in this study, we use residual
networks pre-trained on the ImageNet database (Deng et al.,
2009) to classify longitudinal division bacteria.

2. METHODS

In this section, we introduce the training pipeline for the
classification of longitudinal division bacteria based on
microscopic images. In our study, we performed a binary
classification of bacteria division images. Hence, the image
dataset contains two types of classes: “longitudinal division”
and “other division.” In order to obtain the training samples,
we extract the sub-images from 730 microscope images, 468 for
the first class and 262 for the second class. However, to avoid
manually extracting the samples from microscope images, we
use an in-house software (Schreiber et al., 2021). Finally, with the
complete dataset, we used a pre-trained deep learning CNN to
estimate the best model to classify longitudinal division. Figure 3
shows the proposed pipeline. All the steps of the process are
detailed below in the rest of the section.

2.1. Dataset
2.1.1. Pre-processing: Extraction and Selection of

Samples
The dataset is a collection of phase contrast microscopic images
showing bacteria with a variety of shapes that were manually
labeled. The microscopic images are from the Thiosymbion

species extracted from shallow-water sediments in Belize. More
details about the images can be found in Pende et al. (2014),
Leisch et al. (2016), and Weber et al. (2019). Each microscopic
image contains only a single bacteria cell shape. Each image was
later split into individual bacteria images.

The steps are as follows: we start with microscopic images
of the “longitudinal division” class and then with the “other
division” class. All microscope images from one class were put
in the same folder. Next, we use an in-house software (Schreiber
et al., 2021) to perform the following tasks: (1) transform each
image into a black and white image, (2) label contiguous areas
of black pixels as a group (representing one bacteria), (3) then
each group is bounding-boxed. In other words, the tool saved
the pixels’ coordinates to extract the image of the bacteria. This
process can be performed manually or with other software.
Figure 4 shows the representation of the bounding box. The
procedure ignores small areas according to a threshold selected a
priori. Finally, each group is exported to a PNG file image format.
We run the in-house tool separately for each class.

2.1.2. Data Partitioning
The dataset contains a total of 15,090 bacteria images, where
2,244 and 12,846 belong to the class “longitudinal division” and
“other division,” respectively. We randomly divided the dataset
into three subsets: train, validation, and testing with Scikit-
learn (Pedregosa et al., 2011) library. First, 33% of the dataset was
kept for the testing set. The remaining 66% was further split into
80% for training and 20% for validation.

The training data are used to compute the updates of the
model weights. The purpose of validation is to reduce the error
rate during the training by predicting the accuracy of the model.
This is useful for the user to tune the training hyperparameters.
Test sets are not used in the training and are only used to compute
the performance measures after the training. It is possible to have
a second code to run a test. For both classes, the subsets had the
following number of samples shown in Table 1.

2.2. Training
PyTorch (Paszke et al., 2019) is a recent deep learning
framework that provides implementations to build CNNs and
is highly demanded in computer vision tasks. We use PyTorch
version 1.5 for CUDA version 10.2 to run on a graphic
processing unit (GPU). The complete list of python libraries
can be found in the link to the repository mentioned in the
Supplementary Data section.

We run the code in a cloud service and in our local
cluster. We have used the services provided in DEEP Hybrid
DataCloud (López García et al., 2020) for the cloud, namely
DEEP-as-a-Service API (DEEPaaS) and Dashboard (a web
interface to a cloud of hardwares) to deploy our application
as a Docker container. DEEPaaS furnishes the graphical user
interface on a browser from which to trigger the training. We
also had access to console-like interface via Jupyterlab to debug
directly inside the remotely deployed container. The node to
which we deployed our training had NVIDIA V100 GPU with
32 GB RAM. The running time for 25 epochs was approximately
20 min including container deployment and data transfer to

Frontiers in Microbiology | www.frontiersin.org 4 June 2021 | Volume 12 | Article 645972

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles

Garcia-Perez et al. Efficient Detection of Longitudinal Bacteria Fission

FIGURE 3 | Proposed pipeline. The first part prepares the dataset by pre-processing the images for both classes. The pre-processing step extract into single image

files each microscopic image, thus, creating a new images dataset. Then, the images dataset is divided into three sub-datasets: training, validation, and testing.

