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0Abstract
The liver is a histologically homogeneous tissue responsible for the metabolism

of endogenous and exogenous compounds. These metabolic functions are domi-

nantly performed by its most abundant cell type: the hepatocytes. Apart from

the hepatocytes, that make up between 50 and 85 % of the cells, the liver is host

to other cell types, such as cholangiocytes, endothelial cells, hepatic stellate cells,

Kupffer cells, and immune cells [1].

Despite their homogeneity under the microscope, evidence has accumulated

suggesting several layers of hepatocyte heterogeneity. For instance, hepatocytes

can naturally undergo whole genome duplication, resulting in polyploid hep-

atocytes. Whilst failure of nuclear division leads to cells containing a single

nucleus with duplicated genome content, i.e. tetraploidy, complete nuclear di-

vision before failure in cytokinesis results in cells containing two nuclei each

containing one set of chromosomes, i.e. bi-nucleated diploid cells [2]. Initially,

polyploidy has been suggested to act protective against hepatocellular carcinoma

(HCC) as more genome copies could prevent loss of heterozygosity events and

buffer against mutational damage [3]. However, higher amounts of polyploid

hepatocytes have been observed in HCC as well as in non-alcoholic and alco-

holic fatty liver disease (NAFLD/ALFD) [4][5]. The first project of this doctoral

thesis therefore aims to investigate the role of tetraploid hepatocytes in young

healthy adult mice at single cell resolution to define a reference baseline for

future studies.

Apart from polyploidyzation, the structural organization of the liver serves

as another source of heterogeneity for hepatocytes. The liver is organized into

lobules, with each lobule featuring a central vein in the middle and the portal

triad at the vertices. Nutrients and oxygen are supplied to the tissue through the

portal triad, whereas the central vein collects oxygen-deprived blood. Zonation

describes the resulting difference in expression profiles along the gradient of

nutrients and oxygen between portal and central vein [6]. Analyzing data

obtained through single nucleus RNA sequencing in this thesis revealed that

zonation and polyploidyzation are intertwined.
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Moreover, hepatic steatosis has been shown to impact zonation in individual

hepatocytes [7]. Hepatic steatosis is the first indication for the onset and progres-

sion of NAFLD, which affects 25 % of the worldwide population [8]. NAFLD has

furthermore been associated to changes in the drug-related metabolic pathways

[9]. During clinical trials, when testing new drugs for efficacy and safety, the

gold standard model is the 2D culture of primary human hepatocytes. However,

in the absence of the 3D architecture in this culture system, liver zonation is

lost. In the second project of this doctoral thesis, it was hence investigated to

which extent hepatocyte heterogeneity is preserved in the absence of zonation

for a seemingly homogeneous population of cells. To address the impact of

intracellular fat accumulation on the metabolism, this thesis presents a thorough

analysis of how it changes the transcriptional profile and the drug-metabolic

capacity of single hepatocytes.

iv



0Zusammenfassung

Die Leber ist ein histologisch homogenes Organ, das für den Metabolismus

von endogenen und exogenen Stoffen verantwortlich ist. Diese Stoffwechsel-

funktionen werden hauptsächlich vom häufigsten Zelltyp der Leber ausgeführt:

Hepatozyten. Neben Hepatozyten, die zwischen 50 und 85 % der Zellen ausma-

chen, gibt es in der Leber weitere Zelltypen wie Cholangiozyten, Endothelzellen,

hepatische Sternzellen, Kupffer Zellen und andere Immunzellarten [1].

Obwohl sie unter dem Mikroskop homogen erscheinen, häuften sich in den

letzten Jahren Hinweise darauf, dass Hepatozyten auf mehreren Ebenen hetero-

gen sind. Zum Beispiel können Hepatozyten auf natürliche Weise ihr Genom

duplizieren, was zu polyploiden Hepatozyten führt. Dabei führt unvollständi-

ge Zellkernteilung zu einzelnen Zellen mit duplizierten Genom im Zellkern

(Tetraploidie), während unvollständige Teilung der ganzen Zelle nach abge-

schlossener Zellkernteilung zu Zellen mit zwei jeweils diploiden Zellkernen

führt (Bi-nukleare diploide Zellen) [2]. Ursprünglich dachte man Polyploidie

könne gegen hepatozelluläre Karzinome (HCC) schützen indem mehrere Genko-

pien den Verlust von Heterozygotie in den Zellen verhindern [3]. Jedoch wurde

sowohl in HCC als auch in nicht-alkoholischer Fettlebererkrankung (NAFLD)

ein höherer Anteil an polyploiden Zellen beobachtet [4][5]. Daher hat das erste

Projekt dieser Disseration das Ziel die Rolle von Polyploidie in einzelnen Zellen

gesunder, erwachsener Mäusen zu erforschen um damit eine Grundlage für

künftige Forschung zu schaffen.

Neben der Genomduplikation stellt die strukturelle Organisation der Leber

eine weitere Quelle von Heterogenität zwischen Hepatozyten dar. Die Leber

ist in Leberläppchen organisiert, die jeweils eine Zentralvene in ihrer Mitte

und eine Lebertrias an jeder Ecke aufweisen. Das Organ wird von der Leber-

trias mit Sauerstoff und Nährstoffen versorgt, während die Zentralvene dazu

dient, sauerstoffarmes Blut aufzunehmen und zum Herzen zu transportieren.

Zonierung beschreibt den daraus resultierenden interzellulären Unterschied der

Genexpression entlang des Nähr- und Sauerstoffgradienten [6]. Die Analyse von

Sequenzierdaten des Transkriptoms einzelner Zellkerne in dieser Dissertation
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führte zur Erkenntnis, dass ein Zusammenhang zwischen Genomduplizierung

und Zonierung besteht.

Darüber hinaus wurde in aktuellen Studien beobachtet, dass Fettleber die

Zonierung einzelner Hepatozyten beeinflusst [7]. Fettleber ist das erste Anzei-

chen sich entwickelnder NAFLD, die 25 % der weltweiten Population betrifft

[8]. NAFLD ist assoziiert mit Veränderungen in den genetischen Mechanismen,

die für den Stoffwechsel von Medikamenten verantwortlich sind [9]. In klini-

schen Studien, in denen neue Medikamente auf ihre Wirksamkeit und Sicherheit

getestet werden, dient die 2D Zellkultur von primären humanen Hepatozyten

(PHH) als Goldstandardmodell. Durch das Fehlen der 3D Struktur der Leber

geht jedoch die Zonierung der Zellen in diesem Modell verloren. Das zweite

Projekt dieser Dissertation erforscht daher in welchem Ausmaß Heterogenität

zwischenmorphologisch homogenenHepatozyten vorhanden ist in Abwesenheit

von Zonierung. Um die Auswirkungen von intrazellulärer Lipidanreicherung

auf den Stoffwechsel der Zellen zu untersuchen werden in dieser Dissertation

Veränderungen in der Genexpression analyisiert, besonders im Bezug auf die

Stoffwechselkapazität von Medikamenten.
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1 Introduction

The liver is responsible for the metabolism of endogenous and exogenous com-

pounds. Among these are lipids, carbohydrates, and proteins, as well as xenobi-

otics, such as alcohol and drugs. Through the metabolism of lipids, the liver is

responsible for maintaining lipid and cholesterol, and also energy homeostasis

[1]. Moreover, the liver involves in the regulation of blood volume and endocrine

control of growth signaling pathways [1]. These metabolic functions are mainly

performed by the predominant liver cell type: the hepatocytes. As the liver is

composed of 70-85 % hepatocytes in humans and 50-70 % hepatocytes in mice,

the tissue appears histologically homogeneous when inspected under the micro-

scope suggesting functional homogeneity [10][11]. Despite these morphological

observations, evidence on cellular heterogeneity has been accumulating over

the last years [12][4][11][13][14][15][16][17][18][19].

Thus, this thesis investigates layers of cellular heterogeneity in a tissue that has

traditionally been considered homogeneous. The goal is to understand these

layers in their role and relationship on tissue function.

1.1 Liver cell type composition

Hepatocytes are the predominant cell type of the liver, performingmajormetabolic

functions [10][11]. In addition, liver is also composed of other, non-parenchymal

cell types (NPCs) contributing to functional heterogeneity in the liver. These cell

types include biliary epithelial cells (cholangiocytes), Kupffer cells and other im-

mune cells, hepatic stellate cells, and sinusoidal endothelial cells (Figure 1.1)[1].

As part of the non-parenchymal compartment, cholangiocytes line the lumen

of the bile duct where they involve in bile modification and secretion 1.1. At only

3-5 %, they represent a small proportion of all cells in the human liver [20]. To-

gether with hepatocytes, cholangiocytes stem from primitive hepatocytes, often

referred to as hepatoblasts [21]. A recent study has described a hybrid cell type

sharing hepatocyte and cholangiocyte expression profiles that has the potential

to regenerate liver tissue upon injury, highlighting the functional similarities
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Chapter 1 Introduction

between cholangiocytes and hepatocytes [22].

Kupffer cells are liver-specific macrophages that reside permanently in the organ,

making up roughly one third of the non-parenchymal population [1][23]. They

detect pathogens coming from the gut as well as apoptotic cells within the liver

and regulate inflammatory mechanisms upon exposure to these stimuli [24].

Classically, macrophages in the liver are classified in two groups based on their

pro-, and anti-inflammatory gene expression pathway profiles, respectively [25].

These two populations were further characterized at single cell resolution by

MacParland et al. 2018 [18]. However, data in Su et al. 2021 led to no clear separa-
tion of macrophages into those two groups [26]. This study instead distinguished

macrophages by classifying them as either Kupffer cells or monocyte-derived

macrophages and argue that Kupffer cells have higher expression levels of pro-

inflammatory markers than monocyte-derived macrophages, and vice versa [26].

Moreover, monocyte-derived macrophages have been observed to increase in

proportion upon fat accumulation and upon 2,3,7,8-tetrachlorodibenzo-𝜌-dioxin

(TCDD)-treatment [26][27][28]. These findings indicate the presence of unap-

prehended cellular heterogeneity within a singular cell type that is dependent

on the conditional context of the tissue. Other immune cells in the liver include

neutrophil granulocytes, B- and T-lymphocytes, and natural killer (NK) cells.

While these cell types play important roles during inflammation and pathogen

infiltration in the tissue, they are not specific to the liver [26].

Hepatic stellate cells are pericytes making up around 5 % of the cells in the liver

and exist in two states, a quiescent and an active state [23]. In their quiescent

state they store vitamin A droplets, whereas upon activation, they rid themselves

of these droplets to enter a proliferative state and contribute to the formation of

scarring tissue during liver fibrosis [29][6].

Lastly, the most abundant non-parenchymal cell types are liver sinusoidal en-

dothelial cells (LSECs), comprising around 50 % of all NPCs [23]. LSECs form fen-

estrated sieve plates that facilitate exchange of metabolites and oxygen between

hepatocytes and the blood plasma while also functioning as a barrier between the

plasma and the liver cell types [1]. Liver endothelial cells have furthermore been

shown to be intertwined with other NPCs, and hepatocytes. For instance, Su et
al. have observed chimeric cell populations of endothelial-chimeric Kupffer cells,

endothelial-chimeric stellate cells, and endothelial-chimeric hepatocytes [26].

The latter have also been observed in a study by Xiong et al. [27]. Furthermore,

the co-culture of endothelial cells and hepatocytes has been observed to improve
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Liver cell type composition Section 1.1

the liver-metabolic functionality of hepatocytes [30]. Together this indicates

that liver cell types are functionally intertwined and highly heterogeneous.

