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Rare diseases, although individually rare, collectively affect approximately 350 million
people worldwide. Currently, nearly 6,000 distinct rare disorders with a known molecular
basis have been described, yet establishing a specific diagnosis based on the clinical
phenotype is challenging. Increasing integration of whole exome sequencing into routine
diagnostics of rare diseases is improving diagnostic rates. Nevertheless, about half of the
patients do not receive a genetic diagnosis due to the challenges of variant detection and
interpretation. During the last years, RNA sequencing is increasingly used as a
complementary diagnostic tool providing functional data. Initially, arbitrary thresholds
have been applied to call aberrant expression, aberrant splicing, and mono-allelic
expression. With the application of RNA sequencing to search for the molecular
diagnosis, the implementation of robust statistical models on normalized read counts
allowed for the detection of significant outliers corrected for multiple testing. More recently,
machine learning methods have been developed to improve the normalization of RNA
sequencing read count data by taking confounders into account. Together the methods
have increased the power and sensitivity of detection and interpretation of pathogenic
variants, leading to diagnostic rates of 10–35% in rare diseases. In this review, we provide
an overview of the methods used for RNA sequencing and illustrate how these can
improve the diagnostic yield of rare diseases.
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INTRODUCTION

Rare diseases are defined as life-threatening or chronically
debilitating diseases with a low prevalence (<5 in 10,000)
(Moliner and Waligora, 2017). Between 263 and 446 million
individuals are currently affected worldwide (Nguengang Wakap
et al., 2020). The majority, ∼80%, of rare disorders are of genetic
origin. Rare genetic disorders are predominantly caused by rare
variants in a single gene (Pogue et al., 2018). Identification of
causal variants confirms the clinical diagnosis in patients with a
suspected disorder, further allowing for suitable treatment
options, early interventions, and genetic counseling of family
members. The advent of next-generation sequencing technologies
about a decade ago has transformed the diagnostic workflow by
streamlining thousands of diagnostic assays into just a few.
Rapidly decreasing costs, automation of high-throughput
sequencing technologies, and advances in bioinformatic
approaches facilitated the implementation of genome
sequencing into routine diagnostics and a diagnosis can—in
principle—now be made for nearly every patient with a
genetic disorder (Sawyer et al., 2016; Stenton et al., 2020).
Nevertheless, this is still not reached and the causative variant
or associated gene cannot be determined in many patients by
DNA sequencing due to limited knowledge about
genotype–phenotype associations of rare variants.

By focusing on the ∼2% coding regions of the human genome,
the molecular diagnostic rate of whole exome sequencing (WES)
for the detection of causal pathogenic variants in children with
suspected genetic disease is about 35% (Clark et al., 2018).
Extending the genetic analyses to the noncoding regions
increases the diagnostic yield to 41% by whole genome
sequencing (WGS) (Clark et al., 2018). As a result, the
majority of patients with rare genetic disorders do not receive
a genetic diagnosis and remain unsolved.

Assuming a high penetrance of genetic variants in Mendelian
disorders, rare genetic disorders have to be caused by rare
variants. With 40,000–200,000 rare variants (minor allele
frequency <0.005) present in a typical human genome (The
1000 Genomes Project Consortium, 2015), they are largely
abundant. However, many are private, and only for a few, the
functional consequences are known, restricting prioritization of
potentially pathogenic variants (Uricchio et al., 2016). Guidelines
for the interpretation of sequence variants have been developed
by the American College of Medical Genetics and Genomics and
the Association for Molecular Pathology [ACMG/AMP;
(Richards et al., 2015)], integrating population, computational,
functional, and segregation data. A variety of computational tools
to predict the deleteriousness of a variant [CADD, MetaLR;
(Dong et al., 2014; Kircher et al., 2014)], and the impact of a
variant on protein function [PolyPhen-2, SIFT, and
MutationAssessor; (Ng and Henikoff, 2001; Adzhubei et al.,
2010; Reva et al., 2011)] and on splicing [spliceAI and
MMsplice; (Cheng et al., 2019; Jaganathan et al., 2019)] has
been developed. Functional validation can further confirm or
disprove these predictions. Specifically, profiling the
transcriptional level of a tissue at a defined time using RNA
sequencing (RNAseq) can help to identify and prioritize

pathogenic variants in three situations: 1) altered expression
levels, 2) abnormal splicing events, and 3) detection of mono-
allelic expression.

In 2016, the first studies systematically using RNAseq from
muscle biopsies and fibroblasts cell lines to increase the diagnostic
rate of rare disorders were released. They used arbitrary
thresholds (Cummings et al., 2016, 2017) and statistical
methods (Kremer et al., 2016, 2017) to call transcript
aberrations. Since then, the bioinformatic approaches applied
to RNAseq data have been advanced with machine learning
methods such as OUTRIDER or FRASER, translating into
more precise outlier calling (Brechtmann et al., 2018; Mertes
et al., 2021). Machine learning methods are known to provide
more robust predictions than statistical models (Bzdok et al.,
2018). The diagnostic potential of complementing DNA
sequencing with RNAseq for solving previously inconclusive
WES cases is unequivocal. RNAseq-based diagnostics has led
to a diagnostic yield of 7.5–18% in rare disease cohorts with no
prior patient restrictions (Kremer et al., 2017; Frésard et al., 2019;
Murdock et al., 2021; Yépez et al., 2021b) and of 35% in a cohort
of patients including cases with predicted splice defects
(Cummings et al., 2017; Gonorazky et al., 2019). In these
studies, RNAseq led to the validation of novel pathogenic
variants in known disease genes [e.g., chr21:47,409,881 C>T in
the COL6A1 gene in Cummings et al. (2017)], but also to the
discovery and validation of a new disease gene, TIMMDC1,
where a deep intronic variant caused the activation of a
cryptic splice site in two unrelated families (Kremer et al.,
2017). RNAseq has been performed in the clinically accessible
tissues whole blood, skeletal muscle, and skin-derived fibroblasts.