Internally PyTorch will label the content of the folders train and validation into Class 0 (longitudinal_division) and Class 1 (other_division). Next, data augmentation is

applied by rotating, scaling, and normalizing each image. Finally, the deep learning model is trained using the transfer learning technique.

FIGURE 4 | As an alternative to manual extraction of samples from the microscopic images, the pre-processing was done with our in-house software to create the

datasets for training, validation, and testing. The tool transforms the image into black and white to be able to extract images of bacteria. We have added the red boxes

to the reader to see the areas that our tool marks as potential bacteria. After running our tool, we had to visually curate the image results.

Frontiers in Microbiology | www.frontiersin.org 5 June 2021 | Volume 12 | Article 645972

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles

Garcia-Perez et al. Efficient Detection of Longitudinal Bacteria Fission

TABLE 1 | Number of images in the split dataset.

Training Validation Testing Total

Longitudinal division 1,202 301 741 2,244

Other division 6,884 1,722 4,240 12,846

a cloud hardware. For our local cluster, we had Intel Xeon
Platinum 8280L CPU 2.70 GHz, System RAM 1.5 TB, GPU
Nvidia V100-SXM3-32 gb and GPU RAM: 32 GB, and CentOS
Operating System.

In this study, we use a pre-trained CNN ResNet-18 from
PyTorch to classify bacteria division types by means of transfer
learning. As described previously, we pre-processed the images
applying data augmentation for the training and testing dataset.
Due to the different sizes of the images, width between 35
and 4,295 pixels and height between 35 and 6,185 pixels,
all images were resized to 128 × 128 pixels then randomly
rotated, followed by random horizontal and vertical flips
following the PyTorch recommendation. We train the model
with the optimizer, Stochastic Gradient Descent (SGD) (Bottou,
2010). A short description of the algorithm can be found
in the next section. A training setup must consider different
hyperparameters. A typical set of hyperparameters are as follows:
number of iterations over the entire training samples (called
epochs), a batch size which is the number of samples used
in one update of weights, and learning rate that controls the
convergence of optimization. For the model trained in the
current study, the training hyperparameters were set to: 25
epochs, batch of 16 images, 0.001 learning rate, 0.9 momentum
factor (equation 13), 7 epoch-period of learning rate decay, and
0.1 multiplicative factor of learning rate decay. Our Python
script made use of Numpy (Harris et al., 2020) and Scikit-
Learn (Pedregosa et al., 2011).

2.3. Optimization Algorithm
A machine learning method employs an optimization algorithm
to minimize its prediction error. In neural networks, it is easy
to obtain gradient information. Furthermore, the search space
can be very high dimensional for DNNs, hence the popularity of
gradient-based optimization methods in this field. The efficiency
of stochastic gradient descent in large-scale machine learning
is documented in Bottou (2010). Here, we briefly describe the
method to aid in the understanding of the definition of the
hyperparameters mentioned in the previous section. Let us
denote the objective (loss) function as J, which depends on the
data X with a large number of input–output pairs (say N pairs in
total) and parameters θ that we can control tominimize the loss J.
Equation 10 describes the recursive formula with which gradient
descent algorithm approaches θ that minimizes the loss J.

θt+1 = θt − α · ∇θ J(X, θt), (10)

where t is the iteration counter, α is an adequately chosen
learning rate, and ∇θ denotes the gradient with respect to θ .

TABLE 2 | Training times in seconds for pre-trained and non pre-trained

ResNet-18.

25 epochs 35 epochs 100 epochs

pre-trained network 397.6± 1 s 557.8± 3 s 1596.6± 10 s

non pre-trained 393.4± 3 s 554± 4 s 1587.2± 12 s

The mean and standard deviation are calculated from five runs.