Figure 1.1: Schematic overview of the cell types within the liver. Image adapted from

Ben-Moshe et al. [6]

1.1.1 Cell type identification

Traditionally, cell types are defined by their morphology and surface marker

expression, which can also be used to isolate a given cell type from a tissue

through fluorescent-activated cell sorting (FACS) building on established cell

type characteristics [31]. However, cell-to-cell variability has been observed

in populations that were previously thought of as homogeneous [32]. Hence,

sequencing a bulk of pre-selected cells relying on established marker genes limits

the opportunities to identify new cell types and cellular sub-types due to lack of

resolution. Technological advances of the last decade have enabled the study of

cellular heterogeneity in depth in an unsupervised way through the sequencing

of single cells [33][32]. A nowadays common practice is to sequence the single
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Chapter 1 Introduction

cell transcriptome as a readout of cellular function [33]. This is possible because

RNA expression has been shown to serve as an approximation of protein ex-

pression [34]. In particular, while the whole transcriptome levels have been

shown to correlate poorly to protein expression [35][36], higher correlations

have been observed for differentially expressed genes (DEGs) [34]. Hence, the

cellular transcriptome represents an easy to obtain, approximate measure of

cellular identity [34]. Single cell RNA-sequencing (scRNA-seq) has thus vastly

enhanced the characterization of functional cell types within tissues and led to

the further detection of sub-populations in existing cell types across multiple

species, in both, health and disease [37][38][39][40]. As a result, reference atlases

are being built to map and characterize all cell types present in a species. For

example, mouse has been used as a model organism for humans to extensively

study and characterize the cell types in the mammalian brain [38]. Since 2018,

a transcriptomic atlas named the Tabula muris exists as a reference for the cell
types in 20 mouse organs and tissues, a data set that is constantly growing with

addition of further cell types and organs [37]. In humans, the collaborative

work of scientists worldwide coordinated in the project of the Human Cell Atlas
(https://www.humancellatlas.org/) is aiming to achieve a comprehensive map of

all cell types within the human body and their respective characteristics [39].

As part of this, recent atlas studies have provided a deep characterization of cell

types in the heart [40] and in the lung [41][42]. Furthermore, analogous to the

efforts in mouse, the Tabula Sapiens presents an overview of the cell types in 24

human organs and tissues [43]. Independently of species and tissue, the single

cell portal (https://singlecell.broadinstitute.org/single_cell) provides an overview

of newly generated single cell sequencing studies. Specifically for the liver, the

liver cell atlas (https://www.livercellatlas.org) stores data sets of scRNA-seq for

both, mouse and human. These reference atlases provide a powerful resource

of characteristic gene expression profiles in populations of functionally similar

cells.

This is of particular interest when annotating cell types in a scRNA-seq ex-

periment. A key step in identifying and annotating cell types and states from

scRNA-seq data is the correct assignment of cells into functionally similar groups.

Computationally, this is usually done by constructing a neighborhood graph

based on the k nearest neighbors of each single cell before applying a clustering

algorithm to group cells together [44]. Deciding on the number of clusters to cor-

rectly capture the full heterogeneity of a given sample while keeping cells with
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Liver cell type composition Section 1.1

same functionality grouped together hence represents an important, non-trivial

task. Approaches to solve this problem include the calculation of similarity

scores to separate distinct groups and minimize intra-cluster variability, e.g.

through hierarchical clustering [45][46]. While calculation of similarity scores

and subsequent hierarchical clustering represents an unsupervised approach,

the final decision on the number of clusters is still subjective [46]. Thus, deter-

mining a reasonable number of clusters often relies on incorporating additional

information, e.g. marker gene expression [45][46]. Additionally, performing

power analysis can help to identify the minimal informative number of cells

within a cluster, hence setting a limit to the maximum number of clusters. For

instance, Vieth et al. have developed an R-based tool to explore the power to

detect differential expression between groups of interest based on the experi-

mental design [47]. Expanding on this, Schmid et al. further developed a method

to calculate the power for detecting cell types contributing at a given proportion

to a tissue [48]. These methods can therefore be used to assess the minimum

portion of a cells that can be reliably compared to the rest and provide a guidance

for filtering steps [48].

After the cells are clustered together based on their transcriptomic similarity,

cell type annotation is usually performed. To that end, known reference marker

gene sets can be used to identify and annotate groups of cells in scRNA-seq ex-

periments. Advances in the computational analysis nowadays make it possible to

directly use sets of reference genes to score single cells for a given cell type based

on their gene expression profile [49]. Additionally, efforts have been and are

being made to FACS-sort known population of cells based on surface markers to

then deeply characterize them through scRNA-sequencing for building reference

gene data bases [37][50][43]. As these reference atlases are composed of a large

amount of cells, they can be used for transfer learning, i.e. leveraging their cell

type annotation onto clusters of cells from an unlabeled scRNA-seq experiment

[51]. Expanding the knowledge about cell types, the combined information of

clusters andmarker gene expression further facilitates downstream identification

and characterization of previously unknown cellular subtypes and cell states

[16]. For instance in this thesis, markers of metabolic pathways are used to

annotate subgroups of hepatocytes in a single cell RNA-sequencing (scRNA-seq)

experiment.
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Chapter 1 Introduction

1.1.2 Plate-based and droplet-based sequencing approaches

The first step of any scRNA-seq experiment is the isolation of single cells. Gen-

erally, two major approaches for this step of scRNA-seq technologies exist:

plate-based and droplet-based methods. In plate-based approaches, single cells

or nuclei are sorted into the wells of microtiter plates resulting in each well

containing one single cell or nucleus [52][53][54]. Contrary to this, droplet-based

approaches encapsulate the single cell or nucleus into a lipid droplet [55][39].

In both techniques, individual cells or nuclei receive a unique barcode allowing

their later identification when cells are pooled for sequencing [56]. Plate-based

and droplet-based techniques come with their own advantages and disadvan-

tages. In general, plate-based approaches offer a lower throughput of sequenced

single cells due to the restriction to individual plates [57][56]. However, on aver-

age, plate-based sequencing approaches generate high transcriptome coverage,

with more reads being mapped to the reference genome and the detection of

lowly abundant transcripts, especially the commonly used plate-based method

SMART-seq2 [57][56]. Therefore, plate-based approaches are generally known

to achieve a larger number of read counts across genes per single cell, referred

to as the library size [57][56]. Furthermore, SMART-seq2 allows the sequencing

of full-length transcripts, additionally increasing the yield of reads mapping to

the reference genome [53]. This also enables the investigation of allele-specific

and isoform expression [58].

On the other hand, droplet-based approaches, such as the platform of 10X Ge-

nomics, yield a high throughput of cells, although with the cost of a loss in

sequencing depth [39][58][56]. These techniques are therefore especially suit-

able for studies exploring rare cellular sub-populations in a given context, e.g.

an organ or a disease state [56][40]. As shown in this thesis, the choice of

experimental approach has to be considered carefully as it impacts the results

and the application of analysis methods. The high throughput in droplet-based

techniques has greater power for the detection of cell sub-types. Contrary

to that, full-length plate-based techniques yield high quality transcripts [56].

Hence, apart from the ability to identify and characterize new cellular subtypes,

plate-based scRNA-seq techniques offer a powerful tool to perform in-depth

comparisons of the functionality of groups of interest.

6



Polyploidization Section 1.2

1.2 Polyploidization

A characteristic feature of hepatocytes is their tendency to undergo whole

genome duplication, referred to as polyploidization [59][60][61]. Polyploidiza-

tion occurs naturally in some mammalian tissues including, but not limited to,

heart, muscle, and liver [62][63]. In the liver, the process starts after weaning

and happens through the failure of cytokinesis [2][64]. As a result, polyploidy

occurs in the adult mammalian liver and increases with age [61]. In mice, up to

80 % of hepatocytes are polyploid in adult animals, whereas in humans polyploid

hepatocytes make up to 50 % of the adult liver [64]. Failure of nuclear division

leads to cells containing a single nucleus with duplicated genome content, i.e.

tetraploidy. Likewise, complete nuclear division before failure in cytokinesis

results in cells containing two nuclei each containing one set of chromosomes, i.e.

bi-nucleated diploid cells (Figure 1.2). Further incomplete divisions lead to mono-

and bi-nucleated tetraploid, octoploid, and hexadecaploid hepatocytes. Never-

theless, the concrete role of these polyploid sub-populations remains unclear.

Initially, polyploidy has been proposed to act protective against hepatocellular

carcinoma (HCC) as more genome copies can prevent loss of heterozygosity

events and buffer against mutational damage [65][3]. However, an enrichment of

hepatocytes featuring high ploidy levels (>8n) has been observed in HCC and was

associated to poor prognosis [5]. Moreover, tetraploid hepatocytes have been

associated to intrahepatic lipid accumulation, therefore potentially accelerating

progression of non-alcoholic and alcoholic fatty liver disease (NAFLD/ALFD)

[4]. As part of this thesis, the effect of ploidy is explored in the healthy liver of

young adult mice to establish a healthy reference for future disease studies.

1.2.1 Computationally accounting for different library sizes

Polyploid hepatocytes contain at least double the amount of genome and are

larger in size than their diploid counterparts [65]. Furthermore, transcript con-

centration has been shown to be constant between cells of different sizes, which

results in higher transcript abundance in larger cells [66][67]. When performing

RNA-seq experiments, this can therefore lead to higher molecule counts in poly-

ploid cells that do not necessarily translate to functional differences between

diploid and polyploid cells [67]. The amount of mRNA molecules captured per

single cells in a scRNA-seq experiment is referred to as the cell’s library size

[57]. Different library sizes between individual cells in a scRNA-seq experiment

7



Chapter 1 Introduction

Figure 1.2: Failure in cytokinesis leads to polyploidization. Image adapted from Celton-

Morizur et al. [13] and created in Biorender.com

can stem from technical artifacts, such as differences in reverse transcription

efficiency between cells or differences in gene length contributing to bias during

molecular sampling [68][69]. However, they can also reflect true biological vari-

ation [70][57]. Hence, computational normalization approaches are needed to

address differences in library size between cells. The goal of normalization is for

the normalized counts to represent true gene expression that is not influenced

by extrinsic, technical factors. Library size correction is therefore a standard

pre-processing step during the analysis of RNA-seq data, aiming to distinguish

technical from biological differences [71][44]. Read counts per gene and sample

are to be scaled in such manner that differences in sequencing depths between

replicates, or single cells, are adjusted for and differential expression analysis

reveals true biological variation. Therefore, finding the correct scaling factors

for normalization can be complicated by true biological differences in overall

mRNA content between samples, and by asymmetry of differential expression,
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i.e. one sample having an intrinsically higher amount of differentially expressed

genes than the other [72]. Generally, there are two different approaches for read

count normalization with different underlying assumptions. The first approach

makes use of the read distribution for normalization purposes and comes with

the assumption that there are the same amount of differentially expressed genes

in all conditions and their expression is equally influenced by technical noise

[72]. Counts from RNA-sequencing experiments are best modeled to follow a

negative binomial distribution [73]. Anders et al. have developed an algorithm

for bulk RNA-seq experiments assuming that most genes are not differentially

expressed [74]. In their approach, library size normalization between samples

is performed by calculating a sample-wise size factor. This is done by first cal-

culating the ratios between read counts in a sample and the geometric mean

across samples. The sample-wise size factor is defined as the median of these

ratios [74]. For distribution-based normalization approaches in single cells, read

counts from scRNA-seq experiments are often modeled following a zero-inflated

negative-binomial distribution (ZINB) due to data sparsity [75]. As an example

for such a method, the R-package ZINB-WaVE uses a global normalization factor

based on the sample-level intercept in the ZINB, allowing to include gene-level

as well as sample-level covariates in factor analysis [75]. However, it can be

argued that an unconstrained negative binomial model can over-fit scRNA-seq

data [69]. To overcome this, Hafemeister et al. have proposed a generalized

linear model (GLM), in which the single cell library size is used as covariate

[69]. Their method sctransform pools genes with similar expression levels across

single cells and uses the Pearson residuals of their GLM of pooled genes against

unique molecular identifier (UMI) counts to normalize the counts [69].