The implementation of multi-omics data in rare genetic
disorders is calling for new methods of machine learning and
statistical algorithms to remove sample covariation and detect
expression or splicing outliers (Figure 1). In this review, we
provide an overview of the methods used for the detection of
aberrant expression, aberrant splicing, and mono-allelic
expression in the context of rare disease diagnostics. In
addition, we illustrate how these can improve the diagnostic
yield of rare diseases.

ABERRANT EXPRESSION

Previous studies demonstrated the ability of genetic variation to
influence gene expression (Montgomery et al., 2010; Hulse and
Cai, 2013; Li et al., 2014; Zhao et al., 2016). Gene expression levels
outside the physiological range, the so-called gene expression
outliers, are associated with Mendelian and common disorders.
In common disorders, there is the concept that the combination
of many variants contributes to the disease risk. Those genetic
risk factors also include variants causing aberrant expression and
can be summarized in polygenic risk scores. On the other hand,
Mendelian disorders are monogenic. Despite most Mendelian
disorders being caused by variants in the protein-coding region of
the DNA, aberrant expression events are, however, frequently
caused by noncoding variants in regions such as enhancers,
promoters, and suppressors, as well as by RNA degradation
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via nonsense-mediated decay (NMD) (Zeng et al., 2015; Li et al.,
2017). Although gene expression altering variants can be detected
by DNA sequencing, the functional consequences are difficult to
predict. The quantification of RNA abundance and primary
structure by RNAseq allow them to directly measure the
consequences of genetic variants on gene expression.

Counts of reads aligned to genes are used as the basis for
quantifying gene expression and detecting expression outliers
(Figure 2A). These read counts should be normalized for sample
sequencing depth by dividing the total depth or using size factors
(Anders et al., 2013). Read counts can additionally be controlled
for gene length resulting in the metrics reads per kilobase million
(RPKM) (Mortazavi et al., 2008) or transcripts per million (TPM)
(Wagner et al., 2012). Gene expression profiles are known to
covariate due to both physiological regulation and technical
artifacts. Therefore, several statistical methods, including
principal component analysis (PCA) and surrogate variable
analysis (SVA), have been adapted or specifically developed to
correct for technical artifacts keeping biological-relevant signals.
PCA has been used to cluster and reduce the dimension of gene
expression matrices (Yeung and Ruzzo, 2001). Further, it has
been shown that the top principal components can effectively
explain the variation of gene expression (Ma and Dai, 2011;
Todorov et al., 2018) and has been thus used to remove technical
covariation. The SVA algorithm was introduced to capture gene
expression heterogeneity thereby increasing biological accuracy
and reproducibility of analyses in genome expression studies
(Leek and Storey, 2007). Finally, using probabilistic estimation of

expression residuals (PEER) on gene expression data outputs
hidden factors explaining the expression variability (Stegle et al.,
2012). All three methods are applied to remove unwanted
covariation and improve gene expression data analysis.

The systematic implementation of gene expression analysis to
detect potentially disease-associated genes causing aberrant
expression in affected individuals has been successfully used as
a complementary method in four studies by detecting expression
outliers using distinct approaches (Kremer et al., 2017;
Brechtmann et al., 2018; Frésard et al., 2019; Gonorazky et al.,
2019). All approaches have been used in a gene-specific analysis,
even if different isoforms of a gene are presented. One established
way used to define an outlier data point is via its Z-score. Z-scores
are defined as the difference between the observed value and the
mean of the population, divided by the standard deviation of the
population. Outliers are then commonly defined as observations
with a |Z-score| greater than a cutoff, depending on the
research field.

Gonorazky et al. (2019) applied this Z-score approach in a
two-step procedure. First, genes with an RPKM |Z-score| ≥ 1.5
were defined as candidate outliers. Second, these candidates were
compared to a control group and designated as outlier genes if
their expression had at least a two-fold change with respect to the
mean of the control group. Multiple testing was performed using
Bonferroni’s method, yielding a median of 17 aberrantly
expressed neuromuscular-related genes per sample. This
allowed the detection of six causal genes out of 25 samples in
a cohort of rare muscular disorders. While this approach led to

FIGURE 1 | Evolution of RNAseq data modeling in the diagnosis of rare genetic disorders. The integration of RNAseq in molecular diagnostics includes three steps,
data generation by DNA and RNA sequencing resulting in raw counts, correction for confounders, and detection of outliers after statistical modeling. Before 2018, the
correction for confounders was based on manual work considering known technical and biological variables recorded in the LIMS. Since 2018, methods applying
machine learning have been introduced.We predict that in the future, deep learning approaches will integrate knowledge databases, sequencing data and combine
normalization, and statistical outlier detection. Next to each diagram, the different methods used to detect RNAseq outliers of the corresponding cases are given. LIMS,
laboratory information management system.
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some diagnoses, it lacks normalization for confounders and
always requires the comparison with a control group from the
same tissue as the affected samples. The Z-score approach has
also been used in expression quantitative trait loci studies of
common disorders (Smail et al., 2020).

Another way of defining outliers is by performing a
statistical fit in the whole population and testing the
distribution of the residuals (i.e., the difference between the
real and the predicted value). This approach was used by
Frésard et al. (2019) by applying a regression model on
corrected TPMs using surrogate variables (SVs) and
regression splines. In their cohort, the top two SVs
significantly correlated with sequencing batch and
sequencing facility. Adding the top two SVs and regression
splines decreased the variation of the residuals, decreased the
number of outlier genes per sample, and increased the
coefficient of determination (R2). Z-scores were generated
from the residuals of this model, and values with a |Z-score|

≥ 2 were classified as outliers (Figure 3A), resulting in a median
of 343 genes per sample. This very high number of outliers can
be explained by the approach lacking multiple testing.
Nevertheless, it allowed them to detect causal variants in
four out of 80 samples in a cohort of various genetic disorders.

