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Abstract

Microscopic traffic models (MTMs) are widely used for assessing the impacts of (con-
nected) autonomous vehicles ((C)AVs). These models utilize car-following (CF) and
lane-changing models to replicate the (C)AVs driving behaviors. Numerous studies are
being lately published regarding the approximation of the driving behaviors of (C)AVs
(especially CF behavior) with many state-of-the-art modelling methods. Still, there is no
established CF model to mimic the accurate behavior of (C)AVs. Researchers often uti-
lize existing mathematical CF models as well as limited data-driven models for (C)AVs
modelling. Meanwhile, several studies conduct simulation-based impact assessments with
various key performance indicators (KPIs). Identification of these KPIs is a crucial step for
future studies. Hence, this paper presents a comprehensive outlook on different CF mod-
els with their adopted parameters for (C)AVs modelling and investigates how and in which
aspects might the CF behaviors of (C)AVs are different from human-driven vehicles. In
addition, the recent publications in data-driven CF models including their methodologies
are explicitly discussed. This work also reviews simulation-based studies with the reported
impacts and used KPIs. Finally, in light of the findings of this paper, several future research
needs are highlighted.

1 INTRODUCTION

With the development of advanced driving assistance systems
(ADAS), such as adaptive cruise control, cooperative adaptive
driving control, lane keeping assistance, or emergency brake
assistance, our future transportation system is not far away from
the revolution of autonomous vehicles [1]. We will soon wit-
ness a different traffic situation, where vehicles with a high
degree of automation interact with low-level automated vehi-
cles [2]. According to the Society of Automotive Engineers
(SAE), vehicles are classified based on the degree of automation
from non-automated (level 0) to full automation (level 5) [3].
Full automation level is commonly known as full self-driving,
autonomous or driverless vehicles, where the vehicle itself is
responsible for all safety functions and navigation of the road
[1, 4].

The recent advanced sensing technologies (e.g. radar, lidar)
and pattern recognition together with processing capabilities
of artificial intelligence enable autonomous vehicles (AVs) to
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detect the precise image of the surrounding environment and
react accordingly with the help of complex machine learning
algorithms. Meanwhile, pervasive communication technologies
allow AVs to exchange their driving status (i.e. speed, accel-
eration, position, and more) with other connected vehicles
(V2V), as well as infrastructure (V2I), which is labeled as con-
nected autonomous vehicles (CAVs) [5, 6]. In the remainder
of this article, where applicable, we use the term (Con-
nected) autonomous vehicles-(C)AVs to summarily describe
AVs+CAVs.

(C)AVs have the potential to largely change traffic safety,
mobility pattern, and transport network. It is expected that
(C)AVs could improve traffic safety as a large number of
accidents are associated with the drivers’ errors and unfitness
to drive (e.g. fatigue, alcohol, or drugs) [7–9]. (C)AVs open
more mobility freedom by removing driving barriers, such
as disability, driving license and old age [10, 11]. Meanwhile,
(C)AVs could potentially change travel behavior, reduce traf-
fic congestion [12], fuel consumption [13–15], and vehicle
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emissions [14], however, their certain effects are quantitatively
not confirmed yet [4, 16]. Several corridor-wide trials of AVs
have been conducted to estimate the impacts, however, due to
large costs of AV fleets, as well as legal restrictions, large-scale
tests are currently impractical. Researchers conduct simulation-
based assessments to extrapolate the potential impacts of
(C)AVs on a large-scale using traffic models. Especially several
studies utilized microscopic traffic models (MTMs) to ana-
lyze and predict the impacts of (C)AVs on safety and traffic
efficiency [6, 17–19].

The driving behavior of (C)AVs might significantly dif-
fer from human-driven vehicles. In MTMs, these behaviors
are modelled with their longitudinal and lateral configura-
tions. Longitudinal and lateral dynamics of a vehicle are also
called car-following (CF) and lane-changing behaviors, respec-
tively. A CF model is comprised of a set of actions that a
driver decides on to follow the leading vehicle efficiently and
safely. Several mathematical CF models have been developed
to estimate driving behavior under various traffic conditions.
However, many studies criticized the limitations of these models
in capturing the diversity of driving behavior, as these models
are simplified and only contain a small number of param-
eters [5, 20, 21]. Hence, data-driven models have attracted
attention to replicate the complex driving behavior more
accurately.

While most of the mathematical, as well as data-driven mod-
els, are used for modeling human-driven vehicles, there is no
established CF model of the behavior of (C)AVs. Most of the
researchers adopt and modify the parameters of the existing
CF models to study the driving maneuvers of (C)AVs. Mean-
while, machine learning-based models are also developed based
on human-driven vehicles’ trajectories [due to limited (C)AVs
traffic data], and thus can not guarantee to fully approximate
the behavior of (C)AVs. However, the proposed methodologies
in these studies could be potentially used for (C)AVs modelling,
when field data of (C)AVs are available.

Numerous review articles have been published relevant to
(C)AVs modelling in MTMs (e.g. [5, 20, 22]). For instance, [5]
reviewed the summary of studies relevant to (C)AVs CF models
and their impact assessments, where [20] recently reviewed the
traditional CF models utilized for modelling (C)AVs including
simulation tools. However, in both studies, they do not dis-
cuss how largely the CF behavior of (C)AVs differs from the
human-driven vehicles. Mathematical CF models are comprised
of relations and parameters to capture the driving behavior of
vehicles. It is expected that the CF behavior through accel-
eration distributions, safety gaps, reaction time, and other CF
model-related parameters of the (C)AV under specific traffic
situation are different from human-driven vehicles. Researchers
assume that (C)AVs could drive very close to the leading vehicle,
and react very fast. However, the magnitude of these differ-
ences is subjective among researchers and have not addressed
in the above-mentioned review articles . In addition, existing
review papers cover the general impacts of (C)AVs on safety,
mobility and the environment in various scenarios. However,
key performance indicators (KPIs) used in simulation-based
studies involving (C)AVs are not specifically reported. Hence,

to fill these research gaps, a review reporting specific values
of the mathematical CF model parameters for capturing the
behavior of (C)AVs, as well as the identification of the KPIs for
(C)AVs related studies under different situations is a necessity.
It fosters a wide understanding of the potential driving behav-
ior of (C)AVs from a scientific perspective and also helps future
simulation-based impact assessments to select proper KPIs and
CF model parameters. In addition, the output of this review
will reveal interesting research gaps on (C)AVs modelling and
impact assessment.

On the other hand, [22] studied research works related to
the microscopic modelling of CAVs including traditional and
newly developed models. However, there have been many
recent studies utilizing machine learning techniques to model
CF behavior. Several studies have proposed new methods to
develop data-driven CF models. Since in existing review papers
these data-driven models are not reported, a more recent
review to cover the studies which have been recently pub-
lished is required. Therefore, considering the above limitations,
research gaps and the importance of the (C)AVs modelling and
simulation-based impact assessment, this paper aims to pro-
vide a comprehensive review of relevant studies in the field of
(C)AVs modelling, and impact assessments.

The collection of these articles follows a semi-structured
approach. The reviewed articles in this paper include journal
papers, conference papers, and technical reports. First, we gath-
ered studies from the Scopus search engine using 8 keywords
(autonomous vehicles, connected autonomous vehicles, self(-)driving cars, car

following models, simulation of autonomous vehicles, autonomous vehicles

modelling, data-driven car following models, autonomous vehicles impact

assessments) for the publication year range 1990 - June 2022. The
obtained papers were further screened according to their rele-
vance and topics. Additionally, we collected related articles from
the references of the screened papers. To have a general idea
about different CF models, some studies related to CF models
have been included.

The main contributions of this research work are as fol-
lows: (i) Overview of different CF models with their adopted
parameters for (C)AVs modelling. This leads to understand how
potentially the CF behavior of (CAVs) is different from human-
driven vehicles and which CF model parameters are more
crucial and sensitive in differentiating (C)AVs from human-
driven vehicles. (ii) Summary of the lately published data-driven
models for (C)AVs CF behavior, and (iii) Identification of set
of KPIs used for impact assessments and the revealed impacts.
This section reports the importance of KPIs in impact assess-
ment studies, and reveals an outlook for future studies on
usage of a certain KPI for a specific study area and under
different conditions.

The remainder of this paper is structured as follows: In the
following section, we review the recent literature on mathe-
matical CF models for (C)AVs and adopted parameters. In
Section 3, we introduce a summary of data-driven models mim-
icking (C)AVs CF behavior. Identification of KPIs utilized in
impact assessments and the revealed reports are presented in
Section 4. Finally, a conclusion in Section 5 explains the overall
contribution of this article alongside further research directions.
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2 MATHEMATICAL CAR FOLLOWING
MODELS

Driving behavior is the key element in microscopic traffic mod-
elling and simulation. (C)AVs have significantly different driving
behaviors in comparison to human-driven vehicles. These dif-
ferences are due to sensing and communication technologies
integrated in (C)AVs. AVs for instance have the ability to
sense necessary information from the leading vehicles, whereas
for CAVs, a stream of data (such as position, speed, accel-
eration etc.) are exchanged among CAVs as well as between
CAVs and infrastructure (thanks to V2V and V2I communica-
tions). In case of human-driven vehicles, it is the driver who
is responsible to capture the environment and act accordingly.
Therefore, the driving behavior parameters, especially parame-
ters for CF behavior such as acceleration, deceleration, desired
speed, minimum gap etc. for human-driven vehicles, AVs and
CAVs are different.

For human-driven vehicles, there are many established math-
ematical models to mimic their CF behavior. Most of these
models focus on a driver’s physical actions such as desired
speed, acceleration, deceleration (i.e. Gazis-Herman-Rothery
(GHR) model [23], Gipps model [24], intelligent driver model
(IDM) [25], optimal velocity model (OVM) [26]), however, some
also consider the psychological inputs of the drivers (i.e. Wiede-
mann model [27]). For (C)AVs simulation, however, there are
no established models. A recent review of literature shows that
a considerable amount of studies utilizing conventional math-
ematical models (i.e. IDM [25] and modified versions, MIXIC
[28], Wiedemann [27], Krauss [29] etc.) to approximate the
CF behavior of (C)AVs in a microsimulation framework [18,
30–33]. In many studies, the modelling of Adaptive Cruise Con-
trol (ACC) and Cooperative Adaptive Cruise Control (CACC)
are refereed to AVs and CAVs modelling, respectively [18,
34–36].

