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Abstract

The COMPASS collaboration at CERN operated a multi-purpose fixed-target spectrometer
at the Super Proton Synchrotron from 2002 to 2022 with unprecedented high-intensity and
high-energy muon and hadron beams. World-leading data sets, in size and complexity, have
been acquired for a better understanding of quantum chromodynamics of strong interaction.
Apart from modern particle detector technology, a driving feature in achieving these goals is
the data acquisition system (DAQ), allowing to combine a huge amount of detector infor-
mation with the needed bandwidth. Since 2014, the DAQ has explored and employed novel
approaches of event building using field-programmable gate arrays. In the first part of this
thesis, I improved the reliability of the DAQ by developing and implementing a crosspoint
switch and by commissioning a real-time beam monitoring tool. The information from the
real-time beam monitoring tool is transmitted to accelerator and beam line operators, who
use it to tune the beam properties.

In the second part, I perform a test of predictions of the chiral anomaly, a fundamental prop-
erty of quantum chromodynamics. It governs processes involving an odd number pions,
which are the Goldstone bosons of chiral symmetry breaking. This applies most profoundly
to the coupling of three pions to a photon. The magnitude of the coupling is described the
constant F3π, and its value is precisely predicted by chiral perturbation theory. It can be mea-
sured in π−γ→π−π0 scattering.

Within this thesis, I conduct a precision analysis on F3π using data of the COMPASS experi-
ment, where pion-photon scattering is mediated via the Primakoff effect using heavy nuclei
as target. We exploit the interference of the production of the π−π0 final state via the chiral
anomaly with the photo-production of the ρ(770) resonance over a wide mass range up to
mπ−π0 ∼ 1.2 GeV/c 2, employing a dispersive framework that had been worked out by theory
colleagues from Bonn university specifically for the purpose of our analysis. This is, beyond
the increased number of events, a significant advantage compared to previous measurements
restricting themselves to the threshold region only. The presented analysis allows to simulta-
neously extract the radiative width of theρ(770) resonance and gives a stronger handle on F3π

in a unified approach, thereby minimizing systematic effects that have not been addressed
previously.

Our analysis yields
F3π =

�

9.24 (±0.21)stat (±0.83)syst

�

GeV−3,

which roughly agrees with theory, but is dominated by systematic uncertainties. The main
source for the systematic uncertainty is the handling of background processes. Compared
to previous approaches of this analysis, we developed a significantly improved model for the
most important background contribution stemming fromπ−+Ni→π−π0π0+Ni events. The
improved model facilitates a proper disentangling of smaller background contributions, and
may hence lead to smaller systematic uncertainties in the future. Uncertainties between 2 to
4% are shown to be in reach, but could not be fully worked out within this thesis anymore.
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Introduction

Our understanding of the subatomic world of elementary particles is formulated in a concise
and self-consistent framework called the standard model (SM). The story of the SM is a story
of triumph and success. Throughout the last decade, the SM did not stop to amaze scientists
by the quantity and quality of its predictions, culminating in the finding of the Higgs boson in
2012. The SM has described particle physics to an extent, that scientists are hunting for effects
that cannot be explained within the framework of the SM, searching for physics beyond the
SM (BSM). Measurements and findings of BSM physics are however very rare. If published,
they draw global attention, like the recent result on the muon magnetic moment (g − 2) at
Fermilab [1].

Despite the global hunt for BSM physics, it is important to realize, how much room the SM
still leaves for deepening the knowledge on elementary particles even within the framework.
Particularly the strong interaction is only little understood when it comes to low-energies and
bound states. Despite the fact that it is mainly bound states of protons and neutrons that
make up most of the matter on earth. A fact, which often is forgotten in the hunt for BSM
effects.

The chiral anomaly, topic of this research project, is a fundamental property of the strong
interaction. Still, most of its predictions and implications are only poorly verified by exper-
iment. One of them, the value of the F3π constant, is being tested in this thesis. For un-
derstanding the theoretical concepts, Chapter 1 gives a compact introduction to the theory
of strong interaction, namely Quantum Chromodynamics, and then focuses on the chiral
anomaly and its predictions. We also go through existing measurements of F3π and discuss
their precision and shortcomings. Just as important is the detailed understanding of the
kinematics of the reactions of interest. Only when the kinematics are fully understood, the
observed distributions can be reproduced in simulation. We therefore dedicate Chapter 2 to
the detailed description of the involved scattering processes and elaborate on how we can
extract the wanted quantities from our measurement.

There would not be any data to analyze, if there was not the experiment, which recorded
the data in 2009. We therefore describe the experimental setup in Chapter 3 and highlight
important features for this measurement. Like the people who facilitated this analysis by
supporting data taking in 2009, long before I took my first steps in science, I contributed to
improvements of the experimental setup, in particular of the data acquisition system, in the
years 2015-2018. The outcome of this work is presented in Chapter 4.
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INTRODUCTION

Any analysis in high-energy physics begins with identifying signal events in the enormous
amount of data which are produced by modern experiments. The event selection and how
the events are reconstructed is discussed in Chapter 5. The presented high-precision analysis
is very sensitive to the applied event selection and to calibrations applied to the calorimeter.
Some calibrations have already been developed for other analysis. Still, we study the impact
of all these calibrations and go through details of all applied corrections.

Just as important as a well calibrated spectrometer, is an equally well descriptive Monte-Carlo
simulation. The analysis would not have been possible without all the work, that was put into
the simulation including the correct kinematics of reactions of interest, be it for diffractive
three pions, electromagnetic two pions, or kaon decays. Chapter 6 focuses on the simulation
and highlights necessary adjustments. Afterwards, we are prepared for physics analysis and
investigate kaon decays in Chapter 7 to determine the luminosity and finally come to the
result of the measurement in Chapter 8. We conclude with a short summary of the findings,
and an outlook on future analysis which are facilitated by this work.

2



Chapter 1

Theory and motivation

The strong interaction has preserved some mysteries and challenges for scientists to this
day. Despite the progress in quantum field theories, the development of Quantum Chro-
modynamics in the 20th century, and its very detailed experimental verification in certain
areas such as perturbation QCD, many basic features of the strong interaction remain a field
of ongoing research. Since this thesis is trying to shed light on some of these basic, little
understood phenomena of strong interaction, the first chapter is dedicated to the theory,
reveal its challenges and explain the quantities that are measured.

1.1 Quantum Chromodynamics — the theory of strong interaction

The strong interaction is the strongest of all four fundamental interactions in the Standard
Model. It binds the protons and neutrons together in nuclei, being so strongly attractive
at short distances that it dominates over the electromagnetic repulsion of the liked-charged
protons. On an even smaller scale, protons themselves are actually bound states of strong
interaction. They are composite objects of quarks. As such, they are part of a whole class of
particles called "hadrons" from the Greek word for "strong" (αδρóσ).

The modern quantum field theory that describes the strong interaction in the Standard Model
is Quantum Chromodynamics (QCD). It is supposed to describe all phenomena of nuclear
physics. Yet, more than 50 years after the discovery of the elementary particles of QCD, quarks
and gluons [2], we are just starting to understand how QCD forms the building blocks of
matter, namely protons and neutrons, and how they in turn form heavier composite objects
- the nuclei.

The basic degrees of freedom of QCD are the mentioned quarks and gluons. Quarks are
massive point-like particles with spin 1/2 (fermions). They come in six different flavors f =
“up” (u), “down” (d ), “charm” (c ), “strange” (s ), “top” (t ), or “bottom” (b ). In addition to
the flavor quantum number, they carry charge of the strong interaction, the “color” charge.
Shortly after the development of the quark model, the need for three colors of quarks became

3
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apparent. For example, the ∆++-resonance with spin Jz = +3/2, which should be explained
as bound state of |u ↑ u ↑ u ↑〉, could not exist due to the Pauli exclusion principle, if the three
up-quarks wouldn’t differ in the color quantum number. Other experimental evidence, e.g.
from measuring cross-sections of e +e − annihilation and comparing the cross-sections of
hadronic final states to the muonic final state [3, 4]

Rhad ≡
σ(e +e −→ hadrons)
σ(e +e −→µ+µ−)

(1.1)

also suggests that there are Nc = 3 different color charges in QCD: red, green, and blue.

The strong interaction however, does not distinguish between quarks of different colors. A
theory describing the strong interaction should hence incorporate a local color symmetry.
The unitary transformations which mix quarks of three different colors are generated by the
elements of the SU(3) Lie algebra, namely λa with a = 1, . . . , 8 that satisfy

[λa ,λb ] = i

N 2
c −1
∑

c=1

fa b cλ
c . (1.2)

The standard 3×3 matrix representation of theλa according to Gell-Mann is given in App. A.1.
The fa b c are the structure constants of the SU(3) group and are totally antisymmetric in the
color labels a , b and c .

A Dirac spinor, describing a quark, transforms in the most general way with these generators
as:

ψ−→ ψ̃= exp
�

−i
λaθa (x )

2

�

ψ (1.3)

where (θ1,θ2, . . . ,θ8) are eight real parameters. Local color symmetry, i.e. local gauge invari-
ance, requires that the Lagrangian density is invariant under any transformation in the color
space according to Eq. (1.3). In analogy to Quantum Electrodynamics (QED), this requires the
introduction1 of a covariant derivative involving a new Lorentz-vector field G a

µν:

LQ C D =
∑

f ={u ,d ,
c ,s ,t ,b }

Nc
∑

i , j=1

ψ f , j (iγ
µD

j
i ,µ−m f δ

j
i )ψ

f ,i −
1

4

N 2
c −1
∑

a=1

G a
µνG µν

a (1.4)

with ψ f ,i spinors of the quark fields with flavor f and color i , γµ Dirac matrices2, m f quark

masses, and D
j

i ,µ is the gauge covariant derivative given by

D
j

i ,µ =δ
j
i ∂µ+ i gS

N 2
c −1
∑

a=1

λ
a , j
i Aa ,µ (1.5)

with gS is the dimensionless coupling strength and Aa ,µ are the gluon gauge fields. The gauge
invariant gluon field-strength tensor G a

µν from Eq. (1.4) is given by:

G a
µν = ∂µAa

ν − ∂νAa
µ − gS

N 2
c −1
∑

b ,c=1

fa b c Ab
µAc

ν (1.6)

1We use natural units in this chapter, where ħh = c = 1
2The standard representation of the Dirac matrices is given in App. A.2
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αs(MZ
2) = 0.1179 ± 0.0010

α
s(

Q
2 )

Q [GeV]

τ decay (N3LO)
low Q2 cont. (N3LO)

DIS jets (NLO)
Heavy Quarkonia (NLO)

e+e- jets/shapes (NNLO+res)
pp/p-p (jets NLO)

EW precision fit (N3LO)
pp (top, NNLO)

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 1  10  100  1000

Fig. 1.1 World data on αs as a function of the energy scale Q overlaid by the theory prediction for αS (Q 2). The
respective degree of QCD perturbation theory used in the extraction of αS is indicated in brackets (NLO:
next-to-leading order; NNLO: next-to-next-to-leading order; NNLO+res.: NNLO matched to a resummed
calculation; N3LO: next-to-NNLO). From Ref. [6].

The Lagrangian density of QCD of Eq. (1.4) is a natural consequence of local color symmetry,
and it also implies the introduction of a gauge field which is associated to the gluons. Gluons
are the massless spin-1 exchange particles which mediate the strong force by coupling to the
color charge of the strong interaction via the strong coupling constantαS . Unlike the photon,
exchange boson of Quantum Electrodynamics (QED) and electrically neutral, gluons carry
color charge themselves and can hence couple to themselves.

The self-interaction of gluons has important consequences for the behavior of the strong
interaction: as in any other quantum field theory, the coupling constant αS depends on the
momentum transfer Q of the physical process under consideration. In QCD (unlike QED),
the coupling decreases with increasing energy [5] and is given by

αS (Q
2)≡

g 2
s (Q

2)
4π
≈

1

β0 ln(Q 2/Λ2
QCD)

(1.7)

where αS is the QCD equivalent of the fine-structure constant of the electromagnetic inter-
action, β0 = (33−n f )/(12π) depends on the number n f of quark flavors that are considered
light, i.e., for which m f ≪Q , and ΛQCD ≈ 200 MeV is the QCD scale parameter.

The theory prediction for the behavior of the so-called running coupling of QCD is well con-
firmed by cross-section measurements from high-precision, deep-inelastic scattering (DIS)
data as shown in Fig. 1.1. The decrease of αS towards high Q is so strong that the single
quarks behave almost as free particles in the regime of extreme energies: high center-of-mass
scattering processes, high temperatures or when confined in hadrons with radii much smaller
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1.1. QUANTUM CHROMODYNAMICS — THE THEORY OF STRONG INTERACTION

than the size of a nucleon of about 1 fm. The fact that the coupling strength decreases towards
zero at high Q is known as asymptotic freedom [7, 8].

Processes in this regime can be calculated analog to QED using a perturbative expansion
scheme in powers of αS . Perturbative QCD has been extensively tested and verified in high-
energy accelerators such as the Large Hadron Collider (LHC) at CERN [6].

The success of this technique, however, does not remove the challenge of understanding the
non-perturbative aspects of QCD. At low momenta or larger distance scales, αS is in the order
of 1 and an expansion in powers of αS is not applicable anymore. Low-energy QCD, whose
phenomena are critical for the understanding and the concepts of many observed properties
of bound states of QCD, remains a challenge for theorists up this very day. To obtain theoreti-
cal predictions, different methods have to be applied, such as numerical simulations of QCD
(lattice QCD) or the use of effective field theories like Chiral Perturbation Theory.

1.1.1 Confinement and the quark model

The Lagrangian of QCD is written in terms of quarks and gluons. However, at low energies
these basic degrees of freedom remain hidden inside hadrons, color neutral composite ob-
jects of the strong interaction. There is clear indication of confinement not only from experi-
ments but also from lattice QCD [5, 9]. As a consequence, free quarks have not been observed
in nature, but they form a rich spectrum of observable hadrons.

Heisenberg’s observation of isospin symmetry [10] was the first formal attempt to find regu-
larities in the observed spectrum of particles. In a more modern quark picture, his discovery
can be traced back to the similarity of u- and d -quark masses which forms a SU (2) flavor
symmetry. This symmetry leads to isospin multiplets with almost identical mass (e.g. the
proton/neutron doublet or the pion triplet).

In the early 1960ies, when most of the hadron spectrum was discovered, Murray Gell-Mann [11]
and Yuval Ne’eman [12] independently of each other extended the isospin formalism by the
third flavor, the strangeness. Mathematically, the famous "eightfold way" forms a SU (3)flavor
symmetry with equally mass-degenerate hadron multiplets. Soon after, it was discovered that
all newly discovered particles of the “particle zoo” at that time could be described, ordered,
and classified according to the "eightfold way" if they were composite objects of only very few
different constituents. Gell-Mann named these constituents “quarks”. The hadron spectrum
could then be subdivided into two classes: mesons with integer spin which are a bound state
of quark with color charge and anti-quark with respective anti-color |q q 〉; and baryons with
half-integer spin which are a bound state of three quarks all with different color charge (color
singlet) |q q q 〉.

In the so-called quark model, the quantum numbers of a hadron are fully determined by the
quantum numbers of its constituent quarks. For mesons, which are the subject of research of
this thesis, the most important quantum numbers are the spin J , the parity eigenvalue P of
their wave function, their isospin I , and the third component of the isospin Iz . Another in-
teresting quantum number is the charge conjugation C . For neutral mesons and for charged
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mesons without strangeness, the charge conjugation operator Ĉ can be generalized to the
G -parity operator Ĝ with

Ĝ = Ĉ e iπIy (1.8)

The G-parity is the combination of charge conjugation and a rotation by 180◦ around the
y -axis in isospin space. Such a rotation corresponds to a sign flip of Iz , which in turn is
equivalent to a sign flip of the electrical charge and hence compensates for the action of
the Ĉ -operator. The members of an isospin triplet, e.g (π−, π0, π+), are eigenstates of the
Ĝ -operator:

Ĝ |π〉=G |π〉= (−1) · |π〉 (1.9)

with

G =C (−1)I (1.10)

The G -parity describes the characteristic of the strong interaction which does not see the elec-
tric charge of a resonance and hence cannot distinguish between differently charged states.
Processes of the strong interaction do therefore conserve G -parity.

1.1.2 QCD in the chiral limit

Following the introduction of the constituent quark model in the early 1960s, every hadron
was regarded as an ordinary quantum mechanical bound state of constituent-quarks and/or
constituent-antiquarks. In that approach, however, a fine-tuned potential is needed to ex-
plain the masses of the light pseudoscalar mesons. For illustration, consider the mass of a
neutron mN = 940 MeV: in the constituent quark model, the mass of a single quark (mQ )
would be roughly 1/3 of that of a neutron with a quark content of |ud d 〉:

mQ ≈mN /3≈ 310 MeV (1.11)

This result from baryons is consistent with the approximate result from the heavier mesons,
e.g. the ρ-meson which consists of a quark and an antiquark: mQ =mQ̄ ≈mρ/2 ≈ 390 MeV.
However, if one of the eight light pseudoscalar mesons is regarded, e.g. the pion, a quark mass
of

mQ =mQ̄ ≈mπ/2≈ 70 MeV (1.12)

is obtained. Compared to the result from Eq. (1.11), this is a completely different scale. The
pion and the other light mesons (K , η) appear to be unnaturally light. In the early 1960ies
mπ/mN ≈ 0.15 was regarded as en empirical fact that needed an explanation [13].

A mechanism, in which Nature produces unnaturally light, namely massless, spinless bosons,
is when a symmetry is spontaneously or dynamically broken in the underlying theory [14, 15].
The symmetry that is broken in the context of generating the eight pseudoscalar mesons is
called chiral symmetry and shall be briefly explained here.

Since the masses of the quarks enter the QCD Lagrangian of Eq. (1.4) as free parameters of the
theory, the Lagrangian offers various possibilities for symmetries. It is therefore worthwhile

7



1.1. QUANTUM CHROMODYNAMICS — THE THEORY OF STRONG INTERACTION

to look at the mass term of the QCD Lagrangian of Eq. (1.4) in more detail (omitting the
summation over color indices from now on for simplicity):

Lmass =
∑

f ,k={u ,d ,
c ,s ,t ,b }

−ψ f M f
k ψ

k (1.13)

with the quark mass matrix M f
k = diag (mu , md , mc , ms , mt , mb ). The flavor symmetry of the

QCD Lagrangian is only broken by this quark mass term. The quark masses of the different
flavors are [16]:

mu = (2.16±0.49)MeV md = (4.67±0.48)MeV ms = (93±11)MeV

mc = (1.27±0.02)GeV mb = (4.18±0.03)GeV mt ≈ 170 GeV
(1.14)

Apparently, the masses of the u-, d -, and s -quarks are very small compared to the remaining
three flavors and also very small compared to characteristic hadronic scales such as the pro-
ton mass (mp ≈ 938 MeV). On the other hand, the c -, b -, and t -quarks are very heavy. It is
hence meaningful to look at the so-called chiral limit in which the light quarks are regarded
as massless mu =md =ms = 0 and the heavy quarks are regarded as infinitely heavy, which
means that they disappear from the Lagrangian as active degrees of freedom.

In the chiral limit, the QCD Lagrangian features an additional, more complex symmetry re-
lated to the conserved right- or left-handedness (chirality) of zero mass spin-1/2 particles.
Right- and left-handed quark fields are projected out from the general quark fields via

ψ
f
R ,L =

1

2

�

1±γ5

�

ψ f (1.15)

As for any other field of massless fermions, right- and left-handed quark fields do not “com-
municate” and decouple from each other. The Lagrangian does therefore provide a flavor
symmetry among the three light flavors for left- and right-handed quarks separately: the
chiral SU(3)R× SU(3)L symmetry. Mathematically, transformations of the form

ψ
f
R −→

∑

k=u ,d ,s

exp

 

iθ a
R

λ
f
k ,a

2

!

ψk
R , ψ

f
L −→

∑

k=u ,d ,s

exp

 

iθ a
L

λ
f
k ,a

2

!

ψk
L (1.16)

leave the QCD Lagrangian withLmass = 0 invariant. Chiral symmetry implies two times eight
conserved Noether currents

J
µ

R ,a =
∑

f ,k=u ,d ,s

ψ f ,Rγ
µ
λ

f
k ,a

2
ψk

R , J
µ

L ,a =
∑

f ,k=u ,d ,s

ψ f ,Lγ
µ
λ

f
k ,a

2
ψk

L (1.17)

with ∂µ J
µ

R ,a = ∂µ J
µ

L ,a = 0. For convenience, it is common to give a linear combination of these
right- and left-handed currents which behave like vector, respectively axialvector currents
under parity transformations:

V µ
a = J

µ
R ,a + J

µ
L ,a =

∑

f ,k=u ,d ,s

ψ f γ
µ
λ

f
k ,a

2
ψk

Aµa = J
µ

R ,a − J
µ

L ,a =
∑

f ,k=u ,d ,s

ψ f γ
µγ5

λ
f
k ,a

2
ψk

(1.18)
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Fig. 1.2 Masses and widths of the light mesons grouped by their quantum numbers J P . Only the mesons which
have a suspected |q q̄ 〉 quark model assigned are shown. The assignment is tentative, since not for all mesons
the structure is already clarified. In particular for the scalar mesons (0+), many states that are often considered
to be four-quark states are omitted from the figure (a0(980), f0(980), f0(500)). The tentative assignment is taken
from ref. [17], masses and widths from ref. [18]. Clearly, the chiral symmetry, which should result in parity
doublets with the same mass, doesn’t seem to be manifested in the spectrum.

with corresponding charges:

Q V
a =

∫

d 3 x
∑

f ,k=u ,d ,s

ψ†
f (x )

λ
f
k ,a

2
ψk (x ), Q A

a =

∫

d 3 x
∑

f ,k=u ,d ,s

ψ†
f (x )γ5

λ
f
k ,a

2
ψk (x ) (1.19)

Now, if chiral symmetry was intact, both vector and axial charge operators would annihilate
the vacuum:

Q V
a |0〉=Q A

a |0〉= 0 (1.20)

Since Q A and Q V have opposite parity assignments, one would expect a close similarity of the
spectra of positive and negative parity states, in analogy to the intact isospin symmetry which
features corresponding mass-degenerate isospin multiplets. However, chiral symmetry does
not seem to be manifested in the spectrum of the light mesons. This can be seen in Fig. 1.2
when looking for example at the mass of the ρ-meson with mρ = 0.775 GeV and its chiral
partner the a1-meson with ma1

= 1.23 GeV. Even more striking is the discrepancy in the case
of the pseudoscalar mesons (J P = 0−). In particular, in the u- and d -quark sector, where one
naively would expect the best approximate symmetry due to the fact that in this generation,
the quark masses are smallest, one observes the biggest symmetry breaking: the a0(1450)with
ma0

= 1.47 GeV and the pion with mπ0 ≈ 0.135 GeV. The question arises, why isospin symme-
try is such a good symmetry, the eightfold way is still reasonable, but chiral symmetry is not
manifested at all in the spectrum. One must conclude that chiral symmetry is spontaneously
or dynamically broken. In addition to the experimental evidence manifested in the spectrum
of the light mesons, there is also theoretical indication from lattice QCD calculations, see [19].

Following the Nambu-Goldstone mechanism, one of the two vacuum expectation values of
Eq. (1.20) should be non-trivial. The approximate symmetry of the three flavors u , d , and
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s , SU(3)V , is a subgroup of the chiral group, it is intact, and it is of vectorial character. This
suggests that

Q V
a |0〉= 0 Q A

a |0〉 ≠ 0 (1.21)

which means that the chiral SU(3)R × SU(3)L symmetry is spontaneously broken down to
the flavor group SU(3)V . According to Goldstone’s theorem [15], there should be a spinless
particle of zero mass for each of the eight broken axial charges with

Q A
a |0〉= |φa 〉 (1.22)

Since the Q A
a are axial charges, the Goldstone states of dynamic chiral symmetry breaking

(DCSB) must have negative parity. The eight light pseudoscalar mesons (π±, π0, K ±, K 0, K̄ 0,
η) could then be explained as the Nambu-Goldstone bosons which arise as a consequence of
the breakdown of chiral symmetry from SU(3)R × SU(3)L to the flavor group SU(3)V . Follow-
ing this mechanism, the emergent bosons should be massless. However, chiral symmetry is
not exact. It holds true only in the case of massless quarks, the chiral limit. In reality, the sym-
metry is explicitly broken by the small masses of the u-, d -, and s -quarks and consequently,
also the Nambu-Goldstone bosons acquire masses. But their very special role remains clearly
visible in the hadronic mass spectrum. All other baryons and almost all mesons are well
separated from the ground state |0〉 by a characteristic gap of ≈ 1 GeV.

The approach to exploit the chiral symmetry in the chiral limit and treat the small masses of
the quarks (u , d , and possibly s ) as perturbation was pioneered by S. Weinberg [20] in the late
60ies and during the 70ies. He used an effective Lagrangian which is written in terms of the
observable fields of QCD at low energies, i.e. the Goldstone bosons, photon fields, and other
matter fields, instead of the basic degrees of freedom of QCD - quarks and gluons:

Leff =L
�

∂µU (φ),M , F, N , . . .
�

(1.23)

withφ being the Goldstone bosons of chiral symmetry breaking, M the quark mass matrix, F
the photon field, and N other matter fields. The effective Lagrangian is constructed in a way
that it also exhibits chiral symmetry, and it is thereby uniquely determined [20]. Weinberg’s
first success in calculating correct π-π scattering lengths [21] has triggered subsequent work
by Gasser and Leutwyler leading to the development of Chiral Perturbation Theory (ChPT)
[22, 23, 24].

By now, many other verified predictions of ChPT (some of which will be explained in later
sections of this thesis) have confirmed the standard mechanism of DCSB. Since it allows dis-
cussing physics in a manner consistent with the fundamental theory, ChPT came to be well-
established as theoretical method in the low-energy regime where the energies are smaller
than a typical strong interaction scale ∼mρ [5]. In particular, so-called low-energy theorems,
which can be derived from ChPT, are an exact result of QCD in the chiral limit. They are a
strict consequence of QCD depending only on some parameters that have to be determined
phenomenologically, the low-energy constants (LEC) [25].
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1.2 Pion lifetime and the chiral anomaly

The two main characteristics of QCD, confinement and the appearance of nearly massless
pseudoscalar mesons, emergent from the dynamic breaking of chiral symmetry, are non-
perturbative phenomena. Both of these phenomena are greatly expressed in the pion. Its
dual nature - “on the one hand Goldstone boson of DCSB and on the other hand a superpo-
sition of highly relativistic bound states of quark-antiquark pairs in quantum field theory - is
conceptually understood and generally accepted" [5].

The pion features another characteristic of QCD, which became apparent with the first mea-
surements of the neutral-pion lifetime.

The first definitive measurements started in the 60ies along with improvements of accelerator
technology and hence higher energies so that there exists a large Lorentz boost. In 1963,
the 18 GeV beam of the proton synchrotron at CERN was used to measure a π0-lifetime of
τ(π0) = (9.5± 1.5) · 10−17 s [26]3. This value came as a surprise as it differed significantly from
the theoretical prediction. Theoreticians at that time used the framework of Partially Con-
served Axial Current (PCAC) to obtain: τPCAC

�

π0
�

≈ 10−13 s. This prediction is three orders of
magnitudes larger than the measurements suggested.

The solution to this problem was found only in 1969, when at CERN Bell and Jackiw [27]
looked at the π0-decay and Adler [28] at the Institute for Advanced Study examined spinor
field theory. Independent of each other, they were able to determine the correct partial width
of the pion as a function of only few constants: the elementary charge e , the number of colors
Nc = 3, and a LEC - the pion decay constant [29]

Fπ = (92.21±0.14)MeV (1.24)

The pion decay constant is proportional to the transition of the one π final state to the vac-
uum. It can be thought of as the "wavefunction" overlap of the quark and the antiquark
that make up the pion. that can be determined from leptonic decays of the charged pion
(π±→µ±+ν).

With the mentioned constants the partial width of the neutral pion is:

Γ anom
�

π0→ γγ
�

= F 2
γγ ·

m 3
π0

64π
=

�

e 2Nc

12π2Fπ

�2 m 3
π0

64π
= 7.75 eV (1.25)

τ
�

π0
�

=BR
�

π0→ γγ
�

·
ħh

Γ anom
�

π0→ γγ
�

= 8.38 ·10−17 s

(1.26)

where BR
�

π0→ γγ
�

= (98.823±0.034)% [18] is the branching ratio of the neutral-pion decay
into two photons and Γ anom its partial decay width as calculated by Adler, Bell, and Jackiw.
Their result is based on the (anomalous) non-vanishing value for

Fγγ =
e 2NC

12π2Fπ
(1.27)

3This is the corrected value that was presented after a reanalysis in 1985
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in the chiral limit. The discovery of the anomaly finally explained the experimental values for
the lifetime of the neutral pion.

To understand their discovery, we go back to modern QCD. In addition to the chiral SU(3)R ×
SU(3)L symmetry, the QCD Lagrangian is also invariant under global axial U (1) transforma-
tions in the chiral limit:

ψ f (x )→ e iθγ5ψ f (x ) (1.28)

Applying Noether’s theorem should result in a ninth conserved axial current, the flavor singlet
current:

A
µ
0 =

∑

f =u ,d ,s

ψ f γ
µγ5ψ

f

=ψuγ
µγ5ψ

u +ψdγ
µγ5ψ

d +ψsγ
µγ5ψ

s

(1.29)

with ∂µA
µ
0 = 0. Being a quantum theory, one has to carry through a renormalization procedure

for the axial current during which one has renormalization choices. E.g. one can choose to
renormalize in such a way that

∂µA
µ
0 =

∑

f =u ,d ,s

i 2m f ψ f γ5ψ
f (1.30)

which indeed vanishes in the chiral limit where m f = 0 with f = u , d , s . However, it turns
out that such a renormalization violates QCD’s first principle of local color symmetry and
hence is not acceptable. When normalizing in a way that gauge invariance is preserved, an
additional term appears in Eq. (1.30) which leads to non-conservation of the axial current
even for massless quarks. Although the exact form of this term is not of specific interest for
this experimental work, it shall briefly be given for completeness:

∂µA
µ
0 =

αS

4π
Nf εµνρσG µνG ρσ +

∑

f =u ,d ,s

i 2m f ψ f γ5ψ
f (1.31)

with Nf the number of considered quark flavors andεµνρσ the fully antisymmetric Levi-Civita
tensor. The appearance of the Levi-Civita tensor is characteristic for processes driven by
the chiral anomaly and can be made plausible by parity considerations: both, the strong
and the electromagnetic interaction conserve parity. To describe interactions with an odd
number of pseudoscalars (P = −1), an additional minus sign, which is provided by the fully
antisymmetric tensor, is needed.

What Adler discovered for the example of QED, where the anomaly exists as well, and Bell and
Jackiw discovered for the example of the π0-decay was that preserving both, the axial current
and gauge invariance, is not possible. One can say that the U (1)A symmetry of the classical
Lagrangian is broken at quantum level. Such symmetry breaking is called anomalous and one
refers to anomalies as symmetries of classical Lagrangians which do not lead to conserved
Noether currents. The chiral anomaly is sometimes also called ABJ-anomaly for Adler-Bell-
Jackiw.

In QCD, the chiral anomaly is responsible for the comparatively high mass of the η′-meson
of mη′ = 958 MeV. This value is significantly larger than the masses of all other pseudoscalar
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SU (2) flavor SU (3) flavor

π0→ γγ K +K −→π+π−π0

γπ−→π−π0 η→π+π−γ
π+→ e +νe γ K +→π+π−e +νe

etc. etc.

Table 1.1 Examples of anomalous processes as described by the WZW term

mesons (see Fig. 1.2). Without the chiral anomaly, the U (1)A-symmetry would lead to a ninth
conserved Noether current which should result in nine instead of eight (almost) massless
pseudoscalar mesons.

The discovery of the chiral anomaly was put on even more profound theoretical basis in the
subsequent years by Wess and Zumino in 1971 [30] and by Witten in 1983 [31]. Wess and
Zumino showed that as consequence of the chiral anomaly in an effective theory also other
processes with odd number of pseudoscalar mesons appear. And Witten, with the framework
of ChPT at hand, observed that the conventional Lagrangian of ChPT according to Gasser
and Leutwyler, which contains only interactions with an even number of Goldstone mesons
involved, features a hidden additional symmetry which is not a symmetry of the QCD La-
grangian. This symmetry can only be broken by an additional term involving the Levi-Civita
tensor. Witten could connect the simplest possible form of such a term to the chiral anomaly
and identify it with the effective action of Wess and Zumino. Since then, the additional term
connected to the chiral anomaly in the effective Lagrangian of ChPT is called Wess-Zumino-
Witten (WZW) term.

The presence of the Levi-Civita tensor means that processes described by the WZW term are of
a different character than those of the conventional ChPT Lagrangian. As already mentioned,
the anomalous WZW term describes interactions involving an odd number of pseudoscalar
mesons or the coupling of one or two photons to one, three, five, etc. pseudoscalars. The
existence of the chiral anomaly then, in addition to predicting the decay amplitude for π0→
γγ, also makes parameter-free predictions for other processes [32], some of which are shown
in Table 1.1.

As can be seen from the table, the WZW term does not only describe the triangle diagram of
the pion decay, as shown in Fig. 1.3a, but also other anomalous box, pentagon, etc. diagrams.

π

γ

γ

(a)

γ

π

π

π

(b)

Fig. 1.3 Tree-level diagrams of anomalous processes which proceed dominantly via the Wess-Zumino-Witten
term: (a) the decay/coupling of the neutral pion to two photons (Fγγ) and (b) the coupling of one photon to
three pions (F3π)
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The most important one for this thesis is shown in Fig. 1.3b: the coupling of one photon to
three pions.

The low-energy theorems for the two processes of Fig. 1.3 determine the form factor of the
respective process. They can be derived from leading order calculations of ChPT and they are
fully governed by the WZW term. For the π0→ γγ amplitude, the form factor is given by

Fγγ =
e 2Nc

12π2Fπ
= (2.519±0.004) ·10−2GeV−1 (1.32)

which we know already from Eq. (1.25). Similar calculations for the γ3π vertex lead to the
following form factor:

F3π =
e Nc

12π2F 3
π

= (9.78±0.04)GeV−3 (1.33)

It is noteworthy that both low-energy theorems depend on the number of colors Nc . This
can be seen in the diagrams of Fig. 1.3: the triangle and the box represent quark loops and
additional freedom in the color charge of the quarks should ultimately increase the amplitude
of the interaction. Agreement between theoretical and experimental values therefore seems
to be a proof that Nc = 3. However, as pointed out by Bär and Wiese [33], a change of Nc would
imply a change of quark charges in a way that Nc directly cancels in the leading order terms of
most of the anomalous processes. In particular, it cancels in all processes involving only pions
and photons, such as the decay of the neutral pion. To justify the chosen notation of the low-
energy theorems in which the quark charges do not appear as free parameter anymore, one
might argue that these charges are known already from other processes. Hence, the anoma-
lous processes lend additional, yet excellent, experimental support to Nc = 3 supplementary
to the R-ratio of Eq. (1.1). As a final remark, it should be noted that there are anomalous
processes, e.g. the decay η→π+π−γwhose width is proportional to N 2

c . Agreement between
experiment and theory for this decay would be the ultimate proof for Nc = 3 [33].

1.3 Previous tests of the chiral anomaly

Considering the fundamental nature of the existence of the chiral anomaly and the high ac-
curacy of theory predictions of anomalous processes, it is important for experiments to verify
the predictions at the same level of precision. There are existing measurements for the veri-
fication of Fγγ and F3π.

1.3.1 Experimental tests of Fγγ

Theπ0 decay offers the most sensitive test of the phenomenon of anomalous symmetry break-
ing. It is also the most accessible one and—as previously discussed—the process due to which
the phenomenon of the chiral anomaly was discovered. The Particle Data Group (PDG) lists
five measurements that are considered for their average value for the π0 lifetime which can
be seen in Fig. 1.4.
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Fig. 1.4 τ(π0), the mean π0-lifetime in units of 10−17 s. The experimental results that are shown are: Larin et
al. (2020) combining data from PrimEx-II and PrimEx-I [34], Bychkov et al. (2009) [35], Williams et al. (1988)
with data from the Crystal Ball detector [36], Atherton et al. (1985) [26], Browman et al. (1974) [37], and the
PDG average value compiled of these five measurements [18]. The right, red, dashed line is the leading-order
prediction of the chiral anomaly as first obtained in 1969 by Adler [28], Bell, and Jackiw [27]. The left, red, solid
line is the most recent higher-order chiral prediction with its estimated 1% error (black lines) by Moussalam
and Kampf (2009) [38].

Despite the fact thatπ0 decays appear in huge abundance in many high-energy particle physics
experiments, a direct measurement of the π0 lifetime proofs to be difficult due to its small
value of τ(π0) ≈ 10−16 s. The only possibility for a direct measurement is to determine the
propagation distance of a π0 at high Lorentz-boosts before it decays. The already mentioned
first definitive measurement of the π0 lifetime in 1963 is such a direct measurement. The
value of a reanalysis in 1985 [26] is the only direct measurement that is considered for the
PDG average.

Another class of measurements made use of the Primakoff effect—see Chapter 2 for an expla-
nation—to determine the coupling strength of a pion to two photons. In the decade from 1965
to 1974, several Primakoff experiments were performed all over the world. Most of them are
neglected for the PDG average since they suffer from using the same calculation framework
based on a couple of accuracy-limiting approximations [32]. The only Primakoff experiment
from this decade contributing to the PDG value is the Browman measurement [37]. This
experiment had the advantages of higher beam energies and also utilized an improved cal-
culation framework. The most recent and most precise experimental determination of the
lifetime is a Primakoff experiment as well: at JLAB, the PrimEx collaboration conducted two
high-precision measurements in the years 2004 and 2010. The combined analysis, which is
used for the PDG value, was published in 2020 [34] and reached a 1.5% precision—similar to
theory.

The 1988 measurement by the Crystal Ball collaboration [36] is to some extent a generalization
of the Primakoff approach. At DESY, they used the e +e − collider to investigate the reaction
e +e − → e +e −γ(∗)γ(∗) → e +e −P → e +e −γγ with P = π,η,η′. In contrast to Primakoff exper-
iments which use nuclear targets, the crystal ball result is based on purely electromagnetic
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physics.

The last measurement contributing to the PDG average used data recorded with the PIBETA
detector [35]. Bychkov et al. investigated the radiative pion decay π+ → e +νγ whose form
factor is related by an isospin rotation to the amplitude of π0→ γγ.

As can be seen from Fig. 1.4 all measurements, except for the direct measurement, agree well
with the leading order prediction of the anomalous triangle diagram of Fig. 1.3 (a). The agree-
ment is even remarkably good and so far it is the strongest proof for the concept of the chiral
anomaly. However, the situation is not completely satisfying since the prediction should be
valid only in the non-physical chiral limit with vanishing quark masses. Corrections due
to explicit chiral symmetry breaking should modify this value. The most recent calculation
including such “real world” corrections as well as NNLO corrections of ChPT was calculated
by Kampf and Moussallam in 2009 [38]. It is drawn in Fig. 1.4 as solid red line with its 1% error.
The two most precise measurements do not agree with this prediction within their errors. To
which extent the chiral anomaly is correctly described by the WZW term of ChPT and how its
predictions in the chiral limit are correctly extrapolated to the physical quark masses is hence
not yet satisfactorily clarified.

1.3.2 Experimental tests of F3π

A high-precision verification of the hypothesis of the chiral anomaly in other processes gov-
erned by the WZW term is certainly of interest. In the case of the γ3π vertex, as sketched
in Fig. 1.3 (b), there exists a measurement that was performed in 1987 by Antipov et al. [39].
The experiment was carried out at the 40 GeV negative-pion beam of the IHEP accelerator
(Serpukhov, Russia) with the SIGMA spectrometer. The vertex of interest can be accessed in
reactions

π−γ(∗)→π−π0 (1.34)

where the incoming negative pion is the beam particle and the photon is provided by the
Primakoff effect. For details about Primakoff reactions, please refer to Chapter 2.

To extract the value of F3π, Antipov et al. were facing the challenge that the prediction of the
form factor according to Eq. (1.33) is only valid at the non-physical point of s = t = u = 0 (s , t ,
and u being the Mandelstam variables see Sec. 2.1.1) which can only be accessed in the chiral
limit with vanishing quark masses and hence massless pions. In real world, a center-of-mass
energy of at least

p
s > 2mπ is necessary to produce the two pions in the final state. For details

about the kinematics, refer to Sec. 2.3.

Antipov et al. measured the number of identified π−γ(∗) → π−π0 events just above the kine-
matic threshold for 2mπ <

p
s < 4mπ as shown in Fig. 1.5. They assumed a constant average

amplitude for the form factor F 3π over the experimentally covered range in s and in t and
normalized the amount of expected events to the atomic number Z of their target materials
and selected range for the photon momentum q 2 < 2·10−3 GeV2. Finally, they fitted the theory
prediction folded with their acceptance to the data as indicated by the red line in Fig. 1.5 and
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Fig. 1.5 Distribution of the events in reaction (1.34) over s as measured by Antipov et al. [39]. The line is
the theoretical cross-section with account for the acceptance normalized for the number of events from
reaction (1.34) in the range q 2 < 2 ·10−3 GeV2.

obtained:
F Antipov

3π = (12.9±0.9±0.5)GeV−3 (1.35)

This result suggests some tension with the low-energy theorem of Eq. (1.33) when it is directly
compared. However, in 2001 Ametller et al. [40] showed that “resort to theory is necessary in
order to bridge the gap between F3π(0, 0, 0) and the measured amplitude F 3π(s , t , u )”. Close
to the threshold region where the Mandelstam variables are small compared to the typical
hadronic scale set by the ρ meson mass, they constructed a systematic expansion within
the framework of ChPT. If isospin symmetry is preserved, the tree-level term of the chiral
expansion does not feature any dependence on the Mandelstam variables: F LO

3π (s , t , u ) = F3π.
But with one- and two-loop contributions having become available [41, 42], Ametller et al.
obtained a different value from the Serpukhov data:

F NNLO
3π = (11.4±1.3)GeV−3 (1.36)

which is lower than the result from Eq. (1.35) but still 1.3σ from the theory prediction.