In stochastic gradient descent, the parameters θ are updated
with every input–output pair in X. Thus, we have at iteration t,

θt+1 = θt − α · ∇θ J(X
(i), θt), (11)

where X(i) denotes an instance of input—output pair in the data
X, and i ∈ {1, 2, . . . ,N} is the index for the input—output pair of
X whose total number of pairs counted as N.

A mini-batch approach can typically be taken in which
the gradient is calculated as an average of small subset of
training data,

θt+1 = θt − α ·
1

|B|

∑

i∈B

∇θ J(X
(i), θt), (12)

where B denotes a random subset of {1, 2, . . . ,N} of the training
data, and |B| denotes the cardinality (number of elements)
of the set. An epoch completes having chosen all N pictures
by removing |B| images after each iteration. In PyTorch,
momentum factor is introduced to modify the above into two-
step computation

vt+1 = µ · vt + α ·
1

|B|

∑

i∈B

∇θ J(X
(i), θt), (13)

θt+1 = θt − vt+1. (14)

where µ is the momentum factor and v is a velocity vector
influenced by gradients of previous steps. In PyTorch you also
find a period of learning decay and a factor of learning decay.
That is, a factor is multiplied to α every number of epochs in the
training cycle. After every fixed number of epochs, the algorithm
performs a substitution α = γα, where γ is the factor of learning
decay. The period and the factor of learning decay are set by
the user.

3. RESULTS

In this section, we describe the training results and the evaluation
of the model for the effectiveness of the proposed method.
Moreover, we train another model without the pre-trained
network to compare the performances using transfer learning.
The results are shown in the following.

Table 2 shows the mean and standard deviation of training
time in our local GPU cluster. Five training runs were performed.
Supplementary Material describes the statistics of the trained
models’ performances. The code can train without a GPU but
with a longer time of running.

For the first model with a pre-trained network, the accuracy
score for the test set was 99.6988% while the best validation

Frontiers in Microbiology | www.frontiersin.org 6 June 2021 | Volume 12 | Article 645972

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles

Garcia-Perez et al. Efficient Detection of Longitudinal Bacteria Fission

FIGURE 5 | Curve plots showing the training and validation for accuracy and loss from the pre-trained convolutional neural network (CNN) ResNet-18 (A,B) and

without a pre-trained network (C,D) for 25 epochs each. (A) The training starting at 96.5% and stabilize around the 11 epoch, while the validation starts at 99% and

stabilize around epoch 10. (B) The training loss starts at 10.0% decreasing gradually until stabilize at epoch 10, the validation starts at 3% and stabilizes at epoch 11.

(C) The training starts at 86% and stabilizes at epoch 10 with 99% score and the validation around 92% and stabilizes at 98% in epoch 10. (D) The loss for the

training starts at 35% and the validation at 20% both stabilize at epoch 10 with scores around 5% for validation and training around 4%.

accuracy was 99.7528%. Figures 5A,B show the accuracy and
error histories of the training set and validation set with respect
to the number of epochs. The testing loss was 0.6639%. The
confusion matrix in Figure 6A shows that 98.9203% of the
longitudinal division bacteria were classified correctly by the
pre-trained ResNet-18.

In the second model, without the pre-training, the accuracy
score of the test set was 98.5745%, the best validation
accuracy was 98.7642%. The testing loss accuracy was 3.9564%.
The learning and error curves are shown in Figures 5C,D,
respectively. Finally, the confusion matrix shown in Figure 6B

shows that 94.6018% of the longitudinal division bacteria were
classified correctly.

Figure 7 shows prediction examples on unseen cell images.
It shows different morphologies and corresponding predictions
by the trained model for both real and synthetic cell images.
The synthetic images are adversarial in the sense that they try
to fool the model to make false positives. The synthetic images
were created by hand, and the purpose was to understand
what would cause the model to miss classify. It may merit a

further investigation on optimally performing the generation of
adversarial images. However, this would require another research
on its own and this is out of the scope of the current paper. The
middle image in the third row is an example of a false positive,
suggesting that a very narrow crease may be interpreted as a
longitudinal split.

