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Nitrogen (N) remobilization is a critical process that provides substantial N to winter
wheat grains for improving yield productivity. Here, the remobilization of N from
anthesis to maturity in two wheat cultivars under three irrigation regimes was measured
and its relationship to organ N concentration was examined. Based on spectral
data of organ powder samples, partial least squares regression (PLSR) models were
calibrated to estimate N concentration (Nmass) and validated against laboratory-based
measurements. Although spectral reflectance could accurately estimate Nmass, the
PLSR-based Nmass-spectra predictive model was found to be organ-specific, organs
at the top canopy (chaff and top three leaves) received the best predictions (R2 > 0.88).
In addition, N remobilization efficiency (NRE) in the top two leaves and top third internode
was highly correlated with its corresponding N concentration change (1Nmass) with an
R2 of 0.90. 1Nmass of the top first internode (TIN1) explained 78% variation of the whole-
plant NRE. This study provides a proof of concept for estimating N concentration and
assessing N remobilization using hyperspectral data of individual organs, which offers
a non-chemical and low-cost approach to screen germplasms for an optimal NRE in
drought-resistance breeding.

Keywords: hyperspectral, N concentration, PLSR, plant organ reflectance, winter wheat, N remobilization
efficiency

INTRODUCTION

Wheat is one of the three major cereal crops providing over 700 million tons of grain worldwide
per annual (FAO, 2019). The high yield potential and grain quality in wheat are dependent on the
uptake and utilization of nutrients, from which nitrogen (N) is a key composition of chlorophyll
maintaining photosynthesis assimilates that determines the grain yield ultimately. N also composes
the gluten protein which is used for improving the viscoelastic properties of food products
(Shewry, 2009). Previous studies have demonstrated that around 60–90% of N in grains at maturity
(Barbottin et al., 2005; White et al., 2016) is remobilized from vegetative organs in cereal crops. In
wheat, this proportion could be as high as 95% (Kichey et al., 2007). Post-anthesis N remobilization
efficiency (NRE) is taken as an essential criterion for evaluating N recycling (Have et al., 2017). In
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addition to the genetic variation (Gaju et al., 2014), NRE varies
between wheat organs, where leaves have higher NRE than stems
and chaff (Pask et al., 2012). Besides, water deficit has been found
to affect the N remobilization (Xu et al., 2006), and can result
in an improved NRE in wheat (Bahrani et al., 2011). It has also
been reported in rice that moderate soil drying is beneficial to
improve NRE without sacrifice yield potential (Wang et al., 2016),
while in most cases, water deficit or less irrigation is found to lead
to lower productivity (Sun et al., 2006). Hence, balancing grain
yield loss and N remobilization improvement is an eternal topic
of sustainable agriculture.

N content varies significantly in different growth stages,
especially after anthesis when N remobilizes from vegetative
organs (including leaves, stems, and sheaths) to grains during
the process of plant senescence and grain development in cereal
crops (Bidinger et al., 1977; Yang and Zhang, 2006). Thus,
optimizing NRE is critical to improve grain yield and N use
efficiency. Typically, NRE is determined by N remobilization
amount (NRA) in vegetative organs at anthesis and maturity
(Gaju et al., 2014), while the estimation of NRE involves two
key steps, dry mass (DM) and N concentration determination.
The Kjedahl method is a traditional wet-chemical approach for
measuring N concentration in plant tissues (Bertheloot et al.,
2008). Alternatively, the combustion-based approach such as the
Dumas method can also measure N concentration accurately
(Simonne et al., 1994). However, these methods are usually labor-
intensive and may cause environmental contamination (Galvez-
Sola et al., 2015). Among others, the complex procedures of these
laboratory-based N concentration determination methods are the
major limiting factors of determining NRE in a large number of
samples. Therefore, efficient evaluation of NRE requires a rapid
and environmental-friendly method.