In a second step, they took isospin breaking effects into account and realized that there is a
significant electromagnetic correction to the leading-order term. For details about the cor-
rections, please refer to Sec. 2.3.3. They calculated the correction and obtained:

F Ametller
3π = (10.7±1.2)GeV−3 (1.37)

finally removing the tension of the experiment with the low-energy theorem.

In 2005, an experimental value for F3π was extracted from π−e − → π−e −π0 reactions [43].
This extraction was based on cross section measurements for the given process that was pub-
lished already in 1985 by the NA7 experiment at CERN: Amendolia et al. [44] reported 36
identified events sitting on a dominant background of elastically scattered π−e −. Although
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the experimental background was described, comparisons of experimental and theoretical
distributions in different kinematic variables have not been published and this data is lost.
It is hence impossible to verify the treatment of the background. The 36 identified π−e − →
π−e −π0 events correspond to a cross section of (2.11±0.47)nb [44]. I. Giller et al. went ahead
and extracted a value for F3π from this data and obtained [43]:

F NA7
3π = (9.6±1.1)GeV−3 (1.38)

Both results are in agreement with the theory prediction. However, they are only tested at the
10% level. In particular for the NA7 result, there are technical inconsistencies and questions
about the correct handling of the data arise. It would clearly be desirable to improve the
accuracy of experimental verification to the same level as theory (O (1%)) and confront the
low-energy theorem with more modern data and refined analysis approaches. The COMPASS
experiment at CERN recorded data with a negative pion beam impinging on nuclear targets
in 2009 and 2012. Together with a calorimetric trigger on neutrals in the final state, this data
set contains π−γ(∗)→ π−π0 events as already shown in [45] and [46]. This thesis will pave the
way for a state-of-the-art extraction of a value for F3π based on the COMPASS 2009 Primakoff
data set.

1.4 Radiative width of theρmeson

The measurement of F3π is strongly connected to a measurement of the radiative width of
the ρ(770)meson, Γ (ρ±→ π±γ). For details, refer to Section 2.3.2. The ρ is an isospin triplet
whose three states areρ+,ρ0, andρ−. Theρmesons are the lightest vector mesons

�

J P = 1−
�

with a mass of mρ = (775.26±0.25)MeV [18] and hence take a special place in the spectrum
of light mesons. This section will illustrate the importance of measuring the radiative width
of the ρ and discuss previous experimental determinations.

1.4.1 Motivation to study radiative decays of vector mesons

Radiative decays of the low-lying vector mesons are very interesting for tests of the quark
model, SU(3), and the Vector Dominance Model. An overview of early publications during
the 70ies after the development of the quark model can be found in [47]. In analogy to the
hydrogen atom, the radiative decay of a vector meson to a pseudoscalar meson can be viewed
as a transition from a 3S 1 to a 1S 0 state of the quark-antiquark system in the constituent quark
model. Simple quark model calculations for the radiative width of the ρ that can be seen as

|ρ−〉= d ↑ ū ↑ (1.39)

vary

Γ (ρ−→π−γ)qm =











120 keV in 1965 [48]

(67±7)keV in 1980 [47]

45.8 keV in 1992 [49]

(1.40)
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and spark interest in a modern, solid experimental determination. More recent lattice cal-
culations [50, 51] approach the physical pion mass and are now in a position to be tested
quantitatively. The updated value from lattice calculations for the physical pion mass is [52]

Γ (ρ−→π−γ)lattice = (168±13±8)keV (1.41)

which suggests tension with the experimental values.

Interest in the radiative width of the ρ has also been triggered by a recent determination of
the anomalous magnetic moment of the muon [53], which suggested some tension with the
SM. The magnetic moments of electron and muon, defined as

µ⃗ℓ = gℓ

�

q

2mℓ

�

s⃗ (1.42)

with the Landé g -factor
gℓ = 2(1+aℓ) (1.43)

(ℓ = e ,µ) have played an important role in the development of the SM. Following the pre-
diction of the Dirac equation, the g -factor for both, electron and muon, should be gℓ = 2.
Deviations from this value, collected in aℓ, the anomalous magnetic moment, arise within
the SM from virtual effects including electromagnetic, strong, and weak interactions. For a
high-precision measurement of the anomalous magnetic moment of the muon aµ, the inter-
national theory community calculated the contributions to aµ from the SM [54]. Different
contributions add to aµ. The one with the biggest relative uncertainty is hadronic light-by-
light scattering (HLbL). Data-driven calculations of HLbL contributions rely on experimental
input [54], in particular for the electromagnetic form factors of the light vector mesons. A
precise experimental determination of the radiative width of the ρ(770) will help to reduce
the uncertainties on the determination of (g −2)µ.

1.4.2 Previous measurements

Direct measurements of vector meson decays V to a pseudoscalar meson P+γ are not feasible
due to the small partial rates of these processes. The inverse reaction can be studied by photo-
producing the vector meson through the exchange of a virtual pseudoscalar meson between a
nuclear target and an incident photon: γbeam+P →V . However, several hadronic exchanges
can lead to the same final state and determinations of the radiative width become model-
dependent.

Reversing the role of beam and target is advantageous: An incident pseudoscalar can then
absorb a photon from the Coulomb field of the target nucleus (Primakoff process) and form
the vector meson: Pbeam + γ → V . For details on Primakoff processes, see Chapter 2. But
even then, there will be hadronic exchanges contributing. However, as will be explained in
Sec. 2.1.3, Coulomb production is well understood and dominates over hadronic production
mechanisms at high beam energies, which allows for a less model-dependent extraction of
radiative widths. Previous measurements of the radiative width of the ρ± all used the Pri-
makoff effect in the reactionπ±A→π±π0A. The three measurements contributing to the PDG
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Fig. 1.6 Γ (ρ±→ π±γ), the radiative width of the ρ (770). The experimental results that are shown are: The PDG
average value [18] in red compiled of the three values in blue, Capraro et al. (1987) [55], Huston et al. (1986) [56],
Jensen et al. (1983) [57], and the for the PDG average neglected value of Gobbi et al. (1974) [58] in green.

average value and the first definitive measurement of the radiative width are summarized in
Fig. 1.6.

The first definitive measurement by Gobbi et al. [58] in 1974 was conducted at Brookhaven
National Laboratory. They used a pion beam of pbeam = 22.6 GeV. At such comparatively low
beam energies, hadronic exchanges still contribute significantly. It is essential to reliably sep-
arate Coulomb and strong parts. In particular, a2 exchange effects may have been neglected
in early extractions [47]. This is probably the reason accounting for the discrepancy between
the first extractions and later measurements.

All three experiments that are considered by the PDG for the average value have been per-
formed at higher beam energies. Jensen et al. (1983) [57] used the π− beam at Fermilab at
incident beam momenta of 156 GeV and 260 GeV where Coulomb production is expected to
dominate the coherent cross section. To be able to study possible hadronic contributions,
they measured at two different beam energies. Later in 1986, Huston et al. [56] conducted
a similar experiment at Fermilab, this time with a π+ beam at 200 GeV to test isospin sym-
metry at the same time. The last measurement contributing to the PDG averaged value is
an experiment at CERN: Capraro et al. extracted the ρ radiative width from data obtained
with a π− beam at 200 GeV. Compared to the previous measurements, they employed an
improved background subtraction based on Monte-Carlo simulation of the dominantπ−π0π0

background.

All the mentioned measurements used a Breit-Wigner fit to extract the partial decay width of
the ρ. As it will become clear in Sec. 2.3.2 of this thesis, the shape of the ρ can not accurately
be described by a Breit-Wigner function. Moreover, none of the above mentioned experi-
ments considered chiral production of π−π0 as possible source of background. We will see
in the following, that the measurement of F3π and Γ (ρ→π−γ) are connected, form potential
background to each other, and are best measured in a combined approach.
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Chapter 2

Primakoff reactions

Various different kinds of reactions may occur in a scattering process, each with characteristic
dependencies on kinematic variables. The reaction of interest for the determination of F3π

is a so-called Primakoff reaction. Still, the understanding of other processes is important,
since they potentially form background contributions to our desired reaction. This chapter
will therefore start with a very brief introduction to scattering processes in general, and sub-
sequently focus on Primakoff reactions. In particular, the kinematics of the π−γ(∗) → π−π0

reaction will be discussed in greater detail, since it is the process which gives access to the
γ3π vertex.

2.1 Introduction to scattering processes

In a typical scattering experiment, a beam particle 1 hits a target particle 2. The target particle
may be at rest (fixed-target setup) or accelerated (collider setup). The interaction of the two
particles potentially results in the production of several (Nf ) new particles in the final state:

1+2→ 3+4+ · · ·+ (Nf +2) (2.1)

Some of the new particles might be short-lived and will only be detected by its decay products
in the final state. Such a short-lived particle is called a resonance (X ) and it can occur in the
scattering process in the following ways:

1+2→ X → 3+4+ · · ·+ (Nf +2) (2.2)

or
1+2→ 3+X → 3+

�

4+ · · ·+ (Nf +2)
�

(2.3)

2.1.1 Mandelstam variables

Since any decay of a resonance X into a multi-particle final state can be modeled as a se-
quence of two-body decays, the two-body process plays a distinguished role. We will therefore
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restrict ourselves to two-body kinematics 1+2→ 3+4 in the following.

Consider two incoming particles with momenta p⃗1 and p⃗2 and masses m1 and m2 and two
outgoing p⃗3 and p⃗4. The four-momenta are defined as p

µ
i = (Ei , p⃗i ) with E 2

i =m 2
i + p⃗i

2. The
Lorentz-invariant Mandelstam variables are then defined as:

s = (pµ1 +p
µ
2 )

2 = (pµ3 +p
µ
4 )

2 =m 2
1 +m 2

2 +2(E1E2− p⃗1 · p⃗2)

t = (pµ1 −p
µ
3 )

2 = (pµ2 −p
µ
4 )

2 =m 2
1 +m 2

3 −2(E1E3− p⃗1 · p⃗3)

u = (pµ1 −p
µ
4 )

2 = (pµ2 −p
µ
3 )

2 =m 2
1 +m 2

4 −2(E1E4− p⃗1 · p⃗4)

(2.4)

and they satisfy

s + t +u =
4
∑

i=1

m 2
i (2.5)

which means that there are only two independent variables to fully characterize a two-body
scattering process for given masses mi . In the center-of-momentum (cm) frame, we have
p⃗1 =−p⃗2 and p⃗3 =−p⃗4 and thus:

s = (E1+E2)
2 = (E3+E4)

2

t =m 2
1 +m 2

3 −2
�

E1E3− |p⃗1||p⃗3|cosθcm

�

u =m 2
1 +m 2

4 −2
�

E1E4− |p⃗1||p⃗4|cosθcm

�

(2.6)

introducing the scattering angle θcm between particle 1 and 3 in the s -channel center-of-
momentum frame. The physically allowed phase-space region for the s -channel process is
defined by two independent variables s and θcm and features a threshold in s :

s ≥ (m1+m2)
2 and −1≤ θcm ≤+1 (2.7)

The differential cross-section for any inelastic scattering process according to equation (2.1)
is given by:

dσ=
1

F
|Mfi|2dφNf

(pµ1 +p
µ
2 ; p

µ
3 , . . . , p

µ
Nf +2) (2.8)

with the flux factor F , which for a collinear collision of two particles is generally given by

F = 4
�

(p1µp
µ
2 )

2−m 2
1 m 2

2

�1/2
, (2.9)

the Lorentz-invariant Nf -body phase-space element dφNf
, and the matrix element (or ampli-

tude) for the transition from initial state |i 〉 to final state | f 〉Mfi. Again looking at the two-body
reaction in the center-of-momentum frame, we have

p
s = E1 + E2 = E3 + E4, |p⃗1| = |p⃗2| =: p ,

and |p⃗3| = |p⃗4| =: p ′. The flux factor in Eq. (2.9) and the phase-space element in Eq. (2.8)
become in this case

F = 4p
p

s (2.10)

and

dφ2 =
1

4π

p ′
p

s

dΩ

4π
(2.11)

with dΩ= d cosθcm dφ is the solid angle element around the scattering angle θcm =∠(p⃗1, p⃗2).
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Fig. 2.1 Definition of the Gottfried-Jackson (GJ) and helicity (HF) reference frames. The target (P⃗ GJ) and the
recoil (P⃗ ′GJ) span the production plane in green. The two particles in the final state (p⃗1 and p⃗2) go back-to-back
and form the red plane with the beam particle.

2.1.2 Coordinate systems

The angular distributions of a physics process are studied in the cm-frame of the interaction
or the decay. It is common to introduce the Gottfried-Jackson (GJ) reference frame. In this
frame, the direction of the beam particle defines the zGJ axis. This suffices to define the polar
scattering angle θGJ, the angle in the red plane between an outgoing particle and the beam
direction. However, specific angular distributions from conservation of angular momentum
of parent and daughter particles including their spin, would result in modulations of the
azimuthal angle. The reference plane for azimuthal distributions is given by the so-called
production plane, which is the plane that is spanned by target, recoil, and beam momenta.
The yGJ axis is defined as the normal of the production plane:

ŷGJ =
p⃗ GJ

recoil× p⃗ GJ
beam

|p⃗ GJ
recoil× p⃗ GJ

beam|
=

p⃗ lab
beam× p⃗ lab

X

|p⃗ lab
beam× p⃗ lab

X |
(2.12)

withϑ andϕ being the angle between recoil and beam momentum in the GJ-frame and beam
and final state momentum in the laboratory frame. Circumflexes indicate unit vectors. As
suggested in Eq. (2.12), ŷGJ can be calculated in the lab frame from the measured directions of
the beam and the final state vector. Fig. 2.1 illustrates the definition of the Gottfried-Jackson
frame. The angular distributions can be described by the polar angle θGJ and the azimuthal
angle φGJ (the angle between the red and green plane). The azimuthal angle in the GJ frame
is also called Treiman-Young angleφTY.

Since in the GJ frame X is at rest, the momenta of the two particles forming X are back-to-
back. If one of these particles is unstable and decays further, e.g. particle 1 in Fig. 2.1, its
decay is described in the helicity frame (HF). The HF is constructed by boosting into the rest
frame of the unstable particle. The zHF axis points into the original direction of motion of the
unstable particle in the GJ frame, p⃗1

GJ in Fig. 2.1. The y axis of the HF frame is defined as
ŷHF = ẑGJ× ẑHF/|ẑGJ × ẑHF | and the x̂HF is defined to form a right-handed coordinate system.
Again, the daughter particles of the decaying particle are emitted back-to-back in the helicity
frame and angular distributions can be given by θHF andφHF.
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2.1.3 Strong production mechanisms of light mesons at COMPASS

Interactions of our beam pion with the target can be of strong and electromagnetic character,
see Fig. 2.2. Since the strong production of π−π0 and π−π0π0 final states constitutes the po-
tential background for π−γ(∗)→ π−π0 reactions (indeed the biggest component is the strong
production of π−π0π0), we will focus in this section on the strong production mechanisms
of light mesons at COMPASS and summarize their dependencies on relevant kinematic vari-
ables.

At high beam energies, as it is the case for the COMPASS experiment, momentum is trans-
ferred to target nuclei mostly in the t -channel [59] (see Fig. 2.2). The four-momentum carried
by the exchange particle is called qµ by convention. It should be noted that the exchange
particle is a space-like virtual particle and hence q 2 < 0. To work with positive values, one
commonly defines Q 2 in the following way:

q 2 = qµqµ =:−Q 2 (2.13)

The longest-range component of the strong force between our beam particle and the target
nucleon/nucleus is provided by the exchange of the lightest color-singlet bosons. The ex-
change of heavier particles will lead to contributions at shorter ranges. Regge theory [60, 61,
62] provides a successful tool to sum up contributions of the different exchange particles.
Ordinary Regge exchange particles are for example theπ, theρ,ω, or f2. These quasi-particles
are called Reggeons (R). Experimentally, it is known that the differential cross section falls
approximately exponentially with Q 2 for small Q 2:

dσ

dQ 2
∝ g (Q 2) · e −bQ 2

(2.14)

with b being a positive number that is characteristic for the target material, the Reggeon scat-
ters off, and g (Q 2) a coupling constant [59], whose Q 2-dependence is given by the quantum
numbers of the considered Reggeon.

At high energies however, strong hadron scattering processes are not mediated by ordinary
Regge exchange particles, but mainly by Pomeron exchange. Such processes are called diffrac-
tive. They completely dominate the cross section at high center-of-mass energies and feature

π− 1

n
R,P, γ∗

N N

Fig. 2.2 Production of an n-body final state X via diffraction or photon exchange of a pion beam on a target
nucleon/nucleus N .
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Table 2.1 Dependencies of the total cross section on selected experimental parameters for different scattering
processes. The shown Q 2 dependencies are valid for small Q 2.

Primakoff P (strong) R (strong)

σ(Ebeam) ∝ ln(
p

E ) ∝ const. ∝ 1/
p

E
σ(Atarget) ∝ const. ∝ A2/3 ∝ A2/3

σ(Ztarget) ∝ Z 2 ∝ const. ∝ const.

σ(Q 2) ∝ Q 2−Q 2
min

Q 4 ∝
�

Q 2
�M

e −bQ 2 ∝ g (Q 2) · e −bQ 2

a characteristic Q 2-dependence

dσ

dQ 2
∝

�

Q 2−Q 2
min

�M
e −b (Q 2−Q 2

min) (2.15)

with M being the spin projection, i.e. the spin of the outgoing system projected on the beam
axis. The π− +Ni→ π−π0π0 +Ni reactions, which are the reactions of interest in this thesis
in terms of the diffractive constribution, are dominated at small masses of m3π by M = 0 [63].
The Q 2-dependence has to be multiplied with the (strong) form factor of the target nucleus
with a characteristic series of diffractive minima and maxima in Q 2.

For Pomeron exchange, the produced intermediate or final state X has the same isospin,
strangeness, C -, and G -parity as the beam particle. For a pion beam in particular, this means
that in diffractive reactions only states with I G = 1− can be produced and hence according to
Eq. (1.9), only final states with an odd number of pions are possible:

G (|π〉) =−1 ̸=G (|ππ〉) = +1 (2.16)

In addition to the above mentioned strong processes, also electromagnetic interaction be-
tween the beam particle and the nucleus can occur. These electromagnetic interactions be-
tween an ultra-relativistic beam particle and a nucleus are called Primakoff reactions and will
be the main focus of this work. The next sections are dedicated to explain the dependencies
of Primakoff reactions on the kinematic variables.

Table 2.1 summarizes the dependencies ofR- andP-exchange and also lists the dependencies
of Primakoff reactions, as discussed below, for comparison. In terms of relative cross section
among the three presented reactions, diffractive processes dominate at beam energies of
interest. However, in final states with an even number of pions, P-exchange is forbidden due
to G -parity conservation of the strong interaction, and Primakoff reactions dominate over
possibly allowed other R-exchanges (e.g. π and ω). At last, it should be noted that multi-
Regge exchange processes like central-production or Deck-like effects [64] also contribute and
modify the observed t̂ -distributions.

2.2 The Primakoff effect

In the following, I will explain and motivate Primakoff reactions and the relevant kinematic
quantities. These quantities span five orders of magnitude from tiny momentum transfers
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|q | = O (10−3 GeV/c ) to the required beam momenta |pbeam| = O (102 GeV/c ). The large scale
variation imposes great experimental challenges which will be covered in Chapter 3. The
topic of this chapter are the more formal algebraic and numerical challenges that also arise
from dealing with this large scale difference [45].

It is essential to understand the kinematics of Primakoff reactions for two reasons: first, Pri-
makoff reactions may differ in certain kinematic variables from other processes and it is there-
fore possible to select and distinguish them from background processes, and second a pro-
found knowledge of the kinematics is needed to determine the acceptance of the spectro-
meter via Monte Carlo simulation. This section will cover kinematic quantities of Primakoff
reactions in general. The particular kinematics of the π−γ(∗)→π−π0 reaction will be covered
in Section 2.3.

2.2.1 Henry Primakoff’s idea of a photon target

When beam particles interact electromagnetically in the Coulomb field of a target nucleus,
the interaction is mediated by photons. Henry Primakoff proposed in 1951 to make use of the
electromagnetic interaction and measure theπ0 production cross section in the collision of a
beam photon and a photon stemming from the Coulomb field of a nucleus [65] as depicted in
Fig. 2.3. We know this reaction already from Sec. 1.3: the up-to-now most precise determina-
tion of the π0-lifetime [34] follows the original approach of Henry Primakoff and utilizes the
Primakoff effect to measure the production cross section of π0-mesons.

Primakoff’s idea of a “photon” target exploits the similarity between the electromagnetic fields
of a relativistically moving particle and the fields of a pulse of radiation. A comprehensive
treatise of the Lorentz-transformations of the electromagnetic field of a relativistic particle
can be found in Ref. [66] and is shortly summarized in Appendix A.3. It motivates why the
interaction of an ultra-relativistic particle with the Coulomb-field of a nucleus can be ap-
proximated by the exchange of a single photon—an approximation that von Weizsäcker and
Williams had already formalized in the 1930ies (see Section 2.2.3). Henry Primakoff was the
first to propose to exploit this fact to study photon-photon interactions. Extending the origi-
nal idea, one considers Primakoff reactions or the Primakoff effect as scattering of any ultra-
relativistic particle, not only photons, on Coulomb-field quanta, i.e. quasi-real photons, of a
nucleus.

γ

γ(∗)

A,Z

π0

γ

γ

Fig. 2.3 Photo-production of a π0: an incident photon interacts electromagnetically with a target nucleus with
atomic number A and charge number Z . The interaction, which takes place in the Coulomb field of the
nucleus, is mediated by photon exchange. The two photons can form a π0-meson.
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CHAPTER 2. PRIMAKOFF REACTIONS

2.2.2 Minimum momentum transfer

One of the most important quantities by which Primakoff reactions are characterized, is the
transferred momentum q to the nucleus. As we will see in this chapter, there is a minimum
momentum transfer Qmin due to four-momentum conservation. Equations for Qmin have
already been established in Refs. [45, 67] neglecting the small recoil energy of the nucleus.
However, for the specific Primakoff channel of interest for this thesis π−γ(∗)→π−π0 it turned
out to be necessary to include the recoil particle into the considerations.

To develop the necessary equation, we will start with the kinetic energy which is transferred
to the nucleus. Fig. 2.4 shows the typical kinematic in the laboratory frame and the chosen
naming convention for the involved momenta when a beam particle with four-momentum
pbeam scatters of a fixed target with mass M . Since for a fixed-target setup, the target nucleus
before the collision ptarget is at rest and after the collision precoil, it has gained the energy Ekin

and three-momentum q⃗ , we have:

q = ptarget−precoil =

�

M
0⃗

�

−
�

M +Ekin

−q⃗

�

=

�

−Ekin

q⃗

�

(2.17)

The squared four-momentum of the target is Lorentz-invariant and we can say:

p 2
target = p 2

recoil

M 2 =M 2+2M Ekin+E 2
kin− q⃗ 2

⇒ Ekin =
Q 2

2M

(2.18)

where we have used that E 2
kin− q⃗ 2 = q 2 =−Q 2. The minimum kinetic energy (Ekin)min, which

the nucleus gains in the collision is given by (Ekin)min =Q 2
min/2M .

Before we derive expressions for Qmin, we have to define pX : it is the sum of the four-momenta

pbeam

pX

precoil

qqT

q‖

qqT

q‖

2 ptarget

θ

Fig. 2.4 Kinematics for a fixed-target Primakoff process into final state X in the laboratory frame: the target
nucleus with mass M is at rest before the collision

�

ptarget = (M , 0⃗)
�

and has four-momentum precoil = (M +
Ekin,−q⃗ ) after the collision. The three-momentum of the final state

�

p⃗X =
∑

i=out p⃗i

�

has an angle θ w.r.t. the
incoming beam particle. The momentum trasnfer q can be split into two parts, one pointing parallel to the
beam q∥, and one perpendicular to beam direction qT .
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of all outgoing particles and its square gives the Mandelstam s of the beam-X -γ vertex:

�

p
µ
beam+qµ

�2
= p 2

X =

�

∑

i=out

p
µ
i

�2

=: s (2.19)

The minimum momentum transfer appears in exact longitudinal kinematics [45], meaning
that p⃗beam ∥ q⃗ ∥ p⃗X . To arrive at an expression for Qmin, we start to derive general expressions
for q :

q 2 =
�

p
µ
X −p

µ
beam

�2
= s +m 2

beam−2EbeamEX +2p⃗beam · p⃗X

= s +m 2
beam−2EbeamEX +2|p⃗beam||p⃗X |cosθ

= s +m 2
beam−2Ebeam(Ebeam−Ekin) +2|p⃗beam|

�

|p⃗beam| −q∥
�

= s −m 2
beam+2EbeamEkin−2pbeamq∥

(2.20)

where we have used that EX = Ebeam−Ekin and q∥ = |p⃗beam|−|p⃗X |cosθ . Eq. (2.20) yields for q∥:

q∥ =
s −m 2

π+2EbeamEkin+Q 2

2pbeam
(2.21)

and finally, we obtain for exact longitudinal kinematics, i.e. Q = q∥ =Qmin:

Qmin(s ) =
s −m 2

π

2pbeam
︸ ︷︷ ︸

Q 0
min

+
Q 2

min(s ) +2Ebeam (Ekin)min

2pbeam
(2.22)

Considering the scale difference in pbeam and Qmin, the best way to solve this quadratic equa-
tion numerically is to start with Qmin(s ) = Q 0

min and iterate according to Eq. (2.22). Conver-
gence to double precision is achieved within a single step in the kinematics relevant in this
work [45].

2.2.3 Weizsäcker Williams factorization

In the 1930’s von Weizsäcker and Williams calculated QED processes, specifically so-called
bremsstrahlung events [68, 69]. They used the method of virtual quanta which correlates the
effects of a collision of a highly-relativistic, charged particle with a nucleus to a single colli-
sion of this particle with a quasi-real photon representing the Coulomb field of the nucleus.
The equivalent photon approximation (EPA) is justified since the electromagnetic field of a
relativistic charge resembles a pulse of plane polarized radiation (see App. A.3).

Working out the quantum-mechanical equations, they discovered that the cross section for
scattering of any charged particle (in our case a pion) in the Coulomb-field of a nucleus decou-
ples for very small momentum transfer into two factors: one factor describing a real-photon
cross section dσπγ→X /dφn with its n-dimensional phase space φn , the other one a density
of almost real, small-momentum photons surrounding the nucleus. Since these surrounding
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Fig. 2.5 Shown in (a): Q dependence of the cross section dσ
ds ·dQ ·dΦn

in the Weizsäcker-Williams equivalent photon
approximation for a fixed

p
s = 770 MeV. The distribution features a characteristic peak at tiny momentum

transfers of Q =
p

3Qmin. Shown in (b): direction of the momentum transfer (longitudinal or transverse)
in comparison to |q⃗ |. As can be seen already slightly above the threshold Qmin, most of the momentum is
transferred in transverse direction with respect to the beam.

photons represent the Coulomb field of the nucleus, the density of the quasi-real photons
increases with higher atomic number Z :

dσEPA

ds dQ 2dφn
=

Z 2α

π(s −m 2
π)

F 2(Q 2)
Q 2−Q 2

min

Q 4
︸ ︷︷ ︸

flux of quasi-real photons

·
dσπγ→X

dφn
(2.23)

with F (Q 2) being the electromagnetic form factor of the nucleus, and s the corresponding
Mandelstam variable in the processπ+γ→ X according to Eq. (2.19) and displayed in Fig. 2.6.

The electromagnetic, elastic form factor F (Q 2) is related to the charge distribution of the
nucleus. In the limit of very small momentum transfer, where the cross section of Primakoff
reactions peak, the nucleus can be approximated by a homogeneous sphere with sharp radius
R :

ρ(R ) =

¨

3/(4πR 3) for r ≤R

0 for r >R
(2.24)

The elastic form factor for a sphere with sharp radius is given by [70]:

Fel(Q
2) =

3

(Q R )3
(sin(Q R )−Q R cos(Q R )) (2.25)

The charge radius of the nucleus can be approximated by

R ≈R0A
1
3 (2.26)

with R0 ≈ 1.2 fm and A the mass number of the nucleus (A = 58 for nickel).

We see in which sense Qmin is an important quantity: it rules the Q 2 dependence of the dif-
ferential cross section dσEPA/ds dQ 2 dφn , leading to the characteristic Weizsäcker-Williams
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2.2. THE PRIMAKOFF EFFECT

dependence. Since the distribution features a sharp peak at low Q 2, it is convenient to show
the cross section

dσEPA

ds dQ dφn
= 2Q ·

dσEPA

ds dQ 2 dφn
(2.27)

as function of Q instead of Q 2 to optimize visibility of the features at low Q . This is done
exemplarily in Fig. 2.5a for a fixed

p
s = 770 MeV: starting at Q = Qmin, the cross section

dσEPA

ds ·dQ ·dφn
rises steeply to its maximum at Q =

p
3 ·Qmin followed by a strong drop with in-

creasing momentum transfer Q . This Q dependence of the cross section is usually referred to
as Primakoff peak, which appears at tiny momentum transfers of Q ∼ O (1 MeV). To identify
Primakoff events, it is hence of great importance to have a goodQ -resolution and select events
at these tiny momentum transfers.

Concerning the direction of q⃗ , the laboratory components of q⃗ are given by Eq. (2.21) and in
transverse direction by:

qT =
Ç

q⃗ 2−q 2
∥ =

Ç

Q 2+E 2
kin−q 2

∥ (2.28)

Looking at the distributions for qT and q∥ as shown in Fig. 2.5b, we see that for most of the
events the momentum is mainly transferred perpendicular to the beam direction. Typical
values for Ekin do not exceed 50 keV and are for the majority of the shown distribution in
Fig. 2.5a three orders of magnitude smaller than Q . We see therefore from Eq. (2.28) that
qT ≈Q . This is an important observation since typically experiments measure only qT due to
insufficient longitudinal resolution in terms of q∥.

Another consequence of the relatively small values of Ekin is that Primakoff events are exclu-
sive reactions, meaning that the energy balance is given by

∆E = EX −Ebeam ≈ 0 (2.29)

To identify, select, and distinguish Primakoff events from background processes, one has to
look for events with∆E = 0 at very small qT . This exploits the sharpness of the Primakoff peak
compared to the relatively shallow Q 2 distributions of the strong interaction (see tab.2.1) and
distinguishes Primakoff events from other reactions.

2.2.4 Nuclear excitations

The scattering process does not necessarily have to be elastic. The exchanged photon may
excite the nucleus. In this case, the photon has to transfer additional excitation energy. In
general, we have for Primakoff reactions π−(p1)A→ A∗π−(p2)π0(qπ0 ) on a nucleus with mass
number A and recoiling (eventually excited) nucleus A∗,

π−(p1)γ
∗(q )→π−(p2)π

0(p0) (2.30)

The incoming beam four-vector has energy-momentum components p1 = (Eb , p⃗b ). The di-
rection of p⃗b fixes the direction of ẑ . The four-vector q shall have the energy component q̃E

which is composed of

q̃E =−(Ekin+∆E ) (2.31)
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the kinetic energy Ekin of the recoiling A∗ and its excitation energy∆E in the laboratory frame,
in which the incoming nucleus A is at rest. From this definition follows that q̃E is always a
negative quantity. With pA∗ = (EA∗ ,−q⃗ ) it follows that

p 2
A∗ = M 2

A∗ = E 2
A∗ − q⃗ 2

= (MA +∆E )2 = (MA +∆E +Ekin)
2− q⃗ 2 (2.32)

so

2(MA +∆E )Ekin+E 2
kin = q⃗ 2 (2.33)

and

Ekin =
q⃗ 2−E 2

kin

2(MA +∆E )
(2.34)

may be viewed as a recursive determining equation for Ekin for any given q⃗ 2 and ∆E , which

always converges starting with E (1)kin = 0.

The three-momentum components of q are decomposed into longitudinal and transverse
parts with respect to the incoming beam direction, q⃗ = q⃗∥ + q⃗T . The parallel component lies
by definition in ẑ direction and q⃗T · ẑ = 0. For the case of the incoming particles (the pion and
the nucleus) being spin-zero particles, there is no given reference transverse axis, and it may
be chosen such that x̂ and ẑ span the plane in which the vector of the recoiling nucleus lies,
q⃗T · ŷ = 0. This is unique for all cases except the limiting case in which qT = |q⃗T | → 0 (with
vanishing phase space). From

s = (p1+q )2 =m 2
π+2p1 ·q +q 2 =m 2

π+2Eb q̃E −2p⃗b · q⃗∥+q 2 (2.35)

it follows that

q∥ = |q⃗∥|=
s −m 2

π+2Eb qE +Q 2

2pb
(2.36)

where pb q∥ =−p⃗b · q⃗∥ has been taken into account and the positive quantities

qE = −q̃E = Ekin+∆E > 0 (2.37)

Q 2 = −q 2 > 0 (2.38)

are used.

For the case of the nickel nucleus being excited into the giant dipole resonance,∆E ≈ 18 MeV
and the term 2Eb qE ≈ 3.42 GeV2 dominates in Eq. (2.36). Consequently,

9 ·10−3 GeV< q∆E=18 MeV
∥ ≈

s −m 2
π+2Eb qE

2pb
< 1.3 ·10−2 GeV (2.39)

For the further dynamics and the cross sections, the most relevant quantity is Q 2. It is deter-
mined by∆E , which can not be directly observed or reconstructed in high-energy kinematics,
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and by the observable qT via

Q 2 = −q 2
E +q 2

∥ +q 2
⊥

= −q 2
E +

�

2Eb qE + s −m 2
π+Q 2

2pb

�2

+q 2
⊥

=
m 2
π

p 2
b

q 2
E +
(4Eb qE + s −m 2

π+Q 2)(s −m 2
π+Q 2)

4p 2
b

+q 2
⊥ (2.40)

Inelastic scattering processes, also require adapting the form factor in Eq. (2.23). For E1 reso-
nances, e.g. the giant dipole resonance, the inelastic form factor can be described according
to the Goldhaber-Teller model [71]:

FGT =
Q · bcollectivep

8
Fel(Q ) (2.41)

with bcollective being the oscillator length, which for the purpose of this thesis does not need
to be quantified.

2.3 Kinematics of the π−γ(∗)→π−π0 reaction

The goal of this thesis is to extract an experimental value for the fundamental physical con-
stant F3π of Eq. (1.33). The necessary γ3π vertex can be accessed in Primakoff reactions
according to Eq. (1.34) where the photon is provided by the Coulomb field of a nucleus. To
be able to extract a value for F3π, it is important to fully understand the kinematics of this
reaction. We consider the collision of a (real) photon with a beam pion and for our purposes
detach this process from the target nucleus following the idea of the EPA. We assign the four-
momentum vectors to the corresponding particles:

π−(p1) γ(ε, q )→π−(p2)π
0(p0) (2.42)

withεbeing the polarization vector of the photon. Fig. 2.6 illustrates the process with the cho-
sen naming for the momenta in the cm-frame. The Lorentz-invariant Mandelstam variables
for this process are:

s = (qµ+p
µ
1 )

2 = (pµ2 +p
µ
0 )

2 = 4(m 2
π+p ′ 2)

t = (pµ1 −p
µ
2 )

2

u = (pµ1 −p
µ
0 )

2

(2.43)

with p ′ = |p⃗0|= |p⃗2| and working in the isospin limit with

mπ0 =mπ± ≡mπ ≈ 138 MeV (2.44)

. Assuming that the involved particles are real (and thus neglecting the small virtuality of the
γ(∗)), the Mandelstam variables satisfy according to Eq. (2.5):

s + t +u = 3m 2
π. (2.45)
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π−(p1)

γ(∗)(ε, q)

π−(p2)

π0(p0)

θGJ

Fig. 2.6 Kinematics of reactionπ−γ(∗)→π−π0 in the center-of-momentum frame. Since for the incoming photon
q 2 < 0, the momenta of the outgoing particles are smaller than those of the incoming particles. Figure adapted
from [45].

We are left with only two independent variables s and t (respectively cosθGJ). Apparently,
the distribution in s has a kinematic threshold of s > 2mπ. Following the argumentation
in Section 2.1.1 and neglecting for now dependencies in the azimuthal angle, t and u can
be expressed in terms of the scattering angle in the cm frame/polar angle in the GJ frame
according to Eq. (2.6) via:

t =
3m 2

π− s

2
+

s −m 2
π

2

√

√

1−
4m 2

π

s
cosθGJ

u =
3m 2

π− s

2
−

s −m 2
π

2

√

√

1−
4m 2

π

s
cosθGJ

(2.46)

To calculate the cross section as a function of s according to Eq. (2.8), we need the flux factor
F and the matrix element M (s , t , u ). The former is calculated according to Eq. (2.9) and is
given by:

F = 2(s −m 2
π) (2.47)

The matrix element for the process is obtained by the WZW term of the chiral Lagrangian and
is given by [72, 73]

M (s , t , u ) = iεµναβε
µpν1 pα2 p

β
0 F (s , t , u ) (2.48)

characteristically involving the fully antisymmetric Levi-Civita tensor εµναβ and F (s , t , u ) be-
ing a scalar function, the form factor of the process. The matrix element enters the total cross
section modulus-squared.

We start to review the derivation of the cross section for a real photon in the process, since
this form is commonly used for theory calculations. In Section 2.3.1, we will see that the total
cross section for a virtual photon is the same despite different dependencies on the azimuthal
angle φTY . For contracting the Lorentz indices, we average over the two transverse photon
polarizations. For a real photon travelling along the inverse z -axis, the two transverse polar-
izations four-vectors are ε1

µ = (0, x̂GJ) and ε2
µ = (0, ŷGJ) which limits the number of non-zero

permutations of µναβ . After contracting the Lorentz indices as it is explicitly carried out in
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~p GJ
1

~q GJ

~p GJ
2

~p GJ
0

~P GJ

~P
′GJ

Fig. 2.7 Kinematics of reaction π− +Ni → π−π0 +Ni in the center-of-momentum frame depicted in a three-
dimensional view. To understand the dependence of the cross section on the azimuthal angle, the reaction of
Eq. (2.42) needs to be embedded into the whole Primakoff process.

App. A.4, one obtains for the polarization averaged squared amplitude:

1

2

∑

pol

|M (s , t , u )|2 =
1

32

�

s −4m 2
π

� �

s −m 2
π

�2 �
1− cos2θGJ

�

|F (s , t , u )|2 (2.49)

From the two-body phase-space element from Eq. (2.11), we get a factor of

∫

dφ2 =

π
∫

−π

1
∫

−1

1

4π

Æ

s −4m 2
π

2
p

s

1

4π
d cosθGJdφTY

=

1
∫

−1

1

16π

Æ

s −4m 2
πp

s
d cosθGJ

(2.50)

after integration over the azimuthal angle φ and using Eq. (2.43) to express p ′ in terms of s .
Again, we assume for this step that the photon in the interaction is real and not polarized
implying that there is no dependence of the cross section on the azimuthal angle.

Combining Eqs. (2.47), (2.49) and (2.50) according to Eq. (2.8), we finally have the total cross
sectionσtot as a function of s :

σtot(s ) =

�

s −4m 2
π

�3/2 �
s −m 2

π

�

1024π
p

s

1
∫

−1

dz
�

1− z 2
�

|F (s , t , u )|2 (2.51)

with z = cosθGJ . Evaluating the scalar form factor of the process in the chiral limit (s = 0, t =
0, u = 0)will give us, by definition, the wanted value for F3π. We therefore rename:

F (s , t , u ) =: F3π(s , t , u ) (2.52)

2.3.1 Angular distributions and partial-wave expansion

It is important to know the correct angular distributions ofπ−γ(∗)→π−π0 events to generate a
realistic set of pseudodata and to distinguish the signal from background events. We start with

34



CHAPTER 2. PRIMAKOFF REACTIONS

the azimuthal dependencies in the Gottfried-Jackson rest frameφTY . According to Eq. (2.51),
there is noφTY-dependence. However, we detached the scattering of the pion with the photon
completely from the underlying Primakoff process such that we can rotate the plane in which
the scattering takes place (see Fig. 2.6 and the red plane in Fig. 2.7) arbitrarily around the
z -axis without loss of generality. Embedding the scattering into the Primakoff process yields
a reference plane, namely the production plane, as indicated by the green plane in Fig. 2.7.

We have to consider the argumentation in App. A.3 which tells us that the information of the
direction of the production plane is mediated by the polarization of the photon. In the GJ-
frame, where the y -axis is perpendicular to the production plane and the x -axis lies within the
production plane, the polarization vector will be in x -direction. Carrying out the calculation
in App. A.4 for a polarized photon, we are left with

dσ

dφTY
∝ sin2φTY (2.53)

The integration overφTY , however, yields the same factor ofπno matter whether one averages
over the two transverse polarization vectors and hence looses the φTY-dependence or one
integrates over sin2φTY . Eq. (2.51) remains unchanged.

The dependence on the polar angle of the GJ-frame is given in Eq. (2.51) as

dσ

d cosθGJ
∝

�

1− cos2θGJ

�

F3π(s , t , u ) =
�

1− cos2θGJ

�

F3π (s , t (s , z )) (2.54)

where parts of the angular dependence and the energy dependence is hidden in F3π(s , t (s , z )).
We can factorize the angular and the energy dependence by expanding F3π in a partial-wave
series [42, 72]

F3π(s , t (s , z )) =
∑

odd l

fl (s )P
′

l (z ) (2.55)

where l is the orbital angular momentum quantum number, fl (s ) an analytic function con-
taining all dependencies on s , and P ′l (z ) denotes the derivative of the Legendre polynomials.
The partial-wave expansion contains only odd l because the pions in the final state have the
total isospin I = 1 [42]. Hannah could show that at low energies (

p
s ⪅ 1 GeV/c 2) partial waves

with l ≥ 3 are negligible. Following this argumentation and using P1(z ) = z yields

dσ

d cosθGJ
∝ sin2θGJ (2.56)

This is coherent with the conservation of angular momentum: considering that we have a
spin-1 particle, the photon, and a spin-0 particle, the pion, in the initial state and two spin-0
particles in the final state, the final-state pions have to be produced at least in a relative P -
wave. Up to around

p
s ≈ 1 GeV no other orbital angular momenta contribute to the total

cross section.

