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Cell migration is an essential process in health and in disease, including can-

cer metastasis. A comprehensive inventory of migration factors is nonetheless

lacking—in part due to the difficulty in assessing migration using high-

throughput technologies. Hence, there are currently very few screens that sys-

tematically reveal factors controlling cell migration. Here, we introduce

MigExpress as a platform for the ‘identification of Migration control genes

by differential Expression’. MigExpress exploits the combination of in-depth

molecular profiling and the robust quantitative analysis of migration capacity

in a broad panel of samples and identifies migration-associated genes by their

differential expression in slow- versus fast-migrating cells. We applied MigEx-

press to investigate non-small cell lung cancer (NSCLC), which is the most

frequent cause of cancer mortality mainly due to metastasis. In 54 NSCLC

cell lines, we comprehensively determined mRNA and protein expression.

Correlating the transcriptome and proteome profiles with the quantified

migration properties led to the discovery and validation of FLNC, DSE,

CPA4, TUBB6, and BICC1 as migration control factors in NSCLC cells,

which were also negatively correlated with patient survival. Notably, FLNC

was the least expressed filamin in NSCLC, but the only one controlling cell

migration and correlating with patient survival and metastatic disease stage.

In our study, we present MigExpress as a new method for the systematic

analysis of migration factors and provide a comprehensive resource of tran-

scriptomic and proteomic data of NSCLC cell lines related to cell migration.
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1. Introduction

Cell migration plays a central role in a large number

of developmental and physiological processes. During

embryogenesis, cell migration is essential for gastrula-

tion or development of the nervous system [1]. During

adulthood, skin and intestinal cell layers are renewed

when fresh epithelial cells migrate up from the basal

layer and crypts, respectively [2]. Leukocytes migrate

in response to infection and inflammation [3], while

fibroblasts and vascular endothelial cells migrate to the

site of wound healing [4]. Misregulation of cell migra-

tion can lead to serious pathological conditions such

as congenital brain disorders, inflammatory and vascu-

lar diseases, and tumor metastasis [5].

Metastasis is a complex process in which cancer cells

remodel the extracellular matrix (ECM), migrate into

the vascular system, and move to distant sites where

they establish metastatic nodules. Within a cell popula-

tion, fast-migrating cancer cells are likely to be more

effective at giving rise to metastases than slower-

migrating cells [6]. Lung cancer is one tumor entity,

especially prone to metastasis and the leading cause of

cancer-related death worldwide [7]. Over 80% of lung

cancers are non-small cell lung carcinomas (NSCLCs),

which are further classified histologically into the

major subtypes lung adenocarcinoma (LUAD) and

squamous cell carcinoma [8]. More than 40% of

NSCLC patients present already at diagnosis with the

late-stage IV cancer with distant metastases [9]. Addi-

tionally, vascular metastasis is often visible already in

lower stages. Notably, fast-migrating cancer cells con-

tribute to significantly increased recurrence and

reduced survival [10]. Despite many efforts to unravel

coding and noncoding genes crucially involved in lung

cancer migration, this process remains incompletely

understood [11–14].
While it is thus important to understand the molecu-

lar mechanisms that govern cancer cell migration, the

determination of cell migration activity in higher

throughput is a challenging task. Hence, while thou-

sands of screens have been carried out for cancer cell

viability and proliferation, only a handful of screens

have identified genes controlling cell migration. For

preselected genes, migration screens have been carried

out by introducing cDNAs [15–17] or siRNAs/

shRNAs [18–23] into cancer cells. Only two broader

shRNA screens were performed to identify factors that

may affect migration in nontransformed human breast

epithelial cells and in murine fibroblasts [24,25]. In

summary, only very few studies have tackled the chal-

lenge to systematically identify genes driving cell

migration and are further limited by the number of

genes, and the number of cell lines assessed or

employed nontransformed cells.

In the present study, we present MigExpress (identi-

fication of Migration control genes by differential

Expression) as an effective approach to uncover genes

governing cell migration by simultaneously quantifying

cell migration and gene expression. Application of

MigExpress to a broad panel of NSCLC cell lines dis-

covers and functionally validates a novel set of genes

essential for lung cancer cell migration.

2. Materials and methods

2.1. Cell culture

All 54 NSCLC cell lines were cultured in RPMI med-

ium (Gibco, Paisley, Renfrewshire, UK) supplemented

with 10% FBS at 37 °C and 5% CO2 in a humidified

incubator. Cells were obtained from ATCC (Gaithers-

burg, MD, USA) and / or fingerprint, and cells were

regularly tested for mycoplasma.

2.2. Live cell staining and ORISTM cell migration

assay

Cells were incubated prior to seeding in medium

with 2.5 µM DiR (1,10-dioctadecyl-3,3,30,30-tetram-

ethylindotricarbocyanine iodide; D12731, molecular

probes). 1 million cells were incubated in 1 mL for

15 min at 37 °C followed by a washing step.

For all 54 cell lines, cell migration was investigated

using the OrisTM Cell Migration Assay TriCoated

(Platypus Technologies). Cells were stained prior to

seeding with a live dye (DiR) [26] and stained with

DAPI at the end of the experiment. Cells were seeded

on 96-well OrisTM TriCoated plates (Platypus Tech-

nologies, Cat. No. SKU: CMATR1.101). Optimal

seeding density for each cell line was determined

beforehand. Plates were incubated for 18 h at 37 °C
and 5% CO2 in a humidified incubator to allow cell

attachment before the stopper was removed. The sub-

sequent steps were performed according to the manu-

facturer’s instructions. Directly after removing the

stopper, the 0-h time point was recorded for all DiR-

stained cell lines (LI-COR, Odyssey). After 24 and

48 h, this measurement was repeated. All plates were

fixed after 48 h with 4% formaldehyde in PBS for

15 min at RT followed by DAPI staining with 300 nM

DAPI (Thermo Fisher, Waltham, MA, USA—D1306)

in PBS for 5 min. The mask was placed under the
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plate, and the stopper area was imaged using an Olym-

pus Scan^R High Content Screening Station. The area

was measured using IMAGEJ (NIH, Bethesda, MD,

USA) and compared to a cohort of control wells

determining the 0-h time point (area of possible migra-

tion). Each cell line was tested at least in biological

duplicates up to biological quintuplicates and technical

duplicates up to technical quadruplicates.

2.3. RNA isolation

RNA was extracted using either the RNeasy Mini Kit

(Qiagen, Hilden, Germany), the Direct-zolTM RNA

MiniPrep Kit (Zymo Research, Irvine, CA, USA), or

the Quick-RNATM MiniPrep Kit (Zymo Research).

Whole-cell RNA that was used for RNA-seq experi-

ments was isolated using RNeasy Mini columns

(Qiagen).