The second, and most commonly used normalization approach assumes the

same total amount of mRNA between samples or individual cells. In its simplest

form, this library size normalization aims to remove differences in sequencing

depth by dividing the individual read counts per gene by the total number of

reads in each sample [72]. Additionally, if full-length transcripts have been

sequenced, it is advisable to correct for gene-length biases, i.e. longer genes

have a higher potential to be sequenced more deeply [76]. As such, the method

of calculating reads per kilobase per million mapped reads (RPKM) has been

established for bulk RNA-sequencing experiments, where counts get divided

by respective gene length in kilobases (kb) before they are summed up per

sample and divided by the total library size in millions of reads. In single cell
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RNA-sequencing experiments, normalization is often performed by summing

the reads per cell and dividing by either the total library size across cells scaled

by a factor or the average library size [77][78]. An adaptation of this approach

for the single cell world is the adjustment of the scaling factor. As a single cell

contains much fewer reads than a bulk sample, read counts are usually divided

by the sum of reads per 10,000 to 200,000 instead of one million [77][79]. In

general, this normalization approach is based on the assumption that all cells in

an experiment have equal library sizes and differences between cells are purely

technical.

However, in scRNA-seq, differences in the amount of transcripts have been

observed between cell types, violating the assumption that each cell shares

the same amount of total mRNA and rendering simple library size correction

insufficient [70]. One of the most prominent methods accounting for differences

in the amount of mRNA between cell types, is the one by Lun et al., who have

developed an R-based tool based on pooling cells with similar library sizes and

calculating pool-wise size factors before deconvoluting these size factors back

to the single cell level through random sampling [70]. This method also allows

the use of external controls to model the relationship between a gene’s average

expression level and its corresponding variance in order to distinguish technical

noise from true biological variation [70].

The addition of external controls represents another way to separate true

biological differences from technical noise is. The most commonly used control is

the addition of a regulated amount of synthetic spike-in molecules to each sample

or single cell [80][81]. Initially created for bulk RNA-seq experiments, these

molecules are designed in such manner that they do not align to mammalian

reference genomes. In bulk experiments, it is advised to adjust the spike-in

concentration such that spike-ins make up between 5 and 10 % of the library

size [82]. Since the amount of mRNA molecules can differ from cell to cell, and

it is not feasible to measure the amount of endogenous transcripts in every cell

beforehand, the same amount of spike-ins is usually added to each single cell [82].

Between-sample differences in their coverage are then supposed to be purely

technical [81]. The use of spike-ins therefore comes with the assumption that the

spike-ins are unaffected by the biological condition and are subject to the same

technical effects as the endogenous genes [72]. However, studies have shown

that technical noise affects spike-ins differently than endogenous transcripts,

violating the assumption that both are influenced in the same way [83][84].
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Moreover, when sequencing to saturation, highly expressed genes represent a

greater fraction of total sequenced molecules than less highly expressed genes

[72][84]. Hence, it can be postulated that with a higher amount of endogenous

mRNA in a cell (e.g. through polyploid cells producing more mRNA), the addition

of spike-in molecules leads to a relatively higher ratio of endogenous transcripts

to spike-ins than in cells with lower endogenous starting material [67][84]. To

address this issue, a new normalization technique has been developed in this

thesis, in which the scaling factor is adapted to minimize differences between

cells with different cell size and genome content based on the ratio of spike-in

molecules to endogenous transcripts. This is used to more accurately identify

biological differences between diploid and tetraploid hepatocytes in the young

adult mouse liver under physiological conditions (Chapter 3).

1.3 Liver zonation

While the specific functional roles of diploid and polyploid hepatocytes remain

to be explored in depth, studies have shown that they show distinct positional

preferences within the liver [85]. The liver spatial organization adds another

layer of complexity to cellular heterogeneity. Supply of oxygen and metabolites

to the liver happens through two large blood vessels: the hepatic artery and the

portal vein [1]. The hepatic artery carries oxygen-rich blood from the aorta to

the liver, whereas the portal vein transports metabolites from the gastrointestinal

tract. Both blood vessels subdivide into smaller vessels that supply the cells

within the organ with oxygen and metabolites. The liver is organized into

roughly hexagonal tissue structures called hepatic lobules [1][6]. Each of the

lobules’ vertices consists of a capillary stemming from the portal vein (PV),

surrounded by a capillary from the hepatic artery, and a bile duct. This structure

of the three co-localized vessels is called the portal triad. The center of each

lobule features a central vein (CV) collecting oxygen-deprived blood to transport

back to the heart (Figure 1.3). It has been observed that diploid hepatocytes

reside closer to the PV whereas tetra- and octoploid hepatocytes are found closer

to the CV [85]. Zonation describes the difference in expression profiles along the

gradient of nutrients and oxygen between central and portal vein [1][6]. Hence,

the cells’ transcriptomic profiles differ in relation to their position in proximity

to central or portal vein, respectively [6].
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Figure 1.3: Hexagonal structure of the liver lobule with the central vein in the middle

and the portal triad at the vertices. Image created in Biorender.com

1.3.1 Metabolism in the light of zonation

The labor division along the hepatic lobule leads to distinct functionality within

the 3D architecture [16]. Blood from the nutrient-rich portal vein makes up

75 % of the blood volume in the liver, while only 25 % of it stems from the

oxygen-rich portal artery, oxygen represents a limiting factor for hepatocytes

[86][6]. Because of that, energy-demanding tasks are therefore rather performed

periportally where oxygen is available in greater abundance [6]. For instance,

periportal hepatocytes involve in lipid 𝛽-oxidation, urea- and gluconeogenesis,

and the further secretion of glucose, proteins, hormones and bile. Meanwhile,

pericentral hepatocytes are involved in glycolysis, lipogenesis, the uptake of

cholesterol, bile and glutamine synthesis, and xenobiotic metabolism [6].

Traditionally, zonation has been studied by using (immuno-)histochemistry

and in situ hybridization (ISH) [87]. Technological advances based on transcrip-

tomic profiling have made it possible to study the gene expression profiles of
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individual hepatocytes with respect to their zonal location. As a first study to ex-

plore zonation on the transcriptomic level in mice, Braeuning et al. have isolated
populations of pericentral, and periportal hepatocytes and used microarrays to

address differential gene expression between these two groups [88]. Among the

genes involved in the metabolism of carbohydrates, Akr1b1 and Idh1 were found
to be enriched pericentrally whereas Pck1 was found periportally, highlight-

ing the spatial separation of glycolysis and gluconeogenesis in the liver lobule.

Moreover, this early transcriptomic study found that Cyp7a1, involved in bile

synthesis, and Apoc2, involved in lipid metabolism, were enriched pericentrally.

In the pathways responsible for ammonia metabolism Glul and solute carriers

1A2 and 1A4 were enriched pericentrally, while Ass1 was enriched periportally

[88]. More recently, Halpern et al. have used a combination of in situ hybridiza-

tion (ISH) and scRNA-seq to study zonation in mice at single cell resolution.

As an example from this study, the spatial coordination of the bile metabolic

pathway was confirmed in single cells, where genes involved in bile synthesis

are expressed most pericentrally, followed by downstream genes in consecutive

layers [16]. Overall, this comprises an in depth characterization of the single

cell gene expression in nine zones along the mouse hepatic lobule, producing

a comprehensible reference gene annotation for future studies investigating

zonation [16]. Building the bridge from transcriptomic to proteomic information,

a study by Berndt et al., applying quantitative shotgun proteomics to sorted

populations of pericentral and periportal hepatocytes, has revealed how protein

expression behaves between these spatially separated populations [89]. While

for both populations the uptake of free fatty acids (FFA) depends on plasma

glucose concentration, periportal hepatocytes have a higher capacity to produce

FFA. Moreover, ammonia metabolism also differs significantly on the protein

level between pericentral and periportal hepatocytes. Periportal hepatocytes

have a higher uptake of ammonia, which they administer by irreversible fixa-

tion in urea, whereas pericentral hepatocytes involve into glutamine synthesis

[89]. Exploring the cellular heterogeneity of liver in humans, MacParland et al.
have performed scRNA-seq and identified clusters of hepatocytes featuring gene

expression profiles that were comparable to the zonation profiles described in

mouse [18]. Moreover, Aizarani et al. established an atlas of the human liver

cell types, in which they performed a thorough comparison of the single cell

gene expression profiles between mouse and human in the light of zonation
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[19]. These data sets serve as a reference for gene expression profiles along the

zonation gradient.

1.3.2 Inferring spatial information from gene expression

The anatomy of zonation suggests grouping the cells into a periportal, a peri-

central, and one to several groups between both. However, the gradient nature

renders it difficult to define a discrete number of zones. Hence, up to 35 zones

along the zonation gradient have been reported in scRNA-seq studies [16][19].

Several strategies have emerged to identify transcriptional areas and assign cells

to them based on the single cell gene expression profile. Traditional approaches

feature the incorporation of external information. For example, in the developing

zebrafish embryo, Satija et al. have used in situ hybridization (ISH) RNA pat-

terns to identify "landmark genes". These genes are then used to transfer spatial

annotations onto single cells by leveraging information across co-expressed and

co-regulated genes to impute missing values of landmark genes [77]. Adapting

this approach to the mouse liver, Halpern et al. have used single-molecule ISH

(smISH) to determine landmark genes for nine zones between CV and PV. After

defining the relevant genes for each zone, they performed scRNA-seq, assigned

cells to the respective nine zones based on their gene expression profile, and

established a reference of marker gene expression in these zones [16].

Nowadays, computational approaches exist to explore the relationship be-

tween single cells based on their gene expression, independent of external

information. Initially designed to infer cellular differentiation processes, e.g. as

observed in hematopoiesis, the calculation of "diffusion pseudotime" (dpt) has

helped to better understand dynamic changes between cell states that cannot be

disentangled by clustering [90]. The idea behind this approach is that, despite

scRNA-seq methods only providing a snapshot of gene expression in a single

cell at a given time, the process of sampling many cells at once will yield cells in

different states [90]. Harvesting cells that are at different stages along a develop-

mental or differentiation process allows to order them based on similarities in

their expression profiles [90][91]. In the context of liver zonation, this approach

can be used to infer changes in gene expression along the trajectory of zonation,

hence constructing a pseudospacial relationship between cells. For the human

liver, Aizarani et al. applied dpt in this context and annotated 35 zones from CV

to PV that were used to compare zonation markers between mouse and human
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[19]. This thesis also makes use of dpt to study how the transcriptional profiles

of diploid and tetraploid hepatocytes are related to the trajectory of zonation.

1.4 Impact of hepatic steatosis on cellular
heterogeneity

Zonation might be affected by several environmental factors. For instance, the

metabolic profile that hepatocytes exhibit in response to intracellular lipid ac-

cumulation is dependent on their spatial location [7]. During the span of life,

hepatocytes can naturally accumulate intracellular lipids, known as hepatic

steatosis [92]. Hepatic steatosis is a hallmark of non-alcoholic fatty liver disease

(NAFLD) and increases over the lifetime [92]. Additionally, an increased inci-

dence of NAFLD has been reported for the elderly [92]. Nevertheless, in relation

to diet or genetic factors, NAFLD can occur already in younger individuals and

currently affects 25 % of the world-wide human population [8]. During its pro-

gression, steatosis leads to inflammation and downstream fibrosis, stating the

phenotype of irreversible non-alcoholic steatohepatitis (NASH). In 20 % of the

cases, NASH progresses to cirrhosis and can potentially lead to the development

of hepatocellular carcinoma (HCC) [93]. Studies using in vivo models fed with

a high-fat diet have shown that NAFLD affects the cell type composition of

the liver [27][7][26]. For example, NAFLD has been observed to lead to higher

proportions of immune cells in the liver and simultaneous up-regulation of

immune-related gene expression within endothelial and, to a lower extent, Kupf-

fer cells [26]. In hepatocytes, accumulation of fat alters their metabolic capacity

as can be observed through changes in gene expression in vivo. Similar as in

non-parenchymal cells, also hepatocytes up-regulate inflammatory pathways

and genes generally associated to inflammation, such as chemokines [27][26].

