
Complex Age- and Cancer-Related
Changes in Human Blood
Transcriptome—Implications for
Pan-Cancer Diagnostics
Fei Qi1, Fan Gao1, Ye Cai1, Xueer Han1, Yao Qi1, Jiawen Ni1, Jianfeng Sun2,
Shengquan Huang3, Shaohua Chen3, Chunlin Wu3* and Philipp Kapranov1*

1School of Medicine, Institute of Genomics, Huaqiao University, Xiamen, China, 2Department of Bioinformatics, Technische
Universität München, Freising, Germany, 3Department of Pathology, Second Affiliated Hospital of Fujian Medical University,
Quanzhou, China

Early cancer detection is the key to a positive clinical outcome. While a number of early
diagnostics methods exist in clinics today, they tend to be invasive and limited to a few
cancer types. Thus, a clear need exists for non-invasive diagnostics methods that can be
used to detect the presence of cancer of any type. Liquid biopsy based on analysis of
molecular components of peripheral blood has shown significant promise in such pan-
cancer diagnostics; however, existing methods based on this approach require
improvements, especially in sensitivity of early-stage cancer detection. The
improvement would likely require diagnostics assays based on multiple different types
of biomarkers and, thus, calls for identification of novel types of cancer-related biomarkers
that can be used in liquid biopsy. Whole-blood transcriptome, especially its non-coding
component, represents an obvious yet under-explored biomarker for pan-cancer
detection. In this study, we show that whole transcriptome analysis using RNA-seq
could indeed serve as a viable biomarker for pan-cancer detection. Furthermore, a
class of long non-coding (lnc) RNAs, very long intergenic non-coding (vlinc) RNAs,
demonstrated superior performance compared with protein-coding mRNAs. Finally, we
show that age and presence of non-blood cancers change transcriptome in similar, yet not
identical, directions and explore implications of this observation for pan-cancer
diagnostics.
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INTRODUCTION

Cancer is a leading cause of death worldwide; however, it is widely known that early detection of
primary tumors can significantly reduce mortality and improve outcome in cancer patients (Siegel
et al., 2020). Therefore, a number of tumor screening solutions have been developed for several types
of cancer, for example, colonoscopy for colon cancer, mammography for breast cancer, and others.
However, such tests are limited to few specific types of cancer and are often fairly invasive. Thus, a
strong need exists for non-invasive tests that can simultaneously identify multiple cancers and can be
used for universal screening for the disease (Ahlquist, 2018). Indeed, several recent studies based on
analysis of various components of peripheral blood have shown that such pan-cancer non-invasive
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detection methods are feasible (Srivastava and Hanash, 2020).
Cohen et al. developed CancerSEEK method based on a
combination of detection of mutations in cell-free (cf) DNA
and specific proteins in peripheral blood (Cohen et al., 2018). The
method had a median sensitivity of 70% for the detection of eight
common cancer types (Cohen et al., 2018). Lennon et al. later
applied this approach to a cohort of ∼10 K patients to identify 26
cancers undetected by the typical standard-of-care methods
(Lennon et al., 2020). The study by Liu et al. based on analysis
of methylation patterns of cfDNA in peripheral blood could
identify 12 common cancers with a sensitivity of 67.3% and all
50 cancers tested in that study with a sensitivity of 43.9% (Liu
et al., 2020). Best et al. have shown that cancer patients could be
differentiated from normal patients with 96% accuracy using
RNA-seq analysis of transcriptome from tumor-educated
platelets (Best et al., 2015).

However, despite the obvious promise, these methods also
have limitations. Most of all, the sensitivity of cancer
detection is still relatively low, especially for the early-stage
cancers where detection is most desirable. For example,
sensitivity for stage I cancers was 18% compared with
>43% for stages II and above for all 50 cancers investigated
in the study by Liu et al. (2020). A similar trend was also found
in the study by Cohen et al. where median sensitivity of
detecting stage I cancers dropped to 43% compared with
over 70% for stages II and above (Cohen et al., 2018). One
likely avenue of improvement is the introduction of additional
types of biomarkers into detection methods. In fact, the
CancerSEEK method is based on two different types of
biomarkers—cfDNA and circulating proteins (Cohen et al.,
2018). Therefore, here we explored the potential of whole-
blood transcriptome to detect seven types of non-blood
cancers. We specifically tested the performance of protein
coding and non-coding transcripts, with the latter being
represented by the class of vlincRNAs. Finally, since cancer
incidence correlates with age, we explored transcriptome
changes caused by cancer and normal aging and their
implications for transcriptome-based cancer detection.