2.1 Intelligent driving model (IDM)

IDM and its modified versions are broadly used CF mod-
els for (C)AVs microsimulation studies [19, 37–44]. IDM first
developed by [25] is one of the simplest and accident-free
model which uses both the desired speed and space headway
to generate realistic acceleration profile. The model ignores
the reaction time, therefore, it and its modified versions can
replicate the characteristics of AVs and CAVs, respectively.
The basic form of IDM acceleration function is expressed
as:

an(t ) = a
(n)
max

⎡⎢⎢⎣1 −

(
Vn(t )

V0
(n)(t )

)𝛿

−

(
Sn
∗(t )

Sn

)2⎤⎥⎥⎦, (1)

where amax is the maximum acceleration/deceleration of the
vehicle n, Vn is the speed of the following vehicle, V0

(n) is the
desired speed of the following vehicle, Sn is the gap distance

between two vehicles, Sn
∗ is the desired spacing between two

vehicles (see Figure 1), and 𝛿 is the model parameter.
The model is comprised of three terms. When the distance

between the leading and following vehicles is relatively high, the
third term becomes negligible, and thus the model acts as a free-
flow model, where the desired speed of the driver controls the
acceleration of the vehicle. On the other hand, for closer space
headway between vehicles, the following vehicle will apply the
CF strategy and reduce the free-flow acceleration by the magni-
tude of third term in Equation (1). Thus, one single equation can
mimic both free-flow and CF regimes depending on different
situations. Meanwhile, the desired space headway between two
vehicles Sn

∗ is a function of the following vehicle speed Vn, and
the speed difference between the leading and following vehicles
ΔVn, which can be calculated using Equation (2):

Sn
∗(t ) = S0

(n) +Vn(t )Tn(t ) +
Vn(t )ΔVn(t )

2
√

a
(n)
maxb(n)

, (2)

where S0
(n) is the minimum spacing at standstill situation, Tn

is the desired (safe) time headway, and b(n) is the desired
(comfortable) deceleration. The maximum acceleration and a
comfortable deceleration rate ensure that the model does not
produce unrealistic high acceleration/deceleration.

IDM was later extended by [45] to replicate the driving
style adaptation effect to the surrounding traffic using a mem-
ory function. The IDM with memory (called IDMM) assumes
that after experiencing congested traffic for while, most drivers
adapt their driving behavior, for instance by increasing their
desired time gap to the leading vehicle. According to [45], a
single internal dynamic impacts the desired time gap decision.
Thus, the new desired time gap Tn(t ) in Equation (2) is replaced
by Tn(𝜆), which is approximated as follows:

Tn(𝜆) = Tn

[
𝛽T + 𝜆n(1 − 𝛽T )], (3)

where 𝛽T = Tjam∕Tn is an adaptation factor, 𝜆n is the subjective
level of service which takes values between 0 (standstill traffic)
and 1 (free-flow traffic).

There exist many revised versions of IDM, each with differ-
ent objectives [17, 19, 37, 38, 46–48]. For instance, [46] intro-
duced some multiplication factors to ensure smooth driving
behavior in different traffic situations (i.e. free-flow, upstream
front, congested traffic, bottleneck, downstream front). It is
assumed that the maximum acceleration of a vehicle is increased
when leaving congestion, and the comfortable deceleration is
decreased when an upstream-front is detected. Depending on

0

FIGURE 1 Illustration of IDM CF model parameters.
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TABLE 1 Multiplication factors of IDM Model [46].

Traffic situation 𝝀a 𝝀b 𝝀c Driving style

Free flow 1 1 1 Comfort driving

Upstream front 1 1 0.7 Safe driving

Congestion 1 1 1 Comfort driving

Bottleneck 0.7 1.5 1 Breakdown prevention

Downstream front 0.5 2 1 High dynamic capacity

the which state is noticeable in next time step, the following
factors are multiplied by the main IDM model parameters:

a(s) = 𝜆a
(s)
⋅ a, b(s) = 𝜆b

(s)
⋅ b, T (s) = 𝜆T

(s)
⋅ T ,

where the superscript (s) indicates the traffic situation, a, b and T
are maximum acceleration, comfort deceleration, and time gap,
respectively. The values of the multipliers are listed in Table 1.

IDM model generates unrealistic deceleration rates when
the gap is significantly lower than the desired gap. To avoid
this, [19] combined the IDM with the Constant Acceleration
Heuristics (CAH). The CAH is developed based on three main
assumptions: (i) the acceleration of the following and leading
vehicles will not change in the near future (in a few seconds), (ii)
safe time headway or minimum distance is not required at any
moment, and (iii) reaction time is neglected (drivers react with-
out delay). To calculate the maximum acceleration of a vehicle
while keeping the situation crash-free, two possible conditions
(zero or nonzero velocity of the leading vehicle) at the time
where the minimum gap is reached are distinguished. Hence,
the maximum acceleration aCAH given actual values of the gap
s, velocity of the following vehicle v f , velocity and acceleration
of the leading vehicle vl , al is expressed as:

aCAH =

⎧⎪⎨⎪⎩
v f

2⋅āl

vl
2−2s⋅āl

if vl

(
v f − vl

)
≤ −2s ⋅ āl

āl −
(
v f −vl

)2
Θ
(
v f −vl

)
2s

otherwise
,

(4)

where āl = min(al , a f ) is the effective acceleration, which avoids
the artifacts that may cause by a leading vehicle with higher
acceleration capabilities. The Heaviside step function Θ is used
to eliminate negative approaching rates. [19] proposed an ACC
model by combining the acceleration from the IDM and CAH.
Depending on the CF situation, the decisive acceleration of the
ACC vehicle is controlled by a comparison of the IDM and
CAH acceleration profiles as follows:

aACC =

⎧⎪⎨⎪⎩
aIDM if aIDM ≥ aCAH

(1 − c ) ⋅ aIDM + c ⋅ [aCAH

+b ⋅ tanh(
aIDM−aCAH

b
)] otherwise

, (5)

where the coolness factor c is an additional parameter compared
to the original IDM model, which is assumed 0.99 in [19].

TABLE 2 IDM parameters for AVs modelling [18, 19].

Model parameters Values

Desired speed (V0) 120 km/h

Model parameter (𝛿) 4

Maximum acceleration (amax) 1.4 m/s2

Desired deceleration (b) 2 m/s2

Minimum gap distance at standstill (S0) 2 m

Desired headway (T ) 0.6 s

Maximum deceleration 2.8 m/s2

In addition, [47] attempted to improve the safety of IDM
model by modifying the desired gap equation (Equation 2) by

adding a new term (cn
v2
n

bn

). The new term indicates that with

higher velocities, the desired minimum gap increases, and con-
sequently the driver safety is improved. In addition, [37] added a
reaction time variable in the original IDM acceleration equation.
This study assumes that the reaction time variable can reason-
ably distinguish AVs from human-driven vehicles. The model
parameters are adopted from literature with few adjustments.
For instance, the time headway and reaction time for AVs are
assumed 1 s and 0 s respectively. On the other hand, [38] pro-
posed an improved IDM model to consider multi-front and rear
vehicles. The model generates the acceleration profile of the fol-
lowing vehicle by employing information of multiple front and
rear vehicles. Weight factors are added to each vehicle’s infor-
mation depending on their locations. The model parameters are
based on assumptions by the authors.

The basic IDM model has been widely used to approximate
the driving behavior of AVs in several studies. However, the
main difficulty of the model is the observation of desired mea-
sures such as desired spacing, desired time headway, and desired
speed for AVs. Thus, several studies used the IDM parame-
ters from the literature which are either based on assumptions
or limited field experiments. The parameters of AVs behavior
utilized in many simulation studies are presented in Table 2.

Recent studies such as [17, 33], and [41] utilized IDM and its
modified versions to conduct (C)AVs impact assessments. [17]
studied the safety and mobility effects of AVs, CAVs, and con-
nected vehicles (CVs) in a major freeway in Orlando, Florida.
This study utilized the basic IDM to model the driving behavior
of AVs, and a modified IDM based on [48] for CAVs modelling.
In this study, a set of parameters of the IDM is adopted from
[18, 19] both for AVs and CAVs modelling (see Table 2).

Similarly, [33] investigated the impacts of commercially avail-
able ACC vehicles on traffic stability and throughput. In this
study, IDM is used to capture the CF behavior of human-driven,
theoretical ACC and commercially available ACC vehicles. The
parameters for both human-driven and theoretical ACC vehi-
cles are take from [44, 46], where for commercially available
ACC, set of calibrated parameters from the field experiment are
deployed in the simulation platform. [41] utilized a revised ver-
sion of IDM to study the effect of CAVs on freeway capacity.
The revised IDM is based on [18] and [47] to ensure realistic
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behavior, and to improve the driving safety of CAVs. This study
also uses the values of IDM parameters from the previous stud-
ies as depicted in Table 2. Similarly, [42] used IDM to model
the behavior of ACC vehicles. In this study, several parameter
settings of the IDM model are implied. In the base scenario,
the parameters of the model are taken from [18, 19, 44], where
other parameter settings are considered based on the commer-
cially available ACC vehicles behavior and are taken from [18,
36].

2.2 MIXIC model

MICroscopic Model for Simulation of Intelligent Cruise Con-
trol (MIXIC) first developed by [28] to model ACC and later
revised by the author in 2006 to incorporate CACC charac-
teristics [49]. The model assumes that the following vehicle
attempts to keep the relative speed to the leading vehicle
at zero and the space gap at the desired speed. Thanks to
the V2V communication, where certain driving information
such as position, speed, acceleration etc. of both following
and leading vehicles are exchanged. MIXIC model approxi-
mates the acceleration profile with two distinct components:
(i) the controlling component, which delivers reference values,
(ii) the vehicle model component, which converts the refer-
ence values into realized values. The reference acceleration
can be calculated based on the speed difference of the fol-
lowing vehicle (intended speed and current speed) denoted as
(are f ,Δv) or the gap and speed differences between the following
and leading vehicles symbolized as (are f ,d ). Minimum of both
acceleration references (are f = min(are f ,Δv , are f ,d )) is the final
acceleration reference value which is the input for the vehicle
control. Meanwhile, the model considers the comfort driving
behavior, and thus are f is limited to maximum acceleration of
2 m∕s2 and comfort deceleration of −3 m∕s2. The estimation
of the reference acceleration based on speed difference is as
follows:

are f ,Δv = k ⋅ (vint − v), (6)

where vint , and v are intended and current speed, respectively,
and k is the speed error factor constant.