Near-infrared spectroscopy (NIRS) is considered as a “green”
analytical tool for determining N concentration (Galvez-Sola
et al., 2015; Gredilla et al., 2016). In addition to NIRS, the
spectrum at the visible (VIS) region associated with chlorophylls
absorption can also reflect nitrogen variations (Asner and
Martin, 2008; Meacham-Hensold et al., 2020). Recently, spectral
reflectance acquired by hyperspectral sensor (VIS and NIRS)
instruments has been increasingly used for predicting N
concentration in leaves (Ely et al., 2019; Meacham-Hensold
et al., 2020), shoots (Nguyen et al., 2019), grains (Caporaso
et al., 2018a), and the entire plants (Li et al., 2010; He J. et al.,
2020). By analyzing the full-spectrum data with chemometric
modeling techniques such as partial least square regression
(PLSR), nutrient elements (e.g., N and micronutrients) could be
estimated from hyperspectral reflectance (Vigneau et al., 2011;
Serbin et al., 2012). The capability of estimating N concentration
from spectroscopy has been verified to be robust in many
previous studies, such as the NIRS (e.g., 830–2600 nm) for
citrus leaf N (Galvez-Sola et al., 2015), the VIS-near-infrared
(VIS-NIR, 400–1000 nm) spectroscopic analysis for cacao tree
leaf N (Malmir et al., 2019), and the hyperspectral (VIS-NIR-
SWIR, 350–2500 nm) determination for leaf N in various crop
species. Despite its success in evaluating N status at leaf or
canopy levels (Yu et al., 2013; Ely et al., 2019; Hasituya et al.,
2020), the capability of using plant spectroscopy to characterize

the N variations simultaneously in morphologically distinct
organs and the feasibility of such an approach in evaluating the
reallocation of N between organ tissues are rarely investigated
(Vilmus et al., 2014).

As an alternative to NIRS, hyperspectral imaging (HSI) has
several advantages to obtain spectral reflectance and analyze
chemical properties (Caporaso et al., 2018a; Meacham-Hensold
et al., 2020). HSI holds three-dimensional data that involves not
only spectral data but also spatial information of the samples
from the captured images (Gao and Smith, 2015; Fu et al.,
2020), which makes it possible to investigate the variability of
samples with texture differences. Hyperspectral images could be
rapidly acquired with an HSI system under the controlled light
condition as well as outdoor platforms with sunlight calibration
in the field (Caporaso et al., 2018b; Malmir et al., 2019; Fu et al.,
2020; Meacham-Hensold et al., 2020). Thanks to the flexibility of
imaging a variety of samples, HSI enables rapid and repeatable
measurements of N traits on the individual organs of the same
plants, which brings new opportunities to study the variations
and dynamics of plant-organ N traits and gain insights into the
response of plant N reallocation to drought stress (Bertheloot
et al., 2008; Hawkesford, 2017).

Therefore, this study intended to investigate the feasibility
of using HSI-based spectroscopy to predict N variations in
organs and to further evaluate the post-anthesis N remobilization
in wheat organs under different irrigation regimes. For this
aim, our main objectives were (1) to compare NRE between
organs under different irrigation regimes, (2) to develop organ-
specific N concentration prediction models using spectral
reflectance, and (3) to evaluate N remobilization through N
concentration change.

MATERIALS AND METHODS

Field Treatments and Experimental
Design
Two winter wheat (Triticum aestivum L.) cultivars of Jimai22
(JM22, high-yielding and cold-resistant cultivar) and Nongda399
(ND399, fast-growing and drought-resistant cultivar) were
planted at Wuqiao Experimental Station of China Agricultural
University, Cangzhou (37◦41′N, 116◦36′E), Hebei Province,
China, in 2018–2019 winter wheat growing season. Soil fertility
(0–20 cm) and characteristics of climate in the experimental
filed are shown in Supplementary Table 1 and Supplementary
Figure 1. During wheat growing season in this study, the
experimental site received a total 66.6 mm precipitation,
3843 MJ/m2 solar radiation, 2021 sunshine hours, a daily average
air temperature of 10.2◦C, and a cumulative temperature above
0◦C of 2977 degree-days (◦C·d). Fertilizers were applied before
sowing with a total of 240 kg N ha−1, 140 kg P2O5 ha−1,
and 120 kg K2O ha−1, which were broadcast incorporated into
the 20 cm surface layer of soil just before rotary tillage. Soil
water content of 0–200 cm was determined and irrigated to 85%
field capacity before sowing (Sun et al., 2019). After sowing,
irrigations were applied at two critical crop developmental stages:
upstanding (Z30) and anthesis (Z61), which are determined by
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using the Zadoks scale (Zadoks et al., 1974). Three irrigation
regimes were as follows: W0, no irrigation after sowing; W1,
irrigation (75 mm) at upstanding; and W2 (75 mm × 2),
irrigation at stages of upstanding and anthesis. Each treatment
includes three replicates, with nine experimental plots in total.
The plot size was 10 m × 5 m, allowing for growing 30
rows of winter wheat at a row spacing of 0.15 m, with 30,000
seeds sown per plot.