2.4. rRNA depletion and RNA-seq analysis

The method has been described in detail before

[27,28]. In brief, rRNA depletion was performed on

was performed on 5 lg RNA using the Ribo-Zero

Gold rRNA Removal Kit for human, mouse, and rat

RNA as recommended by the manufacturer (Illumina,

San Diego, CA, USA). Input RNA of 20 ng was sub-

jected to RNA-seq library preparation using the Sure

Select Strand Specific RNA Library Prep for Illumina

Multiplex Sequencing. 100-bp paired-end sequencing

was performed on a HiSeq 4000 (Illumina). Sequenc-

ing quality metrics and rRNA contamination were

determined with the EvalRSeq pipeline. Next, the

reads were subjected to adapter removal and then

uniquely mapped to the human genome GRCh38

using TopHat2 mapper allowing for up to two mis-

matches [29]. Gene expression was quantified in terms

of FPKM values with ENSEMBL version 75 using

easyRNASeq [30].

2.5. Mass spectrometry sample preparation and

analysis

Cells at 80% confluency were scraped and lysed on

ice in Tris/Urea lysis buffer (8 M Urea, 40 mM Tris/

HCl pH 7.6, 1X protease inhibitor complete mini-

EDTA-free (Hoffmann-La Roche, Basel, Switzerland;

11836170001), 19 phosphatase inhibitors 1, 2, and 3

(Sigma-Aldrich, Taufkirchen, Germany; P2850,

P5726, P0044)). The protein concentration was deter-

mined by the bicinchoninic acid assay. The sample

preparation for mass spectrometry included in-

solution tryptic digestion followed by solid-phase

extraction (SPE) peptide purification (SepPAK).

Samples were tagged with TMT10plexTM reagent

(Thermo Fisher ScientificTM) [31], fractionated into 32

fractions using trimodal mixed-mode chromatography

[32], and subjected to mass spectrometric measure-

ments using data-dependent acquisition and multi-

notch MS3 mode [33] on a Thermo ScientificTM

FusionTM LumosTM mass spectrometer (gradient

length per fraction 1 h).

Data analysis was performed using MaxQuant (ver-

sion 1.5.5.1) [34]. To normalize protein intensity distri-

butions between all cell lines, 11 quantiles from 25%

to 75% (by a step of 5%) were calculated for each cell

line, respectively. These quantiles were aligned to the

first sample based on a linear model; that is, intercept

and slope were used to transform all protein intensities

of the corresponding cell line. Next, we normalized the

quantitative proteomic data across all TMT10 plex

experiments using a common reference sample (pooled

sample of three lung cancer cell lines: A549, NCI-

H460, and PC9) that was entailed in 2 out of 10 TMT

channels in each TMT experiment. Based on the chan-

nel means of this reference, sample protein-specific cor-

rection factors were computed for each TMT10plex

experiment [35].

For the comparison of both RNA-seq and mass

spectrometry data between fast versus slow cell lines,

the fold change was calculated for each coating (un-

coated, collagen-coated, and fibronectin-coated) sepa-

rately and the average fold change was used for

candidate selection. For the determination of the sta-

tistical significance of differentially expressed genes,

the fast versus slow cell lines were compared on the

basis of their average migration capacity on the three

coating surfaces.

2.6. Pathway analysis

The pathway analysis was carried out using DAVID

analysis online tool (https://david.ncifcrf.gov) [36,37].

The selected pathways are statistically significantly

enriched with a minimum number of four genes.

2.7. siPOOL knockdown

For knockdown of the six targets using siPOOLs, cells

were reverse-transfected with 10 nM (final concentra-

tion) of nontargeting control (siNT) or siPOOL of all

targets (siTOOLs Biotech) using 6 µL LipofectamineTM

RNAiMAX (Invitrogen, Waltham, MA, USA) in

6-well plates, or 0.2 µL/well in 96-well plates. For the

scratch assays, cells were seeded at ~ 50% confluency

in collagen I precoated 96-well cell culture plates
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(IncuCyte� ImageLock, 4379) and reverse-transfected.

Cells from 6-well plates were used for RNA extraction.

siPOOL sequences are listed in Table S1.

2.8. IncuCyte� scratch assay

Scratch assays were performed using the WoundMa-

kerTM (Essen Bioscience, Ann Arbor, MI, USA) and

measured in the IncuCyte� S3 Live-Cell Analysis Sys-

tem according to the manufacturer’s instructions.

Every 1 h, pictures of each well were taken. For the

analysis of different cell lines in the correlation graph,

the analysis was performed manually. The size of the

wound was measured at three positions over each

scratched area between 0 h and up to 24 h. The

migrated area was calculated by the subtraction of the

average size of the gap (measured at the three posi-

tions) after 24 h from the average size of the gap

(measured at the three positions) at 0 h. Each cell line

was tested in biological duplicates and technical tripli-

cates/quadruplicates.

For scratch assays after siPOOL-mediated knock-

down, the plate was initially coated with collagen I rat

tail (50 µg�mL�1). Cells were reverse-transfected with

siPOOLs and plated at 50% confluency. After 24 h,

the scratch wound was made with WoundMakerTM

(Essen Bioscience) and imaged in the IncuCyte� S3

Live-Cell Analysis System every 1 h for 24 h. For

scratch assays in the presence of mitomycin C (Sigma-

Aldrich F1141), cells were reverse-transfected in med-

ium containing 10 µM MitC. After 24 h, the scratch

was made and the wells were replenished with medium

containing 7.5 µM MitC and images were recorded for

24 h at 1-h intervals. All experiments were done in

technical triplicates and biological triplicates to quintu-

plicates.

After recording the wound closure within the Incu-

Cyte� S3 Live-Cell Analysis System, knockdown

experiments were analyzed within the software. For all

tested cell lines, the following setting was used: seg-

mentation adjustment (0.7), hole fill (0.01), and adjust

size (3). After analysis, information about wound con-

fluence was exported for each well to every measured

time point.

2.9. cDNA conversion and real-time qPCR

For cDNA conversion, 2 µg of total RNA was sub-

jected to reverse transcription using Thermo Scien-

tificTM RevertAid RNA Transcriptase using random

primers. For real-time qPCR, equal amounts of cDNA

were used with Applied BiosystemsTM SYBRTM Green

PCR Master Mix and Applied BiosystemsTM

StepOnePlusTM. The sequences of all primers are pro-

vided in Table S2.

2.10. Proliferation assay

Ten thousand cells were plated in duplicates for each

condition and each time point (48 and 72 h) in 24-well

plates. After 48 and 72 h, cells were trypsinized and

resuspended in complete medium. An equal volume of

trypan blue was mixed with the cells, and the cells

were counted in a Bio-Rad TC20TM cell counter. The

initial cells plated were taken as cell count at 0 h.

2.11. circRNA analysis

Circular RNA expression had been previously ana-

lyzed in the RNA-seq dataset of the 54 cell lines

[28,38]. Differentially expressed circRNAs, both at the

gene level and at the back-splice level, between fast-

and slowly migrating cell lines were determined by cal-

culating the fold change for each coating (uncoated,

collagen-coated, and fibronectin-coated) separately,

and the average fold change in all three coatings was

used for candidate selection. Also, the statistical signif-

icance of the expression difference between fast- versus

slowly migrating cell lines was calculated separately

for each coating and the average significance value

was used for selection. For the validation, outward-

facing (divergent) primers were used for RT-qPCR.