The reference acceleration based on the speed and gap differ-
ences between the following and leading vehicles is calculated
as:

are f ,d = ka ⋅ ap + kv ⋅
(
vp − v

)
+ kd ⋅

(
r − rre f

)
, (7)

where ap and vp are the leading vehicle’s acceleration and speed,
respectively, r and rre f are the current and reference gap to
the leading vehicle as depicted in Figure 2, ka, kv , and kd

are the constant factors. The reference gap (rre f ) is defined
as: rre f = max(rsa fe, rsystem, rmin), where rsa fe, rsystem , rmin are the
safe following distance, following distance based on the sys-
tem time setting, and minimum following distance (set to 2 m),
respectively. The safe following distance is a function of the

FIGURE 2 MIXIC CF model.

deceleration capabilities of the following vehicle (d ) and the
leading vehicle (dp) and is expressed as:

rsa fe =
v2

2
⋅

(
1
dp
−

1
d

)
. (8)

Similarly, the following distance according to the system time
setting (time gap) is computed as: (rsystem = tsystem ⋅ v). If the lead-
ing vehicle is equipped with CACC, tsystem is set to 0.5 s, and
1.4 s otherwise.

[6] further developed a CAV model based on the MIXIC
model. The proposed model also considers the sensor detec-
tion ranges of CAVs; however, the model parameters remain
the same as the MIXIC model. According to [49], the model
parameters are chosen as: k = 1.0, ka = 1.0, kv = 0.58, and
kd = 0.1.

Several studies utilized MIXIC and developed models based
on MIXIC to conduct impact assessments of CAVs [6, 49–54].
For instance, [49] used MIXIC model to evaluate the influ-
ence of CACC on traffic flow characteristics. [39, 53] utilized
the enhanced MIXIC model based on [6] to mimic the driving
behavior of CAVs. This study approximates the driving behav-
iors of CAVs using CACC vehicles while cruising. Similarly,
[51] recently used MIXIC model with default parameters val-
ues to replicate the driving behavior of (C)AVs and conduct
impact assessments.

2.3 ACC and CACC models

[54] developed a control algorithm similar to MIXIC to esti-
mate the speed of an ACC-equipped vehicle in the next time
steps. The proposed control method consists of two modes: (i)
speed control mode, and (ii) gap control mode. The speed con-
trol mode aims to keep the speed of the following vehicle close
to the speed limit, whereas in the gap control mode the goal is to
maintain the desired gap between the two vehicles. According to
this approach, the acceleration of a vehicle under the following
conditions is controlled both by speed and gap and calculated
as:

a = kg(s − sd ) + ks (vd − v), (9)

where kg and ks are the gap and speed control constants, s is the
current space gap, (sd = td ⋅ v) is the desired distance between
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TABLE 3 ACC-CACC model parameters.

Model parameters Values

Desired time gap (td ) 1.5 s (ACC), 0.7 s (CACC)*

Max. acceleration (a) 2 m/s2

Max. deceleration (b) −2 m/s2

Constants (kg, ks ) −0.4, 0.25

*The average time gap of field test vehicles.

two vehicles, td is the desired time headway, and vd is the desired
speed. On the other hand, the acceleration of a vehicle under
free-flow situations is only controlled by the speed and it is
described as:

a f = max (min (ks (vd − v), a), b), (10)

where a and b are the maximum acceleration and deceleration,
respectively. The minimum of the CF acceleration and free-flow
acceleration is the decisive acceleration which is the input for
estimation of the vehicle’s speed in the next time step.

vt+Δt = vt + min{a, a f } ⋅ Δt . (11)

Utilizing the above model, [54] investigated the effects of
CACC system on freeway traffic flow with different market pen-
etration rates. In this study, certain parameters of the control
algorithm are based on set of assumptions, where the desired
time gap for ACC and CACC were extracted from the field
test (see Table 3). The ACC-CACC model by [54] was used in
[39, 53] to model the driving behavior of AVs and to study the
impact of (C)AVs on traffic flow and CO2 emissions. In [39],
the parameters of the model are adjusted as follows: td = 1.6 s,
a = 2 m/s2, and b = −3 m/s2.

[18] further improved the ACC model based on experimental
results. In this study, the maximum acceleration and deceleration
were limited to 1 and 2.8 m/s2, respectively. On the other hand,
[36] developed the ACC and CACC models utilizing experimen-
tal data from a field test of production vehicles. The model
consists of a gap regulation and gap closing controllers. The
simplified version of this model is applied in [18]. The gap error
and its derivative are used to estimate the vehicle speed on each
control cycle. The gap error of the n-th consecutive vehicle (en)
is expressed as:

en = xn−1 − xn − tw ⋅ vn, (12)

where xn−1 is the current position of the leading vehicle, xn and
vn are the current position and speed of the following vehicle,
respectively, and tw is the time gap. The goal of the gap reg-
ulation controller is to minimize the gap error by a constant
time-gap following policy. The speed of the following vehicle
is therefore estimated as:

vn = vnprev + kp ⋅ en + kd ⋅ ėn, (13)

FIGURE 3 Description of the Krauss CF model parameters.

where vnprev is the speed of the following vehicle in the previous
iteration, kp and kd are the coefficients adjusting the time-gap
error and its derivative (kp = 0.45, and kd = 0.25).

Several simulation-based impact assessment studies used the
ACC and CACC models to approximate the behavior of (C)AVs.
For instance, [55] used the ACC-CACC model of [54] to repre-
sent the ACC vehicle longitudinal behavior and to investigate
the effects of AVs on traffic safety and efficiency . In this study,
the maximum acceleration and deceleration were selected 2 and
−3 m/s2, respectively.

2.4 Krauss model

The Krauss CF model developed by Stephan Krauss in 1997 is a
space-continuous model [29]. Krauss model estimates the speed
of the vehicle without deriving it from the acceleration profile of
the vehicle. In Krauss model, the safe velocity of the following
vehicle is calculated as follows:

vsa fe (t ) = vl (t ) +
g(t ) − vl ⋅ tr

vl (t )+v f (t )

2b
+ tr

, (14)

where vl , v f are the speed of leading and following vehicles at
time t , respectively (see Figure 3), tr is the reaction time of the
driver, b is the maximum comfort deceleration of the vehicle,
and g(t ) is the gap between the following and leading vehi-
cles, which is computed as: g(t ) = xl (t ) − x f (t ) − L , (xl , x f

are the position of the leading and following vehicles, and L is
average length of a vehicle). Meanwhile, to estimate the desired
speed which is a decisive variable for determining the speed of
the vehicle in next time step, the model takes the minimum of
safe velocity, the road speed limit, and the vehicle’s maximum
capable speed to generate the desired speed of the vehicles,
expressed as:

vdes (t ) = min[vmax, v(t ) + a ⋅ Δt , vsa fe (t )]. (15)

Finally, the velocity and location of the vehicle at the next time
step are computed as follows:

v(t + Δt ) = max[0, vdes (t ) − 𝜂],

x f (t + Δt ) = x f (t ) + v(t + Δt ) ⋅ Δt
, (16)

where 𝜂 is the random perturbation (to capture the driving
imperfection) and Δt is the simulation time step. According
to [56], the 𝜂 value is assumed to be 0.5 for human-driven
vehicles and 0 for CAVs. In addition, several studies assumed
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TABLE 4 Krauss model’s parameters for different levels of automation
[57].

Automation

level

Mingap

(m)

Accel

(m/s2)

Decel

(m/s2) Sigma Tau (s)

Level 0 2.5 2.6 4.5 0.5 1

Level 1 2 3.05 4.5 0.4 0.95

Level 2 1.5 3.5 4.5 0.3 0.9

Level 3 1.25 3.6 4.5 0.2 0.8

Level 4 0.75 3.7 4.5 0 0.7

Level 5 0.5 3.8 4.5 0 0.6

sigma = driving imperfection factor, Tau = reaction time.

Krauss model’s parameters for (C)AVs [57]. These assumptions
are often done based on the level of automation as presented in
Table 4.

The findings of literature review depict that attempts have
been made to study the impacts of (C)AVs using Krauss model
[57–59]. [59] studied the effects of CAVs on traffic flow using
the Krauss model. This research distinguishes the human-driven
vehicles and CAVs by the reaction time and driving imperfection
factor (sigma). The reaction time and sigma for human-driven
vehicles are set to 1 s and 0.5, where for CAVs, 0.5 s and 0,
respectively. Similarly, [58] investigated the impact of CAVs on
signalized and unsignalized intersections safety. In this study,
Krauss model is used to replicate the driving behavior of CAVs,
assuming that CAVs have perfect driving behavior (sigma = 0)
and can drive very close to the leading vehicle (mingap= 0.5 m),
where sigma and mingap for human-driven vehicles are set to
0.5 and 1.5 m, respectively.

2.5 Wiedemann model

The Wiedemann CF model originally formulated by Reiner
Wiedemann in 1974 (also called Wiedemann 74 model) is one
of the most widely used CF models. The model is the default
CF model in PTV Vissim microsimulation tool. In this model,
the term “perceptual threshold” is used to define threshold
values for actions, that a driver perceives and responds to it.
The perceptual threshold is a function of space headway and
speed difference between the leading and following vehicles.
The threshold values differentiate the driving regime into four
parts: (i) free-flow, (ii) approaching slower vehicle, (iii) car fol-
lowing, and (iv) emergency braking regimes. The distribution of
these thresholds is shown in Figure 4, and they are defined as:

∙ AX: The desired spacing between the front sides of two
vehicles in standstill.

∙ BX: The desired minimum following distance, which is a
function of AX, the safety distance, and the speed of the
vehicle.

∙ SDV: It is the action point, where a driver consciously
notices that he/she is approaching a slower leading vehicle;
SDV increases with increasing speed difference between the
leading and following vehicles.

FIGURE 4 Wiedemann CF model [27].

∙ CLDV: It stands for closing delta velocity. Its an additional
threshold that considers additional deceleration by applying
the brakes.

∙ OPDV: The action point where a driver observes that
the leading vehicle is driving fast, and thus he/she starts
acceleration.