Kremer et al. (2017) adapted the method for differential
expression DESeq2 (Love et al., 2014) and used it in a one vs.
rest fashion. This approach models the counts using a negative
binomial distribution parameterized with a mean and dispersion
(Figure 3B). The mean was estimated taking into account size
factors, batch, sex, and biopsy site of each sample, while the
dispersion was specific for each gene. Gene-sample combinations
with an adjusted p-value, using Hochberg’s method, lower than
0.05 and |Z-score| > 3 were classified as outliers, deeming a
median of one outlier per sample. Four out of 48 cases were
diagnosed using this approach. In this case, the correction for
sample covariation was performed using known factors;
therefore, latent confounders were not taken into account.

FIGURE 2 | Current approaches for the molecular diagnosis of rare genetic disorders via RNAseq. (A) Different machine learning and statistical approaches have
been adapted or developed and applied to facilitate diagnosis via aberrant expression, aberrant splicing, andmono-allelic expression detection. For aberrant expression,
the distribution of read counts is depicted, with outliers in red. For detection of aberrant splicing, an exon skipping event is depicted in red. For mono-allelic expression, a
SNV with MAE of the alternative allele A is shown. Below each diagram the different methods used to detect RNAseq outliers of the corresponding cases are
provided. (B) Different types of alternative splicing scenarios are depicted. Different mRNA isoforms can be generated from a single pre-mRNA through exon skipping,
exon creation, exon truncation, exon elongation, and intron retention. Exons are represented as green and red boxes. Introns are illustrated as solid lines between the
boxes. (C) A subset of a gene model is shown with split reads going from splice donor D to splice acceptors A1 (blue) and A2 (purple), and non-split reads spanning the
exon–intron boundary at the splice donor D (yellow). These reads can then be converted into the percent spliced-in (ψ) and the splicing efficiency (θ) metrics using the
formulae below the gene model.
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OUTRIDER was the first method applying a machine learning
model to detect gene expression outliers (Brechtmann et al.,
2018), instead of adaptations of methods used for the
detection of differential expression. By using a denoising
autoencoder, OUTRIDER controls for common covariation
observed in gene expression. Autoencoders are machine
learning models introduced to find low-dimensional
representations of high-dimensional data (Hinton and Zemel,
1993). They achieve this by learning certain features from the data
distribution by encoding it into a black-box representation and
decoding it to denoised data (Hinton and Zemel, 1993). A
subclass of autoencoders, called denoising autoencoders, is
specialized to reconstruct corrupted high-dimensional data by
exploiting correlations in the data (Vincent et al., 2008).
OUTRIDER is taking advantage of this unsupervised learning
method and applies it on gene-level counts (Brechtmann et al.,
2018). Log-centered, size factor normalized gene counts are used
as input for the autoencoder. The output is the parameters of the
negative binomial distribution that the gene counts are assumed
to follow, which are the expected counts and dispersions for each
gene (Figure 3B). Multiple testing is performed on two-sided
p-values using the Benjamini–Yekutieli false discovery rate (FDR)
method, which holds under positive dependence because of gene

co-expression. Expression outliers are defined as the gene-sample
combinations with an FDR ≤0.05, resulting in a handful of
outliers per sample, depending on the number of samples. In
a subset of GEUVADI’s cohort (Lappalainen et al., 2013)
comprising 100 control samples from different sequencing
centers (CNAG CRG, N � 31; ICMB, N � 28; and UNIGE,
N � 41) and ancestries (British, N � 12; Finnish, N � 26; Tuscan,
N � 22; Utah, N � 16; and Yoruba, N � 24), OUTRIDER’s
denoising autoencoder was able to control for covariation (Yépez
et al., 2021b). The sample size of each subgroup was relatively
similar; therefore, the autoencoder is yet to be tested in cases
where a subgroup is substantially underrepresented. Murdock
et al. (2021) applied OUTRIDER in a cohort of 78 DNA-unsolved
patients with diverse disorders and diagnosed five of them with
aberrantly expressed genes. OUTRIDER was also applied to a
cohort of 303 rare disease patients sequenced in the same center
but from different ancestries (mostly European and Asian), which
led to the identification of 26 aberrantly expressed disease causal
genes (Yépez et al., 2021a).

Currently, OUTRIDER is the only available automated
method to compute expression outliers from gene expression
matrices. It outperformed methods that use Z-scores on counts
normalized using PEER and PCA in three different benchmarks.

FIGURE 3 | Statistical distributions used to model gene expression data and compute outliers. (A) Standard normal distribution simulating standardized residual or
Z-scores. Here, cutoffs defining outliers at ±3 (vertical lines) were selected. (B)Negative binomial distribution simulating gene counts with amean of 700 and dispersion of
5. Values lower than 36 or greater than 2,899 (vertical lines) have a probability lower than 10−5 to occur, reflecting expression outliers. (C) Beta-binomial distribution
simulating the distribution of split counts (n (D, A)) given a total of 100, with a ψ expectation of 0.9 and a correlation of 0.1. Values lower than 22 (vertical line) have a
probability lower than 10−5 to occur, reflecting splicing outliers. Dirichlet-multinomial distributions are multidimensional extensions of beta-binomial distributions. (D)
Binomial distribution simulating the counts of each allele on a selected variant with a total of 75 counts and a probability of 0.5. Biological-relevant cutoffs at 20 and 80%of
allelic ratio (15 and 60 counts) indicate MAE. Extensions of this distribution have been proposed to account for the genetic variation by ANEVA-DOT and the MAE test of
Kremer et al. (2017). Below each diagram, different methods using these distributions are given.
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First, it achieved a higher precision in recovering injected outliers
in simulations. Second, OUTRIDER had a higher enrichment of
rare moderate and high impact variants among outliers, as shown
in GTEx samples that there is a strong association between rare
variants and expression outliers (Li et al., 2017). Third, it was able
to recover all the five pathogenic events from the Kremer et al.
(2017) dataset, while PCA missed two and PEER missed one of
the five pathogenic events. Larger datasets with more confirmed
pathogenic variants would further improve benchmarking.