The primers are listed in Table S2.

3. Results

3.1. Robust quantification of cell migration with

medium throughput

A panel of 54 NSCLC cell lines enriched for LUAD

was screened for their migration capacities on different

matrix surfaces (uncoated, collagen-coated, and

fibronectin-coated) using the ORISTM migration assay

to quantitatively and robustly assess the migration

capacity of each cell line. The cell lines were classified

into ‘fast’, ‘medium’, and ‘slow’ cell lines depending on

their migration properties. In parallel, the cell lines

were subjected to RNA sequencing and mass spectro-

metric analyses for transcriptomic and proteomic pro-

filing, respectively. Gene expression differences were

determined from the RNA-seq and mass spectrometry

data to identify genes that were significantly up- or

downregulated between the cells classified as fast or

slow. The overall workflow of MigExpress is summa-

rized in Fig. 1.
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As an example, representative images of slow (NCI-

H1623) versus fast (NCI-H2009) cell lines from the

ORISTM migration assay for 0, 24, and 48 h time

points show an apparent difference in their migration

capacities (Fig. 2A). In this assay, a stopper blocks cell

growth in a defined area in the middle of the well. The

migrating NCI-H2009 cells quickly closed this gap

within 24 h after removal of the stopper. In contrast,

the NCI-H1623 cells were unable to migrate into the

central zone even within 48 h. A total of 18, 10, and

26 cell lines were found to be fast, medium, and slow

on two or more of the above three matrix surfaces,

respectively (Fig. 2B; Table S3). To confirm the

robustness of the assay, we checked the variability

Differential 
transcriptome

Differential 
proteome

54 NSCLC cell lines
Cell migration analysis:
Cells are grown on three 
different surfaces
1) Uncoated
2) Collagen-coated
3) Fibronectin-coated

Molecular profiling:

RNA extraction Protein extraction

rRNA depletion

RNA sequencing

TMT     labeling

Mass spectrometry

Migration:  

Uncoated

Collagen

Fibronectin

Seed 
cells

Detect 
(Licor) 

0 h

Detect 
(Licor) 

24 h/48 h
+

End point 
fixation

Remove 
stopper

+
Wash with 

PBS

18 h 24 h/

48 h

A

B

C

ED

F

Fig. 1. Schematic workflow of the MigExpress screen. (A) A panel of different cell lines is needed for a MigExpress screen—for this

screen, 54 NSCLC cell lines were analyzed. (B) The cell migration capacity of each cell line was quantified on three different matrix surfaces

—uncoated, collagen-coated, and fibronectin-coated. (C) Molecular profiling of 54 NSCLC cell lines. (D) ORISTM assay. The cells were stained

with DiR and seeded into a 96-well plate with a stopper placed at the center. After 18 h, the stopper was removed and the cells were

washed with PBS and detected as time point 0 h. After 24 and 48 h, the cells were washed and imaged by LI-CORTM. (E) The molecular

profiling comprised RNA sequencing of rRNA-depleted total RNA and mass spectrometry of TMT-labeled proteins from whole-cell lysates.

(F) Cells were classified on the basis of their migration capacity into fast, medium, and slow cells. Differential gene expression and

differential protein regulation were identified from RNA-seq and mass spectrometry data between fast versus slow cell lines identified from

the migration screen.
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among replicates by calculating the SEM for each cell

line. The average SEM was < 5 for ORIS assays (using

a scale from 0 to 100) on all three matrix surfaces

(Fig. S1A).

Next, we further validated the platform for the

quantitative analysis of cell migration. Cell

proliferation is considered as a potentially confounding

factor for the analysis of cell migration as cells prolif-

erating faster could also enter uncovered areas faster.

Hence, we also determined the proliferation rate of all

54 cell lines in terms of their cell doublings within

72 h. A correlation analysis of the proliferation rate
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Fig. 2. Quantification of migration capacity and validation. (A) Representative images of slow (NCI-H1623) versus fast (NCI-H2009) cell lines

from ORISTM assay. (B) Classification of 54 NSCLC cell lines by their migration capacity. Each row represents ORISTM assay results on the

respective matrix surfaces. Each column represents one cell line. Orange, blue, and green colors represent slow-, medium-, and fast-

migrating cells, respectively. White color represents experiment for which data were not available due to the inability of the cells to attach

within 18 h on uncoated and fibronectin-coated wells. Values of > 60%, > 75%, and > 60% for uncoated, collagen-coated, and fibronectin-

coated matrix, respectively, were used for defining fast cells. Values of < 25% defined slow cells. (C) Representative images of slow (NCI-H

1623) versus fast (NCI-H2009) cell lines from IncuCyte� scratch assay for validation. The scale bar (red) indicates 500 µm. (D) Positive

correlation between migration quantified by scratch assay versus by ORISTM assay for 20 cell lines. (E-G) Comparison of the percentage

migration of each line on different matrix surfaces measured at 48 h. R represents Pearson’s correlation coefficient.
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and the migration capacity verified that there was no

relevant correlation of cell proliferation with cell

migration (R = �0.10; Fig. S1B). Hence, differences in

proliferation rates did not affect the outcome of the

migration quantitation.

To validate the ORISTM assay results with an inde-

pendent method, the migration capacity was validated

using the IncuCyte� scratch wound assay for a subset

of 20 lung cancer cell lines. The results showed a

highly significant correlation between the migration

capacities determined by the two techniques with a

correlation coefficient of R = 0.92 (Fig. 2C,D;

Fig. S1C). In coherence with the ORISTM assay, com-

plete wound closure was observed for NCI-H2009 cells

in 24 h, while closure was negligible for the NCI-

H1623 cells even after 48 h (Fig. 2C).

Lastly, a high correlation (R = 0.94–0.97) was

observed between the migration capacities of the

NSCLC cells determined on different matrix surfaces

(Fig. 2E-G).

In summary, these data validate the ORISTM as a

robust platform to quantify cell migration for a broad

panel of cell lines consistent with scratch assays and

independent of cell proliferation.

3.2. Combining migration quantification with

high-throughput molecular profiling to identify

genes essential for NSCLC cell migration

For transcriptome profiling, we performed strand-

specific RNA sequencing in replicates after depletion

of ribosomal RNA to cover all types of RNA includ-

ing nonpolyadenylated transcripts. The expression of

58 096 genes was quantified in the 54 cell lines

(Fig. 3A, Table S4). To focus the analysis on robustly

expressed genes, we selected 13065 genes, which were

detected at a cutoff of minimum expression of

FPKM ≥ 1. Of these, 110 genes had a fold change dif-

ference of more than threefold between fast versus

slow cell lines. Finally, 84 of these genes reached statis-

tical significance including eight noncoding RNAs and

one pseudogene (Fig. 3A-C, Table S5). To validate the

differential expression patterns, we performed RT-

qPCR for 41 out of 84 genes, which had been selected

for the strength of their regulation and the literature

about their known functions, in a subpanel of eight

fast versus eight slow cell lines. Notably, 38 out of 41

genes showed similar regulation in both RNA-seq and

RT-qPCR data with 25 of them reaching statistical sig-

nificance, underlining the reproducibility of the

approach (Fig. 3D, Fig. S2A-C, Table S6). Genes that

are well-known promoters (VIM and LOXL2 [39,40])

or suppressors (CDH1 [41]) of NSCLC migration were

also found to be up- or downregulated in fast com-

pared with slow cells, respectively, further validating

the MigExpress approach (Fig. S2D-F).