2.3.2 Resonant production of theρ(770)meson

After pions and kaons, the ρ-mesons are the lightest hadrons. They can be interpreted as
a |q q̄ 〉-state of u- and d -quarks. The ρ is an isospin triplet, whose three states are denoted
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Fig. 2.8 In (a): tree-level diagram for coherent ρ(770)-production. In (b): total cross sections for the reaction
πγ→π−π0 as a function of the center-of-mass energy

p
s calculated by Kaiser and Friedrich in [67]. The blue

line shows the prediction by the chiral anomaly on tree-level. The red line includes additionally a ρ-meson
model.

ρ+, ρ−, and ρ0, which have all approximately the same mass of mρ ≈ 775 MeV/c 2. Its spin is
J = 1 meaning that, in contrast to the pion, the spins of the two constituent quarks are aligned.
The ρ couples and hence decays with almost 100% branching fraction to two pions [18]. As a
matter of fact, theorists postulated the existence of theρ as aππ resonance in the late 1950ies.

Despite the overwhelming coupling to two pions, the ρ(770) resonance couples also to πγ
with a branching fraction of Γi /Γ = (4.5±0.5)·10−4 [18]. It can therefore be resonantly produced
in the s -channel in πγ scattering:

π−γ→ρ−→π−π0 (2.57)

The tree-level diagram of this process is depicted in Fig. 2.8 (a). The total cross section for the
reaction π−γ→ π−π0 shows hence a contribution by the resonant production of the ρ(770)-
meson. The resonant ρ production is a fully coherent background to the direct coupling of a
photon to three pions, meaning that it coincides in all quantum numbers and shows the same
angular distributions. The two processes interfere. They only differ in their

p
s -dependence,

since the resonant production peaks at the mass of the ρ-meson of mρ ≊ 775 MeV.

Fig. 2.8 (b) shows a prediction for the total cross section as a function of
p

s : in blue, a cal-
culation from ChPT and in red, the same calculation added to a model for the ρ-resonance
according to [67]. The low-mass tail, close to the kinematic threshold of

p
s thr = 2mπ, is mainly

driven by the chiral anomaly. Previous extractions of F3π by Antipov et al. [39] and by Giller et
al. [43] used this fact and investigated only the low-mass tail of the spectrum as can be seen
in Fig. 1.5.

Above center-of-mass energies of
p

s ≃ 4mπ, the effects of the ρ-resonance are dominant.
The cross-section for resonantρ-production quickly increases and peaks at mρ = 775 MeV ≈
5.6mπ. Beyond this mass, it decreases again. At the same time, also the cross-section for
chiral production of π−π0 increases. The two processes have different phases and interfere.

36



CHAPTER 2. PRIMAKOFF REACTIONS

The shape of the total cross section forπ−γ→π−π0 is hence an elaborate result of the interfer-
ence between resonantρ-production and chiral production of theπ−π0 final state. Especially
slightly above the ρ peak, where resonant production and chiral production are compara-
tively strong, we can gain a lot of additional information from the shape of the cross section.
An extraction of Γρ→γπ based on fitting only a Breit-Wigner distribution to the shown spec-
trum in Fig. 2.8 (b) neglects the chiral contribution. The previous measurements [55, 56, 57]
(for details see Section 1.4.2) contributing to the PDG average value hence neglect the chiral
contribution to the overall cross-section.

For this thesis, we will use a combined approach based on dispersion theory [72] to extract a
value for F3π and Γρ→πγ at the same time. In this way, we consider the contributions of each
process in the whole

p
s -range and are able to include all events up to

p
s = 1.2 GeV ≈ 7mπ.

The dispersive approach will be discussed in Section 2.4.

2.3.3 Higher-order and electromagnetic corrections

In [42], Hannah constructed a systematic expansion for the amplitude of the anomalous pro-
cess γπ→ππwithin the framework of ChPT:

F3π(s , t , u ) = F3π

�

f (0)(s , t , u ) + f (1)(s , t , u ) + f (2)(s , t , u ) + . . .
�

(2.58)

with the f (i ) being the i th-order corrections and being obtained by the WZW term. Hannah
evaluated the expansion up to two loops by means of a dispersive method. Disregarding
isospin breaking effects, the leading order term amounts to one f (0) (s , t , u ) = 1. The next-
to-leading order corrections (NLO) have become available in Ref. [41] and account to

f (1)(s , t , u ) =−
64π2

3e
·C r

2 · (s + t +u )−
s + t +u

96π2F 2
π

�

1+ log
m 2
π

m 2
ρ

�

+
1

π

∞
∫

4m 2
π

ds ′

s ′2

�

s 2

s ′− s
+

t 2

s ′− t
+

u 2

s ′−u

�

Im f (1)1 (s
′)

(2.59)

The expression converges to the chiral anomaly F3π in the chiral limit and is given in terms
of f1(s ) from the partial wave expansion Eq. (2.55) and C r

2 , a low-energy constant (LEC) from
the 2nd order anomalous chiral Lagrangian. C r

2 is to be determined from experiment, but the
authors of Ref. [41]were able to estimate a theoretical prediction for it:

C r
2 =−

3e

128π2m 2
ρ
=−0.00120 GeV−2 (2.60)

The exact form of two-loop correction term f (2)(s , t , u ) shall be omitted here. Important is
only that in the two-loop term, two more LECs, c̄2 and d̄2, appear. Again, Hannah was able to
estimate them from theory and in this way determined f (2)(s , t , u ).

f (1) (s , t , u ) and f (2) (s , t , u ) feature a non-negligible s and t dependence. In this way, Hannah
reduced the disagreement between ChPT prediction and the Serpukhov result (which did not
assume any dependence on s ).
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Fig. 2.9 In (a): tree-level graph for the dominant contribution to electromagnetic corrections to π−γ→ π−π0:
t -channel exchange of a virtual photon as it was discovered in [40]. In (b): relative increase f r a cσcorrσ− 1
of the cross section including radiative corrections as a function of s for various values of θGJ . The red curve
shows the corresponding relative increase in the cross-sectionσ integrated over cosθGJ (adapted from [40]).

Finally, Ametller et al. have evaluated the ChPT expansion in the situation where virtual pho-
tons are present [40]. Differentiating between charged and neutral pions, i.e. taking isospin
breaking effects into account, they have shown that there is a significant contribution to the
total cross-section of the processπ±γ→π±π0 due to t -channel exchange of a virtual photon.
The diagram, as it is calculated by Ametller et al., is shown in Fig. 2.9a. It represents an
electromagnetic correction to the tree-level term f (0)(s , cosθGJ) in the chiral expansion of
Eq. (2.58):

f (0)(s , cosθGJ) = 1−2e 2 F 2
π

t
(2.61)

with

t = 2m 2
π± −

�

s +m 2
π±

� �

s +m 2
π± −m 2

π0

�

2s
+

�

s −m 2
π±

�

λ1/2
�

s , m 2
π± , m 2

π0

�

2s
cosθGJ (2.62)

being the isospin-breaking generalization of Eq. (2.46) with λ(s , m 2
π± , m 2

π0 ) being the Källen
function defined as

λ(x , y , z ) = x 2+ y 2+ z 2−2x y −2y z −2x z (2.63)

Fig. 2.9b shows the value of f (0)(s , cosθGJ) including the corrections for different values of
cosθGJ in the range of s as covered by the Serpukhov experiment. At the threshold, its value
is f (0)(4m 2

π, cosθGJ) = 1.16 as compared to the constant value f (0)(s , cosθGJ) = 1 without the
corrections. Since the form factor of the process enters the cross-section of Eq. (2.51) quadrat-
ically, this leads to a ≈ 35% increase of the cross-sectionσ. The relative increase of the cross-
section can be seen in Fig. 2.9b as dashed line. The electromagnetic corrections are most
significant in the threshold region s/m 2

π ≈ 4.

Higher-order electromagnetic corrections in f (1)
�

s , cosθGJ

�

via photon loops are calculated
as well in Ref. [40]. However, it is shown that these higher-order corrections are small (∼ 1%).
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Fig. 2.10 Contours for the Cauchy integral formula for the calculation of f (s ).

2.4 Extracting F3π from Primakoff data

In this section, I motivate the most crucial steps which are needed to understand the model
that we are going to use to extract a value for F3π and Γρ→πγ. However, this section represents
only a short summary, more details can be found in Refs. [42, 59, 72, 74].

2.4.1 Dispersion relations

Cauchy’s integral formula states that one can reconstruct the full amplitude of a complex-
valued analytic function at any point inside a disk by its values on the boundary of the disk:

f (s ) =
1

2πi

∮

C

ds ′
f (s ′)
s ′− s

(2.64)

with f (s ′) being an analytic function inside and on the closed contour C , and s any point
inside the contour C . Let’s assume that f (s ′) has a branch point at s ′ = sthr and a correspond-
ing branch cut from sthr to∞. Then, we can deform the contour in a way that its radius
goes to infinity and that it excludes the branch cut, as indicated in Fig. 2.10. If f (s ′) vanishes
faster than 1/s ′ for |s | →∞, the integral along the circular dashed lines in Fig. 2.10 does not
contribute:

f (s ) =
1

2πi

∞
∫

sthr

ds ′
disc f (s ′)

s ′− s
(2.65)

Using the Schwarz reflection principle, we can rewrite the discontinuity as

disc f (s ) = f (s ′+ iε)− f ∗(s ′+ iε) = 2i Im f (s ) (2.66)
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Plugging this back into Eq. (2.65), we obtain

f (s ) =
1

π

∞
∫

sthr

Im f (s ′)
s ′− s

ds ′ (2.67)

which is an example of an unsubtracted dispersion relation. For our example at hand, the
amplitude for π−γ(∗)→π−π0 develops a branch cut from sthr = 4m 2

π. The virtue of Eqs. (2.65)
and (2.67) is that we can reconstruct the full function everywhere in the complex plane by
knowing its discontinuity or the integral over its imaginary part by means of dispersion rela-
tions.

As we have seen, the integral along the circular dashed lines in Fig. 2.10 only vanishes, when
f (s ′) vanishes faster than 1/s ′ for |s | →∞. In case that f (s ′) does not approach zero suffi-
ciently fast, we can introduce subtractions by inserting the identity

1

s ′− s
=

1

s ′− s
−

1

s ′− s0
+

1

s ′− s0

=
s ′− s0

(s ′− s )(s ′− s0)
−

s ′− s

(s ′− s0)(s ′− s )
+

1

s ′− s0

=
1

s ′− s0
+

s − s0

(s ′− s )(s ′− s0)

(2.68)

into Eq. (2.67) where we have chosen an arbitrary subtraction point s0. This improves the
convergence for |s | →∞ by increasing the power of s ′ in the denominator:

f (s ) =
1

π

∞
∫

sthr

Im f (s ′)
s ′− s0

ds ′

︸ ︷︷ ︸

C1

+
s − s0

π

∞
∫

sthr

Im f (s ′)
(s ′− s )(s ′− s0)

ds ′ (2.69)

The first term is independent of s . It is called a subtraction constant, we will denote as C1 for
the once-subtracted integral. The subtraction constant is unknown and has to be determined
by external input, e.g. from data. The subtraction improves convergence of the dispersion
integral at the expense of introducing a new subtraction constant.

There is no restriction on how often one introduces a subtraction, such that we can construct
an N -times subtracted dispersion relation by

f (s ) = PN−1(s ) +
(s − s0) . . . (s − sN )

π

∞
∫

sthr

Im f (s ′)
(s ′− s )(s ′− s0) . . . (s ′− sN )

ds ′ (2.70)

with PN−1(s ) being the subtraction polynomial of order N −1

PN−1(s ) =C (1)N +C (2)N s +C (3)N s 2+ · · ·+C (N )N s N−1 (2.71)

with N different subtraction constants C (1)N . . . C (N )N . Since later on, we are interested in twice-
subtracted dispersion relations, the explicit case is carried out in Appendix A.5.
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Fig. 2.11 Basis functions F (i )2 for γπ→ππ. The real (blue) and imaginary (red) parts for F (1)2 are shown in (a) and
for F (2)2 in (b). (c) shows the amplitude and (d) the phases of the functions. The basis functions can be found
in Ref. [76] and have been provided to the author of this thesis as look-up table [77].

2.4.2 Dispersive approach for the anomalous process π−γ(∗)→π−π0

Hoferichter et al. provided a dispersive approach to deduce a value for F3π from cross section
data as a function of s in Ref. [72]. From Eq. (2.51) we see, that the process π−γ(∗) → π−π0

is described by the scalar function F3π(s , t , u ). At low energies, neglecting partial waves with
angular momentum l ≥ 3, the amplitude F3π(s , t , u )may be decomposed as [75]

F3π(s , t , u ) = F3π(s ) + F3π(t ) + F3π(u ) (2.72)

In Ref. [76], Hoferichter et al. showed that the solution of the twice-subtracted dispersion
relation for F3π(s ) can be represented in the form

F DR
3π (s ) =

1

3

�

C (1)2 +C (2)2 s
�

+
1

π

∞
∫

4m 2
π

ds ′

s ′2
s 2

s ′− s
×
�

C (1)2 ImF (1)2 (s
′) +C (2)2 ImF (2)2 (s

′)
�

(2.73)
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with C (i )2 being the subtraction constants in the twice-subtracted dispersion relation. The

C (i )2 are free parameters and have to be determined from a fit to data. In contrast to the

basis functions F (i )2 , which can be calculated "once and for all" [76] from the twice-subtracted
dispersion relations for a given input of the ππ phase shift. Fig. 2.11 shows the real and
imaginary parts of the two basis functions as well as their polar representation, magnitude

and phases, as determined in Ref. [76]. The numerical values for the F (i )2 s, on which Fig. 2.11
is based, can be found in Ref. [78]. To generate Fig. 2.11, I interpolated the numerical values
linearly.

The dispersion relations have been solved in Ref. [72] using so-called Omnès functions. From
the representation with Omnès functions and cumbersome calculations, one can observe
that the dispersion relations are linear in the subtraction constants, which significantly sim-
plifies the expression:

F DR
3π (s ) =C (1)2 F (1)2 (s ) +C (2)2 F (2)2 (s ) (2.74)

The subtraction constants serve as multiplicative constants over the whole energy range and
combine linearly the basis functions displayed in Fig. 2.11. This yields a strong impact of the
ρ resonance region on the extraction of F3π.

Combining Eqs. (2.72) and (2.74), we can determine the whole amplitude by

F3π(s , t , u ) =C (1)2

�

F (1)2 (s ) +F (1)2 (t ) +F (1)2 (u )
�

+C (2)2

�

F (2)2 (s ) +F (2)2 (t ) +F (2)2 (u )
�

−
2e 2F 2

π F3π

t

(2.75)

where in the kinematic region relevant for the cross section only the s -channel develops an
imaginary part. The imaginary parts for t - and u-channel can be dropped from the start.
The last term accounts for the dominant electromagnetic corrections according to Eq. (2.61).
Eq. (2.75) is a convenient fit function of the dispersive model to the actual cross section data
to obtain C (1)2 and C (2)2 .

2.4.3 Comparison to ChPT

The chiral anomaly F3π is defined as the value of F3π(s , t , u ) in the chiral limit where s =
t = u = 0. In Section 2.3.3, we have sketched the chiral expansion and we have seen that
the s -dependence of the higher-order corrections significantly alter the value of F3π(s , t , u )
when crossing the gap from the chiral limit to the experimental s . The dispersion relations
have been derived using on-shell kinematics and hence cannot be used to extrapolate to the
chiral limit. We have to refer to the chiral expansion.

The chiral expansion of Eq. (2.58) up to NLO can be expressed with Eq. (2.59) as:

F NLO
3π (s , t , u ) =

1

π

∞
∫

4m 2
π

ds ′

s ′2

�

s 2

s ′− s
+

t 2

s ′− t
+

u 2

s ′−u

�

× Im f (1)1 (s
′)

+ F3π

�

1−
64π2

3e
C r

2 ·3m 2
π−

3m 2
π

96π2F 2
π

�

1+ log
m 2
π

m 2
ρ

��

(2.76)
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which exhibits some similarity with the dispersion relation of Eq. (2.73). To be able to compare
the two expressions, we need to express Eq. (2.73) in terms of the partial wave f1(s ). The partial
wave follows from

f1(s ) =
3

4

1
∫

−1

d z (1− z 2)F3π(s , t , u ) (2.77)

which yields following representation of the dispersion equations [72, 76]:

F DR
3π (s , t , u ) =

�

C (1)2 +C (2)2 m 2
π

�

+
1

π

∞
∫

4m 2
π

ds ′

s ′2

�

s 2

s ′− s
+

t 2

s ′− t
+

u 2

s ′−u

�

× Im f1(s
′) (2.78)

Now, we can compare the chiral expansion up to NLO with the dispersion relation

F DR
3π (s , t , u ) = F NLO

3π (s , t , u ) +O (NNLO+ . . . ) (2.79)

We find that
�

C (1)2 +C (2)2 m 2
π

�

is related to F3π via

�

C (1)2 +C (2)2 m 2
π

�

= F3π

�

1+3m 2
π

�

−
64π2

3e
C r

2 −
1

96π2F 2
π

�

1+ log
m 2
π

m 2
ρ

���

=: F3π

�

1+3m 2
πC̄

�

=: F 3π

(2.80)

with C̄ = − 64π2

3e C r
2 −

1
96π2F 2

π

�

1+ log
m 2
π

m 2
ρ

�

. Eq. (2.80) gives an instruction how to extract a value

for F3π from the subtraction constants, which in turn have to be determined by a fit to cross
section data. We see that the two subtraction constants are directly linked to F3π via an ad-
ditional renormalization term 3mπC̄ , which stems from the chiral expansion. It has been
estimated in Ref. [41] and accounts for 3m 2

πC̄ = 6.6%F 3π.

To account for the second order chiral corrections, the dispersive representation should be
compared to two-loop chiral expansion. The additional LECs, that appear in the NNLO cor-
rection, prevent an unambiguous extraction of F3π. Since these LECs have been estimated
in Ref. [42] by “order-of-magnitude arguments” [72], matching at two-loop level may prove
valuable to check for systematic uncertainties.

2.4.4 Extraction of Γρ→πγ

The properties of a resonance are encoded in the pole position and residues of the S-matrix
in a model independent way. For a comprehensive introduction into the S-matrix formalism,
see e.g. Ref. [59]. The mass of a resonance determines the real part of the corresponding pole,
whereas the width gives its imaginary part. The ρ(770) pole position in the complex s -plane
reads then

sρ =
�

mρ − i
Γtot

2

�2

(2.81)
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The residue of the pole is proportional to the amplitude of a process (in a narrow-width ap-
proximation) and can be interpreted as the coupling constant of the process. The narrow-
width approximation relates the residue of our pole gρπγ to the radiative width of theρ via [76]

Γρ→πγ =
e 2g 2

ρπγ

96πm 3
ρ

�

m 2
ρ −m 2

π

�3
(2.82)

The goal is hence to determine gρπγ from our dispersive model. The necessary calculations
are involved. Its details can be followed in Ref. [76]. It proceeds by means of the unitarity
relation which ultimately connects gρπγ with gρππ and f1(s ):

e gρπγ
gρππ

=−i
sρσ

2
π(sρ)

48π
f1(sρ) (2.83)

with

σπ(s ) =

√

√

1−
4m 2

π

s
(2.84)

f1(sρ) can be calculated from Eq. (2.77) and was determined in Ref. [76]:

f1(sρ) =C (1)2 (0.588+0.193i )−C (2)2 (0.071+0.570i )GeV2 (2.85)

All that is needed to determine gρπγ from Eq. (2.83) is a realistic value for gρππ, which can be
taken from Ref. [79]: |gρππ|= 6.01+0.04

−0.07.
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Chapter 3

The COMPASS experiment

Both major parts of the thesis, the analysis of the Primakoff data (see Chapters 5 to 8) and
the hardware work (see Chapter 4), were carried at the COMPASS experiment. The presented
analysis is based on the Primakoff data set recorded in the year 2009, whereas the hardware
development improved the stability of the data taking campaigns in the years 2016 to 2022.
This chapter briefly introduces the experimental setup in a general way before focusing on
the particular spectrometer and trigger setup for 2009 and the FPGA-based data acquisition
system, which has been put into operation only in 2014.

COMPASS (COmmon Muon Proton Apparatus for Structure and Spectroscopy) is a versatile
experiment designed to study QCD in the low-energy regime. It is a fixed-target experiment
located at the M2 beamline at CERN, which offers high-intensity, high-energy muon and
hadron beams. Its magnetic spectrometer is able to perform high-resolution measurements
of charged and neutral final states. The capability of the beamline to provide a high-energy
(up to 250 GeV) negative pion beam combined with the flexible setup of the COMPASS spec-
trometer, in particular the adaptability of target material and trigger setup, offers a suitable
opportunity to study low-energy QCD in Primakoff reactions.

3.1 General physics program and spectrometer layout

The COMPASS collaboration unites two different fields of high-energy particle physics: nu-
clear structure functions and hadron spectroscopy. The physics program of COMPASS I and
COMPASS II [80, 81] covers campaigns using muon beams dedicated to measure parton distri-
bution functions in e.g. Deeply Virtual Compton Scattering (DVCS), Semi-Inclusive Deep In-
elastic Scattering (SIDIS), or Drell-Yan processes. Campaigns for meson spectroscopy, which
require a pion beam, took place in the years 2004, 2008, 2009, and 2012. In these years,
spectroscopy data are taken with a liquid-hydrogen and lead target. In the years 2009 and
2012, dedicated Primakoff campaigns were performed with nickel and tungsten targets and
trigger setups for neutral particles in the final state.
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Fig. 3.1 Schematic view of the COMPASS setup for measurements with hadron beams. The beam enters the
target region surrounded by the recoil proton detector (green) from the left side. The final-state particles are
measured with the COMPASS Large-Angle (LAS) and Small-Angle (SAS) magnetic spectrometer. The figure
was adapted from Ref. [82].

Merging the two initially independent initiatives, to measure structure functions and to per-
form hadron spectroscopy, into a single collaboration resulted in a highly flexible and ver-
satile spectrometer setup [80]. The magnetic spectrometer was designed to offer high-rate
capability, excellent particle identification, and a wide angular and momentum acceptance.
To increase the covered angular and momentum range, the spectrometer is designed as a
two-stage spectrometer. Directly downstream of the target is the so-called large-angle spec-
trometer (LAS), followed by the small-angle spectrometer (SAS). Each of the two stages is built
around a dipole magnet. The magnet of the LAS, called SM1, has a bending power of 1.0 Tm,
the one of the SAS, SM2, a bending power of 5.5 Tm. Charged particles with momentum
higher than∼ 15 GeV/c are able to enter the second stage. The magnets are preceded and fol-
lowed by telescopes of tracking detectors. Each stage features a hadronic and electromagnetic
calorimeter and a muon filter station for high energy muon identification. The LAS contains a
ring-imaging Cherenkov detector (RICH) for hadron identification. The overall layout covers
an opening angle of ±180 mrad [80]. SAS and LAS together span over 50 m in length. The
general spectrometer layout can be seen in Fig. 3.1 for the setup with hadron beams [82].

Different detector technologies are used in each tracking telescope at different distances from
the beam axis to match the requirements in rate capability, space and time resolution, and
active surface to be covered. Along the beam axis and close to the target, detectors must
provide high-rate capability and excellent spatial resolution of ∼ 10µm. Far from the beam
axis, the requirements on rate capability are less strict, but larger areas need to be covered.
Details on the different tracking detectors can be found in Refs. [80, 81, 82]. The hadronic
and electromagnetic calorimeter as well as the muon filter of the LAS feature a central hole
matching the angular acceptance of the SAS.

The target region is equipped with high-resolution silicon detectors. Three stations upstream
of the target measure beam trajectories and form the beam telescope. Two stations down-
stream of the target ensure precise vertex reconstruction around the target position.
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3.2 The M2 beamline at CERN

The M2 beamline provides high-intensity, high-energy muon and hadron beams, both posi-
tively and negatively charged. Protons from the Super Proton Synchrotron (SPS) with a mo-
mentum of around 400 GeV impinge on a Beryllium production target leading to showers of
secondary hadrons, mainly pions, kaons, and protons, downstream of the production target.
Particles of the desired momentum range are selected by a series of quadrupole and dipole
magnets and collimators. The almost 1 km long M2 beamline allows collected pions to decay
to muons. By filtering for muons with a hadron absorber upstream of the experiment, the
beamline can offer a tertiary muon beam.

For the Primakoff campaign, a secondary,∼ 190 GeV, negative hadron beam was chosen. This
beam features a high intensity of 5·106 s−1 and a low momentum spread on percent-level. The
negative hadron beam used in 2009 is mainly composed of pions (94.3%), kaons (2.55%), and
antiprotons (1%). According to the high-precision determination of the beam composition
in Ref. [83], taking into account a possible muon contribution in the beam, the kaon-to-pion
ratio in the beam was found to be:

Rbeam :=
nK −

nπ−
= 0.02785

�+0.00048
−0.00063

�

stat
(+0.0003)sys (3.1)

For beam particle identification, two Cherenkov detectors, so-called CEDAR detectors [84]
(Cherenkov differential counter with achromatic ring focus), are placed ∼ 30 m upstream
of the COMPASS target. Beam particles traverse the 6 m long vessel filled with pressurized
helium gas centered the beam axis indicated in Fig. 3.2 by the gray dashed line. They move
faster than the speed of light in helium gas and emit Cherenkov light in a characteristic angle
depending on the velocity of the particle. Since the momentum of the particle is defined by
the beam optics and is the same for all particles, different species with different masses have
different velocities and radiate Cherenkov photons in slightly different angles indicated by the
green and red lines in Fig. 3.2. The emitted Cherenkov cone is focused by a parabolic mirror

Fig. 3.2 The basic principle of the CEDAR detector. Two particles with the same momentum but with different
masses (green and red lines) radiate Cherenkov photons at different angles. Using mirrors, the light cones are
focused to rings with different radii. A diaphragm selects the rings from the desired particle type. Figure taken
from [82].
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and lenses to a ring. A diaphragm selects Cherenkov light that was emitted under an angle
of ∼ 25.8 mrad [84]. By adjusting the gas pressure inside the main vessel, the refractive index
of each CEDAR can be adjusted to be sensitive to a particular particle species. In 2009 for
the negative hadron beam, both CEDARs were adjusted to identify kaons to maximize kaon
detection efficiency.

The projected Cherenkov ring is detected by eight photo multiplier tubes (PMTs) which are
equidistantly positioned around the ring of the diaphragm. A simple approach to identify a
particle is the so-called majority method, which requires a signal in at least six of the eight
PMTs, allowing for inefficiencies of the tubes. The majority method however reaches only an
efficiency of less than 50% [82] due to the small difference in the Cherenkov angles θ of pions
and kaons compared to the large inclination spread of beam trajectories:

∆θ = θK −θπ ≈ 120µrad (3.2)

where we have used cosθ = 1/(nβ ) with n ≈ 1.00034 estimated from the required detection
angle 25.8 mrad. ∆θ is in the same order of magnitude as the spread in inclination of beam
trajectories of about 200 µrad (see Fig. 5.2b).

To improve the efficiency for tagging beam kaons, we use a likelihood approach developed
in Ref. [85] and optimized for the 2009 Primakoff data taking campaign. This approach is
based on evaluating the CEDAR response on clean kaon (from K − → π−π0) and pion (from
π− +N → π−π0 +N ) samples and extrapolating their trajectory, which is measured by the
beam telescope, back to the CEDAR location using the knowledge of the beam optics. The
likelihood approach increases the CEDAR efficiencies to correctly tag kaons and pions to

επ = 0.934(±0.003)stat(±0.009)sys

εK = 0.825(±0.004)stat(±0.001)sys
(3.3)

where the statistical and systematic uncertainties are not explicitly given in Ref. [85], but
estimated from the number of events in the study and by the difference between the two
approaches presented in the note.

As already mentioned, the M2 beamline provides muon and hadron beams with a momentum
spread of about 3% from 188.5 GeV to 194.5 GeV [86]. In case of data taking with muon beam,
the exact beam momentum can be determined by using the beam momentum station (BMS)
consisting of six tracking planes up- and downstream of one of the last bending magnet in
the M2 beamline. For data taking with hadron beam, the BMS is removed to minimize the
material budget along the beam path.

Since the beam line optics incorporate correlations between beam momentum and beam
position/inclination, one can constrain the energy of the incoming beam particle based on
the four-dimensional space (x , y , px

pz
,

py

pz
) with the beam axis in z -direction. We use the

polynomial described in Ref. [86], which correlates beam energy and the parameters of the
beam trajectory at the position z0 =−72.5 cm:

Ebeam =
5
∑

i ,m=0

5−i
∑

j ,n=0

B i j
mn xi j a mn (3.4)
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Fig. 3.3 Schematic view of the target holder used for measurements with nuclear targets [82], the dimensions
are in mm.

with B
i j
mn being a rank four tensor holding parameters which encode the beam optics. The

parameters for the 2009 and 2012 hadron beamline setup are given in [86]. The matrices xi j =

x i · y j and amn =
�

px
pz

�m
·
�py

pz

�n
have the dimension 6×6 and contain all powers of the beam

trajectory position and inclination in x - and y -direction.

3.3 Spectrometer setup in 2009 for the Primakoff program

Details about the COMPASS setup with hadron beams can be found in Ref. [82]. We will
summarize only the most important and specific features of the setup for the Primakoff mea-
surement in the following. We introduce the COMPASS main coordinate system as it is used
in the reconstruction of events:

The origin of the reference system is in the target region. The z -axis points along the beam
axis. x and y are the transverse coordinates with the y -axis pointing upwards. The x -axis
is defined horizontally to get a right-handed coordinate system. The spectrometer magnets
bend negatively charged particles in positive x -direction.

3.3.1 Target region

The target region comprises the target itself, the recoil proton detector (RPD) surrounding the
target, the Sandwich veto detector, and the silicon detectors. For measurements with nuclear
targets, as it is the case for the Primakoff program, a light-weight target holder made of carbon
fiber rods and thin frames of fiberglass reinforced epoxy was engineered as can be seen in
Fig. 3.3. It can house up to 16 target disks glued to the frames.

The set of target disks for the Primakoff run consists of one 4.2 mm nickel disk the main
target and two thin disks of tungsten. The additional tungsten targets provide the possibility
to verify and cross-check the Z -dependence of the Weizsäcker-Williams approximation (see
Eq. (2.23)). Table 3.1 summarizes the different target disks and their properties.

The target thicknesses were chosen mainly to limit the conversion of photons and minimize
the effect of multiple scattering on the resolution of charged-particle trajectories. Since the
tungsten targets are located more downstream, they are thinner to minimize the impact on

49



3.3. SPECTROMETER SETUP IN 2009 FOR THE PRIMAKOFF PROGRAM

140− 120− 100− 80− 60− 40− 20− 0
 (cm)PVz

10

210

310

410

510

0π−π → (*)γ−πPrimakoff 2009: 

co
un

ts
 / 

0.
5 

cm

Ni

W
Si det

(a)

110− 100− 90− 80− 70− 60− 50− 40− 30−
 (cm)PVz

0

0.05

0.1

0.15

0.2

0.25

 decays−acceptance of K)
P

V
z (

ac
c

∈

0π−π → −K
0π0π−π → −K

targetz

(b)

Fig. 3.4 In (a): Distribution of primary vertices along the z -axis for selected π−γ(∗)→ π−π0 events in the target
area. In (b): acceptance for K −→π−π0 (blue) and K −π−π0π0 (red) decays over the Ni target disk.

events originating at the main target. At the same time, this setup limits the luminosity on the
tungsten targets. Fig. 3.4a shows the distribution of reconstructed primary vertices of selected
π−γ(∗)→π−π0 events. We can identify areas, where denser material is placed along the beam
axis: the nickel and tungsten targets, and parts of the first silicon tracking detector (entrance
window and first plane).

The 4.2mm thickness of the Ni target is also a compromise of maximizing luminosity and
minimizing photon conversion rate to retain a reasonable sensitivity for events originating
upstream of the target, in particular for kaon decays. As will become clear in Chapter 7,
sensitivity for kaon decays is essential for the analysis. Fig. 3.4b shows the gradient of the
probability to detect a kaon decay, the so-called acceptance εacc(z ), along the z -axis.

3.3.2 Electromagnetic calorimeters

The processes of interest (see Eq. (5.1)) for the presented analysis contain all either one or
two neutral pions. The electromagnetic calorimeters are hence of major importance. A good
energy and spatial resolution of the calorimeters is essential to be capable to reconstruct
and resolve the tiny momentum transfer O (MeV)which characterizes Primakoff events. The
spectrometer setup of 2009 comprises two electromagnetic calorimeters: ECAL1 in the LAS

Table 3.1 Overview of target disks used during the Primakoff run 2009.

Material z -position (cm) Thickness
(mm) (X0) (%) (g/cm2)

Ni −72.6 4.2 29.5 3.74
W −36.0 0.050 1.43 0.092
W −31.1 0.025 0.71 0.048
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and ECAL2 in the SAS. ECAL1 covers the angular ranges 37−136 mrad in x and 21−98 mrad in
y for photons originating in the target region. ECAL2 covers the angular ranges up to 39 mrad
in x -direction and up to 29 mrad in y with a hole in the acceptance for the beam spot. For the
Primakoff run 2009, more than 99% of reconstructed electromagnetic showers are detected
in ECAL2 [63]. ECAL2 also offers superior spatial and energy resolution to ECAL1. The energy
resolution can be studied through the width of the reconstructed π0 peak and is given as
8.85 MeV/c 2 for ECAL1 and 3.88 MeV/c 2 for ECAL2 [87]. For these reasons, we will consider
only ECAL2 for the analysis presented in this thesis and neglect the kinematic region where
one of the photons of the final state is detected by ECAL1.

The ECAL2 modules are arranged in a 64× 48 matrix as shown in Fig. 3.5. There are three
different types of modules each with identical transverse size of 3.83× 3.83 cm2. The outer-
most and the intermediate parts are equipped with similar, homogeneous lead glass blocks of
slightly different materials. The material used for the intermediate part is radiation hardened
by being enriched with cerium [82]. The innermost part of ECAL2 is equipped with Shashlik
type modules, which are composed of ∼300 alternating layers of lead and scintillator plates.
The photons from the scintillator plates are collected by 16 wavelength-shifting fibers and
guided to a photomultiplier at the back of the module. The Shashlik modules provide higher
stopping power and even higher radiation hardness compared to the lead glass modules. For
the Primakoff data taking, there is a hole of 2×2 cells at the nominal beam position in ECAL2.

3.3.3 Trigger strategy

The COMPASS Primakoff trigger in 2009 is designed to select events with neutral particles in
the final state. The limited buffer capability of the detector readout electronics requires a fast
trigger decision within 3µs, which limits the complexity of the trigger. The Primakoff trigger

Fig. 3.5 Structure of ECAL2: the calorimeter is composed of lead glass, radiation-hardened lead glass, and
Shashlik modules. The active area of the ECAL2 trigger (shown in dark blue) lies in the center within the
Shashlik area. The cells around the beam hole (white spot), that are shown in lighter blue, are explicitly
excluded from contributing to the trigger due to high rates. The lead glass and Shashlik areas are corrected
w.r.t. Ref. [82].
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Fig. 3.6 Arrangement of trigger elements in the spectrometer (schematic side view, not to scale). Taken from
Ref. [82].

consists of three subsystems: "beam-defining elements to select beam particles crossing the
target, veto detectors to reject events containing particles produced outside the target or out-
side the spectrometer acceptance," [82] and, specific for the Primakoff trigger, a minimum
energy deposit in the calorimeters to require neutral particles in the final state. Fig. 3.6 shows
schematically the location of the different trigger elements in the spectrometer.

The first trigger subsystem, the beam trigger, selects incoming beam particles. It consists of
two fast-responding detectors and sets the reference time for an event. It is triggered on a
coincident signal in a scintillating fiber detector (SciFi1) located ∼ 7 m upstream of the target
region and in a beam counter. The beam counter is a scintillating disk of similar shape (3.2 cm
diameter) as the target disks and hence “reduces the geometric acceptance of the beam in the
transverse plane to match the target geometry” [82].

The second trigger subsystem, the veto, consists of two scintillation counters (“beam killers”),
a Sandwich veto detector and a hodoscope veto system. The beam killers have a diameter of
3.5 cm and are placed along the beam axis. A coincident signal in both beam killers inhibits
a false trigger signal caused by non-interacting beam particles. The hodoscope veto removes
events with beam particles far from the beam axis. Details can be found in Refs. [80, 88]. The
active area of the sandwich veto detector covers exactly the angular acceptance gap of RPD
and spectrometer. It is sensitive to charged and neutral particles.

The calorimetric trigger selects high-energy photons in forward direction detected by some
of the most central 12× 12 cells of ECAL2. The trigger implements the sum of time-correlated
energies in the selected region of cells. The active cells contributing to the sum are given by:

δXY =

¨

1 if (24<X< 37 ∧ 17< Y< 30) ⊼ (X> 33 ∧ 21< Y< 26)

0 else
(3.5)

with X and Y being the indices of the column respectively row of cells in ECAL2. The condition
of Eq. (3.5) is visualized in Fig. 3.5. In addition, each cell has an individual threshold of around
700 MeV which is applied on the level of the front-end electronics, given in ADC channels,
and—due to individual calibration constants per cell—differs for each cell.

The sum of the energies of cells of the selected region is compared to a programmable thresh-
old. For the run 2009, there were two different Primakoff triggers implemented. The Pri-
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Fig. 3.7 Efficiency of the ECAL2 trigger as a function of the energy. The solid line is an error function fitted to
the data. Taken from Ref. [82].

Table 3.2 Overview of trigger (sub-)systems and vetos used during the Primakoff run 2009. For the physics
triggers, the number of recorded events in the 2009 Primakoff data set is given.

Trigger/Vetos Logical composition Recorded events

Beam trigger (BT) SciFi1 ∧ beam counter 14.40 M
Beam killer veto beam killer 1 ∧ beam killer 2 —
Veto Sandwich ∨ veto hodoscopes ∨ beam killer —
Calorimeter trigger (CT)

∑

12×12 cell amplitude > threshold —
Primakoff trigger Prim1 BT ∧ CT (> 40 GeV) ⊼ veto 158.2 M
Primakoff trigger Prim2 BT ∧ CT (> 60 GeV) ⊼ veto 199.8 M

makoff trigger “Prim2” used a threshold of EPrim2 ≳ 60 GeV, “Prim1” a threshold of EPrim1 ≳
40 GeV. "“Prim1” is prescaled with a factor of two and used to monitor the behavior of “Prim2”.
In this way, the efficiency of “Prim2” can be observed as shown in Fig. 3.7. Table 3.2 shows,
how the physics triggers are composed of the individual subsystems.

The per-cell thresholds are difficult to replicate in simulation. To circumvent a delicate de-
scription of the calibration, we apply a threshold of 1.2 GeV to each cell. The threshold is
chosen sufficiently high, such that it supercedes the internal hardware threshold of each of
the contributing cells:

E thr
XY =

¨

E XY if E XY > 1.2 GeV

0 else
(3.6)

In the following of this thesis, the deposited energy in the active area of the calorimetric trigger
is calculated via:

Etrig =
∑

XY

E thr
XY ·δXY (3.7)

The final composite triggers are summarized in Table 3.2. For the physics triggers, which actu-
ally triggered the data acquisition, the table lists the number of corresponding events/triggers
in the 2009 Primakoff data set.
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3.4 Accessible Primakoff channels at COMPASS

The setup of the COMPASS spectrometer and the premises of the M2 beamline give access to
following Primakoff reactions with the beam impinging on nuclear targets:

π−+γ(∗)→



















π−γ Compton reaction, pion polarizability [89]

π−π0 chiral anomaly, radiative width of ρ

π−π0π0 chiral tree and chiral loop

π−π+π− resonances, exotics [90]

(3.8)

In 2004, the negative hadron beam was impinging on lead targets and the setup comprised a
trigger sensitive forπ−π−π+ events. Using partial-wave analysis techniques, Primakoff events
were identified and the dependence of their scattering intensity on the 3π-invariant mass was
compared to predictions of ChPT in Ref. [90].

With the setup in 2009 and 2012, final states with neutral particles were recorded. The trigger
setup in 2012 was similar to the one described above. It was tuned mainly for the Primakoff
Compton reaction π−γ(∗) → π−γ. The corresponding analysis has already been carried out
and a value for the pion polarizability was published in Refs. [89, 91] based on the 2009 data
set.

The 2009 and 2012 data sets contain alsoπ−π0 andπ−π0π0 final states. Extensive preparatory
work for the analysis of the two final states has been done in Refs. [46, 63].

3.5 Readout electronics and Data Acquisition System

The COMPASS experiment is taking data since 2002. Since then, the amount of collected data
is increasing year by year, mainly due to an increase of accelerator luminosity and trigger
rates, and a growing number of detector channels. A trend stimulated by ever developing stor-
age and processing power, which can be seen in (almost) all high-energy physics experiments.
Data acquisition and event building, i.e. the collection of event fragments of the different
subdetectors in the short amount of time between two triggers, is a common challenge in
all high-energy physics experiments and has become more and more complex. Dedicated
Data-AcQuisition systems (DAQ) unite the tasks of digitization, event-building, and saving
the data to disk. The potential need of higher-level triggers, which ideally consider already the
full detector data, requires inevitably an online event building mechanism. Most current DAQ
systems use an Ethernet-based network of distributed online computers for this purpose.
Concurrent developments in the technology of Field-Programmable Gate Arrays (FPGA), such
as increased I/O bandwidth (> 3 Gb/s) and support for high-performance SDRAM, make also
FPGAs suitable for event building purposes. Over the years, the electronics of the COMPASS
experiment on the detectors (front-end) as well as on the event-builder side were upgraded
continuously to be capable of handling the increasing amount of data from O (100 MB/s) in
2002 to O (1 GB/s) in 2012.
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Triggered by the need of a versatile, scalable, and highly reliable DAQ, the COMPASS col-
laboration decided to develop a new DAQ from scratch exploiting the application-specific
technology of FPGAs. COMPASS commisioned its so-called intelligent, FPGA-based DAQ
(iFDAQ) during the shutdown of the SPS in the years 2013 and 2014. In the following years,
the system was debugged and extended.

