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Humoral immunity is mainly mediated by a B cell population highly specialized to
synthesize and secrete large quantities of antibodies – the antibody-secreting cells
(ASC). In the gastrointestinal environment, a mixture of foreign antigens from the diet,
commensal microbiota as well as occasional harmful pathogens lead to a constant
differentiation of B cells into ASC. Due to this permanent immune response, more than
80% of mammalian ASC reside in the gut, of which most express immunoglobulin A (IgA).
IgA antibodies contribute to intestinal homeostasis and can mediate protective immunity.
Recent evidence points at a role for gut-derived ASC in modulating immune responses
also outside of mucosal tissues. We here summarize recent evidence for wandering ASC,
their antibodies and their involvement in systemic immune responses.
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INTRODUCTION

Differentiation of Gut-Derived IgA Plasma Cells
Humoral immunity is mediated by a B cell population highly specialized to synthesize and secrete
large quantities of antibodies – the antibody-secreting cells (ASC). ASC can be divided into
proliferating plasmablasts (PB) and terminally differentiated, non-mitotic plasma cells (PC) (1).
ASC represent a heterogeneous B cell subset that varies by location, secreted antibody isotype, and
longevity. Most of our knowledge of ASC derives from the analysis of humoral immune responses
towards immunisation and infection, which induce a transient germinal centre (GC) reaction and
the differentiation of ASC with mainly an IgG isotype. The molecular requirements and signalling
pathways involved in ASC differentiation, function and maintenance have been reviewed recently
(2, 3). In the gastrointestinal environment, a mixture of foreign antigens from the diet, commensal
microbiota as well as occasional harmful pathogens lead to a constant prevalence of GC and steady
differentiation of B cells into ASC. Due to this permanent immune response, more than 80% of
mammalian ASC reside in the gut (4). Most of these express immunoglobulin A (IgA), making IgA
ASC an abundant B cell subset.

IgA contributes to intestinal homeostasis and can mediate protective immunity to enteric
pathogens including viruses, bacteria, and fungi (5–7). The differentiation of B cells into IgA ASC
mainly takes place in the gut-associated lymphoid tissues (GALT), including mesenteric lymph nodes
(8), Peyer’s Patches (PP) (9) and isolated lymphoid follicles of the lamina propria (LP) (10, 11).
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Although debated, in situ LP IgA ASC differentiation has also
been reported (12, 13). A variety of signals might modulate the
differentiation of B cells into IgA ASC, dependent on the cellular
composition, the soluble factors and location of the respective
niche. Besides specialised dendritic cells, CD4 T follicular helper
(TFH) cells (14), TH17 cells (15) as well as Innate Lymphoid
Cells (12) have been implicated in the generation of IgA
antibodies. In addition to stroma and other surrounding cells,
these cells provide co-stimulation, as well as soluble factors to
induce differentiation to IgA ASC, such as TGF-b (16), IL-21
(14), retinoic acid (17), and B cell activating factor (BAFF) or a
proliferation-inducing ligand (APRIL) amongst others (18).
However, the instructive sites, signals and cells involved are still
not fully understood.

Precursors to IgA ASC include circulating naive follicular B2
cells, and innate-like peritoneal B1 cells (19–21). B cell
differentiation in the GALT occurs via both T-independent
(TI) and T-dependent (TD) pathways. The TI response to
commensals mostly consists of polyreactive IgA antibodies
with little somatic hypermutation or affinity maturation (22).
TD responses require a GC reaction in which signals from TFH
cells promote class-switch recombination (CSR) to IgA (14).
Recent developments point at the fact that IgA secreting PC in
the intestine are highly mutated in aged mice and humans (23,
24), which argues for a need of a TD response to generate
sophisticated antibodies [reviewed in (25)].

Trafficking of IgA ASC is regulated by a combination of
chemokine receptors as well as integrins on the surface of
migrating cells. IgA ASC use a4b7 integrin to travel into the
intestine. In addition, IgA ASC express the chemokine receptors
CCR9, which is implicated in mediating entry into the small
intestine (26) and all IgA ASC have been reported to express
CCR10 (27). IgA ASC might use CXCR4 in order to travel
to the bone marrow (28). Furthermore, homing to sites of
inflammation might require the transient upregulation of
CXCR3, as has been shown for IgG ASC (29).