MATERIALS AND METHODS

RNA-Seq
Peripheral blood samples were collected from 75 Chinese females
between 24 and 82 years old (Supplementary Table S1) into
Tempus Blood RNATubes (Thermo), and total RNAwas isolated
using Tempus Spin RNA Isolation Kit (Thermo) following the
procedure of the manufacturer. The 75 individuals consist of 30
apparently healthy persons and 45 patients of cancer at various
non-blood tissues, specifically breast, esophagus, stomach,
thyroid, rectum, colon, and uterus (Supplementary Table S1).
Construction of RNA-seq libraries was conducted by first
removing globin mRNA and rRNA by Globin-Zero Gold
rRNA Removal Kit followed by strand specific, lncRNA-seq
protocol that included both polyA+ and polyA− RNA species
and was performed by the Novogene corporation (Beijing).
Sequencing was performed using the Illumina Hiseq X Ten

platform and paired-end 150-bp (PE150) strategy on a 10-
gigabase (GB) scale by the Novogene corporation (Beijing).

RNA-Seq Data Analysis
Expression levels of genes were estimated based on the RNA-seq
data using Salmon software (Patro et al., 2017) for the reference
human transcriptome (GRCh38) from the Ensembl database
(Zerbino et al., 2018) and 2,721 vlincRNA transcripts taken
from previous publications (St Laurent et al., 2013; Caron
et al., 2018). PCA was performed for all the 75 samples using
the DESeq2 package (Love et al., 2014, 2) in R environment (R
Core Team, 2020) based on the variance stabilizing
transformation (Anders and Huber, 2010) of the raw read
counts of genes. Five hundred genes were used for the PCA
analysis, selected by the highest variance of the gene expression
levels across all samples. The differential expression analyses
between cancer and normal samples were performed using the
DESeq2 package (Love et al., 2014, 2) in R environment (R Core
Team, 2020). In the analyses, age of individuals was added as a
term in the design formular (the design formular for the DESeq2
package became “∼ age + phenotype”) to include it as a covarying
factor and, thus, eliminate its influence. The threshold for
identifying differentially expressed genes was FDR-adjusted
p-value <0.1 and absolute value of log2 (expression fold
change) >log2 (1.2). In differential expression analysis of the
training dataset, only the 53 samples in the training dataset (see
below for details) were included and 900 differentially expressed
genes (DEGs) were derived (Supplementary Table S2). In the
differential expression analysis for all samples, all the 75 samples
were included and 2,124 DEGs were derived (Supplementary
Table S5).

Genes with age-covarying expression were identified using
only the 30 normal samples. A gene would be identified as age-
covarying if its normalized expression levels correlated with the
ages of samples (FDR-adjusted p-value <0.1, two-sided
Spearman’s rank test). The normalization was performed using
the DESeq2 package with the “median of ratios” method (Love
et al., 2014). A total of 609 genes were found as covarying with age
(Supplementary Table S4).

Training and Evaluation of Machine
Learning Models
The 75 samples were randomly split into two datasets: 1) a
training dataset containing 53 samples, and 2) an independent
test dataset containing 22 samples (Supplementary Table S1).
The ratio between the numbers of normal and cancer samples was
kept in the split.

The DEG-classifier, vlinc-classifier, and non-vlinc-classifier
were all trained using the MLSeq package (Goksuluk et al.,
2019) in R environment (R Core Team, 2020) with the SVM
model of a linear kernel, “deseq-vst” preprocessing parameter and
repeated k-fold cross validation (k � 5, repeated five times), by the
raw read counts of all the 900 genes, 120 vlincRNAs, and 780 non-
vlincRNA genes of the DEGs from the training dataset,
respectively. A fake read count of 1 was added to all genes to
avoid the problem of division by 0 in the training process.
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The bench classifier and age classifier were trained using
decision tree model embedded in the scikit-learn python
package (Pedregosa et al., 2011). The bench classifier was
trained based on the in-cancerous-status probabilities of the 53
samples from the training dataset outputted by the DEG classifier.
The age classifier was trained with the above probabilities as well
as the ages of the 53 individuals from the training dataset, which
were classified into six groups (21–30, 31–40, 41–50, 51–60,
61–70, and 71–90; see Supplementary Table S1) and then
one-hot encoded. The classifiers were used to predict the
cancerous status of the 22 samples in the test dataset.

The performance of all classifiers was evaluated by the
resulting confusion matrix, accuracy, precision, recall, and
F1 score.