3.5.1 System design and topology of the iFDAQ from 2014 to 2019

The core of the iFDAQ is its hardware event builder based on FPGAs. Traditional, software-
based approaches rely on distributed online computers interconnected via an Ethernet Giga-
bit network. Compared to more traditional event builders, the iFDAQ event builder reduces
costs and provides higher reliability, increased compactness and less maintenance efforts.

The hardware event builder consists of custom designed DAQ units, called Data Handling
Cards (DHC) shown in Fig. 3.8. The heart of the DHCs is a XC6VLX130T FPGA of the Virtex6
family by Xilinx. Moreover, it is equipped with 4 GB DDR3 SDRAM which is used to buffer data
on the module. It follows theµTCA/AMC standard [92] and is mounted on a VME carrier card
which provides the necessary ports for the different interfaces: 16 optical high-speed links,
Ethernet, and TCS (trigger control system) interface. There are two different operation modes
of the DHCs: they can either be used with a firmware configuring them as a 15:1 multiplexer
(DHCmx) or as 8×8 switch (DHCsw). For a detailed description of the firmware designs, refer
to Ref. [93].

Fig. 3.9 shows the setup of the iFDAQ exemplarily for the run 2017. The frontend electron-
ics digitize the signals of the roughly 300k detector channels and transmit data to the data
concentrator modules. Selected channels are fed to the trigger system, which takes a trigger
decision based on these signals. The trigger decision is distributed via the TCS to all nodes of
the iFDAQ. On a trigger, the data concentrator modules assemble a data package encapsulat-
ing the data of the connected channels and transmit it to the DHC modules of the hardware
event builder via optical links using the S-Link protocol developed at CERN [94]. An optional
intermediate multiplexing stage allows merging data streams of concentrator modules with
low rates for an efficient usage of the S-Link bandwidth. The intermediate multiplexing stage
consists of either DHCmx (15:1) or S-Link multiplexer (4:1) modules. Another layer of maxi-
mum eight DHCmx modules ensures that the maximum number of input links to the DHCsw

Fig. 3.8 Data Handling Card (DHC) mounted on a VME carrier card. The carrier card provides the necessary
interconnection ports for the different interfaces.
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Fig. 3.9 Setup and network topology of the iFDAQ in the years 2014 to 2019.

module is not exceeded. In a round-robin, the DHCsw module distributes fully assembled
events to the spillbuffer cards plugged into the readout engines. The spillbuffer cards are
off-the-shelf FPGA modules, which provide a PCI-E interface to transmit the data into the
buffer memory of the readout computers.

Since all data has to go through the DHCsw module, the DHCsw is the bottleneck of the
system, making high data throughput the main requirement. The throughput of the DHCsw
module depends on the event size. Its upper limit is 3 GB/s and for typical average event
sizes, it is ≥ 1.5 GB/s [95]. The peak on-spill data rate, which is generated by the frontend
electronics is around 8 GB/s. The system exploits the spill-structure of the SPS duty cycle, in
which a spill period of around 5 s is followed by an off-spill period without beam of at least the
same amount of time, often longer in the range 20 to 40 s. By buffering the data on all levels
of the system, the on-spill data rate can be averaged over the whole accelerator duty cycle.
Hence, the final four readout computers work independently of the instantaneous rate at a
sustained rate of up to 500 MB/s.

The system uses three independent interfaces. For synchronization and distribution of event
information, the already mentioned Trigger Control System (TCS) is used [96]. The data flow
and thus the event building follows the S-Link specifications, which is a point-to-point con-
nection. For configuration, monitoring, and control of the hardware nodes of the iFDAQ,
a network protocol, the so-called IPBus [97], over Ethernet is used. The functional division
simplifies diagnostic capabilities and offers efficient usage of the data bandwidth.

The requirements for the event builder such as maximum and average event size, trigger rate,
and number of incoming optical links, change from program to program depending on the
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spectrometer setup. The iFDAQ provides the needed flexibility and scalability to cope with
the changing setups by adding or reducing the amount of DHCmx modules and/or readout
engines.

The iFDAQ was designed to be a highly automated system. Intelligent and automated fea-
tures increase the user-friendliness and turned out to be commonly used and appreciated by
scientific staff on shift. Following intelligence elements have been deployed until 2018:

• Self-synchronized event building data flow: initiating the data flow through the event
builder and maintaining a synchronous processing of data by all involved hardware
nodes is achieved by distributing trigger and spill cycle information to all nodes via the
Trigger Control System (TCS) and applying reset commands and timeouts. In this way,
an asynchronous working node recovers usually at the latest on the next spill.

• Automatic resynchronization of front-end modules: the TCS information is also dis-
tributed to the data concentrator modules, which allows for similar automatic resyn-
chronization. Moreover, data from a concentrator module can be excluded or included
at the time during the run.

• Continuous front-end error diagnostic, automatic error handling and recovery: during
the development of the iFDAQ, great emphasis was put on the ability to recover and
handle errors in the data stream emerging from front-end electronics and on the capa-
bility to identify their origin. On each level of the event builder, data consistency checks
are performed.

3.5.2 Software architecture of the iFDAQ

The support software for the iFDAQ provides six main functions: configuration, monitoring,
and remote control of the hardware nodes, logging of information and error messages, brows-

Fig. 3.10 Communication diagram of the different processes which form the support software of the iFDAQ.
Adapted from Ref. [98].
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ing of the messages, and readout of the fully assembled events that the hardware event builder
buffered in the RAM of the readout engines.

To fulfill all these functions, the support software is a multilayer system centered around a
master process, as illustrated in Fig. 3.10. Exactly one master process is automatically started
on one of the iFDAQ computers. It acts as a middleman between Graphical User Interfaces
(GUIs), the database server (DB), and all other processes. The GUIs display the overall status
of the iFDAQ to the user and allow the shift crew to control the iFDAQ, e.g. start data taking.
The support software incorporates only one real-time process, the readout slave, which is
responsible for transferring the fully assembled events from SDRAM to the machine-internal
hard disk. To monitor, configure, and control the hardware nodes, the master process starts
one control slave per node. The message logger collects all messages from the master process
and all slave processes and stores them in the DB. The message browser provides an interface
for users to see new messages when they pop-up, access older messages, and offers filtering
possibilities. The CDR process transfers the buffered data to CERN’s Central Data Recording
(CDR) facility. For inter-process communication, each process subscribes to a communica-
tion server on start-up [99].

The iFDAQ can be in four different states:

1. Turned off: only the master process is existing. It is hibernating, waiting for a command
to become active.

2. Slaves started: during the transition, the master process spawns one monitoring slave
process for each FPGA hardware node in the selected iFDAQ setup and starts readout
slaves on each readout computer.

3. Configured: During the transition, each slave process looks up the needed information
about registers on their corresponding hardware node in the database and configures
the hardware node accordingly via the IPBus network. While being in the state, the
monitoring slave continuously monitors the node.

4. Run/Dry run: Data flow and the necessary synchronization is established. Monitoring
slaves continuously monitor their corresponding hardware node. Readout slaves move
data from RAM to disk.
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Chapter 4

Improving reliability and stability of
the data acquisition

Data acquisition and event building are crucial tasks in any high-energy physics experiment.
Like almost nothing else, downtime and reliability of the DAQ influence the efficient usage of
expensive beam times. It is therefore of high importance, to minimize DAQ downtimes and
improve reliability and stability of the data taking.

At COMPASS, inefficiencies during the data taking campaign arise mainly for two reasons:
first, errors in the frontend electronics, which subsequently propagate through the data ac-
quisition chain and cause a loss of synchronization of the hardware nodes until all buffers
are reset on the next spill. And second, buffer overflow or hardware failure later in the data
acquisition chain on one of the hardware nodes.

These two effects have different reasons. The frontend electronics, in particular the analog
part, is very sensitive to properties of the beam. They are operated at COMPASS close to their
maximum event and data rate capability. Any intensity spike in the beam may therefore lead
to failure of the frontend electronics. The reliability can hence be improved by providing a
monitoring tool for beam properties, which will allow SPS and beamline operators to tune
their machines. We will discuss the implementation of a real-time beam monitoring system
in Section 4.2. The system was developed by C. Michalski [100]. The final implementation
and support was done in the scope of this work.

In contrast to the frontend electronics, the event building nodes work independent of the
immediate beam rate shielded by several levels of buffers. Still, high load on the nodes also in-
creases probability of failure. Dynamic load balancing between the hardware nodes is hence
a mean to increase the reliability of the event builder. In particular during the commissioning
phase of the spectrometer at the beginning of a data taking campaign, the average event rate
of each detector is not yet known and frequent intervention is necessary. In Section 4.1 we
will describe the design and implementation of a crosspoint switch, which allows rerouting
point-to-point interconnections without manually plugging cables.
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4.1 Crosspoint switch

Event building describes the combination of logically connected, because they can be at-
tributed to the same trigger, but physically split data fragments. In high-energy physics, the
event fragments are physically split, due to the typical size of the experiments, up to 100 m
and the various kinds of detectors which make up the whole experiment.

Fig. 4.1a shows the traditional approach to tackle the task of event building, as it used also by
many LHC experiments [101, 102]. Soon after digitization, the event fragments are stored in
buffer PCs. A control unit distributes a message to which event builder PC the fragments of
one event should be forwarded. The builder collects the different data fragments, combines
them, and sends them to a central data recording (CDR) facility for off-line storage. The trans-
mission from buffer to builder unit is carried out via a standard IP-based network protocol and
off-the-shelf Ethernet network switch. Buffer units and event builder units can be replicated
over a number of computers to fulfill performance needs and application scenarios. Benefits
of the traditional approach are the simple integration of redundancy elements and the usage
of mass-produced components. Traffic shaping in the event building network can be done
on-the-fly by the control unit based on the constantly monitored load on builder nodes. A
major drawback of this approach is that the throughput of the system is limited by the event
building network switch. In addition, the network bandwidth is inefficiently used. Stan-
dard IP-based addressing protocols are not suited for the required communication pattern
in event building networks. Data packages from many senders, which have to be routed to a
single receiver, lead to network congestion. Additionally, the data overhead due to addressing
and protocol standards can become significant for small data packages. All this leads to an
inefficient usage of the available bandwidth and hence higher costs for high-performance
hardware.

A different approach to event building was taken by the COMPASS collaboration in 2014 with
the deployment of the iFDAQ. The event building is carried out by hardware nodes in FP-
GAs exploiting their parallel processing capabilities and pipeline architecture. The necessary

(a) (b)

Fig. 4.1 Event builder architectures. In (a): conventional approach with PCs interconnected via Ethernet
network fulfilling the event building task. In (b): pipeline architecture exploiting the properties of FPGAs.
The FPGAs are interconnected with point-to-point high-speed links.
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Fig. 4.2 Possibility to scale data throughput of a hardware event builder. The scenario exemplarily assumes a
10×10 switch module with a throughput of 10 GB/s for a single module.

high-speed links are point-to-point connections avoiding the overhead for addressing and
enabling efficient usage of the link bandwidth. The bottleneck in this approach is the DHCsw
module, by which all data have to be processed. It is, however, possible to scale the through-
put by replacing the single DHCsw module with a matrix of DHCsw modules as indicated in
Fig. 4.2. A hardware event builder provides a cost-efficient, highly reliable alternative to the
traditional approaches. The remaining drawbacks are a strong dependence on single nodes
in the hardware event builder and the lack of dynamic load balancing.

Both drawbacks arise due to the lack of simple and fast rerouting capabilities. In case of
failure of one hardware node, rerouting to a redundant node allows compensating for the
broken module. At the same time rerouting capabilities provide a fully customizable network
topology, which can quickly be adapted to distribute the load equally on event building nodes.
A programmable crosspoint switch, which can connect any data output to any data input, can
provide reroutable point-to-point interconnections between nodes of the event builder.

4.1.1 Hardware and firmware design

There are several commercial manufacturers of crosspoint switches. We chose the Vitesse
VSC3144 which comes as a 45 mm× 45 mm 1072-pin BGA (ball grid array) chip for deploy-
ment on a PCB (printed circuit board). It provides 144× 144 strictly non-blocking ports at
a maximum bandwidth of 6.5 Gb/s per port. Since there are no registers used in the internal
data path, i.e. it is fully asynchronous, the chip does not impose any restrictions on the phase,
frequency, or signal pattern on any input. It can be used independent of communication
protocols.

The high density of high-speed lines requires an elaborate PCB design with twelve layers and
usage of low-footprint fiber connectors. The multi-fiber push on (MPO) connector comprises
multiple optical fibers in a single ferrule. Their typical application is in large-scale data cen-
ters as plug and play backbone cables between switches. We used the 24 fiber version, which
comprises 24 high-speed optical fibers in a single connector, as shown in Fig. 4.3a. The MPO
standard provides so-called harness cables to interface with the lucent connectors (LC) used
so far for hardware nodes of the iFDAQ.

To interface with the MPO connectors, twelve CXP cages are required, which can be equipped
with MPO-transceivers. To keep the design suitable for standard 19′′ racks, we placed six CXP
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(a)

(b)

Fig. 4.3 Multi-fiber push on (MPO) standard. In (a): MPO connector providing 24 optical connections, which
can be used for twelve bidirectional optical links. In (b): MPO harness cable to interface with the already
existing hardware nodes, which use LC (lucent connector) standard. Figures taken from Ref. [103].

cages on the front- and the remaining six on the backside of the PCB. For control and pro-
gramming of the crosspoint switch, we placed a small-sized FPGA of the Xilinx Artix-7 family
on the PCB. It interfaces with the switch via a 90 MHz, 11-bit parallel data bus. Necessary
high-speed links for slow-control or possible synchronization of the FPGA are provided by an
SFP-cage. Apart from the already mentioned interfaces, we have an additional programming
and debug interface to the FPGA using JTAG (joint test action group) standard. Fig. 4.4 shows
the PCB layout.

Fig. 4.5 shows the aluminum housing of the PCB, which is designed as standard 19′′ rack

CXP cages for 
MPO connections

CXP cages for 
MPO connections

Slow-control and synchronization 
interfaces to FPGA

Power connector

Programming and debug 
interface to FPGA (JTAG)

Artix-7 FPGA

Crosspoint switch

Fig. 4.4 Design view of layout of the custom-designed PCB for the crosspoint switch. The view shows different
layers of the PCB in different colors. The CXP cages, six on the left and six on the right, are connected with
high-speed differential lanes to the crosspoint switch located in the center. The upper third of the PCB housed
power supplies, an Artix-7 FPGA, and the necessary interfaces for it.
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(a)

(b)

Fig. 4.5 Front view (a) and back view (b) of the chassis for the crosspoint switch. The front view is shown fully
equipped and plugged for usage at COMPASS. The back view shows the open chassis, such that the power
supply is visible on the left side.

chassis and provides all standard attachment holes. It also houses an AC/DC converter (on
the left side in Fig. 4.5b) for maximizing user-friendliness. The correct voltages are created
internally. The user only has to plug the power inlet on the backside to socket and push the
power button.

Cooling is achieved by four fans pulling air from the back and pushing it to the front side.
The fan holder closes the chassis to the top to prevent internal air circulation and enforcing
constant airflow through slits directly above the CXP cages. The temperature of the crosspoint
switch itself, which is attached to a cooling body, is constantly monitored by the FPGA.

The functionality of the crosspoint switch is illustrated in a block diagram in Fig. 4.6. The
switch core can be programmed either on port-by-port basis or all port assignments can
be queued and issued simultaneously with very low latency of few ns. Since the switching
capability is implemented in the core of the VSC3144 chip, the FPGA only has to fulfill the
programming and monitoring of the crosspoint switch via the proprietary interface of the
VSC3144. The firmware is correspondingly simple. Besides the module for communication
with the crosspoint switch, the firmware provides three different registers for transmitting
data to the switch, which can be accessed via the IPBus protocol on the slow-control network.
All registers are summarized and described in Appendix C. The three registers for transmitting
information to the switch are treated with different priority. The “config” register, which can
issue the simultaneous programming of queued port assignments, is treated with highest
priority to ensure low latency and allow time-critical reconfiguration of the switch core. The
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Fig. 4.6 Block diagram of the functionality of the crosspoint switch. The switching capability is provided by the
core of the VSC3144 chip. Any of the 144 output can be connected to any of the 144 inputs. Even fan-out
topologies can be realized. The switch core provides signal equalizing cores on each of the in- and outputs. It
can be programmed by the Artix-7 FPGA via the proprietary serial or parallel programming interface.

“ctrl” register has second highest priority since it also transmit operation-critical information
to the switch. All other request, such as port assignments, are treated with the lowest priority
and stored in a buffer, until they can be transmitted. Via the TCS interface, the FPGA could
receive precise timing and reconfigure the switch core on-the-fly in between two spills. A
functionality which is foreseen but not used.

The firmware also communicates with each CXP cage via a I2C interface. The deployed CXP
cages provide information about the light yield, which they register on their receivers. A
useful tool to identify malfunctioning transmitters. The FPGA acquires continuously this
information from every CXP cage and makes it accessible on IPBus registers.

The implementation of the crosspoint switch introduces an additional component in the
high-speed transmission of a sender node to a receiver node. Since the bit-error rate (BER)
in high-speed transmissions is very sensitive to signal distortions, it is essential to eliminate
signal degradation due to the switch. The signal quality can be assessed in eye-diagrams. This
graph is generated by overlaying multiple instances of the transmitted signal on top of each
other, aligning them with respect to their clock timing. The wider and the higher the opening
of the eye, the better the signal quality.

Table 4.1 shows the eye diagram at the receiving side at different transmission speeds with and
without the crosspoint switch in the line. Not using the signal equalizing functionality leads
to a significant distortion of the signal. While the distortion is still acceptable at low speeds,
it leads to almost fully closed eye at speed above 6 GB/s. Table 4.1 also shows the eye diagram
using the best setting for the signal equalizing core of the switch: the signal quality can be
almost restored to the same level as without switch. Only at highest transmission speeds,
some remains are still visible.
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Table 4.1 Eye diagrams for signal transmission at different line speeds from ∼ 3 GB/s to ∼ 6 GB/s. The table
compares eye diagrams of transmission without crosspoint switch and with crosspoint switch. The switch
provides signal equalization, which leads to significant improvements in signal quality.

data rate signal before switch signal after switch
no EQ
signal EQ

3.13 Gb/s

5.00 Gb/s

6.25 Gb/s

These observations are confirmed in long-term BER measurements. Without using the signal
equalization core, the BER at 6.25 GB/s is∼ 10−8. Using the signal equalization, it reduces to∼
3·10−13 at the highest measured transmission speed. It should be noted that the VSC3144 chip
is, according to the datasheet, suited for line speeds up to 6.5 Gb/s. For lower speeds, the BER
was found to be below 10−15 when optimizing the signal equalization. Current applications
of the crosspoint switch in COMPASS/AMBER and Belle II operate at line speeds between
1.5 Gb/s (Belle II) and 2 Gb/s (COMPASS), for which we can safely assume that the switch
does not increase the BER.

4.1.2 Integration and application in the iFDAQ

The overall goal during the implementation of the switch into the COMPASS iFDAQ was to
minimize apparent changes for shifters. In the ideal case, the implementation of the switch
should stay unnoticed to protect users from unnecessary complexity, and maximize user-
friendliness. Following the approach of the software design of the iFDAQ, as explained in
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Control/monitoring 
slave for switch

DB table holding information 
about module interconnections

DB table holding information about 
switch to module interconnections

Switch UI
Web configuration 
interface

FPGA/switch

configuration
monitoring

Fig. 4.7 Configuration tools and graphical user interfaces for editing the involved database tables. The control
and monitoring process accesses both tables to correctly configure the crosspoint switch.

Section 3.5.2, we treated the switch like any other hardware node, which requires monitoring.
A corresponding entry has to be prepared in the database and the IPBus registers have to be
defined. This causes the master process to spawn a monitoring slave on the transition from
“turned-off” state to “slaves started”. At the same time, it powers the switch and executes the
necessary reset procedure.

During the transition from “slaves started” to “configured” state, the crosspoint switch needs
to be configured. To do so, the software needs information from two different database tables.
One holding the information about the connections between hardware nodes in the event
builder. A freshly introduced table stores the information to which port the corresponding
equipment is attached. To edit this table, we developed a graphical user interface (GUI),
which interactively displays the attached equipment, see Fig. 4.7. The web configuration
interface can be used to change the iFDAQ topology and corresponding reconfiguration of
the crosspoint switch will automatically implement the changes. Topologies can be stored
and easily recalled without physical human intervention. The working principle, how the
support software has to configure the crosspoint switch is displayed in Fig. 4.8.

Another feature of the crosspoint switch is its fan-out capability. One input can be mapped to
many outputs. This allows to split a data stream and send it to multiple receivers. A function-
ality, which is in particular useful for on-line debugging of detectors. The detector can remain
included in the main data stream of the DAQ, while at the same time, the data of the specific
subdetector can be forwarded to a debugging node. All this can be done during physics data
taking without intervention.
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(a) (b)

Fig. 4.8 The information about interconnections between modules in the hardware event builder as shown in
(a) is held by the iFDAQ configuration table. This table can be edited via the web configuration interface. Using
the information, to which port on the crosspoint switch the involved equipment is attached, corresponding
port assignments can be transmitted to the switch as indicated in (b). The latter table can be edited via the
newly developed GUI.

4.1.3 Application at Belle II

After completion of the development, an initially unforeseen application of the crosspoint
switch at the Belle II experiment arose. Due to the collider setup, the routing of the cabling
from the innermost silicon tracking detector is dictated by the very limited space in the center
of the detector. However, for filtering and processing of the data, the cables need to be ar-
ranged according to their detector number. This could easily be achieved by the installation
of two crosspoint switches, each handling 80×80 high-speed links.

The crosspoint switch proved to be a very useful tool also in the commissioning phase of
the Belle II central vertex detector. Making use of the fan-out functionality, the data of one
detector can be transmitted to all attached data processing cards. They should hence all
receive exactly the same data, which drastically facilitates commissioning, debugging, and
verification of the whole readout chain under real running conditions.

The light yield detection of the switch allows diagnosing bad optical links, which might lead
to bit-errors during transmission and consequently a drop of performance. To ensure correct
data transmission, a minimum threshold on the detected light intensity is imposed by means
of the crosspoint switch.

4.2 Commissioning of a real-time beam monitoring system

The author of Ref. [100] developed a fully automated monitoring system for beam properties
in real-time. The system was developed for employment on one of the scintillating fiber
detectors upstream of the target. These detectors consist of planes of 96 fibers readout by
photomultiplier tubes. The fiber detectors serve as tracking detectors for beam particles and

67



4.2. COMMISSIONING OF A REAL-TIME BEAM MONITORING SYSTEM

are very fast without significant dead times. They are well suited detectors for real-time beam
monitoring.

The beam rate is of special interest for our application. For rate measurements, a scaler with
dead-time free readout for each of the 96 channels is needed. This can be achieved with the
concept of a counter and an adder. The counter was implemented as a Johnson ring counter
which, due to its simple logic, requires very little computation time to determine the next
state for a signal edge and provides a Hamming distance of 1 for asynchronous readout. The
adder is clocked at 38.88 MHz and adds the difference between two readout states to a current
count.

The physics data taking requires timing information from the fibers generated by a time-to-
digital converter (TDC). The principle is to combine scaler, which is needed for the beam
monitoring tool, and a TDC on the same readout board. The firmware, which was developed
in Ref. [100], implemented scaler and TDC on a so-called GANDALF board [104]. GANDALF is
a 6U-VME64x/VXS [105] carrier board centered around a Virtex-5 FPGA. Since the real-time
beam monitoring should work independent of the iFDAQ, two different readout possibilities
are required. The data for the beam monitoring is read out via the VME64x-bus to the VME
CPU, whereas the data for the physics data taking is sent via high-speed interfaces to nodes
of the hardware event builder. To be fully independent of the iFDAQ, artificial begin-of-spill
and end-of-spill signals are generated internally based on the hit rate. Likewise, internally
generated pseudo-random trigger provoke the acquisition of events for the beam monitoring.
Data acquisition for the beam monitoring is hence completely decoupled from the main DAQ
and does not use information about triggers or the spill structure.

For each spill, a process on the VME CPU acquires the pseudo-random data by accessing
memory on the GANDALF board via the backplane of the VME crate. Data of one spill is
saved in one file on the network file storage of COMPASS. An instance of the GUI, checks
for new files at the defined location, decodes the information, performs the needed analysis,
like a Fourier transformation of the rate, and displays the results to the user. Fig. 4.9 shows the
graphical display of the information. The graphs are updated after each spill. The information
is also published on the COMPASS website and used by SPS operators to tune debunching
and extraction of the beam. Using the beam monitoring tool, a 50 Hz oscillation in the beam
intensity could be detected.

A common problem are spikes at the start of a spill. These spikes may lead to desynchroniza-
tion of certain frontend electronics which are operated at the maximum of their rate capa-
bility. Since synchronization is reestablished only on the next start-of-spill trigger, the data
of corresponding detectors are lost for almost an entire spill. The real-time beam monitoring
tool enables shifters to find the origin of the problem, take action, and therefore improve the
quality of data taking.
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Fig. 4.9 Distributions provided by the GUI of the beam monitoring. The upper left distribution shows the
number of hits for each channel integrated over the whole spill. It is dominantly determined by the beam
profile in the plane. On the upper right plot, we calculate the mean channel, which the beam hist in time
slices over a spill. In case the beam position is not constant over a spill, the mean hit channel varies over the
spill. The distribution is linearly fitted and the slope parameter is sent to a database, such that automatic
alarms can make shifters aware of a beam drift. The central left plot shows the beam rate over the time of a
spill. For a good spill extraction from the SPS accelerator, the beam intensity is constant over the entire spill.
Often, spikes at start and end of a spill occur, which lead to problems in the frontend electronics. With the help
of the beam monitor, shifters can identify the cause of the problems and inform SPS operators. The remaining
three distributions show the fourier transform of the rate. Sometimes, remains of the 50 Hz AC frequency of
the common line voltage can be seen in the intensity of the SPS beam.
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Chapter 5

Event reconstruction and selection

For each trigger decision, the detector response is read out and saved on disk. The data
belonging to one trigger decision is called an event. An event includes hits in tracking de-
tectors and energy depositions in calorimeter cells. The energy deposition is determined by
measuring the created light in the scintillator with photomultiplier tubes attached to the back
of each cell.

The event reconstruction is performed off-line using the saved raw data from the detectors.
The COMPASS collaboration has developed a dedicated software package for the event re-
construction called CORAL (COmpass Reconstruction and AnaLysis software package) [106].
It offers track finding, vertex reconstruction, and clustering algorithms specifically adapted to
the geometry and detectors of the COMPASS spectrometer layout. Since the various physics
programs demand different spectrometer layouts and impose specific requirements on the
reconstruction, CORAL offers numerous setting options. The following event selection and
the analysis is based on a particular reconstruction of the raw data, called the t 70 production.
For the t 70 production, special emphasis was put on a correct energy calibration of showers
in ECAL2 and on the vertex reconstruction. Calibrations, which are applied either in the
reconstruction process by CORAL (pre-production) or during the analysis (post-production)
are explained in Section 5.2.1. To be sensitive to Primakoff reactions, which characteristically
feature small momentum transfers and hence favor small scattering angles, the vertex recon-
struction algorithm was optimized for high efficiency at small scattering angles partly with
limited spatial vertex resolution.

COMPASS collected data of various reactions during the Primakoff data taking campaign in
2009. The main goal of the event selection and reconstruction discussed in this chapter is to
extract a clean sample of the desired reactions:

π−+Ni→π−π0+Ni

π−+Ni→π−π0π0+Ni

K −→π−π0

K −→π−π0π0

(5.1)
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A common property of all the reactions in Eq. (5.1) is their vertex: it has to be reconstructed
by the beam particle (either pion or kaon) which is tracked in the beam telescope and a single
ionizing, negatively charged pion in the final state. The additionalπ0s decay almost instantly
into two photons, which will not be seen by the tracking detectors and can not contribute to
the vertex reconstruction. It makes hence sense, to split the event selection into two parts.
First, the preselection, selecting all events with primary vertices with one negatively charged
outgoing pion trajectory. We will suppress background from multiple scattering events and
require certain quality conditions on the vertex, the charged scattered track, and the beam
track. The preselection will be described in Section 5.1. In a second step, we reconstruct
the neutral pions via their decay photons and apply a specific event selection for each of
the reactions of Eq. (5.1) based on kinematic quantities. The specific event selections for the
different processes are described in Section 5.3. Additional details about the event selections
can be found in Refs. [107, 108].

5.1 Event preselection

The goal of the preselection is to match the common conditions of the reactions in Eq. (5.1)
in order to reduce the amount of data in a way that they can be analyzed efficiently for each
of the processes. Following selection criteria, called cuts, are applied in the preselection:

• Existence of at least one primary vertex and (“Prim2” trigger bit or pscat < 140 Gev/c )

The t 70 data set contains events for which CORAL did not reconstruct a primary vertex at all or
not within the target region of COMPASS. Since events of such kind do not contain any usable
information, the very first cut requires at least one reconstructed primary vertex (PV) in the
target region−350 cm< zPV < 50 cm. Due to the special vertex reconstruction setting allowing
for small scattering angles, multiple-elastically scattered tracks cause the reconstruction of
a primary vertex. We therefore require additional evidence for an (interesting) interaction:
either the Primakoff2 trigger bit is set or one of the primary vertices has at least one outgoing
track with less than 140 GeV/c momentum.

• No pile-up events (exactly one incoming beam track)

In addition to the true interacting particle, which triggered the data acquisition for the event,
accidentally coincident beam particles may enter the spectrometer. They may give rise to
other primary vertices, either in the target region or further downstream in the detector. Since
there is an increased probability for misreconstruction in these events, we disregard all events
with more than one track in the beam telescope. Such beam tracks are identified by their first
measured hit zfirst <−75 cm. Pile-up effects are the same for kaons and pions. They are taken
into account in exactly the same way in the generation of pseudodata of kaon decays and pion
interactions. This is important later on, since cancellation of the effects will depend on equal
treatment of pions and kaons.
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• The primary vertex has been reconstructed using the beam particle trajectory and ex-
actly one outgoing/scattered trajectory

• Negative charge of scattered particle and meaningful reconstruction of its momentum

The charge and momentum of an ionizing particle traversing the spectrometer is determined
by the deflection of its trajectory in the dipole magnets. Negatively charged particles are bent
in positive x -direction. For each particle, the straight track segments up- and downstream
of the dipole magnets can be extrapolated to intersect within the magnet. Combinatorial
background may lead to a wrong determination of the charge and of the momentum of a par-
ticle. We accept only events for which the trajectory of the scattered particle was successfully
“bridged” over at least the first dipole magnet, the trajectory was bent in positive x , and the
momentum measurement returned meaningful values of 1 GeV/c < pscat < 200 GeV/c .

• Meaningful reconstruction of the beam energy

For specific parameters of the beam trajectory (position and inclination), in particular when
they are far from the nominal beam parameters, the beam energy determination via the poly-
nomial describing the beam optics (cf. Eq. (3.4)) gives unphysical results. We require, that
the determined beam energy Ebeam is close to the nominal beam energy of Enom ≈ 190 GeV:
170 GeV < Ebeam < 210 GeV

• Event not in list of identified bad spills

In Ref. [91], a list of bad spills was compiled based on logbook entries, error messages of the
readout electronics, and beam properties. We neglect events that were recorded in one of the
identified bad spills.

• Primakoff2 trigger bit is set for the event.

• Number of crossed radiation lengths by the scattered charged particle X /X0 < 15

The main decay mode of charged pions is the leptonic decay to muon and neutrino. To ex-
clude contamination with events, for which either the beam particle or the scattered particle
has decayed to a muon, we have to reject muons in the final state. Since muons do not
interact strongly, unlike pions, they can traverse large amounts of material. We require that
the scattered particle passed less than 15 radiation lengths along its trajectory. The COMPASS
spectrometer is equipped with two muon identification systems [82], one in the LAS called
Muon Filter 1 (MF1) and one in the SAS called Muon Filter 2 (MF2). They consist of drift
tube detectors combined with absorber walls made of iron (MF1) or concrete (MF2). When
a particle creates a hit in the drift tube trackers behind the walls, it has passed more than 15
radiation lengths in the absorber material and is identified as muon.

• No hits in outer muon hodoscope (HO04) which can be associated with the scattered
track
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Fig. 5.1 Efficiency of the muon identification system illustrated with simulated data of the K −→µ−π0ν decay.

MF1 covers the low-momentum range up to ≈ 6 GeV/c . The trajectories of particles with
higher momenta are bent less by SM1. They will traverse the hole in the center of MF1 and
enter the SAS. The efficiency of the muon rejection of MF2 in the SAS, ϵµ, can be visualized
with simulated data. Fig. 5.1 shows the efficiency obtained from simulated K − → µ−π0ν
decays. Particles with momenta less than 20 GeV/c will be bent by SM2, such that they are
outside the geometrical acceptance of MF2. Hence, the momentum acceptance of MF2 drops
for momenta below 20 GeV/c. Hits in the hodoscopes of the muon section behind MF2 were
not considered for tracking in the t 70-production. Since hodoscope outer 4 (HO04) is placed
far from the beam axis in bending direction of SM2, one can extend the covered momentum
range by checking for corresponding hits in HO04: we extrapolate the trajectory of the scat-
tered particle to zHO04 = 39.6 m and check for hits in the corresponding slabs of HO04 that are
within a−8 ns< ttrack < 15 ns time window. The effect of considering hits in HO04 can be seen
in Fig. 5.1: the minimum momentum for which muons can efficiently be rejected is lowered
to≈ 17 GeV/c . However, a small gap in the covered momentum range between MF1 and MF2
persists.

• Etrig > 68 GeV

To avoid a difficult and error-prone description of trigger inefficiencies in simulation, we
accept only events which have an energy deposit in the trigger region Etrig that is significantly
higher than the trigger threshold of Ethr ≈ 60 GeV (see Fig. 3.7). Etrig is calculated via Eq. (3.7).

• Transverse momentumk of the charged pion pT > 45 MeV/c

A charged particle traversing material is deflected by many small-angle scatters of which most
are due to Coulomb scattering. “For many small-angle scatters the net scattering [. . . ] distri-
butions are Gaussian via the central limit theorem” [109]. For a single-charged particle, the
rms of the Gaussian distribution can be calculated via

θ rms =
13.6 MeV

β c p

Æ

X /X0

�

1+0.038 ln
�

X

X0β2

��

(5.2)
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Fig. 5.2 Position (a) and inclination (b) of the beam for selectedπ−γ(∗)→π−π0 events. All other selection criteria
of the π−γ(∗)→π−π0 event selection (see Section 5.3) except from the shown quantities are applied. The cuts
on beam position and inclination are indicated as dashed ellipses.

with p the momentum andβ c the velocity of the incident particle, and X /X0 the thickness of
the scattering medium in radiation lengths. The scattering angle depends on the momentum
of the particle. Since the particles have a momentum distribution, it is beneficial to cut on
the perpendicular momentum pT w.r.t. the beam in order to effectively reduce multiple-
scattering events in the data set. For the 4 mm Ni target (∼ 0.3 ·X0) at ultra-relativistic speeds
(β = 1) the rms of the pT -distribution amounts to:

p rms
T = p ·θ rms ≈ 7.1 MeV/c (5.3)

The requirement of pT > 45 MeV/c corresponds to more than 6 ·p rms
T of multiple scattering.

• Position and inclination of beam trajectory

The beam energy reconstruction via the polynomial of Eq. (3.4) depends on the position and
the inclination of the beam trajectory in the x/y -plane at z0 = −72.5 cm. Since the area of
verification of the polynomial is not given in Refs. [86, 63], there is a risk to accept events
that are outside its verified region and hence extrapolate the polynomial. For a consistent
determination of the luminosity and for the generation of a corresponding set of pseudodata
via Monte-Carlo simulation, it is important to have a well-defined space of beam parameters.
We apply an elliptic cut on the parameters of beam position and inclination

�

x −µx

ax

�2

+

�

y −µy

a y

�2

< 1 (5.4)

with the parameters given in Table 5.1. The cuts are indicated in Fig. 5.2 by dashed lines for
the example of selected π−γ(∗)→π−π0 events.

Fig. 5.3 shows the number of selected events after each cut of the preselection. From the 2.4
billion events in the Primakoff data set, we preselected 28 million generic events with one
charged final-state particle.
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Fig. 5.3 Number of selected events after applying each cut of the preselection. The details of each cut are
explained in the text.

Table 5.1 Parameters of the cut on beam position and inclination.

µx µy ax a y

position −0.1 cm 0.0 cm 1.55 cm 1.55 cm
inclination −3.5 ·10−5 −2.0 ·10−4 2.4667 ·10−4 2.747 ·10−4

5.2 Reconstruction of neutral pions

The neutral pion decays predominantly into two photons:

π0→











γγ (98.823±0.034)%

e +e −γ (1.174±0.035)%

others < 10−5

(5.5)

A π0 is therefore reconstructed by the two photons originating at its decay vertex. cτπ0 =
25.5 nm is sufficiently small to assume for the kinematical reconstruction of the π0 that the
decay photons originate at the primary vertex. For two photons with four-momenta p

µ
1 , p

µ
2

and p 0
i = Ei = |p⃗i |, we have

m 2
γγ = |p

µ
1 +p

µ
2 |

2

= (E1+E2)
2− (p⃗1+ p⃗2)

2 = 2E1E2−2p⃗1 · p⃗2

= 2E1E2−2|p⃗1||p⃗2|cosϑ

= 4E1E2 sin2 ϑ

2
!=m 2

π0

(5.6)

with ϑ being the angle between the two photons. Hard photons can be measured in the
COMPASS spectrometer by detecting their energy deposit in the electromagnetic calorime-
ters. As discussed in Section 3.3.2, we consider only photons reconstructed in ECAL2. ECAL2
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is located∆z = zECAL2− ztarget ≈ 34 m downstream of the target, which results in small values
for the angle ϑ ≈ dγγ/∆z with dγγ being the distance between the two photons when they hit
ECAL2. From Eq. (5.6), we see that we have a minimum distance for the two photons of:

d min
γγ =

mπ0 ·∆z
p

E1E2

=
2mπ0 ·∆z

Eπ0
≈ 5 cm (5.7)

where we have used that the product of the two photon energies E1E2 is maximum when
the energy of the neutral pion, Eπ0 = E1 + E2, is split equally among the photons, i.e. E1 =
E2 =

Eπ0

2 . The numerical value of Eq. (5.7) is obtained for Eπ0 = 190 GeV, meaning that the
entire available energy is carried by a single π0. Fig. 5.4a shows the distributions of distances
between two photons when they hit ECAL2 for simulated π− +Ni → π−π0π0 +Ni events.
π− +Ni → π−π0π0 +Ni events are the dominant events in the t 70 data set, since they can
be produced diffractively. Clearly, distances below 5 cm are rare and can only occur, when
combinatorically two photons, which do not stem from the same π0, end up close to each
other in ECAL2.

As explained in Section 2.3, the momentum transfer to the nucleus is in the order of MeV
for Primakoff events. At the same time, the energy of the hadron beam is approximately
190 GeV. To be able to resolve the tiny momentum transfer, a precise measurement of the final
state is necessary. For final states with neutrals, the resolution is limited by the calorimetric
measurement of the photons. We will discuss in the following, how photons are reconstructed
and what calibration steps are taken to reconstruct photons in ECAL2 as precisely as possible.

5.2.1 Reconstruction of photons and calibration of the calorimeter

When a photon hits a module of ECAL2, it initiates an electromagnetic shower. Depend-
ing on the energy and the position of the incident particle, the transverse dimension of the
shower exceeds the dimension of a single module and spreads to neighboring modules. Typi-
cal shower sizes range from a single module for the lowest energetic photons to 6×6 modules
for highest energetic photons. To reconstruct the energy of a single particle, a clustering is
performed by the reconstruction software. Blocks with a signal correlated in time are assigned
to the same cluster, when they are direct neighbors. The center of gravity provides an efficient
estimate on position and energy of the cluster:

x⃗γ =
Ncells
∑

i=1

Ei · x⃗i

ÂNcells
∑

i=1

Ei

Eγ =
Ncells
∑

i=1

Ei

(5.8)

with Ncells being the number of modules in the cluster, the x⃗i and Ei the individual positions
and energy measurements of the modules.

The simple clustering procedure fails, when two photons hit the calorimeter close to each
other and the showers overlap. This is in particular the case, when the photons are decay

77



5.2. RECONSTRUCTION OF NEUTRAL PIONS

0 20 40 60 80 100 120
 (cm)γγd

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
610×

 partner0πdistance to 
γdistance to any 

co
un

ts
 / 

0.
25

 c
m

  (
a.

u.
)  Ni0π0π−π → Ni −π

(a)

5 10 15 20 25 30
 (cm) γγd

1−

0

1

2

3

4

distance
energy (uncalibrated)
energy (calibrated)

 Ni0π0π−π → Ni −πsimulated 

re
la

tiv
e 

bi
as

 (
%

)
(b)

Fig. 5.4 Distances of photons hitting ECAL2 and their reconstruction biases. In (a): distributions of distances
of photons to its π0 partner (π0→ γγ) in blue and to any other photon of the π− +Ni→π−π0π0 +Ni reaction
in red. Two photons of a π0-decay have a minimum distance to each other of ∼ 5 cm. In (b): Relative bias

of the reconstructed distance of two photons
�

d ′γγ−dγγ
�

/dγγ in blue and of the reconstructed energy 1/2 ·
∑2

i=1

�

E ′i −Ei

�

/Ei before (red) and after (green) applying the energy calibration to theπ0 mass. For overlapping
showers (dγγ < 16 cm), there are systematic effects visible which partially compensate each other. The shown
dependencies are obtained from simulated π−+Ni→π−π0π0+Ni events.

products of high-energy π0s: as can be seen in Fig. 5.4a, typical distances for photons stem-
ming from a π0 are below 15 cm or less than four ECAL modules and hence the induced
showers have a significant probability to overlap.