Samples Collection
The above-ground part of wheat plants from two 1 m inner
rows was sampled every 5 days from flowering time (anthesis,
Z31) until maturity. After field sampling, the plants were then
separated into leaves, internodes (including sheaths), and chaff
(spike without grain). After separated into nine parts, these
samples were dried at 105◦C for half an hour and then at
70◦C until constant weight, and the DM was determined. As
Figure 1A shows, leaf organs include TL1 (top first leaf or flag
leaf laminae), TL2 (top second leaf), TL3 (top third leaf), and
RLs (remaining leaves), and internode organs include TIN1 (top
first internode or peduncle, including leaf sheath), TIN2 (top
second internode), TIN3 (top third internode), RINs (remaining
internodes), and chaff (including glume, palea, lemma, rachis,
and awn) (Barraclough et al., 2014).

Measurements of N-Related Traits
The N concentration (Nmass), denoted as N mass per unit DM,
was determined by using an automatic azotometer (Kjeltec 8400;
Foss, Denmark) according to the Kjeldahl method (Horneck and
Miller, 1998) following the manufacturer’s instructions. Post-
anthesis NRE was calculated as the proportion of N in the crop

component at anthesis which is not present in the vegetative parts
at maturity (Gaju et al., 2014):

NAA (kg N ha−1) = Nmass × DM (1)

NRA (kg N ha−1) = NAAAnthesis − NAAMaturity (2)

NRE (%) =
NRA

NAAAnthesis
(3)

Where NRE is the N remobilization efficiency and NRA is the
amount of N remobilized (kg N ha−1). NAAAnthesis is the amount
of N (kg N ha−1) in vegetative organs at anthesis, and NAAMaturity
is the amount of N reserved in the plant at maturity. In Eq. 1,
Nmass represents N mass per unit DM (g N kg−1), and DM
represents dry mass (kg·ha−1), which was determined by the dry
weight of each sample.

The N concentration change (1Nmass) between anthesis and
maturity was calculated as follows:

1Nmass =
NAnthesis − NMaturity

NAnthesis
(4)

Where NAnthesis and NMaturity represent Nmass of samples at
anthesis and maturity, respectively.

The 1Nmass, N accumulation, and corresponding NRE of
each organ were calculated separately. While the whole plant N
accumulation is calculated as the sum of all separated organs’
accumulated N, the whole-plant NRE was then determined.

Spectral Reflectance Acquisition
A pipeline was developed to acquire spectral reflectance from a
hyperspectral imager (Supplementary Figure 2). After collecting

FIGURE 1 | Schematic of wheat plant organs (A) and nitrogen concentration (Nmass) variation (B) within and among these organs. The different lowercase letters
above the boxplot show significant different mean value (p < 0.05). TL1, top first leaf; TL2, top second leaf; TL3, top third leaf; RLs, remaining leaves; TIN1, top first
internode; TIN2, top second internode; TIN3, top third internode; RINs, remaining internodes.
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plants from the field, separated wheat organ samples were dried
and grounded to fine powders. Then these powder samples
(around 3–5 g, ∼1 cm depth for each) were placed on a plate
and photographed in a hyperspectral image acquisition system
(Pan et al., 2019). The images were collected by an SCO710-
VP hyperspectral imager (SOC, San Diego, CA, United States)
covering the VIS and NIR spectra between 375 and 1050 nm
at 5 nm increments for a total of 128 bands. Raw images were
calibrated by the gray reference panel with known reflectance.
Spectral reflectance of each sample was acquired following the
procedures described in our previous work (Hu et al., 2020),
by using Spectral Radiance Analysis Software (Surface Optics
Corporation, United States).