Overall in the proteomic profiling of the 54 cell

lines, a total of 9304 proteins were detected by mass

spectrometry. Out of these, 8174 proteins fulfilled the

criterion for a minimum of expression with a detect-

able signal in at least 50% of the cell lines (Table S7).

Further selection based on a minimum fold change of

twofold and P-value < 0.05 between fast versus slow

cell lines revealed 90 differentially expressed candidates

based on proteomics (Fig. 3E-F, Table S8).

Furthermore, we compared the regulation at the

RNA and the protein level for 525 genes (with

P < 0.05 for the RNA-seq and mass spectrometry

datasets and with minimum expression of FPKM ≥ 1

for RNA-seq data and proteins detected in ≥ 50% cell

lines for mass spectrometry data) and found a very

high correlation (R = 0.86) for the fold change

between fast versus slow cell lines between the tran-

script and the protein level (Fig. 3G).

When the independent candidate lists of 84 hits from

transcriptomics and 90 hits from proteomics were com-

pared, 34 genes were detected by RNA-seq but not by

mass spectrometry. For the remaining 50 hits from

RNA-seq, 19 genes (38%) displayed an overlap with

the proteomic hits with 14 upregulated and five down-

regulated genes (Fig. 3H). Importantly, no overlaps

were found for opposing directions of regulation

between transcriptomics and proteomics. When the 43

proteins upregulated and the 28 proteins downregu-

lated were analyzed manually at the RNA level without

any filters, all 71 transcripts were regulated also con-

cordantly in the same direction and none in the oppo-

site direction, but then 14 were filtered out due to low

expression at the RNA level and 57 did not reach

threefold regulation. Gene Ontology (GO) pathway

analysis of the upregulated genes merged from both

candidate lists unraveled a significant enrichment of

terms linked to migratory processes such as ECM orga-

nization, cell adhesion, or cell migration (Fig. S3A),

while the 76 downregulated genes showed significant

enrichment of specific metabolic processes (Fig. S3B).

In summary, MigExpress identified candidates

linked to cell migration by combining differential

migratory capacities of the broad panel of cell lines to

their transcriptomic and proteomic profiles.

3.3. Candidates selected from MigExpress

correlate with NSCLC patient survival

For the further characterization and validation of the

hits obtained from our MigExpress screen in NSCLC,
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we selected six candidates upregulated in fast cells

compared with slow cells: CDH2 (N-Cadherin) [42],

which had already previously been prominently linked

to cell migration served as positive control and was

significantly upregulated in fast cells in the RNA-seq

and the mass spectrometry analysis. Among the genes

not previously linked to cell migration according to

GO, the following five candidates were selected for

further validation: CPA4 (carboxypeptidase 4 [43,44]),

FLNC (filamin C [45,46]), and TUBB6 (tubulin beta 6

[47]) as candidates with high fold change between fast

versus slow cell lines in transcriptomic and proteomic

data. Dermatan sulfate epimerase (DSE [48,49]) had

the second highest fold change difference from RNA-

seq data (after CPA4) and was not detected by mass

spectrometry. BICC1 (bicaudal C homolog 1 [50,51])

was highly expressed in a subset of fast cell lines that

represented LUAD. For all selected genes, we

observed no significant correlation with the prolifera-

tion capacity of cells.

All six selected genes were upregulated in the fast

compared with the slow cell lines in our RNA-seq,

RT-qPCR, and mass spectrometry data (Fig. 4A-F).

From The Cancer Genome Atlas (TCGA), we

extracted expression and survival data for 994 NSCLC

patients [52,53]. Strikingly, the expression of all six

selected genes was negatively correlated with the over-

all survival in this large NSCLC patient cohort with

moderate hazard ratios but all reaching statistical sig-

nificance. NSCLC patients with high expression of the

individual genes showed significantly poorer survival

compared with those expressing lower levels of the

respective gene (Fig. 4G-L).

3.4. Knockdown of candidate genes validates

their importance in NSCLC cell migration

Knockdown of the six selected genes with specific

siPOOLs, complex mixtures of 30 siRNAs to minimize

potential off-target effects [54], led to effective silenc-

ing of these genes (Fig. 5A). Time-resolved IncuCyte�

migration assays uncovered a significant impact of

each of the knockdown of the selected genes with a

significant decrease in the cell migration of NCI-

H1792 cells (Fig. 5B-G). To further verify that this

effect was independent of a specific cellular back-

ground, we repeated these experiments in four addi-

tional LUAD cell lines (NCI-H2009, NCI-H1666,

HCC-827, and NCI-H838). In all cases, we found

effective knockdown of the target genes by siPOOLs

(Fig. S4A,5A,6A,7A). For three of the selected hits,

we generally observed significantly decreased cell

migration upon their knockdown in all five cell lines,

for two hits (incl. CDH2) in four cell lines and for one

hit in three cell lines (Fig. 5B-G and S4-7, Table S9).

To again exclude that cell proliferation might bias

the obtained results for migration, two control experi-

ments were performed. First, the proliferation rate of

NCI-H1792 and NCI-H2009 cells was determined after

knockdown of the selected genes. Gene knockdown

did not cause any significant difference in proliferation

within 48 h—the maximum transfection and migration

period of the ORISTM assays, while the IncuCyte�

assays lasted only for 42 h. After 72 h, no differences

were observed in NCI-H2009 cells and only marginally

decreased proliferation for BICC1 in NCI-H1792

(Figs S8A-B and S9A,B). Second, cell migration assays

Fig. 3. Transcriptomic and proteomic profiling of NSCLC cell lines. (A) Pipeline for the identification of candidate genes from RNA-seq data.

The analysis identified 84 candidate genes based on expression, regulation, and significance. (B) Volcano plot for 13065 genes that have a

minimum expression of FPKM ≥ 1. The red dots represent significantly upregulated genes (fold change ≥ 3, P < 0.05), and the green dots

represent significantly downregulated genes (fold change ≤ 0.333, P < 0.05). Selected candidates are indicated with larger circles. (C) Heat

map of 84 candidate genes. Each row represents a gene, and each column represents a cell line. The first 18 columns are the fast-

migrating (green), the next 10 columns are the medium-migrating (blue), and the last 26 cell lines are the slow-migrating (orange) cell lines.