The algorithm developed in Refs. [87, 110, 111] allows separating overlapping showers by
fitting transverse shower profiles to the observed energy distribution in a cluster. During
the procedure, the energy distribution in the modules is fitted with an increasing amount
of showers with the restriction that the effective mass of two closest showers must be at least
40 MeV/c 2 to avoid artificial splitting. When a fit with n +1 showers returns a worse reduced
χ2 than the fit with n showers, the procedure is stopped. The fit increases the ability to
separate showers with lower distance, that would otherwise appear to be a single cluster and
by that increases the acceptance for processes with π0s in the final state. If a fit does not
converge or does not fulfill certain quality criteria, the reconstruction software falls back to
the center of gravity method of Eq. (5.8).

The procedure has limitations: if a hit pattern in a cluster of modules stems from e.g. three
(or even four) particles, it is not given that the fit with two (or three) showers gives a better
reduced χ2 than the fit with one (or two) showers. If the fit returns a worse χ2, the procedure
is stopped not finding the correct amount of photons, maybe not even fulfilling the quality
criteria. Another limitation is that for overlapping showers, the reconstructed positions are
systematically too close to each other. Fig. 5.4b shows the relative bias of the reconstructed

distance of the two photons
�

d ′γγ−dγγ
�

/dγγ in blue. For distances between 6 and 15 cm,

the range in which many of the photons hit ECAL2, the reconstructed distance d ′γγ is too
small. At the same time, too much of the deposited energy in the cluster is attributed to
the lower-energetic photon, which leads to the observed increase in the relative bias of the
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reconstructed energies 1/2 ·
∑2

i=1

�

E ′i −Ei

�

/Ei shown in red in Fig. 5.4b.

Investigations on possible improvements of photon reconstruction in ECAL2 by applying ma-
chine learning techniques were started [112] during this thesis and may lead to better results
in future data productions.

During the reconstruction process, we apply several steps of calibrations and corrections
to increase the energy and spatial resolution of ECAL2. We shortly summarize the applied
procedures:

1. At least once for each measurement campaign, we calibrate each module individually
by exposing it to a 40 GeV electron beam. After a few iterations, an individual calibration
constant for each module is found.

2. We continuously monitor the time stability of each module by means of an LED-based
monitoring system. The system makes use of the time between two spills of the accel-
erator to inject light into the modules and checks for variations in the response of the
photomultipliers. The LED calibration provides an additional calibration constant per
module and per spill.

3. Another calibration taken into account by CORAL is based on the measurement of the
π0 mass. mγγ is calculated from the whole data set in an iterative procedure for each
cell individually [113]: an energy-dependent calibration constant for each cell is deter-
mined, which shifts the peak of the mγγ distribution to the nominal π0 mass of mπ0 =
135 MeV/c 2. The effect of this calibration can be seen in Fig. 5.4b in the green curve.
In the center of ECAL, where most of the overlapping showers appear, the calibration
according to the π0 mass compensates for the too close spatial reconstruction of the
photons by balancing it with a too high relative energy reconstruction, such that the
peak of the mγγ distribution is still at the nominal π0 mass. It is hence important to
apply the same procedure also on pseudodata to replicate the same effects.

4. The last corrections that are applied in the t 70 production concern the shower posi-
tions. The positions of the reconstructed showers exhibit a dependence on the cell
structure of ECAL2 as an artifact of the discrete cell structure. In an attempt to correct
the effect, the positions were shifted with a cubic polynomial [87]:

x ′ = x +a (E ) · x 3+ b (E ) · x 2+ c (E ) · x
y ′ = y +a (E ) · y 3+ b (E ) · y 2+ c (E ) · y

(5.9)

with a (E ), b (E ), and c (E ) being energy-dependent parameters given in Table 5.2, and
x and y being the distance of the shower position to the center of the main cell or the
distance of the center of gravity to the center of the most energetic cell, depending on
whether the shower fit was successful or failed. The latter distance has an increased
probability to be greater than half a cell size, which leads to potentially big corrections.
The applied corrections have a great impact on the position resolution and introduce
an energy-dependent bias due to the quadratic term. However, they increase the sharp-
ness of the Primakoff peak in the Q 2 distribution. In this thesis, we use the applied
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Table 5.2 Parameters of cubic cell response function as used for the t 70-production. The values are corrected
w.r.t Ref. [63]. The parameters that were used for the generation of pseudodata via Monte-Carlo simulation
(MC) throughout the thesis are given here as well.

coord. data set a (mm−2) b (mm−1) c shower energy (GeV)

x

t 70 −7.335 ·10−4 −2.991 ·10−3 2.490 ·10−1

0≤ E < 20
MC −4.954 ·10−4 8.792 ·10−3 1.626 ·10−1

t 70 0 0 0
20≤ E < 35

MC 0 0 0
t 70 7.313 ·10−4 2.484 ·10−4 −2.460 ·10−1

35≤ E
MC 8.088 ·10−4 −1.473 ·10−3 −2.833 ·10−1

y
t 70 8.568 ·10−4 4.176 ·10−4 −2.971 ·10−1

0≤ E
MC 8.752 ·10−4 9.822 ·10−5 −3.060 ·10−1

position corrections in the t 70 production and in the pseudodata. For the future, we
should revert the corrections of Eq. (5.9) and apply newly developed ones.

5. The authors of Refs. [91, 114] developed an additional calibration, which is to be ap-
plied on the reconstructed showers of the t 70 production. The calibration is based on
the shower position within a Shashlik-module. It corrects for the internal structure of
the Shashlik blocks which features wave-length shifting light-guides and iron rods to
hold mechanically the stack of layers. When a photon hits directly the light-guides, the
created amount of scintillation light is greater than when it hits the rod. The intra-cell
position calibration is energy-dependent and was evaluated in the scope of the anal-
ysis of the pion polarizability in energy ranges down to Eγ = 40 GeV. Within a student
project [115], we tried to extend this calibration to lower energies. The chosen approach
was analog to the already mentioned π0 calibration. Unfortunately, no consistent cal-
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Fig. 5.5 Applying the intra-cell position dependent calibration for the Shashlik modules. In (a): the difference
of the calibrated photon energy E ′γ to the uncalibrated energy Eγ as a function of Eγ. The behavior changes
clearly below the verified region of Eγ < 40 GeV. For very small photon energies, the calibrated values can
become negative. In (b): impact of the calibration on the qT -distribution of selected π−γ(∗)→π−π0 events for
different thresholds.
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Fig. 5.6 Position and width of the reconstructed π0-mass peak with (a) and without (b) the intra-cell position
dependent calibration for selected π−γ(∗)→ π−π0 events. The distributions are fitted with a double gaussian
and a 2nd order polynomial to extract the mean.

ibration below 40 GeV was found. Fig. 5.5a shows the difference of the reconstructed
photon energy E ′γ after applying the intra-cell position dependent calibration. Below
30 GeV, the behavior of the calibration changes significantly and for very low-energetic
photons, even negative values for the calibrated energy appear indicating that the cor-
rection is not applicable in this form. In Fig. 5.5b, we see the impact of the calibration
on the qT distribution of selectedπ−γ(∗)→π−π0 events. Applying the calibration hardly
enhances the Primakoff peak, but has great impact on the main background contribu-
tion, whose proper shape is unknown. To evaluate the usefulness of the calibration,
we fitted the mγγ distribution around mπ0 = 134.9 MeV/c 2 from mmin = 115 MeV/c 2 to
mmax = 155 MeV/c 2 with two Gaussian distributions and a second-order polynomial,
see Fig. 5.6. The calibration shifts the peak slightly closer to the nominal π0 mass. We
chose to apply the calibration from 40 GeV upwards to be consistent with Ref. [108] and
to avoid extrapolating the polynomial.

5.2.2 Selecting showers for π0 reconstruction

Possible candidates of showers created by photons are selected by following criteria:

• They are within a time window of ±8 ns with respect to the beam track, which sets the
reference time for an event. The time distribution of clusters with respect to the beam
particle can be seen in Fig. 5.7a.

• They lie above an energy threshold of Ethr = 2 GeV to exclude noise clusters and achieve
agreement between simulated pseudodata and reconstructed showers in the t 70 pro-
duction. As can be seen in Fig. 5.7b, the distributions of showers in the t 70 production
at very low energies differs systematically from the distribution in the simulated pseu-
dodata set of π−+Ni→π−π0π0+Ni events.
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Fig. 5.7 Time and energy distribution of reconstructed photons. In (a): shower time with respect to the beam
time. In (b): shower energy for simulated π− +Ni → π−π0π0 +Ni events and for the t 70 production. The
pseudodata set is normalized to the integral of Eγ > 8 GeV. All distributions were obtained after applying the
preselection cuts. The required conditions are indicated with red lines.

• They do not lie in the vicinity of the reconstructed impact point of the scattered track on
ECAL2. The charged tracks enter the calorimeter under bigger angles since they are de-
viated by SM2. The shower fitting algorithm based on Ref. [111] is not able to account for
the ovality of showers with higher angles. The shower at the impact point of the charged
track is therefore likely artificially split. In addition, the scattered particle is a charged
pion for the final states of interest of this analysis. The shower profile in calorimeters
produced by a hadron is different from a pure electromagnetic shower. As can be seen
in Fig. 5.8a, a lot of rather low-energetic additional clusters seem to be created in the
vicinity of the spot where the charged particle hits the electromagnetic calorimeter. The

(a) (b)

Fig. 5.8 Distance of reconstructed showers in the x/y-plane of ECAL2 x⃗γ to (a) the scattered pion x⃗π− and (b) to
other showers x⃗γ′ vs shower energy Eγ. All preselection cuts are applied. The red line indicates the requirement
of Eq. (5.10).
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Fig. 5.9 Number of reconstructed photons for (a)π−γ(∗)→π−π0 and (b)π−+Ni→π−π0π0+Ni events. The plots
show the distribution of the t 70 data set in blue and the pseudodata set obtained by Monte-Carlo simulation
in red. The pseudodata distributions are scaled to have the same integral as the t 70 distributions.

structure at low energies and close distances can not be seen in Fig. 5.8b. According to
Ref. [91], we associate all reconstructed showers within a radius of

rmax = 3 cm+
16 cm ·GeV

Eclus
(5.10)

to the impact of the charged track. The condition of Eq. (5.10) is indicated in Fig. 5.8a
as red line.

After identifying the possible photon shower candidates, they are to be considered for the
reconstruction of the π0. Here, a cut on the exact number of photons (two for π−π0 and four
for π−π0π0 final states) is not a good choice since the number of showers is not correctly
reproduced in simulation. Fig. 5.9 shows the differences for final states with one or two π0s.
Radiative events are not included in the simulation. They certainly contribute to the surplus
of reconstructed photons in the t 70 data set. But also noise and potential background pro-
cesses from pile-up events play a role.

We hence do not cut on the exact number of needed photons to ensure not to introduce a bias
w.r.t. simulated data. Our chosen approach is to always combine the most energetic showers:
the most energetic two in π−π0 final states and the most energetic four in the best possible
way in π−π0π0 final states, meaning that the quadratic difference to the nominal π0 mass

�

m (1)
γγ −mπ0

�2
+
�

m (2)
γγ −mπ0

�2
=∆m 2

min (5.11)

becomes minimal.

5.2.3 Resolution in Q 2 and
p

s and kinematic constraints

The resolution of the spectrometer for our desired final states of π−π0 and π−π0π0 is an im-
portant quantity for the measurement. It is dominated by the calorimetric measurement
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of the π0 decay photons. It is common practice to subject the measured parameters of a
photon, i.e. position and energy, to a kinematic fit to improve the resolution of the mea-
sured kinematic quantities. Kinematic fitting is a procedure in which one uses the physical
laws governing a particle interaction to improve the measurement of the process. For our
example, the π−γ(∗) → π−π0 scattering, we can impose the π0 mass and exclusivity of the
reaction. Such constraints are generally implemented through a least-squares procedure: we
can vary the photon parameters according to their measurement uncertainties to meet the
given constraints and by that improve the accuracy of the measured reaction. The author of
Ref. [116] developed a procedure together with code for applying kinematic constraints to a
fit in COMPASS data.

The procedure of kinematic fitting assumes that the set of measured values carries Gaussian
errors. This is clearly not the case for the uncertainties on the photon parameters: the photon
positions have been corrected with a cubic polynomial and the photon positions as well as the
energies feature a systematic bias for overlapping clusters (see Section 5.2.1). The kinematic
fit with the uncertainties taken from the shower fit does therefore not improve the resolution.
Instead, we follow an effective, empirical ansatz to constrain the π0 parameters in π−γ(∗) →
π−π0 events. We learned in Eq. (2.28), that momentum is mainly transferred in transverse
direction. We scale the π0 energy and the magnitude of its three-vector in a way, that q∥
practically vanishes by implying exclusivity of the reaction and the π0 mass:

p
′µ
π0 =









E ′π0 = Ebeam−Eπ−
c ·px

c ·py

c ·pz









(5.12)

with c =
q

E ′2π0 −m 2
π0/|p⃗π0 | and |p⃗π0 | =

q

p 2
x +p 2

y +p 2
z . This ansatz leaves the direction of the

constrained π0 four-vector p
′µ
π0 untouched.

π−+Ni→π−π0π0+Ni events are more complex to constrain. M. Krämer developed a proce-
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Fig. 5.10 Applying kinematic constraints: comparison of resolution in
p

s between constrained and uncon-
strained data for K −→π−π0 decays in (a) and K −→π−π0π0 decays in (b).
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Fig. 5.11 Applying kinematic constraints: comparison of resolution in Q 2 between constrained and uncon-
strained data for K − → π−π0 decays in (a) and K − → π−π0π0 decays in (b). The distributions were scaled
arbitrarily, such that they do not overlap.

dure in Ref. [63]. He obtains the constrained photon energies E ′γ by scaling all reconstructed
photon energies Eγ by a common factor v :

E ′γ = v ·Eγ (5.13)

with

v =
Ebeam−Eπ−
∑4

i=1 Eγ,i

(5.14)

such that the exclusivity condition is fulfilled:

4
∑

i=1

E ′γ,i = Ebeam−Eπ− (5.15)

The approach assumes, that the uncertainty on measured photon energies σ(Eγ) increases
linearly with energyσ(Eγ)∝ Eγ. However, simulated pseudodata suggests, that this assump-
tion is not true.

We investigated a different approach motivated by pseudodata and experience from other
experiments [117] assuming a linear combination of different dependencies:

σ2(Eγ) = c 2
1 ·Eγ+ c 2

2 ·E
2
γ (5.16)

We varied the parameters c1 and c2 and empirically achieved the best performance with

c1 = 0.07 GeV1/2

c2 = 0
(5.17)

To determine the spectrometer resolution and to evaluate the performance of the mentioned
kinematic constraints, we investigated kaon decays: the K − decays into both,π−π0 andπ−π0π0
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Table 5.3 Resolutions in
p

s and t ′ for π−π0 and π−π0π0 final states for different π0 constraining procedures.

decay channel constraining procedure σ(
p

s ) (MeV/c 2) b (GeV−2c 2)

K2π
none 7.81±0.04 7391±78
mπ0 and∆E 5.02±0.03 7636±78

K3π

none 10.6±0.8 6065±278
σ(Eγ)∝ Eγ 8.4±0.2 6175±273
σ(Eγ) = 0.07 GeV1/2 ·

Æ

Eγ 5.2±0.2 6453±274

final state and appears at the exact kaon mass of mK − = 493.68 MeV/c 2 [18] (the width of the
kaon is negligible) and at zero momentum transfer Q 2 only smeared by resolution effects.
They are the hence ideal to evaluate the resolution and achieved improvements in

p
s and

Q 2. To quantify the results, we fitted the
p

s -distributions with the sum of two Gaussian dis-
tributions, as can be seen in Fig. 5.10, and theQ 2-spectrum with an exponential Ae −b (Q 2−Qmin),
as indicated in Fig. 5.11. The results of the exercise are summarized in Table 5.3. By applying
suitable constraints, we can improve the

p
s -resolution by a factor of two in the 3π final state

and by a factor of 1.6 in the 2π final state. The b -slope is sharpened by 4.3% and 6.4% in the
2π, respectively 3π final state. For the exercises, that lead to the results in Table 5.3, I already
applied the ECAL alignment described in the next section.

A full kinematic fit with uncertainties estimated from pseudodata instead of taken the uncer-
tainties from the shower fit, might yield slightly better results at the cost of CPU processing
time [117]. In the following, we stay with the approach of Eq. (5.12) and Eqs. (5.16) and (5.17).

5.2.4 Alignment of calorimeters

The position of the calorimeters is geometrically surveyed before the run by means of a laser
system. Although the precision of the geometrical survey should be comparable or even
better than the spatial resolution of the calorimeter, we evaluated the position of ECAL2 by
minimizing the b -slope in K −→π−π0 decays for different ECAL positions in x and in y .

Fig. 5.12 shows the value for the b -slope determined from a fit to the Q 2 −Q 2
min-distribution

up to Q 2−Q 2
min = 2 ·10−4 GeV2/c 2. In Fig. 5.12a, we varied the x -position of ECAL2

x ′ = xnom+ xshift (5.18)

within xshift = (−0.3,+0.1)cm while keeping a constant y -position of yshift = 0.0 cm. In Fig. 5.12b,
we varied the y -position while keeping a constant value for x of xshift =−0.159 cm. The figure
illustrates the sensitivity of the spectrometer to the sharpness of the Q 2-distribution: a mis-
alignment of the calorimeter in the order 1 mm smears the distribution already significantly.

To determine the xshift- and yshift-values, for which the resolution effects are minimal, i.e.
the exponential slope is highest, we fitted the b -dependence on the ECAL2 position with
a parabola around its maximum, as can be seen in Fig. 5.12. The obtained values x max

shift =
(−0.160± 0.002)cm and y max

shift = (−0.002± 0.002)cm agree with the values of Ref. [108] within
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Fig. 5.12 Slope of t ′-distribution for different x -positions (a) and y -positions (b) of ECAL2.

their uncertainties. In the following, we stay with the values of Ref. [108] for consistency:

xshift =−0.159 cm

yshift = 0.000 cm
(5.19)

5.3 Event selection

With the calorimeter calibrated and the treatment of the showers explained, we are in the
position to reconstruct our desired final states of Eq. (5.1).

5.3.1 Beam and final state particle identification

The CEDAR detectors (see Section 3.2) allow us to identify the species of incoming beam
particles. As already mentioned, we use the likelihood approach developed in Ref. [84] to
distinguish kaons from pions. Beam muons, are identified in the final state by the muon
rejection as described in Section 5.1. Other contributions in the beam, e.g. antiprotons or
electrons, are supposed to be small and will be neglected in the following discussion. But
we should keep in mind, that potential additional background may be a result of other beam
particles such as antiprotons.

For incoming beam pion, we are interested in interactions inside the target disk. This is in
contrast to free decays of beam kaons, which expected to appear uniformly along the beam
axis. In the hadronic two-body decay, K −→π−π0, the decays appear in a specific range from
θmin ≈ 1.5 mrad to θmax ≈ 4.0 mrad in the scattering angle θ . The well-defined kinematics
of the two-body decay mean, that the decay products go back-to-back in the cm-frame with
the exact break-up momentum of pK2π

= 205 MeV/c [18]. When boosted into the laboratory
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Fig. 5.13 Distribution of events along the beam axis (zPV) versus the scattering angle θ . In (a): selectedπ−γ(∗)→
π−π0 events. In (b): selected K −→π−π0 decays. The main difference between the two event selections is the
beam particle identification by means of the CEDAR detectors — pions for (a) and kaons for (b).

frame with pbeam = 190 GeV/c , and requiring that the π0 energy is greater than 68GeV such
that it can trigger the acquisition for the event, the events will occur in this specific angular
range.

Fig. 5.13 shows the distribution of event vertices along the beam axis versus the scattering
angle for events with π−π0 final states. Filtering on beam pions shows clearly the familiar
structures of our target setup: the nickel disk at ztarget =−73.3 cm and the two tungsten disks
more downstream. Since we are interested in pion interactions inside the nickel target and
the resolution of the z -position of the vertex depends on the scattering angle θ , we apply the
empirical selection developed in Ref. [91]

|zPV − ztarget| ≤ 2.5 ·
�

0.5 cm+
6.5 cm ·mrad

θ

�

(5.20)

which is indicated in Fig. 5.13a by the red lines. At very low angles, the resolution does not
allow distinguishing events in the nickel disk from those in the tungsten disks. We therefore
apply an additional cut zPV ≤ 50 cm. We can clearly see the impurities of the beam particle
identification by the CEDAR detectors, since the kaon decays remain visible in Fig. 5.13a.
They are however much suppressed compared to Fig. 5.13b.

To select free kaon decays in the data set, we filter for beam kaons by means of the CEDARs
and require the decay vertex to be within

−150 cm<zPV <−80 cm

or

−65 cm<zPV <−42 cm

(5.21)

The cross section for kaons to interact in the nickel target to a final state with one π0 is small
compared to the free kaon decay, as can be guessed from Fig. 5.13b. By means of the CEDAR
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beam particle identification, these events are even further suppressed in the pion data set.
For the given choice of vertex selection, we can do without particle identification in the final
state. The final state particle identification with the Ring Imaging Cherenkov detector (RICH)
would come at the expense of a drastic cut in the accepted phase space [118]. In Section 8.1.2,
we check that we are really free of background from kaon interactions.

The selection of K − → π−π0 (K2π) decays features potential background of K − → e −π0ν̄e

(Ke 3) decays, which have a branching ratio in the same order of magnitude, see Table 8.1.
When the neutrino is low-energetic, the Ke 3 decays are not distinguishable from K2π decays,
if we do not identify the electron as such in the final state. For this reason, we implement a
final-state particle identification for electrons, which we apply in the selection of K2π decays.

This particle identification is based on information of ECAL2. While electrons are completely
stopped in the electromagnetic calorimeter and deposit all their energy, pions traverse it de-
positing only a fraction of their energy. We can use this fact and study how much of their
energy (measured by deflection in the spectrometer magnets) is deposited in ECAL2. Follow-
ing the argumentation in Section 5.2.2, we associate all showers above 2 GeV, within a time
window of ±8 ns w.r.t. the beam time, and which fulfill the condition of Eq. (5.10) with the
impact of the charged particle. Fig. 5.14 shows the deposited energy Edepo, which is the sum
of all mentioned showers, versus the particle’s momentum for simulated Ke 3 and K2π decays.
We see that the particle needs a minimum momentum of pmin = 18 GeV/c to reach ECAL2
despite the deflection by SM2. In the range 18 GeV/c < ptrack < 30 GeV/c, the particles hit
ECAL2 close to the edge, such that during the evolution of the shower, some energy might be
lost. Only above pcrit = 30 GeV/c , electrons reliably deposit all their energy into ECAL2.

From the simulated pseudodata, we can find a suited discrimination condition: to select K2π
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Fig. 5.14 Deposited energy Edepo of the charged track in ECAL2 vs its momentum measured via deflection in
the spectrometer magnets in simulated K − → e −π0ν̄e (a) and K − → π−π0 (b) decays. The dashed red line
illustrates the condition of Eq. (5.22). For the displayed figures, we applied all cuts of the preselection plus the
zPV-cut of Eq. (5.21) for kaons.
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Fig. 5.15 Top view of the COMPASS spectrometer with the two dipole magnets SM1 and SM2 and the elec-
tromagnetic calorimeter ECAL2. The path of charged particles through the spectrometer is characterized by
three straight segments outside the magnetic fields of the spectrometer magnets. When they pass material in
these sections, there is a probability to create bremsstrahlung photons, which will be detected in ECAL2. The
probability for bremsstrahlung photons depends on the particle mass and is in particular high for electrons.

decays, we require that the charged particle deposits less than

Ecrit = 0.95c ·ptrack−5 GeV (5.22)

in ECAL2 and accept only decays with pπ− > 30 GeV/c . This condition is indicated in Fig. 5.14
as red dashed line.

We see however, that some electrons do not deposit any energy despite having enough mo-
mentum to reach ECAL2. This happens, when the electrons interact significantly before reach-
ing ECAL2, which happens mainly in bremsstrahlung events. In such a case, their track can
not be reconstructed downstream of the scattering point. We can improve the electron identi-
fication even for such events by considering the kinematics of bremsstrahlung: as indicated in
Fig. 5.15, the path of a charged particle, such as an electron, through the COMPASS spectrom-
eter is characterized by three straight segments. Due to their small mass, electrons are likely
to create bremsstrahlung photons when they traverse material. The bremsstrahlung photons
are radiated approximately in direction of movement. This leads to two regions in ECAL2
(numbered 1 and 2 in Fig. 5.15) with increased probability for detection of bremsstrahlung
photons: region 1 is in straight extrapolation of the first track segment. The distance of region
2 to this extrapolation depends on the deflection on SM1 and hence on the momentum of the
particle.

Indeed, we can identify the three regions of Fig. 5.15 in the recorded Primakoff data set, when
we neglect the two showers that are used for the π0 reconstruction and look only at showers
which are correlated in the non-bending plane and in time with the charged track, as it is done
in Fig. 5.16a: we observe an accumulation of photons in direct extrapolation of the charged
particle track (region 1: xγ− x1 = 0 cm) and we can also identify the two other regions, whose
distance to the straight extrapolation depend on the track momentum. The accumulations
in region 1 and 2 can only be explained by bremsstrahlung photons. We establish a criterion
to identify bremsstrahlung photons

ptrack · (xγ− x1)

GeV · cm
∈ (−50, 75)∨ (780, 980) (5.23)

as it is illustrated in Fig. 5.16b. When we observe a bremsstrahlung photon in a kaon decay, we
reject the event, since it is likely a Ke 3 event. Studies with simulated pseudodata suggest, that
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Fig. 5.16 Position of showers xγ w.r.t. the straight extrapolation x1 of the charged track in the bending plane of
the magnets versus the momentum of the charged track. Clearly, we can identify three regions with increased
probability of showers. For the plots, we considered all showers, which are not used for theπ0 reconstruction,
which are within 3 cm distance to the straight extrapolation in the y -plane, within a±8 ns time window around
the beam time, and above 2 GeV. The dashed red lines in (b) illustrate the condition of Eq. (5.23). We required
all conditions of the preselection, the CEDAR kaon tag, the kaon vertex condition, and the reconstruction of
a π0.

combining the E /p criterion of Eq. (5.22) with the identification of bremsstrahlung effectively
removes all Ke 3 decays in the K2π event sample.

5.3.2 π0 selection and event kinematics

To make sure that the two photons stem from a π0-decay, we cut on the invariant mass dis-
tribution of the γγ-subsystem. We require that the invariant mass is sufficiently close to the
nominal π0-mass m 0

π ≈ 135 MeV/c 2 by

120 MeV/c 2 ≤mγγ ≤ 150 MeV/c 2 (5.24)

for final states with one π0 and by
�

m (1)
γγ −mπ0

�2
+
�

m (2)
γγ −mπ0

�2
≤ r 2

max (5.25)

for final states with two π0s where we set rmax = 30 MeV/c 2. The corresponding distributions
and cuts are illustrated in Fig. 5.17. The width of the cut of 15 MeV/c 2 of Eq. (5.24) corresponds
to 4σ as can be seen in Fig. 5.17a. In the two π0 case, we open the cut to rmax = 30 MeV/c 2

intentionally, because the purpose of π−+Ni→ π−π0π0+Ni event selection is to determine
background for π−γ(∗)→ π−π0 events (see Section 8.2.2). In this case, we want to be as least
biased as possible by slightly inaccurate descriptions of simulated pseudodata. Since the π0-
peak is shifted and a little narrower in simulation (see Chapter 6), we open the cut to an extent,
that these small differences do not matter.

To further enrich our selected event samples with the desired events, we also set requirements
to certain kinematic variables. E.g. all desired events are exclusive reactions: the energy of
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Fig. 5.17 The invariant mass spectrum of the γγ subsystem for (a) π−γ(∗)→π−π0 , as an example for π−π0 final
states and for (b) π− +Ni→π−π0π0 +Ni as an example for π−π0π0 final states. The dashed red lines indicate
the selected ranges.

the recoil is small compared to the resolution and can hence be neglected (see Section 2.2).
The events fulfill Eq. (2.29) and appear at ∆E = EX − Ebeam ≈ 0 GeV. The distributions are
shown in Fig. 5.18. The width of the distributions, whether two π0s or just one, is very similar
around σ∆E ≈ 2.5 GeV. This hints to the fact, that the width is mainly determined by the
reconstruction and uncertainty of the beam energy. To suppress background in particular in
the π−γ(∗)→π−π0 distribution, we require that the events are within a 3σ interval:

−7.5 GeV ≤∆E ≤+7.5 GeV (5.26)

The most relevant kinematic quantity to be investigated and cut cut on, is the momentum
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Fig. 5.18 Exclusivity distribution of (a)π−γ(∗)→π−π0 , K −→π−π0, and (b)π−+Ni→π−π0π0+Ni , K −→π−π0π0

events. The kaon samples are shown in red, the pion samples in blue. The K − → π−π0π0 sample has been
scaled by a factor 600 to be in the same order of magnitude as theπ−+Ni→π−π0π0+Ni sample. The selected
ranges are indicated by the red dashed lines.
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Fig. 5.19 Momentum transfer distribution in (a) π−γ(∗)→ π−π0 and (b) events. Note the different x -axis range.
In (a), we can clearly see two different contributions: the Primakoff peak at very small Q and at Q ≈ 0.1 GeV/c 2

a background contribution. In (b), we see the first diffractive minimum at Q ≈ 0.16 GeV/c 2.

transfer Q . Primakoff events are characterized by very small momentum transfers (see Sec-
tion 2.2). We can clearly identify the Primakoff contribution and a background contribution
in Fig. 5.19a which shows selected π−γ(∗) → π−π0 events. To enrich Primakoff events in this
event sample, we require

Q ≤ 36 MeV/c 2 (5.27)

as indicated by the red dashed line. We cut on the same Q range for the kaon decays.

The π− +Ni → π−π0π0 +Ni event sample is dominated by diffractive production and fea-
tures therefore a shallower Q -distribution. Again, we are interested in potential leakage of
this channel into the π−γ(∗) → π−π0 Primakoff sample. Even events at high Q in π− +Ni→
π−π0π0 +Ni might leak to low Q in π−γ(∗)→ π−π0 , when one π0 is lost in the final state. We
therefore choose the maximum range in Q , which is limited by the pseudodata, which we
generated up to Q = 1 GeV/c (see Chapter 6).

We can further clean the sample by requiring that the pions in the final states form the K −-
mass. Fig. 5.20 shows the distributions for the two- and three-body decay. For both decays,
we require

460 MeV/c 2 ≤
p

s ≤ 530 MeV/c 2 (5.28)

The π−γ(∗) → π−π0 event selection suffers from a background contribution stemming from
π−γ(∗) → π−γ events. Being also produced via the Primakoff effect, these events feature the
same narrow Weizsäcker-Williams Q 2-dependence and pass the exclusivity cut. When a low-
energy shower, caused e.g. by noise in a calorimeter, is combined to the correct π0-mass, the
event is very likely to also pass all other cuts. To minimize the impact of πγ background, we
require that

∆Eπγ = Eπ− +Eγ1
−Ebeam < 15 GeV (5.29)

with Eγ1
being the energy of the highest-energetic photon in the event. This reduces the

combinatorial background under the π0 peak in the mγγ-distribution.
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Fig. 5.20 Invariant mass distribution of the final state for (a) K − → π−π0 and (b) K − → π−π0π0 decays. The
selected ranges in

p
s are indicated by the red dashed lines.
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Fig. 5.21 Invariant mass distribution of the final state for (a)π−γ(∗)→π−π0 and (b)π−+Ni→π−π0π0+Ni events.

Fig. 5.21 shows the invariant mass distributions of the pion interactions in the nickel target.
In Fig. 5.21a, we can identify the ρ(770), as expected and explained in Section 2.3.2. We can
also see a contamination of our event sample with free kaon decays, K −→ π−π0 due to im-
perfection of the CEDARs. At

p
s =mπ−π0 ≈ 1650 MeV/c 2, we can identify another resonance,

which has been investigated in Ref. [46] and can be identified as theρ3(1690). Fig. 5.21b shows
the same features as in Ref. [63]. More kinematic distributions for the different channels can
be found in Appendix B.

5.3.3 Overview of event sample sizes in the Primakoff 2009 data set

Figs. 5.22 and 5.23 summarize the different selection criteria which are applied for the four
final states of interest. Fig. 5.22 shows the event numbers for pion interactions with nickel
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CHAPTER 5. EVENT RECONSTRUCTION AND SELECTION

nuclei, for which we identified our beam particle as pion and applied a cut on the z -position
of the interaction inside the 4 mm nickel target disk. After the preselection of events, we are
left with 33 million events. Out of these, the COMPASS 2009 data set offers ∼2 million events
which can be identified as π− +Ni→ π−π0π0 +Ni and ∼100,000, which can be identified as
π−γ(∗) → π−π0 . So, despite the lower acceptance for the π−π0π0 final state, COMPASS has
recorded an order of magnitude more π− +Ni → π−π0π0 +Ni events than π−γ(∗) → π−π0

events. We can explain this by the much higher cross section for π− +Ni → π−π0π0 +Ni
events, since this final state can be produced diffractively. Due to the dominant cross section
for diffractive production via Pomeron exchange, the π−+Ni→π−π0π0+Ni event sample is
very clean.

After preselection
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Number of reconstructed photons
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Fig. 5.22 Number of selected events after applying each cut for the selection of π−γ(∗) → π−π0 and π− +Ni→
π−π0π0+Ni events. The details of each cut are explained in the text. The rejection ofπγ events is only applied
to π−γ(∗)→π−π0 events.

After preselection
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Fig. 5.23 Number of selected events after applying each cut for the selection of K −→ π−π0 and K −→ π−π0π0

events. The details of each cut are explained in the text. The calorimetric electron rejection to suppress
background from Ke 3 events is only applied to K −→π−π0 events.
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5.3. EVENT SELECTION

Fig. 5.23 shows the event numbers for the kaon decays, for which we identified the beam
particle as kaon and applied a cut on the z position of the decay, outside any high-density
material. The selected sample sizes reflect the beam composition. For the kaons, we loose
a lot of events already after the beam PID. The branching ratio BR(K − → π−π0π0) ≈ 2 % is a
factor ten smaller than BR(K −→π−π0)≈ 20 %. Together with a lower acceptance for two π0s
in the final state, we identified only 1300 K −→π−π0π0 decays in the Primakoff 2009 data set.
In contrast to that, we have 63,000 K −→π−π0 decays.
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Chapter 6

Generation of pseudodata by
Monte-Carlo simulation

The measured distributions are influenced by the spectrometer’s acceptance and resolution.
For measuring the absolute cross section determining F3π, the acceptance needs to be known
precisely. And for the tiny Q values of Primakoff reactions, resolution effects play an impor-
tant role. To study these effects, a Monte-Carlo simulation is needed.

To obtain a reconstructed pseudodata sample including acceptance and resolution effects,
one has to process a sample of generated events, e.g. π− +Ni → π−π0(π0) +Ni or K − →
π−π0(π0), through a Monte Carlo simulation of the COMPASS spectrometer setup as realistic
as possible. The propagation of the particles through the 2009 spectrometer geometry must
include stochastic processes like multiple scattering or pair conversion and are implemented
in the COMGEANT framework [119] based on the GEANT3 (GEometry ANd Tracking) soft-
ware [120]. After the particles are propagated and the energy deposit in each mass element
has been determined, the detector response is simulated within the same software framework
responsible for real event reconstruction, called CORAL (COmpass Reconstruction AnaLysis
software package) [106]. Subsequently, the same event reconstruction algorithms, e.g. for
track fitting and shower fitting, are applied as they were applied for real data. So within the
COMPASS software framework, both the reconstruction of pseudodata and the reconstruc-
tion of real data is done in CORAL ensuring a similar treatment.

The dominant contributions to the acceptance and resolution of the desired final states are

1. the amount of material between the interaction point and the calorimeter, which de-
termines the photon-loss probability predominantly due to pair conversion,

2. the calorimetric trigger which requires a minimum energy of the π0,

3. and the resolution of ECAL2. Compared to precise tracking detectors, the spatial and
energy resolution of the calorimeter is large and the resolution of final states involving
π0s is hence dominated by the calorimeter resolution.
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6.1. MATERIAL DESCRIPTION

The Monte Carlo simulation of the COMPASS setup with hadron beams is described in Sec-
tion 10 of Ref. [82]. In the following, we will focus on aspects of the treatment of pseudodata
that are relevant or specific for this work.

6.1 Material description

It is a difficult task to verify the material description of a simulation tool which should cor-
respond to the real material distribution in the COMPASS spectrometer. The number of re-
constructed interaction vertices, which is in principle a good indication for material, depends
on the exact transverse and angular distributions of particle trajectories, which is difficult to
reproduce in simulation. Moreover, the vertex reconstruction efficiency drops significantly
with increasing distance to the target region. Downstream of the first dipole magnet SM1, the
low vertex reconstruction efficiency prevents any comparison between simulation and the
real data.

Still, we checked the material description of COMGEANT by comparing it to the material
description of another simulation framework called TGEANT [121]. Since the material de-
scriptions were developed independently, the comparison provides at least a consistency
check. We found deviations in the order of 10% radiation length, in particular at the RICH
detector [122]. However, the significant differences, which were found, pointed rather to a
wrong description in TGEANT, when comparing it to the real detectors.

A correct material description is in particular important when looking at multiple final states
with a different number of photons. The amount of material between interaction point and
ECAL2 determines the photon loss probability Pconv due to pair conversion. Final states with
four photons, e.g. π− +Ni→ π−π0π0 +Ni or K − → π−π0π0 are therefore more sensitive to
the material description, with a total probability of accepting four photons P

4γ
acc∝ (1−Pconv)4,

than our desired final states with two photons, π−γ(∗) → π−π0 and K − → π−π0, for which
P

2γ
acc ∝ (1 − Pconv)2. A wrong material description in the simulation can therefore explain

potential differences when comparing the relative yields of π−π0 and π−π0π0 final states.
An inconsistent material description may therefore explain the differences between the two
values for the luminosity from K −→π−π0 and K −→π−π0π0 decays, see Chapter 7.

6.2 ECAL calibration

CORAL reconstructs the simulated photon energies systematically wrong by about+1%. The
effect can be seen in Fig. 5.4b when looking at disjoint clusters with a distance of dγγ > 16 cm.
To account for that, various options have been investigated: as it was done in previous works,
e.g. in Refs. [46, 63, 91], we tried to describe the correlation between reconstructed photon
energy Eγ and the true photon energy Ẽγ. However, as can bee seen in Fig. 5.4, a simple
energy-dependent correction does not account for the more complex effects that appear for
overlapping clusters. The needed correction depends also on the spatial distribution and
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Fig. 6.1 π0-calibration of simulated data: in (a): difference of the peak position in the reconstructed mγγ

invariant mass spectrum compared to the nominalπ0-mass for each cell individually. Figure provided by [113].
in (b): correction factor for the energy calibration of ECAL2 for each cell with sufficiently high number of hits
in simulation. The correction factor was averaged over the energy range from 2 GeV < Ecell < 80 GeV.

overlap probability of the photon showers. Since π−γ(∗) → π−π0 , π− +Ni → π−π0π0 +Ni
, K − → π−π0, and K − → π−π0π0 events have different energy and spatial distributions of
the photons, it is not possible to find a simple energy-dependent correlation which manages
to correct all channels at once. A way to account for the mentioned effects and reproduce
the same inaccuracies as they are probably also present in real data, is to also apply a π0-
calibration of the pseudodata on a per-cell level, analog to the real data.

For the ECAL π0-calibration in real data, there is no event selection applied. Any pair of
reconstructed photons, which can be found in the data set, is used for the per-cell calibration.
Due to the high cross-section for diffractive processes (see Section 2.1.3), the real data set is
dominated by π− +Ni → π−π0π0 +Ni events. We hence developed the per-cell π0 calibra-
tion [113] on the generated π− +Ni→ π−π0π0 +Ni pseudodata set in order to be as close as
possible to the energy and spatial distributions of the photons in the real data set.

Fig. 6.1a shows the deviation of the reconstructed π0-peak in the mγγ mass distribution from
the nominalπ0-mass. The transition from shashlik- to radiation-hardened lead glass modules
is prominently seen as a systematic jump to about 5 MeV deviation. Further away of the
nominal beam axis, the calorimeter was not sufficiently illuminated to perform an energy-
dependent per-cell π0 calibration. Towards the center, in straight prolongation of the beam
axis from the target position (slightly left of the hole), where most of the photons hit the
calorimeter, the reconstructed π0-mass is too high by almost 4 MeV/c 2. The effect weakens
when we leave the center of ECAL2 and reach the edge of the shashlik part. Since in simula-
tion, all shashlik blocks are exactly the same, the effect can only be caused by properties of the
showers. The striking difference is the occupancy of the calorimeter. While many photons hit
the ECAL center, the occupancy towards the edges is significantly lower. We therefore have
a high overlap probability in the center, whereas showers in the outer shashlik part or even
further outside practically do not overlap. This leads to the observed behavior of Fig. 5.4b
of a biased position and energy reconstruction, when the two photons enter the calorimeter
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6.3. ECAL RESOLUTION

close to each other. To replicate the reconstruction of real data and its inaccuracies when two
photons overlap, is hence to apply the π0 calibration also on simulated data.

Fig. 6.1b shows the correction factor for ECAL2 cells, which is applied to shift the π0-mass
peak to its nominal position. The energy-dependent parameters for each cell of the applied
calibration can be found in Ref. [78]. Only cells, which have had a sufficient amount of hits in
the pseudodata set, such that aπ0-calibration could be performed, are shown. The correction
factor for each cell is dependent on the deposited energy. Fig. 6.1b shows the correction factor
for each cell averaged over an energy range from 2 GeV to 80 GeV. Each cell, which is not
shown in Fig. 6.1 has a correction factor set to one.