3.1. Performance Metrics
Besides the accuracy and the loss, we also look into recall,
precision, and F1 to measure the performance of the trained
models. Let us denote the two classes as positive and negative
in a binary classification problem. Precision measures the ratio
of how many of the predicted positives (true positives and false
positives) were actually positive (true positives). That is,

P =
TP

TP+ FP
,

where TP denotes the number of true positives, FP denotes the
number of false positives, and P denotes the precision. Recall

Frontiers in Microbiology | www.frontiersin.org 7 June 2021 | Volume 12 | Article 645972

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles

Garcia-Perez et al. Efficient Detection of Longitudinal Bacteria Fission

FIGURE 6 | The confusion matrices for the classification of longitudinal division bacteria. The confusion matrix for the pre-trained convolutional neural network (CNN)

ResNet-18 (A) and without a pre-trained network (B). (A) Note that 733 of 741 images are correctly classified and (B) 701 of 741 images are correctly classified.

FIGURE 7 | Prediction of class on unseen images. We test the accuracy of the trained model with two types of samples, real images from the test folder and synthetic

images draw by hand. On the left side of each prediction, we show the original image extracted from the microscopic image, followed by the ground truth (gt) and the

prediction class (pred). Class 0 is longitudinal division and class 1 is other divisions.

measures the ratio of how many of the actual positives (true
positives and false negatives) were predicted correctly as positives
(true positives),

R =
TP

TP+ FN
,

where FN denotes the number of false negatives and R denotes
recall. F1 (Dice, 1945) is computed using precision (P) and
recall (R) as

F1 = 2
P · R

P + R

Frontiers in Microbiology | www.frontiersin.org 8 June 2021 | Volume 12 | Article 645972

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles

Garcia-Perez et al. Efficient Detection of Longitudinal Bacteria Fission

TABLE 3 | Metrics for the pre-trained convolutional neural network (CNN)

ResNet-18.

Precision Recall F1-score

Longitudinal division 99.0541% 98.9204% 98.9872%

Other division 99.8114% 99.8349% 99.8231%

TABLE 4 | Metrics for the model without a pre-trained network.

Precision Recall F1-score

Longitudinal division 95.7650% 94.6019% 95.1799%

Other division 99.0586% 99.2689% 99.1636%

F1 is 1 when there is neither FP nor FN, and 0 when there is
no TP. F1 is particularly useful when the number of positive
and negative classes are substantially different or imbalanced in
the data.

Table 3 shows the performance of the proposed method
for longitudinal division classification for the pre-trained CNN
ResNet-18.We can see that the precision was 99.0541%, the recall
was 98.9204%, and the F1 score was 98.9872%. The class “Other
division” performed as follows: the precision was 99.8114%,
the recall was 99.8349%, and the F1 score was 99.8231%. We
can corroborate these scores with Figure 6A that for class
“longitudinal division” 733 of 741 were predicted correctly and
for the class “other division” 4,233 of 4,240 were predicted
correctly. Table 4 shows the performance for the model without
a pre-trained network.

4. DISCUSSION

The results show that automatic identification of longitudinal
division is possible using ResNet. The use of transfer learning
has been successfully applied in the past to detect, count, and
classify cells. For instance, U-Net (Falk et al., 2019) is a tool
based on deep learning that segments biomedical images. This
tool employs models previously trained with U-Net to segment
unseen images. In our case, we do not have models previously
trained in our classification problem; however, we were able
to exploit the advantages of a general model like ResNet to
successfully classify the longitudinal division of bacteria. We
must highlight that this is the first time that the DL was applied
to this classification problem.

The pre-trained model shows high test accuracy from the
beginning and by epoch 5 (79.86± 0.573 s) the accuracy is more
or less stabilized at 99%. On the other hand, the non-pre-trained
model stabilizes at around epoch 12 (190.46±1.549 s). In the case
of the pre-trained model, we could have run for fewer epochs,
say 12, and still get essentially the same predictive performances.
The losses confirm the same tendency: the pre-trained model
stabilizes at epoch 5 and the non-pre-trained model stabilizes
at epoch 12.