PLSR Predictive Model to Estimate
Nmass From Spectra
Partial least squares regression (PLSR), which was proved to be an
effective technique for building predictive models with spectral
data (Serbin et al., 2012; Ely et al., 2019), was applied to develop
Nmass spectra relationships. The predictive Nmass spectra model
was built based on all the raw wavelength spectra for individual
organs and across organs and cultivars. PLSR model was
employed to predict Nmass from reflectance data with the “pls”
package (Mevik et al., 2011) under the R software environment.
During the procedure of model training and parameter fitting,
10 times repeated five-fold cross-validation method (Ali et al.,
2017; Malmir et al., 2019) was conducted in the “caret” package
(Kuhn, 2015; Heckmann et al., 2017). The optimal number of
latent variables (also called model components) was determined
based on the minimum predicted residual error sum of square
(PRESS) statistic of the training model. Models were built on 75%
of randomly selected experimental data for calibration and were
used to predict the remaining (validation dataset of) 25%. A 10
times fivefold cross-validation was used to train the model. The
accuracy of each model was evaluated based on the coefficients
of determination (R2) and root mean square of error (RMSE)
for predicted versus measured N in calibration and validation
dataset. Bias was determined by the difference between the
observed mean values and the predicted mean values for the
validation dataset samples. Regression bias was calculated from
the regression intercept. Variable importance of projection (VIP)
values (Wold, 1995) of each PLSR model was evaluated to assess
the relative contributions of different wavelengths over the full
spectrum (Yendrek et al., 2017). VIP scores were used to identify
the relative significant reflectance spectrum for each organ Nmass-
spectra model. In addition, wavelengths of high VIP values (>0.8)
were selected to recalibrate the Nmass-spectra model and compare
to the all-wavelength model.

Statistical Analysis
The actual Nmass of different time points was pooled together for
all statistical analysis. Tukey HSD test was performed to compare
differences between multiple groups. Linear regression analysis
was conducted to study the relationship between whole-plant
NRE and organ NRE. The relationships between NRE (whole
plant or separate organ) and 1Nmass were also investigated.

RESULTS

N Concentration and Spectral
Reflectance of the Nine Wheat Organs
Powder
Chemical analysis in the laboratory showed that N concentration
(Nmass) varied within and among different organs across all
sampling time points (Figure 1B). Nmass ranged from 2.68 to
48.5 g/kg, showing a maximum difference of 45.82 g/kg (18-
fold difference). As for different organs, the flag leaf or top
first leaf (TL1) showed a larger range (8.72–48.5 g/kg) and a
significantly higher Nmass than the other organs. Nmass was
observed with significant difference between leaf organs, while
within internodes only TIN1 was significantly higher than the
other internodes. Leaves showed a higher average value and wider
range than internodes and chaff. Besides, in leaves or internodes,
Nmass showed a vertical distribution pattern, where the top ones
had a higher average value and wider range than the basal ones.

The spectral reflectance varied substantially within and among
these organs’ powder (Figure 2A and Supplementary Figure 3).
Across all wavelengths, an obvious peak was observed in the VIS
region, while a large continuous variation in reflectance from 780
to 950 nm was detected in the NIR. Among organs, the highest
reflectance was found for the chaff and top second internodes
(TIN2), respectively, in the VIS and NIR regions. In contrast, the
lowest was found for the flag leaves (TL1) in the VIS, as well as
for the RLs in the NIR. The RINs had higher reflectance in the red
(620–650 nm) and red-edge regions than other organs. It is worth
noting that, in the green (505–570 nm) region, the young or green
organs showed an obvious peak, while the aging organs (RLs and
RINs) did not (Supplementary Figure 3). In order to understand
the diversity and general properties of all samples’ spectral
reflectance, principal component analysis (PCA) was applied
and results showed that the first three principal components
explained 98% of the variance in this set of raw spectra. PCA plots
from spectral reflectance showed that organs could be divided
into two subgroups, leaf and non-leaf organs, as indicated by the
vertical dashed line in the figure (Figure 2B). This is consistent
with the spectra variation in the VIS region, where the four leaf
organs had lower reflectance than the non-leaf organs.