6.3 ECAL resolution

The resolution of the spectrometer for final states with neutral particles is dominated by the
calorimetric measurement of photons in the final state. Among all detector resolutions, a
correct description of the resolution of ECAL2 in simulation is hence of high priority.

In simulation, the energy is smeared on cell level. The energy resolution of a cell depends on
the photon energy Eγ and its energy dependence can be parametrized by [123]

σE ,cal

Eγ
=

√

√

√

a 2

Eγ
+ b 2+

c 2

E 2
γ

(6.1)

with a , b , and c being cell-type and material specific parameters. The stochastic term a
represents statistical fluctuations, the systematic term b is mainly driven by calibration un-
certainties. The COMGEANT framework makes the potentially oversimplified assumption
that these parameters are the same for lead glass, radiation-hardened lead glass, and shashlik
cells: a = 0.065 GeV

1
2 , b = 0.020, and c = 0.000 GeV.

When looking at the width of the π0 peak in the mγγ distribution, we can eliminate effects
from detectors other than the calorimeter and study the calorimeter resolution exclusively.
Fig. 6.2 shows a channel with one π0 and a channel with two π0s for comparison. We chose
to show K − → π−π0 instead of π−γ(∗) → π−π0 events in Fig. 6.2a due to its low background
contamination. Fig. 6.2b shows π− +Ni→ π−π0π0 +Ni events due to its high statistics. As
can be seen, the simulation does not accurately reproduce the width of the π0-peak. It is too
narrow in simulation.

Table 6.1 summarizes results of fits to the distributions in Fig. 6.2. We observe the general
trend, that the resolution of the calorimeter is worse for lower-energetic clusters and there-
fore, worse for π−π0π0 compared to π−π0 final states. While the agreement between simula-
tion and data for π−γ(∗) → π−π0 is just within 1σ and hence still acceptable, the simulation
does not reproduce the π− +Ni → π−π0π0 +Ni events accurately. One of the differences
between the two reactions is the different photon energies. In the kaon decays, the photon
energies are in average higher than in the diffractive scattering events. Potentially, the energy
dependence of the calorimeter resolution is not correctly reproduced and deviates especially
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Fig. 6.2 Two-photon invariant mass distribution of data (blue) in comparison to simulation (red) as measured
in ECAL2 for (a) K −→π−π0 and (b) π−+Ni→π−π0π0+Ni events.

Table 6.1 Position mπ0 and width σπ0 of the π0-peak for final states with one and two π0(s). The parameters
have been determined from fits to the histograms in Fig. 6.2 with a Gaussian and a second-order polynomial.

data simulation

mπ0 (π−π0) (135.26±0.01)MeV/c 2 (135.010±0.005)MeV/c 2

σπ0 (π−π0) (3.8±0.1)MeV/c 2 (3.7±0.1)MeV/c 2

mπ0 (π−π0π0) (135.294±0.003)MeV/c 2 (135.364±0.003)MeV/c 2

σπ0 (π−π0π0) (4.08±0.05)MeV/c 2 (3.88±0.07)MeV/c 2

for lower energies. But also the spatial distribution for showers is different for the two reac-
tions. The π− +Ni→ π−π0π0 +Ni events illuminate the calorimeter also further away from
the center, such that we have a higher fraction of showers in the lead glass modules. The
author of Ref. [63] has shown, that the resolution of lead glass and radiation-hardened lead
glass modules differs significantly from the resolution of the shashlik modules. Probably, the
implementation of the per-cell energy resolution according to Eq. (6.1) requires parameters,
which are adapted to different module types. A better simulation of the ECAL2 energy reso-
lution is in any case desirable.

We use theπ0 mass according to Eq. (5.12) to kinematically constrain our events and improve
the Q -resolution. A too optimistic calorimeter energy-resolution in simulation influences
only indirectly the resolution in Q . But it still leads to an overestimated Q -resolution. Fig. 6.3
shows the comparison of the data to simulation for K −→π−π0 decays, which in reality have
Q = 0 GeV/c . The distribution is dominated by resolution effects. Indeed, we observe that
the simulation produces a peak, which is slightly too sharp. All in all, we still have a good
agreement of the data with simulation.
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The lower plot shows the ratio of bin counts data/simulation. The correction/smearing (see Section 6.4) of
the beam energy in simulation has already been applied for the shown distribution.

6.4 Simulation of the beam

To propagate the particles of the reaction of interest through the COMPASS geometry, one has
to transform the event kinematics, which are usually generated in the center-of-momentum
system, to the laboratory system and place the interaction vertex inside the desired volume.
To simulate the correct energy distribution, direction spread of the events, and reproduce a
realistic spatial distribution, it is mandatory to take beam parameters from real data. The
beam parameter space is five-dimensional: the spatial distribution of beam trajectories in
the plane perpendicular to the nominal beam direction (xbeam, ybeam) at a specific z -position,
the inclinations (px /pz , py /pz ) at the same z -position, and the beam momentum or energy
Ebeam. We take measured beam trajectories from the Primakoff 2009 data set to obtain realistic
distributions for (xbeam, ybeam) and (px /pz , py /pz ). Ideally, the simulated data set should be
one order of magnitude bigger than the real data set. We therefore use all recorded events in
the 2009 data set, in particular also the events triggered by the beam trigger (see Section 3.3.3
and Table 3.2).

The beam energy directly influences the energetic balance ∆E . And a correct replication of
the∆E distribution is important as we use it to kinematically constrain our events according
to Eq. (5.12). Being heavily influenced by the kinematic constraints, the distribution in Q
is hence very sensitive to ∆E and finally Ebeam. In the data, we use the correlation of the
four-dimensional space (xbeam, ybeam, px /pz , py /pz ) to narrow down the measured exclusivity
distribution. The simulation should take these correlations into account.

Ebeam is not directly measured, since the beam momentum station (BMS) is not used for
hadron beams (see Section 3.2). In principle, there are two possibilities to assign a momen-

102



CHAPTER 6. GENERATION OF PSEUDODATA BY MONTE-CARLO SIMULATION

15− 10− 5− 0 5 10
 (GeV)E∆

0

0.5

1

1.5

2

2.5

310×
co

un
ts

 / 
0.

2 
G

eV
0π−π → −K

data
 = 0.3 GeVE, beamσsim 
 = 1.1 GeVE, beamσsim 
 = 1.8 GeVE, beamσsim 

(a)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
 (GeV)E, beamσ

0

2

4

6

8

10

12

14

16

18

20

0π−π → −K

/n
df

2 χ

 = 1.086 GeV, beam, minEσ

(b)

Fig. 6.4 Impact on the beam momentum determination in simulation. In (a): comparison of the measured
exclusivity distribution in data compared to simulations with different values of σE ,beam. In (b): the reduced
χ2 of the simulation to the data as a function ofσE ,beam. The function has minimum atσE ,beam,min.

tum to the beam trajectories based on real data: the fist is to determine it from the mea-
sured final state or secondly to calculate it from the beam energy polynomial of Eq. (3.4).
Taking the momentum distribution from the measured final state has the disadvantage that
the resolution of the detector has to be determined. The resolution has to be taken out of
the obtained distribution before plugging it back into the simulation. Otherwise, we account
twice for it. More severe is the fact, that each particle in the final state needs to be measured
and its momentum or energy needs to be determined which drastically limits the number of
beam trajectories, to which we can assign a momentum.

The beam energy from the polynomial of Eq. (3.4), also comes with a complication: differ-
ent from what the polynomial suggests, there is no strict functional relation between (xbeam,
ybeam, px /pz , py /pz ) and Ebeam but only a correlation. We therefore have to account for the
width of this correlation by smearing the functional relation with a Gaussian distribution. The
width of the Gaussian distribution σE ,beam can be determined empirically by comparing the
exclusivity distributions of simulation and data. This is best done in K − → π−π0 reactions,
since the selected event set is clean and they should appear at∆E = 0 GeV.

Fig. 6.4a shows the simulated exclusivity of K −→π−π0 events for different widthsσE ,beam of
the correlation between true beam energy and the result of the polynomial. We determine
the best σE ,beam by scanning through different values and evaluating the χ2/ndf compared
to the data. The result of the scan can be seen in Fig. 6.4b. Interpolating gives a minimum
χ2/ndf= 1.64 at

σE ,beam,min ≈ 1.086 GeV (6.2)

Considering that the ECAL energy resolution is not exactly described by simulation, see Sec-
tion 6.3, we should keep in mind, that the value of Eq. (6.2) might not be precise as well.
A worse energy resolution leads to a broader exclusivity peak and hence, less smearing is
necessary to reproduce the width of the distribution in the data. Anyway, we will smear the
result of the beam polynomial of Eq. (3.4) with a Gaussian distribution according to Eq. (6.2).
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Fig. 6.5 Correlation between energy deposit in the trigger region Etrig and energy of theπ0 in K −→π−π0 decays.
In (a) and (b): Eπ− − Etrig for real data and in simulation. In (c): difference of the mean values of (a) and (b),
determined by fitting a Gaussian distribution in slices of Etrig. The red line is a linear fit.

6.5 Trigger simulation

In the event selection, we perform a cut on the deposited energy in the trigger region, see
Section 5.1. The cut prevents a possibly unfeasable modelling of the trigger efficiency in an
energy range Etrig < 68 GeV, where the trigger efficiency can not be approximated linearly, see
Fig. 3.7. Still, we have to make sure that the simulation reproduces correctly the amount of
energy deposit in the trigger region. A way to verify the simulation, is to compare the energy
deposit in the trigger region with the energy of a neutral pion. To do so, we need a channel
with one π0 in the final state. Again, we consider K − → π−π0 decays, since this channel is
very practically background free in real data.

Fig. 6.5 shows the correlation between the reconstructed energy of theπ0 in the final state, Eπ0 ,
for real data (a) and simulated data (b). As can be seen, the average deposited energy in the
trigger region is always smaller than the reconstructed Eπ0 . This can be explained by threshold
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effects of the ECAL2 modules and the missing π0-calibration, which is not yet applied when
summing up the energy deposits for the trigger decision. In real data (RD), Eπ0 is constantly
around 6 GeV smaller than Etrig, whereas in simulation (MC), the difference varies from 4 GeV
at low Etrig to almost 0 GeV at high Etrig.

Fig. 6.5 shows the difference of the mean values of the upper two distributions, determined by
fitting a Gaussian distribution in slices of Etrig. Assuming that Eπ0 is the same for simulation
and real data, this difference can only be explained by a difference ∆Etrig = E MC

trig − E RD
trig . For

the purpose of correcting Etrig to first order, we can find a scaling factor by fitting it linearly:

∆Etrig = E MC
trig −E RD

trig = a0 ·Etrig

⇒E RD
trig ≈ (1−a0) ·E MC

trig

(6.3)

with a0 = 0.03894 determined from the fit. Despite the various approximations, the correc-
tion of Eq. (6.3) performs well in correcting the observed deviations and in describing the
kinematic distributions of the channels of interest, as can be seen in Appendix B.

6.6 Q -dependencies

The presented analysis is very sensitive to the Q -distribution of the data. It is hence important
to simulate the correct Q -dependence. In case of π−γ(∗)→π−π0 events, we know the depen-
dence from theory: it is given by the Weizsäcker-Williams approximation of Eq. (2.23). Since
the distribution is peaking at very small values of Q , the observed shape is dominated by reso-
lution effects. With the correct description of resolution effects in Monte-Carlo simulation, we
can directly reproduce the expected Q -distribution of π−γ(∗)→ π−π0 events. The resolution
in Q has been investigated in Section 5.2.3 and has been verified in Section 6.3. Fig. 6.6 shows
the distribution of momentum transfer Q in simulated π−γ(∗) → π−π0 events. The input to
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Fig. 6.6 Comparison of the true Q -dependence of the cross-section given by the Weizsäcker-Williams approx-
imation (blue) and the reconstructed distribution (red) in simulated π−γ(∗) → π−π0 events. The achieved
resolution in the range of ∼ 12 MeV/c is about a factor 4 larger than the true peak structure. The red dashed
line indicates Qmax up to which the Q -integration is performed.
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the simulation is distributed according to Eq. (2.23) and shown in blue. The reconstructed
output after propagating the particles through the COMPASS spectrometer is shown in red.
It becomes clear, that the resolution-limiting effects of the apparatus must be understood
well, when the Q -integrated cross section up to Qmax = 36 MeV/c shall be determined with
precision.

Forπ−+Ni→π−π0π0+Ni events, we do not have a model to describe the Q -dependence. In-
stead, we have to determine an empirical shape from real data distribution. We have learned
from Eq. (2.15), that the dependence on Q 2 for small Q 2 can be described by an exponential
decay. Indeed, when looking at the distribution ofπ−+Ni→π−π0π0+Ni events, as it is done in
Fig. 6.7, we can identify an exponential dependence for smallQ 2, which is valid approximately
up to the first diffractive minimum at Q 2

diffmin = 0.026 GeV2/c 2. Fig. 6.7b shows a zoom into
the range of small Q 2.

Above Q 2
incoherent = 0.2 GeV2/c 2, we observe also an exponential dependence but with much

shallower slope. Incoherent scattering of the pion on the nickel nucleus, i.e. when the pion
doesn’t “see” the whole nucleus, but single nucleons, is the usual explanation of the observed
shallow Q 2-dependence at these high values. Between Q 2

diffmin and Q 2
incoherent, the depen-

dence features the first diffractive minimum and a series of shoulders and dips.

We therefore split the entire Q 2 range into three parts: low Q 2 from 0 GeV2/c 2 to Q 2
diffmin,

medium Q 2 from Q 2
diffmin to Q 2

incoherent, and high Q 2 above Q 2
incoherent. Figs. 6.7b to 6.7d show

the corresponding Q 2-ranges. We fit the observed distribution in the high-Q 2 range, with an
exponential, in the intermediate Q 2-range with a Chebyshev polynomial, and at low-Q 2, with
the sum of two exponentials, where the parameters of one of the two are the same as for the
low-Q 2 range:

f (Q 2) =











A ·exp
�

−a ·Q 2
�

for Q 2 >Q 2
incoherent

∑8
i=0 pi ·Ti (Q 2) for Q 2

diffmin <Q 2 ≤Q 2
incoherent

B ·exp
�

−a ·Q 2
�

+exp
�

−b ·Q 2
�

for Q 2 ≤Q 2
diffmin

(6.4)

with Ti being the Chebyshev polynomials of the first kind, a , b , pi fit parameters, and A,
B scale parameters which have to be determined in a way, that the function is continuous.
The fit parameters depend on m3π. To account for the mass-dependence, we split the data
set into 40 MeV/c 2 mass bins from 420 MeV/c 2 to 2.5 GeV/c 2, extracted the parameters and
generated pseudodata in each mass bin independently. The extracted parameters can be
found in Ref. [78]. Fig. 6.7 shows the integration over all mass bins after applying a weighted
model to the data.

The distributions necessarily contain the detector resolution effect when extracting the Q 2-
dependence empirically from data. We accounted for the detector resolution, by increasing
the exponential slope at low Q 2, which is around 200 GeV−2c 2, by 12 GeV−2c 2 before plugging
the events back into the Monte-Carlo simulation. This leads to a satisfactory replication of the
observed Q 2-dependence at low Q 2 as can be seen in Fig. 6.7b. Still, Fig. 6.7 shows effects of
the detector resolution: dips are filled in the simulated pseudodata and shoulders are less
pronounced.

All in all, the Q 2-distribution is quite well reproduced for the important region of small Q . The
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Fig. 6.7 The observed distribution of momentum transfer Q 2 of π− + Ni → π−π0π0 + Ni events (blue) in
comparison to simulation (red). The figure shows different ranges in Q (a)-(d). The lower plots show the
ratios data/simulation.

m3π-dependence is implemented and the whole Q 2-range is covered. The generated pseudo-
data sample shows many improved characteristics compared to the simulation of Ref. [63]. Its
biggest shortcoming is that the Weizsäcker-Williams shape, which appear in the very first bins
in the Q 2-spectra is not corretly reproduced. Events at very low Q have the highest probability
to leak again to low Q when one π0 is lost.
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Chapter 7

Determination of the integrated
luminosity via free kaon decays

The measurement of an absolute cross section requires to determine the luminosity inte-
grated over the time of the data taking period. For our fixed-target geometry, the integrated
luminosity depends on properties of both, the incoming beam and the target:

L̂ :=

∫

t

L dt =

∫

t

dt Φπρtargetl =Nπ
ρtargetl

Ar ·NA
(7.1)

whereΦπ =
dNπ
dt represents the flux of incoming beam pions,ρtarget is the density of nickel (the

target material), l is the thickness of the nickel target, Ar the standard atomic weight of nickel,
and NA the avogadro constant. To calculate L̂ , we need therefore to determine the effective
number of incoming pions (Nπ) during the data-taking period.

At the Serpukhov experiment on F3π by Antipov et al. [39], the number of beam particles
was measured by a scintillation counter. Also, the COMPASS spectrometer provides counting
detectors for incoming beam particles. However, at the beam intensities of the COMPASS
experiment, we must account for trigger and DAQ dead times, which arise due to the finite
amount of time required to process the data of one event and prepare for the next. Not every
beam pion could therefore effectively trigger the acquistion of an event. The effective number
of pions Nπ can be calculated via

Nπ =N ′π · ε̄DAQ =

∫

t

dt Φπ ·εDAQ(t ) (7.2)

from the actually counted number of pions N ′π and the avarage probability to record the par-
ticle ε̄DAQ. Determining ε̄DAQ with the desired accuracy of O (1%) is challenging at COMPASS
because the DAQ and trigger dead times strongly depend on beam intensity and average event
size.

An elegant way to overcome this possible limitation is to use the kaon fraction in the negative
hadron beam. The kaon decays are recorded in the same data set and hence are affected by
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DAQ and trigger dead times in exactly the same way as pions. The effective integrated kaon
flux

∫

t
dt ΦK εDAQ(t ) = NK = N ′K · ε̄DAQ can be determined from the number of detected and

identified kaon decays NK→X into final state X by

NK =
NK→X

ΓX /Γtot ·
�

1− e −
L
γcτ

�

·ηX ·εK

(7.3)

with ΓX /Γtot being the branching ratio into the considered final state X , γcτ the mean dis-
tance, which kaons travel in the laboratory frame before they decay, L the length of the decay
volume,η the acceptance of the spectrometer for final state X determined by simulation, and
εK the CEDAR tag efficiency of Eq. (3.3). Potential decay volumes have to be free of material.
As already mentioned in Section 5.3.2, we chose two decay volumes directly upstream and
downstream of the target. The target area between beam telescope and first planes of tracking
detectors offers high-quality vertex reconstruction capability. Fig. 7.1 illustrates length and
position of the two decay volumes.

Knowing the true ratio of kaons and pions Rbeam in the beam, we can relate the effective kaon
flux to the effective pion flux via

Nπ =
NK ·επ
Rbeam

(7.4)

withεπ being the CEDAR efficiency for detecting pions from Eq. (3.3). The approximation that
the ratio is constant over the length of our decay volumes is sufficiently good. Since lifetime
τ and branching ratios Γi /Γtot of the charged kaon are known to a sub-percent level [18] and
Rbeam is known with a precision of around 2%, see Eq. (3.1) [82], the effective luminosity can
be determined with sufficient accuracy.

Using free kaon decays to determine the luminosity comes with more advantages: effects
from e.g. pile-up events or the beam description, which are independent of the particle species
but might influence the acceptance, are effectively taken into account: even if not considered
correctly in simulation, the effects will cancel as long as it is done in the same way in simu-
lation of kaon decays and of pion interactions. Moreover, if taking the K − → π−π0 decay
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Primakoff 2009: kaon decays
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Fig. 7.1 Detected kaon decays up- and downstream of the target. The target position is indicated by a dashed
line. K −→π−π0 decays are shown in blue, K −→π−π0π0 decays are shown in red.
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CHAPTER 7. DETERMINATION OF THE INTEGRATED LUMINOSITY VIA FREE KAON DECAYS

Table 7.1 Kaon decay channels and their branching ratios Γi /Γtot as listed in Ref. [18].

decay channel Γi /Γtot comment

K −→µ−ν̄µ (63.56±0.11)% Negligible energy deposit in ECAL2
K −→π−π0 (K2π) (20.67±0.08)% Similar systematics as π−γ(∗)→π−π0

K −→π−π−π+ (5.583±0.024)% Negligible energy deposit in ECAL2
K −→ e −π0ν̄e (Ke 3) (5.07±0.08)% Missing energy, not exclusive
K −→µ−π0ν̄µ

�

Kµ3

�

(3.352±0.033)% Missing energy, not exclusive
K −→π−π0π0 (K3π) (1.760±0.023)% Used to determine π/K -ratio of beam
K −→µ−ν̄µγ (0.62±0.08)% Not exclusive, no π0-peak in mγγ

others < 10−4 No significant background contribution.

channel, which is the same final state as our π−γ(∗)→ π−π0 events, other systematic effects,
which might be introduced by an incorrect simulation, such as e.g. an inaccurate material
description, are at least partly compensated.

7.1 Overview of charged-kaon decays

Being the lightest meson with strangeness, the kaon can only decay via the weak interaction
leading to comparatively long lifetimes. The mean lifetime [18] and average mean decay
length in the laboratory frame for a charged kaon at COMPASS beam energy is given by

τ= (1.238±0.002) ·10−8 s

γcτ=
E beam

mK − · c 2
· cτ≈ (1435±7)m

(7.5)

where E beam = (191±1)GeV.

The PDG lists many possible decay modes [18]. Table 8.1 summarizes all kaon decay channels
with a branching ratio Γi /Γtot > 10−4. The preferred decay is the leptonic two-body decay to
µ−ν̄µ with a branching ration of 64%. The K − → e −ν̄e decay is helicity suppressed and has
only a branching fraction of around 1.6 ·10−5, despite the in principle larger phase space.

We can measure and select kaon decays into a particular channel only if this channel has a suf-
ficiently high branching ratio. In Section 5.3.3, we have selected∼ 1300 K −→π−π0π0 decays,
which have a branching ratio of 1.8%. Any decay with a significantly smaller branching ratio
will hence not contribute a measurable quantity of events. The decay K −→µ−ν̄µγ is the last
decay channel, which could contribute. Its, by a factor of three, lower branching ratio might
partly be compensated by its presumably higher acceptance, since it has only one photon in
the final state. However, we lack the selection criteria of exclusivity due to the unobserved
neutrino. It is hence difficult to distinguish from background.

In general, decay channels with neutrinos in the final state, which appear to be non-exclusive,
are harder to select and seperate from background. Attempts to determine a value for the
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7.2. SIMULATION OF KAON DECAYS

integrated luminosity L̂ from the semi-leptonic decays Kµ3 and Ke 3 did not give a consistent
picture over the whole phase space. This represents non-understood background processes.
We therefore consider these channels only as potential source of background to other chan-
nels.

Since the data during the 2009 Primakoff run are taken mainly with the Primakoff trigger (see
Section 3.3.3), the decay must deposit enough energy in ECAL2 to trigger the acquisition of the
event. Charged muons and pions deposit only a small fraction of their energy in ECAL2 and
hence do not trigger the DAQ, such that the K −→ µ−ν̄µ and K −→ π−π−π+ decay channels
are not recorded. We are left with two channels, from which we can determine a value for the
effective integrated luminosity:

K −→π−π0(K2π)

K −→π−π0π0(K3π)
(7.6)

The following decay channels are considered for potential background contributions:

K −→ e −π0ν̄e (Ke 3)

K −→µ−π0ν̄µ(Kµ3)
(7.7)

As we will see later, the background contributions of the mentioned processes are very small,
due to an effective suppression by the applied event selection. The misidentification prob-
ability for K − → µ−ν̄µγ to K − → π−π0 can safely be assumed to be even smaller than the
corresponding probability for Kµ3 events and hence negligible.

7.2 Simulation of kaon decays

A good description of charged kaon decays in simulation is essential to determine the accep-
tance εX for final state X in Eq. (7.3). This comprises a correct description of the kinematics,
but also specific challenges that come with the simulation of free particle decays along the
beam line. It turned out to be necessary to generate kaon decays in a very large z -range from
zK,min = −300 cm to zK,max = 400 cm. The large range covers far more than the target area
and the selected zPV-range in Section 5.3.2. It stretches over the magnetic field of the first
dipole magnet (SM1). Decays inside the magnetic field of SM1 can be misidentified as kaon
decays in the vicinity of the target with a small scattering angle: if the actual decay in the
field happens in the bending plane of the magnet, the reconstruction algorithm will interpret
it as deflection by SM1, bridge the trajectory segments up- and downstream of SM1, assign
a wrong momentum to the new trajectory and reconstruct a vertex close to the target. It is
hence important to cover this range also in simulation.

7.2.1 Kinematics of hadronic K −-decays

The two-body decay of the K2π channel is well-defined by giving |pπ− | and θπ− in the labora-
tory frame. The two quantities are shown in Fig. 7.2 illustrating the quality of the simulation.
More kinematic distributions can be found in Appendix B.2.
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Fig. 7.2 Kinematic distributions of selected K2π decays in the laboratory frame in comparison to simulated
K2π decays: in (a): the reconstructed momentum of the π− and in (b): the angle θ of the π− w.r.t the beam
trajectory.

The three-body kinematics of the K3π is more involved. The Dalitz plot and hence the phase
space of the K ± → π±π0π0 decay is not uniformly populated. As introduced in the 1960ies
by Weinberg [124], the square of the matrix element |M |2, which describes this Dalitz plot
distribution, can be parametrized by a series expansion:

d|M |2

dX dY
∝ 1+ g Y +h Y 2+k X 2+ . . . (7.8)

with

X = (s2− s1)/m
2
π±

Y = (s3− s0)/m
2
π±

(7.9)

where mπ± has been introduced to make the coefficients g , h , and k dimensionless, and
si = (pK − pi )2, i = 1, 2, 3; s0 =

�

m 2
K ± +2m 2

π0 +m 2
π±

�

/3. p1 and p2 are the four-momenta of
the neutral pions, p3 the one of the charged pion. We take the values for the parameters from
the PDG [18]:

g = 0.626±0.007

h = 0.052±0.008

k = 0.0054±0.0035

(7.10)

In 2006, the NA48 experiment at the CERN SPS observed a cusp-like anomaly in the mπ0π0 in-
variant mass distribution [125], which alters the Dalitz plot and requires a different empirical
parametrization [126]. However, the effects of the cusp on the population of the phase space
are very small and negligible for our desired accuracy.
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Fig. 7.3 In (a): population of the phase space in K − → π−π0π0 decays according to the parametrization of
Eq. (7.8). In (b): difference in the distribution of pπ− in K − → π−π0π0 decays with (blue) and without (red)
Dalitz plot slopes.

Fig. 7.3a illustrates the population of the phase space according to the parametrization of
Eq. (7.8). As can be seen in Fig. 7.3b, the population of the Dalitz plot has a large impact on
the momentum distribution of theπ− in the final state. Considering the slopes, we have more
events at smaller |p⃗π− |, i.e. in a corner of the phase space with higher acceptance.

The simulated pseudodata matches nicely the observed distributions, as it is shown in Fig. 7.4.
More kinematic distributions can be found in Appendix B.3.
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Fig. 7.4 Kinematic distributions of the K − → π−π0π0 decay in comparison to simulation. In (a): momentum
distribution of the π−. In (b): Polar angle distribution of the π− in the Gottfried-Jackson rest frame. The lower
plots show the ratio data/simulation.
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Fig. 7.5 Population of the phase space according to Eq. (7.11) from Ref. [127] for (a) Ke 3 and (b) Kµ3 decays

7.2.2 Kinematics of semileptonic K −-decays

Also the phase space of the two semileptonic decay channels of Eq. (7.7), Ke 3 and Kµ3, is
not flat. To correctly and quantitatively predict the background which we expect from these
channels, we have to accurately model the decay kinematics. We take the parametrization
of the population density of the general Kl 3 phase space from Ref. [127]. The population
density ρ is a function of E cm

l and E cm
π and describes the dependence of the partial decay

width
d2Γ (K −l 3)

dE cm
l ·dE cm

π0
. It can be parametrized by:

d2Γ (K −l 3)

dE cm
l ·dE cm

π0

=ρ
�

E cm
l , E cm

π0

�

=N
�

A1| f+(t )|2+A2 f+(t ) f−(t ) +A3| f−(t )|2
�

(7.11)

where E cm
l and E cm

π0 are the lepton and pion energies in the kaon rest frame (cm); t is the
4-momentum transfer to the leptonic system:

t =
�

pK −pπ
�2

(7.12)

N is a numerical factor; f−(t ) = ( f0(t )− f+(t ))(m 2
K −m 2

π0 )/t ; mK and mπ0 are the charged kaon
and neutral pion mass according to [18]. The kinematic factors are:

A1 =mK

�

2E cm
l E cm

ν −mK

�

E cm,max
π0 −E cm

π0

��

+m 2
l

��

E cm,max
π0 −E cm

π0

�

/4−E cm
ν

�

A2 =m 2
l

�

E cm
ν −

�

E cm,max
π0 −E cm

π0

�

/2
�

A3 =m 2
l

�

E cm,max
π0 −E cm

π0

�

/4

(7.13)

Here E cm,max
π0 = (m 2

K +m 2
π0−m 2

l )/2mK , ml is the charged lepton mass, and E cm
ν =mK −E cm

l −
E cm
π0 is the neutrino energy in the kaon rest frame.

The form factors f+(t ) and f0(t ) can be approximated by a Taylor expansion in the variable

115



7.3. DETERMINATION OF THE EFFECTIVE INTEGRATED LUMINOSITY

Table 7.2 Acceptances εi→X for kaon decays up- and downstream of the target as determined from simulation.
i is indicated in the columns, X in the rows. Numerical values are give only for the εi→X which are not less
than one order of magnitude smaller than the biggest uncertainty. For certain probabilities, we could give
only upper limits with the given amount of simulated pseudodata.

ηi→X (%) 2π 3π e 3 µ3

2π upstream 11.40±0.02 < 5 ·10−4 ∼O (10−3) 0.012±0.004
2π downstream 19.03±0.04 < 1 ·10−3 0.018±0.006 0.03±0.01
3π upstream < 6 ·10−5 2.79±0.03 ∼O (10−3) < 10−3

3π downstream < 2 ·10−4 7.03±0.08 < 2 ·10−3 < 4 ·10−3

t /m 2
π+ :

f+(t ) = 1+λ′+
t

m 2
π+
+λ′′+

�

t

m 2
π+

�2

f0(t ) = 1+λ0
t

m 2
π+

(7.14)

The values λ′+, λ′′+, and λ0 have to be extracted from experiment. We take the most recent
values by the NA48/2 collaboration, published in Ref. [127]:

λ′+ = (24.27±2.88±2.89) ·10−3

λ′′+ = (1.83±1.05±1.09) ·10−3

λ0 = (14.20±1.14±1.07) ·10−3

(7.15)

The phase space density, which was generated according to Eqs. (7.11) to (7.15) can be seen
in Fig. 7.5. The phase space is spanned by the energy of the two measured particles of the
three-body decay, the lepton and the π0.

7.3 Determination of the effective integrated luminosity

We learn from Eqs. (7.3) and (7.4), how we determine the effective number of pions Nπ from
the number of detected kaons NK→X into final state X in the 2009 Primakoff data set. Con-
sidering leakage from one decay channel to the other, we must modify Eq. (7.3) by adding
additional terms describing not only the acceptance, but also the leakage probability ηi→X ,
that final state i is identified as X :

NK→X =NK ·εK ·
�

1−exp−
L
γcτ

�∑

i

ηi→X
Γi
Γtot

(7.16)

with X = 2π, 3π and i = 2π, 3π, e 3,µ3. It is hence indispensable to determine the ηi→X .

The ηi→X are to be determined from simulation. Given that all kinematic distributions are
correctly described in all dimensions, we can simplify the problem to one dimension and
define ηi→X as the ratio of number of events, which pass all cuts of the event selection for
state X , to the number of events, which have actually been simulated of channel i and which
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have been generated inside our decay volume. Our decay volume is five-dimensional given by
the beam parameters (xbeam, ybeam, px /pz , py /pz ) and zPV . The volume, in which events are
generated should be larger than the actual decay volume to account for edge effects, when
the decay was in reality outside the volume, but reconstructed inside. Especially in z , the
generated range should cover much more than the actual selected range, since the resolution
is comparatively bad, and we have the reconstruction effects mentioned in Section 7.2.

Table 7.2 shows the ηi→X determined from simulation. None of the other decays forms a sig-
nificant background contribution to the K3π-decay. However, the semileptonic kaon decays
have a probability to form a background contribution to the K2π-decays, which is in the same
order of magnitude as the statistical uncertainty on η2π→2π. In combination with the smaller
branching ratio, they have only a small impact on the luminosity. Their contribution is around
30% of the statistical uncertainty on the leading term. Contributions from other channels, in
particular K −→µ−ν̄µγwith the next highest branching ratio, can hence be neglected due to
even smaller branching ratios and smaller ηi→X .

On a last remark: ηe 3→2π is in the same order of magnitude or even smaller than ηµ3→2π.
This is achieved by the calorimetric particle identification, which is described in Section 5.3.2.
The electron suppression hence performs at the same level or even better than the muon
suppression.

From the data in Table 7.2, we can determine the effective integrated luminosity according to
Eqs. (7.4) and (7.16). We do this for up- and downstream decay volumes and for each decay
channel separately. The result can be seen in Fig. 7.6. We calculated the weighted means of
up- and downstream decay volumes for K2π and K3π decays, which are also shown in Fig. 7.6.
The weighted results are:

L̂eff(K2π) = (5.87±0.09)nb−1

L̂eff(K3π) = (5.48±0.17)nb−1 (7.17)

5 5.5 6 6.5 7
)1− (nbeffL

 

 downstreamπ3from K

 upstreamπ3from K

 combinedπ3K

 combinedπ2K

 downstreamπ2from K

 upstreamπ2from K

 Primakoff 2009: integrated effective luminosity

Fig. 7.6 Values for the effective integrated luminosity
∫

dt L ·εDAQ(t ) of the 2009 Primakoff run. The values were
obtained from two different decay channels K −→ π−π0 and K −→ π−π0π0 and two different decay volumes
up- and downstream of the target (see Section 5.3.2).
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The values do not match within their 1-sigma uncertainties. The discrepancy between the
two channels amounts to

L̂eff(K3π)− L̂eff(K2π) = 0.39 nb−1 ≈ 2.3σ (7.18)

It is hence unlikely that the observed difference is due to statistical fluctuations, but rather
of systematic nature. Because we assume, that the systematic uncertainties of the K2π decay
are very similar to π−γ(∗)→π−π0 events, we will take the value of L̂eff(2π) and account for the
difference to L̂eff(K3π) in the systematic uncertainties.

7.4 Systematic uncertainties

There are various sources of systematic uncertainties for the luminosity. The CEDAR tag effi-
ciencies, see Eq. (3.3), and the ratio of kaon to pion in the beam Rbeam, see Eq. (3.1), are subject
to an explicit systematic uncertainty. Also manufacturing accuracy and material properties
of the target are subject to systematic uncertainties. The limiting factor here is certainly the
precision of the 4.2 mm thickness of the target disk.

Other systematic uncertainties, such as the impact of the ECAL resolution in simulation or cut
choices, are more difficult to quantify. Studies, how variations of these parameters influence
the final result, can give a good estimate on the magnitude of the respective systematic uncer-
tainties. However, many of these effects are represented in the independent measurements of
the luminosity from K2π and K3π decays. These decays vary in the energy distribution of the
photons, have different cut thresholds in many dimensions, different kinematic constraining
procedures (see Section 5.2.3), and illuminate ECAL2 differently.

The two independent values for the luminosity from K2π and K3π in Eq. (7.17) provide an
estimate on the systematic uncertainty. To deduce a value for the systematic uncertainty, we
follow the approach in Ref. [128]: since the statistical σi and systematic s uncertainties on a

given measurement L̂eff(i ) are uncorrelated, the total uncertainty is
q

σ2
i + s 2. The expected

difference in the two measurements becomes
q

(σ2
2π+ s 2) + (σ2

3π+ s 2). If we set this equal to
the observed difference, we obtain an estimate for the systematic uncertainty

s =

√

√1

2

�

�

L̂eff(2π)− L̂eff(3π)
�2−

�

σ2
2π+σ

2
3π

�

�

≈ 0.34 nb−1 (7.19)

Due to statistical fluctuations, |L̂eff(2π)− L̂eff(3π)| could be smaller than σ2
2π +σ

2
3π. In that

case, one would conclude that there is no evidence for systematic effects and set our estimate
to zero. The approach results in a small bias for small s , but is well applicable in our case.

Table 7.3 lists and quadratically adds all contributions to the systematic uncertainty on the
final result:

L̂eff =
�

5.87(±0.09)stat(±0.35)syst

�

nb−1 (7.20)

The value has large systematic uncertainties, which are dominated by the two different values
from K2π and K3π decays. It is, however, one of the advantages of measuring the luminosity via
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Table 7.3 Sources of systematic uncertainties on the luminosity value.

source systematic uncertainty

Rbeam 1.1%
CEDAR efficiency επ 1.0%
CEDAR efficiency εK 0.1%
target properties ∼ 1%
others (from difference in K2π and K3π) 5.8%

total 6.1%

free kaon decays thatπ−γ(∗)→π−π0 events have similar systematics compared to K −→π−π0

decays. Many effects should therefore cancel. We probably overestimate the systematic un-
certainties in Eq. (7.20). In finalizing this analysis, they can probably be lowered, by thorough
checks and meaningful variations of cut thresholds and ECAL resolution in simulation and
study the impacts not only on the value for the luminosity, but in combination with the result
on F3π and Γρ→πγ.
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Chapter 8

Extracting values for F3π and the
radiative width of theρ(770)

In Chapter 2, we have learned, how we can extract a value for F3π and Γρ→πγ by measuring
the cross section for π−γ(∗) → π−π0 as a function of

p
s = mπ−π0 . The needed pion-photon

collisions are realized in Primakoff reactions, where the photon is provided by the Coulomb
field of nuclei in the nickel target. In a first step, we have to determine the number of Primakoff
events in the data set and separate them from background processes. We will see, that the
main background contribution is due to diffractiveπ−+Ni→π−π0π0+Ni events, in which one
π0 is lost. Beyond, we will list all considered background processes and assess the significance
of their contribution.

Once this is done, we have to account for the acceptance, which is determined from simula-
tion and normalize the observed cross section to the photon flux in the nuclear Coulomb field
according to the equivalent-photon approximation of Eq. (2.23). Taking this into account, we
can fit the observed cross section to the dispersive model and determine F3π and Γρ→πγ.

8.1 Considered background contributions

We will start with listing considered background processes and assess their contribution in
the data set. The dominant background stems from π−Ni→ π−π0π0Ni reactions as well as
the inelastic scattering off the nickel nucleus and will be discussed in the next section.

8.1.1 Kaon decays

One class of background arises from kaon decays. The free kaon decays occur practically
uniformly distributed over z in the target area. Some decays will hence pass our Primakoff
event selection cut on the position of the vertex to be inside (or at least close to) the target.
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Fig. 8.1
p

s distribution of selected π−γ(∗) → π−π0 events around mK − . It features an excess of events atp
s = mK − ≈ 500 MeV/c 2 due to a background contribution from K2π decays. We fitted the distribution

from 400 MeV/c 2 to 600 MeV/c 2 with a Gaussian distribution on top of a parabola to determine the number
background events stemming from K2π decays.

We identified all relevant kaon decay channels in Chapter 7, which are K −→ X with

X =



















2π
�

π−π0
�

3π
�

π−π0π0
�

e 3
�

e −π0ν̄e

�

µ3
�

µ−π0ν̄µ
�

(8.1)

and generated a pseudodata set for each of the relevant channels. From this pseudodata
set, we can determine the probability ηX for a kaon decay to be misidentified as π−γ(∗) →
π−π0 event. The CEDAR detectors are not included in the simulation, such that we can not
include the efficiency of the beam particle identification into ηX . We can however estimate
the number of background events from the K2π channel, since they appear at

p
s = mK − =

494 MeV/c 2. The shape of the kaon peak is well described by a Gaussian distribution. Fig. 8.1
shows the

p
s distribution of selectedπ−γ(∗)→π−π0 events around mK − . It features an excess

of events at
p

s = mK − ≈ 500 MeV/c 2 which can be fitted with a Gaussian distribution on
top of a parabola to account for the smooth underlying nearby distribution. From this fit, we
estimated the number of background events from K2π decays and predicted the number of
events stemming from the other decay channels by normalizing to K2π decays and taking into
account the different ΓX /Γtot and ηX . Table 8.1 summarizes the results of this consideration.

As can be seen, ηe 3 and η3π are two orders of magnitude smaller than η2π, because the corre-
sponding events do not pass the exclusivity cut. ηµ3 is another order of magnitude smaller due
to the efficient muon identification of the COMPASS spectrometer. In combination with the
smaller branching ratios, the contribution to the background from Ke 3, Kµ3, and K3π decays
is negligible. The only remaining significant contribution arises from K2π decays. We will
account for this contribution by neglecting data close to mK ≈ 500 MeV/c 2 in the final cross
section.
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Table 8.1 Relevant kaon decay channels (see Chapter 7), their branching ratios, the probability to be misiden-
tified as π−γ(∗) → π−π0 events determined by simulation (without the CEDAR particle identification), and
the estimated number of background events for each channel. The number of events from K2π decays was
estimated from the fit in Fig. 8.1.

K − decay channel ΓX /Γtot ηX (from simulation) # events

K2π

�

π−π0
�

(20.67±0.08)% (2.34±0.02) ·10−3 224±26
Ke 3 (5.07±0.08)% (3.26±0.18) ·10−5 0.76±0.08
Kµ3 (3.352±0.033)% (3.30±0.67) ·10−6 0.051±0.006
K3π

�

π−π0π0
�

(1.760±0.023)% (1.13±0.11) ·10−5 0.092±0.011

8.1.2 Kaon interactions

In contrast to the pions, the kaons are no eigenstate of the G -parity operator. The K −π0 final
state can hence be produced diffractively. This enhances the cross section with respect to
a production purely in Primakoff reactions, and it is a priori not clear, that the amount of
background from the K −+Ni→ K −π0+Ni can be neglected.