Co-Expression Analysis
The gene co-expression network analysis was performed using
the WGCNA package (Langfelder and Horvath, 2008) in R
environment (R Core Team, 2020). A total of 7,581 genes
which were the union of the genes with the top 10% median
absolute deviation (MAD) across all the 75 samples, the DEGs of
cancer from all the 75 samples, and the age-covarying genes were
included in this analysis. First, the 75 samples were clustered
based on the distances calculated by the expression levels of those
genes. From the clusters, two outlier samples were identified and
excluded from the analysis (Supplementary Figure S1). Then,
the gene co-expression networks were built based on the
remaining 73 samples.

GO Analysis
The enrichment analyses of GO terms were performed using the
clusterProfiler package (Yu et al., 2012) in R environment (R Core
Team, 2020). Significantly enriched items were identified by the
threshold of FDR-adjusted p-value <0.05.

Overlap Analysis
Overlaps between sets of genes or GO terms were analyzed using
the GeneOverlap package (Shen, 2020) in R environment (R Core
Team, 2020). Overlaps with the results from studies by
Chatsirisupachai et al. (2019) and Peters et al. (2015) were
limited to non-vlincRNA genes since vlincRNAs were not
included in those studies.

RESULTS

Blood Transcriptome Profile can Potentially
Serve as Pan-Cancer Biomarker
This work was based on the analysis of peripheral blood
transcriptome from 75 females including 30 healthy persons
aged 25–78 years old with five samples per decade of age and
45 patients with various non-blood cancers (breast, esophagus,
stomach, thyroid, rectum, colon, and uterus; Supplementary
Table S1). The relative fraction of the different cancers among
the 45 samples was kept approximately similar to the occurrence
of these cancers in females in China (Cao et al., 2020). Of the 43
cancers with staging information, 13 (30%), 17 (40%), 12 (28%),

and 1 (2%) were represented correspondingly by stages I, II, III,
and IV (Supplementary Table S1). RNA from peripheral blood
samples was subjected to RNA-seq analysis to estimate relative
level of expression of all annotated human genes and the newly
discovered class of long non-coding (lnc) RNA—vlincRNAs.
These transcripts represent very long RNA molecules
(minimum length of 50 kb) that are preferentially polyA− and
retained in the nucleus (Kapranov et al., 2010; St Laurent et al.,
2013; St Laurent et al., 2016). The functions of most of vlincRNAs
are unknown; however, some of these transcripts have been
directly implicated in cellular senescence (Lazorthes et al.,
2015) and control of DNA replication (Heskett et al., 2020).
Also, using expression analysis, these transcripts have been
implicated in the control of cell cycle, carcinogenesis,
pluripotency, and early development (St Laurent et al., 2013;
St Laurent et al., 2016). The rationale for the inclusion of this type
of transcripts in this study was high cell type specificity of their
expression (Kapranov et al., 2010; St Laurent et al., 2013; St
Laurent et al., 2016) and ability to discriminate various types of
cancers (Caron et al., 2018).

Principal component analysis (PCA) (Bro and Smilde, 2014)
performed based on expression levels of both protein coding
mRNAs and vlincRNAs revealed that the cancer and normal
samples could be discriminated quite well even though clustering
by the tissue of origin of cancer was not apparent (Figure 1). This
result indicated that the blood transcriptome could, in principle,
serve as a pan-cancer biomarker even if the tissue of origin
information may not be easily attainable from this approach.
Therefore, we then built a computational classifier to predict
cancerous status based on the blood transcriptome profiles using
an SVM machine learning model with no feature selection
procedures (Goksuluk et al., 2019). We first randomly split the
75 samples into two datasets: the training dataset containing 53
samples and the independent test dataset containing 22 samples
(Supplementary Table S1). The ratio between the numbers of
normal and cancer samples was kept in the split. Then, we
performed differential expression analysis for the training dataset
and identified a total of 900 differentially expressed genes (DEGs)
between the cancer and normal samples (Supplementary Table S2).
The read counts for the 900 DEGs from the training dataset samples
were used as input into an SVM (support vector machine) learning
model with a linear kernel, and themodel was trained using repeated
k-fold cross validation (k � 5, repeated five times). The trained
classifier was evaluated on the test dataset, and resulted in 0.77
accuracy, 0.72 precision, 1.0 recall, and 0.84 F1 score (“DEG-
classifier” in Table 1; confusion matrix in Supplementary Table
S3). This result proved the assumption that the peripheral blood
transcriptome profile could be used as a feature to predict the
cancerous status of an individual.

Aging and Cancer Have Similar Effects on
Blood Transcriptome
Another crucial property of the individuals in our dataset, which
has been found to correlate with occurrence of various cancers, is
age (Henry et al., 2010; Aramillo Irizar et al., 2018; Parikh et al.,
2018; Chatsirisupachai et al., 2019; Rozhok and DeGregori, 2019).

