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Programmed death-1 (PD-1) and programmed death ligand 1 (PD-L1) inhibitors target the
important molecular interplay between PD-1 and PD-L1, a key pathway contributing to
immune evasion in the tumor microenvironment (TME). Long-term clinical benefit has
been observed in patients receiving PD-(L)1 inhibitors, alone and in combination with other
treatments, across multiple tumor types. PD-L1 expression has been associated with
response to immune checkpoint inhibitors, and treatment strategies are often guided by
immunohistochemistry-based diagnostic tests assessing expression of PD-L1. However,
challenges related to the implementation, interpretation, and clinical utility of PD-L1
diagnostic tests have led to an increasing number of preclinical and clinical studies
exploring interrogation of the TME by real-time imaging of PD-(L)1 expression by positron
emission tomography (PET). PET imaging utilizes radiolabeled molecules to non-invasively
assess PD-(L)1 expression spatially and temporally. Several PD-(L)1 PET tracers have
been tested in preclinical and clinical studies, with clinical trials in progress to assess their
use in a number of cancer types. This review will showcase the development of PD-(L)1
PET tracers from preclinical studies through to clinical use, and will explore the
opportunities in drug development and possible future clinical implementation.
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INTRODUCTION

Programmed death-1 (PD-1) and programmed death ligand 1 (PD-L1) checkpoint inhibition plays
a critical part in improving prognoses for patients with a range of tumor types (1). The
immunosuppressive PD-1 receptor, expressed on various immune cells, including activated T
cells, regulatory T cells, monocytes, and dendritic cells, is the target of a number of immune
checkpoint inhibitors (ICIs), such as nivolumab and pembrolizumab (2). These treatments, together
with those targeting the ligand PD-L1, which is expressed on both immune cells and tumor cells (3),
increasingly form the backbone of immunotherapy for a variety of tumor types and disease stages
(4). Optimization of these therapies relies on targeting patients who will most likely benefit from
treatment (5). To achieve this goal, a better understanding of the underlying tumor biology is
needed. Interrogation of the tumor microenvironment (TME) reveals considerable interplay
between PD-1 and PD-L1 signaling (6), and although multiple molecules contribute to this
immunosuppressive milieu, PD-L1 expression in some tumors is the single biomarker most
closely associated with response to PD-1 blockade (6–8). Recent data indicate that low
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expression of PD-1 may also be associated with response to PD-1
blockade (9), although this requires further investigation.

PD-L1 expression may be predictive of benefit with ICIs (5).
Currently, PD-L1 expression is assessed by immunohistochemistry
(IHC) from tissue samples and is reported as a numerical value
(percent positive tumor or immune cells). Therefore, a given result
can only represent PD-L1 expression of a small portion of a
selected tumor, and there are frequently multiple tumors (e.g.,
primary and metastatic sites) in the same patient that are not
assessed (10). A way to start addressing this shortcoming is
molecular imaging. Molecular imaging most commonly utilizes
positron or single-photon emitting radionuclides to label specific
targets, such as PD-(L)1 binding molecules, for in vivo visualization
purposes (11–19). Using these positron emission tomography
(PET) and single-photon emission computed tomography
(SPECT) imaging techniques, PD-(L)1 expression of not just one
part of a tumor, but of the entire tumor burden, can be assessed
non-invasively (20, 21). Furthermore, molecular imaging allows
serial monitoring of PD-(L)1 expression over time (20, 21),
whereas temporal assessment by IHC is much more challenging
clinically due to the requirement for multiple invasive biopsies (20,
21). In addition to safety considerations, other known limitations of
IHC that could impact treatment decisions may include
interobserver and intraobserver reproducibility, variability due to
fresh vs. archival biopsied tissue (10, 22–24), and heterogeneity of
expression within and among tumors (25, 26).

Molecular imaging therefore holds promise for in vivo
quantification of PD-(L)1 expression in tumors and healthy
tissue, as well as assessment of drug pharmacokinetics and
pharmacodynamics (27), which will provide insights into the
mechanisms of ICIs and ultimately improve patient selection,
monitoring, and treatment (20, 21, 28). This review discusses the
evolution of PD-(L)1 imaging from preclinical studies to current
and potential future use in drug development and clinical
settings, highlighting the opportunities for PD-(L)1 molecular
imaging to improve healthcare outcomes.
THE RATIONALE FOR MOLECULAR
IMAGING OF PD-(L)1: ENHANCING AND
COMPLEMENTING CURRENT IHC
ASSESSMENT OF PD-L1 EXPRESSION