∙ SDX: The maximum distance when following a vehicle,
which is approximately 1.5–2.5 times BX.

The model assumes that the driver acts differently in each
regime, and therefore, the acceleration is estimated in each
regime separately. According to the Figure 4, when a faster
vehicle approaches relatively a slower vehicle, the relative dis-
tance between vehicles reduces until the deceleration perceptual
threshold (SDV) is passed (point A in Figure 4). The driver will
start deceleration to match the leading vehicle’s speed. How-
ever, the driver also attempts to increase the space until the
acceleration perceptual threshold (OPDV) is reached at point
B. Then, the driver begins again the acceleration to reach the
leading vehicle’s speed. This process continuous in the uncon-
scious reaction zone until it crosses the SDX line and reaches
back to no reaction zone.

Besides Wiedemann 74 model, Rainer Wiedemann proposed
the Wiedemann 99 CF model. Wiedemann 99 model was ini-
tially developed for replicating driving behavior on freeways,
however, its application is not limited and several recent studies
utilized it for urban traffic. Wiedemann 99 model is often used
to represent the driving behavior of (C)AVs. In Wiedemann 99
model, besides the physical signs of driving, psychological reac-
tions (such as observed width of the leading vehicle, visual angle
change etc.) are also considered. The parameters of this model
have been already extracted within the CoEXist project to cap-
ture the driving behavior of (C)AVs, however, the calibration of
these parameters is based on a few AVs trajectories. The Wiede-
mann 99 model comprises 10 parameters, which are defined in
Table 5.

[60] utilized trajectories of three test AVs (collected
within CoEXist project), where two of them were driven
autonomously on public roads and under normal traffic con-
ditions to calibrate the parameters of the Wiedemann 99 model
(see Table 6). Two longitudinal control communications such
as CACC (which communicates with the leading vehicle) and
degraded CACC referred as dCACC (without communication
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TABLE 5 Wiedemann 99 CF model parameters.

Parameters Description

Default

value

CC0 Standstill distance: desired minimum distance
between leading and following vehicles [m].

1.50

CC1 Time gap: desired headway time between leading
and following vehicles [s].

0.90

CC2 Following distance variation: additional distance
over the desired safety distance, where at this
point following vehicle recognizes a slower
leading vehicle [m]

4.00

CC3 Threshold for entering the deceleration zone: The
time before a vehicle begins decelerating to the
safety distance [s].

−8.00

CC4 Negative following threshold: negative speed
variation between following and leading
vehicles (the lower the value, the more sensitive
the following vehicle’s driver)

−0.35

CC5 Positive following threshold: a positive speed
variation between the following and leading
vehicles (the positive value of CC4).

0.35

CC6 Speed dependency of oscillation: influence of
distance of speed variation (the larger the value,
the higher the speed oscillation with increasing
distance).

11.44

CC7 Oscillation acceleration: minimum variation of
acceleration or deceleration while following.

0.25

CC8 Standstill acceleration: desired acceleration when
starting from standstill [m/s2].

3.50

CC9 Acceleration at 80 km/h [m/s2] 1.50

TABLE 6 Wiedemann 99 CF model parameters for AVs modelling
[60–62].

Model

parameters

AV with

CACC

AV with

dCACC

AV

cautious

AV

normal

AV

aggressive

CC0 4 6 1.5 1.5 1

CC1 0.3, 0.6, 1.0 1.0 1.5 0.9 0.6

CC2 0 0 0 0 0

CC3 −40 −40 −10 −8 −6

CC4 0 0 −0.1 −0.1 −0.1

CC5 0 0 0.1 0.1 0.1

CC6 0 0 0 0 0

CC7 0.25 0.25 0.1 0.1 0.1

CC8 3.5 3.5 3 3.5 4

CC9 1.5 1.5 1.2 1.5 2

with the leading vehicle) were installed on AVs in this pilot
project. Meanwhile, the CoEXist project proposed modified
parameters of AVs in the Wiedemann 99 model to capture dif-
ferent potential driving styles of AVs namely: AV cautious, AV
normal, and AV aggressive as presented in Table 6.

Many articles utilized the Wiedemann 99 model with the
proposed parameters by PTV Vissim to study the impacts of

(C)AVs [1, 31, 32, 63–65]. Worth-mentioning that two extra
driving behavior parameters are introduced within PTV Vis-
sim simulation tool namely: the maximum look-ahead distance,
and number of interaction vehicles. First, maximum look-ahead
distance is the maximum area around the vehicle that can be
detected by the radar and ultrasonic sensors of the AV. This
parameter is usually assumed to be between 200 and 300 m.
Second, the number of interaction vehicles refers to the num-
ber of preceding vehicles that the vehicle perceives downstream
or adjacent to it on the same link to interact with them.

CF models for (C)AVs are not limited to established mod-
els such as IDM, MIXIC etc., several attempts have been
made to propose new models, especially for ACC and CACC
equipped vehicles. These proposed CF models are designed
in such a way as to achieve certain objectives. Depending
on various objectives, these models generate the velocity or
acceleration profile of a vehicle to optimize specific pol-
icy targets including efficiency, safety, string stability, energy
consumption, comfort and more [52, 66–75]. For instance,
in a recent study, [66] developed a novel ACC algorithm
based on model predictive control (MPC) and active dis-
turbance rejection control (ADRC). This study considered
driving safety, tracking capability, fuel economy, and com-
fort as the main policy targets for the optimization module.
Similarly, [52] proposed a predictive cruise control approach
to improve driving safety and comfort. In this study, the pro-
posed model generates the acceleration profile of the following
vehicle using the finite horizon constrained optimal control
problem. In addition, [69] developed an ACC algorithm based
on MPC and constraints softening. The aims is to optimize
the CF requirements, safety, comfort, and economy. A detailed
review of these microscopic models for CAVs is conducted by
[22]. Since these methods are not integrated in microscopic sim-
ulation tools and require high computational resources, they are
not widely used for impact assessment studies. Hence, a revisit is
not the scope of this paper. In Table 7, the summary of reviewed
simulation-based studies is presented, which describes specific
information on the used CF model, vehicle type, and descrip-
tion of the model parameters. The table is sorted based on the
publication date of the citations, which are displayed in reverse
chronological order (newest to oldest).

To summarize, in most (C)AVs related studies, IDM, MIXIC
and their modified versions are frequently used for modelling
of (C)AVs. The Wiedemann 99 and Krauss models are also
used for (C)AVs impact assessments. Depending on differ-
ent CF model, researchers differentiate the driving behavior
of (C)AVs from human-driven vehicles for time gap, reaction
time, headway, and driving imperfection factor. Among these
parameters, time gap is the most sensitive and crucial parameter
which distinguishes (C)AVs from human-driven vehicles. When
using IDM, it is assumed that (C)AVs could drive closer to the
leading vehicle by around 50% less than the human-driven vehi-
cles. The time headway is set 0.6 s in majority of studies for
(C)AVs where this value is more than 1 s for human-driven vehi-
cles. Considering other parameters of IDM model, researchers
expected the same driving capabilities as in human-driven vehi-
cles. Hence, maximum acceleration and comfort deceleration
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TABLE 7 Summary of reviewed simulation-based studies: CF model, vehicle types, and description of the adapted parameters.

References Year CF model Vehicle type Description

[58] 2022 Krauss, IDM and
CACC

CAV Minimum headway, minimum gap, and acceleration values for all models are taken
from [61], where deceleration value for CAVs is taken from [76].

[17] 2021 IDM CAV The parameters of the model are taken from literature as in Table 2.

[33] 2021 IDM ACC vehicles The parameters for both human-driven and theoretical ACC are take from [44, 46],
where for commercially available ACC, set of calibrated parameters from the field
experiment are deployed in the simulation platform.

[50] 2021 CACC AV & CAV The parameters of the model are adopted from [49].

[37] 2021 Modified IDM AV A reaction time variable is added in the original IDM model to distinguish AVs from
human-driven vehicles. The parameters are adopted from literature where the time
headway is assumed 1s for AVs.

[59, 77] 2021 Krauss AV Adjustments of the reaction time (𝜏 = 0.5) to mimic AVs.

[51] 2021 MIXIC AV & CAV The default model parameters based on [49] are used.

[78] 2021 Krauss, IDM and ACC AV Trajectories of human-driven vehicles were used to estimate the parameters of the
models and use it for AVs.

[38] 2021 Improved IDM CAV The model considers multiple front and rear vehicles information to generate the
following vehicle’s acceleration. The model parameters are set based on
assumptions.

[41] 2020 Modified IDM AV The parameters of the model are set as in Table 2, where the time headway between a
CAV and human-driven vehicles is assumed 0.9s.

[30] 2020 IDM CAV The parameters’ values of the model are selected from Table 2.

[76] 2020 Krauss CAV The emergency deceleration value was set based on a study by [79], where the values
of minimum gap, maximum acceleration, and time headway are taken from [61].

[39, 53] 2020, 2018 ACC-CACC and
enhanced MIXIC

AV & CAV The parameters of ACC-CACC model are adopted from [54], where for enhanced
MIXIC model the parameters are taken from [6].

[64] 2019 Wiedemann 99 CAV The parameters of the Wiedemann 99 model are set as in Table 6, where the time
headway is assumed 0.6s.

[60] 2019 Wiedemann 99 AV The parameters of the Wiedemann 99 model are derived from empirical data (see
Table 5, AV with CACC and AV with dCACC).

[32] 2018 Wiedemann 99 AV The parameters are adopted from [1], where some modifications to the values of the
parameters are set based on the assumptions.

[55] 2018 ACC-CACC and
MIXIC

AV & CAV ACC-CACC model based on [54] with default parameters, and enhanced MIXIC
model of [6] are utilized.

[31] 2018 Wiedemann 99 AV Modifications of the parameters of the model based on [61] to capture cautious and
aggressive behaviors of AVs.

[57] 2018 Krauss AV The values of the model parameters are set based on assumptions.

[80] 2018 CACC CACC The parameters of CACC model are adopted from [18, 36].

[48] 2018 IDM CAV The default parameter values are modified from [19].

[42] 2017 IDM ACC The parameters the model are taken from [18, 19, 44, see Table 2].

[43] 2017 Modified IDM AV The enhanced IDM model includes multiplication factors for different traffic
situations. The parameters are modified from [46, 81].