In the heat map, yellow color indicates high, while blue color indicates low expression. (D) RT-qPCR validation of selected upregulated

candidates in eight fast versus eight slow cell lines. Boxplots: central line = median / box = 25% and 75% quartiles / whiskers = min and

max. Statistical test: t-test with Welch’s correction, P-values: *P < 0.05, **P < 0.01, ***P < 0.001. (E) Pipeline for the identification of

candidate genes from mass spectrometry data. The analysis identified 90 candidate genes based on expression, regulation, and

significance. (F) Volcano plot for 8174 genes that have minimum expression with peptide detection in ≥ 50% of cell lines. The red dots

represent significantly upregulated genes (fold change ≥ 2, P < 0.05), and the green dots represent significantly downregulated genes (fold

change ≤ 0.5, P < 0.05). Selected candidates are indicated with larger circles. (G) Correlation between RNA-seq and mass spectrometric

data for the fold change in differentially expressed genes between fast versus slow cells (n = 525; genes with significant P-value < 0.05

from both datasets, FPKM ≥ 1 in RNA-seq data / detected in ≥ 50% cell lines in mass spec). R represents Pearson’s correlation coefficient.

(H) Overlap between upregulated (red) and downregulated (green) candidates identified from RNA-seq versus mass spectrometry data. The

numbers in the gray circles represent genes that were regulated at the RNA level but not detected at the protein level. No overlap was

observed in opposing directions of regulation among the candidate lists.
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Fig. 4. Gene expression and survival analyses of six candidate genes. (A-F) Gene expression between fast versus slow cell lines from RNA-

seq (n = 54), RT-qPCR (n = 16), and proteomic data (n = 54) for (A) CDH2, (B) DSE, (C) CPA4, (D) FLNC, (E) TUBB6, and (F) BICC1. DSE

was not detected at the protein level. All six candidates exhibit upregulation in fast versus slow cells. Statistical test: t-test with Welch’s

correction, P-values: *P < 0.05, **P < 0.01, ***P < 0.001. (G-L) Kaplan–Meier survival plot of NSCLC patients (n = 994) with high versus

low levels of the candidate genes—(G) CDH2, (H) DSE, (I) CPA4, (J) FLNC, (K) TUBB6, and (L) BICC1. Log-rank test P-values: *P < 0.05,

**P < 0.01, ***P < 0.001. HR, hazard ratio.
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Fig. 5. Effect of candidate gene knockdown on NCI-H1792 cell migration. (A) Knockdown verification by real-time qPCR (n = 3). Expression

in cells treated with the nontargeting (NT) siPOOL was normalized to 100%. All genes show effective knockdown by siPOOLs. Statistical

test: t-test with Welch’s correction, P-values: **P < 0.01, ***P < 0.001. (B-G) Scratch assay results for knockdown of candidate genes

(n = 4)—(B) CDH2, (C) DSE, (D) CPA4, (E) FLNC, (F) TUBB6, and (G) BICC1. NT1 and NT2 denote technical replicates of siNT (nontargeting

siRNA). Mean and SEM are shown. F-test followed by t-test was done for each time point, P-values: *P < 0.05, **P < 0.01, ***P < 0.001.

A significant reduction in migration was observed upon knockdown of all six candidate genes.
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Fig. 6. Filamin C (FLNC) is an important mediator of NSCLC cell migration. (A) Gene expression (RNA-seq) of FLNA (yellow), FLNB (blue),

and FLNC (pink) in primary human NSCLC samples (n = 994, TCGA). (B) Percentage of TCGA cancer types for which FLNA, FLNB, and

FLNC expression, respectively, was associated significantly with poor prognosis. (C) Box plot depicting FLNC expression in different NSCLC

stages (I to IV, n = 994, TCGA). Statistical test: one-way ANOVA followed by Dunnett’s test. P-value for test of trend: **P < 0.01. (D-E)

Knockdown (RT-qPCR) of FLNA, FLNB, and FLNC and subsequent migration assay in NCI-H2009 cells (D) and NCI-H1792 cells (E). All

experiments were performed in biological triplicates. Expression in cells treated with the nontargeting (NT) siPOOL was normalized to

100%. Mean and SEM are shown. For RT-qPCR data, t-test with Welch’s correction was done, P-values: *P < 0.05, **P < 0.01,

***P < 0.001. For scratch assay, f-test and t-test were done for each time point, P-values: *P < 0.05, **P < 0.01, ***P < 0.001. Only

knockdown of FLNC led to a significant reduction in migration of both cell lines.
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were performed in the presence of cell cycle inhibitor

mitomycin C (MitC) to uncouple effects on cell migra-

tion from potential effects on cell proliferation. In the

presence of mitomycin C, knockdown of individual

genes continued to significantly reduce cell migration

in NCI-H1792 cells (Fig. S8C-H). In NCI-H2009 cells,

also all six gene knockdowns decreased cell migration

reaching statistical significance for CPA4, FLNC, and

DSE (Fig. S9C-H).

Taken together, the effective knockdown of all six

candidate genes—including five hits not previously

linked to lung cancer cell migration—uncovered their

significant impact on lung cancer cell migration in

multiple cell lines and independent of cell prolifera-

tion.

3.5. Filamin family member FLNC specifically

regulates NSCLC migration

Knockdown of FLNC led to reduced migration in all

five cell lines without an effect on proliferation. We

further investigated FLNC because it showed the high-

est difference in survival between high- versus low-

expressing NSCLC patients (Fig. 4J, HR = 1.6).

FLNC is a member of the filamin family comprising

the closely related members FLNA, FLNB, and FLNC.

In NSCLC patients (TCGA), the overall expression of

FLNC was found lower compared with the higher

expressed FLNA and FLNB (Fig. 6A). However, a

pan-cancer analysis for the survival association in dif-

ferent tumor entities revealed that FLNC expression

was associated with poor prognosis in 16 different

types of cancers including NSCLC (Figs 6B and 4J).

In contrast, the more highly expressed family members

FLNA and FLNB were far less frequently associated

with a poor prognosis (Fig. 6B) and had no significant

prognostic value in NSCLC patients (Fig. S10A,B).

Notably, FLNC expression was significantly increased

in stage IV of NSCLC compared with earlier stages,

so the FLNC enrichment to the metastatic stage fur-

ther linked it to cell migration (Fig. 6C). Again,

FLNA and FLNB did not show any stage-specific pat-

terns (Fig. S10C,D).

To finally assess the impact of the three filamin fam-

ily members on cell migration, we effectively and

specifically knocked them down in two different cell

lines (Fig. 6D,E). While FLNC knockdown signifi-

cantly inhibited cell migration, the knockdown of the

two other family members had no significant effect on

cell migration (Fig. 6D,E).

Altogether, our data show that the least expressed

filamin, FLNC, has the strongest association with

patient survival, is enriched in the metastatic stage IV

of NSCLC, and is the only family member to signifi-

cantly affect lung cancer cell migration.

3.6. Differentially expressed circular RNAs in cell

migration

The RNA-seq dataset also enabled the analysis of cir-

cular RNAs (circRNAs) based on the analysis of

back-splicing reads [28,38]. When applying similar fil-

ters for minimum expression (detection in >= 50% of

the cell lines), regulation (at least threefold), and statis-

tical significance (P < 0.05), we identified at the gene

level (Table S10) 28 genes generating differentially

expressed circRNAs between fast and slow cell lines

(Fig. S11A,B, Table S11). At the level of individual

circRNAs defined by a specific back-splice site

(Table S12), we found 33 circRNAs to be differentially

expressed between fast and slow cell lines (Fig. S11C,

D, Table S13). We selected three circRNAs for valida-

tion of their regulation by RT-qPCR using divergent

outward-facing primers and verified the upregulation

of circADAMTS6 (exon 2; exon 7) and circAXL (exon

13; exon 14) and the downregulation of circTC2N

(exon 4; exon 8) in fast compared with slow cell lines

(Fig. S11E,G).