Regulatory approvals of PD-(L)1 inhibitors have been
accompanied by several companion or complementary IHC
diagnostic tests to assess PD-L1 expression (5, 10, 29).
However, methodological variations in scoring algorithms, cell
types assessed (tumor cells, immune cells, or both) and
expression cutoffs, as well as interobserver variabilities, can
hinder data interpretation and reliability (30–32). Furthermore,
heterogeneity in tumor PD-L1 expression within a tumor and
among tumors within the same patient adds biological variation
(26, 33). For example, Munari et al. showed that four or more
biopsies were required to accurately evaluate and classify PD-L1
expression using IHC in patients with non-small cell lung cancer
(NSCLC) (26). The situation is further complicated by the choice
Frontiers in Oncology | www.frontiersin.org 2
of tissue sample, with poor concordance between results derived
from biopsy sections and whole tissue samples (25). Given the
limitations associated with IHC-based PD-L1 assessment,
alternative techniques such as molecular imaging and artificial
intelligence (AI)-based digital pathology are being developed (20,
21, 28, 34).

Clinical Utility of Current PET Tracers
PET imaging with the glucose analogue 18F-fluorodeoxyglucose
(18F-FDG) is a technically mature imaging technique, and is a
standard of care that is routinely employed for the diagnosis and
monitoring of patients with cancer (35–38). In the context of
immunotherapy, high pretreatment 18F-FDG uptake was
associated with decreased duration of response and overall
survival to ICIs in patients with melanoma (39, 40). In
addition, on-treatment decreases in 18F-FDG uptake have been
used as an early surrogate for clinical benefit (41, 42). For
example, lower total lesion glycolysis and metabolic tumor
volume (MTV), as determined in patients with NSCLC using
18F-FDG PET, have been shown to be prognostic and predictive
of response and longer overall survival following nivolumab or
pembrolizumab monotherapy (43–46). A metabolic score
derived from combined assessment of pretreatment MTV and
the neutrophil-to-lymphocyte ratio may provide a more accurate
prediction of outcome than either of these factors alone (47, 48).
Furthermore, in patients with NSCLC, the maximal standard
uptake value (SUV) of 18F-FDG has been reported to be
positively associated with PD-L1 expression (49, 50), and high
18F-FDG MTV is associated with PD-L1 expression ≥75% (48).
However, 18F-FDG PET imaging, like computed tomography
(CT), can show pseudoprogression (an early increase in tumor
volume and FDG uptake on imaging with a subsequent favorable
response to ICI therapy) (51, 52). Pseudoprogression is not
common (approximately 5% of patients, according to current
estimates) (53) but can potentially result in stopping effective
therapy in individual patients (52). 18F-FDG PET has also shown
promise in predicting response and overall survival in malignant
melanoma and relapsed or refractory Hodgkin lymphoma after
treatment with nivolumab and ipilimumab, an anti–cytotoxic T
lymphocyte antigen-4 therapy (40, 54–56). Together, these
studies indicate that 18F-FDG may facilitate the identification
of patients most likely to benefit from ICIs (57). A number of
novel PET tracers, such as 11C-choline, have also been
investigated clinically and are reviewed in detail elsewhere (35,
36, 58, 59).

Within oncology, PET tracers allow the monitoring of
biomarkers, such as PD-(L)1, across the whole body and over a
treatment course, without the need for multiple biopsies (21, 60).
The ability for isotopes to be conjugated to therapeutic
antibodies, such as 89Zr-trastuzumab or 89Zr-nivolumab, may
help to assess their pharmacokinetics. Studies have shown that
patients who were trastuzumab-naive cleared 89Zr-trastuzumab
at a faster rate than patients previously treated with trastuzumab
(61, 62). A similar finding might be expected in patients being
retreated or rechallenged with ICIs (63), an emerging patient
population in the immunotherapy arena. A better understanding
of the uptake and distribution of drugs/molecules and their
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mechanisms of action using molecular imaging may lead to
earlier identification of potentially effective therapies and a
consequent reduction in drug development costs (64, 65).
Clinical Interrogation of PD-(L)1
PET Tracers
To understand the rationale of how specific PD-(L)1 molecular
imaging may enhance and complement current IHC assessment
of PD-L1 expression, it is important to consider in more depth
the different advantages, limitations, and technical challenges of
both techniques (Figure 1) (2, 20, 21, 30–32, 65–70).
Frontiers in Oncology | www.frontiersin.org 3
It is likely that the most effective use of these techniques will be
through a combination of the complementary information
provided (71). Both IHC (30–32) and PET (71–73) are
associated with issues regarding standardization of analysis and
interpretation of results. PET imaging is less prone to preanalytical
factors such as fresh vs. archival tissue samples, which may affect
PD-L1 IHC assessment (74), or analytical factors such as different
staining patterns between IHC assays (31). On the other hand, one
tissue sample collected for IHC analysis can support evaluation of
multiple biomarkers, cell morphology, and elements of the tumor
and TME (21). Together, these technologies can augment each
other: cellular and subcellular details from IHC complement the
FIGURE 1 | Visualization of PD-L1 expression at tumor sites. Left panel: PD-L1 PET tracers can be used to visualize and monitor PD-L1 expression at all tumor
sites. Right panel: IHC can be used to assess PD-L1 expression at the biopsy site, representing a small region of only one tumor. Adapted from Du et al. (2) and
Broos et al. (21). CT, computed tomography; EMA, European Medicines Agency; FDA, Food and Drug Administration; ICI, immune checkpoint inhibitor; IHC,
immunohistochemistry; PD-1, programmed death-1; PD-L1, programmed death ligand 1; PET, positron emission tomography.
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whole-body evaluation of tumor PD-(L)1 expression from
molecular imaging (21). Imaging can thus serve as a “virtual
biopsy” when tissue sampling is challenging; for example, during
treatment or when the location of the tumor is unsafe
for sampling.