The COMPASS spectrometer offers a RICH (Ring Imaging Cherenkov) detector for particle
identification in the final state by means of which K −π0 could be distinguished from π−π0

final states. However, the RICH offers a high separation power only for particle momenta up
to |p⃗ R| ≈ 30 GeV/c [118]. A final state particle identification would hence come at the expense
of a drastic cut in the final state phase space and loss of statistics.

In this context, we need to quantify the order of magnitude of background from kaon inter-
actions K −+Ni→ K −π0+Ni. For this purpose, we plot the invariant mass distribution of the
pion sample with the assumption that the charged particle is a kaon. The mK −π0 distribution
is dominated by the K ∗(892), see Ref. [129]. The K ∗(892) is a relatively narrow resonance
Γtot ≈ 50 MeV/c 2 at mK ∗ = 892 MeV/c 2 [18]. If there was a non-negligible background contri-
bution in the pion sample, the K ∗(892) should be visible when we plot the mπ−π0 distribution
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Fig. 8.2 Distribution of
p

s of selected π−γ(∗)→ π−π0 events under the assumption that the charged particle in
final state is a kaon. The light gray line indicates the nominal mass of the K ∗(892).
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Fig. 8.3 In (a): invariant mass mγγ of the two-photon system in the final state of π−γ(∗)→ π−π0 events. The π0-
peak sits on a pedestal formed by two photons which do not form aπ0. In (b): the two-dimensional correlation
between mγγ and

p
s .

with the K −-mass assumption. Fig. 8.2 shows the described mass distribution. The ρ(770)
peak, which we see in the usual mπ−π0 mass distribution, is shifted to a higher mass value of
∼ 1.05 MeV/c 2 under this assumption. At the K ∗(892)mass, indicated with a light gray line,
the distribution shows no peculiar structure. This points to the correctness of the assumption,
that the amount of background from kaon interactions inside the nickel target is negligible.
We can hence do without a final state PID by the RICH detector.

8.1.3 Non-π0 events

Fig. 8.3 shows the two-photon invariant mass distribution ofπ−γ(∗)→π−π0 events. As can be
seen in logarithmic scale, the π0-peak sits on a background of γγ-masses, which do not form
a π0. This background needs to be addressed. There are different hypothetical background
contributions, which can lead to a broad distribution in mγγ:

• Primakoff Compton reactions π−γ(∗)→π−γ, in which the cluster of the photon is artifi-
cially split, i.e. two photons close to each other are reconstructed instead of one. This
process should however be independent of

p
s . Fig. 8.3b shows, that the background

correlates strongly with
p

s . We can conclude, that this background, if existent, is very
small.

• Double bremsstrahlung events π−γ→ π−γγ, in which the pion in the final state emits
two photons. The cross section of this process has been calculated by Kaiser and Fried-
rich in Ref. [67] as a function of η = mγ/(

p
s −mπ). Fig. 8.4 shows the result of the

calculation. We can see the infrared divergence for η → 0. Due to minimum photon
energy of Eγ,min = 2 GeV and minimum distance between two clusters of dγγ,min ∼ 5 cm,
the experiment imposes a minimum η. From Fig. 8.3a, we can determine the experi-
mental limits. We can not reconstruct mγγ < 0.05 GeV/c 2. This leads to a ηmin ≈ 0.3
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at threshold, where the cross section for double bremsstrahlung events has already
dropped to ∼ 2 · 10−2µb. Experimentally, the minimal η decreases with increasing

p
s ,

such that the cross section for double bremsstrahlung events should be highest in the
upper left corner of Fig. 8.3b. However, we do not see any events in this region. We
must conclude, that our experimental minimal η prevents us from recording double
bremsstrahlung events.

• Combinatorial background from π−+Ni→π−π0π0+Ni events, in which we loose/ne-
glect one (low-energetic) photon of each π0, since we combine the two most-energetic
photons (see Section 5.2) when reconstructing theπ−π0 final state. If the lost/neglected
photons are rather low-energetic, the event still passes exclusivity conditions and the
changed kinematics might also lie at the selected small momentum transfers. Studying
this effect in simulated pseudodata, when theπ−+Ni→π−π0π0+Ni are misinterpreted
as π−γ(∗) → π−π0 and pass all two-pion cuts, leads to Fig. 8.5b. The distribution fea-
tures the exact same characteristics as the main background contribution in Fig. 8.3b.
The almost horizontal structure at around

p
s = 0.8 GeV/c 2 can hence be attributed

to the leakage from 3π. Since we treat and subtract this background separately (see
Section 8.2.2), we must not subtract it here!

• The distribution of Fig. 8.3b shows a background contribution at very small
p

s , close
to the kinematic threshold and at small mγγ, below the π0-mass, which can not be
attributed to the combinatorial background from π− +Ni → π−π0π0 +Ni events. To
clearify the origin of this contribution, we release the cut on Q and look at the mγγ-
distribution at low

p
s < 0.4 GeV/c 2, as it is done in Fig. 8.5a. The distribution shows

a discrete structure for mγγ < mπ0 with bumps instead of a smooth behavior. Such
structures are know in COMPASS and discussed in Ref. [130]. They can be attributed
to π0 production in hadronic interactions downstream of the target inside the spec-
trometer. Wrongly assuming that the π0 originated at the target, will lead to a too small
angle between the two photons and, according to Eq. (5.6), to a too small mass. Each
of the bumps can be connected to a material concentration in detector groups in the
spectrometer. What we see in terms of low-

p
s , low-mγγ background are remains of

these structures, which do not significantly leak into the signal region, when the cut on
qT is applied.

To sum it up: the major background contribution could be attributed to combinatorial back-
ground from π− +Ni→ π−π0π0 +Ni reactions. The remaining background from π0-decays
inside the spectrometer is not as dangerous, since it occurs at specific mγγ and does not
significantly leak into the signal region. Double-bremsstrahlung events and background from
the Primakoff Compton reaction could be excluded. To not account for 3π-leakage twice, we
should refrain from any background subtraction in e.g. sideband analysis based on mγγ.

8.2 Background subtraction

In Section 2.1.3, we have learned that diffractive processes have a large cross section. The
direct diffractive production of π−π0 final state is forbidden by G -parity conservation. Still,
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Fig. 8.4 Two-photon mass spectrum for the reaction π−γ→ π−γγ as a function of the variable η. Taken from
Ref. [67]
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Fig. 8.5 In (a): Invariant mass of the two-photon system in π−γ(∗)→π−π0 events without cut on Q at small
p

s .
Below the π0-peak, we observe structures that can be attributed to π0 decays in material downstream in the
spectrometer. In (b): the two-dimensional correlation between mγγ and

p
s in simulatedπ−+Ni→π−π0π0+Ni

events.

we expect a significant leakage from diffractive π−+Ni→π−π0π0+Ni events to the π−γ(∗)→
π−π0 event sample. When one of the twoπ0s in the final state is very low-energetic, the event
still passes exclusivity and qT selection criteria.

To disentangle the leakage from Primakoff events, we make use of the fact, that the two pro-
cesses have a different dependence on the momentum transfer Q . As shown in Fig. 6.6, we are
dominated by resolution effects at low Q . The loss of one π0 leads to another statistical effect
on the Q distribution of diffractiveπ−π0π0 events leaking intoπ−π0 final state. Our approach
is therefore to study the leakage with Monte-Carlo simulation.
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8.2.1 Evaluation of the π−+Ni→π−π0π0+Ni model

It is essential to have a π− +Ni → π−π0π0 +Ni pseudodata sample, which is correctly dis-
tributed in all relevant dimensions, to study the leakage from π− +Ni→ π−π0π0 +Ni events
to π−γ(∗)→π−π0 . A simple pseudodata set uniformly filling the three-pion phase space and
neglecting the existing resonances will not lead to an accurate leakage prediction. The model
needs to incorporate the largest contributions from a partial-wave analysis to accurately re-
produce the observed angular and invariant mass distributions. In a partial-wave analysis,
the experimentally observed distribution of intensity I (m f ,Q 2,τ), which depends on m f of
the final state, the transferred momentum Q , and a set of independent kinematic variables τ
is expanded in a basis of partial wavesψi , which also interfere. The intensity is described by
the coherent sum:

I (m3π,Q 2,τ) =

�

�

�

�

∑

i

ψi (m3π,Q 2,τ)

�

�

�

�

(8.2)

For details about the partial-wave analysis method, cf. Ref. [59]. For a given three-particle
final state the invariant mass m f and five independent kinematic variables are needed to fully
describe the reaction.

For the purpose of background prediction from the π− +Ni→ π−π0π0 +Ni sample into our
π−γ(∗)→ π−π0 event sample, the details of the single partial waves are of minor importance.
What matters, is that the sample weighted according to the model reproduces the experi-
mentally observed kinematic distributions with sufficient accuracy. In the following, we show
the polar and azimuthal angle of the π−π0 subsystem in the Gottfried-Jackson frame and the
angles of the π− in the helicity frame. Together with the invariant masses mπ−π0π0 and mπ−π0

this uniquely defines the kinematics of the event.

We used the model developed in Ref. [63] as starting point. A refined event selection for
the π− +Ni → π−π0π0 +Ni final state (see Section 5.3.2), a corrected pseudodata set (see
Chapter 6), and a more elaborate partial-wave set [131] lead to a more precise prediction of
the expected three-pion leakage.

Dealing with large wave sets, a global fit, which accounts for all angular, mass, and Q 2-depen-
dencies at once, is technically impossible. Therefore, the analysis is commonly performed
in bins of the momentum transfer Q . Our model for π− + Ni → π−π0π0 + Ni events was
developed in three different Q 2-bins to account for waves, which contribute only in a limited
Q 2-range. The first bin ranges from 0 to 2 · 10−3 GeV2/c 2 covering the Primakoff region and
enabling waves which describe photon exchange. These waves sit only at low Q due to their
Weizsäcker-Williams dependence. The second bin covers the Q 2-range up to the first diffrac-
tive minimum at 0.0126 GeV2/c 2. The third bin covers the remaining range up to 1 GeV2/c 2.
One of the shortcomings of the current simulated sample is that we assumed the nickel mass
for the recoil particle. But at high Q 2, the probability of incoherent, quasi-elastic scattering,
i.e. the scattering on single nucleons is non-negligible.

The presented model proved to be very robust against variations of the discussed binning,
which is an indication for an appropriate selection of waves. A drawback in the presented
model is that the correct Weizsäcker-Williams shape of the photon-exchange is not taken into
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Fig. 8.6 Invariant mass of the final state (a) and of the π−π0 subsystem (b) in π− +Ni→ π−π0π0 +Ni reactions
(blue) compared to simulation (red). The spectrum in (a) is dominated by the a1(1260). Other resonances like
the a2(1320) and the π2(1670) can be identified by eye. The spectrum of the π−π0 subsystem is dominated by
the ρ(770). The lower plots show the ratio data/simulation.

account. These events might have a higher probability to leak intoπ−π0 final state, since they
appear already in the three-pion final state at low qT . For a future publication, the explicit
Q 2-shape of the Coulomb interaction could be taken into account.

The presented model was developed by D. Ryabchikov [131]. It is based on the region of the
phase space, to which we are experimentally sensitive. Using the angular information, it can
be extrapolated to the corners of the phase space, in which the experiment has no acceptance.
The minimal energy to reconstruct a photon of 2 GeV and the covered solid angle of ECAL2
impose experimentally a minimum energy for theπ0 in the laboratory frame. We can assume,
that the model accurately describes this important corner for the specific case of leakage
prediction into π−γ(∗)→π−π0 despite the low spectrometer acceptance in this corner.

To evaluate the model, we compare the pseudodata set with the 2009 Primakoff data. Fig. 8.6
shows the final state invariant mass in (a) and the invariant mass of theπ−π0 subsystem in (b).
The spectrum is dominated by a broad peak with its maximum at around m3π = 1.25 GeV/c 2.
This corresponds to the a1(1260). The shoulder on the right side of this peak points to a
contribution of the radiatively produced a2(1320). Going further to even higher masses, a
small enhancement can be observed. The position of this enhancement is roughly at the mass
of theπ2(1670). Indeed, in the partial-wave analysis the contribution of these resonances have
been confirmed, and they form the largest intensities. The mπ−π0 -spectrum is dominated by
the ρ(770).

The shapes around the prominent resonances are correctly reproduced by simulation. How-
ever, we see deviations between data and simulation up to 20% at small masses of mπ−π0π0 .
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Fig. 8.7 Angular distributions in the Gottfried-Jackson frame (a and b) for theπ−π0 subsystem and in the helicity
frame (c and d) for the π− in π− +Ni→ π−π0π0 +Ni reactions (blue) in comparison to simulation (red). The
lower plots show the ratio data/simulation.

These deviations can in parts be attributed to K3π-decays, which appear at the kaon mass of
mK ≈ 500 MeV/c 2. But certainly, these deviations should be understood even better.

The differences express themselves also in angular distributions, which are shown in Fig. 8.7.
Especially in the polar angle Figs. 8.7a and 8.7c, deviations between data and simulation
become apparent. Despite room for improvement, the model shows satisfactory properties
in regions where the bulk of events is located. Deviations from the experimental distributions

129



8.2. BACKGROUND SUBTRACTION

in the most populated regions of phase space are only on the 1%-level. The model is signifi-
cantly improved compared to previous partial-wave analysis, e.g. in Ref. [63]. More kinematic
distributions can be found in Appendix B.1.

8.2.2 Determination of the number of elastic Primakoff events

When applying the event selection of π−γ(∗) → π−π0 events for the π− +Ni → π−π0π0 +Ni
pseudodata sample, we receive the predicted shape of leakage of π−π0π0-events into our
π−γ(∗)→π−π0 event sample. Since we have correctly simulated the three-pion sample, we get
the prediction in every kinematic variable. To disentangle signal and background, we look at
the momentum transfer distribution, as it is show in Fig. 8.8. Indeed, the spectrum features
a component peaking between 0.1 and 0.2 GeV/c which resembles the shape of the leakage
prediction.

However, it becomes clear from Fig. 8.8a, that the spectrum cannot be described by only the
two components. Inelastic scattering processes, in which the nucleus gets excited by photon
exchange, are not only a possible explanation, but are even expected. When we include a
contribution, in which we excite the nucleus in the giant dipole resonance and assume the
Goldhaber-Teller model [132] for the corresponding form factor, we end up with the spectrum
shown in Fig. 8.8b. The contribution of an E1, e.g. the giant dipole resonance, is shown in
magenta. The sum of all contributions describes almost perfectly the observed spectrum.
To sum it up: due to the quality of the π− + Ni → π−π0π0 + Ni simulation, we can trust
the predicted shape of the leakage and resolve an additional contribution, which in terms
of intensity lies an order of magnitude below the other two contributions.

Additional information to determine the amount of signal events, comes from angular distri-
butions. Fig. 8.9 applies the same relative intensity of each contribution as in Fig. 8.8b. The
result matches well with the experimentally observed distribution. Small deviations at small
polar angles cosθGJ may hint to a slightly wrong acceptance in this corner of phase space. In
φTY , we see excellent agreement, given that the acceptance and resolution effects of the three-
and the two-pion final state plus the partial-wave model contribute in a non-trivial manner.
Trusting the smeared sin2φTY-dependence from simulation, we can estimate the number of
signal events very precisely, as long as we assume that all other background is flat inφTY .

Another advantage of subtracting background based on φTY is that the signal shape can be
parametrized. The signal shape is well described by

σ(φTY) = A ·
�

1+ b · sin2φTY + c · sin2

�

φ2
TY

π

��

(8.3)

with b = 0.594±0.012 and c = 0.070±0.010 determined from a fit toπ−γ(∗)→π−π0 simulated
pseudodata, as shown in Fig. 8.10a. Fig. 8.10b illustrates the high quality of the parametriza-
tion. We assume, that the parametrization does not depend on

p
s . In simulation, the φTY

dependence was compatible with Eq. (8.3) over the whole tested range from
p

s = 0.3 GeV/c 2

to 1.2 GeV/c 2.
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Fig. 8.8 Description of the qT -spectrum with different background components in the selected π−γ(∗) → π−π0

sample. The components were scaled to maximize the agreement with the observed spectrum. In (a):
description of the spectrum with only two components, the leakage ofπ−+Ni→π−π0π0+Ni determined from
simulation and the elastic Coulomb scattering (signal). The bright red curve shows the difference between the
sum of both components. Clearly, the observed distribution can not be described with only two components.
In (b): a component stemming from inelastic scattering by exciting an E1, e.g. the giant dipole resonance of
the nickel nucleus, is added. The fit describes the whole distribution nicely. The difference is compatible with
zero.
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Fig. 8.9 Angular distributions of the reconstructedπ− in the Gottfried-Jackson frame for selectedπ−γ(∗)→π−π0

events. We took the same intensity for the different background contributions as in Fig. 8.8b. Note, that we ap-
plied qT < 36 MeV/c . We assumed a uniform dependence on φTY for inelastic electromagnetic contribution.
If indeed caused by the giant dipole resonance, the additional degree of freedom of the oscillation will lead to
a uniform contribution. For the polar angle of the inelastic contribution, we assumed the same dependence
as for the elastic Coulomb scattering.

3− 2− 1− 0 1 2 3
 (rad)

TY
φ

0

0.2

0.4

0.6

0.8

1

1.2
310× 0π−π → (*)γ−π

co
un

ts
 / 

0.
02

 r
ad

 / ndf = 296 / 3112χ

 0.012± = 0.594 b

 0.010± = 0.070 c

(a)

3− 2− 1− 0 1 2 3
 (rad)

TY
φ

200−

150−

100−

50−

0

50

100

150

200
0π−π → (*)γ−π

di
ffe

re
nc

e

(b)

Fig. 8.10 Parametrization of the resoluted φTY-dependence of the Primakoff signal. The distribution in (a) is
obtained from simulation. The red curve shows a fit of the empirically obtained Eq. (8.3) to it. (b) shows
the difference between the distribution and the fit. It is compatible with zero within the uncertainties. The
parametrization is suited.

The parametrization allows us to determine the number of elastically scattered Primakoff
events in small bins of

p
s . We choose a bin size of 20 MeV/c 2 according to the curvatures of

the cross section and the available statistics. By a fit of the observedφTY-distribution in eachp
s -bin according to Eq. (8.3) added to a flat background contribution, we can determine the

number of elastically scattered Primakoff events. Examples for selected fits in certain mass
bins can be found in Appendix B.4. Fig. 8.11 shows the result of the corresponding fits in each
mass bin.
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The approach assumes all background to be flat in φTY . This is however not true at
p

s ≈
mK = 500 MeV/c 2. We have seen in Section 8.1.1, that we have expected background from
K2π-decays in this region. This background is not flat in φTY , as can be seen in Appendix B.2
in Fig. B.2h. We therefore can not trust the determined number of signal events at

p
s ≈

500 MeV/c 2. The corresponding bins in Fig. 8.11 are indicated in red and will be neglected
from now on.

As illustrated in Section 2.1.3, alsoω- and π-exchange form potential background processes.
As π-exchange is flat in φTY , it is correctly subtracted. ω-exchange however, features the
same sin2φTY-dependence as γ-exchange. An approach to disentangle ω-exchange from
Primakoff processes is to exploit the characteristic Q -dependence. Fig. 8.8b illustrates how-
ever, that there is practically no additional significant contribution needed to describe the
spectrum. This is an indication, that ω-exchange is negligible. A proper investigation of
ω-exchange as background remains to be done.

8.3 Correcting for experimental acceptance

The acceptance of the experiment has to be determined from simulation. For π−γ(∗)→π−π0

events, the COMPASS spectrometer has an acceptance of ∼ 8%. Fig. 8.12 shows the accep-
tance as a function of the three independent variables describing ourπ−γ(∗)→π−π0 reaction.
As expected, the acceptance does not show any dependence onφTY . Fig. 8.12b illustrates the
limited experimental resolution for φTY at the small qT -values. True φ̃TY and reconstructed
φTY are only weakly correlated. The sin2-dependence appears to be very smeared. Experi-
mentally, we observe the dependence of Eq. (8.3).

The acceptance in cosθGJ is mainly driven by the trigger. A minimum energy deposit in the
central region of ECAL2 means that the π0 has to have a minimum energy in the lab frame.
When theπ0 goes in backwards direction in the GJ-frame, i.e. high cosθGJ for theπ−, it has too
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Fig. 8.11 Number of elastically scattered Primakoff events as determined from a fit to φTY . The points at
p

s =
mK = 500 MeV/c 2 are drawn in red.
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Fig. 8.12 Acceptances forπ−γ(∗)→π−π0 events as a function of (a)φTY , (c) cosθGJ , and (d)
p

s . In (b): correlation
plot between generated φ̃TY and reconstructedφTY .

little energy when boosted into the lab frame to trigger the acquisition of the event. Hence,
the acceptance drops for positive cosθGJ of the π−. At cosθGJ(π−) > 0.3, the acceptance has
practically reached zero.

Looking at Fig. 8.12d, we see that the acceptance also drops with increasing
p

s . This is a
consequence of bigger angles between final state π− and π0 in the lab frame for higher

p
s .

This in turn leads to a more peripheral illumination of the calorimeter. The central trigger
part, is hit less often leading to a smaller acceptance.

To obtain an acceptance-corrected spectrum in
p

s and minimize effects of statistical fluctu-
ations, we parametrized εacc(

p
s ). We account for the overall curvature by fitting a parabola

to describe the large scale shape. The wiggles at
p

s = mρ ≈ 775 MeVc 2 are no statistical
fluctuations but can be explained by bin-migration effects. From the peak of theρ-resonance,
events can end up slightly left and right of it due to resolution effects. This leads to an apparent
high acceptance left and right of the peak and a dip at exactly mρ . To account for the wiggles,
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Fig. 8.13 Acceptance corrected number of Primakoff events.

we added two Gaussians to the polynomial of order two:

εacc(
p

s ) = a x 2+ b x + c +A1 · e
�

x−µ1
σ1

�2

+A2 · e
�

x−µ2
σ2

�2

(8.4)

with the parameters a ,b , c , A1, µ1, σ1, A2, µ2, andσ2 as shown in Fig. 8.12d. Fig. 8.13 shows
the number of Primakoff events corrected with Eq. (8.4).

8.4 Normalization to the photon flux

The Weizsäcker-Williams or equivalent-photon approximation of Eq. (2.23) factorizes the dif-
ferential cross-section into two terms: one term describes the photon density f (s ,Q 2) around
the nucleus as a function of s andQ 2. The other term describes the actual interaction between
a real photon and the beam pionσπγ→ππ. This cross-section can be expressed as function of s ,
when the integration over t (or cosθ respectively) is carried out. The differential cross-section
of Eq. (2.23) can then be written as

dσEPA

ds dQ 2
= f (s ,Q 2) ·σπγ→ππ(s ) (8.5)

with the photon flux factor

f (s ,Q 2) =
Z 2α

π(s −m 2
π)
· F 2(Q 2) ·

Q 2−Q 2
min(s )

Q 4
(8.6)
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Fig. 8.14 In (a): photon flux according to Eq. (8.8) as a function of
p

s . In (b): comparison of precisely
determined and approximated σEPA(
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s ) for Breit-Wigner distributions. The lower plot shows the ratio pre-

cise/approximated.

The total cross section in a
p

s =: m ′ bin with the bin center at m and a width of∆m is hence
given by

σEPA
∆m (m ) =

∫

∆m

2m ′ ·σπγ→ππ(m ′)

Q 2
max
∫

Q 2
min(m ′)

f (m ′,Q 2) dQ 2dm ′

=∆m ·σπγ→ππ(m ) ·2m

Q 2
max
∫

Q 2
min(m )

f (m ,Q 2) dQ 2

=∆m ·σπγ→ππ(m ) ·bf (m )

(8.7)

with

bf (m ) = 2m ·

Q 2
max
∫

Q 2
min(m )

f (m ,Q 2) dQ 2 (8.8)

being the Q -integrated flux factor. It is shown in Fig. 8.14a for our event selection, where we
accepted events up to Qmax = 36 MeV/c . Due to its divergent term at s = m 2

π, it features a
strong dependence on

p
s , and at the kinematic threshold of s = 4m 2

π, it still leads to large
corrections.

We assumed for the calculation Eq. (8.7), that the bin width is small compared to the curvature
in m ′ of f (m ′,Q 2) andσπγ→ππ(m ′). Instead of integrating, we can then evaluate the functions

136



CHAPTER 8. EXTRACTING VALUES FOR F3π AND THE RADIATIVE WIDTH OF THE ρ(770)

in the bin center and multiply with the bin width. The approximation is good for bin widths
of ∆m ∼ 20 MeV/c 2. The error introduced by the approximation is largest at the point with
highest curvature, i.e. at the peak of the ρ-resonance. For∆m = 20 MeV/c 2 it is still around
0.5% as can be seen in Fig. 8.14b. To be able to show measurements ofσπγ→ππ(s ), one should
correct for the difference. But the correction is small compared the statistical uncertainties
introduced by the measurement. In the following, we neglect these corrections.

8.5 Fitting the dispersive model

Having corrected for the photon flux, we can convert the number of events to a cross section
using the value for the luminosity of Eq. (7.20). The result can be seen in Fig. 8.15. As discussed
in details in Section 2.4.2, we can fit the dispersive model of Eq. (2.75) to the measured cross
section data. First, we notice, that the χ2-fit is able to describe the shape very well. The
reduced is χ2/ndf = 0.88. This hints to a consistent treatment of statistical uncertainties on
single data points.

The fit yields values for the two subtraction constants C (1)2 and C (2)2 as given in Fig. 8.15. Using
Eq. (2.80), we can calculate a value for F3π from the two subtraction constants. Similarly, we
use Eqs. (2.81) to (2.85) to extract a value for the radiative width of the ρ(770):

F3π = (8.58±0.18) GeV−3

Γρ→πγ = (65.6±1.0) keV
(8.9)

where the given uncertainties are purely statistical.

For an estimate on the systematic uncertainties stemming from the luminosity measurement,
we vary the luminosity within its systematic uncertainties (±6%) and extract a value for F3π

and Γρ→πγ. For decreased luminosity, we obtain F3π = 8.83 GeV−3 and Γρ→πγ = 69.6 keV. For
increased luminosity, we obtain F3π = 8.31 GeV−3 and Γρ→πγ = 61.7 keV. This leads to:

F3π =
�

8.58 (±0.18)stat

�+0.25
−0.27

�

syst,lumi

�

GeV−3

Γρ→πγ =
�

65.6 (±1.0)stat

�+4.0
−3.9

�

syst,lumi

�

keV
(8.10)

The result is dominated by systematic uncertainties, considering only systematic uncertain-
ties of the luminosity determination. We chose a very conservative approach resulting in,
most probably, overestimating these systematics. We have not exploited the fact, that the
systematic uncertainties of the K2π-decay are similar to our measuredπ−γ(∗)→π−π0 channel.
Careful variations of all important parameters in the event selection and in the simulation,
may lead to a more realistic estimate.

A proper discussion of additional systematic effects will follow in Chapter 9.
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Fig. 8.15 Fit of the dispersive model to the measured cross sectionσπγ→ππ in (a) linear and (b) logarithmic scale.

8.6 Summary and open issues

The analysis presented in Chapters 5 to 8 consists of many steps. During the journey, we men-
tioned shortcomings and potential improvements, which could help to improve the accuracy
of the result. We will shortly summarize, where room for improvement still exists and compile
a list of issues, which need to be addressed.
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• The Q -dependence of the simulated π− +Ni→ π−π0π0 +Ni events deviates from the
experimentally observed one, as can be seen in Fig. 6.7. Resampling from the existing
pseudodata sample, might be a relatively simple approach to get a better description
without regenerating the simulated events.

• A general problem of the leakage prediction of π− +Ni→ π−π0π0 +Ni events into the
π−γ(∗) → π−π0 sample is the incorrect Q -dependence of Coulomb interaction. In the
partial-wave analysis, the chiral wave accounts for photon exchange. However, in the
3π pseudodata set, these events have the shallow diffractive Q -dependence and thus
the probability to leak into very small qt for these events might be underestimated.
Common partial-wave analysis are performed in bins ofQ 2 and do not allow for individ-
ual Q -dependencies of different waves. However, a relatively simple approach would be
to use a simulated Weizsäcker-Williams π−π0π0 sample weighted with the intensity of
the chiral wave predicted by ordinary partial-wave analysis.

• The presented acceptance correction in Section 8.3 disregards statistical and system-
atic effects introduced by the correction. Bootstrapping approaches provide a robust
possibility to quantify statistical uncertainties.

• In Section 8.4, we use an approximation in order to show and fitσπγ→ππ directly instead
of σEPA. It is beneficial to publish σπγ→ππ, because it is the quantity, which is usually
predicted by theory. Corrections, which arise due to the approximation need to be
addressed.

139





Chapter 9

Discussion of the result and outlook

The result of Eq. (8.10) is in terms of the statistical uncertainty in disagreement with the theory
prediction of Eq. (1.33) by 6.7σ. In this chapter, we will explain, where this discrepancy may
come from and give a proper estimate on the systematic uncertainty. The latter is currently
dominated by the background model. We will explain the differences in the analysis to previ-
ous published values, elaborate on the most probable reason for the discrepancy, and use it
to estimate the current state of the systematic uncertainty. The COMPASS Primakoff data set
has more physics to offer than only the presented analysis on F3π and Γρ→πγ. We will conclude
with an outlook, what other physics hides in the COMPASS Primakoff data set.

9.1 Comparison to previous results and systematic uncertainties

The COMPASS collaboration has already released [108] and published results of this analysis
in Refs. [133, 134, 135]. Primed variables will denote these previously published values. The
values were obtained by fitting the dispersive model to a

p
s -spectrum with much coarser

binning, see Fig. 9.1. The published values, based on this fit, are:

F ′3π =
�

10.3 (±0.1)stat (±0.6)syst

�

GeV−3

Γ ′ρ→πγ =
�

76 (±1)stat

�+10
−8

�

syst

�

keV
(9.1)

They disagree with Eq. (8.10), but are in agreement with the theory prediction. In trying to
find and explain the origin of the big discrepancy to the values presented in this thesis, we
notice that already the luminosity is assumed differently:

L̂ ′eff =
�

5.21 (±0.04)stat (±0.48)syst

�

nb−1 (9.2)

Similar to the presented analysis, we used K2π and K3π-decays to determine the luminosity.
However, CEDAR efficiencies were previously not considered. Taking the efficiencies into ac-
count, leads to a factor επεK

≈ 1.13, such that the values for the effective, integrated luminosity
agree within 0.2σ:

L̂eff = (5.87±0.09)nb−1 = 0.2σ ·
επ
εK

L̂ ′eff (9.3)
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The remaining very small difference can be attributed to statistical fluctuations due to differ-
ences in the event selection.

The wrong luminosity impacts directly the obtained results for F ′3π and Γ ′ρ→πγ. Applying the
updated luminosity values and redoing the fit, as shown in Fig. 9.1b, yields:

F ′3π =
�

9.6 (±0.1)stat (±0.6)syst

�

GeV−3

Γ ′ρ→πγ =
�

66 (±1)stat

�+9
−7

�

syst

�

keV
(9.4)

While Γ ′ρ→πγ is now significantly lower and agrees within the uncertainty to the value pre-
sented in this analysis, we still observe a discrepancy in the values of F3π.

F3π is very sensitive to the shape of the distribution particularly at the kinematic threshold.
We may hence suspect the origin of the discrepancy in e.g. a wrong background subtraction,
since this can impact the shape significantly. Indeed, the main difference in the two analysis
is the way how background was subtracted. Instead of determining the number of Primakoff
events fromφTY , we previously looked at Q 2-distributions in bins of

p
s as shown in Fig. 9.2.

Determining the number of Primakoff events from φTY , we assumed that the shape does
not depend on

p
s . This assumption might be not exactly fulfilled. Since we obtained the

parametrization of the shape integrated over
p

s , it is mainly determined by events at
p

s =
mρ , where most of the events are located. We can hence assume, that underneath theρ-peak,
we subtracted background correctly. As a consequence, Γρ→πγ and Γ ′ρ→πγ agree. Further away
from the peak, closer to the threshold, our assumed shape of the signal in φTY might be less
adequate. We underestimate the number of Primakoff events, leading to a smaller F3π.

Estimating the number of Primakoff events from Q 2-dsitributions comes also with disadvan-
tages: The systematic uncertainties, which are introduced by choosing the fit range arbitrarily,
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Fig. 9.1 Background subtracted and acceptance corrected number of events, multiplied with the effective,
integrated luminosity. The values are not normalized to the photon flux, nor corrected to the bin size. Data is
shown in red, the fit in blue. (a) was published in Ref. [133] and shows the obtained values with a luminosity
of L̂eff = 5.21 keV. For (b), we applied a different luminosity of L̂eff = 5.87 keV taking into account CEDAR
efficiencies.
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Fig. 9.2 Fitting the observed Q 2-distributions (red) in
p

s -bins with the sum (black) of Primakoff (blue) and
3π background (green). The shapes of the contributions were obtained from Monte-Carlo simulation (MC).
(Published in Ref. [133])

as it was done with Qmax = 0.01 GeV2/c 2 in Fig. 9.2, are large and not correctly reflected in
Eq. (9.4). Especially close to the kinematic threshold, additional background contributions
e.g. from inelastic scattering events, in which the nucleus gets excited, might contribute and
decrease the number of Primakoff events. It was shown in Fig. 8.8, that such contributions
are necessary to properly describe the observed Q 2-shape.

All in all, the two different approaches provide a possibility to estimate the present systematic
uncertainties due to background subtraction. Following the approach of Eq. (7.19), we get for
the systematic uncertainty sF3π

on F3π

sF3π
=

√

√1

2

�

�

F3π− F ′3π
�2− (σ2+σ′2)

�

+ s 2
lumi = 1.21 GeV−3 (9.5)

and for the final result, we take the weighted average:

F3π =
�

9.24 (±0.21)stat (±0.83)syst

�

GeV−3 (9.6)

where we have quadratically added the systematic uncertainty of Eq. (8.10) to the one of
Eq. (9.5).

The large magnitude of the systematic uncertainty illustrates the need for a still better back-
ground model. Ideas of additional contributions like quasi-elastic scattering on the nucleus,
ω- orπ-exchange exist and need to be implemented and tested. Another approach is to study
in detail theφTY-dependence of the signal contribution in simulation. An increasedπ−γ(∗)→
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π−π0 pseudodata set will give more information. Assuming that other background is flat in
φTY , this will facilitate a background subtraction without separation of single contributions.

9.2 Conclusion and outlook

The result presented in this thesis is not yet final. Despite its preliminary character, we have
illustrated the potential of the analysis to extract a value for F3π with an uncertainty < 4%.
Statistical uncertainties are already on a 2% level. As many other high-precision measure-
ments, we are limited by systematic uncertainties. Two main contributions to the systematic
uncertainty have been identified in this thesis: the uncertainty on the luminosity value and
the uncertainty due to background subtraction.

To reduce uncertainties on the luminosity, two approaches seem feasible. The preferred ap-
proach is to correct material description and calorimeter resolution in simulation in order to
get the two values from K2π and K3π decays into agreement or at least reduce the discrepancy.
The second approach is to quantify to which extent systematic effects in K2π decays cancel
due to their similarity to effects in π−γ(∗)→π−π0 events.

The situation on the background model is currently less clear. A robust and well-understood
model is necessary to reliably determine the number of Primakoff events. Ideas on addi-
tional background contributions stemming from inelastic scattering on target nuclei, e.g.
exciting the giant dipole resonance, have been introduced and, to some extent, formalized
in Section 2.2.3. Due to the described improvements in the quality of simulated data, and
the achieved agreement between simulation and data, we are now capable of disentangling
different contributions. Especially the reanalysis ofπ−+Ni→π−π0π0+Ni data and producing
better pseudodata with proper shapes in Q , will help to determine the background model.
However, this work has just started.

9.3 Radiative width of theρ3(1690)

The COMPASS Primakoff data set offers a wealth of interesting physics to discover. A signal,
which already became apparent in Section 5.3.2, is the peak at mππ = 1.7 GeV.c 2. In Ref. [46], a
first partial-wave analysis indicated an f -wave nature of the peak. The only known spin J = 3
particle in this mass range is the ρ3(1690). Since the peak is visible at low Q (the Primakoff
even selection was applied in Fig. 9.3) and vanishes at higher Q , it is very likely that the signal
is produced via photon exchange indicating a non-vanishing radiative coupling of the ρ3-
resonance.

The amount of data in the Primakoff 2009 data set in this mass region is sparse, as can be seen
in Fig. 9.3a, and may be a limiting factor on the precision of a measurement of the radiative
coupling of the ρ3. COMPASS has recorded another set of Primakoff data in 2012. Within the
context of this thesis, we performed an event selection on the 2012 data set in Refs. [107, 136]
and confirmed a roughly four-times higher number of recorded Primakoff events.
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Fig. 9.3 Invariant mass distribution of the final state for selected π−γ(∗) → π−π0 events in the (a) 2009 and (b)
2012 Primakoff data set.

To use the 2012 data, development of a high-quality Monte-Carlo simulation is necessary.
In particular the calorimeter simulation of the current simulation framework is qualitatively
insufficient. Ongoing efforts to improve the TGeant [121] framework show promising im-
provements and might soon lead to equally good simulation results.

9.4 Analysis of π−γ(∗)→π−π0π0 cross section

The cross section for chiral production via Coulomb interaction of the three-pion final state
shows a

p
s -dependence, which is predicted by low-energy theorems. ChPT adds higher-

order corrections to the tree-level prediction. These corrections contribute less in the charged-

(a) (b)

Fig. 9.4 ChPT prediction of the total cross section for (a) πγ → π−π−π+ and (b) πγ → π−π0π0 events. The
leading order (dashed) and next-to-leading order (solid) calculations are shown. The dotted line shows isospin
breaking effects. Taken from Ref. [67].
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pion final states than they do in the π−π0π0 final state, as can be seen in Fig. 9.4. For this rea-
son the π−γ→π−π0π0 cross section provides a unique opportunity to verify, that low-energy
dynamic of QCD is correctly described by ChPT.

For the accurate description of background from π− +Ni → π−π0π0 +Ni to π−γ(∗) → π−π0

events, we developed a partial-wave model of the π−π−π0 final state in ∆
p

s = 40 MeV/c 2

mass bins. The model includes the chiral wave. A measurement of theπ−γ(∗)→π−π0π0 cross
section requires only converting the intensity of the chiral wave in each

p
s -bin to a cross

section. Given the sufficient precision of the measurement, COMPASS can contribute to a
validation of ChPT and improve values for the six LECs, which appear in these higher-order
calculations.
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Appendix A

Equations, transformations, and
conventions

A.1 Gell-Mann matrices

The standard form of the Gell-Mann SU(3) matrices representing flavor or color degrees of
freedom:

λ1 =





0 1 0
1 0 0
0 0 0



 , λ2 =





0 −i 0
i 0 0
0 0 0



 ,

λ3 =





1 0 0
0 −1 0
0 0 0



 , λ4 =





0 0 1
0 0 0
1 0 0



 ,

λ5 =





0 0 −i
0 0 0
i 0 0



 , λ6 =





0 0 0
0 0 1
0 1 0



 ,

λ7 =





0 0 0
0 0 −i
0 i 0



 , λ8 =
1
p

3





1 0 0
0 1 0
0 0 −2





(A.1)

They satisfy the commutation relation [λa ,λb ] = i
∑N 2

c −1
c=1 fa b cλ

c with the totally antisymmet-
ric SU(3) structure constant fa b c .
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A.2. DIRAC MATRICES

A.2 Dirac matrices

Here, the standard representation of the Dirac matrices is given:

γµ =
�

γ0, γ⃗
�

γ0 = γ0 =

�

1 0
0 −1

�

γ⃗=

�

0 σ⃗
−σ⃗ 0

�

(A.2)

with the 2×2 unit matrix 1 and the Pauli spin matrices

σ⃗=
�

σx ,σy ,σz

�

,

σx =

�

0 1
1 0

�

, σy =

�

0 −i
i 0

�

, σz =

�

1 0
0 −1

�

(A.3)

The Dirac matrices satisfy the anticommutator relation {γµ,γν}= 2g µν with the metric tensor

g µν =









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









(A.4)

One important combination of γmatrices is

γ5 = iγ0γ1γ2γ3 = γ5 =

�

0 1
1 0

�

(A.5)

A.3 Lorentz transformation of the electromagnetic field of a point
charge

This section is a summary of the corresponding paragraphs of Ref. [66] and we will therefore
follow the notation and conventions used there. For a general Lorentz transformation from
a system K to a system K ′ moving with velocity v⃗ relative to K , the transformation of an
electromagnetic field can be written

E⃗ ′ = γ(E⃗ + β⃗ × B⃗ )−
γ2

γ+1
β⃗ (β⃗ · E⃗ )

B⃗ ′ = γ(B⃗ − β⃗ × E⃗ )−
γ2

γ+1
β⃗ (β⃗ · B⃗ )

(A.6)

with β⃗ = v⃗
c and γ= 1p

1−β2
being the Lorentz factor.

For the specific Lorentz transformation for a boost along the x1-axis with speed cβ from the
unprimed to the primed system, the explicit equations of the field according to Eq. (A.6) are:

E ′1 = E1 B ′1 = B1

E ′2 = γ(E2−βB3) B ′2 = γ(B2−βE3) (A.7)

E ′2 = γ(E3−βB2) B ′3 = γ(B3−βE2)
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𝑥1

𝑥2

𝑥3

𝑥1
′

𝑥2
′

𝑥3
′

𝑣

𝑞

𝑃

𝑏
𝑟

Fig. A.1 Particle of charge q moving at constant velocity v⃗ passes an observation point P at impact parameter
b . The observer is at rest in system K and the charge is at rest in system K ′.

with the subscripts 1, 2, and 3 indicating ordinary Cartesian spatial components.