N Concentration Prediction From
Spectral Reflectance at Organ Level
The Nmass prediction model was built with full range wavelength
spectra for individual organs and across organs (mixed organs
together). Except for the RINs, all organ-specific models were
able to predict Nmass (Figure 3 and Table 1). For the calibration,
R2 values ranged from 0.47 to 0.97 with the calibration RMSEs
varying from 0.67 to 2.80 g/kg. Surprisingly, the validation
accuracy was found to be comparable to the calibration with R2

values ranged from 0.26 to 0.95 g/kg. The best organ-specific
models were found for TL1, TL2, TL3, chaff, and across organs
(R2 > 0.88, Table 1). The moderate prediction models were
found for RLs (R2 = 0.69, RMSE = 3.00 g/kg), TIN1 (R2 = 0.77,
RMSE = 2.13 g/kg), TIN2 (R2 = 0.76, RMSE = 0.97 g/kg),
and TIN3 (R2 = 0.69, RMSE = 0.71 g/kg) (Table 1). In
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FIGURE 2 | Spectra diversity within and among wheat organs. (A) Mean spectral reflectance for each organ is shown. (B) PCA plots from spectral reflectance
categorized by organ group. In PCA plots, the first two PC which explained 95.7% variation, different colors and shapes correspond to each organ category, data
points of individual are represented by transparent color points, and confidence ellipse and mean point of each group are shown by solid colors.

contrast, the model failed to predict Nmass in RINs (R2 = 0.26,
RMSE = 0.66 g/kg). When using the selected wavelengths
to model the calibration, it did not perform better than all
wavelengths model (Supplementary Table 4).

N Remobilization Varies Between
Irrigation Regimes
During the anthesis and early grain developmental stages
of winter wheat growing season, wheat experienced a non-
precipitation period of 38 continuous days (Supplementary
Figure 1b). Only a few rainfall days were recorded in the
vegetative growth stages. The applied irrigation at these two
critical growth stages resulted in a large difference between
treatments. NRE of the two cultivars, JM22 and ND399, showed
a small variation and shared a similar trend. Results showed
that a low amount of irrigation (W0/W1) did not reduce NRE,
compared to the higher irrigation (Figure 4A). NRA did not
differ between W1 and W2, while they were much higher than
W0, with a nearly doubled NRA value of W0 (Figure 4B).
Figure 4C shows the contribution of nine organs to total
NRA under three irrigation treatments. It is worth noting that
NRA contribution from the main leaves (e.g., TL1 and TL2)
decreased under W0 treatment when compared with W1 and W2
(Figure 4C). On the contrary, NRA contribution in RLs, RINs,
and chaff showed increases under W0 treatment. In other organs,
however, irrigation did not yield changes in NRA. Among these
organs, the first two internodes, the first two leaves, and chaff are
the major contribution organs, which contribute up to 80% to the
total NRA (Figure 4C).

Relationships Between N
Remobilization-Related Traits
The organ-specific NRE was all significantly correlated with
its corresponding post-anthesis 1Nmass, for all organs except

chaff (Table 2). For organs of TL1, TL2, and TIN3, the organ-
specific NRE shared high collinearity with 1Nmass, and the
best correlation was observed for TIN3, with an R2 of 0.97.
Furthermore, organ-specific NRE of TL1 and TIN1 could explain
70 and 93% variation of the whole-plant NRE at significant level
(P < 0.05) (Figure 5), while organ-specific NRE of RLs and
RINs could hardly explain any variation of whole-plant NRE.
In addition, the observed 1Nmass of TIN1 could explain 78%
variation of whole-plant NRE. Based on these results, it was
decided to use organ-specific N concentration (e.g., TIN1) at
anthesis and maturity to evaluate post-anthesis N remobilization.