Recent evidence points at a role for gut-derived ASC in
modulating immune responses also outside of mucosal tissues,
such as in the blood, the kidney, or the central nervous system
(CNS). Here, we will sum up new developments on the field of
wandering IgA ASC. We focus on “sightings” of IgA ASC, their
contribution to systemic immune responses as well as open
questions and possible future developments. We will
exclusively focus on IgA ASC educated in the GALT and will
not discuss IgA ASC educated in other mucosal tissues, e.g., the
lung. We will use the term ASC to indicate PB and PC; also, if the
exact distinction between those subsets is not clear from
the literature.
INVOLVEMENT OF GUT-DERIVED IGA
ASC IN SYSTEMIC IMMUNE RESPONSES

Gut-Blood-Bone Marrow Axis
Evidence for the wandering of IgA ASC comes from studies
describing IgA-secreting PB in the blood of healthy
Frontiers in Immunology | www.frontiersin.org 2
individuals (30). Those cells expressed CCR10 and a4b7
integrins and hence seemed to derive from mucosal immune
responses. Similarly, monomeric IgA antibodies are readily
detected in the sera of mice and men; but the source of these
antibodies still remains to be defined in more detail. In patients
suffering from celiac disease, clonal relatedness between gut PC
and circulating serum IgA has been demonstrated using a
proteomics approach combined with next-generation
sequencing (31). These findings suggest that gut PC and serum
IgA-producing PC derive from the same B cell clones. As IgA PC
in the gut mainly produce dimeric IgA, the authors hypothesize
that monomeric IgA is released by PC that migrated elsewhere.
Interestingly, in human bone marrow (BM), approximately 5 –
40% of PC, as well as about 40 – 70% of PB express IgA as well as
b7 integrin and CCR10, thus suggesting a substantial
contribution of mucosal ASC to BM resident, long-lived ASC
(30, 32). It might well be that these IgA ASC in the BM
contribute to IgA levels in the serum of celiac disease patients.

Evidence for a gut-BM connection also stems from
experiments in mice, in which homing of gut ASC to the BM
has been demonstrated after oral immunization (33, 34). In mice,
up to 70% of BM-resident PC are of the IgA isotype (35). While
human individuals are constantly exposed to pathogens, it has to
be considered that mice housed under SPF conditions display a
more “naïve” immune system with little to no ongoing systemic
immune responses. Hence, the main source of ASC is the
constant immune response to the commensal microbiota in
the GALT. Consequently, circulating IgA ASC can populate
the PC niches in the BM with little competition from other
PC, which might explain this substantial amount of IgA PC in
the BM of mice. Interestingly, recent work demonstrates that a
variety of commensal bacterial taxa induce TD IgA responses
resulting in a marked increase in BM IgA ASC (36, 37). Wilmore
et al. suggest that gut-derived IgA ASC in the BM secrete IgA
antibodies into the blood circulation, thereby protecting against
microbial sepsis induced by enteric pathogens (37). Which
signals regulate the migration of gut-educated IgA PC to the
BM niches as well as the potential triggers to release IgA into the
serum remain to be determined.

Gut-Kidney Axis – IgA ASC in
Autoimmune Diseases
Circulating IgA antibodies are also involved in kidney
malfunction in renal diseases such as IgA nephropathy (IgAN)
or Systemic Lupus Erythematosus (SLE). IgAN is characterized
by IgA immunocomplex deposition in the kidney mesangium
(38). Increasing evidence points at a role of an aberrant immune
response towards the intestinal microbiota (39) or dietary
proteins (40) as cause for an exaggerated amount of systemic
IgA. Interestingly, overexpression of the pro-survival factor
BAFF in mice leads to increased levels of commensal-specific
serum IgA and the development of IgAN dependent on the
microbiome, thus supporting a direct link between the gut and
the kidney (41). Again, the release of pathogenic IgA into the
blood during IgANmight be related to BM ASC but has not been
proven so far. Similarly, the migration of IgA ASC from the
April 2021 | Volume 12 | Article 670290
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GALT to the BM or potentially also the kidney, as well as the
eventual production of harmful IgA antibodies within the kidney
during IgAN still remain to be elucidated.