[6] 2016 IDM and enhanced
MIXIC

AV & CAV The model parameters are chosen based on recommendations of [49].

[1] 2016 Wiedemann 99 AV The parameters of the model are adopted from [61], where the time headway (cc1) of
the model is assumed (0.3s) for AVs.

[54] 2012 ACC-CACC ACC & CACC Parameters of the model are used from Table 3

[19] 2010 IDM with constant
acceleration
heuristic (CAH)

ACC The coolness factor of the CAH is set to 0.99, where the parameters of IDM are
taken from Table 2.

[46] 2007 Modified IDM ACC The modified IDM considers different driving situations using some multiplication
factors (see Table 1), the other parameters remain as in Table 2.

[49] 2006 MIXIC CACC The model parameters are set as k = 1.0, ka = 1.0, kv = 0.58, and kd = 0.1.
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are identical for both (C)AVs and human-driven vehicles. Sim-
ilarly, for MIXIC model, it is assumed that CAVs could drive
with lower time gaps than human-driven vehicles. When a CAV
follows another CAV, the time gap could be around three times
lower than the condition when a CAV follows a human-driven
vehicle. In ACC-CACC models, AVs are differentiated from
CAVs by the time gap parameter. It is expected that due to
the communication capabilities of CAVs and faster analysis of
the surrounding environment, they could drive twice closer
to the leading vehicle than the AVs.

Regarding the Krauss model, (C)AVs are differentiated from
human-driven vehicles by two main parameters namely: reaction
time and driving imperfection factor (sigma). Considering the
reaction time, it is assumed that in comparison to human-driven
vehicles where there is delay between the perception and reac-
tion to a driving task, (C)AVs do not require extra time to react.
The reaction time of (C)AVs is set to zero, where for human-
driven vehicles it is more than 1 s. Meanwhile, it is expected
that (C)AVs have perfect driving behavior (sigma= 0) and never
make mistakes, whereas for human-driven vehicles this parame-
ter is set to 0.5. Finally, Wiedemann model, the driving behavior
of AVs is expected to be diverse, and three different driving
styles are proposed (cautious, normal and aggressive). Differ-
ent driving styles are categorized mainly based on the standstill
distance and time gap. It is assumed that AV with aggressive
driving style might have smaller distance to the leading vehicle
and lower time gap. Although, many studies have the simi-
lar assumptions for potential driving behavior of (C)AVs, still
there is not a concrete practical basis for the exact values of
the assumed parameters. Thus, (C)AVs might behave differently
than what are expected.

3 DATA-DRIVEN MODELS

With the recent advancement in collecting high-fidelity traffic
data, more accurate characteristics of driving could be achieved.
Data-driven models provide the opportunity to approximate the
CF behavior of human-driven vehicles as well as (C)AVs from
field data. In contrast to mathematical models which are sim-
plified and contain a small number of parameters, data-driven
models have the flexibility to incorporate additional parameters
that impact the driving behavior. Data-driven models require
mass field data for verification and to ensure accuracy. Previ-
ous studies utilized human-driven vehicles’ field data to verify
data-driven models. Since the field data for (C)AVs are limited,
there are explicitly few studies related to data-driven models
for (C)AVs. Therefore, in this section, the aim is to review the
proposed methodologies. Of course, these proposed methods
could also be used for (C)AVs, when field data for (C)AVs are
available. Studies relevant to the data-driven CF models can be
divided into four main types: nonparametric models, artificial
neural network, reinforcement learning, and deep reinforce-
ment learning. However, many approaches have been proposed
to combine mathematical models with data-driven models.

Nonparametric regression models are capable of fitting a
large number of functional forms with no or weak assumptions.

Attempts have been made to approximate the CF behavior
using nonparametric methods [82, 83]. [82] developed a sim-
ple nonparametric CF model using the k-nearest neighbor
approach. The k-nearest neighbor (kNN) is one of the simplest
nonparametric method, which assumes the similarity between
historical data/cases. In [82] the proposed model generates the
average of the most similar driving cases. Similarly, [83] intro-
duced a nonparametric CF model utilizing the locally weighted
regression method, the Loess (locally estimated scatterplot
smoothing) model. Similarly, [84] developed a nonparametric
CF model to generate acceleration sequence in the next time
step using a combination of the hidden Markov model (HMM)
and Gaussian mixture regression (GMR). HMM is a stochastic
model which is used to represent randomly changing systems.
Since CF behavior has stochastic characteristics, [84] used the
HMM to estimate the dependencies between the driving situa-
tion and the vehicle’s acceleration. GMR on the other hand is
utilized to classify different driving situation and vehicle’s accel-
eration based on the probability distribution. Meanwhile, [85]
proposed a CF model based on support vector regression to
investigate the acceleration and deceleration asymmetry of driv-
ing behavior in traffic congestion environments. The model was
used to obtain the equilibrium state of the vehicle during the
CF process.

Several articles proposed CF models using artificial neural
networks (ANNs) [86–92]. For instance, [88] introduced a CF
model based on an ANN with one hidden layer. The pro-
posed ANN takes speed, speed difference, and gap distance as
inputs and generates the acceleration profile in the output layer.
[89] further improved the model by considering the instanta-
neous reaction time delay as an extra input. In contrast to these
conventional neural network-based models, recent studies pro-
posed models considering several other influential inputs as well
as the temporal variation of the data to accurately approximate
driving behavior.

[93] and [94] proposed CF models using deep determinis-
tic policy gradient (DDPG) algorithm. DDPG is a model-free
method for learning continuous actions. In DDPG, two sepa-
rate actor and critic networks are used. In [93] both networks
are comprised of three layers: an input layer, one hidden layer,
and an output layer. In the actor network, the input layer takes a
state containing the speed of the following vehicle, the spacing
between the following and leading vehicles, and the speed differ-
ence as inputs, where the following vehicle’s acceleration is the
output as a continuous action. In the critic network, the input
layer includes both the state (same as the actor network) and the
action (acceleration of the following vehicle), where the output
layer is a generated scalar value. Different loss functions were
considered in this study to maximize the output of the critic
network by changing the action space of the actor network.

Similarly, [95] used real-world driving data gathered in the
Next Generation Simulation (NGSIM) project to evaluate
the performance of DDPG based CF model. [96] developed
an encoder-decoder architecture-based CF model with trans-
former block to predict a long-sequence CF trajectories. The
encoder uses multi-head self-attention to generate a mixed rep-
resentation of past driving context utilizing historical speed
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and spacing data as inputs. The decoder takes the future lead-
ing vehicle speed as input and outputs the predicted future
following vehicle speed profile in a generative way.

Since CF behavior of a vehicle follows a sequential pattern,
several studies developed CF models based on Recurrent neural
network (RNN) architecture [97–103]. [97] proposed a RNN
model with the input layer containing the gap, speed differ-
ence, and the following vehicle’s speed in different time steps
(as a sequence), where the output is the predicted acceleration
of the following vehicle in the next time step. [98] on the other
hand, applied Gated Recurrent Unit (GRU) neutral networks.
GRU is a temporal block that captures the temporal variation
of data and predicts the output using inputs of several past time
intervals. In the proposed model of [98], the input layer con-
tains speed, the speed difference, and position differences in
few last time intervals, where the output is the estimated speed
in the next time interval. [99] proposed a CF model considering
asymmetric driving behavior using Long Short-term Memory
(LSTM) neural network. In comparison to GRU, LSTM consid-
ers longer sequential data and has more parameters than GRU,
however, both methods are used to mimic the temporal varia-
tion of data. In [99], the input layer in different time intervals
contains information such as the speed of the following vehicle,
the speed difference to the leading vehicle, and the gap between
vehicles in the current time step, whereas the output layer pre-
dicts the speed of the following vehicle in the next time step.
On the other hand, [103] further enhanced the LSTM-based
CF model by considering traffic oscillation in a platoon level.
According to [103] the direct application of IDM/LSTM based
models to predict the driving behavior in next time step in a
platoon will induce an accuracy problem so-called error propa-
gation. The prediction error propagates and accumulates both
in temporal and spatial dimensions. Hence, in this study, an
interconnected LSTM-based CF model is proposed.

[101] proposed a velocity control framework to address the
phantom traffic jam using a DDPG equipped with a LSTM
temporal block and attention mechanisms. In this framework,
the spatial-temporal graph extracts information such as veloc-
ity and gap of multiple vehicles ahead in several time intervals,
where the attention mechanism characterizes the interaction
of the vehicle, and finally, the LSTM structure captures the
driving behavior through time. This framework is specifically
designed for CAVs, where a CAV can obtain driving informa-
tion of multiple vehicles ahead through V2V communication.
In addition, [102] further utilized LSTM architecture with a
quantile-regression method. In this proposed framework, the
output of the LSTM is not only a single output but a series
of outputs as the different quantile of actions. For a given traf-
fic state, the model predict set of actions, where kernal density
estimation (KDE) is used to to estimate the continuous action
distribution. The main advantage of this model is that it can
obtain the driving behavior stochasticity.

[104] used generative adversarial imitation learning (GAIL)
together with a temporal block-GRU to capture the CF behav-
ior. The model consists of generator and discriminator parts.
The generator scheme includes an actor critic structure (simi-
lar to DDPG) and extracts set of state-action pairs considering

the temporal variation of the input states. The discriminator
part compares the real state-action pairs with the generated one
and updates the reward of the CF environment in an iterative
way until the maximum reward is achieved. A similar method is
used by [105] to develop a CF model which also considers the
influence of driving time on driving behavior.

The findings of literature review show that several stud-
ies developed models by combining the mathematical models
with the data-driven approaches. For instance, [106] proposed
a novel CF model by combining a mathematical-based model
(Gipps model) with a machine learning-based model (Back-
propagation NN). This study assumes that the proposed model
addresses both the lower accuracy of mathematical model and
the shortcomings of machine learning-based models for the
control of AVs. In the proposed method, the prediction values
of machine learning-based and mathematical-based models are
combined by weight values and the aim is to find the optimal
combination weight value increasing the accuracy of the model.
Moreover, [107] developed a family of CF models by integrat-
ing the parameters of mathematical CF models into a neural
network. The aim is to take the advantage of mathematical mod-
els (data-efficient) and the data-driven model (generalizable).
The loss function of the NN was designed in such a way to
contain both the deviation from the data and the mathemati-
cal model [i.e. IDM, OVM (optimal velocity model)]. Similarly,
[108] proposed a fusion modelling method, which combines the
data-driven LSTM model with IDM. The adaptive Kalman fil-
ter algorithm is adopted to achieve an optimal estimation of
the state of the system (CF behavior) based on both LSTM
and IDM. The findings of this study proved that the combined
LSTM-IDM model outperforms the accuracy of the IDM and
LSTM models.