While in vivo models offer a great system to study the impact of intracellular

lipid accumulation on all cell types present in the liver, genetic differences

between animals and different choices for dietary NAFLD-induction can limit

reproducibility [94]. Furthermore, inter-species differences can restrict to which

extent findings from mouse and rat studies are applicable to humans [19]. For

these reasons, primary human hepatocytes (PHH) are an established model most

closely resembling the human liver [95][94]. The culture of PHH additionally

allows to study the impact of different conditions on their metabolic profile

[95][94]. For instance, hepatic steatosis can be modelled in this in vitro system
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by incubating the cells with free fatty acids (FFA)[96][94]. The common way to

do so is incubating the cells with a mixture of oleatic and palmitic fatty acids

at a ratio of 2:1 as this resembles hepatic steatosis in vivo without inducing

toxicity [96]. This approach is also used in this thesis to dissect the impact of

intracellular lipid accumulation on the metabolic heterogeneity of PHH in the

absence of zonation (Chapter 4). A drawback of the PHH culture system is that

the characteristic expression profiles associated to zonation are lost by taking the

cells out of their context of the liver lobule[97]. Nevertheless, PHH retain their

drug-metabolic profile in vitro [96][98]. As they are considered to most closely

resemble in vivo human liver, the culture of PHH in vitro therefore represents the
"gold standard" model for assessing drug safety and efficacy during pre-clinical

trials [96][98][97]. .

1.5 Drug metabolism

A major role of hepatocytes in vivo is the metabolism and detoxification of

exogenous compounds. Drug metabolism is a process consisting of three phases,

that are regulated by key hepatic transcription factors, such as HNF4𝛼 , SRC1,
and PGC1𝛼 [99][100][101]. During the first phase (phase I), members of the cy-

tochrome P450 (CYP450) super-family of monooxygenases catalyze oxidation, re-

duction, hydrolysis, and cyclization reactions in order to increase the compounds’

electrophilicity [102]. The Human Genome Project currently lists 57 members

of the P450 super-family of enzymes [103][104]. Out of these 57 isoforms, the

five members CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 are responsible

for the phase I metabolism of around 70-80% of all nowadays available drug on

the market [12][105]. Enzymes performing phase II of drug metabolism include

glutathione-S-transferases (GST), sulfotransferases (SULT), uridine diphosphate

glucuronyltransferases (UGT), and arylamine N-acetyltransferases (NAT). Dur-

ing phase II, these transferases add moieties to the metabolites from phase I

to hydrophilize the compounds, and thereby facilitate their cellular excretion

[106]. Subsequently, in phase III, transmembrane transporter proteins export the

conjugated compounds from the cell [107]. For example, caffeine is subject to N-3

demethylation by CYP1A2, followed by sulfamethazine N-acetylation by phase

II enzyme NAT2, resulting in paraxanthine that is subsequently excreted from

the body through urine [108][109]. Generally in vivo, xenobiotic metabolism is

mainly taking place in the pericentral region, where key phase I and phase II
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enzymes have been found to be up-regulated on both the transcriptomic and

the proteomic level. These include, for instance, CYP1A2, CYP2E1, GSTA3, and

SULT1B1, whereas GSTA2 and CYP2F2 are expressed periportally [88][16][89].

While many pharmacological studies focus on the overall metabolic capacity

of liver to detoxify a xenobiotic compound, a recent single cell transcriptomics

study has found that hepatocytes in vivo respond in a location-specific manner

to the hepatotoxicant 2,3,7,8-tetrachlorodibenzo-𝜌-dioxin (TCDD). Essentially,

pericentral hepatocytes were shown to up-regulate nuclear receptors relevant in

bile and lipid metabolism, whereas periportal hepatocytes up-regulated amino

acid metabolism upon TCDD treatment [28]. Given these findings, it can be

argued that the cellular context impacts the toxicity and efficacy of a given drug

in vivo and the cellular heterogeneity within the tissue has to be considered.

However, the 2D culture of PHH represents the gold standard to assess drug

efficacy and toxicity during early phases of pre-clinical trials of drug development

[95][97]. Despite the loss of zonation-dependent gene expression in this standard

in vitro culture of PHH, the cells have been shown to retain their drug-related

metabolism [95]. Namely, PHH express the enzymes related to the three phases

of drug metabolism similarly to cells in vivo and respond to substances inducing

the expression of these enzymes [95][97]. PHH therefore represent a suitable

model for the study of drug efficacy, toxicity and drug-drug interactions [110].

For instance, phase I cytochrome induction or inhibition is an indicator for the

safety of a drug in clinical trials [111]. The expression of phase I enzymes can be

induced in PHH by the presence of their substrates and measured at the protein

and the transcriptome level [112]. These substrates can thereby be used to assess

enzymatic activity, which indirectly serves as an indicator of the metabolic

capacity of PHH [110][113][112]. Herein, simultaneous targeting of several

cytochromes by a mixture of their respective substrates is formally known as

the "phenotyping cocktail approach" [110][113][112]. In this thesis, the Sanofi-

Aventis cocktail is used to measure drug-related metabolic capacity in PHH

[110]. This phenotyping cocktail consists of substrates of the five cytochromes

CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4, involved in the clearance of

70-80 % of available drugs in the market [105]. For the substrates in this cocktail,

no drug-drug interactions have been reported [110]. Together with the model of

hepatic steatosis, this allows to investigate in this thesis to which extent cellular

heterogeneity in vitro, either reminiscent in culture or gained through hepatic

steatosis, impacts the drug-related metabolic capacity of PHH (Chapter 4).
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1.6 The aim of this thesis

The general aim of this thesis is to explore cellular heterogeneity of hepatocytes

in vivo and in vitro through the analysis of single cell transcriptomic data. The

first chapter hence addresses the principles of analysis for this data type. In the

liver in vivo, intrinsic factors, such as polyploidization and zonation, contribute

to the heterogeneity in the tissue and are so far poorly understood at single cell

resolution. These factors have been shown to influence the cellular responses to

external stimuli, such as the accumulation of lipids leading to NAFLD, or the

admission of drugs. In relation to this, the third chapter in this thesis establishes

a reference of healthy cellular heterogeneity in the young adult mouse liver

under physiological conditions. The focus specifically lies on investigating the

impact of polyploid hepatocytes on liver functionality, and the relationship be-

tween ploidy and zonation in mouse. As described above, differences in size and

genomic content between nuclei of differing ploidy status present a challenge

in distinguishing true biological variation from noise and effects generated by

the expected differences in mRNA content. Therefore, a new normalization

technique is developed in this project, using spike-in read counts to minimize

the effect of library size differences between diploid and tetraploid hepatocytes.

Furthermore, the co-expression levels of stem cell marker genes are calculated

to explore the regenerative potential of tetraploid hepatocytes. Furthermore,

using reference marker genes and the diffusion pseudotime algorithm allows

to order nuclei according to their inferred spatial context based on their gene

expression profile.

For this project to study polyploidy and zonation, mice offer a commonly ac-

cepted and suitable in vivomodel system, from which results have been shown to

be applicable in humans [16]. However, the species differences between humans

and mice limits their usability as a model in other cases, such as exploring drug

effects and NAFLD [94]. Herein, hepatic steatosis can be modeled in a more

reproducible fashion using cellular in vitro models [95][98][94]. Additionally, in

the context of the discovery and development of new drugs, toxicity and efficacy

are usually tested in culture systems of primary human hepatocytes [95][96][98].

For these reasons, primary human hepatocytes are used as a model in the fourth

chapter of this thesis to study the impact of intracellular lipid accumulation

on cellular heterogeneity and their drug-metabolic capacity. Primary human

hepatocytes have been shown to retain their drug-metabolic gene expression
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profile in culture [98][95]. However, they are known to lose their characteristic

hepatocyte-like expression profile over the time in culture [114][115]. A chal-

lenge in the data analysis is therefore to distinguish true loss of expression from

technical effects resulting in smaller library sizes to correctly identify cells losing

their expression. Moreover, the 2D culture of primary human hepatocytes in
vitro is characterized by the absence of tissue-specific zonation patterns [116].

Therefore, the major aim of this project is to explore the reminiscent cellular

heterogeneity in vitro in response to external stimuli. Data integration of in
vivo data sets is used to perform comparisons of cellular heterogeneity between

in vivo and in vitro. After identifying metabolic profiles that are present in

both, in vivo, and in vitro, their response to metabolic challenges are tested. As

such, this thesis investigates how intracellular lipid accumulation affects the

gene expression profile and transcriptional variability between individual cells.

Moreover, the transcriptomic responses to a five drug cocktail are assessed to

explore to what extent individual hepatocytes deviate from each other in their

drug-metabolic response, normally and under hepatic steatosis.
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2 A brief guide to
scRNA-seq analysis

This chapter contains a comprehensive description of the methods used for analyz-
ing single cell RNA sequencing data from two different research projects. The first
project, hereafter Ploidy&Zonation, aims to dissect the impact of ploidy status on
metabolic functionality and its relationship to zonation in the young adult mouse
liver. In the second project, hereafter PHH diversity, the role of cellular heterogeneity
is studied in a seemingly homogeneous population of cells in response to environ-
mental challenges.
Different methodologies were used to address the biological questions for each of
the two projects. Nevertheless, both projects share similar computational challenges,
such as pre-processing, quality control, normalization, and batch integration. There-
fore, this chapter covers the basic steps involved to proceed from raw transcriptomic
read counts towards understandable output and explains how choices along this
processing were made to match the respective biological questions.

In this chapter, the term experiment refers to all sequencing data generated for
a given project. The donors used for both projects (mice in the Ploidy&Zonation

project; humans in the PHH diversity project) are referred to as (biological)

replicates. In case an experiment is comprised of different sequencing libraries,

these libraries are referred to as batches.

2.1 Read alignment

2.1.1 Plate-based single nucleus RNA-sequencing data

During data generation for the Ploidy&Zonation project, single nuclei were

sorted into wells of 384-well plates. A modified SMART-seq2 protocol was used

for library preparation, resulting in the recovery of full-length transcripts [117].

This approach is referred to as single nucleus RNA-seq version 2 (snRNA-seq2).

The first step in the analysis of any single cell or single nucleus RNA-seq (s*RNA-

seq) data is the alignment of reads to a reference genome. This is done to bring
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the reads into meaningful genomic context. For the Ploidy&Zonation project,

ERCC spike-in molecules had been added along the nuclear extracts into the

wells of 384-well plates [81]. Differences had been observed for the recovery of

ERCC-reads when diluting ERCCs from different lots the same way[117]. There-

fore, to generate libraries with overall similar proportions of ERCC-reads, ERCCs

had been diluted more if preliminary results otherwise showed untypically high

amounts of spike-ins [82][117]. To count both, endogenous and ERCC reads, the

reads sequenced in this data set were aligned to a combined reference genome

of mm10 and ERCC92 using STAR [118]. STAR is a broadly used alignment

software for RNA-seq data that has been shown to achieve high mapping accu-

racy and robust handling of splice junctions while requiring a low amount of

computational resources in comparison to other mappers [119]. In this project,

read alignment resulted in an average of between 213,377 and 728,614 aligned

reads per nucleus for the individual plates. Moreover, the proportion of ERCC

reads among the total number of reads ranged from 33.4 % to 79.9 % (in plate

SNI-116(R2) and plate SNI-194, respectively). This can partially be explained by

the use of different ERCC dilutions (ERCCs were diluted 1:300,000 in SNI-116(R2),

and 1:100,000 in SNI-194). Overall, the average ERCC proportion was 41.4 %

in plates with 1:300,000 dilution, and 66.3 % in plates with 1:100,000 dilution.

However, among all plates for which ERCCs were diluted 1:100,000, the share of

ERCC reads still ranged from 45.9 % to 79.9 % as shown in table 2.1.