Because cell types cannot be determined using PET, PD-L1
IHC and PD-L1 PET will likely become better aligned in IHC
assays that assess PD-L1 expression on tumor and immune cells
using the combined positive score algorithm (75, 76). With this
in mind, we are optimistic that use of these techniques side by
side will guide clinical decision-making in the future (76).
CONSIDERATIONS FOR THE
DEVELOPMENT AND USE OF
PD-(L)1 PET TRACERS

Considerations in developing molecular imaging agents such as
PD-(L)1 PET tracers include the requirement for high target
specificity and affinity as well as adequate tumor penetration of
the tracer (77, 78). Furthermore, tracer uptake should have
sufficient resolution to assess potential heterogeneity within
each lesion and among lesions from the same patient (71–73).

Maute et al. (77) addressed affinity, specificity, and tumor
penetration when determining whether PD-(L)1–directed
immunotherapy could be improved with smaller, non-antibody
therapeutics that could be radiolabeled and applied as a PET tracer.
Binding affinity was investigated by identifying the key amino acid
residues in the PD-1 ectodomain that are important to PD-1:PD-L1
interaction. The authors then engineered a high-affinity PD-1
variant (high-affinity consensus [HAC] PD-1) via selection of
optimized mutation combinations, which led to a 15,000–40,000-
fold increase in affinity and an increase in the half-life of the PD-1:
PD-L1 interaction from ≤1 second to ~40 minutes (77).

A high degree of specificity of the radiolabeled 64Cu–DOTA–
HAC–PD-1 for PD-L1 binding was confirmed by the lack of signal
within PD-L1–negative tumors or in human PD-L1–positive
tumors blocked by prior injection of unlabeled HAC–PD-1.

Due to its smaller size, tumor penetration was enhanced with
64Cu–DOTA–HAC–PD-1, showing binding to PD-L1 on tumor
cells that appeared to be inaccessible to larger antibody binding
(77). However, target binding affinity and specificity are only two
factors influencing biodistribution of protein-based PET tracers
in vivo. Other factors include protein size and glycosylation,
metabolic stability, chelators, and the radiometal used for
labeling (78, 79). The contribution of these factors on uptake
by target and non-target tissues is complex and must be
determined experimentally (78).

The choice of radionuclide deserves specific discussion. The
half-life of the radionuclide on the molecular imaging agent
needs to be compatible with the time needed for binding of the
molecular target, while maintaining suitable levels of
radioactivity to allow reasonable imaging resolution (80). Small
biologics such as antibody fragments and adnectins show rapid
Frontiers in Oncology | www.frontiersin.org 4
distribution from vasculature to tissues (81, 82). An isotope with
a short half-life (minutes to hours) is optimal (80), and imaging
can typically occur during or soon after tracer administration.
For example, 11C-acetate, originally employed in cardiology but
now being used in oncology (in particular prostate cancer), has a
physical half-life of approximately 20 minutes, and imaging is
acquired shortly after tracer infusion (83, 84).

Clinical 18F-FDG PET (85) and 18F-BMS-986192 (72, 86)
imaging of PD-L1 are both assessed at 60 minutes post-injection.
Conversely, imaging with antibodies (e.g., 89Zr-labeled
nivolumab) is best achieved 5 to 7 days post-tracer injection
(72). However, imaging several days after tracer injection is
inconvenient for the patient and makes it difficult to assess
more rapid changes in the density of the target, as the tumor
uptake on PET reflects the average density of the target during a
period of 5 to 7 days. Furthermore, long-lived radioisotopes, such
as 89Zr, cause a several-fold higher radiation exposure to normal
organs than 18F (87). However, new total-body PET scanners will
make it feasible to acquire PET scans with 89Zr-labeled
radiotracers ~30 days after injection, and could allow for the
radioactivity administered to be reduced by a factor of 40
(88–90).