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 7468793

Qi et al. Age- and Cancer-Related Transcriptomic Changes

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Indeed, the average age of the 45 cancer patients used in this study
was ∼54 years. To investigate whether the age parameter
improves the prediction of cancerous status, we built another
classifier (termed “age-classifier”) by training a decision tree
model with the ages of the 53 individuals in the training
dataset and their probabilities of the cancerous status derived
from the DEG-classifier. The decision tree model was used here
since ensemble models like tree-based models perform better in
capturing distinguishing patterns from complex data (Garg and
Mishra, 2018). To reveal the true contribution of the age
parameter to the prediction (i.e., ruling out the improvement
purely due to the additional training process), a “bench-classifier”
was also built by the same procedure but only trained with the
probabilities of the cancerous status of a sample, and was used as
the benchmark in the comparison. As shown in Table 1, the
additional decision tree model improved the prediction, however,
the addition of the age parameter did not (confusion matrices in
Supplementary Table S3). A likely explanation of these results is
that aging-associated blood transcriptomic changes were present
in the 900 DEGs used to train the models, and thus have already
been learnt by the DEG-classifier.

This prompted us to investigate whether age- and cancer-
related transcriptome changes indeed shared some similarities.
As the first step, we identified 609 genes covarying with age

(termed aging-related genes; Supplementary Table S4) based on
RNA-seq data from the 30 normal samples (Supplementary
Table S1). We first validated our findings by comparing the
age-related genes with aging-associated transcriptome signatures
from two studies. The first study by Peters et al. identified 1,497
genes differentially expressed with chronological age in
peripheral blood transcriptome from 14,983 individuals (Peters
et al., 2015). The second study by Chatsirisupachai et al. identified
1) 1,260 cellular senescence signature genes by a meta-analysis of
20 replicative senescence microarray datasets mostly based on
cultured human cells, and 2) age-related transcriptome changes
in 26 different human tissues (Chatsirisupachai et al., 2019).

As seen in Figure 2A, genes up- or downregulated with age
identified by us showed highly significant overlap with the
corresponding genes from the study of Peters et al.
Furthermore, the vast majority of genes in common showed
the same direction of change (Figure 2A). Likewise, similar
results were obtained when age-related DEGs identified by us
were compared with the cellular senescence signature genes of
Chatsirisupachai et al. (Figure 2B). We then compared age-
related transcriptome changes found in this study in blood
with those found by Chatsirisupachai et al. in 17 of the
26 non-blood tissues having >50 aging-associated DEGs. As
seen in Figures 2C,D, the blood age-related transcriptomic
changes showed similarity with tissue-specific changes in 5/17
tissues (blood vessel, brain, breast, heart, and prostate). The only
tissue that showed opposite changes was the uterus. This is in line
with the previous finding that the aging-associated
transcriptomic changes in uterus behaved differently with the
other tissues and were opposite to the expression of the cellular
senescence signature genes (Chatsirisupachai et al., 2019). Taken
together, these results strongly suggest that the transcriptome
profiles derived in this study are consistent with the previous
findings. However, the significance of overlap of the age-related

FIGURE 1 | Principal component analysis (PCA) results for the 75 cancer and normal samples based on their gene expression levels. Clustering of the samples
colored according to their cancer status and tissue of origin in the coordinates of the principal components (PCs) 1 and 2 is shown.

TABLE 1 | Performance of different classifiers in prediction of cancerous status.

Classifier Accuracy Precision Recall F1 score

DEG-classifier 0.77 0.72 1.0 0.84
Vlinc-classifier 0.86 0.86 0.92 0.89
Non-vlinc-classifier 0.73 0.68 1.0 0.81
Age-classifier 0.91 0.87 1.0 0.93
Bench-classifier 0.91 0.87 1.0 0.93
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genes from our study was much higher with the genes found by
Peters et al. compared with the senescence- and age-related genes
found in cultured cells and non-blood tissues (Figure 2),
suggesting that age-related transcriptome changes depend on
tissue type.