Table 2.1: Dilution of ERCCs used in each plate together with recovered proportion of

ERCC reads among all uniquely mapped reads

Plate ERCC dilution Percentage ERCC reads
SNI-116(R2) 1 in 300,000 33.4 %

SNI-160(R2) 1 in 100,000 45.9 %

SNI-192-p1 1 in 100,000 77.2 %

SNI-192-p2 1 in 100,000 74.0 %

SNI-193 1 in 100,000 73.9 %

SNI-194 1 in 100,000 79.9 %

SNI-234(R2) 1 in 100,000 47.1 %

SNI-235(R2) 1 in 300,000 34.8 %

SNI-626 1 in 300,000 51.6 %

SNI-634 1 in 300,000 46.3 %

SNI-635 1 in 300,000 41.0 %
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In general, after alignment to a reference genome, count matrices are con-

structed by putting the reads into genomic context. For scRNA-seq experiments,

where the library is composed of mRNA molecules from both, nucleus and cyto-

plasm, the majority of transcripts only contain exons. Therefore, it is a standard

procedure to count reads falling into exonic regions [120]. However, in the

Ploidy&Zonation project presented here, single nuclei were isolated, for which

the proportion of unspliced transcripts is higher. Moreover, the SMART-seq2

technology used to generate the Ploidy&Zonation data allows the recovery of

full-length transcripts. The software and reference genome to build the count

matrix for this data set was therefore chosen with regards to the expected reads

stemming from intronic regions. In brief, to retain and use all information, htseq-
count was used to count all reads mapping to transcripts in a single nucleus,

thereby considering both, exonic and intronic reads. The reads associated to

transcripts were then aggregated into genes (Methods).

2.1.2 Droplet-based scRNA-seq data

For the PHH diversity project a droplet-based approach developed by 10X Ge-
nomics was used to generate scRNA-seq data in two batches. To optimize costs

while obtaining a high yield of information, the first batch was aimed to retrieve

a high sequencing depths whereas more cells were sequenced in the second

batch. In this project, whole single cells were isolated. Furthermore, in the 10X
Genomics approach the first 91bp at 3’ end of a given transcript get sequenced.

Therefore, the common practice of counting the reads falling into exons is suit-

able for this type of data[121]. The company providing the library preparation

kit also provides software to directly build count matrices for a given experiment,

named cellranger count [121]. This software includes an adapted version of the

STAR alignment method that can align 10X Genomics scRNA-seq data. Hence,

the scRNA-seq data from the PHH diversity project was aligned to the human

genome version GRCh38 using cellranger count. After mapping to the reference

genome, the average number of raw reads per single cell differed between 38,575

for the first batch, and 7,045 for the second batch.
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2.2 Quality control

The number of raw reads per cell that map to the reference genome gives a

measure of library size homogeneity between cells. This can be of particular

interest when comparing cells from different batches. However, that number

provides no context how informative these reads are, i.e. how many different

transcripts or genes were detected. In principle, methods achieving greater

sequencing depths have a higher probability to capture lowly expressed genes

and therefore should recover an overall greater number of genes [56]. Thus, the

total number of detected genes in a s*RNA-seq data set serves as a measure for

the quality of the data set.

Figure 2.1: A Total number of genes detected in three different scRNA-seq experiments.

B Number of expressed genes per cell or nucleus in different data sets. C Number of

transcript counts in a plate of snRNA-seq2. D Scatter plot depicting the number of ERCC

reads against the number of endogenous reads colored by the total mapped reads for a

plate of the snRNA-seq2 data set.
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Different experimental approaches show different sensitivity to detect genes.

While plate-based approaches usually aim at higher sequencing depths with

low cellular throughput, droplet-based approaches, such as from 10X Genomics,

yield high cellular throughput but at a usually more shallow sequencing depth

[57][56]. Moreover, even when using the same experimental approach, the

total number of detected genes can differ substantially between s*RNA-seq data

sets, depending on differences in the chemistry used or when experiments are

performed in different laboratories. For example, figure 2.1 A depicts the total

number of detected genes in a Venn diagram between three scRNA-seq data sets

all performed on human liver cells [19][122]. While 14,972 genes were found

to be commonly detected in all three data sets, between 1,056 and 9,751 genes

were found individually in only one of the data sets. In line with plate-based

approaches yielding higher coverage, the number of detected genes was highest

in the roughly 10,000 cells from the Aizarani in vivo data set [19]. The two

batches from the PHH diversity project were comprised of a total of roughly

60,000 cells and had a higher share of detected genes between each other than

to the in vivo data set [19]. This can also be due to the in vivo data set consisting
of different cell types, hence yielding a broader variety of genes.

The difference between methodologies becomes even more evident when

transferring the information on gene detection back to the single cell level. For

example, the number of genes detected in each single cell or nucleus is depicted

in figure 2.1 B for different s*RNA-seq data sets done on liver figure. This

allows the comparison of plate-based and droplet-based s*RNA-seq data sets that

were generated wither within the same laboratory or in different international

laboratories. On average, the snRNA-seq2 data set had the highest number

of genes detected per nucleus. However, both, the first batch from the PHH

diversity project, and the plate-based data set from the Tabula muris consortium,

featured a fraction of cells with a higher number of genes (Figure 2.1 B) [37].

The technical heterogeneity within a singular experiment can be seen in figure

2.1 C, where the number of endogenous transcripts recovered per single nucleus

is shown based on which well of a 384-well plate the nucleus was in. In the

depicted plate SNI-634 from the Ploidy&Zonation snRNA-seq2 data set, lower

transcript counts are observed in the wells located at the edges of the plate

(Figure 2.1 C). Previous studies have shown that the outer rows of microtiter

plates can experience poorer library quality in comparison to wells at the center

of the plate due to higher evaporation rates at the edges, which could explain
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this pattern [123]. Moreover, more than 220,000 endogenous transcript reads

were detected for two nuclei on this plate while the plate average was at 59,089

endogenous transcript reads per nucleus.

Overall, these results indicate that data quality and metrics for suitable filter-

ing procedures depend on the sequencing approach. Moreover, library size

fluctuations within the same plate and between plates showcase the need for

appropriate normalization techniques.

2.3 Normalization

As described in the introduction of this thesis, the goal of normalization is for

the normalized counts to represent true gene expression that is not influenced by

extrinsic, technical factors. The addition of ERCC spike-ins offers another way

to adjust read counts for technical variation [81]. Assuming that ERCC spike-ins

are affected by technical variation the same way as endogenous transcripts,

adding the same amount of ERCCs to each single cell can help to distinguish

this purely technical variation from biological variation [82].

2.3.1 Adjusting for polyploidy using spike-ins

Amplification bias has been observed leading to differences in amplification rates

between ERCC molecules and endogenous transcripts, violating the assumption

that both are subject to the same technical variation [83][72][84]. Especially

for cells expressing low amounts of endogenous transcripts, this can lead to the

proportion of ERCC reads being artificially inflated [83]. The Ploidy&Zonation

project is comprised of diploid and tetraploid nuclei, with higher transcript

counts being expected in tetraploid cells based on the differences in nuclear size

[67][66]. Therefore, an artificial inflation of spike-in reads in the diploid fraction

can bias differential expression analysis between the populations of interest.

The occurrence of this bias is exemplified on plate SNI-626, where some nuclei

experienced a large number of ERCC reads and little amount of endogenous reads,

and vice versa (Figure 2.1 D). Thus, the ratio of ERCC and endogenous reads

per nucleus has to be taken into account for correct normalization in this data

set and a new normalization technique was developed to do so. Briefly, nuclei

with a proportionally high fraction of ERCC to endogenous reads were divided

by a smaller number than nuclei with a low fraction of ERCC to endogenous

26



Normalization Section 2.3

reads (Methods). This was done to avoid differences in gene expression between

diploid and tetraploid nuclei to be purely driven by their respective amounts of

endogenous transcripts. This normalization technique will hereafter be referred

to as ERCC ratio normalization (ERN).

Hepatocytes
Hepatobiliary 
cells
Endothelial cells

Lymphocytes
Stellate cells
NA

Kupffer and 
dendritic cells

t-SNE1

t-
SN

E2

t-SNE1 t-SNE1

scran 
embedding & annotation

snRNA-seq2 
embedding & annotation

Cell type correspondence #DEGs scran #DEGs snRNA-seq2

scran embedding, 
snRNA-seq2 annotation

H
ep

at
oc

yt
es

H
ep

at
ob

ili
ar

y 
ce

lls
En

do
th

el
ia

l c
el

ls

Ly
m

ph
oc

yt
es

St
el

la
te

 c
el

ls N
A

Ku
pff

er
 a

nd
 

de
nd

rit
ic

 c
el

ls

0

0.2

0.4

0.6

0.8
1250

1000

750

500

250

0
2n 4n 2n 4n

A

D E

B C

F

Figure 2.2: A t-SNE of the snRNA-seq2 data normalized by ERN. B t-SNE of the snRNA-

seq2 data normalized using scran. C t-SNE of the snRNA-seq2 data normalized using

scran but colored by the cell type annotation established after applying ERN.DHeatmap

depicting cell type annotation correspondence between the different normalization

techniques. E Barplot depicting the number of DEGs in 2n and 4n hepatocytes after scran

normalization. F Barplot depicting the number of DEGs after snRNA-seq2 normalization.
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Comparison to scran

Normalization techniques have previously been bench-marked by Vieth et al.
with the method scran outperforming other techniques in terms of recovering

true differential expression between conditions of interest [124]. Thus, to test

the performance of ERN in comparison to a commonly used normalization pro-

tocol, scran was applied to the Ploidy&Zonation snRNA-seq2 data set. After

applying both normalization approaches (ERN and scran) independently to the

data set, nuclei were clustered by Louvain clustering and embedded in a t-SNE

for visualization. For each cluster, marker gene expression was investigated to

correctly annotate cell types present in the tissue (Methods). When using ERN,

the non-parenchymal cells showed generally poor separation on the embedding

(Figure 2.2 A). However, Louvain clustering led to the identification of all relevant
non-parenchymal cell types (Figure 2.2 A). In comparison, scran normalization

revealed a visually more evident separation of non-parenchymal cell types on

the t-SNE embedding (Figure 2.2 B). Between the two methods, the cell type

annotation of each nucleus showed an overall great correspondence. This can

be seen by visualizing the cell type annotation achieved after ERN on top of

the scran embedding (Figure 2.2 C). These results were further quantified by

calculating the percentage of nuclei assigned to a specific cell type between

the two normalization techniques (Figure 2.2 D). For Hepatocytes, and Kupffer-

and dendritic cells, more than 80 % of nuclei were assigned to the same cell

type between the two normalization approaches. The lowest correspondence

was found for Lymphocytes and Endothelial cells, because many of the nuclei

annotated as lymphocytes after ERN were labeled as endothelial cells after scran
normalization (Figure 2.2 D). Lymphocytes have been observed to be subject to

dissociation-related changes in gene expression making them prone to feature

an overall lower level of mRNA expression than other cell types, and harder to

capture through snRNA-seq [125]. Therefore, the differences between normal-

ization techniques could potentially be explained by scran aiming to preserve

differences in mRNA levels between cell types whereas ERN tries to minimize

them.

The goal of this Ploidy&Zonation project is to identify defining gene expression

characteristics between diploid (2n) and the tetraploid (4n) hepatocytes that

are independent of their respective mRNA content. As shown in figure 2.2 E,

using scran as a normalization technique led to the detection of more than 1,250

up-regulated genes in 4n hepatocytes. This number of up-regulated genes is

28



Batch correction Section 2.4

potentially confounded by the greater amount of mRNA molecules occurring in

larger nuclei [67]. Meanwhile, the specifically designed ERN led to the detection

of 241 up-regulated genes in 4n against 2n. Hence, by using ERN for normaliza-

tion, the differences identified between the two groups of interest are less likely

to be purely confounded by nuclear size and better represent true functional

differences between the two groups.

2.3.2 Droplet-based scRNA-seq data

The goal of the PHH diversity project was to identify functionally heterogeneous

groups of hepatocytes in response to treatment conditions. The data set from this

project was comprised of primary human hepatocytes (PHHs) with unknown

ploidy status. For data sets in which it is not known whether cells contain

the same mRNA levels, scran has been shown to produce robust results under

different scenarios [124]. Furthermore, scran has been reported to outperform

simple library-size normalization techniques by better preserving biological

variance while removing technical variations [124]. Due to the ploidy status

being unknown and no ERCCs being present, scran was therefore used for

normalization in this project (Methods).