Evidence for the presence of ASC in the kidney come from
analysis of kidney biopsies from SLE patients, who often show
glomerulonephritis induced by IgG deposits. This is likely due to
aberrant B cell selection, activation and differentiation into auto-
antibody producing ASC and correlates with increased serum levels
of BAFF (42, 43). Interestingly, evidence frommouse models of SLE
(44, 45) as well as patient samples (46) suggest the presence of IgG
but also IgA-secreting PC in the kidney; concomitant with a higher
abundance of these cells in the blood of SLE patients. Although
present in kidney biopsy of SLE patients, IgA PC seem to be less
frequent compared to IgG PC (47).

The prevalence of IgA-secreting PC in the kidneys of IgAN
patients or in animal models of SLE remains elusive, but would
be essential to study the homing to, the function in as well as
composition of the kidney ASC niche during inflammation. If
the infiltration of IgA ASC into inflamed organs further boosts
disease through local antibody production remains to
be investigated.

Gut-Brain Axis – Protecting the Barriers
More and more findings recently highlight the role of IgA ASC in
the central nervous system (CNS), in which IgA ASC play an
unexpected yet essential role as a “brain firewall” to protect the
blood-brain barrier (48). During homeostasis, mouse and human
meninges – the membranes surrounding the brain and spinal
cord – contain gut-derived and commensal-specific IgA ASC.
These IgA ASC might contribute to an immunological barrier,
thereby preventing the infiltration of pathogens into the CNS
(36, 49).

During chronic inflammatory conditions such as multiple
sclerosis (MS), commensal-reactive IgA ASC have been shown to
play an immunoregulatory role during CNS inflammation inmouse
and human. In a mouse model of MS, gut-derived, commensal-
reactive IgA ASC can access the CNS and attenuate disease in an IL-
10 dependent manner (36). In addition, elevating systemic IgA
levels either through a commensal or overexpression of the ASC
survival factor BAFF attenuates inflammation in the mouse model,
suggesting a potential treatment option. Similarly, MS patients with
active disease demonstrate an increased infiltration of commensal-
specific IgA ASC in the cerebrospinal fluid (CSF), which could
potentially be used as a marker for acute inflammation in MS (50).
The anti-inflammatory capacities of these IgA ASC located in the
CSF in MS patients are yet to be investigated. Furthermore, it
remains to be speculated whether the meningeal-resident, gut-
educated IgA ASC during homeostasis constitute the same
population of IgA ASC found to infiltrate the CSF during
inflammation in MS patients. Another open question is whether
the meningeal IgA ASC are able to produce IL-10, or whether this
population has maintained enough plasticity to acquire this
phenotype as a response to dampen ongoing neuroinflammation.

PC Survival Niches
Long-lived IgG-secreting PC derived from vaccination or natural
infection with certain pathogens are known to persist for
Frontiers in Immunology | www.frontiersin.org 3
extended periods of time in the BM PC niche (51, 52). This
niche is defined by a combination of cellular and molecular
factors [e.g.: CXCL12, BAFF, APRIL, IL-6, integrins; reviewed in
(53)] provided by stroma cells and a dynamic composition of
immune cells (54). Recent evidence indicates that there might be
more than just one type of niche for ASC, as BM stroma cells
demonstrate a substantial heterogeneity (55, 56). It might well be
that the ASC – stroma cell crosstalk shapes individual niches,
which might be heavily influenced by the ASC themselves as well
as the location of the niche (57).

Non-proliferating PC have also been found in brain biopsies
of patients as well as in the meninges and the parenchyma of the
inflamed spinal cord of mice during chronic inflammation in the
CNS (58). These eventually long-lived PC were localized in
potential survival niches characterized by CXCL12 as well as
BAFF expression; however, PC survival niches in the brain need
to be studied in more detail.