The significant overlaps between the age-related genes found
by us and those found in previous studies indicated that
biologically meaningful transcriptomic changes could be
faithfully detected in our relatively small sample dataset.
Therefore, as the next step, we explored the relationship

FIGURE 2 | Comparison between the blood aging-related genes from this study and aging-associated transcriptome signatures from other studies. (A) Overlap
between the blood aging-related genes from this study and genes differentially expressed with chronological age in peripheral blood transcriptome from Peters et al.
(2015). Note, four genes from the study of Peters et al. were excluded since their Entrez records were discontinued or cannot be mapped to any records in the Ensembl
database. (B)Overlap between the blood aging-related genes and cellular senescence signature genes from Chatsirisupachai et al. (2019). Note, gene with Entrez
ID 10631 was included in both the up- and downregulated senescence signature gene sets in the study from Chatsirisupachai et al., and we kept it as it was in our
analysis. (C,D) Overlap between the blood aging-related genes and aging-associated tissue-specific transcriptomic changes from Chatsirisupachai et al. (2019). (A,B)
The p-values of Fisher’s exact tests are shown in cells of the heatmaps; the numbers in the Venn diagrams represent numbers of genes. (C,D) The numbers of
overlapping genes and the p-values of Fisher’s exact tests (in the parentheses) are shown in the cells; the numbers in the x and y axes are the numbers of genes. (A–D)
N.S. denotes nonsignificant overlap; color scale represents the log2 odds ratios. The dagger sign “†” marks the blood aging-related genes from this study.
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between cancer- and age-related changes in blood
transcriptomes. We identified 2,124 genes differentially
expressed between the cancer and normal samples (termed
cancer-related genes; Supplementary Table S5) and compared
them with the 609 aging-related genes (both groups included
protein-coding genes and vlincRNAs). As can be seen in Figures
3A,B, aging and cancer-associated transcriptomic changes
followed similar trajectory. Specifically, of the 503 genes
downregulated in cancer, 120 were also negatively correlated
with age and none was positively correlated with age.
Reciprocally, of the 1,621 gene upregulated in cancer, 41 were
also positively correlated with age, while only one was negatively
correlated. Furthermore, the overlaps of genes changing in the
same direction were statistically significant (Figure 3A).

We also investigated the overlap between aging- and cancer-
related genes in the space of GO terms enriched in genes up/
downregulated with aging or cancer (Supplementary Tables S6,
S7, respectively). As seen in Figure 3C, the GO terms (biological
process) enriched in aging- and cancer-related genes showed
significant overlaps, indicating that the blood transcriptome

changes associated with aging and cancer are also similar in
terms of functional relatedness. We then compared the
1,848 cancer-related non-vlincRNA genes with the age-related
genes found by Chatsirisupachai et al. and Peters et al. and, as
expected, found statistically significant overlap with both studies
for genes changing the same direction, i.e., up- or downregulated
with age (Figures 3D,E). Again, the overlap was higher with
Peters et al. (Figure 3D) likely because the same tissue type
was used.

Chatsirisupachai et al. reported that age-related transcriptome
changes had a tendency to be opposite to those found in tumors
(Chatsirisupachai et al., 2019). Therefore, based on the results
above, it would be expected that transcriptome changes in the
blood of cancer patients would also be opposite to those occurring
in tumors. To test this, we compared the 1,848 cancer-related
non-vlincRNA genes found in the blood with genes up- and
downregulated in tumors originating from 10 non-blood tissues
found by Chatsirisupachai et al. Indeed, we found that the cancer-
related transcriptome changes in the blood were opposite to the
changes in tumors from 4/10 tissues (breast, colon, lung, and

FIGURE 3 | Comparison of the blood cancer-related genes with the blood aging-related genes from this study, and with aging-associated transcriptome
signatures from other studies. (A,B) Overlap between the cancer-related and aging-related genes found in blood in this study. (C) Overlap between the GO terms
enriched in the cancer- and aging-related genes found in blood in this study. (D) Overlap between the blood cancer-related genes found in this study and genes
differentially expressed with chronological age in peripheral blood transcriptome from Peters et al. (2015). (E)Overlap between the blood cancer-related genes and
cellular senescence signature genes from Chatsirisupachai et al. (2019). (A, C–E) The p-values of Fisher’s exact tests are shown in cells; N.S. denotes nonsignificant
overlap; color scale represents the log2 odds ratio. (B) The numbers in the Venn diagrams represent numbers of genes. The dagger sign “†”marks the sets of genes and
GO terms from this study.

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 7468796

Qi et al. Age- and Cancer-Related Transcriptomic Changes

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


uterus; Figure 4). Only thyroid cancers showed changes in the
same direction, in line with transcriptomic changes in cancers of
thyroid origin being different from those in tumors originating
from other tissues (Chatsirisupachai et al., 2019).

All in all, these results show that aging- and cancer-associated
transcriptomic changes found in this study in the blood were
similar to each other, and also to age-related signatures found in
other studies, particularly in the blood, but also in other tissues.
However, cancer-associated transcriptome changes in the blood
were opposite to those found in actual tumors.