After obtaining an expression outlier in a disease-associated
gene, it is mandatory for a molecular diagnosis to identify
causative rare genetic variants. Filters including allele
frequency, computational predictions, segregation, and
incurrence in unaffected controls are applied. The variants can
be located in regulatory regions like enhancers, promoters, or
suppressors of the corresponding gene, but also in the coding or
intronic regions affecting splicing or creating a nonsense codon
causing NMD. In Yépez et al. (2021a), using WES, the cause of
aberrant expression remained elusive in 65% of outliers and
without the identification of a causative variant, the case
remains undiagnosed. This fraction can be further reduced by
using WGS, allowing the discovery of structural variants, which
explain up to 25% of expression outliers (Ferraro et al., 2020). A
significant fraction of expression outliers can be explained by
NMD affecting a single allele only, showing the sensitivity of
RNAseq studies (Li et al., 2017; Ferraro et al., 2020; Yépez et al.,
2021a). In the majority of cases solved via aberrant expression,
the causal variant affects splicing. Some of the variants have been
prioritized after WES; however, they usually remain as variants of
uncertain significance. A large fraction of variants are outside the
splice region and frequently deep intronic. Without detection of
aberrant splicing, they would not have been prioritized. In
addition, in some cases, aberrant expression was caused by
deletions in the 5’UTR (e.g., NM_004544.3 c.-99_-75del
causing 50% depletion in NDUFA10) or promoter regions
(e.g., NM_016617.2 c.-273_-271del causing 40% depletion in
UFM1) (Yépez et al., 2021a).

SPLICING OUTLIERS

The concept of alternative splicing was initially introduced in
1978 based on the discrepancy between human protein-coding
genes (∼25,000) and human proteins (>90,000) (Gilbert, 1978).
More than 95% of human genes undergo alternative splicing,
acting to a certain extent in a tissue, or development-specific, or
signal transduction–dependent manner (Pan et al., 2008; Nilsen
and Graveley, 2010). Alternative splicing gives rise to different
isoforms of the mature mRNA of a gene (Baralle and Giudice,
2017). Various forms of alternative splicing are known, including
exon skipping, generation of new exons, exon truncation, exon
elongation, and intron retention (Figure 2B). Alternative splicing
is strictly regulated, and aberrant splicing is an underlying cause
of genetic diseases (Wang et al., 2015). The splicing mechanism is
complex and variable. Even without genetic variation, it is
difficult to quantitatively predict splicing. Functional
consequences of rare variants within splice regions are

challenging to predict, especially in the case of deep intronic
variants. Moreover, splice defects are quantitative, often resulting
in multiple isoforms with different frequencies. Analysis of
RNAseq using patients’ samples enables the evaluation of
splice variant consequences and detection of aberrant splice
events, de novo and not predicted by DNA sequence.

To quantify splicing, reads spanning from the donor site of an
exon to the acceptor site of another exon (split reads, n (D, A))
and reads overlapping an exon–intron boundary (non-split reads,
n (D) for donor and n (A) for acceptor site) are counted and
aggregated per junction (Figure 2C). These can then be converted
into the intron-centric metrics percent-spliced-in (ψ) and
splicing efficiency (θ) (Pervouchine et al., 2013). The ψ index
is computed as the ratio between reads mapping to the given
intron (n (D, A)) and all split reads sharing the same donor (ψ5)
or acceptor site (ψ3), respectively. For the detection of partial or
full intron retention, the splicing efficiency metric, defined as the
ratio of all split reads and the full read coverage at a given splice
site, is used (Figure 2C).

To detect aberrant splicing in patient samples suffering from
rare genetic disorders, distinct, already available methodologies
were applied to RNAseq data. One approach, used by Cummings
et al. (2017) and Gonorazky et al. (2019), to detect aberrant
splicing consists of comparing normalized split reads of affected
individuals against those of controls and other affected samples.
In both studies, normalized split reads were obtained by dividing
them with the maximum number of split reads of a shared
exon–intron junction. In Cummings et al. (2017), aberrant
junctions were those whose normalized value was the highest
in the sample of interest and twice or higher than the next highest.
This approach resulted in a median of 190 aberrantly spliced
genes per sample and allowed them to diagnose 10 out of 50
individuals with muscular disorders. In Gonorazky et al. (2019)
for a junction to be aberrant, either the donor or the acceptor site
cannot be annotated in GENCODE, must not be present more
than five times in control samples (from GTEx), and it has to be
unique among the affected cohort. On median, five aberrant
junctions per sample were identified and led to the diagnosis of
eight out of 25 samples with neuromuscular disorders. In a
second approach for the detection of aberrant splicing, Kremer
et al. (2017) adapted the method LeafCutter (Li et al., 2018),
originally developed to test for differential usage in intron clusters
between two groups, to work in a one vs. rest manner.
LeafCutter’s Dirichlet-multinomial’s approach returns a
p-value per intron per sample, later corrected for multiple
testing using Hochberg’s method. Outliers were defined as
those with an adjusted p-value < 0.05, yielding a median of
five outliers per sample. Although the method contributed to the
diagnosis of three out of 48 cases, it does not control for sample
covariation. However, Frésard et al. (2019) showed the existence
of sample covariation on ψ values. Therefore, they applied a
similar approach as they did for the aberrant expression analysis
but regressed out principal components accounting for 95% of
the variation instead of SVs and splines. The first three principal
components are correlated with RIN number, batch, and
sequencing facility. Splicing outliers were defined as those with
a |Z-score| ≥2, yielding on average 540 outliers per sample. This
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approach allowed them to diagnose two out of 80 patients.
Frésard’s methodology nevertheless is limited by not offering
control for multiple testing and low power to detect aberrant
splicing in splice sites with low reads.