In summary, data-driven models could accurately replicate
the CF behavior of (C)AVs. There are different methods pro-
posed in the literature. However, we found that the recent
deep-learning based models such as DDPG, RNN, GRU,
LSTM, DDPG equipped with a LSTM, and GAIL with GRU
outperform mathematical CF models, nonparametric models,
and conventional neural network-based models and could be
potentially used for modelling CF behavior of (C)AVs. How-
ever, most of these proposed models are not integrated into
a simulation tool and hence they are not used in impact
assessment studies. Table 8 presents the summary of reviewed
data-driven models, which describes specific information on the
developed CF model, model input and output, utilized dataset,
and description of the model.

4 SIMULATION-BASED IMPACT
ASSESSMENT AND KPIs

A large spectrum of simulation-based studies focus on the
identification of potential impacts of (C)AVs on the trans-
portation system. Review of previous studies shows that an
enormous amount of researches conduct impact assessments
of AVs and CAVs for safety, mobility, and environmental effects
(e.g. energy consumption and emissions). Key performance
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TABLE 8 Summary of reviewed data-driven models: CF model, input, output, dataset, and description of the model*.

References Year Model Input Output Dataset Description

[82] 2015 kNN s,△v, v v NGSIM In this study, k-nearest neighbor (KNN) generates the average of the most
similar driving cases. The speed prediction in the next time step is based on
the similar historical cases.

[83] 2015 Loess s, v v Naples The proposed method captures the releshionship between the speed of the
following and leading vehicles, distance between them with the speed of
the following vehicle in next time step (reaction time). Depending on the
value of reaction time, the speed of the following vehicle is predicted.

[84] 2016 HMM +
GMR

s, v a Driving trajectories A combination of the hidden Markov model (HMM) and Gaussian mixture
regression (GMR) to generate a sequence of acceleration in the next time
step. HMM mimic the pattern between the driving situation and the
vehicle’s acceleration, where GMR generates the probability distribution of
the acceleration to capture the stochasticity of driving behavior.

[85] 2013 SVR s, v,△v v NGSIM The support vector regression (SVR) performs a linear regression by applying
structural risk minimization (SRM) principle, to minimize the empirical risk
and model complexity.

[86] 2003 ANN s,△v, vd , v a Driving trajectories This study utilized a simple ANN model with two hidden layers. The model
inputs contains the following vehicle’s desired and current speeds, the
distance between leading and following vehicles, as well as their speed
difference, where the output is the following vehicle’s acceleration.

[87] 2007 ANN s, v v Driving trajectories The proposed one hidden-layer ANN model in this study predicts the speed
of a vehicle and classifies the driving conditions into five categories namely:
free driving, approaching, following I, following II, and danger. The results
are compared with the Gipps CF model.

[88] 2011 ANN v, s,△v a NTDS Similar to [87], this study proposed an ANN-based model to predict the
acceleration of the vehicle in the next time step. The results are compared
with the Gazis-Herman-Rothery (GHR) CF model.

[89] 2012 ANN v,△v, s, 𝜏 a NGSIM The proposed model considers the instantaneous reaction delay of the driver
as an extra input to predict the acceleration of the following vehicle.

[90] 2013 ANN s, v,△v v NGSIM The model is similar to [89], but predicts the speed of the following vehicle in
next time step. The next time step depends on the reaction delay which is
estimated by another neural network model.

[91] 2014 ANN s, v v NGSIM This study used a local neuro-fuzzy model to predict the speed of a following
vehicle at time t based on the input information at time (t − 𝜏), where 𝜏
indicates the reaction time of a vehicle. In this study, the CF behavior of
heavy vehicles is considered.

[92] 2014 ANN s,△v a Trajectory data This study utilized a feed-forward ANN similar to [89], with one hidden layer.
However, the input information contains the speed difference, and distance
to the leading vehicle for the last three time intervals. The output of the
model is the acceleration of the following vehicle in the next time step.

[93] 2018 DDPG s, v,△v Q Trajectory data In DDPG, two separate actor and critic networks are used. Both networks
contain an input, one hidden, and an output layer. The actor-network
generates the action (acceleration of the following vehicle), whereas the
critic network exports a scalar reward value. The aim is to adjust the action
in such a way as to maximize the reward.

[94] 2019 DDPG v, P v Simulation data In this study, DDPG same as in [93] is utilized to generate the time-optimal
velocity of a vehicle.

[95] 2020 DDPG s, v,△v Q NGSIM In this research, the reward function of the DDPG contains various features
including safety, efficiency, and comfort. The model adjusts the output of
the actor network (acceleration) aiming to maximize the reward function.

[96] 2022 Encoder-
decoder

s, v v SH-NDS In this framework, the encoder uses multi-head self-attention to generate a
mixed representation of past driving context, where the decoder takes the
future leading vehicle speed as input and predicts the future following
vehicle’s speed.

[97] 2017 RNN s,△v, v a NGSIM The RNN model utilized in this study takes the sequence of the input
information in different time steps and predicts the acceleration in the next
time step.

(Continues)
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TABLE 8 (Continued)

References Year Model Input Output Dataset Description

[98] 2018 GRU s,△v, v v NGSIM The GRU temporal block is used to include the temporal variation of the
input information in predicting the future speed profile.

[99] 2018 LSTM s,△v, v v NGSIM This study utilized LSTM to capture the temporal variation of the input
information. In comparison to GRU, LSTM considers longer sequential
data.

[100] 2020 LSTM s,△v, a a Waymo The model contains an encoder-decoder structure to learn the information
hidden in the input features. This study uses the AV trajectories for training
and validation of the model.

[101] 2021 LADDPG s,△v a NGSIM In this study, a DDPG equiped with LSTM and attention mechanisms is
proposed. In this framework, the spatial-temporal graph extracts
information such as velocity and gap of multiple vehicles ahead in several
time intervals, where the attention mechanism characterizes the interaction
of the vehicle, and finally, the LSTM structure captures the driving behavior
through time.

[102] 2021 QRLSTM s,△v, v a NDD This study utilized LSTM architecture with a quantile-regression method. The
output of the model is not only a single output but a series of values as the
different quantiles.

[103] 2020 Int-LSTM x, v, a a NGSIM The interconnected-LSTM is used to solve the error propagation problem of
a basic LSTM model.

[104] 2020 GAIL s,△v, v a NGSIM The proposed model consists of generator and discriminator parts. The
generator scheme includes an actor-critic structure (similar to DDPG) and
extracts a set of state-action pairs considering the temporal variation of the
input states. The discriminator part compares the real state-action pairs
with the generated one and updates the reward of the CF environment in
an iterative way until the maximum reward is achieved.

[105] 2020 GAN s,△v, v, a x, v, a Didi The proposed model is similar to [104], however, it also includes the influence
of driving time on driving behavior. The model contains the driver’s
reaction time model and the CF algorithm.

[106] 2019 Gipps +
ANN

s,△v, v, a x, , v, a NGSIM In this research, a novel CF model by combining a mathematical-based model
(Gipps model) with a machine learning-based model (Backpropagation
ANN) is proposed. This study assumes that the proposed model addresses
both the lower accuracy of mathematical model and the shortcomings of
machine learning-based models for the control of AVs.

[107] 2021 IDM, OVM
+ANN

s,△v, v a NGSIM This study developed a family of CF models by integrating the parameters of
mathematical CF models into a neural network. The aim is to take the
advantage of mathematical models (data-efficient) and the data-driven
model (generalizable). The loss function of the NN was designed in such a
way to contain both the deviation from the data and the mathematical
model [i.e. IDM, OVM (Optimal velocity model)].

[108] 2019 IDM +
LSTM

s,△v, v a Trajectory data This study proposed a fusion modelling method, which combines the
data-driven LSTM model with IDM. The adaptive Kalman filter algorithm
is adopted to achieve an optimal estimation of the state of the system (CF
behavior) based on both LSTM and IDM.

x, s, v, a are the position, spacing, velocity, and acceleration of a vehicle, respectively. △v is the velocity difference between the following and leading vehicles, and 𝜏 is the reaction time.
*The studies are presented based on their categories from nonparametric models, artificial neural network, reinforcement learning, deep reinforcement learning and combined mathematical
and deep learning models.

indicators (KPIs) used in these studies vary depending on the
scope of the study. However, the identification of the most
used KPIs and impact areas are very important for future
studies in this field. Table 9 presents a brief description of
all studies reviewed in this section, which explains specific
information on the impact area, assessment criteria, KPIs, and
findings. The table is sorted based on the publication date of
the citations, which are displayed in reverse chronological order
(newest to oldest). In the following paragraphs, we present

a detailed explanation of selected articles, considering various
impact areas together with the utilized KPIs in simulation-based
studies.

4.1 Mobility

Mobility impact assessments in the context of microsimulation-
based studies refers to the traffic flow efficiency. The scope
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TABLE 9 Summary of reviewed simulation-based studies including their assessment criteria, KPIs, network type and results.

References Year Assessment criteria KPIs Network Results

[58] 2022 Traffic safety Number of conflicts Intersection The higher the PRs of CAV, the safer the intersections. A 100% PR
of CAV could totally ignore the number of crossing conflicts in
both signalized and unsignalized intersections.

[50] 2021 Traffic efficiency Capacity, queue length,
total travel time

Urban road A network with 100% PRs of CACC vehicle, increases the capacity,
reduces the queue length in congested sections, and decreases the
total travel time.

[37] 2021 Efficiency, throughput Travel time, flow Link Higher PRs of AVs, reduce the travel time and increase the
throughput. With 100% PR, the travel time reduces by 50%.

[17] 2021 Traffic safety and
efficiency

TTC, number of
conflicts, travel time

Freeway AVs and CAVs improves travel time, however, CAVs outperform
AVs, and at least 20% PR of CAVs and 40% PRs of AVs are
required to reduce travel time. A system with both AVs and CAVs
could also significantly improve safety. With high PRs of AVs and
CAVs, number of conflicts reduced.