In-Depth Analysis of Similarities in Blood
Transcriptome Profiles Associated With
Cancer Status and Normal Aging
To gain further insight into blood transcriptome changes
associated with normal aging and cancer status, we conducted
a co-expression network analysis for the aging- and cancer-
associated whole-body level transcriptomic changes.
Co-expression network analysis does not depend on fixed fold
change thresholds and can identify genes with consistent,
although low-magnitude, changes in expression. Genes were
sorted by MAD across all the 75 samples and the top 10% of
them were included in this analysis. Furthermore, the above
identified aging- and cancer-related genes were also included
resulting in a total of 7,581 genes. The analysis revealed 12 gene
expression modules (Figure 5; Supplementary Table S8; see
Materials and Methods for details). Then, for each module, its
eigengene—a vector representing the overall expression of genes
within the module—was used to calculate the correlation
(Pearson’s r) between the module and the age and cancerous
status of the samples. As seen in Figure 5, with the threshold of
p-value <0.05 and absolute value of correlation coefficient >0.4, 4
of the 12 modules showed significant correlation with age and/or
cancerous status: 1) modules blue and turquoise correlated with
both the age of normal samples and the cancerous status; and 2)
modules yellow and black correlated only with the cancerous

status of samples. Of the 3,834 genes contained in these four
modules, most (∼89%) were represented by the genes whose
expression changed in both age- and cancer-related fashion: the
up- (turquoise module) and downregulated genes (blue module)
accounted for correspondingly 2,320 (60.5%) and 1,092 (28.5%)
genes (Figure 5). This result strongly supports the findings above
that most genes whose expression in blood changes with age also
have concomitant change in response to cancer in non-blood
tissues and vice versa. None of the 12 modules showed correlation
with the tissue of origin of the cancer (Supplementary Figure S2)
suggesting that this finding is not limited to cancer derived from a
specific tissue.

To further understand the functional properties of these
modules, GO enrichment analysis was performed on genes
found within the modules. Enriched GO terms were identified
with adjusted p-value threshold of <0.05 (Supplementary
Table S9). The enriched GO terms of each module were then
summarized and shown in Figure 6. Interestingly, the yellow
module containing genes downregulated only in cancer
showed enrichment in 15 various DNA repair-related GO
terms, including DNA damage checkpoint, cellular response
to DNA damage stimulus, double-strand break repair,
recombinational repair, etc., and involving 37 genes
(Supplementary Table S10). Furthermore, the module was
enriched in functions related to DNA replication, cell cycle,
and p53 signal transduction. The black module containing
genes upregulated only in cancer showed enrichment in
functions related to chromosome organization, immune
system development, response to cytokine, cell cycle, and
gene silencing. On the other hand, the turquoise and blue
modules had very characteristic GO profiles. Genes
upregulated in both aging and cancer genes (module
turquoise) were enriched in various immune and stress
related functions such as immune response, cytokine
production, stress−activated signal transduction,
inflammatory response, response to oxidative stress, and
others (Figure 6). Genes downregulated in both aging and

FIGURE 4 | Comparison between the blood cancer-related genes found in this study and transcriptome changes in specific tumors from Chatsirisupachai et al.
(2019). Genes that were either (A) up- or (B) down-regulated in the indicated cancers in the Chatsirisupachai et al. (2019) study are shown. The numbers of overlapping
genes and the p-values of Fisher’s exact tests (in the parentheses) are shown in the cells. N.S. denotes nonsignificant overlap. Color scale represents the log2 odds ratio.
The dagger sign “†” marks the blood cancer-related genes from this study.
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cancer (module blue) were enriched in various functions
associated with normal functioning of cell such as
translation, transcription, RNA metabolism and
respiration, and energy production (Figure 6).

Strikingly, themagnitude of age- and cancer-related changes were
different between the genes up- (module turquoise) and
downregulated (module blue) in both processes (Figure 7;
Supplementary Figure S3). The downregulated genes exhibited a
tendency to have higher association with aging than the upregulated
ones (Figure 7; Supplementary Figure S3). For this analysis, the
Spearman correlations shown in Figure 7 between gene expression
levels and age for the downregulated genes were first inversed
(multiplied by −1), and then compared with the unmodified
Spearman correlations for the upregulated genes (Supplementary
Figure S3). The former had a tendency to be higher than the latter
with p-value of 8.22e−90 (Wilcoxon Rank Sum Test). On the other
hand, the upregulated genes had a tendency to have a higher fold
change difference in cancer than the downregulated ones
(Supplementary Figure S3; p-value � 1.16e−67, Wilcoxon rank

sum test). In other words, among the genes associated with aging
and cancer, downregulation of expression was more pronounced in
normal aging than upregulation; however, the opposite was the case
for the cancer-related genes. Consistent with this observation,
overlap with the senescence- and chronological age-related genes
from the studies of Chatsirisupachai et al. and Peters et al. was much
more significant for the down- than upregulated genes (Figures
2A,B). All in all, these results suggest that while cancer and normal
aging share transcriptomic profiles, these profiles are not identical
and can be used to separate cancerous status from normal aging.