DISCUSSION

NRE Assessment Through Spectral
Reflectance Estimated Nmass
Winter wheat production has been improved with high-input
cropping systems over the past decades, so does the adaptive
capacity of cultivars to less optimal water availability conditions
(Voss-Fels et al., 2019). However, our understanding on the
NRE adaptivity to drought is still limited due to the lack of
efficient, repeatable approaches for evaluating the NRE. In this
study, NRE variations under contrast irrigation regimes were
evaluated by using hyperspectral-based N measures. Results
revealed that under low precipitation, mild/moderate irrigation
(W1) improved NRE a bit compared to the higher irrigation
(W2), while whether W0 leads to a low NRE was dependent
on the cultivar (Figure 4A). These results suggest that limited
irrigation, which is beneficial to save water resources (Yang and
Zhang, 2006; Li et al., 2019), is a cost-efficient approach for
improving N use efficiency. On the other hand, grain yield was
generally found to be decreased when mild irrigation was applied
(Zaveri and Lobell, 2019), which is consist with our results that
low yield was received from low irrigations (Supplementary
Table 2). Balancing the grain yield and NRE improvement
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FIGURE 3 | Results of PLSR predictive models for nitrogen concentration (Nmass). Comparison between measured Nmass and predicted Nmass for organs of TL1,
TL2, TIN1, and Chaff. In the figures, calibration (gray triangle) and validation (solid circle) data points are illustrated. The dashed line shows 1:1 line, the fine black line
shows regression line, the black lines show 95% prediction interval, and gray lines show 95% confidence interval of the validation dataset. Statistic parameters (R2

and RMSE) for the validation datasets are shown in the plots.

TABLE 1 | Statistics of PLSR models for Nmass of each organ and across organs.

Dataset Modelcomponents Calibration Validation

n R2 RMSE (g/kg) n R2 RMSE (g/kg) RPD Bias (g/kg) Regression bias (g/kg)

TL1 8 17 0.93 2.25 57 0.93 3.41 3.78 −0.76 3.86

TL2 10 18 0.96 2.48 57 0.95 3.02 4.01 1.15 2.38

TL3 3 17 0.94 2.80 55 0.94 2.51 4.11 −0.51 1.67

RLs 3 18 0.67 2.63 59 0.69 3.00 1.60 1.29 5.79

Organ TIN1 19 15 0.89 1.35 49 0.77 2.13 1.94 0.48 0.47

TIN2 13 14 0.78 0.87 49 0.76 0.97 2.02 0.25 1.87

TIN3 12 15 0.68 0.67 52 0.69 0.71 1.67 −0.17 0.84

RINs 12 15 0.47 0.71 55 0.26 0.66 0.94 0.27 2.34

Chaff 10 16 0.95 0.92 55 0.94 1.01 3.82 −0.32 0.62

Across organs 43 159 0.95 2.79 474 0.95 2.80 4.36 0.05 0.14

Models were built on 75% of experimental data for calibration and used to predict the remaining (validation dataset of) 25%. Model Components is the number of
components used in the predictive partial least square regression (PLSR) model. n is the number of samples used for modeling. RPD is the ratio of prediction to deviation.
Bias is the difference between the mean observe value and the mean predicted value for the validation dataset samples. Regression bias is the regression intercept.

Frontiers in Plant Science | www.frontiersin.org 6 April 2021 | Volume 12 | Article 657578

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-657578 April 1, 2021 Time: 15:38 # 7

Li et al. Spectroscopic Estimation of N Remobilization

FIGURE 4 | Nitrogen remobilization varies between three irrigation treatments. (A,B) Nitrogen remobilization efficiency (NRE) and nitrogen remobilization amount
(NRA) of vegetative organs in winter wheat cultivar JM22 and ND399. Irrigation treatments are shown with three different colors. (C) Contribution of separated
organs to total NRA.

when applying water-saving management is always a trade-off.
Although several studies reported that drying condition could
benefit grain yield and nutrient use efficiency simultaneously
(Wang et al., 2016; He G. et al., 2020), it is still challenging to
determine the extent to which the irrigation should be optimized
(Nguyen and Kant, 2018; Prey and Schmidhalter, 2019).