Some non-transfer-learning-based methods for classifying
bacteria focus on different types of features that go beyond
the geometrical shape, taking into account other features
such as brightness and contrast, color, or the way bacteria

arrange (Zieliński et al., 2017; Mohamed and Afify, 2018).
However, for these methods, it is required to extract the features
prior to classification with support vector machine (SVM). This
is because they do not have enough microscopic images for
training the DNNs. Therefore, it was necessary to first identify
few features that are effective in classifying the classes of bacteria
and use classical ML.

In our proposed approach, we split themicroscopic image into
single bacteria images and then apply data augmentation. This
way we can perform the classification without worrying about
feature extraction. Moreover, we can benefit from the pre-trained
network (transfer learning), which minimized the computational
cost of learning the classification task.

We have had only one set of training, validation, and
test data thus far. However, we run five times the training
with different sets of epochs, the results are shown in the
Supplementary Material. Nevertheless, it would be desirable to
further investigate the predictive performance by training on
different data as well as investigating the predictive performances
using different initialization of weights and model architecture.

5. CONCLUSION

Although manual labeling of the bacteria division type is time
consuming, our study shows that automation of classification
of bacteria division type can be very accurately predicted with
available data. As future work, we plan to add into the pipeline the
image segmentation from our in-house tool to label the bacteria
over the microscopic image.

Our development enables fast and automatic identification of
bacteria images and discriminating longitudinal bacteria fission.
The pre-trained model can expedite the training requiring fewer
epochs due to already learned image features. This deep-neural-
network-based approach has the potential to be applied to other
exotic morphological features and can be useful when we have a
large set of images for cell counting or determining division rate.

DATA AVAILABILITY STATEMENT

The code and the datasets presented in this study can be found
in the online GitHub repository: https://github.com/charlos1204
/longitudinal_division_classification.git. Further inquiries can be
directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

CG-P, KI, and RF wrote the deep learning code. CG-P and
KI constructed models. NS wrote the code for extracting the
samples from the microscopic images. JG, CG-P, and KI analyzed
the data and made the figures. All authors wrote and revised
the manuscript.

FUNDING

This work has been partially supported by the Helmholtz
ZentrumMünchen Germany.

Frontiers in Microbiology | www.frontiersin.org 9 June 2021 | Volume 12 | Article 645972

https://github.com/charlos1204/longitudinal_division_classification.git
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles

Garcia-Perez et al. Efficient Detection of Longitudinal Bacteria Fission

ACKNOWLEDGMENTS

We thank Philipp M. Weber, from the University of Vienna for
providing the microscopic images, and Gabriela F. Paredes for
her comments and insights on the review of the manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmicb.
2021.645972/full#supplementary-material

REFERENCES

Bottou, L. (2010). “Large-scale machine learning with stochastic gradient descent,”
in Proceedings of COMPSTAT 2010, (Paris: Springer), 177–186.

Buetti-Dinh, A., Galli, V., Bellenberg, S., Ilie, O., Herold, M., Christel, S.,
et al. (2019). Deep neural networks outperform human expertś capacity
in characterizing bioleaching bacterial biofilm composition. Biotechnol. Rep.
22:e00321. doi: 10.1016/j.btre.2019.e00321

Daims, H., Lücker, S., and Wagner, M. (2006). daime, a novel image analysis
program for microbial ecology and biofilm research. Environ. Microbiol. 8,
200–213. doi: 10.1111/j.1462-2920.2005.00880.x

Deng, J., Dong, W., Socher, R., Li, L., Li, K., and Fei-Fei, L. (2009). “Imagenet: a
large-scale hierarchical image database,” in 2009 IEEE Conference on Computer

Vision and Pattern Recognition (Miami, FL), 248–255.
Dice, L. R. (1945). Measures of the amount of ecologic association between species.