In some instances, accumulation of tracers may be anticipated
in a well-perfused physiological “antigen sink”, such as the
spleen, which may result in insufficient uptake of the tracer in
the tumor tissue (91). Co-administration of unlabeled versions of
tracer may need to be investigated to reduce accumulation of the
labeled tracer in antigen sinks (11). If the imaging agent is derived
from a therapeutic agent (11), an analogous investigation may
be warranted.

The dynamic range of a tracer is a further parameter to
consider, as is the proportion of signal alteration that can occur
under a perturbed system; for example, altered expression of a
biomarker in a disease state. A high dynamic range allows
smaller alterations to be accurately detected, thus increasing
sensitivity (92). In general, PET is considered to be better
suited than SPECT for tracer quantification and in dynamic
imaging (65). SPECT is markedly less sensitive than PET and
accurate quantification of activity concentrations is challenging
(65). Due to lower sensitivity, SPECT scans take longer than PET
scans (93); therefore, as a result of the additional burden on
patients and resources, repeated SPECT imaging may be less well
tolerated than repeated PET scans. The dynamic process of tracer
uptake and retention can be better assessed through a time series
of images during dynamic imaging, as opposed to a single time
point from a static image (94).

In addition to the biological and chemical considerations
around development of a PET tracer, it is important to describe
the quantification procedure, including reporting SUVs or
tumor:blood pool ratios, for example (71–73). However, the
uptake of a radiotracer depends not only on binding to its
target (specific uptake), but also on other mechanisms (non-
specific uptake) (95). Therefore, quantifying target expression
with a simple image-derived parameter such as an SUV or a
tumor:blood pool ratio may not be optimal. Dynamic whole-
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body imaging, in contrast to static imaging, can often produce
multiparametric images of influx rate and distribution volume
while also providing conventional “SUV” equivalents (96).
Systematic studies are needed to provide a quantitative
parameter to allow for a best estimation of tracer concentration
in the target tissue.
FROM PRECLINICAL TO CLINICAL
STUDIES USING PD-(L)1 PET TRACERS

The in vitro and in vivo preclinical models used to test PD-(L)1
PET tracers have grown in complexity, from early studies using
cell-line–based systems and mouse models (14, 16, 19, 77),
including xenografts and other tumor models, to more recent
studies using healthy non-human primates (11, 12)
(Supplementary Table 1). Results from preclinical studies of
PD-(L)1 PET tracers have been encouraging, with tracers
demonstrating specific binding and the ability to detect varying
levels of PD-(L)1 expression, including endogenous expression
(14, 17–19, 77, 97, 98). Studies in more complex systems such as
non-human primates have involved both 18F-BMS-986192, an
18F-fluorine labeled anti–PD-L1 adnectin small molecule, and
89Zr-nivolumab (11, 12). Further imaging studies in healthy
cynomolgus monkeys using 18F-BMS-986192 and 89Zr-
nivolumab, which specifically bind to PD-L1 and PD-1,
respectively, have begun to directly investigate whether
PD-(L)1 imaging could be a viable option for imaging in
humans (11, 12). As noted, binding of 89Zr-nivolumab in the
PD-1–rich spleen “antigen sink” could be reduced by co-
administration of unlabeled nivolumab (11). 18F-BMS-986192
has low to moderate uptake in the lungs, heart, liver, and
muscles. This biodistribution allows good contrast with PD-
L1–positive tumors (12). 18F-BMS-986192 does have an expected
higher tracer uptake in the spleen and in urinary structures
(excretion pathway), although these are not common organs of
metastatic disease in solid tumors. Radiation dosimetry indicated
that this tracer was safe to administer in humans (12).

These preclinical studies suggest that PD-(L)1 PET imaging is
a viable technique to assess PD-(L)1 expression in humans, and
PD-(L)1 PET tracers have progressed into first-in-human studies
(Table 1). These first-in-human studies have provided insights
into various aspects of molecular imaging, including
biodistribution, intratumoral and intertumoral heterogeneity,
and preliminary safety findings, including those indicating a
lack of toxicity (71–73, 100).

In terms of biodistribution, accumulation in the spleen and
bone marrow is an expected feature of PD-(L)1–targeting agents
(11, 16, 101). As mentioned, the accumulation of antibodies in
“antigen sinks”, such as the spleen, may require the use of an
unlabeled version to block antibody binding sites to allow more
of the labeled tracer to reach the tumor (11, 16, 101). First-in-
human PET with 18F-BMS-986192 and 89Zr-nivolumab reported
tracer uptake in the spleen andmarrow (72).Whole-body PD-(L)1
PET-CT with 89Zr-atezolizumab also accumulated in the spleen,
with uptake also occurring in the bone marrow over time (73).
Frontiers in Oncology | www.frontiersin.org 5
In contrast, the accumulation of tracers is low in the lung and
absent in healthy brain (11, 12, 72).

