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This paper provides the first comprehensive evaluation and analysis of modern (deep-learning-based) unsupervised anom-

aly detection methods for chemical process data. We focus on the Tennessee Eastman process dataset, a standard litmus

test to benchmark anomaly detection methods for nearly three decades. Our extensive study will facilitate choosing appro-

priate anomaly detection methods in industrial applications. From the benchmark, we conclude that reconstruction-based

methods are the methods of choice, followed by generative and forecasting-based methods.
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1 Introduction

Anomaly detection, i.e., detecting data that deviates from
normality, is a fundamental method in machine learning
and artificial intelligence. It is significant in many applica-
tion domains, from detecting fake reviews in online
shopping portals and bots in social networks to tumor
detection and industrial fault detection. Anomaly detection
is especially significant in safety-critical applications. While
an undetected fake review in an online shopping portal may
be harmless, failing to recognize anomalies in a chemical
plant or a self-driving car may put lives at stake.

In chemical plants, most data is recorded during regular
or problem-free operation - the normal data. Anomalies, in
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contrast, occur very rarely, and they can appear to the pro-
cess or control engineers to be nominal behavior. Here,
computing methodology naturally comes into play. Ma-
chine learning enables searching massive datasets and accu-
rately detects anomalies, even when they are rare [1].

There is a large body of literature on detecting anomalies
in chemical processes using machine learning [2-4]. Over
the past three decades, the Tennessee Eastman process
(TEP) has arisen as a litmus test for learning-based anomaly
detection on chemical process data. Virtually any newly
proposed method is benchmarked by default on the TEP
dataset, originally recorded by Downs and Vogel in 1993 [5]
using a model-based TEP simulator for data generation and
modified by Rieth [6].
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However, except for [7-12], all papers evaluate shallow
unsupervised anomaly detection methods (not including
neural networks) on the TEP dataset. But shallow machine
learning is not adequate for complex, structured data, such
as the time series occurring in chemical plants and the TEP.
On such data, most of the many seminal advances in artifi-
cial intelligence during the last decade have been enabled by
deep neural networks.

In 2018, Ruff et al. [13] provided one of the earliest gener-
al-purpose deep learning-based approaches to anomaly
detection. The paper triggered a wave of follow-up work,
resulting in the new field of ‘deep anomaly detection’ [14].
Over the past four years, the detection error of unsupervised
anomaly detection methods has been reduced drastically,
from 35 % (best shallow method, 2017) to 1% (best deep
method, 2021) on CIFAR-10-AD, a standard anomaly
detection benchmark dataset [13,15]. Since then, deep
anomaly detection approaches have been widely adopted in
industrial practice.

Most recent breakthroughs in modern anomaly detection
have been achieved on image data. However, the data in
chemical plants - and particularly the TEP - are time series.
Time series exhibit intriguing temporal interdependencies,
well-suited for deep learning. Very recently, the first deep
anomaly detection methods on time-series data were intro-
duced, and their high potential tested on various bench-
marks [16]. To date, there exist some 30 methods based on
neural networks for anomaly detection on time series.

However, the research on the TEP has not caught up yet
with these highly significant advances in unsupervised deep
anomaly detection on time series. There exists no compel-
ling up-to-date comparison of modern methods, most of
which have been developed within the last two years. Thus,
it is unclear which methods should ideally be used on such
data to achieve maximal detection performance. Using infe-
rior detection methods may lead to unnecessary errors or
even put lives at risk when using them for real operation in
plants.

With the present work, we intend to change this. This
paper evaluates and compares all 27 unsupervised deep
anomaly detection methods for time series existing to date,
regarding their detection accuracy on the TEP data.” The
analysis represents the first—and by far the most compre-
hensive - comparison of modern unsupervised anomaly
detection methods on chemical process data.

Our analysis also yields insights into which anomaly
detection methods might be most suitable for application to
real chemical process data. Establishing deep anomaly
detection in real chemical processes would open the route
for new, yet unexplored, ways to control these processes —
with a perspective to advance autonomously running chem-
ical processes.