Our results not only confirmed the power of hyperspectral
sensors in precisely estimating N concentration (Table 1) but
also demonstrated the potential of assessing NRE variations
through spectral reflectance (Table 2 and Figure 5). By
predicting N concentration, N concentration change (1Nmass)
between the anthesis and post-anthesis (Barbottin et al., 2005;
Kong et al., 2016) was able to be further estimated. The
observed correlation between the actually measured NRE
and 1Nmass (Table 2) suggested the possibility of evaluating
N remobilization directly through spectral measurements.
Our results have added to the growing evidence that plant
spectroscopy could facilitate the study of N remobilization
in response to irrigation (or fertilization) management that
affects N remobilization, especially in terms of the timing and
duration at organ level (Nehe et al., 2020). Notably, NRE

measurement is a time-consuming and costly process which
involves measurement of Nmass and dry matter simultaneously
at the two critical stages (anthesis and maturity). Additionally,
the whole-plant NRE could be estimated by acquiring spectral
data of TIN1 powder samples at anthesis and maturity,
suggesting a promising application in selecting N-efficient
cultivars (Nguyen and Kant, 2018). For NRE correlations
among organs, considering post NRE was determined by the
contribution of organs. However, cultivars and environmental
variations may have an influence on the relationships between
NRE and 1Nmass, and also affect the use of specific organ
data in assessing the whole-plant NRE. Further investigations
are needed to improve the understanding of correlations
between NRE and 1Nmass. Our study only provides a
proof of concept for evaluating N remobilization under
controlled light conditions following simple sample preparations
(spectra acquired from organ powders). Nevertheless, it is still
challenging to perform organ-specific HSI measurements in
the field. Future improvement of the proposed method should
be investigated by measuring individual plants and organs
directly in the field.
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TABLE 2 | The coefficients of determination (R2) between whole plant and organ
NRE, between organ NRE and organ 1Nmass, and between whole-plant NRE and
organ 1Nmass among wheat organs.

NRE_whole NRE_organ NRE_whole

∼ NRE_organ ∼ 1Nmass ∼ 1Nmass

Organ R2 p-value R2 p-value R2 p-value

TL1 0.7 0.039 0.93 0.0016 0.59 0.073

TL2 0.44 0.15 0.79 0.017 0.08 0.58

TL3 0.08 0.59 0.93 0.0017 0 0.95

RLs 0 0.96 0.68 0.044 0.01 0.83

TIN1 0.93 0.002 0.72 0.034 0.78 0.02

TIN2 0.52 0.11 0.84 0.0104 0.64 0.058

TIN3 0.67 0.046 0.97 0.0004 0.66 0.051

RINs 0.02 0.79 0.78 0.019 0.04 0.71

Chaff 0.5 0.12 0.51 0.11 0.05 0.69

The values in bold indicate coefficients with better performance at significant level
(p < 0.05).

Organ-Level Predictive Models
Predictive models calibrated across organs did not always succeed
in predicting individual organs (data not shown). Similar results
were also reported in models using leaf spectral reflectance in
diverse species (Heckmann et al., 2017; Yendrek et al., 2017).
This difference was validated by performing PCA for the spectral

reflectance, in which leaf and non-leaf organs are statistically
different as tested by a permutational multivariate analysis
of variance (Anderson, 2017). These differences between leaf
and non-leaf destructive organs might be attributed to their
divergent biochemical composition. PCA results suggest that,
even within the same type of organ (e.g., leaf and internode
groups), large variations exist. Here, N concentrations of
different vegetative organs were investigated and results suggest
considerable variations distributed vertically among these organs
(Figure 1B). These findings are similar to previous N partitioning
research in wheat (Barraclough et al., 2014; Gaju et al., 2014).
Collectively, our results confirmed the usefulness of considering
organ-specific models.