Although PD-(L)1 PET tracers have not been shown to
accumulate in the brain (72, 73), a key outstanding question is
whether PD-(L)1 PET can be used to image brain metastases that
typically cause a disruption in the blood–brain barrier. Central
nervous system uptake of 18F-BMS-986192 and 89Zr-nivolumab
was observed in some, but not all, of the untreated brain
metastases in two patients enrolled in the first-in-human study
(72). Further studies addressing the ability of tracers to cross the
blood–brain barrier will be required and should ideally include
pathologic correlations.

Given the spatial and temporal nature of molecular imaging,
an additional benefit for patient outcomes is the identification of
multiple tumor sites. Results from first-in-human trials using
89Zr-atezolizumab, 18F-BMS-986192, 89Zr-nivolumab, and
99mTc-NM-01 indicated that PET tracers can also be used for
the visualization of multiple lesions expressing PD-(L)1 (71–73).
Tracer uptake heterogeneity was found to be relatively common
among metastases (71, 72).

Alongside biodistribution data in humans, safety data are also
imperative. Toxicity and safety data from the first-in-human
studies revealed no reported tracer-related adverse events for
18F-BMS-986192, 89Zr-nivolumab (72), or 99mTc-NM-01 (71),
although one grade 3 infusion-related adverse reaction was
reported in the first-in-human study using 89Zr-atezolizumab (73).

Given the association between IHC-determined PD-L1
expression and response to ICIs, it is crucial to demonstrate
that a similar relationship exists for molecular imaging. Although
there are limited data available showing association of PD-L1
expression assessed by molecular imaging with efficacy,
encouraging results were provided by the first-in-human study
of 89Zr-atezolizumab, in which clinical response was better
correlated with pretreatment PET-imaging–assessed PD-L1
expression compared with either IHC-based or RNA-
sequencing–based PD-L1 assays (73). Similarly, Niemeijer et al.
demonstrated that PD-(L)1 PET imaging can predict lesion-level
response (Table 1) (72). Moreover, tumors determined to be PD-
L1–positive by IHC and PET accumulate nivolumab, while PD-
L1–negative tumors do not (72). These findings demonstrate that
tumors that use PD-L1 for immune escape can be readily
targeted by nivolumab immune blockade (72). This also
suggests that PD-L1 determination by molecular imaging or
other methods may facilitate the selection of patients who are
most likely to respond to treatment with ICIs.

Affirming the Use of PD-L1 PET Tracers in
Clinical Studies: Assessment of PD-L1
Expression by IHC and Molecular Imaging
It is of interest to assess whether any new PD-L1 assessment
using molecular imaging in preclinical and clinical studies shows
consistent imaging and biodistribution of PD-L1 when
compared with the current standard assessment by IHC, taking
into consideration the nuances and variations already described
with IHC analyses. Agreement between PD-L1 IHC and
molecular imaging has been assessed in a number of
August 2021 | Volume 11 | Article 698425
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preclinical studies and has generally been found to be high,
although most studies do not report statistical concordance
assessments (12, 13, 17–19). This includes results with the PD-
L1 PET tracers 111In-MPDL3280A and NIR-MPDL3280A in
triple-negative breast cancer (TNBC) and NSCLC xenografts
(19), and with 18F-BMS-986192 in NSCLC (12). Consistent
imaging and biodistribution was also reported between IHC-
determined PD-L1 expression and the uptake of the PD-L1 PET
tracer 111In-DTPA-anti-PD-L1 in xenografts and mouse
models (16).

Correlation between PD-L1 imaging and IHC was reported in
the first-in-human trials (71–73). Niemeijer et al, in a study
assessing the entire PD-1 and PD-L1 pathway, reported
correlation of the PET signal of 18F-BMS-986192 with PD-L1
IHC and of the 89Zr-nivolumab PET signal with PD-1 IHC. The
median 18F-BMS-986192 SUVpeak was higher for lesions
with ≥50% tumor PD-L1 expression by IHC than for lesions
with <50% (8.2 vs. 2.9, P = 0.018, Mann–Whitney U-test) (72).
Frontiers in Oncology | www.frontiersin.org 6
In a study by Bensch et al. (73), uptake of 89Zr-atezolizumab was
higher in lesions with IHC-determined PD-L1 expression than in
those without. However, this was only the case with the Ventana
PD-L1 (SP142) assay, not the Ventana PD-L1 (SP263) assay,
highlighting that variations among IHC assays should be taken
into consideration. This study also found that tracer uptake
differed between tumor types, with TNBC showing an average
50% less uptake than locally advanced or metastatic bladder
cancer (73). Tumor vascularity may be related to tracer uptake
and could account for some uptake differences between tumor
types (102). Concordance between primary tumor:blood pool
ratios of a SPECT-based tracer and IHC has also been reported,
with primary tumor:blood pool ratios at 2 hours correlating with
PD-L1 IHC (r = 0.68, P = 0.014) (71). Dosimetry for 99mTc-NM-
01 was reported to be similar to other SPECT agents in clinical
use (71), indicating that the use of 99mTc-NM-01 in patients is
feasible. Furthermore, quantitative assessment with this tracer in
patients with NSCLC has been demonstrated to be reproducible
TABLE 1 | Examples of clinically tested PD-(L)1 PET tracers.