4. Discussion

Cell migration is a fundamentally important process in

health and disease. Therefore, the systematic evaluation

of cell migration and identification of genes controlling

this process in a high-throughput fashion is required,

but has so far been a difficult task. In our study, we

designed and implemented an effective method called

MigExpress to successfully tackle this challenge.

MigExpress (identification of Migration control genes

by differential Expression) combines two quantitative

analyses: cell migration and molecular profiling. The

cell migration analysis is performed in parallel for a

large number of cell lines using the robust and quanti-

tative ORISTM assay. The cell lines can also be grown

on different matrix surfaces to monitor their migratory

behavior based on extracellular signaling and attach-

ment. The molecular profiling is performed by subject-

ing the same panel of cell lines to transcriptomics (e.g.,

strand-specific RNA sequencing after ribosomal RNA

depletion) and / or proteomics (e.g., mass spectrome-

try). Genes differentially expressed between fast and

slowly migrating cell lines can then be identified as can-

didate genes controlling cell migration and can then be

individually scrutinized for validation.

Metastasis is the leading cause of death in most can-

cers, and it occurs when cancer cells migrate from the
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primary site and form new tumor nodules at a sec-

ondary site [55]. Yet, our understanding of the biology

of metastasis and the underlying cancer cell migration

is far from complete. Lung cancer is one of the most

metastatic tumor types and the leading cause of

cancer-related deaths worldwide [7]. Indeed, cell migra-

tion is an integral part of NSCLC progression [56–58].
Therefore, we applied MigExpress on a panel of 54

non-small cell lung carcinoma (NSCLC) cell lines since

NSCLCs represent the most common type of lung can-

cer [8]. We performed the phenotypic quantification

using the ORISTM assay on three different matrix sur-

faces to classify the 54 NSCLC cell lines into 18 fast-,

10 medium-, and 26 slow-migrating lines.

The established standard assays for analyzing cell

migration are the scratch / wound-healing assay or the

Boyden chamber assay. However, both methods come

with limitations—the scratch assay has limited repro-

ducibility due to the difficulties in producing even

scratches and the Boyden chamber assay is time-

consuming and cannot be used for high-throughput

studies [59]. We find that assaying migration using

ORISTM in a high-throughput manner yields robust,

reproducible, and quantitative results. Importantly, the

results correlate very well with the standard scratch

assay.

Regarding the surface coating, we observe that the

migration capacities of the NSCLC cell lines are lar-

gely independent of the matrix surface, which suggests

that cancer cells have inherent molecular properties

that render them more migratory, which may not be

influenced by ECM signaling. For example, a p53

mutation increases the migration capacity of cells by

regulating Rho GTPase family proteins [60,61].

For the molecular profiling, we evaluated the expres-

sion levels of 58 096 transcripts, 148 811 circRNAs,

and 9304 proteins using replicates of RNA-seq and

mass spectrometry, respectively, in all 54 cell lines. The

observed expression levels between transcriptomics and

proteomics correlated very well, while the overlap in

candidate hits was lower due to the stringent expres-

sion cutoff in both analyses. Thereby, we identified

genes differentially regulated between fast- and slowly

migrating cells. This reflects two important advantages

of MigExpress: (a) It covers the entire transcriptome

and / or proteome allowing the identification of a

broad spectrum of genes at the RNA (both protein-

coding and noncoding) and protein levels, and (b) it

employs a large number of cell lines allowing the iden-

tification of generally or broadly relevant factors not

restricted to single-cell lines. Indeed, this comprehen-

siveness is unique among the previously described

screens, which were either restricted by a small number

of cell lines and / or the limited number of genes quer-

ied [15–25]. Vice versa, the stringent selection criteria

applied here should minimize the occurrence of false

positives, but increase the likelihood of false negatives

such that also important migration factors will be

missed by MigExpress.

The statistical analysis identified 84 and 90 differen-

tially regulated candidate molecules between fast- and

slow-migrating NSCLC cell lines at the RNA and pro-

tein level, respectively. Hence, transcriptomics and pro-

teomics identified comparable numbers of candidates,

although the transcriptomic analysis quantified a larger

number of genes due to its higher sensitivity but many

of these were lowly expressed and hence filtered out in

our stringent analysis. GO analysis of the genes upreg-

ulated in fast cell lines revealed the significant enrich-

ment of several terms such as ECM organization,

signal transduction, cell migration, and cell adhesion

[62–64]. Thus, this analysis validates the MigExpress

approach as it significantly enriches genes already

implicated to cell migration and thereby reproduces

numerous prior studies.

Beyond this state of the art, MigExpress importantly

also identifies genes not previously linked to cell

migration. To further validate these novel players in

lung cancer cell migration, we selected five candidates

—DSE, CPA4, FLNC, TUBB6, and BICC1—and the

positive control CDH2, which were upregulated in fast

cells and also associated with poor overall survival in

NSCLC patients. Indeed, all of these genes possess

strong pro-migratory properties. The siPOOL-

mediated knockdown of these genes in five different

NSCLC cell lines reduced the cell migration capacities

to varying degrees. Notably, this effect was indepen-

dent of cell proliferation, which was not significantly

affected by the knockdown, nor did mitomycin C

treatment affect the observed migration phenotypes.

Filamin C (FLNC) is one migration factor from our

MigExpress study with a striking impact. To further

evaluate the specificity of our findings, we carefully

looked at the filamins—a family of actin-binding pro-

teins that enhance the stability of the cytoskeleton and

are involved in mechanotransduction, cell adhesion,

and migration [65]. They comprise three closely related

members—FLNA, FLNB, and FLNC with ~ 70%

homology between their protein sequences [66].

MigExpress identifies FLNC, but not FLNA and

FLNB, among the top candidate genes. While FLNA

and FLNB are highly expressed in all tissues, FLNC is

specifically expressed in lung and muscle tissues

(Human Protein Atlas). Multiple studies report a role

for FLNA and FLNB in cancer cell migration, but the

role of FLNC remains largely unexplored [67–72].
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Here, we observe that FLNC is the least expressed fil-

amin family member in NSCLC, but strikingly it also

is the only family member significantly affecting

NSCLC cell migration, significantly associating with

poor prognosis in NSCLC patients and showing

increased expression in metastatic stage IV of NSCLC.

In line with our findings, FLNC has been proposed to

be associated with poor prognosis in glioblastoma,

esophageal squamous cell carcinoma, and prostate

cancer [73,74]. In summary, our study suggests that

the MigExpress candidate FLNC, rather than FLNA

or FLNB, is a relevant factor in NSCLC migration,

metastasis, and survival.