To illustrate, how the electromagnetic field of an ultra-relativistic charged particle transforms,
we consider following example: an observer in system K sees a point charge q which moves at
a constant velocity v⃗ in a straight line. The charge is at rest in the system K ′. We suppose, that
the charge moves in positive x1 direction and that its closest distance to the observer at point
P is the impact parameter b . Fig. A.1 shows an appropriate choice of coordinate systems.
At t = t ′ = 0 the origins of the two systems coincide and the point charge q is at its closest
distance to the observer P . The fields are to be evaluated in point P . In the primed system
K ′, P has the coordinates x ′1 = −v t ′, x ′2 = b , x ′3 = 0, and is a distance r ′ =

p

b 2+ (v t ′)2 away
from q . Hence, the electric and magnetic fields at the observation P in the system K ′ are:

E ′1 =−
q v t ′

r ′3
B ′1 = 0

E ′2 =
q b

r ′3
B ′2 = 0 (A.8)

E ′3 = 0 B ′3 = 0

What we are actually interested in, is the electromagnetic field of the point charge at point P in
the system K where the observer is at rest. We will need to express r ′ in terms of coordinates
of K . Since x1 = 0 for P in K , we just have to transform the time t ′ = γ[t −(v /c 2)x1] = γt . This
leads to following non-vanishing field components in K :

E ′1 =−
qγv t

(b 2+γ2v 2t 2)3/2

E ′2 =
q b

(b 2+γ2v 2t 2)3/2

(A.9)

Then, applying the inverse transformation of Eq. (A.8), we find the transformed fields in the
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A.3. LORENTZ TRANSFORMATION OF THE ELECTROMAGNETIC FIELD OF A POINT CHARGE

𝑣

Fig. A.2 Lines of electric force for a point charge at rest (left) and in motion for γ ≃ 3 (right). The figure was
adapted from [66].

system K :

E1 = E ′1 =−
qγv t

(b 2+γ2v 2t 2)3/2

E2 = γE ′2 =
γq b

(b 2+γ2v 2t 2)3/2

B3 = γβE ′2 =βE2

(A.10)

with all other components vanishing.

We are now examining the ultra-relativistic limit, when β → 1 and γ ≫ 1, since this case
applies to scattering processes in a Coulomb field. The electromagnetic field is Lorentz con-
tracted as illustrated in Fig. A.2. Hence, the observer is exposed to the field only for a very
short amount of time (around t = 0 when the charge is in the distance b ):

∆t ∼
b

γv
(A.11)

The longitudinal component of the electric field (E1) varies rapidly from positive to negative
with negative t to positive t and has zero time integral. In the ultra-relativistic limit, the
observer will not realize this component if the detecting apparatus has any inertia. Con-
sequently, the observer will see only the transverse components. At P , the observer sees
mutually perpendicular transverse electric and magnetic fields of equal amplitude (E2 = B3)
as depicted in Fig. A.3. This property is indistinguishable from the fields of a pulse of plane

𝐸2

𝐵3

𝑣𝑡

𝛾𝑞

𝑏2

𝛾𝑞

𝑏2

Fig. A.3 Fields of a in x1-direction uniformly moving particle at the observation point P as a function of time.
The shape of the function is an approximation and does not correspond to the functions obtained in Eq. (A.10).
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polarized radiation propagating in x1 direction. It is this similarity that motivates the method
of virtual quanta or equivalent photon approximation as developed by von Weizsäcker and
Williams [68, 69]. They correlated the effects of the collision of the Coulomb “plane” of an
ultra-relativistic charge with some system with the corresponding effects produced by the
interaction of radiation (quasi-real photons) with the same system.

A.4 Derivation of angular dependencies of π−γ→π−π0

The matrix element for the process in Eq. (2.42) is given by Eq. (2.48). Due to four-momentum
conservation, we have:

p
µ
1 = p

µ
2 +p

µ
0 −qµ (A.12)

and we realize that we can express the matrix element by any three of the four involved four-
momenta, since terms containing the same four-vector twice equal zero due to the properties
of the Levi-Civita tensor:

M (s , t , u ) = iεµναβε
µpν1 pα2 p

β
0 F (s , t , u )

=−iεµναβε
µqνpα2 p

β
0 F (s , t , u )

(A.13)

In the GJ-frame, the spatial components of the four-vectors are given by:

q⃗ =−q





0
0
1



 ε⃗1 =





1
0
0



 ε⃗2 =





0
1
0





p⃗0 =−p ′





sinθ cosφ
sinθ sinφ

cosθ



 p⃗2 = p ′





sinθ cosφ
sinθ sinφ

cosθ





(A.14)

Averaging over the two possible transverse polarization vectors and realizing that only per-
mutations with either α= 0 or β = 0 are non-vanishing (p⃗0 ∥ p⃗2), we have

1

2

∑

pol

|Mfi|2 =
1

2

∑

k=1,2

|εµναβε
µ
k qνpα2 p

β
0 |

2 |F (s , t , u )|2

=
1

2

∑

k=1,2

|εµν0βε
µ
k qνp 0

2 p
β
0 +εµνα0ε

µ
k qνpα2 p 0

0 |
2 |F (s , t , u )|2

=
1

2

∑

k=1,2

|p 0
2 p⃗0 ·

�

ε⃗k × q⃗
�

−p 0
0 p⃗2 ·

�

ε⃗k × q⃗
�

|2 |F (s , t , u )|2

=
1

2



|2E ′q p ′ sinθ sinφ|2
︸ ︷︷ ︸

k=1

+ |2E ′q p ′ sinθ cosφ|2
︸ ︷︷ ︸

k=2



 |F (s , t , u )|2

= E ′2q 2
�

s −4m 2
π

�

sin2θ (sin2φ+ cos2φ) |F (s , t , u )|2

=
1

32

�

s −m 2
π

�2 �
s −4m 2

π

� �

1− cos2θ
�

|F (s , t , u )|2

(A.15)
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A.5. TWICE SUBTRACTED DISPERSION RELATION

with p 0
2 = p 0

0 ≡ E ′. As indicated in Eq. (A.15), the term with sin2φ-dependence stems from
ε⃗1 and those with cos2φ-dependence from ε⃗2. Due to the averaging over the two transverse
polarization vectors, we loose the φ-dependence: for a real photon, there is no privileged
azimuthal angle. However, we know from the discussion in App. A.3 that the photon is polar-
ized if it is a Primakoff photon. The production plane acts as a reference plane in azimuthal
direction and the polarization vector of a quasi-real Primakoff photon lies in this plane. We
are left with only ε⃗1. The overall process will hence exhibit a sin2φ-dependence.

A.5 Twice subtracted dispersion relation

We derive the exact formula for the twice-subtracted dispersion relation of Eq. (2.67). We start
with inserting the identity

1

s ′− s
=

1

s ′− s
−

1

s ′− s0
−

s − s0

(s ′− s0)(s ′− s1)
+

1

s ′− s0
+

s − s0

(s ′− s0)(s ′− s1)

=
s ′− s0

(s ′− s )(s ′− s0)
−

s ′− s

(s ′− s )(s ′− s0)
−

s − s0

(s ′− s0)(s ′− s1)
+

1

s ′− s0
+

s − s0

(s ′− s0)(s ′− s1)

=
(s − s0)(s ′− s1)

(s ′− s )(s ′− s0)(s ′− s1)
−

(s ′− s )(s − s0)
(s ′− s )(s ′− s0)(s ′− s1)

+
1

s ′− s0
+

s − s0

(s ′− s0)(s ′− s1)

=
(s − s0)(s − s1)

(s ′− s )(s ′− s0)(s ′− s1)
+
(s ′− s1) + (s − s0)
(s ′− s0)(s ′− s1)

=
(s − s0)(s − s1)

(s ′− s )(s ′− s0)(s ′− s1)
+

s ′− s1− s0
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into Eq. (2.67) which leads to the twice subtracted dispersion relation
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Appendix B

Kinematic distributions

B.1 Kinematic distributions of the selected π− +Ni→ π−π0π0 +Ni
events and comparison to simulation

Fig. B.1 shows important kinematic distributions of the selectedπ−+Ni→π−π0π0+Ni event
sample. All in all, we have achieved satisfactory agreement between the selected event sample
from real data and simulated π−+Ni→π−π0π0+Ni events. There are however variables, for
which the deviations are bigger than in others. For example the exclusivity peak, which is
shown in Fig. B.1b, is shifted and significantly sharper in simulated data than in real data. It
might be partly due to a slightly different calorimeter resolution, as can be seen in Fig. B.1i.
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Fig. B.1 Selected kinematic distributions of π− +Ni → π−π0π0 +Ni events. The data (blue) are compared to
simulation (red). The lower plots illustrate the ratio data/simulation. All cuts of the presented event selection
in Chapter 5 are applied, except cuts on variables that are shown.
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B.2 Kinematic distributions of the selected K − → π−π0 events and
comparison to simulation

Fig. B.2 shows important kinematic distributions of the selected K − → π−π0 event sample.
We have achieved very good agreement between the selected event sample from real data
and simulation.
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Fig. B.2 Selected kinematic distributions of K − → π−π0 events from real data (blue) in comparison with
simulated pseudodata (red). The lower plots illustrate the ratio data/simulation. All cuts of the presented
event selection in Chapter 5 are applied, except cuts on variables that are shown.
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B.3 Kinematic distributions of the selected K −→π−π0π0 events and
comparison to simulation

Fig. B.3 shows important kinematic distributions of the selected K −→π−π0π0 event sample.
We have achieved very good agreement between the selected event sample from real data and
simulation.
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Fig. B.3 Selected kinematic distributions of K − → π−π0 events from real data (blue) in comparison with
simulated pseudodata (red). The lower plots illustrate the ratio data/simulation. All cuts of the presented
event selection in Chapter 5 are applied, except cuts on variables that are shown.
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B.4 φTY distributions in selected π−γ(∗)→π−π0 events

Fig. B.4 shows exemplarily four out of the 50 φTY-distributions in selected π−γ(∗) → π−π0

events, which we obtain in bins of
p

s . We chose
p

s bins distributed over the whole spectrum,
which represent important points. Fig. B.4a shows the first bin directly above threshold. We
expect only very few signal events there, which leads to only a small modulation in φTY .
Fig. B.4b shows the distribution around the kaon mass, where we expect additional back-
ground from K2π-decays. Since this background is not flat inφTY (see Appendix B.2), we have
to exclude these bins from the final result. We cannot trust the number of signal events aroundp

s ≈mK to which we add a flat background contribution.

Apart from this region, we can determine the number of elastically scattered Primakoff events,
by a fit according to Eq. (8.3).
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Fig. B.4 Four examples of fits to the experimental φTY distribution in selected π−γ(∗)→ π−π0 events. (a) shows
the first bin, directly above threshold. (b) shows the distribution at

p
s ≈ mK , (c) at

p
s ≈ mρ , and (d) in a

region, where we are dominated by background. The red curves show a fit according to Eq. (8.3) plus a flat
background. From the relative strength to each other, we can calculate the number of signal events.
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Appendix C

Register description of crosspoint
switch firmware

The following list describes all IPBus registers, which are availabel on the FPGA. To under-
stand the abbreviations of pin names, please consult the datasheet of the VSC3144 chip.

• IPBus addresse 0x0: “version”
Read permission only. Verification of firmware version tag.

• IPBus addresse 0x1: “ctrl”

– (0) enable power for VSC3144

– (1) reset signal for FPGA

– (2) reset signal for VSC3144

• IPBus addresse 0x2: “setup”

– (0) INITB on switch 0x280

– (1) CONFIG on switch 0x280

– (2) INITB softctrl

– (21→ 11) readval0 addresse

• IPBus addresse 0x3: “config”

– (0) Software INITB on switch 0x281

– (1) Software CONFIG on switch 0x281

– (2) User INITB on switch 0x281

– (3) Switchstate store on switch 0x281

– (4) Staging readback on switch 0x281

– (5) Address striping on switch 0x281

165



– (21→ 11) readval1 addresse

• IPBus addresse 0x4: “port connections”
Set all port connections here. Any output can be connected to any input port

– (10→ 0) input port

– (21→ 11) output port

• IPBus addresse 0x5: “register read 1”
Read permission only. After a latency of < 10µs, the content of the switch register
specified in readval0 address is displayed here.

• IPBus addresse 0x6: “register read 2”
Read permission only. After a latency of < 10µs, the content of the switch register
specified in readval1 address is displayed here.

• IPBus addresse 0x7: “temperature sensor”
Read permission only. The temperature sensor and alarm register sets the on-board
temperature sensing and alarm threshold functions. The VSC3144 has circuitry that
detects the approximate temperature of the die and flags temperatures exceeding a
user-selected, preset range. The temperature sensor register allows you to read the
die temperature sensor value (an uncalibrated, approximate temperature) and set a
temperature threshold at which to assert an alarm. It is a 4-bit value, which can be
translated to temperature using the datasheet of the VSC3144.

– (3→ 0) alarm threshold

– (7→ 4) die temperature
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[79] R. García-Martín, R. Kamiński, J. R. Peláez, and J. R. de Elvira, “Precise determination
of the f0(600) and f0(980) pole parameters from a dispersive data analysis,” Phys. Rev.
Lett. 107 (Aug, 2011) 072001.
https://link.aps.org/doi/10.1103/PhysRevLett.107.072001.

cited in 2.4.4 (p. 44)

[80] P. Abbon et al., “The COMPASS experiment at CERN,” Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment 577 no. 3, (2007) 455–518. https:
//www.sciencedirect.com/science/article/pii/S0168900207005001.

cited in 3.1 (p. 45), 3.1 (p. 46), 3.1 (p. 46), 3.3.3 (p. 52)

[81] F. Gautheron et al., [COMPASS], “COMPASS-II Proposal,”. cited in 3.1 (p. 45), 3.1 (p. 46)

[82] P. Abbon et al., [COMPASS Collaboration], “The COMPASS Setup for Physics with
Hadron Beams,” Nucl. Instrum. Methods Phys. Res., A 779 (Sep, 2014) 69–115. 47 p,
arXiv:1410.1797. https://cds.cern.ch/record/1950827. cited in 3.1 (p. 46),

3.1 (p. 46), 3.2 (p. 47), 3.2 (p. 48), 3.3 (p. 49), 3.3 (p. 49), 3.3.2 (p. 51), 3.5 (p. 51), 3.6 (p. 52), 3.3.3 (p. 52),

3.7 (p. 53), 5.1 (p. 73), 6 (p. 98), 7 (p. 110)

181

http://dx.doi.org/https://doi.org/10.1007/978-3-662-46321-5
http://dx.doi.org/https://doi.org/10.1007/978-3-662-46321-5
http://dx.doi.org/10.1088/0954-3899/21/7/009
https://dx.doi.org/10.1088/0954-3899/21/7/009
http://dx.doi.org/10.1103/PhysRevD.86.116009
https://link.aps.org/doi/10.1103/PhysRevD.86.116009
http://dx.doi.org/https://doi.org/10.1140/epjc/s10052-014-3180-0
http://dx.doi.org/https://doi.org/10.1140/epjc/s10052-014-3180-0
http://dx.doi.org/10.1103/PhysRevD.96.114016
https://link.aps.org/doi/10.1103/PhysRevD.96.114016
https://twiki.cern.ch/twiki/bin/view/Compass/HadronAnalysis/Primakoff_pi-pi0
https://twiki.cern.ch/twiki/bin/view/Compass/HadronAnalysis/Primakoff_pi-pi0
http://dx.doi.org/10.1103/PhysRevLett.107.072001
http://dx.doi.org/10.1103/PhysRevLett.107.072001
https://link.aps.org/doi/10.1103/PhysRevLett.107.072001
http://dx.doi.org/10.1016/j.nima.2007.03.026
http://dx.doi.org/10.1016/j.nima.2007.03.026
http://dx.doi.org/10.1016/j.nima.2007.03.026
https://www.sciencedirect.com/science/article/pii/S0168900207005001
https://www.sciencedirect.com/science/article/pii/S0168900207005001
http://dx.doi.org/10.1016/j.nima.2015.01.035
http://arxiv.org/abs/1410.1797
https://cds.cern.ch/record/1950827


BIBLIOGRAPHY

[83] M. Krämer, J. M. Friedrich, and S. Huber, “Measurement of the hadron beam
composition for the 2009 primakoff measurement,” COMPASS note 2016-6 (2016) .
https://wwwcompass.cern.ch/compass/notes/2016-6/2016-6.pdf.

cited in 3.2 (p. 47)

[84] C. Bovet et al., “The CEDAR (Cerenkov Differential Counters with Achromatic Ring
Focus) Project,” IEEE Transactions on Nuclear Science 25 no. 1, (1978)
572–576. cited in 3.2 (p. 47), 3.2 (p. 48), 5.3.1 (p. 87)

[85] J. M. Friedrich, “CEDAR performance 2009,” COMPASS note 2010-15 (2010) .
https://wwwcompass.cern.ch/compass/notes/2010-15/2010-15.pdf.

cited in 3.2 (p. 48), 3.2 (p. 48)

[86] J. M. Friedrich and M. Krämer, “Reconstruction of the pion beam energy from beam
optics,” COMPASS note 2012-2 (2012) .
https://wwwcompass.cern.ch/compass/notes/2012-2/2012-2.pdf.

cited in 3.2 (p. 48), 3.2 (p. 49), 5.1 (p. 75)

[87] S. Uhl, “Photon Reconstruction and Partial-Wave Analysis of Three-Body Final States
with Neutral Particles at COMPASS,” PhD thesis, Technische Universität München,
2016. cited in 3.3.2 (p. 51), 5.2.1 (p. 78), 4 (p. 79)

[88] C. Bernet et al., “The compass trigger system for muon scattering,” Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment 550 no. 1, (2005) 217–240. https:
//www.sciencedirect.com/science/article/pii/S0168900205012568.

cited in 3.3.3 (p. 52)

[89] C. Adolph et al., [COMPASS Collaboration], “Measurement of the charged-pion
polarizability,” Phys. Rev. Lett. 114 (Feb, 2015) 062002.
https://link.aps.org/doi/10.1103/PhysRevLett.114.062002.

cited in 3.8 (p. 54), 3.4 (p. 54)

[90] C. Adolph et al., [COMPASS Collaboration], “First measurement of chiral dynamics in
π−γ→π−π−π+,” Phys. Rev. Lett. 108 (May, 2012) 192001.
https://link.aps.org/doi/10.1103/PhysRevLett.108.192001.

cited in 3.8 (p. 54), 3.4 (p. 54)

[91] S. Huber, “Upgrade of the COMPASS calorimetric trigger and determination of the
charged-pion polarisability,” PhD thesis, Technische Universität München,
2017. cited in 3.4 (p. 54), 5.1 (p. 73), 5 (p. 80), 5.2.2 (p. 83), 5.3.1 (p. 88), 6.2 (p. 98)

[92] PICMG (PCI Industrial Computer Manufacturers Group, “AdvancedTCA Overview.”
Online.
https://www.picmg.org/openstandards/advancedtca/. cited in 3.5.1 (p. 55)

[93] D. Steffen et al., “Overview and future developments of the fpga-based daq of
compass,” Journal of Instrumentation 11 no. 02, (Feb, 2016) C02025.
https://dx.doi.org/10.1088/1748-0221/11/02/C02025. cited in 3.5.1 (p. 55)

182

https://wwwcompass.cern.ch/compass/notes/2016-6/2016-6.pdf
http://dx.doi.org/10.1109/TNS.1978.4329375
http://dx.doi.org/10.1109/TNS.1978.4329375
https://wwwcompass.cern.ch/compass/notes/2010-15/2010-15.pdf
https://wwwcompass.cern.ch/compass/notes/2012-2/2012-2.pdf
http://dx.doi.org/10.1016/j.nima.2005.05.043
http://dx.doi.org/10.1016/j.nima.2005.05.043
http://dx.doi.org/10.1016/j.nima.2005.05.043
https://www.sciencedirect.com/science/article/pii/S0168900205012568
https://www.sciencedirect.com/science/article/pii/S0168900205012568
http://dx.doi.org/10.1103/PhysRevLett.114.062002
https://link.aps.org/doi/10.1103/PhysRevLett.114.062002
http://dx.doi.org/10.1103/PhysRevLett.108.192001
https://link.aps.org/doi/10.1103/PhysRevLett.108.192001
https://www.picmg.org/openstandards/advancedtca/
http://dx.doi.org/10.1088/1748-0221/11/02/C02025
https://dx.doi.org/10.1088/1748-0221/11/02/C02025


BIBLIOGRAPHY

[94] H. C. van der Bij et al., “S-LINK, a data link interface specification for the LHC era,”
1997. hsi.web.cern.ch/HSI/s-link/introduc/rt97.ps. cited in 3.5.1 (p. 55)

[95] S. Huber et al., “Intelligence Elements and Performance of the FPGA-based DAQ of the
COMPASS Experiment,” PoS TWEPP-17 (2018) 127. cited in 3.5.1 (p. 56)

[96] B. Grube, “A Trigger Control System for COMPASS and A Measurement of the
Transverse Polarization of Λ and ΞHyperons from Quasi-real Photo-Production,” PhD
thesis, Technische Universität München, 2006. cited in 3.5.1 (p. 56)

[97] C. G. Larrea, K. Harder, D. Newbold, D. Sankey, A. Rose, A. Thea, and T. Williams,
“IPbus: a flexible Ethernet-based control system for xTCA hardware,” Journal of
Instrumentation 10 no. 02, (Feb, 2015) C02019.
https://dx.doi.org/10.1088/1748-0221/10/02/C02019. cited in 3.5.1 (p. 56)

[98] M. Bodlak et al., “Development of new data acquisition system for COMPASS
experiment,” Nucl. Part. Phys. Proc. 273-275 (2016) 976–981. cited in 3.10 (p. 57)

[99] O. S̆ubrt, “Algorithms for processing of large data sets using distributed architectures
and load balancing,” PhD thesis, Czech Technical University in Prague,
2020. cited in 3.5.2 (p. 58)

[100] C. Michalski, “Entwicklung eines Echtzeit-Strahlprofil-monitoring-Systems füer das
COMPASS-II Experiment,” Master’s thesis, Albert-Ludwigs-universität Freiburg,
Germany, 2013. cited in 4 (p. 59), 4.2 (p. 67), 4.2 (p. 68)

[101] [ATLAS], W. Vazques et al., “The ATLAS Data Acquisition System in LHC Run 2,” 2017.
https://dx.doi.org/10.1088/1742-6596/898/3/032017. cited in 4.1 (p. 60)

[102] [CMS], G. Badaro et al., “The Phase-2 Upgrade of the CMS Data Acquisition,” tech. rep.,
CERN, Geneva, 2021. https://cds.cern.ch/record/2797509. cited in 4.1 (p. 60)

[103] S. Teknoloji, “FAQ.”
https://www.samm.com/mpo-mtp-frequently-asked-questions, 2023.
[Online; accessed 7-August-2023]. cited in 4.3 (p. 62)

[104] S. Bartknecht et al., “Development and performance verification of the gandalf
high-resolution transient recorder system,” IEEE Transactions on Nuclear Science 58
no. 4, (2011) 1456–1459. cited in 4.2 (p. 68)

[105] “ANSI/VITA 41.0-2006,” tech. rep., VXS VMEbus Switched Serial Standard,
2006. cited in 4.2 (p. 68)

[106] COMPASS collaboration, “CORAL.” https://gitlab.cern.ch/compass/coral,
2019. [Online; accessed 2-May-2022]. cited in 5 (p. 71), 6 (p. 97)

[107] N.-H. Kang, D. Ecker, and A. Maltsev, “Event selection of the Primakoff reaction
π−Ni→π−π0Ni for the 2012 dataset and comparison with 2009 dataset,” COMPASS
release note 2022-02 (2022) .
https://wwwcompass.cern.ch/compass/results/2022/february_evtsel_
Primakoff/Primakoff_pimpi0_evtSel_COMPASS_release_note.pdf.

cited in 5 (p. 72), 9.3 (p. 144)

183

hsi.web.cern.ch/HSI/s-link/introduc/rt97.ps
http://dx.doi.org/10.1088/1748-0221/10/02/C02019
http://dx.doi.org/10.1088/1748-0221/10/02/C02019
https://dx.doi.org/10.1088/1748-0221/10/02/C02019
http://dx.doi.org/10.1016/j.nuclphysbps.2015.09.153
https://dx.doi.org/10.1088/1742-6596/898/3/032017
http://dx.doi.org/10.1051/epjconf/202125104023
https://cds.cern.ch/record/2797509
https://www.samm.com/mpo-mtp-frequently-asked-questions
http://dx.doi.org/10.1109/TNS.2011.2142195
http://dx.doi.org/10.1109/TNS.2011.2142195
https://gitlab.cern.ch/compass/coral
https://wwwcompass.cern.ch/compass/results/2022/february_evtsel_Primakoff/Primakoff_pimpi0_evtSel_COMPASS_release_note.pdf
https://wwwcompass.cern.ch/compass/results/2022/february_evtsel_Primakoff/Primakoff_pimpi0_evtSel_COMPASS_release_note.pdf


BIBLIOGRAPHY

[108] A. Maltsev, D. Ecker, and D. Ryabchikov, “Measurement of F3π constant from 2009
Primakoff data,” COMPASS release note 2022-08 (2022) .
https://wwwcompass.cern.ch/compass/results/2022/august_Primakoff_
F3pi_2009/Primakoff_release_note.pdf. cited in 5 (p. 72), 5 (p. 81), 5.2.4 (p. 86),

5.2.4 (p. 87), 9.1 (p. 141)

[109] P. A. Zyla et al., [Particle Data Group], “Review of Particle Physics - Passage of Particles
Through Matter,” PTEP 2020 (2020) 696–712. 083C01. cited in 5.1 (p. 74)

[110] A. A. Lednev, “Shower separation program for ecal2,” COMPASS note 2009-7 (2009) .
https://wwwcompass.cern.ch/compass/notes/2007-10/2007-10.pdf.

cited in 5.2.1 (p. 78)

[111] A. Lednev, “Electron shower transverse profile measurement,” Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment 366 no. 2, (1995) 292–297. https:
//www.sciencedirect.com/science/article/pii/0168900295007172.

cited in 5.2.1 (p. 78), 5.2.2 (p. 82)

[112] S. Aumiller, “Neural Networks for Photon Reconstruction in Electromagnetic
Calorimeters for the COMPASS and AMBER experiments.” Bachelor thesis — to be
published. cited in 5.2.1 (p. 79)

[113] S. Gerassimov. Personal communication. cited in 3 (p. 79), 6.1 (p. 99), 6.2 (p. 99)

[114] T. Nagel, “Measurement of the charged pion polarizability at COMPASS,” PhD thesis,
TU München, 2012. cited in 5 (p. 80)

[115] D. Scheck, “Kalibrierung eines elektromagnetischen Kalorimeters für Messungen der
Pionstruktur.” Bachelor thesis, 2019. cited in 5 (p. 80)

[116] T. Schlüter, “A code for kinematic fitting with constraints from intermediate particle
masses,” COMPASS note 2007-10 (2007) .
https://wwwcompass.cern.ch/compass/notes/2009-7/2009-7.pdf.

cited in 5.2.3 (p. 84)

[117] D. Ryabchikov, “Kinematic fitting.” Personal communication,
2023. cited in 5.2.3 (p. 85), 5.2.3 (p. 86)

[118] S. Wallner, “Exploring the Strange-Meson Spectrum with COMPASS in the Reaction
K −+p → K −π−π++p ,” PhD thesis, Technische Universität München,
2022. cited in 5.3.1 (p. 89), 8.1.2 (p. 123)

[119] COMPASS collaboration, “COMGEANT.”
https://gitlab.cern.ch/compass/comgeant, 2019. [Online; accessed
2-May-2022]. cited in 6 (p. 97)

[120] R. Brun, F. Bruyant, M. Maire, A. C. McPherson, and P. Zanarini,
“GEANT3,”. cited in 6 (p. 97)

184

https://wwwcompass.cern.ch/compass/results/2022/august_Primakoff_F3pi_2009/Primakoff_release_note.pdf
https://wwwcompass.cern.ch/compass/results/2022/august_Primakoff_F3pi_2009/Primakoff_release_note.pdf
http://dx.doi.org/10.1093/ptep/ptaa104
https://wwwcompass.cern.ch/compass/notes/2007-10/2007-10.pdf
http://dx.doi.org/10.1016/0168-9002(95)00717-2
http://dx.doi.org/10.1016/0168-9002(95)00717-2
http://dx.doi.org/10.1016/0168-9002(95)00717-2
https://www.sciencedirect.com/science/article/pii/0168900295007172
https://www.sciencedirect.com/science/article/pii/0168900295007172
https://wwwcompass.cern.ch/compass/notes/2009-7/2009-7.pdf
https://gitlab.cern.ch/compass/comgeant


BIBLIOGRAPHY

[121] Szameitat, Tobias, “New Geant4-based Monte Carlo Software for the COMPASS-II
Experiment at CERN,” PhD thesis, Albert-Ludwigs-Universität Freiburg,
2016. cited in 6.1 (p. 98), 9.3 (p. 145)

[122] S. Aumiller, “Primakoff geometries at COMPASS - TGEANT vs. COMGEANT.” Online.
https:
//indico.cern.ch/event/1265090/contributions/5372808/attachments/
2634026/4556285/RICH_material_distribution_COMGEANT_vs_TGEANT.pdf.

cited in 6.1 (p. 98)

[123] P. A. Zyla et al., [Particle Data Group], “Review of Particle Physics - Particle Detectors at
Accelerators,” PTEP 2020 (2020) 551–588. 083C01. cited in 6.3 (p. 100)

[124] S. Weinberg, “New test for∆i = 1
2 in K + decay,” Phys. Rev. Lett. 4 (Jan, 1960) 87–89.

https://link.aps.org/doi/10.1103/PhysRevLett.4.87. cited in 7.2.1 (p. 113)

[125] J. Batley et al., [NA48/2], “Observation of a cusp-like structure in the π0π0 invariant
mass distribution from k±→π±π0π0 decay,” Physics Letters B 633 no. 2-3, (Feb, 2006)
173–182. cited in 7.2.1 (p. 113)

[126] J. Batley et al., [NA48/2], “Empirical parameterization of the k±→π±π0π0 decay dalitz
plot,” Physics Letters B 686 no. 2-3, (Mar, 2010) 101–108. cited in 7.2.1 (p. 113)

[127] J. R. Batley et al., [NA48/2], “Measurement of the form factors of charged kaon
semileptonic decays,” JHEP 10 (2018) 150, arXiv:1808.09041
[hep-ex]. cited in 7.5 (p. 115), 7.2.2 (p. 115), 7.2.2 (p. 116)

[128] L. Lyons, “On estimating systematic errors,”. cited in 7.4 (p. 118)

[129] J. Beckers, “Search for Light-Meson Resonances in Diffractively Produced K −K +π−,
K 0

S π
−, and K 0

S K − Final States Measured at COMPASS.” Master thesis,
2021. cited in 8.1.2 (p. 123)

[130] J. Bernhard, J. M. Friedrich, T. Schlüter, and K. Schönning, “Comment on "Material
Evidence of a 38 MeV Boson",” 2012. cited in 8.1.3 (p. 125)

[131] D. Ryabchikov, “Partial-wave analysis of π−Ni→π−π0π0Ni reactions.” Personal
communication, 2023. cited in 8.2.1 (p. 127), 8.2.1 (p. 128)

[132] T. J. deForest and J. D. Walecka, “Electron scattering and nuclear structure,” Advances
Phys. 15 no. 57, (1, 1966) .
https://www.osti.gov/biblio/4525917. cited in 8.2.2 (p. 130)

[133] J. Friedrich, [COMPASS], “Chiral symmetry breaking: Current experimental status and
prospects,” EPJ Web Conf. 282 (2023) 01007. cited in 9.1 (p. 141), 9.1 (p. 142), 9.2 (p. 143)

[134] [COMPASS], D. Ecker, “Testing the chiral anomaly and measuring the radiative width
of the ρ(770) at COMPASS,” International Workshop on Hadron Structure and
Spectroscopy, 2022.
https://indico.cern.ch/event/1121975/contributions/5016505/
attachments/2499239/4293016/Ecker_20220830.pdf. cited in 9.1 (p. 141)

185

https://indico.cern.ch/event/1265090/contributions/5372808/attachments/2634026/4556285/RICH_material_distribution_COMGEANT_vs_TGEANT.pdf
https://indico.cern.ch/event/1265090/contributions/5372808/attachments/2634026/4556285/RICH_material_distribution_COMGEANT_vs_TGEANT.pdf
https://indico.cern.ch/event/1265090/contributions/5372808/attachments/2634026/4556285/RICH_material_distribution_COMGEANT_vs_TGEANT.pdf
http://dx.doi.org/10.1093/ptep/ptaa104
http://dx.doi.org/10.1103/PhysRevLett.4.87
https://link.aps.org/doi/10.1103/PhysRevLett.4.87
http://dx.doi.org/10.1016/j.physletb.2005.11.087
http://dx.doi.org/10.1016/j.physletb.2005.11.087
http://dx.doi.org/10.1016/j.physletb.2010.02.036
http://dx.doi.org/10.1007/JHEP10(2018)150
http://arxiv.org/abs/1808.09041
http://arxiv.org/abs/1808.09041
http://dx.doi.org/10.1080/00018736600101254
http://dx.doi.org/10.1080/00018736600101254
https://www.osti.gov/biblio/4525917
http://dx.doi.org/10.1051/epjconf/202328201007
https://indico.cern.ch/event/1121975/contributions/5016505/attachments/2499239/4293016/Ecker_20220830.pdf
https://indico.cern.ch/event/1121975/contributions/5016505/attachments/2499239/4293016/Ecker_20220830.pdf


BIBLIOGRAPHY

[135] [COMPASS], D. Ecker and A. Maltsev, “Testing Predictions of the Chiral Anomaly in
Primakoff Reactions at COMPASS,” HADRON2023, 2023.
https://agenda.infn.it/event/33110/contributions/197449/
attachments/106516/150064/Ecker_20230608_v3.pdf. cited in 9.1 (p. 141)

[136] N.-H. Kang, “Primakoff analysis π−Ni→π−π0Ni with 2012 data from COMPASS at
CERN,” Master’s thesis, Technical University of Munich, Germany,
2022. cited in 9.3 (p. 144)

186

https://agenda.infn.it/event/33110/contributions/197449/attachments/106516/150064/Ecker_20230608_v3.pdf
https://agenda.infn.it/event/33110/contributions/197449/attachments/106516/150064/Ecker_20230608_v3.pdf


Acknowledgements

Spending a lot of time in the mountains, I frequently find myself in intimidating situations,
some of which might seemingly be life-threatening. But writing my doctoral thesis on exper-
imental particle physics is by far the most challenging, frightening, and courageous project I
have ever faced. Despite requiring a very different skill set, mountaineering and research in
particle physics have common principles: the bigger the project, the more you should think
step-by-step and the more daring the undertaking, the more important the company. I can
call myself very lucky with the people who accompanied me on this expedition.

First, I want to thank Prof. Stephan Paul for giving me the financial support, the freedom, and
the possibility to work on this interesting topic. Generations of PhD students have benefited
from the amount of trust he puts into them, and I am more than happy to be one of them. A
big thank you and special shout-out to Jan Friedrich, for the endless patience in discussing
kinematics, nuclear excitations, and other backgrounds late in the evening after a full day of
work missing subway after subway. I honestly admire the pictures you have in mind, when
talking about particles. This makes seemingly boring mathematical formulations so much
more alive. I hope, I can maintain this approach towards physics, always trying to understand
what actually is behind.

All the nice physics results of COMPASS would not have been possible without Igor Konorov.
He keeps the experiment running against all odds. I was impressed by his dedication and
the time, which he is gladly providing, to contribute to successful data taking. Thank you for
instructing me during the hardware work of this thesis. If I can at least partly maintain the
analytic approach of debugging electronics, I am more than happy.

To Dima and Andrii, who have contributed a lot to the analysis. I appreciated all the discus-
sion about physics and I learned a lot from you. Dima, your enthusiasm and excitement in
“humps” and “bumps” of physical distributions, made the analysis possible so far. I am very
optimistic that together, we finish the analysis and publish soon!

To all the colleagues and former colleagues at E18 and at CERN. You made me feel welcomed,
and you provided a fun working environment. Always giving advice and trying to help where
help was needed. More than once, basically every day, I relied on your stock of chocolate,
beer, or cereal bars depending on the occasion. I enjoyed the interesting discussions with you
during the coffee and lunch breaks at CERN and in Munich. Without your good company, I
would not have made it through all these years.

187



ACKNOWLEDGEMENTS

To all my friends in Allgäu, Grenoble, Geneva, Munich, etc. With your help, I managed to
sustain a somewhat healthy balance between work and leisure time. I am extremely grateful
for all the fun moments in the Alps, for the fun evenings in the house in Sergy or in Munich, for
dinners and parties, for boozy reunions after a long time. All of this makes me forget physics
for a couple of hours. I hope our friendship will continue!

Dear mom and dad, well I don’t even know where to start. I would be nothing without you.
Words do not come close to how grateful I am for a family like this. To my little sister and my
beautiful goddaughter, whose journey will soon begin: I love you and I hope that the strong
bond between us will stay forever, even though we are living far apart from each other!

To Moni, the beautiful girl, whom I got to know shortly before starting my PhD. The girl who
stayed with me, first as girlfriend, later as wife. Our relationship, which survived the years
I spent in Geneva, means the world to me. She had to endure not only my forgetfulness,
when my thoughts circulated around physics instead of e.g. taking the correct junction while
driving, but also my long working hours, when times were not easy. You are, what makes me
happy and content. You are giving a meaning to all of this. I love you!

188


	Introduction
	1 Theory and motivation
	1.1 Quantum Chromodynamics — the theory of strong interaction
	1.1.1 Confinement and the quark model
	1.1.2 QCD in the chiral limit

	1.2 Pion lifetime and the chiral anomaly
	1.3 Previous tests of the chiral anomaly
	1.3.1 Experimental tests of F
	1.3.2 Experimental tests of F3

	1.4 Radiative width of the  meson
	1.4.1 Motivation to study radiative decays of vector mesons
	1.4.2 Previous measurements


	2 Primakoff reactions
	2.1 Introduction to scattering processes
	2.1.1 Mandelstam variables
	2.1.2 Coordinate systems
	2.1.3 Strong production mechanisms of light mesons at COMPASS

	2.2 The Primakoff effect
	2.2.1 Henry Primakoff's idea of a photon target
	2.2.2 Minimum momentum transfer
	2.2.3 Weizsäcker Williams factorization
	2.2.4 Nuclear excitations

	2.3 Kinematics of the -(*)-0 reaction
	2.3.1 Angular distributions and partial-wave expansion
	2.3.2 Resonant production of the (770) meson
	2.3.3 Higher-order and electromagnetic corrections

	2.4 Extracting F3 from Primakoff data
	2.4.1 Dispersion relations
	2.4.2 Dispersive approach for the anomalous process -(*)-0 
	2.4.3 Comparison to ChPT
	2.4.4 Extraction of 


	3 The COMPASS experiment
	3.1 General physics program and spectrometer layout
	3.2 The M2 beamline at CERN
	3.3 Spectrometer setup in 2009 for the Primakoff program
	3.3.1 Target region
	3.3.2 Electromagnetic calorimeters
	3.3.3 Trigger strategy

	3.4 Accessible Primakoff channels at COMPASS
	3.5 Readout electronics and Data Acquisition System
	3.5.1 System design and topology of the iFDAQ from 2014 to 2019
	3.5.2 Software architecture of the iFDAQ


	4 Improving reliability and stability of the data acquisition
	4.1 Crosspoint switch
	4.1.1 Hardware and firmware design
	4.1.2 Integration and application in the iFDAQ
	4.1.3 Application at Belle II

	4.2 Commissioning of a real-time beam monitoring system

	5 Event reconstruction and selection
	5.1 Event preselection
	5.2 Reconstruction of neutral pions
	5.2.1 Reconstruction of photons and calibration of the calorimeter
	5.2.2 Selecting showers for 0 reconstruction
	5.2.3 Resolution in Q2 and s and kinematic constraints
	5.2.4 Alignment of calorimeters

	5.3 Event selection
	5.3.1 Beam and final state particle identification
	5.3.2 0 selection and event kinematics
	5.3.3 Overview of event sample sizes in the Primakoff 2009 data set


	6 Generation of pseudodata by Monte-Carlo simulation
	6.1 Material description
	6.2 ECAL calibration
	6.3 ECAL resolution
	6.4 Simulation of the beam
	6.5 Trigger simulation
	6.6 Q-dependencies

	7 Determination of the integrated luminosity via free kaon decays
	7.1 Overview of charged-kaon decays
	7.2 Simulation of kaon decays
	7.2.1 Kinematics of hadronic K--decays
	7.2.2 Kinematics of semileptonic K--decays

	7.3 Determination of the effective integrated luminosity
	7.4 Systematic uncertainties

	8 Extracting values for F3 and the radiative width of the (770)
	8.1 Considered background contributions
	8.1.1 Kaon decays
	8.1.2 Kaon interactions
	8.1.3 Non-0 events

	8.2 Background subtraction
	8.2.1 Evaluation of the -+Ni-00+Ni model
	8.2.2 Determination of the number of elastic Primakoff events

	8.3 Correcting for experimental acceptance
	8.4 Normalization to the photon flux
	8.5 Fitting the dispersive model
	8.6 Summary and open issues

	9 Discussion of the result and outlook
	9.1 Comparison to previous results and systematic uncertainties
	9.2 Conclusion and outlook
	9.3 Radiative width of the 3(1690)
	9.4 Analysis of -(*)-00 cross section

	A Equations, transformations, and conventions
	A.1 Gell-Mann matrices
	A.2 Dirac matrices
	A.3 Lorentz transformation of the electromagnetic field of a point charge
	A.4 Derivation of angular dependencies of - - 0
	A.5 Twice subtracted dispersion relation

	B Kinematic distributions
	B.1 Kinematic distributions of the selected -+Ni-00+Ni events and comparison to simulation
	B.2 Kinematic distributions of the selected K–0 events and comparison to simulation
	B.3 Kinematic distributions of the selected K–00 events and comparison to simulation
	B.4 TY distributions in selected -(*)-0 events

	C Register description of crosspoint switch firmware
	List Of Figures
	List Of Tables
	Bibliography