Author, year Tracer Biodistribution/accumulation Key findings

Niemeijer et al.,
2018 (72)

18F-BMS-
986192

Both tracers showed high accumulation
in the spleen and liver. 18F-BMS-986192
showed some uptake in the hypophysis

• No tracer-related adverse events of grade ≥3
• No accumulation of 18F-BMS-986192 and 89Zr-nivolumab occurred in normal brain
• Heterogeneity in the uptake of 18F-BMS-986192 occurred between and within patients
• Accumulation of 18F-BMS-986192 and 89Zr-nivolumab was seen in some, but not all,

brain metastases
• 18F-BMS-986192 uptake in tumor lesions correlated with PD-L1 expression assessed

using IHC. The uptake of 89Zr-nivolumab correlated with PD-1–positive, tumor-
infiltrating immune cells

• Response to nivolumab evaluation on a lesional basis (excluding lesions <20 mm
diameter) showed that 18F-BMS-986192 SUVpeak was higher for responding lesions
than non-responding lesions (median 6.5 vs. 3.2, P = 0.03, Mann–Whitney U-test)
(analogous lesional correlation for 89Z-nivolumab median SUVpeak 6.4 vs. 3.9, P =
0.019, Mann–Whitney U-test)

89Zr-
nivolumab

Bensch et al.,
2018 (73)

89Zr-
atezolizumab

High uptake over time occurred in the
intestines, kidneys, and liver. Low uptake
occurred in the brain, subcutaneous
tissue, muscle, compact bone, and lungs

• Lesions at all main metastatic sites were visualized
• The detection of CNS lesions was not determined, as patients with CNS metastases

were excluded from the study
• Within-patient heterogeneity was observed in patients with >1 lesion
• Heterogeneous intratumor tracer uptake was observed
• One low-grade adverse event was reported
• 89Zr-atezolizumab uptake increased with SP142-assessed PD-L1 staining, but not with

SP263-assessed PD-L1 expression
Xing et al.,
2019 (71)

99mTc-NM-
01

Biodistribution was observed in the
kidneys, liver, and spleen, and to a lesser
extent in the bone marrow and lungs,
reflecting the physiological expression of
PD-L1

• Intratumoral and intertumoral heterogeneity was observed
• Acceptable dosimetry was reported, with levels similar to other agents in clinical use
• No drug-related adverse events were reported
• Primary tumor:blood pool ratios at 2 h correlated with IHC

Verhoeff et al.,
2020 (99)

89Zr-
durvalumab

High 89Zr-durvalumab retention was
observed in the spleen and liver

• Heterogeneous accumulation was observed within tumors and between patients
• Uptake of 89Zr-durvalumab was not seen in all 18F-FDG–positive tumors
• No correlation between tumor PD-L1 expression determined using
• 89Zr-durvalumab uptake and PD-L1 expression on archival tissue was found

Huisman et al.,
2020 (100)

18F-BMS-
986192

– • In PD-L1–positive lesions, time–activity curves for 18F-BMS-986192 increased over
time, while for PD-L1–negative tumors the time–activity curves remained approximately
flat up to 40 minutes post-injection

• At 60 min post-injection, in 61% of the tumors analyzed, the uptake of 18F-BMS-
986192 was best described by a reversible single-tissue model. In 39% of the tumors
analyzed, including in one lesion with a 10% positive IHC score and in one lesion with a
negative IHC score, an irreversible two-tissue model was preferred

• SUV normalized to injected activity over body weight correlated best with the distribution
volume of 18F-BMS-986192
CNS, central nervous system; FDG, fluorodeoxyglucose; IHC, immunohistochemistry; PD-1, programmed death-1; PD-L1, programmed death ligand 1; PET, positron emission
tomography; SUV, standard uptake value.
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and reliable between independent observers (103). The results
from these studies indicate that PD-(L)1 molecular imaging
generally shows concordance with IHC-based PD-L1
expression. However, as concordance was not observed in all
studies, some caution is required.