As a future outlook, similar approaches combining

the molecular profiling and functional screening of lar-

ger sets of cell lines can also be used to discover new

factors governing other cellular properties such as pro-

liferation, apoptosis, or drug response or the impact of

molecular aberrations such as canonical or noncanoni-

cal mutations on the expression of cancer genes [75–
77].

5. Conclusions

In summary, we developed, applied, and validated

MigExpress as a method to systematically identify

genes impacting the highly relevant process of cell

migration by combining quantitative molecular profil-

ing with robust quantification of cell migration in a

broad panel of cell lines. As a proof of principle, we

successfully discovered and validated multiple genes

essential in lung cancer cell migration. Future studies

will need to unravel whether these factors differentially

expressed and regulating migration in cell culture cor-

relate with the metastatic potential in vivo. As a com-

prehensive resource, we provide a deep transcriptomic

and proteomic profile of a NSCLC cell line panel and

a quantitative assessment of their proliferation and

migration properties. For the future, MigExpress can

be broadly employed to uncover migration control

genes across all fields of life science research.
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Supporting information

Additional Supporting Information may be found

online in the Supporting Information section at the end

of the article.
Fig. S1. Migration assay validation. A. Standard error

of mean (SEM) plotted for replicate experiments of

each cell line grown on three different coated matrices.

The mean is represented by red solid line. The red

dashed line represents SEM of 5. B. Lack of correla-

tion between proliferation of the 54 NSCLC cell lines

at 72 h and the percentage migration from ORISTM

assay (uncoated). R represents Pearson’s correlation

coefficient. C. Representative images of 18 further fast

and slow cell lines used for validation in the IncuCyte�

scratch assay at 0 h, 24 h and 48 h.

Fig. S2. Gene expression validation in fast versus slow

NSCLC cell lines. A-C. Genes downregulated in fast

cell lines compared to slow cell lines from RNA-seq

(n = 54) and RT-qPCR (n = 16) data – A. CEACAM6,

B. PRR15L, C. AGR2. D-F. Genes previously reported

as regulators of NSCLC cell migration – D. VIM, E.

LOXL2, F. CDH1. Statistical test: t-test with Welch’s

correction, P-values: *P < 0.05, **P < 0.01,

***P < 0.001.

Fig. S3. Gene Ontology (GO) analysis for pathway

enrichment of candidate genes. A. GO analysis of

upregulated genes from RNA-seq and mass spectrome-

try data (n = 98). B. GO analysis of downregulated

genes from RNA-seq and mass spectrometry data

(n = 76). All pathways selected are statistically signifi-

cant (P-value < 0.05) and have a minimum of four

genes enriched in the pathway.

Fig. S4. Effect of knockdown of candidate genes on

NCI-H2009 cell migration. A. Knockdown verification

by real-time qPCR (n = 3). Expression in cells treated

with the nontargeting (NT) siPOOL was normalized to

100%. All genes show efficient knockdown. –Statistical
test: t-test with Welch’s correction, P-values:

*P < 0.05, **P < 0.01, ***P < 0.001. B-G. Scratch

assay results for knockdown of candidate genes

(n = 4) - B. CDH2, C. DSE, D. CPA4, E. FLNC, F.

TUBB6, G. BICC1. NT1 and NT2 denote technical

replicates of siNT (nontargeting siRNA). Mean and

SEM are shown. F-test followed by t-test was done for

each time-point, P-values: *P < 0.05, **P < 0.01,

***P < 0.001. A significant reduction in migration

capacity was observed upon knockdown of the candi-

date genes except TUBB6.

Fig. S5. Effect of knockdown of candidate genes on

NCI-H1666 cell migration. A. Knockdown verification

by real-time qPCR (n = 3). Expression in cells treated

with the nontargeting (NT) siPOOL was normalized to

100%. All genes show efficient knockdown. Statistical

test: t-test with Welch’s correction, P-values:

*P < 0.05, **P < 0.01, ***P < 0.001. CDH2 shows

efficient knockdown but is not statistically significant.

B-G. Scratch assay results for knockdown of candidate

genes (n = 4) - B. CDH2, C. DSE, D. CPA4, E.

FLNC, F. TUBB6, G. BICC1. NT1 and NT2 denote

technical replicates of siNT (non-targeting siRNA).

Mean and SEM are shown. F-test followed by t-test

was done for each time-point, P-values: *P < 0.05,

**P < 0.01, ***P < 0.001. A significant reduction in

migration capacity was observed upon knockdown of

all six candidate genes.

Fig. S6. Effect of knockdown of candidate genes on

HCC-827 cell migration. A. Knockdown verification

by real-time qPCR (n = 3). Expression in cells treated

with the non-targeting (NT) siPOOL was normalized

to 100%. All genes show efficient knockdown. Statisti-

cal test: t-test with Welch’s correction, P-values:

*P < 0.05, **P < 0.01, ***P < 0.001. CDH2 knock-

down was not statistically significant. B-G. Scratch

assay results for knockdown of candidate genes

(n = 5) - B. CDH2, C. DSE, D. CPA4, E. FLNC, F.

TUBB6, G. BICC1. NT1 and NT2 denote technical

replicates of siNT (non-targeting siRNA). Mean and

SEM are shown. F-test followed by t-test was done for

each time-point, P-values: *P < 0.05, **P < 0.01,

***P < 0.001. A significant reduction in migration

capacity was observed upon knockdown of the candi-

date genes - DSE, FLNC and BICC1.

Fig. S7. Effect of knockdown of candidate genes on

NCI-H838 cell migration. A. Knockdown verification

by real-time qPCR (n = 3). Expression in cells treated

with the non-targeting (NT) siPOOL was normalized

to 100%. All genes show efficient knockdown. Statisti-

cal test: t-test with Welch’s correction, P-values:

*P < 0.05, **P < 0.01, ***P < 0.001. B-G. Scratch

assay results for knockdown of candidate genes

(n = 3) - B. CDH2, C. DSE, D. CPA4, E. FLNC, F.

TUBB6, G. BICC1. NT1 and NT2 denote technical

replicates of siNT (non-targeting siRNA). Mean and

SEM are shown. F-test followed by t-test was done for

each time-point, P-values: *P < 0.05, **P < 0.01,

***P < 0.001. A significant reduction in migration

capacity was observed upon knockdown of the candi-

date genes except CDH2 and CPA4.

Fig. S8. Effect of knockdown of candidate genes on

NCI-H1792 cell proliferation and migration. A-B. Cell

proliferation assessed with trypan blue counting at

0 h, 48 h and 72 h after siPOOL-mediated knockdown

of the six candidate genes (n = 3). F-test followed by t-
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test was done for each time-point, P-values: *P < 0.05,

**P < 0.01, ***P < 0.001. Knockdown of all genes

show no effect on proliferation for all time points,

except for a minimal decrease for siBICC1 condition

at 72 h. C-H. IncuCyte� cell migration assay with

siPOOL-mediated knockdown of candidate genes in

the presence of Mitomycin C (7.5–10 µM) for - C.