2.4 Batch correction

As shown above, normalization aims to remove technical variation between

cells or nuclei within an experiment to only retain true biological differences

between the populations of interest. Apart from the technical differences within

one experiment, data sets can be comprised of several experiments resulting

in batch effects. In general, batch effects can stem from different laboratories

or experimentalists performing the experiments, e.g. by imposing variations in

sample acquisition or handling, used reagents and protocols [126]. Even when

experiments are performed in the same laboratory by the same person, batch

affects can arise from different flow cells or sequencing lanes being used, or in

the case of plate-based approaches, the respective plates [126]. Additionally,

biological factors also contribute to batch affects. These include the individual

or animal a sample was taken from, the spatio-temporal context of sample

acquisition, and stochastic differences in cell type composition [126].
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2.4.1 Removing plate-dependent differences

In the Ploidy&Zonation project, batch effects can be observed by plates dis-

playing different number of transcripts, which represents a source of unwanted

technical variation that cannot be attenuated by normalization alone (Figure

2.3 A). Applying batch correction methods to adjust for this heterogeneity is

therefore crucial [71]. Several batch correction methods have been developed

for the integration of s*RNA-seq data sets aiming to remove unwanted variation

by i) changing the neighborhood graph or ii) the embedding to bring together

similar cells from different batches, or iii) directly adjusting the counts inside the

count matrix [126]. For example, comBat applies a linear regression to remove

coverage differences between plates, leading to similar reads counts between

plates (Figure 2.3 B)[127]. Due to its fast and easy usability, comBat was used to

remove batch effects in the Ploidy&Zonation snRNA-seq2 data set (Methods).
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Figure 2.3: A Violin plot depicting the number of raw reads per single nucleus for each

of the analyzed plates B Violin plot depicting the number of batch corrected, normalized

reads per single nucleus in each of the analyzed plates.

2.4.2 Donor-specific analysis and batch integration

The PHH diversity data set is composed of single cells from four male human

donors, whose clinical characteristics are summarized in table 2.2. As described

above, the data set was sequenced in two batches, each containing cells from two

of the donors. While the first batch (donors HUM180812 (1) and HUM4152 (2))
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yielded an average of 38,575 reads per cell, the second batch (donors HUM181641

(3) and HUM4190 (4)) yielded an average of 7,045 reads per cell. Because of this

technical variability between the batches, initial analysis was done separately

per donor. The goal of this analysis was to identify biological variation that was

present in all four donors. In particular, this was done because batch integration

methods can potentially over-correct the data [126]. Therefore, analyzing the

donors individually helps to obtain an overview of biological variation across

donors before applying batch integration approaches. As depicted in figure 2.4

A-D, biological variation was present within the primary human hepatocytes

(PHHs) in all four donors, independently of the cells’ treatment conditions. In

particular, every donor showed at least four clusters of hepatocytes (Figure

2.4 A-D). To compare the identified clusters between donors, the top 1,000

differentially expressed genes were obtained for each cluster in every donor, and

their overlaps between donors were calculated. This led to the detection of three

transcriptionally similar clusters that were present in all four donors, hereafter

named shared cluster 1, 2, and 3 (Figure 2.4 E, Methods).

Table 2.2: Selected clinical characteristics of the four male human donors used in the

PHH diversity project

Donor ID Age Drug/Tobacco/Alc. use Ethnicity
HUM180812 (1) 57 No/No/Social Hispanic

HUM4152 (2) 18 Yes/No/No Caucasian

HUM181641 (3) 56 Yes/No/Social Caucasian

HUM4190 (4) 26 No/Yes/No Caucasian

However, some clusters were only detected in one of the four donors (e.g. clus-

ter5 in donor1 and cluster1 in donor3, hereafter named "icluster1" and "icluster2",

respectively). Additionally, cluster2 and cluster3 in donor1 showed similarity to

cluster2 in donor2. These clusters were therefore grouped into shared cluster4,

which was not observed in the donors of the second batch (Figure 2.4 A, C,

and E). The detection of shared clusters between donors was used as basis for

the joint analysis of all four donors together (Methods). After performing joint

filtering and library size normalization, the cells from shared cluster3 already

showed relative proximity on a UMAP embedding before batch correction was

applied (Figure 2.5 A). Moreover, cells from the first batch (donors 1 and 2) were

embedded more closely to each other between the two donors than cells from
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the second batch (donors 3 and 4), in which only a group of cells from donor3

appeared in proximity to the cells from donor4 on the UMAP (Figure 2.5 B). To

choose the most suitable option for overcoming the difference in sequencing

depth between the two batches, batch integration methods were applied and

compared.
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Data integration using Harmony

Harmony is an unsupervised integration method aiming to create a joint embed-

ding for integrated data sets [128]. This joint embedding puts cells from different

batches into the same groups based on their gene expression [128]. As such,

Harmony has been shown to achieve high data integration while preserving bio-

logical relationships between the cells [126]. Applying this method to the PHH

diversity data set brought together those clusters that had previously been identi-

fied to be shared between donors (Figure 2.6 A). Therefore, Louvain clustering on
the Harmony embedding was used to finalise the annotation of the clusters that

were unique per donor, resulting in the identification of four PHH subgroups that

are based on the shared clusters. For instance, cells from "icluster2" (specific to

donor3) were separated into different clusters on the integrated embedding, and

thus assigned to subgroup I, and II, respectively. Overall, cells from donor1 and

donor2 were integrating well with both, donor3 and donor4, whereas cells from

donor3 and donor4 were more separated on the UMAP (Figure 2.6 B). Subgroup

III was the only group represented by only one Louvain cluster and had the most

equal proportions of all four donors (Figure 2.6 A-D).
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Figure 2.5: UMAP of the unintegrated PHH diversity scRNA-seq data comprised of

four human donors sequenced in two batches, colored by A shared clusters between

donors and B donors.

Additionally, some cells from the second batchwere initially assigned to shared

cluster2 based on the individual donor analysis. However, after integration,

these cells were clustering with cells from shared cluster4 that had only been

identified in donors from the first batch. As later downstream analysis showed,
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these subgroup IV cells were losing their hepatocyte-characteristic expression

along culture time [114][115]. Their identification in donor1 and donor2 is

likely due to the higher sequencing depth achieved in the first batch, enabling a

better cluster separation [47][48]. Furthermore, cells from "icluster1" (specific

to donor1) were also annotated as subgroup IV after integration. Despite the

overarching biological similarity of the subgroups, donor-specificity was still

present within some of the identified subgroups. For example within subgroup

II, Louvain clusters 8 and 11 were mainly composed of cells from donor3, while

the majority of cells in clusters 0, 3 and 10 were stemming from donor4 (Figure

2.6 A-C). Nevertheless, in summary, this unsupervised integration approach and

the subsequent Louvain clustering allowed the annotation of PHHs into four

major subgroups that were present in all four human donors (Figure 2.6 D).
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Confirmation through scGen

As a guided integration software, scGen uses a variable autoencoder (VAE) based

on the low-dimensional representation of the cells to predict the impact of a

batch on gene expression [129]. To work effectively, this method relies on the

annotation of cell types prior to integration [129].
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was performed using scGen, colored by A shared clusters, B human donors, C subgroup

annotation inferred from the Harmony-integrated data, and D Louvain clusters on the

scGen-integrated data.

Hence, to test this integrationmethod, the previously identified shared clusters

between donors were used as pre-annotated cell types. While cells from shared

cluster2 are brought together better than when using Harmony, a group of

cells from shared cluster3 stemming from donor4 were separated from the

rest of cells in that group (Figure 2.7 A and B). Overall, a higher degree of
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separation was observed between donors for scGen in comparison to Harmony
(Figure 2.7 B), especially for donors 1 and 2 that were integrated better through

Harmony. The subgroup annotation inferred after applying Harmony batch

correction was put onto the scGen embedding to compare the findings to the

Louvain clustering resulting from scGen. Consistent to the results from Harmony,
cells from "icluster1" were grouping with cells from shared cluster4. However,

because scGen makes use of the pre-defined cell type annotation gained from

the individual donor analysis, this method had a bias to group together cells

with same shared cluster annotation. Hence, "icluster1", "icluster2", and shared

cluster4 were more separated from the other clusters on the UMAP than when

using Harmony (Figure 2.7 A). Moreover, the cells from the second batch that

were found to belong to subgroup IV afterHarmony were embedded more closely

to cells from shared clusters 1 and 2 than to shared cluster4 (Figure 2.7 A, C,

and D). Therefore, using scGen could result in these subgroup IV cells getting

wrongfully assigned to subgroup I, and II. Overall, it can be concluded that

both integration methods led to a consistent identification of four hepatocyte

subgroups. Due to the unsupervised nature of Harmony leading to a more

intuitive subgroup annotation, this was the final method of choice.

2.5 Transcriptional variability

After the identification of cell types or groups of interest in the whole data set, the

next step in single cell RNA-seq analysis is often calling differential gene expres-

sion between these groups of interest. Differential expression of mRNA has been

shown to be usable as approximate measure for protein production [34]. Hence,

differences in transcript abundances give information about how groups of cells

differ in their functionality [34]. Apart from the total differences in transcript

abundance, cells also fluctuate in their stochasticity to express a given gene. This

is because mRNA and protein production are stochastic processes resulting in

intrinsic variation in their respective yields [130]. The variation in mRNA yield

between cells of the same type is often referred to as transcriptional variability,

or noise. In s*RNA-seq data, several factors can contribute to transcriptional

variability, including technical noise, sampling bias, and biological variability.

Technical noise can be introduced during the generation of scRNA-seq data and

affects the accuracy of gene expression measurements [54]. Sampling bias can

occur when the cells in a sample are not representative of the entire popula-
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tion, resulting in skewed results [131]. Biological variability can be caused by

differences in the cellular environment, such as the transcriptional regulators

active within a cell, or external factors [131][130]. For instance, cells from elderly

people have been shown to increase in background gene expression, i.e. more

noisy transcription, which is in turn associated to a less targeted response to a

stimulus [132][133]. Hence, measuring this transcriptional variability is a tool

to assess the uniformity of gene expression in population of cells.
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Figure 2.8: A Scatter plot showing the relationship between the traditionally calculated

coefficient of variation (CV) and the mean gene expression, colored by B highly variable

genes (HVG) identified by applying cellranger’s method, and C HVG identified by

applying a cutoff on the CV calculated on log-transformed data.

While traditionally, transcriptional variability is oftenmeasured through single

molecule fluorescence in situ hybridization (smFISH), single cell sequencing

techniques offer to dissect differences on the whole transcriptome level across

individual cells [131]. In s*RNA-seq, transcriptional variability is often measured

as the coefficient of variation (CV), defined as the standard deviation divided by

the mean [77]. However, genes with a low mean expression have been shown

to have an artificially high CV [134][130]. This effect is exemplified here in

figure 2.8 A for the snRNA-seq2 data set of the Ploidy&Zonation project. Several

computational approaches exist to adjust for this effect [135][134][136][137].

One of the earliest computational techniques works by computing the distance

between the squared CV and a rolling median along expression levels [135].

Later techniques implemented approaches to model the noise in ERCC reads to

correct the endogenous counts accordingly [134][136]. A recent approach by
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Dominic Grün constructs a neighborhood to identify homogeneous cell states,

allowing to disentangle transcriptional noise in a given neighborhood [137].

Based on the approach by Kolodziejczyk et al. other modern and commonly used

computational tools also apply a rolling median to the linear fit between mean

and CV to correctly identify highly variable genes [78][77]. For example, figure

2.8 shows highly variable genes identified by applying the "cellranger" method

implemented in scanpy revealing that very lowly expressed genes do not get

called highly variable despite their high CVs. Logarithmic transformation of the

count data decreases the issue of high differences in mean expressions between

genes. However, Canchola et al. have shown that calculating the traditional

CV (standard deviation divided by the mean) on log-transformed count data

is not precise because it often results in underestimation of variability [138].