The Growing Momentum for PD-(L)1
Molecular Imaging Clinical Studies
Several clinical trials evaluating the potential roles of PD-(L)1
PET tracers in assessing PD-(L)1 expression are recruiting or
active. Although trials were initially undertaken in NSCLC, the
progression of ICI use into other tumor types has seen the
expansion of PD-(L)1 PET tracer studies into squamous cell
carcinoma of the head and neck, breast cancer, renal cell
carcinoma, diffuse large B-cell lymphoma, melanoma, and
other cancers (Figure 2 and Supplementary Table 2). These
trials aim to validate the initial proof-of-principle, first-in-
human studies with larger datasets. The majority are being
performed in single or multiple institutions with industry
sponsorship; however, for rare tumors, collaborative groups
across multiple institutions may be advantageous. Depending
on the critical clinical question being addressed, the trial design
may vary. Studies addressing pharmacodynamic changes of a
biomarker will need to have multiple scanning time points (e.g.,
NCT03850028; Supplementary Table 2), whereas those that aim
for baseline biodistribution may have a single scan (e.g.,
NCT03564197, NCT02978196; Supplementary Table 2).

The further development of PD-(L)1 molecular imaging as a
clinical research tool and biomarker requires several important
steps. The first is a body of evidence supporting the clinical utility
Frontiers in Oncology | www.frontiersin.org 7
of PD-L1 PET as a diagnostic tool and comparing it with
standard methods for evaluating PD-L1, such as IHC. Several
prospective trials are ongoing to determine a predictive
or prognostic benefit of molecular imaging for ICI therapy
(e.g., NCT03514719, NCT03564197, and NCT03843515;
Supplementary Table 2). Second, there is a need to adopt
standardized imaging protocols and criteria for quantitative
image analysis (57). Involvement of industry collaborations or
large institutions may be necessary to acquire the necessary data
and achieve harmonization. Third, as noted above, imaging with
radiolabeled antibodies results in effective radiation doses that
are several-fold higher than for PET imaging agents, such as 18F-
FDG and 68Ga-DOTA-TATE (104). These radiation doses may
limit broader use of PD-(L)1 imaging, especially for serial PET
scans to monitor changes in PD-(L)1 expression in individual
patients. Development of PET imaging agents labeled with short-
lived positron emitters, such as 18F or 68Ga, is a highly active
research field with encouraging preclinical and clinical results
(12, 72, 105). PET imaging studies generally use micro-dosing,
defined as less than one hundredth of the dose that has a
pharmacological effect, to a maximum of 100 µg, which is
considered to have a very limited risk to participants (106).
This strategy is used in NCT02978196, for example (Supplementary
Table 2). Further trials should follow guidelines, such as those
provided by the United States Food and Drug Administration for
radiolabeled PET tracers (106), to be approved for clinical
implementation. It is anticipated that ongoing and future trials
will provide the solid body of evidence necessary to develop
guidelines for the adoption of molecular imaging into routine
clinical practice.
FIGURE 2 | Registered clinical trials between 2016 and 2020 evaluating the potential role of PD-(L)1 PET tracers in assessing PD-(L)1 expression and the tumor
types investigated. Only trials registered with ClinicalTrials.gov are presented at the year the trial was initiated. The following search term was used for each year:
(“nuclear medicine” OR imaging OR 89Zr OR 18F OR 99mtc) AND (PD-L1 OR PD-1 OR anti-PD-L1 OR anti-PD-1). DLBCL, diffuse large B-cell lymphoma; GI,
gastrointestinal; HCC, hepatocellular carcinoma; NSCLC, non-small cell lung cancer; PD-1, programmed death-1; PD-L1, programmed death ligand 1; PET, positron
emission tomography; RCC, renal cell carcinoma; SCCHN, squamous cell carcinoma of the head and neck.
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DISCUSSION