Bearing in mind the limitations of the approaches described,
three specialized methods to systematically detect aberrant
splicing were developed: FRASER, LeafCutterMD, and SPOT.
FRASER (Find Rare Splicing Events in RNAseq) is an approach
combining machine learning and statistical models to detect
aberrant splicing from RNAseq data (Mertes et al., 2021).
Using the same rationale as OUTRIDER for detecting aberrant
expression, FRASER uses a denoising autoencoder automatically
controlling for latent confounders. Further, FRASER fits for each
intron a beta-binomial distribution on the intron-centric metrics
ψ5, ψ3, and θ, independently. The distribution is parameterized
with a sample intron-specific proportion expectation and an
intron-specific correlation (Figure 3C). p-values are computed
and two multiple testing steps are performed, the first at the
junction level using Holm’s method (Holm, 1979), and the
second at the gene level using Benjamini–Yekutieli’s method
(Benjamini and Yekutieli, 2001). Splicing outliers are defined
as the intron-sample combinations with an FDR <0.10. A |Δ ψ| >
0.3 is recommended as an additional filter for the identification of
pathological-relevant variation, where it corresponds to the
difference between the observed ψ and the expected ψ.
Application of FRASER in the rare disease cohort from
Kremer et al. (2017) identified all three previously detected
pathogenic splicing aberrations, plus an intron-retention event
missed by LeafCutter, and a synonymous variant causing a splice
defect missed by Kremer et al. (Mertes et al., 2021). FRASER was
also applied to the GEUVADIS multicenter and multi-ancestry
cohort and was able to remove sample covariation for all metrics
(Yépez et al., 2021b). In addition, FRASER has been used by
Murdock et al. (2021) leading to the diagnosis of four out of 78
subjects and by Yépez et al. (2021a) leading to the diagnosis of 19
(12 in combination with aberrant expression) subjects from
various ancestries.

LeafCutter for Mendelian disease (LeafCutterMD) was
introduced in 2020 as an adaptation of LeafCutter (Li et al.,
2018) to detect outlier splicing events (Jenkinson et al., 2020).
Like its predecessor, LeafCutterMD uses an intron-based
clustering approach, in which all split counts belonging to the
same cluster are modeled together. Thus, it uses a Dirichlet-
multinomial distribution, which is a generalized higher-
dimensional version of the beta-binomial distribution
(Figure 3C). Both distribution parameters allow it to account
for biological variability and uncertainties due to statistical
sampling. In simulations, the power of LeafCutterMD (1—the
probability of a Type II error) is up to 50% higher than the power
of LeafCutter (Jenkinson et al., 2020). Two-sided p-values are
estimated for each intron of each cluster, later being corrected for
multiple testing. In the same study, LeafCutterMD was applied to
a cohort of 128 individuals with an undiagnosed genetic disease,
out of which three were found to have splicing aberrations by
manual inspection after variants were detected on them.
LeafCutter failed to identify all three of them as outliers, while
LeafCutterMD did identify them, demonstrating its improvement

and application to rare disease cohorts. However, it does not
account for latent confounders.

SPOT (Splicing Outlier deTection), the third novel approach
developed to detect aberrant splicing, fits a Dirichlet-multinomial
distribution on each of the intron clusters generated by
LeafCutter (Ferraro et al., 2020), thus obtaining estimates of
the distribution parameters for each cluster. Using these
parameters, it generates 1 million random values and
computes the Mahalanobis distance (Mahalanobis, 1930) of
each of these values to the Dirichlet-multinomial distribution.
This distance takes into account the covariance of the split reads.
Empirical p-values are computed for each sample-intron cluster
by comparing its Mahalanobis distance against the 1 million
simulated ones. This method is yet to be tested in a rare disease
cohort.

By inserting outliers in samples from skin and brain from
GTEx, FRASER obtained higher precision in detecting the
simulated outliers at all recall levels than SPOT and
LeafCutterMD (Mertes et al., 2019). Following the principle
that rare variants in the splice regions can disrupt splicing
(Rivas et al., 2015), Mertes et al. (2021) also benchmarked by
performing an enrichment of rare variants in the splice region
among splicing outliers called by the three specialized methods.
FRASER obtained a higher enrichment of rare splice-region
variants and variants predicted to affect splicing [using
MMsplice (Cheng et al., 2019)] than SPOT and LeafCutterMD
across all tissues from the GTEx dataset (GTEx Consortium,
2017).

The variability of splicing is much higher than of gene
expression and can often not be linked to a genetic variant in
cis (Ferraro et al., 2020; Yépez et al., 2021a). Published pathogenic
splice-disrupting variants discovered via RNAseq are usually
within the annotated splice region and, as such, likely to cause
aberrant splicing, or within the coding region or deep intronic
regions activating novel splice sites. Only a minor fraction of
these variants was functionally validated. Methods like MMSplice
(Cheng et al., 2019) or SpliceAI (Jaganathan et al., 2019) can be
further used to pinpoint which variant is most likely causing the
splicing aberration.

MONO-ALLELIC EXPRESSION

Besides aberrant expression and splicing, RNAseq contains
information about allelic expression, the expression of the
maternal and paternal haplotype of an individual. In the case
of allele-specific expression (mono-allelic expression, MAE) one
allele is silenced and only the other allele is expressed. MAE is an
extreme form of allelic imbalance. The reasons for MAE can be
diverse and may be driven by loss-of-function genetic variants or
epigenetic effects, such as imprinting of autosomal genes (Santoni
et al., 2017) or inactivation of the X chromosome (Knight, 2004;
Tukiainen et al., 2017). Assuming a recessive mode of inheritance,
heterozygous variants are not considered to be disease causing if
present alone (Albert and Kruglyak, 2015). The analysis of MAE
can prioritize such rare heterozygous variants identified by WES
(Kremer et al., 2017).
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Detection of mono-allelically expressed genes relies on
counting the expressed alleles at genomic positions of single-
nucleotide heterozygous variants (SNVs, Figure 2A). Thereafter,
it is tested whether these counts are evenly distributed among
both alleles, or whether there is a pronounced skew toward one of
the alleles (Figure 3D). These counts can be transformed into
ratios by dividing the counts aligning to each allele over the total
counts. Five methods have been developed to detect MAE in the
context of rare genetic disorders.