1)  Status mid/end 2022. We will maintain a website continuously updating
the results for new methods proposed after the publication of this paper.
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2 Related Work

Early papers on deep anomaly detection (AD) on times
series were based on either reconstruction or forecasting
objectives. Reconstruction-based approaches train an
autoencoder (AE) on mostly normal training data so that
the AE learns to compress and reconstruct normal data
well. Samples not reconstructed well are considered anoma-
lous. The deviation from the reconstruction to the input is
the anomaly score [17-26]. In recent work, Rewicki et al.
showed the advantage of AEs over other deep learning
methods by comparing three classic machine learning
methods and three deep learning-based methods for AD on
time series. They concluded that, depending on the type of
anomaly and computing time, classical approaches could
outperform [54]. Forecasting-based models extrapolate a
series’ current and past data to predict future time steps.
The anomaly score is the difference between the predicted
and the actual future data [27-31]. Typically, both recon-
struction and forecasting-based methods reconstruct each
time step and aggregate their anomaly scores for an anom-
aly score of the entire time series.

Another branch of AD methods is based on generative
models such as variational autoencoders (VAEs) [32-37]
and generative adversarial neural networks (GANs)
[38-43]. GANS jointly train two networks: a discriminator
network to distinguish between accurate and generated data
and a generator network to create samples that fool the dis-
criminator. Anomaly scores are either based on the discrim-
inator or are the deviation between the test sample and the
best-fitting generated data sample. Some methods combine
the above-mentioned methods to get the best parts from all
worlds [44, 45].

Inspired by the success of supervised classifiers, there is
also a paradigm called “one-class classification” [13]. This
work trains a network to map normal samples to a hyper-
sphere [13] or hyperplane [46] and anomalous data away
from them. This paradigm has recently been used for AD
on time series [44,47]. A more direct application of classi-
fiers for AD requires anomalous training samples. Since AD
is typically unsupervised, these samples are not available.
One approach to solve this issue is using random internet
data as auxiliary anomalies during training. This approach
is termed outlier exposure and is successful on images
[15,48]. However, pertinent data is unavailable for time
series, so Goyal et al. proposed to train a network to distin-
guish between normal training data and synthetically gener-
ated anomalies [49]. The classifier’s certainty for the anom-
alous class defines the anomaly score for test samples. The
most recent approach to time series AD uses self-supervised
learning [16]. This method designs an auxiliary training ob-
jective. Normal data samples are transformed, and the net-
work has to predict which type of transformation has been
applied. Since, for anomalous data, a correct prediction will
be difficult, the value of the method’s decision certainty is
the anomaly score for test samples.

Chem. Ing. Tech. 2023, 95, No. 7, 1077-1082
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3 Benchmarking Deep Time Series Anomaly
Detection on the TEP

In this section, a more detailed explanation of the evalua-
tion follows. First, we present the TEP data and explain the
metrics used for the review. Finally, the implementation and
evaluation protocol are presented.

3.1 TEP Dataset

TEP was based on an existing plant and the processes run-
ning in it. The data itself is synthetic, i.e., a simulation of
the plant. It consists of five main modules, each a two-stage
reactor, a condenser, a vapor-liquid separator, a stripper,
and a reboiler, as well as 11 pneumatic valves, two pumps,
and a compressor [50].

The version of the TEP data used here is available online
[6] and is referenced in [51]. In addition to error-free data
on which the algorithms are to be trained, it contains 20 dif-
ferent types of erroneous data sets and their complete simu-
lation. Of these 21 data sets, there are 500 other runs, each
of which is initialized with a different random value. The
time points in each sample are generated every three
minutes for 25 for the training data and 48 h for the test
data with 53 parameters.

3.2 Metrics

To compare and evaluate the examined algorithms with
each other, a metric is necessary that measures the quality
of the methods. Work on AD uses different evaluation met-
rics depending on the data. Some metrics, like the F1-score,
require a binary decision, i.e., model outputs in {0, 1} where
0 denotes normal and 1 anomalous. Others, like the receiver
operator characteristic or precision-recall curve, work with
continuous anomaly scores. For AD on time series, the
Fl-score and area under the precision-recall curve are the
most commonly used metrics, which is why we evaluate the
methods in this paper using both.