[33] 2021 Throughput and
stability

Traffic flow, density Freeway The performance of commercially available ACC vehicles is
different than theoretical ACC vehicles. Commercially ACC
vehicles reduces the bottleneck capacity and string stability.

[78] 2021 Traffic efficiency Mean speed, travel
time

City center With a 50% PR of AVs under different driving styles, mean speed of
the network drops and travel time increases.

[51] 2021 Throughput Speed, and traffic flow Freeway Under current traffic demand, a fully human-driven traffic shows
better throughput, however, with a double demand, CAVs show
the best performance.

[77] 2021 Flow analysis Traffic flow, travel time City Traffic throughput improves by around 22% in a situation with
automated vehicles in comparison to non-automated condition.
Travel time reduces by 13.5% and 16.4% in partially and fully
automated conditions, respectively.

[41] 2020 Capacity analysis String stability, lane
capacity

Freeway Lower PRs of CAVs have negative impacts on the capacity, where
100% PR increases the capacity around 70–100% depending of
the freeway speed limits.

[30] 2020 Traffic efficiency Travel time Freeway With higher PRs of CAVs, average travel time decreases. This
reduction is more obvious when PRs of CAVs increases under
heavy traffic flows.

[76] 2020 Capacity analysis Flow, density and
speed

Urban road Higher PRs of AVs increases the capacity. With a 100% PRs of AVs,
the maximum capacity increases by 16–23%. Lower PRs of AVs
does not show significant improvements, thus at least 40% PR is
required.

[39] 2020 Traffic flow and
emissions

Throughput and CO2
per kilometer

Highway A 100% PR of AVs reduce the average speed and flow, and generate
the highest emission per kilometer. Whereas, CAVs improve the
capacity of the network. However, in network wide, the total
emission produced by AVs, and CAVs are not significantly
different than human-driven vehicles.

[64] 2019 Safety analysis Number of conflicts Motorway With a 100% PR of CAVs, more than 90% reduction in total
number of conflicts is achieved.

[32] 2018 Safety Number of conflicts Roundabout The higher the PRs of AVs results in increased number of conflicts.
Negative safety impacts of AVs on roundabout does not change
even with different design of roundabouts.

[80] 2018 Capacity analysis Flow, string stability Freeway There is a quadratic relationship between the freeway capacity and
PRs of CACC vehicles. At 100% PR, the freeway capacity is
around 90% higher than a 0% PR.

[55] 2018 Throughput and
emissions

Average harmonic
speed, density, CO2
and NOx per
kilometer

Ring road With high PRs of AVs, the average speed of the network decreases
and the density increases, where emissions also increases. In low
PRs, CAVs have small negative impacts on average speed, density
and emissions, where for high PRs, CAVs improves the situation.
The best performance of CAVs is achieved with high demand
scenarios.

[53] 2018 Throughput Harmonic average
speed

Ring road In comparison to human-driven vehicles and with the constant
demand, any PRs of AVs do not improve the traffic flow
efficiency, however CAVs enhance the condition. In low traffic
demands, human-driven vehicles always outperform CAVs.

(Continues)
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TABLE 9 (Continued)

References Year Assessment criteria KPIs Network Results

[31] 2018 Safety analysis Number of conflicts Signalized
intersection
and
roundabout

Higher PRs of AVs with both driving styles (cautious and
aggressive) could reduce the number of conflicts around 65% in
signalized intersection and roundabout.

[42] 2017 Safety analysis TET, TIT Freeway Driving behavior of ACC is a decisive factor for the safety impacts.
Larger time headway and increased emergency deceleration
capability results in improved safety.

[109] 2017 Traffic efficiency Travel time, fuel
consumption

On-ramp With a 100% CAV PR, fuel consumption reduces by an average of
35% with different traffic flows. With high traffic flow, total travel
time reduces drastically in comparison to 0% PR of CAVs.
However, for low traffic volumes, no change in total travel time is
achieved.

[43] 2017 Traffic efficiency,
safety, string stability

Flow stability, travel
time, speed
dispersion

Freeway With 0% AVs PR, irregular merging behavior of human-driven
vehicles results in negative effect on string stability. However,
only a 5% PR of AVs can improve string stability. Higher PRs of
AVs leads to lower level of speed dispersion and results in
enhanced safety. For average travel time, any PRs of AVs only
slightly change is achieved. More reduction in travel time is
achieved in congested sections of the freeway.

[6] 2016 Flow stability and
throughput

Platoon size, flow and
density

Ring road AVs could prevent shockwave formation and propagation. Both
AVs and CAVs can improve throughput and string stability,
however AVs show better performance in terms of throughput
than CAVs.

[1] 2016 Traffic efficiency Average density, speed
and travel time

Autobahn A 100% PR of AVs improves the travel time by 9%, where average
density enhances by around 8%.

[54] 2012 Capacity analysis Lane capacity Freeway The higher the PRs of CACC vehicles, the better the freeway lane
capacity could be achieved.

[49] 2006 Flow analysis, string
stability

Traffic flow, number of
shock waves,
average speed

Freeway Lower PRs of CACC (< 40%) does not improve the throughput.
Higher PRs of CACC results in improved string stability and
throughput. Also, higher PRs of CACC lead to higher average
speed and high reduction in number of shock waves.

of the studies in this area varies from intersections to links,
highways, and networks. Most researchers exploited KPIs, such
as traffic flow (e.g. traffic volume, density), average travel time,
string stability, average velocity, and more in their studies. For
instance, [50] studied the impact of CACC-equipped vehicles on
traffic efficiency in urban roads with congested sections. This
study selects traffic capacity, waiting time, queue length, and
total travel time as the main KPIs. The findings of this study
indicate that in comparison to conventional vehicles, CACC-
equipped vehicles with a penetration rate (PR) of 100% can
increase the traffic capacity by more than 2.6 times. The study
claims that by increasing the PR of CACC-equipped vehicles,
the waiting time on congested roads decreases. In addition, with
a 100% PR, the queue length and total travel time significantly
decrease on congested roads. In [37] a research is conducted to
investigate the utilization of road capacity in mixed traffic (AVs
and human-driven vehicles). The study showed that in an ideal-
ized environment with a 100% PR of AVs, capacity utilization in
terms of travel time and throughput is improved. However, in a
mixed traffic situation, capacity utilization degrades fastly with
the higher PR of human-driven vehicles. On the other hand, [17]
investigated the traffic efficiency and safety impacts of (C)AVs
in a major freeway in Orlando, Florida. The results of their study

depict that travel time is significantly reduced with the penetra-
tion of (C)AVs. The study also implies that CAVs substantially
outperform AVs with the same PR both in terms of travel time
reduction, and number of conflicts. The findings also suggest
that at least 20% PR of CAVs and 40% PR of AVs are required
to achieve reduced travel time in the network.

Furthermore, [33] investigated the impacts of commercially
available ACC vehicles on traffic stability and throughput. The
simulation results show that in comparison to theoretical ACC
vehicles, the commercially available ACC equipped vehicles
decreases the bottleneck capacity at higher PRs. The study also
claims that traffic flow is string unstable when simulating the
commercially available ACC vehicles. On the network level,
[78] studied the impact of AVs with different driving styles in
Munich city network. The findings depict that with 50% PR of
AVs under different driving styles, mean speed of the network
drops and travel time increases. [41] conducted a simulation-
based study on the effect of CAVs on freeway capacity. The
study claims that there is a negative impact on freeway capacity
with small PRs of CAVs, where with higher PRs, the capac-
ity increases. Meanwhile, speed limit is also indicated as an
important variable in freeway capacity, where higher speed lim-
its leads to improvement of capacity. Another interesting finding
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based on demand fluctuation is reported in [51]. This study eval-
uated the impacts of (C)AVs on throughput in a Freeway seg-
ment. It is claimed that under current traffic demand scenario,
a 100% human-driven vehicles show better throughput, where
with a double traffic demand, CAVs show the best performance.
Since CAVs strictly obey the speed limits, their performance is
not significantly noticeable with the current demand. However,
with increased demand a smooth flow of traffic is achieved and
consequently leads to a better throughput and speed.

AVs will likely have more cautious behavior than human-
driven vehicles, and thus findings of a study by [53] indicate
that AV alone will not probably improve the traffic flow. This
article studied the effects of (C)AVs on traffic flow in a free-
way, and showed that with the constant demand, CAVs with the
V2V communication will significantly enhance network capac-
ity and reduce traffic congestion. This study also claims that
AVs with any PRs will show negative performance than human-
driven vehicles. In case of CAVs, low PRs will worsen the traffic
flow (as they act like AVs), where higher PRs increases the traffic
flow efficiency. On the demand side, human-driven vehicles out-
perform CAVs on low traffic demands with any PRs of CAVs.
Unlike [6, 53] claimed that AVs are more effective in prevent-
ing shockwave formation and propagation. The findings of this
study revealed that under the utilized model’s assumptions, both
AVs and CAVs can improve throughput and string stability. It
is also shown that AVs result in higher throughput than CAVs
with same PRs. Meanwhile, utilizing different CF models with
various parameters lead to distinct conclusions. [1] studied a
situation where all vehicles in the system are AVs. This study
assumes that AVs can drive very close to the leading vehicle.
The outcome of this study showed that AVs have positive effect
in traffic flow efficiency in higher traffic demands. The study
claims that in a fully AV driving environment, average density
improves by around 8%, where travel time reduces by 9%. [54]
investigated the impacts of CACC-equipped vehicles on freeway
traffic flow. The results revealed that there is a linear relationship
among PRs of CACC vehicles and the freeway lane capacity.
The study also mentioned that capacity improvement could be
enhanced if the leading non-CACC vehicles share information
with CACC vehicles.