VlincRNAs Potentially Represent Superior
Biomarkers for Liquid Biopsies
Previously, vlincRNAs were shown to represent transcripts
with a high cell type-specific pattern of expression (Kapranov
et al., 2010; St Laurent et al., 2013; St Laurent et al., 2016) and
a promising class of biomarkers for classification of human
cancers (Caron et al., 2018). To test the utility of these

FIGURE 5 | Summary of gene co-expression modules. The colors and numbers in the cells represent the correlation coefficients (Pearson’s r) between the
eigengenes of themodules and the traits of the samples (cancer status, ages of normal samples, and ages of cancer samples, shown on the bottom). The numbers in the
parentheses are the p-values of two-sided Pearson’s tests. Asterisks mark the significant correlations under the threshold of p-value <0.05 and absolute value of
correlation coefficient >0.4. Names of modules and numbers of genes in each module are shown on the left.
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transcripts as cancer biomarkers for liquid biopsies, we
compared predictions made based either on the vlincRNAs
or non-vlincRNA genes. The 900 genes that were used to train
the SVM model consisted of 120 vlincRNAs (Supplementary
Figure S4) and the 780 non-vlincRNA genes. These two
groups of genes were then used to train the classifier
separately, while the training and evaluation processes
were unchanged; and thus, two classifiers were generated:
the “vlinc-classifier” and the “non-vlinc-classifier.” These two
classifiers were evaluated on the test dataset, and the results
are shown in Table 1. The vlinc-classifier resulted in a better
outcome than the non-vlinc-classifier in terms of accuracy,
precision, and F1 score (confusion matrices in
Supplementary Table S3). Moreover, vlinc-classifier was
also more accurate than classifier based on all DEGs (the
DEG-classifier; Table 1). Notably, only one cancer sample
was wrongly classified as normal among the five classifiers
listed in Table 1 (sample X551 by the vlinc-classifier;
Supplementary Table S3), likely due to this sample being
early stage I of cancer (Supplementary Table S1). This result
suggests that the sensitivity of blood-based transcriptome to
detect early cancers is fairly high (3/4, 4/4, 4/4, and 1/1 for
stage I, II, III and IV, respectively).

Furthermore, vlincRNAs showed a clear tendency to be
upregulated in cancer. The 2,124 cancer-related genes
contained 276 vlincRNAs of which 273 were upregulated and
only three downregulated. Overall, the 273 vlincRNAs
represented ∼17% of 1,621 genes upregulated in cancer
compared with only 0.6% (3/503) of the downregulated genes.
The enrichment of vlincRNAs among the upregulated genes was
significant at p-value <2.2e−16 (chi-squared test). VlincRNAs also
had a similar albeit weaker tendency to be upregulated in normal
aging. Of the 609 age-related genes, vlincRNAs represented 19/
419 or 4.5% of downregulated genes and 16/190 or 8.4% of the
upregulated ones (p-value � 0.085, chi-squared test). Finally, the
tendency toward upregulation in both cancer and normal aging
was also evident based on the co-expression analysis. VlincRNAs
represented 401/2,320 or ∼17% of genes in the module turquoise
and only 18/1,092 or ∼1.6% of genes in the module blue (p-value
<2.2e−16, chi-squared test).

DISCUSSION

This work represents a proof-of-principle study showing that
analysis of whole transcriptome of peripheral blood can serve as a
basis or at least as a component of a pan-cancer diagnostic test.
While the ability to distinguish tissue of origin of cancer is not
obvious from these results, the transcriptome approach appears
to be able to detect early-stage cancers quite well. We further
show that lncRNAs, represented by the subclass of vlincRNAs
used in this study, embody a superior class of biomarkers
compared with the protein-coding mRNAs. Possible reasons
for it could be known high cell-type specificity of expression

FIGURE 6 | The summary of enriched GO terms of genes in the co-
expression modules turquoise, black, yellow, and blue. The color in each cell
represents the geometric mean of the p-values of all enriched GO terms
relating to the given category.
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of lncRNAs in general (Derrien et al., 2012) and vlincRNAs in
particular (Kapranov et al., 2010; St Laurent et al., 2013; St
Laurent et al., 2016). These results suggest that transcriptome-
based pan-cancer blood-based diagnostics should also include
these transcripts. Since vlincRNAs like other lncRNAs tend to be
polyA−, it means that RNA-seq assays should be based on whole,
rRNA-depleted RNA rather than just on the polyA+ fraction.