Instead they report a formula specifically adjusted to calculate the CV on log-

transformed data (Methods) [138]. Hence, this formula was used to calculate

the CV for both data sets in this thesis. In the Ploidy&Zonation project, highly

variable genes were identified based on this CV calculation by making use of

the ERCCs (Methods). Arguing that variability in the spike-in molecules, that

were added in the same quantities to all wells, should only stem from technical

sources, the CV was calculated for the ERCC reads. Endogenous genes were

therefore called highly variable if they deviated more than one standard deviation

from the median observed for the ERCCs (Methods). As depicted in figure 2.8

C, the thereby identified highly variable genes are independent of mean the

expression, deeming this an appropriate approach of identifying highly variable

genes (Figure 2.8 C).
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3 Ploidy in young
healthy mouse liver

While the previous chapter contained an overview of common decision points during
the analysis of scRNA-seq data, this chapter goes in depth on the downstream
analysis of the in vivo snRNA-seq2 data set used for the Ploidy&Zonation project.
The focus of this analysis is to elucidate how gene expression differs between diploid
hepatocytes and tetraploid hepatocytes. Moreover, the follow-up question addressed
in this chapter is how hepatocytes featuring different levels of ploidy relate to liver
zonation, i.e. whether the gene expression of both hepatocyte populations can be
linked to zonation patterns, indicating that they show spatial preferences. The
majority of the results presented in this chapter are published in Richter et al. 2021
[117].

3.1 Method overview

A

Figure 3.1: A Illustration of the workflow performed by the experimentalist to obtain

snRNA-seq2 data. Briefly, flash-frozen liver tissue was dissected, nuclei were isolated

and subjected to FACS sorting based on their genome content. A liquid minimization

robot was used during the generation of full-length cDNA libraries. This illustration

was taken from Richter et al. [117]

39



Chapter 3 Ploidy in young healthy mouse liver

For the Ploidy&Zonation project described in this chapter, data was generated

using snRNA-seq2 that employs FACS to sort nuclei by their genome content.

SnRNA-seq2 is a method developed by the Martinez-Jimenez lab that enables

data generation from frozen samples. Thus, it allows the exploration of long-term

archived samples of both, healthy and diseased conditions [117]. The method is

plate-based and follows a modified SMART-seq2 protocol, allowing the recovery

of full-length transcripts. As shown in figure 2.1 B, the number of genes per

single nucleus obtained through the snRNA-seq2 method outperforms other

single cell and nucleus RNA sequencing protocols. In the Ploidy&Zonation

project presented in this chapter, the snRNA-seq2 method was used and led to

the acquisition of on average 557,385 reads and a median of 3,599 genes per

nucleus. The high number of detected genes per nucleus represents an advantage

of the snRNA-seq2 method over other approaches. To investigate whether this

high number is achieved through the improved chemistry of the protocol or

can be obtained by deep sequencing regardless of chemistry, cells were deeply

sequenced in a droplet-based 10X Genomics experiment. This attempt, however,

failed with 1,000,000 reads per single nucleus only resulting in a median of

2,776 genes per nucleus. Extrapolation on the saturation curve revealed that a

hypothetical average sequencing depth of 2.3 million reads per nucleus would

be required to reach a median of 3,600 genes per nucleus. (Methods, Figure 2.1 B,

right). In line with plate-based approaches achieving higher sequencing depths

than droplet-based approaches, this provides further evidence that plate-based

approaches yield higher library complexity [57][56].

Working on flash-frozen tissue complicates the isolation of intact whole cells

as thawing induces breaks in the cytoplasmatic membrane [139] [140][141].

The isolation of single nuclei is therefore a compromise between being able

to work on archived samples and obtaining single cell information [142]. The

gene expression from single nuclei and single cell extracts has been compared to

determine to which extent data from single nuclei represents the transcriptional

landscape of single cells [143]. For instance, Lake et al. have reported correlations
in the range of 0.53 to 0.74 between nuclear and whole cell gene expression for

all detected genes in brain samples, depending on the cell type [143]. In the liver,

the transcriptional profile captured by single nucleus RNA-seq has been shown

to correspond to bulk measurements [28]. However, it remained to be explored to

which extent the nuclear transcriptome of hepatocytes isolated from liver tissue

correlates with the whole cell transcriptome (mRNA). To address this question, in
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Method overview Section 3.2

the Ploidy&Zonation project, the gene expression obtained through snRNA-seq2

was correlated to the Tabula muris data set. This publicly available data set is

comprised of whole liver cells obtained using the plate-based smart-seq method

[37]. Only hepatocytes were used for this comparison (Figure 3.2). The nuclear

transcriptome was found to correlate at a Pearson correlation of 0.62 to the total

mRNA expression from single cells. In summary, this shows that hepatic nuclei

extracts capture the transcriptional landscape of whole hepatocytes in agreement

with the previously reported correlation in brain cells [143].
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Figure 3.2: A Scatter plot showing the logarithmic mean expression for all genes shared

between the snRNA-seq2 data set from this thesis and the Tabula muris scRNA-seq data

set [37]. Red line indicates the regression line, 𝜌 = 0.62. This figure was adapted from

Richter et al. [117].
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Chapter 3 Ploidy in young healthy mouse liver

3.2 Cell type identification

The snRNA-seq2 data set for the Ploidy&Zonation project stems from young

healthy mouse livers that are comprised of a variety of cell types as described

in the introductory section of this thesis. Apart from hepatocytes, cell types

expected to be present in this data set from liver tissue include Kupffer and

Dendritic cells (APCs), endothelial cells, cholangiocytes, hepatic stellate cells

(HSCs), and immune related cells. To computationally separate them from

each other and annotate them, Louvain clustering was performed and publicly

available marker genes were used in form of curated marker gene lists (Methods)

[50].
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Figure 3.3: A Stacked violin plot depicting three representative marker genes per iden-

tified cell type in the in vivo snRNA-seq2 data set. B Bar plot adding up the percentage

of different cell types detected from single nuclei sequencing of frozen mouse liver. C
t-SNE embedding of the single nuclei colored by their ploidy status.

In brief, low resolution Louvain clustering (resolution = 0.2) separated the

non-parenchymal cells (NPCs) from hepatocytes, a split that can also be observed

on the t-SNE embedding (Figure 2.2 A). Marker genes such as Hnf4𝛼 , Ces3a, and
Cyp27a1 were used to identify hepatocytes. In line with what is expected from

histological reports, 64.3 % of the sequenced nuclei were assigned to hepatocytes
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Cell type identification Section 3.2

while the rest were stemming from NPCs (Figure 3.3 B) [10][11]. The FACS

sorting of nuclei based on genome content allows to assess the ploidy levels of

individual nuclei. As shown in figure 3.3 C, the majority of NPCs were found

to be diploid (upper left population on the t-SNE) while hepatocytes were split

into diploid and tetraploid nuclei. However, NPCs featured a small population

of tetraploid cells, making up 6.6 % of the data. These could either be nuclei

clumping together during sorting, or nuclei from dividing cells that contain

a duplicated genome due to replication. To address this question, cell cycle

analysis was performed using cyclone. This software assigns cells to either

G1, S, or G2M based on scores for cell cycle marker genes [144]. Overall, the

majority of nuclei were assigned to G1, indicating their gene expression profile

was not associated to active division (Figure 3.4 A and B). Hepatocytes showed

the lowest proportion of nuclei in division with only 5.6 % of hepatocyte nuclei

being assigned to either S or G2M phase. This is in line with studies showing

that the majority of hepatocytes reside in the liver in a non-divisive, quiescent

state (G0) with an estimated turnover of 1 in 10,000 to 40,000 [145][146][147].

The highest proportion of dividing nuclei was found in hepatic stellate cells

(HSCs), where 21.1 % of the nuclei were computationally identified to be either

in S or G2M phase (Figure 3.4 C). Out of the 109 nuclei sorted as tetraploid in

the NPC fraction, only 11 nuclei were dividing. The rest of these nuclei were

therefore most likely sorted as tetraploid due to nuclei clumping together during

sorting.
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Chapter 3 Ploidy in young healthy mouse liver

3.3 Transcript expression

Due to different chemistries being used, plate-based methods generally achieve

higher sequencing depths per cell/nucleus (at the expense of sequencing fewer

cells/nuclei) compared to droplet-based methods that in contrast have a high

cellular throughput with low sequencing depth [57]. This allows for plate-based

methods to achieve higher sensitivity in capturing lowly expressed genes. For

instance, transcription factors tend to be more lowly expressed and therefore

harder to capture than other genes in s*RNA-seq approaches [148].

The snRNA-seq2 method that was used for data generation in this chapter is a

plate-based method and therefore enables the capture of lowly expressed genes,

including key hepatic transcription factors. One of the captured transcription

factors, for instance, is Mlxipl, also known as ChREBP, which regulates the

pathway responsible for 𝛽-oxidation of fatty acids whereas Hnf4𝛼 regulates

expression in carbohydrate-related pathways [100][149]. As depicted in figure

3.5 A, both Mlxipl and Hnf4𝛼 as well as other key hepatic transcription factors

were evenly expressed between diploid (2n) and tetraploid (4n) hepatocyte nuclei

(hereafter called 2n and 4n hepatocytes, respectively).

As described above, the modified SMART-seq2 chemistry used here also gener-

ates full-length transcripts comprised of intronic and exonic regions. Moreover,

nuclear extracts contain a higher ratio of unspliced transcripts than whole cell

extracts. This gives the opportunity to study the expression of different isoforms

in hepatocytes. Figure 3.5 B shows the respective isoforms that were detected for

the eight transcription factors depicted in figure 3.5 A. For the genes Rxra, Nr1i2,
and Cebp𝛼 one isoform dominated gene expression across all hepatocytes in the

snRNA-seq2 data, whereas forMlxipl, Hnf4𝛼 , Ppar𝛼 several isoforms contributed

in different intensities to gene expression (Figure 3.5 B). Differences in isoform

expression for Mlxipl have previously been linked to metabolic activity [150].

No preference of isoforms for a given transcription factor was found between

2n and 4n hepatocytes. Nevertheless, some isoforms and transcription factors

showed slightly higher levels of expression in 4n hepatocytes. This could be due

to the higher number of endogenous counts observed in 4n in comparison to 2n

hepatocytes (Figure 3.5 C).
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Transcript expression Section 3.3

Figure 3.5: A Dot plot depicting the average gene expression (color bar) of selected

transcription factors in 2n and 4n hepatocytes and the percentage of nuclei in which

they are expressed (dot size) B Dot plot depicting the average isoform expression (color

bar) for the transcription factors shown in A. C Violin plot showing the number of

endogenous read counts in 2n and 4n hepatocytes.
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Chapter 3 Ploidy in young healthy mouse liver

3.4 Transcriptional variability

The higher number of endogenous read counts in 4n hepatocytes is likely due to

the larger genome content resulting in larger transcript abundances linked to

mechanisms related to gene dosage compensation and expression homeostasis

[65][66][67][151]. The role of polyploidy on the tissue function under physiolog-

ical conditions remains largely unexplored. In hepatocellular carcinoma (HCC),

polyploidy has initially been postulated to diminish tumor suppressor loss-of-

heterozygosity (LOH) [65][3]. However, an enrichment of higher ploidy levels

(>8n) has been observed in HCC and is associated to poor prognosis [5]. When

comparing 4n to 2n hepatocytes, Halpern et al. have found lower transcriptional
variability levels in 4n hepatocytes [14].
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Panels A and B adapted from Richter et al. [117]

To address transcriptional variability in the snRNA-seq2 data set, the coef-

ficient of variation was calculated as described in the Methods section of this

thesis according to Canchola et al. [138]. As shown in figure 3.6 A, 2n hepato-

cytes indeed had significantly higher transcriptional variability compared to 4n

hepatocytes. Moreover, focusing the analysis on non-differentially expressed

(non-DE) genes, a higher amount of highly variable genes (HVGs) was found in

2n hepatocytes. This results confirm the single-molecule study by Halpern et al.
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Differential expression between 2n and 4n hepatocytes Section 3.5

who also found higher transcriptional variability in 2n hepatocytes compared

to 4n [14]. Additionally to calculating the coefficient of variation, the software

BASiCS was used to address variability between 2n and 4n hepatocytes taking

into account the variation of the ERCCs [134]. BASiCS uses the ERCCs to sepa-

rate technical from biological variation through a Bayesian hierarchical model

and allows to annotate highly or lowly variable genes. As two different ERCC

dilutions were used in the scRNA-seq2 data set, this was performed separately

for the two dilutions. For both dilutions, more highly variable genes were iden-

tified in the 2n population (Figure 3.6 C). Thus, 2n hepatocytes showed higher

transcriptional variability than 4n hepatocytes regardless of the method used.