Ecology 26, 297–302. doi: 10.2307/1932409
Falk, T., Mai, D., Bensch, R., ÇÇiçek, O., Abdulkadir, A., Marrakchi, Y., et al.

(2019). U-net: deep learning for cell counting, detection, and morphometry.
Nat. Methods 16, 67–70. doi: 10.1038/s41592-018-0261-2

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P.,
Cournapeau, D., et al. (2020). Array programming with NumPy. Nature 585,
357–362. doi: 10.1038/s41586-020-2649-2

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for
image recognition,” in 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), Vol. 1 (Las Vegas, NV), 770–778.
Iri, M., and Fujino, Y. (1985). Common Practice of Numerical Computation (in

Japanese,). (Tokyo: Kyoritsu Publishing ()).
Kysela, D. T., Randich, A. M., Caccamo, P. D., and Brun, Y. V. (2016). Diversity

takes shape: understanding the mechanistic and adaptive basis of bacterial
morphology. PLoS Biol. 14, 1–15. doi: 10.1371/journal.pbio.1002565

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). “Gradient-based learning
applied to document recognition,” in Proceedings of the IEEE, 2278–2324.

Leisch, N., Pende, N., Weber, P. M., Gruber-Vodicka, H. R., Verheul, J.,
Vischer, N. O. E., et al. (2016). Asynchronous division by non-ring ftsz in
the gammaproteobacterial symbiont of robbea hypermnestra. Nat. Microbiol.

2:16182. doi: 10.1038/nmicrobiol.2016.182
Lin, Y., Lin, G., and Daniel Chai, S. (2019). “Helicobacter pylori classification

based on deep neural network,” in 2019 16th IEEE International Conference on

Advanced Video and Signal Based Surveillance (AVSS) (Taipei), 1–5.
López García, A., De Lucas, J. M., Antonacci, M., Zu Castell, W., David, M., Hardt,

M., et al. (2020). A cloud-based framework for machine learning workloads
and applications. IEEE Access 8, 18681–18692. doi: 10.1109/ACCESS.2020.29
64386

Mohamed, B. A., and Afify, H. M. (2018). “Automated classification of bacterial
images extracted from digital microscope via bag of words model,” in 2018 9th

Cairo International Biomedical Engineering Conference (CIBEC) (Cairo), 86–89.
Nekrasov, K. V., Laptev, D. A., and Vetrov, D. P. (2013). Automatic determination

of cell division rate using microscope images. Pattern Recognit. Image Anal. 23,
105–110. doi: 10.1134/S1054661813010094

Pan, S. J., and Yang, Q. (2010). A survey on transfer learning. IEEE Trans. Knowl.

Data Eng. 22, 1345–1359. doi: 10.1109/TKDE.2009.191
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019).

“Pytorch: An imperative style, high-performance deep learning library,” in
Advances in Neural Information Processing Systems 32, eds H. Wallach, H.
Larochelle, A. Beygelzimer, F. dÁlché Buc, E. Fox, and R. Garnett (Curran
Associates, Inc.), 8024–8035.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.
(2011). Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–
2830. Available online at: https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.
html

Pende, N., Leisch, N., Gruber-Vodicka, H. R., Heindl, N. R., Ott, J., den Blaauwen,
T., et al. (2014). Size-independent symmetric division in extraordinarily long
cells. Nat. Commun. 5:4803. doi: 10.1038/ncomms5803

Pende, N., Wang, J., Weber, P. M., Verheul, J., Kuru, E., Rittmann, S. K. R.,
et al. (2018). Host-polarized cell growth in animal symbionts. Curr. Biol. 28,
1039.e5–1051.e5. doi: 10.1016/j.cub.2018.02.028

Rahman, T., Chowdhury, M. E. H., Khandakar, A., Islam, K. R., Islam, K. F.,
Mahbub, Z. B., et al. (2020). Transfer learning with deep convolutional neural
network (cnn) for pneumonia detection using chest x-ray. Appl. Sci. 10:3233.
doi: 10.3390/app10093233