An anomaly detector generates an anomaly score for each
point in time of a time series. If this value exceeds a certain
threshold, the respective method determines this point in
time as an anomaly. The F1-score considers four options of
evaluation for each time point: true positive (TP - a cor-
rectly detected anomaly), false negative (FN - an anomaly
that was not detected), true negative (TN - a correctly iden-
tified normal point), and false positive (FP - a normal point
mistakenly detected as an anomaly). With these four classes,
two metrics can be calculated. One is precision, the propor-
tion of TP among all detected anomalies (TP+FP), and the
other is recall, the balance of TP anomalies among all true
anomalies (TP+FN). Intuitively, precision describes the
accuracy with which a detected anomaly is anomalous, and
recall describes the accuracy with which the model detects

Chem. Ing. Tech. 2023, 95, No. 7, 1077-1082
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true anomalies. The F1-score combines precision and recall
in one metric, which can be calculated at every point of the
time series. These Fl-scores are averaged over the whole
time series to receive the total F1-score.

The area under the precision-recall curve (AUPRC) can
be used as a second metric for comparing methods. For
every threshold, its respective recall and precision are calcu-
lated. As the threshold decreases, the recall increases to 1,
which is plotted on the x-axis. The precision is plotted on
the y-axis and can be arbitrary but generally decreases as
the recall increases. The AUPRC measures the model’s
overall performance for any threshold. In essence, the high-
er the AUPRC, the higher the precision for any recall. In
practice, there is a real-world cost associated with both FN
and FP. Generally, the cost for undetected anomalies (FN) is
higher than the cost of falsely detecting an anomaly (FP).
However, the specific costs need to be defined case-by-case;
therefore, the optimal threshold depends on the particular
use case. The AUPRC is a good metric in case the specific
costs are unknown since the higher the AUPRC, the lower
these associated costs are expected to be.

3.3 Evaluation and Implementation

For an equal and fair evaluation of the considered methods,
all methods were implemented in the same Python environ-
ment and were trained and evaluated using PyTorch [52].
Since some methods require an unlabeled validation set to
adjust the parameters of the anomaly detector, a quarter of
the training dataset was separated for this purpose. The test
dataset was divided into five folds of equal size to adjust the
hyperparameters of each method by optimizing them on
each fold and evaluating the performance of the best model
with the remaining folds. To avoid time dependencies,
directly neighboring folds were excluded. Finally, all folds
were averaged, the methods were compared using the best
Fl-score, and AUPRC received the best grid parameters.
For better comparability, the size of the parameter grid of
each method was chosen so that each one had a training
and evaluation time of 24 h. In total, the evaluation contains
27 methods listed in Tab. 1. As proposed in [24], we added
an Untrained-LSTM-AE as a baseline.

3.4 Results

Tab.1 shows the experiments’ results, implemented meth-
ods, and a reference to their original publications. The
methods are ranked according to performance, and the
results are rounded to four decimal places. The rankings are
computed with the exact results. With few exceptions, both
metrics and their associated rankings show similar results.
It can only be observed for GMM-GRU-VAE, LSTM-AE-
OC-SVM, and TCN-S2S-P differences of more than ten
places in their order. The BeatGAN, TCN-S2S-AE, and

www.cit-journal.com
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Table 1. All results of the experiments run for this evaluation. In the first column all methods are listed with their respective source (pa-
pers they were initially published). The second column groups them into reconstruction-based, forecasting-based, generative-VAE/GAN-
based, and hybrid methods. The following columns list the F1-score, the AUPRC, rankings for both, and a mean ranking of these two.
That ranking gives the order of the table to find the best results at the top.