In this study, similarly high predictive power (R2
∼ 0.90)

(Table 1) was achieved for leaf organs compared to previous
Nmass estimations at leaf level (Serbin et al., 2012; Yendrek et al.,
2017; Coast et al., 2019; Ely et al., 2019). Surprisingly, prediction
for the chaff organ was comparable (R2 = 0.94) to the top leaf
organs, which might be related to the specific role of chaff in
maintaining a high N accumulation by acting as a temporary
sink and source for N (Kong et al., 2016). Also, senescent
leaves and internodes achieved relatively low predictive power
(Table 1), which was similar to vertical canopy N predictions
in rice (He J. et al., 2020). Small variations in spectra and N
concentration may account for the low prediction power in
these senescence organs. The relatively low N concentration

FIGURE 5 | Relationships of N remobilization-related traits. (A,D) Relationships between NRE of separated organs and the whole plant. (B,E) Relationships between
nitrogen concentration change (1Nmass) and organ NRE. (C,F) Relationships between organ 1Nmass and whole-plant NRE. (A–C) are for TL1 and (D–F) are for TIN1.
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might reduce the possibility of being detected by spectra, which
is confirmed by a low coefficient of variation (CV) observed
in the lower prediction models (Supplementary Table 5). In
this situation, VIP values at some dominating wavelength
were decreased (Supplementary Figure 4), resulting in a low
contribution to the prediction (Yendrek et al., 2017). Regarding
to the effect of organ on wavelength sore, one possible reason
might be attributed from the biochemical composition between
organs which more chlorophylls content is reserved in leaf
or young organs dominating the reflection of N variations
(Meacham-Hensold et al., 2020). For a robust PLSR model for
predicting N in these organs having small variations, it might
be possible by collecting a diverse range of Nmass data across
more growth conditions and developmental stages or diverse
genetic resources.

Hyperspectral Imaging as a Rapid and
Cost-Effective Approach to Acquire
Spectral Reflectance
This study used HSI to acquire reflectance data for estimating
N concentration and assessing NRE variations of dried samples.
As a spectroscopic technology, the biggest advantage is that the
method is cost-efficient and environmentally friendly (Gredilla
et al., 2016), and thus is suitable for repeated use. Due to
its flexibility and convenience, spectral reflectance for a large
number of samples was able to be acquired. For example, in
our experiment, 18 samples were photographed (Supplementary
Figure 2) in one image, making it possible for us to acquire
more than 1000 samples within 10 h. To reduce the spatial
complexity of analyzing the spectra while still taking the
advantage of image data, regions of interest are typically selected
to acquire average spectra (Malmir et al., 2019). Despite the
benefits of HSI, this study only focused on the uses of organ
powder samples and the average spectra of each sample, without
discriminating spatial variations in each organ. The simplified
approach for evaluating the whole-plant NRE through organ
part (TIN1) spectra will facilitate balancing the irrigation and
N management and screening high NRE cultivars. In our study,
NRE of JM22 is superior to that in ND399 under sufficient
water treatments (Supplementary Figure 5, W1 and W2).
Hence, it is possible to screen high NRE cultivars under specific
irrigation conditions. This study provides a proof of concept
for evaluating N remobilization of wheat organs and whole
plant through hyperspectral reflectance data. It is anticipated
that HSI will be a promising tool for analyzing NRE spatial
variation and its dynamics to uncover the underlying mechanism
of N remobilization.

CONCLUSION

In this study, the N remobilization under three irrigation
regimes was investigated using HSI. Results showed that NRE

varied among irrigation regimes after sowing, where the mild
irrigation (W1) achieved the best NRE, but the NRE reduced
if no irrigation was applied. NRE in individual organs was
correlated highly with the whole-plant NRE. Spectra-based
models successfully predicted the N concentration in each organ.
The N concentration change in a single organ (e.g., TIN1)
between anthesis and maturity could explain 78% of the variation
in the whole plant NRE. This study demonstrates the use of
HSI in estimating N concentration and to aid the assessment of
NRE variations from the organ to whole-plant levels, which holds
great promise for guiding precision irrigation and N management
for optimized NRE.
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