Cummings et al. (2017) computed a 95% confidence interval
of the mean allele balance for each gene using GTEx samples and
compared the balance of the affected samples against it. Frésard
et al. (2019) scaled reference allele ratios across samples thus
converting them into Z-scores, ranked them, and further used
them to support the findings from aberrant expression.
Gonorazky et al. (2019) scaled alternative allele ratios into
Z-scores and compared them against the values from GTEx
samples which directed to the cause of disease in three cases.

Kremer et al. (2017) proposed a negative binomial test with a
fixed dispersion for all genes. The negative binomial distribution
accounts for a dispersion parameter not present in the binomial
distribution. The test outputs a p-value for each SNV-sample
combination which is later corrected for multiple testing. To
distinguish between allelic imbalance and MAE, alleles with an
alternative allele ratio greater than 0.8 or lower than 0.2 and
Benjamini–Hochberg adjusted p-values < 0.05 were considered to
be mono-allelically expressed.

Mohammadi et al. (2019) introduced ANEVA, a generative
model to quantify genetic variation (VG) in gene dosage
(i.e., expression) within a population. Using VG, they further
developed ANEVA-DOT which implements a binomial-logit-
normal test on each SNV to detect MAE. The rationale is that the
variance of each gene is different and should be taken into
account when testing for MAE. Moreover, it takes into
account reference allele alignment bias and the probability of
the allelic count to be incorrect (i.e., assignment to the reference
allele when it corresponds to the alternative or vice versa). MAE
variants are those with an FDR <0.05. ANEVA-DOT was applied
to the cohort of 70 rare Mendelian muscle dystrophy and
myopathy patients described in Cummings et al. (2017). In
that cohort, 16 out of 70 patients had MAE pathogenic
variants. ANEVA-DOT was able to recover all of them, plus it
outperformed other tests that use binomial and beta-binomial
distributions by obtaining the highest recall of the 16 true causal
genes and the lowest number of reported outlier genes. Moreover,
ANEVA-DOT detected a novel MAE in one proband from this
cohort leading to a new diagnosis (Mohammadi et al., 2019). In
order to estimateVG, a large cohort with DNA and RNA sequence
information is needed. Even using the large GTEx data collection
(with a median of more than 200 samples per tissue), ANEVA
estimates for VG could only be computed for 4,962 genes (in
median per tissue).

No formal benchmark has been done between the negative
binomial method and ANEVA-DOT, and the application of
ANEVA-DOT is currently limited by not providing genome-
wide calling. Unlike for aberrant expression or splicing, one
limitation of MAE is that it requires a detected variant to be

able to compute the allelic counts. Obtaining MAE in genes
constrained to variation, shorter genes, or ethnicities similar to
the reference genome is, therefore, limited. So far, the added value
of MAE has been lower with respect to that of aberrant expression
or splicing and often in combination with aberrant expression
(Kremer et al., 2017; Gonorazky et al., 2019; Yépez et al., 2021b).

LIMITATIONS AND FUTURE
PERSPECTIVES OF RNASEQ IN THE
MOLECULAR DIAGNOSIS OF RARE
DISORDERS

The application of technologically and bioinformatically
advanced next-generation sequencing methodologies has
increased the number of patients with rare genetic disorders
getting a clear molecular diagnosis. Nevertheless, a large fraction
of those patients remains unsolved by DNA sequencing.
Integration of RNAseq approaches appears promising to
improve the diagnostic yield, yet several challenges remain to
be addressed in the future.

Gene fusion, which consists of genetic material from different
genes being merged and transcribed together, can be detected
from RNAseq data and has proven to be successful in cancer
diagnostics (Mertens et al., 2015; Dai et al., 2018). A variety of
methods including Manta (Chen et al., 2016), ChimeraScan (Iyer
et al., 2011), or STAR-Fusion (Haas et al., 2019) have been
developed to call gene fusions. Statistical improvements, such
as the inclusion of factors like allele frequency or repetitive
matching to better distinguish between “bona fide gene
fusions” from artifacts in CICERO will further enhance the
quality of the fusion calls (Tian et al., 2020). Early studies
have shown that calling gene fusions can also lead to diagnose
rare diseases (Oliver et al., 2019), but its systematic application is
yet to be explored.

Although all patients’ cells share an almost identical genome,
each cell type and subtype displays different levels of gene
expression and gene isoforms. Moreover, it is assumed that
not only different cell types exhibit various transcriptomes but
also that the transcriptome of cells within a tissue varies (Shalek
et al., 2014). Given the tissue-specific expression of genes and
mRNA isoforms, analysis of disease-relevant tissues is for many
diseases of great value for the interpretation of genetic variants
(Wang et al., 2008; Melé et al., 2015; Cummings et al., 2017).
However, obtaining biopsies of disease-relevant tissue is
unfeasible for many rare genetic diseases. Blood, for instance,
is the most easily accessible tissue, yet the blood transcriptome is
not well suited for the analysis of a number of rare diseases (The
GTEx Consortium, 2015; Cummings et al., 2017; Gonorazky
et al., 2019). Fibroblast or myoblast cell lines based on skin or
muscle biopsies are often used as surrogates. Patient cell lines are
usually only available to a limited extent, and indefinite
proliferation is not always possible. Consequently,
transformed, immortalized cell lines, or animal models have
been applied as disease models. Yet, neither model provides
the possibility to fully replicate the physiology of patient cell
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lines nor do they consider aspects of distinct gene expression
and splicing in various subgroups of tissues (Anderson and
Francis, 2018). By reprogramming mature patient cell lines
into patient-specific induced pluripotent stem cells (iPSCs),
the patient’s genotype is retained. Patient-specific iPSCs,
where as many as 27,046 protein-coding and nonprotein-
coding genes are expressed, provide a suitable model to
study the consequences of the disease genotype on RNA
level (Hamazaki et al., 2017; Bonder et al., 2019). Due to
the differentiation and self-renewal properties of iPSCs,
their differentiation into disease-relevant tissues is an
approach to overcome the limited accessibility of tissues.
Generation and differentiation of iPSCs carrying disease-
relevant mutations has already shown the ability to replicate
the patients’ phenotype. Simulating rare genetic diseases with
the help of patient-specific iPSCs now further offers the
possibility to analyze the transcriptome of the tissue of
interest and thus to investigate new pathomechanisms
(Sterneckert et al., 2014).