Method Method type Fl-score Fl-score ranking ~ AUPRC AUPRC ranking ~ Total ranking
BeatGAN [38] Generative-GAN-based 0.9699 1 0.9896 2 1
TCN-S2S-AE [23] Reconstruction-based 0.9632 3 0.9914 1 2
Dense-AE [22] Reconstruction-based 0.9631 4 0.9880 3 3
LSTM-AE [25] Reconstruction-based 0.9506 5 0.9861 4 4
LSTM-P [27] Forecasting-based 0.9693 2 0.9824 8 5
MSCRED [21] Reconstruction-based 0.9353 7 0.9842 5 6
Donut [33] Generative-VAE-based 0.9450 6 0.9829 7 7
LSTM-VAE [32] Generative-VAE-based 0.9334 11 0.9831 6 8
OmniAnomaly [36] Generative-VAE-based 0.9336 9 0.9808 12 9
SIS-VAE [37] Generative-VAE-based 0.9335 10 0.9790 14 10
Untrained-LSTM-AE [24]  Reconstruction-based 0.9333 13 0.9792 13 11
LSTM-DVAE [34] Generative-VAE-based 0.9333 16 0.9811 11 12
USAD [22] Reconstruction-based 0.9333 12 0.9779 16 13
GMM-GRU-VAE [35] Generative-VAE-based 0.9291 21 0.9815 10 14
TCN-S2S-P [30] Forecasting-based 0.9172 23 0.9821 9 15
LSTM-MAX-AE [20] Reconstruction-based 0.9333 18 0.9786 15 16
LSTM-AE-OC-SVM [44] Hybrid 0.9337 8 0.9511 26 17
LSTM-VAE-GAN [40] Generative-GAN-based 0.9333 14 0.9735 20 17
GenAD [25] Reconstruction-based 0.9333 19 0.9755 19 19
TadGAN [41] Generative-GAN-based 0.9333 15 0.9690 23 19
STGAT-MAD [26] Reconstruction-based 0.9267 22 0.9767 17 21
Mad-GAN [39] Generative-GAN-based 0.9333 17 0.9621 24 22
MTAD-GAT [45] Hybrid 0.9097 25 0.9758 18 23
DeepANT/TCN-P [29] Forecasting-based 0.9114 24 0.9712 22 24
GDN [31] Forecasting-based 0.9078 26 0.9722 21 25
LSTM-2S2-P [28] Forecasting-based 0.9327 20 0.9171 27 25
THOC [47] Hybrid 0.9074 27 0.9618 25 27

Dense-AE methods score best. The weakest performers are
GDN, LSTM-282-P, and THOC. It should be noted that
Untrained-LSTM-AE, proposed above as a baseline, ends
up in the upper midfield.

4 Discussion and Conclusion
Even though a generative model was ranked first in these
experiments, it can be concluded that the reconstruction-

based methods performed best on average, followed by the
generative and, finally, the forecasting-based models. Even

www.cit-journal.com
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the proposed baseline, which belongs to the reconstruction-
based methods, achieved an above-average ranking.

For future work, a few more things need to be investi-
gated. On the one hand, it has to be considered that the
TEP data are synthetic. Despite the simulation’s quality,
chemical processes are multifaceted, and, especially with
real data, other parameters may play a role that cannot be
simulated this way. All methods have yielded high scores.
That could be related to the studied synthetic data with
defined synthetic faults introduced in a fault-free run. The
task will be considerably more challenging for actual chemi-
cal process data, but the present study is a starting point to

Chem. Ing. Tech. 2023, 95, No. 7, 1077-1082
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tackle this problem. The challenge here will be in uncover-
ing the data and correctly labeling the anomalies in that
data. On the other hand, additional metrics should be taken
into account. The Fl-score and AUPRC are a reasonable
basis for comparison but cannot assess longer periods and
interdependent points, as with time series [24, 53].

The benchmarking in this paper can guide further
research and practitioners in selecting a suitable method for
anomaly detection on chemical time series.

I Supporting Information

Supporting Information for this article can be found under
https://doi.org/10.1002/cite.202200238. There is an over-
view and explanation of all methods evaluated in this paper.
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I Abbreviations

AD anomaly detection

AE autoencoder

AUPRC area under the precision-recall curve
ELBO  evidence lower bound

FN false negative

FP false positive

GAN generative adversarial neural networks
GRU gated recurrent units

LSTM  long short-term memory

MAE mean absolute error

MLP multilayer perceptron

MSE mean squared error

NN neural network

TCN temporal convolutional network
TEP Tennessee Eastman process

TN true negative

TP true positive

VAE variational autoencoder
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