CDH2, D. DSE, E. CPA4, F. FLNC, G. TUBB6 and

H. BICC1. NT1 and NT2 denote technical replicates

of siNT (non-targeting siRNA). Mean and SEM are

shown. F-test followed by t-test was done for each

time-point, P-values: *P < 0.05, **P < 0.01,

***P < 0.001. A significant reduction in migration

capacity was observed upon knockdown of all six can-

didate genes.

Fig. S9. Effect of knockdown of candidate genes on

NCI-H2009 cell proliferation and migration. A-B. Cell

proliferation assessed with trypan blue counting at

0 h, 48 h and 72 h after siPOOL-mediated knockdown

of the six candidate genes (n = 3). F-test followed by

t-test was done for each time-point, P-values:

*P < 0.05, **P < 0.01, ***P < 0.001. Knockdown of

all genes show no effect on proliferation for all time

points. C-H. IncuCyte� cell migration assay with

siPOOL-mediated knockdown of candidate genes in

the presence of Mitomycin C (7.5–10 µM) for - C.

CDH2, D. DSE, E. CPA4, F. FLNC, G. TUBB6 and

H. BICC1. NT1 and NT2 denote technical replicates

of siNT (non-targeting siRNA). Mean and SEM are

shown. F-test followed by t-test was done for each

time-point, P-values: *P < 0.05, **P < 0.01,

***P < 0.001. A significant reduction in migration

capacity was observed upon knockdown of DSE,

CPA4 or FLNC, while a non-significant trend to

reduction was noted for the other candidates.

Fig. S10. Survival and staging analyses of FLNA and

FLNB expression in patient samples. A. Kaplan-Meier

survival plot of TCGA NSCLC patient samples with

FLNA high versus low expression. Log rank-test P-

value is not significant. B. Kaplan-Meier survival plot

of TCGA NSCLC patient samples with FLNB high

versus low expression. Log rank-test P-value is not sig-

nificant. C. Expression of FLNA in different stages of

NSCLC patient samples from TCGA. D. Expression

of FLNB in different stages of NSCLC patient samples

from TCGA. Statistical test: One-way ANOVA fol-

lowed by Dunnett’s test not significant. P-value for

test-of-trend is not significant.

Fig. S11. circRNA profiling of NSCLC cell lines. A.

Pipeline for the identification of genes with differential

circRNA expression (gene level analysis) from RNA-

seq data. The analysis identified 28 candidate cir-

cRNAs based on expression, regulation and

significance at the gene level. B. Volcano plot for 4072

genes that have a minimum expression of circRNAs

detected in ≥ 50% of cell lines. The red dots represent

genes with significantly upregulated circRNAs (fold

change ≥ 3, P < 0.05) and the green dots represent

genes with significantly downregulated circRNAs (fold

change ≤ 0.333, P < 0.05). Candidates selected for val-

idation are indicated with larger circles. C. Pipeline for

the identification of differentially expressed circRNAs

(back-splice level analysis) from RNA-seq data. The

analysis identified 33 individual differentially expressed

circRNAs based on expression, regulation and signifi-

cance. D. Volcano plot for 5050 circRNAs that have

been detected in ≥ 50% of cell lines. The red dots rep-

resent significantly upregulated circRNAs (fold change

≥ 3, P < 0.05) and the green dots represent signifi-

cantly downregulated circRNAs (fold change ≤ 0.333,

P < 0.05). Candidates selected for validation are indi-

cated with larger circles. E-G. RT-qPCR validation of

selected circRNA candidates at the back-splice level in

eight fast versus eight slow cell lines. The RNA-seq

level expression is also provided for the same cell lines.

Statistical test: t-test with Welch’s correction, P-values:

*P < 0.05, **P < 0.01, ***P < 0.001.

Table S1. siPOOLs. Sense and antisense sequences of

30 siRNAs used against each gene - CDH2, DSE,

CPA4, FLNC, TUBB6, BICC1, FLNA and FLNB.

Table S2. Primers. Forward and reverse primer

sequences for all genes tested by real time-qPCR.

Table S3. Summary of ORISTM assay for 54 NSCLC

cell lines. Values for the assay were calculated for each

cell line grown on each matrix surfaces. The table con-

tains average values from all biological replicates.

Orange, blue and green represents slow, medium and

fast cell lines.

Table S4. RNA-seq data of 54 NSCLC cell lines.

RNA-seq (log2FPKM) expression data for 58096 genes

for 54 NSCLC cell lines. Fold change values, signifi-

cance and correlations with different coatings and pro-

liferation for each gene are also provided.

Table S5. Candidate genes from RNA-seq data regu-

lated between fast and slow cell lines. List of 84 candi-

date genes obtained from RNA-seq data through the

filtration criteria described (Figure 3A). Log2FPKM

values provided for 18 fast and 26 slow cell lines.

Table S6. RT-qPCR validation of RNA-seq data.

Total of 41 genes were tested in 8 fast and 8 slow cell

lines by RT-qPCR. F-test followed by t-test was done

for fast versus slow cell lines. All genes are signifi-

cantly differentially regulated in the RNA-seq data.

Table S7. Mass spectrometry data of 54 NSCLC cell

lines. Protein expression data for 9304 genes for 54

NSCLC cell lines. Fold change values, significance and
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correlations with different coatings and proliferation

for each gene are also provided.

Table S8. Candidate genes from mass spectrometry

data regulated between fast and slow cell lines. List of

90 candidate genes obtained from mass spectrometry

data through the filtration criteria described (Fig-

ure 3E). Expression values provided for 18 fast and 26

slow cell lines.

Table S9. Summary of analyses with candidate genes –
CDH2, DSE, CPA4, FLNC, TUBB6 and BICC1.

Table S10. circRNA expression analysis at the gene

level from RNA-seq data of 54 NSCLC cell lines.

Back splicing reads per gene normalized to the

sequencing library size for 12251 genes in 54 NSCLC

cell lines [28,38]. Fold change values and significance

comparing fast versus slowly migrating cell lines on

different coating conditions for each gene are also pro-

vided.

Table S11. Differentially expressed circRNAs at the

gene level regulated between fast and slow cell lines.

List of 28 genes obtained from RNA-seq data with

differential circRNA expression selected through the

filtration criteria described (Supplementary figure

11A). Expression values are provided for 18 fast and

26 slow cell lines which showed these fast or slow

properties on the majority of coatings.

Table S12. circRNA expression analysis at the back-

splice level from RNA-seq data of 54 NSCLC cell

lines. Back splicing reads per individual circRNA

(back-splice site) normalized to the sequencing library

size for 148811 circRNAs in 54 NSCLC cell lines

[28,38]. Fold change values and significance comparing

fast versus slowly migrating cell lines on different coat-

ing conditions for each circRNA are also provided.

Table S13. Differentially expressed circRNAs regulated

between fast and slow cell lines detected at the back-

splice level. List of 33 candidate circRNAs obtained

from RNA-seq data and selected through the filtration

criteria described (Figure S11C). Expression values

provided for 18 fast and 26 slow cell lines which

showed these fast or slow properties on the majority

of coatings.
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