Some genetic variants affect the expression of a gene in a
cell type–specific manner. Transcriptome analysis of an
entire cell population, the so-called bulk RNAseq, is
typically based on RNA extracted from tissues that may
contain several cell types. These bulk RNAseq analyses
provide a bulk average and are not cell type–specific.
When analyzing a blood sample, the sensitivity for the
detection of outliers depends on the contribution of the
affected cell types in the blood sample, and the composition
of different cell types may change over time. Whole
transcriptome sequencing of single cells (scRNAseq) has
the potential to identify and characterize rare cell
populations (Hwang et al., 2018; Lederer and La Manno,
2020). ScRNAseq has generated comprehensive
compendiums of cell types per tissue and identified cell
types that play a critical role in genetic diseases, which
can guide cell type–specific investigations (The Tabula
Muris Consortium et al., 2018; Aizarani et al., 2019). In
particular, scRNAseq has already been used as a powerful
tool in fields such as immunology (Mizoguchi et al., 2018;
Zhang, 2019), cancer (Cheng et al., 2021; Velten et al., 2021),
and neurological diseases (Jäkel et al., 2019; Mathys et al.,
2019). ScRNAseq of diseased tissues or patient-specific
iPSCs could further advance the precision medicine
approach in the field of rare genetic disorders (Choi
et al., 2020).

Within the process of alternative splicing of human premessenger
RNAs, multiple mRNA isoforms are generated from a single gene
leading to differences in protein isoforms, structure, and function
(Park et al., 2018). mRNA isoform-specific defects can result in
different diseases. Standard and commonly used RNAseq platforms
generate short reads of 150–300 bases, generally spanning at most
two exon junctions per read. Short read RNAseq methodologies are
constrained by their need for computational reconstruction of single
short reads into entire transcripts (Steijger et al., 2013). Most of the
human mRNAs, however, are longer than 3 kb (Piovesan et al.,
2019) and with more than 100 kb Titin represents the longest
disease-relevant human transcript (Bang et al., 2001). Hence,

short read sequencing methods are not the best method of choice
for detection and quantification of mRNA isoform expression and
do not phase alternative exons. Recently developed long read
sequencing technologies, producing reads of up to 100 kb, enable
the accurate identification and quantification of mRNA transcript
isoforms (Oikonomopoulos et al., 2020; Uapinyoying et al., 2020).
Various bulk or single-cell long read RNAseq approaches revealed a
significant number of missing mRNA isoforms in the current
transcript annotations, suggesting a more complex mRNA
isoform scene than previously assumed (Sharon et al., 2013;
Tilgner et al., 2013; Anvar et al., 2018; Gupta et al., 2018; Glinos
et al., 2021). Moreover, long reads improve sequence alignment,
reduce the number ofmulti-mapped reads, allow phasing of variants,
and increase the number of split-reads thereby improving the calling
of aberrant splicing (Mantere et al., 2019; Amarasinghe et al., 2020;
Mitsuhashi and Matsumoto, 2020). The power of long read
transcriptome data in disease diagnostics has already been
successfully demonstrated in diseases, such as Alzheimer’s disease
(De Roeck et al., 2017) or X-linked dystonia parkinsonism
(Aneichyk et al., 2018). Methods to model and normalize gene
expression might need to adapt as quantification of longer reads
might statistically differ from that of short reads.

Transcriptome sequencing is used to assess the effects of variants
on gene expression. Thresholds for pathological gene expression are
not yet established, and aberrant RNA expression could be
compensated on the protein level and not necessarily cause
disease. Buffering mechanisms exist and transcript levels cannot
be directly translated to protein levels (Battle et al., 2015). Moreover,
low RNA expression levels not called as a statistical outlier may be
pathologically relevant. Therefore, for the clinical interpretation
according to the ACMG/AMP criteria, additional functional
studies, such as proteomics and functional assays, are often
needed for the validation of aberrant RNA expression (Richards
et al., 2015). With an increasing number of patients with aberrant
expression, thresholds of aberrant gene expression can be
established. Proteomic approaches have advanced, now allowing
protein quantification, study of protein–protein interactions, and
identification of posttranslational modifications by high-throughput
proteomics (Wang et al., 2014; Stenton and Prokisch, 2020). For
example, integrated genome, transcriptome, and proteome analyses
allowed the validation of a rare variant causing aberrant gene
expression of genes such as TIMMDC1 (Kremer et al., 2017),
PTCD3 (Borna et al., 2019), or MRPS34 (Lake et al., 2018). More
recently, Kopajtich et al. (2021) demonstrated the effectiveness of
integrating genomics, transcriptomics, and proteomics in a
systematic diagnostic application to discover the genetic cause of
20% of unsolved patients with suspected mitochondrial disorders.
These recent advancements in bioinformatic approaches help to
combine these multi-omics data and enable their holistic analysis.