Only recently it became evident that also PC in the LP of the
gut can be long-lived in mice and men (59, 60); again, this
specific survival niche is less well defined. It is tempting to
speculate that the cellular composition involved in PC survival
niches in the GALT are as heterogeneous and dynamic as has
been shown for stroma cells in the BM; but most likely, with
different requirements due to the special location within the
gut microenvironment.

PC in general have high metabolic needs to produce and
secrete antibodies [reviewed in (2, 54, 61)]. Sitting in the villi of
the LP, PC in the gut are exposed to bacterial antigens, nutrients,
and varying oxygen concentrations in addition to soluble factors
secreted by the surrounding cells. In an adaptation to this specific
microenvironment, intestinal PC might have a distinct metabolic
profile. For example, IgA-secreting PC exhibit higher expression
of glycolysis-related metabolites than naïve B cells in PP or PC
from the spleen (62). In addition, IgA ASC can utilize diet- and
gut microbiota-derived short-chain fatty acids (SCFA) as one
carbon source to maintain metabolism (63).

In addition to the defined metabolic compositions of PC
niches, survival of PC can also be regulated by unique
oxygenation profiles. Interestingly, switching to the IgA isotype
is not affected by low oxygen conditions (64) but PC
development seems to be increased under hypoxia (65).
Inflammatory responses induced by environmental factors or
intestinal dysbiosis might dramatically change oxygenation and
the metabolic profile of the PC niches in the gut. However, little
is known about how PC are maintained in those inflamed tissues
and what kind of survival niches support their metabolic
properties, function and survival.
MODULATING IGA ASC – QUO VADIS?

The here described findings indicate that the function of IgA
ASC in local immune niches might be heavily influenced by the
microenvironment but also by their education. The microbiota
plays an essential role in the maturation and tolerance of the
immune system, and hence also the differentiation of IgA ASC
(66, 67). Autoimmune diseases are often associated with
April 2021 | Volume 12 | Article 670290
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intestinal dysbiosis with specific classes of bacteria associated
with certain disease (68, 69). Dysbiosis can be influenced by
many aspects – environmental factors, antibiotics treatment, a
genetic susceptibility of the host, but also aberrant IgA
production. The cause or consequence of this dysbiosis and
thus altered host-microbiota interaction remains to be studied
in more detail, as modulation of the microbiome might positively
influence systemic immunity and the outcome of disease (70).

In addition to the microbiome itself, recent studies have
highlighted a strong influence of microbial metabolites in
regulating host antibody responses. SCFA derived from the
anaerobic fermentation of nondigestible polysaccharides such
as dietary fibre counter inflammation and maintain gut
homeostasis. Especially the SCFA butyrate and propionate
have been described as either supporting or suppressing the
generation of IgA PC (63, 71). These contradictory findings
could be explained by the dose-dependent inhibitory effect of
SCFA on PC differentiation, with low levels increasing, and
higher levels restricting PC differentiation and CSR in TD and
TI responses on an intestinal and systemic level (71). Besides
impacting immune responses locally, SCFA also contribute to
maintaining a healthy immune homeostasis systemically and
prevent allergy and autoimmunity [reviewed in (72)].

The common notion is that IgA antibodies secreted during
the here described auto-inflammatory settings have a different
immunomodulatory role compared to IgA secreted under
homeostatic conditions. The fact that mice only express one
IgA subset, whereas human possess two IgA subclasses, IgA1 and
IgA2, with different effector functions and glycosylation patterns,
further adds to the layer of complexity. IgA1 is the prevalent
form in human serum, but both subclasses are equally expressed
in mucosal tissues. IgA2 is the more pro-inflammatory subset
and which might increase during chronic inflammatory
conditions (73). During inflammation, IgA (and IgG)
antibodies differ by their glycosylation, with a reduced
glycosylation profile often associated with disease severity (74).
During IgAN for example, aberrantly circulatory IgA1 is elevated
in patients (75–77). Antibody glycosylation also determines the
outcome of the interaction of antibodies with their specific Fc
receptors, thereby modulating inflammation (73, 78). It is
tempting to speculate that the inflammatory intestinal PC
niche determined by the composition of the microbiota and a
distinct metabolic profile (e.g., availability of SCFA, oxygenation
status) influences the glycosylation and effector function of IgA
ASC. How pro- or anti-inflammatory effector functions and
maybe migratory capacity of IgA-secreting PC are imprinted
by the gut PC niche remains to be investigated. Similarly, other
inflammatory niches such as in the kidney or the brain might
influence effector functions of IgA ASC.
CONCLUSIONS