There are opportunities and challenges facing the incorporation
of molecular imaging for PD-(L)1 expression into drug
development and routine clinical practice. Some of the key
scientific questions relating to safety, correlation with IHC, and
prediction of patient outcome are being investigated, as
summarized above. Data from studies investigating the impact
of PD-(L)1 imaging on patient outcomes are not yet available.
For broader clinical use of PD-(L)1 imaging, it will be necessary
to show that patient selection by PD-(L)1 molecular imaging
results in equivalent or better patient outcomes than selection by
IHC. Since molecular imaging offers non-invasive, real-time
measurement of biomarkers, it may overcome the issues of
dynamic changes in PD-L1 expression, which are often
highlighted as the major challenge associated with this
biomarker (1, 57, 97). Once this is established by prospective
clinical trials, dissemination of PD-(L)1 imaging could likely be
achieved relatively quickly because PET/CT imaging is
technically mature and already in routine clinical use (67),
minimizing the need for expensive equipment investment and
extensive personnel training. Furthermore, in many countries
there is already a well-established infrastructure for production
and regional distribution of PET radiopharmaceuticals, such as
18F-FDG and 68Ga-DOTA-TATE (107, 108). This infrastructure
could very likely also provide PD-(L)1 imaging agents to centers
that provide PD-(L)1–targeted therapies. Global harmonization
and approvals of imaging tests across regulatory bodies (109), as
well as validation and standardization of PD-(L)1 imaging
techniques, will be important for the technique is to gain
widespread usage. Once implemented into clinical practice,
molecular imaging is anticipated to improve patient care by
minimizing ineffective therapy and over- or under-treatment.
Early termination of clinical trials with drug candidates that
have been identified as having poor safety or efficacy by
molecular imaging is another area where these techniques can
provide value.

Taking these challenges into consideration, there is a wealth
of opportunity to expand the use of molecular imaging. Further
advances are likely to take advantage of sequential PET tracer
combinations; for example, to assess the expression of PD-L1
and of PD-1, as was carried out in the study conducted by
Niemeijer et al. (72). Sequential PET tracer combinations have
also been used to assess the correlation between metabolic
activity and histopathology in glioma (110), and to assess
myocardial viability and perfusion (111). Using combinations
of tracers in such a way may allow a more comprehensive
interrogation of selected (patho)physiology.

There may also be a role for PD-(L)1 PET tracers in
characterizing changes in the TME in order to assess tumor
progression, inflammatory responses, or drug resistance. For
example, the radiation-associated abscopal effect can lead to T-
cell infiltration of the TME by increasing the release of
chemokines and expression of adhesion molecules, and
upregulating class I major histocompatibility complexes,
leading to immunological ly cold tumors becoming
Frontiers in Oncology | www.frontiersin.org 8
immunologically hot tumors (112, 113). In this way, seemingly
ICI-resistant tumors may begin to respond to such treatments.
PD-(L)1 imaging could be used to visualize such events, allowing
for a better understanding of the mechanisms of immuno-
oncology and the principles underlying ICI/radiation
combination therapies (113). Furthermore, by allowing the
possibility to assess PD-(L)1 expression longitudinally and
enabling the TME to be interrogated, molecular imaging is
expected to facilitate the visualization of immunosuppressive
cells, which may allow different types of progression, such as true
progression and pseudoprogression, to be distinguished (57).
However, given the complexity of the human immune system, a
full understanding of the dynamic tumor microenvironment and
the antitumor immune response will require comprehensive
evaluation of other immune components in addition to PD-(L)1.
Evaluation of cytokine signaling with a radiolabeled
transforming growth factor (TGF)-b inhibitor, and SPECT
imaging of tumor-infiltrating lymphocytes (with 99mTc-labeled
interleukin-2), regulatory T cells, and tumor-associated
macrophages, are some of the developments beyond PD-(L)1
imaging that could contribute to improved assessment of
response to ICI therapy and subsequent clinical management
(42, 57).

It is likely that the role of molecular imaging for assessment of
PD-(L)1 expression in a clinical setting will evolve alongside
improved understanding of the PD-(L)1 pathway and other
related immunobiology and biomarker technologies.
Investigations have already pointed to the possible role of
soluble PD-(L)1 detection in patient serum/plasma (114) and
the use of AI-based digital pathology to assess PD-L1 expression
(115, 116). The potential to multiplex these technologies will
facilitate the acquisition of complex anatomic and pathologic
patient data (34, 76). Molecular imaging may also be used in
conjunction with other diagnostic methods, such as genomic and
transcriptomic profiling, increasing the breadth of biological
knowledge a clinician can obtain from a patient and aiding
treatment strategies.

Molecular imaging, including PD-(L)1 PET imaging,
will likely gain a more influential role in drug development in
the future. Molecular imaging may be used in early-phase clinical
trials to facilitate a more comprehensive understanding of
the mechanisms of action of ICIs by enabling the assessment
of receptor binding and biomarker accumulation (64, 65).
Questions specific to a particular drug may be most
effectively carried out by the drug developer, but both
academic research groups and pharmaceutical companies
could contribute to these studies. By understanding the uptake
and distribution of drugs/molecules and their mechanisms of
action, successful therapies may be identified earlier, with higher
confidence (in “go”/”no-go” decisions), leading to lower
development costs (64, 65).

In conclusion, PD-(L)1 molecular imaging offers the exciting
opportunity to improve patient care by offering a non-invasive,
dynamic technique to diagnose, select, and monitor patients
based on PD-(L)1 expression, and to aid the development
of immunotherapies.
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