Schreiber, N., Ito, K., zu Castell, W., Geijo, J., and Garcia-Perez, C. (2021). Biseg
(Bacteria Image Segmenation): A Training-Less Algorithm to Bacteria Image

Segmentation. Munich. Publication in preparation.
Sharma, H., Jain, J. S., Bansal, P., and Gupta, S. (2020). “Feature extraction and

classification of chest x-ray images using cnn to detect pneumonia,” in 2020

10th International Conference on Cloud Computing, Data Science Engineering

(Confluence) (Noida), 227–231.
Talo, M. (2019). “An automated deep learning approach for bacterial image

classification,” in Proceeding Book of the International Conference on Advanced

Technologies, Computer Engineering and Science (ICATCES 2019), eds O.
Findik, E. Sonuç, andOthers, Vol. 2, 304–308. Available online at: http://icatces.
org/.

Treebupachatsakul, T., and Poomrittigul, S. (2019). “Bacteria classification using
image processing and deep learning,” in 2019 34th International Technical

Conference on Circuits/Systems, Computers and Communications (ITC-CSCC)

(JeJu), 1–3.
Veit, A., Wilber, M., and Belongie, S. (2016). “Residual networks behave like

ensembles of relatively shallow networks,” in NIPS’16: Proceedings of the 30th

International Conference on Neural Information Processing Systems (Barcelona),
550–558.

Weber, P. M., Moessel, F., Paredes, G. F., Viehboeck, T., Vischer, N. O. E., and
Bulgheresi, S. (2019). A bidimensional segregation mode maintains symbiont
chromosome orientation toward its host. Curr. Biol. 29, 3018.e4–3028.e4.
doi: 10.1016/j.cub.2019.07.064

Yadav, S. S., and Jadhav, S. M. (2019). Deep convolutional neural network
based medical image classification for disease diagnosis. J. Big Data 6:113.
doi: 10.1186/s40537-019-0276-2

Zieliński, B., Plichta, A., Misztal, K., Spurek, P., Brzychczy-Włloch, M., and
Ochońska, D. (2017). Deep learning approach to bacterial colony classification.
PLoS ONE 12, 1–14. doi: 10.1371/journal.pone.0184554

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Garcia-Perez, Ito, Geijo, Feldbauer, Schreiber and zu Castell.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Microbiology | www.frontiersin.org 10 June 2021 | Volume 12 | Article 645972

https://www.frontiersin.org/articles/10.3389/fmicb.2021.645972/full#supplementary-material
https://doi.org/10.1016/j.btre.2019.e00321
https://doi.org/10.1111/j.1462-2920.2005.00880.x
https://doi.org/10.2307/1932409
https://doi.org/10.1038/s41592-018-0261-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1371/journal.pbio.1002565
https://doi.org/10.1038/nmicrobiol.2016.182
https://doi.org/10.1109/ACCESS.2020.2964386
https://doi.org/10.1134/S1054661813010094
https://doi.org/10.1109/TKDE.2009.191
https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
https://doi.org/10.1038/ncomms5803
https://doi.org/10.1016/j.cub.2018.02.028
https://doi.org/10.3390/app10093233
http://icatces.org/
http://icatces.org/
https://doi.org/10.1016/j.cub.2019.07.064
https://doi.org/10.1186/s40537-019-0276-2
https://doi.org/10.1371/journal.pone.0184554
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles

	Efficient Detection of Longitudinal Bacteria Fission Using Transfer Learning in Deep Neural Networks
	1. Introduction
	1.1. Convolutional Network
	1.2. Residual Network
	1.3. Related Work

	2. Methods
	2.1. Dataset
	2.1.1. Pre-processing: Extraction and Selection of Samples
	2.1.2. Data Partitioning

	2.2. Training
	2.3. Optimization Algorithm

	3. Results
	3.1. Performance Metrics

	4. Discussion
	5. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