We are only at the beginning to understand the impact of the
interaction of gut-derived ASC with different immune niches on
systemic immunity. In this Mini Review, we sum up recent
evidence that IgA ASC potentially travel from the LP through the
Frontiers in Immunology | www.frontiersin.org 4
blood to the BM but can also be found in the kidney and
CNS (Figure 1). During homeostasis, antibodies of gut-derived
IgA ASC support microbial colonization, defend against systemic
dissemination of harmful pathogens, prevent sepsis or pathogen
infiltration of the CNS. In pathological settings, especially during
autoimmune inflammation, IgA antibodies of gut-derived ASC
FIGURE 1 | B cells differentiate into IgA ASC in the GALT due to the
constant stimulation of the immune system by commensal bacteria, invading
pathogens as well as food antigens. From there, gut-derived IgA ASC
potentially travel through the blood to the PC niches in the BM. There, survival
and function of PC can be supported by the secretion of exemplarily
indicated survival factors. IgA ASC in the BM are thought to release
monomeric IgA antibodies into the bloodstream directed against a variety of
pathogens to counter sepsis in case of a microbial breach in the gut.
Furthermore, IgA antibodies can be the cause for pathogenic immunoglobulin
deposits in kidney glomeruli during autoinflammatory diseases. It is currently
unknown, whether or not the infiltration of IgA ASC into the inflamed kidney
further boosts disease through local antibody production. Finally, in the CNS,
IgA PC protect the blood-brain barrier at the meninges from invading
pathogens. Furthermore, gut-derived IgA PC can enter the CNS in
inflammatory conditions like MS lesions, where they attenuate
neuroinflammation in an IL-10 dependent manner. The brain might also
provide factors needed for PC survival and hence constitute a novel PC
niche. As more and more evidence points at the possibility of a systemic
migration of gut-derived IgA ASC, further survival niches for those cells need
to be considered. ASC, antibody secreting cell; GALT, gut associated
lymphoid tissue; CNS, central nervous system; BM, bone marrow; PC,
plasma cell; SLE, systemic lupus erythematosus; IgAN, IgA nephropathy;
IL-10, interleukin-10.
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seem to promote celiac disease or kidney malfunction,
amongst others.

Besides antibody production, ASC of the IgM or IgG isotype
have been shown to contribute to systemic immune responses
through cytokine production (79). Gut-derived IgA ASC
produce immunoregulatory IL-10 which seems to be beneficial
in the inflamed CNS during mouse models of MS. On the other
hand, IL-10 secretion by IgA ASC has been shown to suppress
anti-tumour responses of CD8 T cells and hence is detrimental in
both, prostate and liver tumour microenvironments (80, 81).
However, in these studies, it seems that the local production of
factors promoting IgA CSR (especially TGF-b) induces the
differentiation and accumulation of IL-10 producing IgA ASC.
The contribution of migrating IgA ASC in these settings is
less clear.

As more and more evidence points at the possibility of a
systemic migration of gut-derived IgA ASC, new survival niches
for those cells need to be considered. Advances in single-cell and
high-throughput techniques provide valuable tools; however,
spatial information of ASC in their unique niche will also be
necessary to understand these reciprocal interactions in their
complexity. Novel imaging techniques such as volumetric
imaging of tissue sections or whole mount organs (53, 56, 82)
might help to detect rare IgA ASC and determine the specific
microenvironment in order to better understand ASC function
and local production of potentially harmful or protective IgA. A
better understanding of the migration, function and survival of
Frontiers in Immunology | www.frontiersin.org 5
long-lived IgA PC in their specific niches is needed in order to
modulate immune responses for therapeutic intervention.
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