Due to the expanding availability and automation of DNA and
RNA sequencing, they are increasingly applied in diagnostics. While
the demand is decreasing on the wet lab side, the increasing
throughput of such methods and generation of large data sets
requires larger computational infrastructure, adaptation, and
automation of bioinformatic algorithms. Depending on the
algorithms used, memory consumption and computation time
may increase exponentially, logarithmically, or otherwise
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depending on the size of the dataset to be analyzed (Baichoo and
Ouzounis, 2017). The machine learning approaches OUTRIDER
and FRASER led to a shorter computational time with respect to
DESeq and LeafCutter and therefore speed up analysis. Moreover,
both tools have been integrated in a computational workflow,
DROP, which also automates the preprocessing and quality
control steps (Yépez et al., 2021b). Besides seeking to obtain high
precision, newly developed methods must also pursue yielding
results in a low computational time and being able to model
hundreds or thousands of samples together.

Another challenge remaining in the analysis of RNAseq
data is the replication of outliers. There are no studies about
replication of outliers using multiple biopsies from the same
tissue from the same patient. However, Ferraro et al. (2020)
and Mertes et al. (2021) performed replication analyses using
different tissues from the same individuals from the GTEx
cohort. Ferraro et al. (2020) found that a median of 5.1%
expression outliers, 8.7% of splicing outliers (using SPOT), and
10.7% of mono-allelically expressed genes (using ANEVA-
DOT) that were detected as aberrant in one tissue were
replicated in another. This was confirmed by Mertes et al.
(2021) who found that more than 80% of splicing outliers are
found in only one tissue, for SPOT, LeafCutterMD, and
FRASER. These low replication numbers likely reflect the
differences between the tissues but could also indicate
variation within cells of the same tissue. Pooled CRISPR
screens combined with scRNAseq have emerged as powerful
tools for profiling the functional effects of genetic variants at
the single-cell level (Adamson et al., 2016; Dixit et al., 2016;
Jaitin et al., 2016; Datlinger et al., 2017). Using different cell
types in parallel, those approaches have the potential to study
the tissue specificity of splice variants and replication across
tissues.

To properly normalize and model read counts and split
reads, a minimum number of samples are needed. OUTRIDER
and FRASER recommend at least 60 and 30 samples,
respectively. Integrating affected with external control
samples can help reach this minimum, as long as they were
originated from the same tissue and sequenced using a similar
protocol (Frésard et al., 2019; Yépez et al., 2021b). When
integrating samples, it is recommended to first inspect the
plots of the normalized counts (e.g., via heatmaps or principal
components), especially if the affected samples are too diverse
with respect to the controls (e.g., ancestry, age, or disease).
Gene expression could depend on developmental status.
Therefore, it is recommended to consider adequate control
samples. For example, for pediatric cases, the CZI pediatric cell
atlas or developmental GTEx can serve as appropriate control
datasets (Taylor et al., 2019). Gene coverage also plays a role in
outlier detection. Yépez et al. (2021b) showed that less
expression and splicing outliers were detected in samples
with lower sequencing depth (∼30 vs. ∼85 million reads). A
systematic study to find the minimum coverage a gene and a
junction should have in order to be detected as an outlier, and
whether genes that are very highly expressed tend to be more
prone to be called as expression or splicing outliers, is pending.
Likewise, the sequencing protocol might influence the detected

outliers. The total RNAseq protocol contains more immature
splice transcripts in comparison to poly-A enriched. Those
immature splice transcripts increase the noise and can be
misinterpreted as aberrant splicing. On the other hand,
using a poly-A enriched protocol might have an impact on
detecting aberrant splicing on the 5’ end of larger genes. In a
poly-A enriched cohort, Yépez et al. (2021a) showed that genes
with many exons tend to have more splicing outliers than
genes with fewer exons, even after correcting for multiple
testing inside each gene, but there was no information
about the position of the aberrant junctions inside each
gene. An analysis of a dataset with samples from the same
donors sequenced using both protocols [such as the one in
Chen et al. (2020)] will be valuable.

Finally, the approaches introduced here used different
thresholds and cutoffs to define outliers and to filter out
genes or junctions with low expression. Fine-tuning
thresholds and cutoffs to obtain the desired precision-recall
balance is of utmost importance and need to be adopted to the
question. Thresholds can be defined by biological and
statistical significance. A reduction to less than half of gene
expression with respect to the median could reflect a
pathological situation specifically in genes prioritized by the
finding of rare DNA variants. If the data are explored to
discover aberrant expression, considering the high number
of tests (in the 10,000 s for gene expression, 100,000 s for
aberrant splicing, and in between for MAE), multiple
testing correction is necessary. These tests are not
independent due to gene co-expression, split counts on a
same cluster being coupled, and allelic expression being the
same among all SNVs of a gene. Many multiple testing
methods have been implemented, yet no agreement on a
common guideline has been reached.

CONCLUSION

In diagnostics of rare disorders, it is important to be able to
evaluate the functional consequences of genetic variants. A
correct molecular diagnosis enables to study the natural
history and pathomechanisms of the disease which may lead
to targeted therapy. The current diagnostic gap in DNA
sequencing can in most cases be traced back to difficulties in
variant prioritization. RNAseq has now been shown to be
effective in increasing the diagnostic yield. Numerous
diagnostic laboratories have already implemented DNA
sequencing technologies and the establishment of RNAseq
protocols in these laboratories would be easy and
straightforward. Machine learning approaches have
automated normalization and denoising of confounded
RNAseq data, providing gene expression data in a high-
throughput manner ready for analysis. Statistical methods
have been adopted to the analysis of aberrant expression on
the quantitative and qualitative level. However, pathological
variants and statistical significance may need different
thresholds. Statistical models optimized to control for false
positive hits may be too stringent and miss pathological
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events. The limited number of positive controls for pathological
aberrant expression results in an unsecure validation of
established methods for diagnostics. With increasing datasets,
this shortcoming has to be addressed in the near future and will
force the establishment of guidelines. The application of
machine learning is only in its beginning, and we foresee
that deep learning methods will further improve the
diagnostics of rare disorders.
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