In the process of this work, we discovered that normal aging
and cancer induce somewhat similar changes in transcriptome.
For example, genes up- or downregulated in cancer also had a
tendency to be, respectively, up- or downregulated in aging and
vice versa while the reciprocal situation (i.e., upregulation in one
condition while being downregulated in another) almost never
happened. On one hand, this similarity is not surprising since
cancer incidence correlates with age (Campisi, 2013). On the
other hand, however, the transcriptomic profiles associated with
these two conditions also had remarkable differences. Blood
transcriptome changes associated with normal aging were
dominated by downregulation of various functions associated
with normal cell functioning and to a lesser extent, upregulation
of immune and stress-related function. Reciprocally, the cancer-
related changes were most dominated by upregulation of the
immune and stress-related functions and to a lesser extent,
downregulation of functions related to normal functioning of
cells. Interestingly, immune-related functions were also enriched
in genes upregulated only in cancers (the black module).
Considering statistically significant overlap of aging-related
genes found in the blood in this study with those found in
non-blood tissues in other studies, it is reasonable to suggest
that our observations relate not only to changes happening in the
peripheral blood, but also those taking place throughout the body.
In other words, our results reveal complex balance of the two

types of opposing phenomena—slowdown of normal cell
functioning and increase in immune and stress related
functions—with the final outcome of this complex interplay
potentially signifying whether aging is “normal” or “cancer-
prone.”

Currently, it is not clear whether these transcriptome-
derived phenomena underlie mechanistic reasons for
differences in “normal” vs. “cancer-prone” aging, and if
they do, which phenomenon is primary. Still, the higher
enrichment of immune-related functions is consistent with
numerous previous studies linking inflammation and cancer
[reviewed in Greten and Grivennikov (2019)]. In fact,
secondary messengers produced during inflammation (e.g.,
cytokines and growth factors) can promote a number of
processes associated with tumorigenesis such as cell
growth, de-differentiation, and others [reviewed in Greten
and Grivennikov (2019)]. In this respect, the lesser slowdown
of normal cellular functions observed in cancers compared
with the normal aging is consistent with the growth-
promoting effects of the higher levels of inflammation
associated with cancers that counteracts the general
cellular slowdown effects of normal aging.

Interestingly, vlincRNAs had a tendency to be upregulated
in both processes, especially in cancers. While implicated in
control of certain biological processes (see above), mostly
these transcripts represent yet a not-well-understood group
of transcripts just like most lncRNAs (Gao et al., 2020). This
study further underlines potential roles of these transcripts in
aging and cancers. Even though, the mechanisms of their
involvement in these processes are not known, this work
strongly argues that not only vlincRNAs should be included
in the biomarker discovery screens, but they could also

FIGURE 7 | The difference in the magnitude of age- and cancer-related changes between the up- (module turquoise) and downregulated (module blue) genes. The
x-axis is the log2 value of the fold change between cancer and normal samples of each gene; the y-axis is the Spearman correlation coefficients (rho) between gene
expression levels and age.
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represent yet unknown components involved in normal aging
and cancer-related processes. Notably, we also found
downregulation of DNA repair-related genes in cancer
patients. DNA damage is widely assumed to play a central
role in aging, cancer, and other age-related diseases
(Hoeijmakers, 2009; Maynard et al., 2015; Ou and
Schumacher, 2018). At present, it is not clear whether
individuals prone to cancer have intrinsically low levels of
expression of the DNA repair-related transcripts, or their
downregulation is a part of transcriptome changes caused by
cancer in blood cells.

Overall, our work suggests that transcriptome changes
happening during normal aging and cancer are both
similar and quite complex. Additional studies with much
larger cohorts are needed to fully address the utility of
peripheral blood transcriptome as pan-cancer diagnostic
marker and to ensure that the resulting model is applicable
to the general population that includes both genders, multiple
races, and ethnicities and does not suffer from overfitting.
The final test of the applicability of transcriptome-based or
transcriptome-including early cancer diagnostics methods
would then need to be carried out on a large cohort of
people with no prior knowledge of cancer to ascertain
whether these methods can detect relatively small number
of early cancers similar to the study by Lennon et al. based on
CancerSEEK (Lennon et al., 2020). However, the current
proof-of-principle study provides the foundation
framework for these future endeavors by showing that
precise transcriptome-based pan-cancer diagnostics is
feasible and it requires comprehensive profiling of all
cellular RNAs, protein-coding and non-coding, polyA+
and polyA−, rather than focusing on a select few
biomarker genes.
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