4.2 Safety

Simulation-based studies utilize surrogate safety measure (SSM)
to evaluate the impact of (C)AVs on traffic safety. Time-to-
collision (TTC), Post-encroachment time (PET), number of
conflicts (using certain TTC and PET thresholds) are the most
used KPIs for safety assessment in the literature [17, 31, 32,
42, 47, 58, 63, 64]. [58] investigated the effects of CAVs on the
safety of signalized and unsignalized intersections. The results of
this study revealed that CAVs can significantly reduce the num-
ber of conflicts on both intersections. In addition, it is claimed
that a 100% PR of CAVs could ignore any crossing conflicts
between vehicles. [17] used the number of conflicts, time-to-
collision (TTC), and time exposed time-to-collision (TET) to

quantify the safety impacts of (C)AVs under mixed traffic sce-
narios. The results implied that any mixture of AVs and CAV
PRs into the existing transport system could improve safety.
Meanwhile, higher PRs of (C)AVs result in reduced number of
conflicts. Considering the demand fluctuation, [64] studied the
impact of CAV PRs on safety with different demands (peak and
off-peak traffic) in a motorway segment. The results show that
PRs of CAVs substantially reduce the number of conflicts. This
effect is more noticeable in higher traffic demands even at low
PRs of CAVs.

Similarly, [31] studied the safety effects of AVs with dif-
ferent driving styles (cautious and aggressive) on a signalized
intersection and a roundabout. This study used the number of
conflicts as a KPI to quantify the safety impacts. The results sug-
gested that high PRs of AVs with both cautious and aggressive
behaviors could significantly reduce the number of conflicts.
With a 100% PR of AVs, the number of conflicts reduces by
around 65% in both intersections and roundabouts. Unlike [31,
32] highlighted the negative impacts of AVs on roundabout
safety. The findings of this study showed that with increased
PRs of AVs, the potential number of conflicts at roundabout
also increased. It is also mentioned that even redesign of the
roundabouts can not neglect this negative safety effect of AVs.
This study suggested that utilization of SSM might be not a
suitable tool to quantify the safety in roundabouts and thus
new models are needed. In addition, [42] investigated the safety
impact of ACC vehicles in congested conditions on a freeway.
In this study, several potential behaviors of ACC vehicles such
as time headway, maximum deceleration and more were tested.
The findings of this study showed that the safety impacts of
ACC are largely affected by their driving behavior. The study
implied that with larger time headway, and increased emergency
deceleration capability, the safety has improved. In this research,
time exposed time-to-collision (TET) and time-integrated time-
to-collision (TIT) were used as KPIs. Both TET and TIT are
aggregated indexes from TTC.

4.3 Environment

Accurate approximation of environmental impacts of (C)AVs
requires consideration of many decisive variables including
vehicle technology, travel demand, new modes of transport
etc. However, researchers attempted to quantify the effect of
(C)AVs assuming the same energy consumption and emission
factors as for existing human-driven vehicles. For instance, [39]
investigated the impact of (C)AVs on traffic flow and emissions
on a highway network. The study estimated emissions using
both the average-speed EMEP/EEA fuel consumption factors
and the generic version of the European Commission’s CO2
MPAS model. The results revealed that a transport network
with 100% AVs has the highest CO2 emissions (g/km), where
CAVs also generate more emissions in peak hour traffic (due
to high utilization of network capacity). The study implied that
the overall effect on the network is statistically not significant.
The study claims that usage of the various CF models and their
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limitations lead to distinct driving profiles and thus generate dif-
ferent emissions. Moreover, a 20% increase in demand does not
significantly change the emissions. Similarly, [55] conducted a
simulation-based study to investigate the impact of (C)AVs on
throughput and emissions in a ring road. In this study, various
demand scenarios and PRs of (C)AVs, and different desired time
gaps for the model settings are considered. CO2 and NOx emis-
sions per kilometer are selected for environmental impacts. The
findings of this study showed that in free-flow traffic, where
vehicles are not bounded to speed limits, human-driven vehicles
have the highest emissions. On the other hand, any PRs of CAVs
could result in low emissions. According to the study, AVs drive
with low speeds and thus force the engine to work less efficient.
Hence, in comparison to CAVs, AVs increase emissions.

To conclude, used KPIs for impact assessment in MTMs dif-
fer depending on the assessment criteria and study area (i.e.
intersection, link, freeway, city network). First, in mobility anal-
ysis, we noticed that most studies select flow, density, string
stability, lane capacity and throughput when conducting capac-
ity and flow analysis in freeways, highways and ring roads. Travel
time and speed are frequently selected for traffic efficiency anal-
ysis both on link level and city-wide. Second, for safety analysis,
the number of conflicts is the most used KPI in all type of study
areas, where in freeway analysis, some studies also used TTC,
TET and TIT. Finally, the studies related to emission analysis
depict that CO2 and NOX per kilometer are used KPIs for
impact assessment.

Although, this section clearly reveals the relation between the
used KPIs and the study area in different studies, a standard-
ized guideline to indicate which KPIs to be used for a specific
study area, demand scale, and other influencing factors is miss-
ing. A KPI (e.g. travel time) might be useful for traffic efficiency
analysis under different PRs of (C)AVs in a city-wide network
but for moderate and low demands, where for high demands
(congested network), this KPI might not represent the impact
of (C)AVs.

5 CONCLUSION AND RESEARCH
GAPS

Simulation-based studies are widely conducted to analyze and
predict the impacts of on traffic efficiency and safety. In MTMs,
accurate quantification of the potential impacts depends on
the true configuration of AVs and CAVs driving behaviors.
These behaviors are modelled with CF and lane-changing mod-
els. In this paper, we review and summarize the recent AVs
and CAVs simulation-based studies including their utilized CF
model, adopted parameters, the reported impacts and the used
KPIs for impact assessments. Moreover, a review of recent
data-driven CF models with their methodologies is presented.
The present review is crucial both in understanding the CF
models parameters used for AVs and CAVs modelling in sim-
ulation tools, as well as identification of the set of KPIs for
impacts analysis.

Regarding the mathematical CF models for (C)AVs mod-
elling, we found that the most frequently adopted CF models

are IDM and MIXIC and their modified versions. Wiedemann
99 and Krauss models are also utilized in MTMs for impact
assessments. For IDM, many studies adopt the parameters of
the model based on research done by [19, 44, 46]. Similarly for
MIXIC model, the parameters’ values are taken from [6, 49].
ACC and CACC models developed similar to MIXIC model
have been also utilized for ACC and CACC vehicles modelling.
Certain parameters of these models are based on assumptions
and some are gathered from test vehicles [18, 54]. For Wiede-
mann 99 model, the parameters’ values are extracted using
trajectories of test AVs within the CoEXist project. On the
other hand, in the Krauss model researchers often differentiate
the driving behaviors of human-driven vehicles, AVs, and CAVs
by headway gap, reaction time, and driving imperfection factor.
For instance, it is assumed that CAVs could drive very close to
the leading vehicle and could have perfect driving behavior.

Furthermore, there were attempts to develop data-driven
models using human-driven vehicles trajectories and assume it
for (C)AVs CF behavior, but they cannot guarantee the true
behavior of future (C)AVs. However, the methods proposed
in these studies could be potentially used for (C)AVs CF mod-
els, when field data are available. The findings of the literature
review show that reinforcement learning and deep reinforce-
ment learning algorithms, such as DDPG, RNN, GRU, LSTM,
DDPG equipped with a LSTM, and GAIL with GRU are the
most recent methods used for replicating CF behavior.

The findings of literature review reveal that large amount of
studies conduct the impact assessment of (C)AVs for safety,
mobility, and environmental effects. Most authors exploited
KPIs, such as traffic flow (e.g. traffic volume, density, through-
put etc.), average travel time, string stability, average velocity and
more to assess the mobility impacts of (C)AVs. For safety anal-
ysis, time-to-collision (TTC), post-encroachment time (PET),
and number of conflicts are the most used KPIs in the literature.
Finally, the amount of CO2, and NOX emissions per kilometers
(g/km) are used for emissions’ evaluation. One important note
is that most studies assume the same energy consumption and
emissions factors used for existing human-driven vehicles and
for (C)AVs. However, future vehicles will likely have different
consumption technology and thus quantification of emissions
is not accurate. On the other hand, several studies use various
CF models with their own assumption for models’ parameters.
This may lead to inconsistent conclusions to (C)AVs impacts.
Despite their results inconsistency, most studies revealed that
AVs and CAVs with sensing and connectivity could considerably
increase the road capacity. More optimistic views are for CAVs
in comparison to AVs due to communication capabilities of ear-
lier. A general finding of most studies depicts that higher PRs
of AVs and/or CAVs could highly change the existing transport
network both in terms of efficiency and safety. In addition, it
is reported that demand is a sensitive factor in impact assess-
ments. Increased demand scenarios leads to significant changes
in the network especially for CAVs. Some studies assume that
AVs will have more cautious behavior with larger headway gaps,
where in some other researches, an aggressive behavior of AVs
is assumed. This has resulted in opposing findings especially in
terms of number of conflicts and consequently safety.
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Although numerous attempts have been made to model the
CF behavior of (C)AVs, a considerable number of research
gaps still exist. First, the true driving behaviors of (C)AVs are
still under investigation, which leads to strong assumptions
in most studies. A model to capture the driving behavior of
(C)AVs with calibrated parameters using real data is needed.
This model could consider the sensing and communication
technologies of AVs and CAVs, respectively, to accurately mimic
their driving behaviors under various situations. The parame-
ter calibration could also be done for established CF models,
such as IDM, MIXIC, and Krauss. These models are integrated
within simulation tools and hence could widely be used for
impact assessments. Second, data-driven models could accu-
rately capture the driving behavior of (C)AVs, however, they still
need a mass field (C)AVs data for training, testing and valida-
tion. A data-driven model based on deep reinforcement learning
which could capture the spatial and temporal variation of the
driving behavior with field test data of (C)AVs is a worth pur-
suing research. In this research, different potential driving styles
of (C)AVs (cautious, normal, aggressive) under various traffic
situations could be considered. Meanwhile, it is very crucial to
integrate data-driven models into the existing widely used sim-
ulation tools in a computationally efficient method. This will
help to conduct large-scale impact assessments with more accu-
rate outputs. Third, in most studies, KPIs are assigned by the
authors for impact assessments studies, however, there should
be a differentiation by which KPIs to be used for different
study areas, demand scales and more. Hence, a study to ana-
lyze the sensitivity of each KPI in varying scenarios both in
terms of supply and demand is needed. This study could cre-
ate a standardized guideline for impact assessments studies and
could thus guide future researchers to use most reasonable KPIs
for their specific studies. Finally, in this review paper we dis-
cussed the CF behaviors of C(AVs), however, a comprehensive
review of lane-changing models of (C)AVs and studies relevant
to impact assessment of (C)AVs lane-changing polices is a highly
significant research need.
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