3.5 Differential expression between 2n and 4n
hepatocytes

In comparison to 2n hepatocytes, 4n hepatocytes featured both, a higher total

amount of genes detected and more differentially expressed genes (DEGs, Figure

2.2 F and Figure 3.7 A). Therefore, the questions arose why there were more

DEGs in 4n hepatocytes and whether genes that were highly expressed in 4n

hepatocytes were also detected in 2n hepatocytes. Not detecting these genes in 2n

hepatocytes could artificially bias differential expression towards 4n hepatocytes.

Across all genes detected in hepatocytes, genes that were not present in 2n

hepatocytes showed low to moderate expression levels in 4n (Figure 3.7 B).

Hence, the lower amount of detected genes in 2n hepatocytes did not bias the

differential expression analysis, meaning that the DEGs were driven by biological

differences.

To get a comprehensive overview of what pathways are up-regulated in 2n

and 4n hepatocytes, respectively, gene ontology (GO) analysis was performed

based on the DEGs between 2n and 4n hepatocytes. As depicted in figure 3.8 A

and B, in comparison to 4n hepatocytes, 2n hepatocytes up-regulate pathways

related to glucose metabolism, including the pathway of gluconeogenesis, the

hexose biosynthetic process, and the monosaccharide biosynthetic process. In

contrast, 4n hepatocytes up-regulate pathways involved in sterol, cholesterol,

lipid, and xenobiotic metabolism. Apart from performing unsupervised GO anal-

ysis, the expression of individual genes was investigated. The majority of the

investigated key hepatic transcription factors were not differentially expressed

between 2n and 4n hepatocytes (Figure 3.8 C). However, for some transcription
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factors, a change in distribution was observed, indicating heterogeneity between

the 2n and 4n population of nuclei for these genes. Pck1 was significantly up-

regulated in 2n hepatocytes, and, while not significantly, gene expression of

G6pc was also increased in 2n hepatocytes, providing further evidence of their

increased involvement in glucose metabolism (Figure 3.8 D). All the selected

genes responsible for lipid metabolism showed changes in the distribution of

gene expression (Figure 3.8 E). Moreover, while Acaca and Alb were significantly
up-regulated in 2n hepatocytes, expression of Acox2 was significantly increased

in 4n hepatocytes, suggesting that lipid metabolism is heterogeneous in hepato-

cytes. In line with up-regulation of xenobiotic metabolism related pathways, 4n

hepatocytes showed significant up-regulation of several cytochromes from the

cytochrome P450 pathway responsible in phase I drug metabolism (Figure 3.8

F). Out of the selected cytochromes, only Cyp2f2 was significantly up-regulated

in 2n hepatocytes. In contrast, 2n hepatocytes showed up-regulation of genes

involved in protein metabolism, including Gls2, Hal, Hpx, and Sds (Figure 3.8 G).
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3.6 Higher levels of ploidy

As described in the introductory section of this thesis, further failures in cellular

divisions can also give rise to higher levels of ploidy, such as octoploid (8n), and

hexadecaploid (16n) nuclei [13]. To shed light on these populations, data from

an experiment comprised of 4n, 8n, and 16n hepatocytes were analyzed. In line

with the higher concentration of mRNA associated to bigger cell size [67], an

increase in the number of detected genes per nucleus was observed with ploidy

level (Figure 3.9 A).
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Figure 3.9: A Violin plot depicting the number of genes per nucleus depending on

ploidy status for 4n, 8n, and 16n nuclei. B Stacked violin plot of representative genes

that significantly increase in expression level with ploidy. C Stacked violin plot of repre-

sentative genes that significantly decrease in expression level with ploidy. D Stacked

violin plot of representative genes that remain unchanged in their mean expression with

ploidy but change in distribution.

Figure adapted from Richter et al. [117]

As therefore expected, several genes were detected to significantly increase

with ploidy level in their expression. For instance, the solute carriers Slc9a9
and Slc44a2 were found to increase with ploidy status (Figure 3.9 B). However,

despite the overall higher transcript abundance in nuclei of higher ploidy levels,

other genes were detected to decrease with ploidy status. For example, the solute

carriers Slc19a1 and Slc27a2 were found to decrease (Figure 3.8 C). Moreover, Alb
and the cytochrome Cyp3a25 showed decreasing expression levels with ploidy

(Figure 3.8 C). Additionally, several genes were identified with no significant
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changes in mean expression between nuclei of different ploidy but which showed

significant changes in distribution between all ploidy levels (Figure 3.8 D). Overall,

these results imply that ploidy introduces heterogeneity among hepatocytes and

the ploidy status of nuclei has a complex effect on their gene expression.

3.7 Stem cell properties in polyploid hepatocytes

A question that has been sparking debate in the field is whether and to what

extent polyploid hepatocytes can involve in tissue regeneration upon injury. For

example, Wang et al. postulated the existence of a pericentrally located stem cell

niche in liver prompting regeneration [152]. On the other hand, Lin et al. found
Tert-positive cells, involving in tissue regeneration, to be evenly distributed along
the liver lobule [153]. Moreover, other studies conclude that all hepatocytes

along the liver lobule have regenerative potential and up-regulate Axin2 and

Lgr5 while Lgr5 has generally been found to be higher in the pericentral regions

[154][155].

To investigate stem cell potential of 2n and 4n hepatocytes, the expression

and co-expression of nine selected stem cell markers was explored [156]. As

shown in figure 3.10 A, both 2n and 4n hepatocytes showed presence of the nine

stem cell marker genes. Moreover, Axin2, Tbx3, Lgr5, Itga6, Tert, and Notch2
were found to be co-expressed across nuclei, regardless of ploidy status (Figure

3.10 B). Especially Tbx3 and Lgr5 showed high co-expression levels, measured

by Jaccard distance (Methods, Figure 3.10 B). In brief, using the presence or

absence of a given marker gene within the nuclei without taking into account its

expression levels allows to explore co-existence within a single nucleus. More-

over, it can be assessed what percentage of nuclei co-express several stem cell

markers simultaneously. Table 3.1 shows that 43.0 % of 2n nuclei, and 33.7 % of

4n nuclei were co-expressing two of the nine stem cell markers. Slightly higher

percentages of co-expression of more than three stem cell markers were found

in 4n hepatocytes compared to 2n. While this indicates that indeed 4n hepa-

tocytes express genes related to regenerative potential, lack of 2n hepatocytes

co-expressing stem cell markers can also be due to dropouts in the nuclei with

lower genome content. In summary, the percentage of nuclei co-expressing

several stem cell markers was similar between 2n and 4n hepatocytes, indicat-

ing that both diploid and tetraploid hepatocytes most likely share regenerative

potential at the transcriptomic level.
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copies per nucleus in 2n and 4n hepatocytes (top: CV, bottom: PV).

Figure adapted from Richter et al. [117].
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Table 3.1: Percentage of nuclei co-expressing several stem cell markers

No. stem cell markers % All % 2n % 4n
2 35.7 43.0 33.7

3 26.1 19.0 28.1

4 17.3 10.1 19.3

5 7.7 5.1 8.4

6 3.6 2.5 3.9

7 0.3 0 0.4

This finding obtained by analyzing the snRNA-seq2 data set was experimen-

tally confirmed by Dr. Kelvin Yin using an immunofluorescence (IF)/RNA-FISH

co-detection technique ("RNAscope"). Briefly, 𝛽-catenin and stem cell marker

Lgr5 mRNA were simultaneously measured in the liver lobule (Figure 3.10 C-E).

In line with the findings of Chen et al., the area surrounding the central vein (CV)

featured a higher percentage of Lgr5 positive hepatocytes than the area around

the portal vein (PV) [155]. No significant differences were found in the Lgr5
levels and copies per nucleus between 2n and 4n hepatocytes (Figure 3.10 D and

E), again indicating that both populations share similar regenerative potential.

3.8 Zonation

Zonation describes the bi-directional gradient of gene expression resulting from

the gradual supply of oxygen, nutrients, and hormones to the liver cells along

the lobule [14][16][157]. Along the zonated liver lobule, 2n hepatocytes have

been observed to reside more closely to the periportal vein (PV) while polyploid

hepatocytes were reported to reside closer to the central vein (CV) [85]. In an

early study exploring zonation at the single cell transcriptome level, Halpern

et al. combined single-molecule ISH (smISH) with scRNA-seq and succeeded

to assign several marker genes across the mouse liver to zones based on their

spatial expression patterns [16]. The study by Halpern et al is therefore used
as a resource for zonation marker genes in this thesis. As described in the

introduction, spatial information can computationally be inferred from single cell

or snRNA-seq data by applying diffusion pseudotime (dpt) algorithms [90][77].
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Zones PloidyA

D

B C

E

Figure 3.11: A Diffusion maps of the hepatocytes from the in vivo snRNA-seq2 data
set, colored by assigned zones (left), or ploidy status (right). B Bar plot depicting

the percentage of 2n and 4n nuclei in the CV and PV zone, respectively. C Heatmap

illustrating the bi-directional expression gradient along the vector of pseudospace for

the top 30 DEGs between CV and PV. Columns represent single nuclei, rows represent

genes. D Diffusion maps of the hepatocytes from the snRNA-seq2 data set, colored by

expression level of representative zonation markers (left: non-zonated markers, middle:

CV markers, right: PV markers. E Line plots showing mean expression of representative

zonation markers along the vector of pseudospace (left: CV markers, right: PV markers.

Figure adapted from Richter et al. [117].

This approach is performed here, where calculating diffusion components

(DCs) is used as means of dimensionality reduction (Methods, Figure 3.11 A).
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For this analysis, the set of known zonation marker genes published by Halpern

et al. was used to order the nuclei purely based on expression characteristics

associated to zonation. After calculating dpt, Louvain clustering was performed

and the zonation marker genes were used to assign clusters to a CV and a PV

zone, respectively (Figure 3.11 A, left). As can be seen already in the diffusion

map, calculating the percentage of 2n and 4n hepatocytes in the CV and PV zone

showed that 2n hepatocytes were more periportally whereas 4n hepatocytes

were more pericentrally enriched (Figure 3.11 A, right, and B). For the purpose

of visualization, in figure 3.11 D, representative marker genes were selected and

depicted on the diffusion map. Genes not supposed to show zonation patterns

at the mRNA level, such as Hnf4𝛼 , Ces3a, Hamp, and Cyp3a25indeed showed

a homogeneous distribution across the diffusion map [6] (Figure 3.11 D, left

column). Other genes representing pericentral markers, such as Cyp2e1, Gsta3,
Cyp27a1, and Mup17 showed, as expected, higher expression levels in the nuclei

assigned to CV. On the contrary, periportal marker genes like Alb, Cyp2f2,
Asl, and Gls2 showed higher expression levels in the nuclei assigned to PV.

Furthermore, calculating dpt allows ordering the nuclei from CV to PV based on

progressive changes in the expression levels of the used zonation marker genes.

As depicted in figure 3.11 C, pericentrally expressedmarker genes, such asCyp2e1,
Nr1i3, and Tbx3 showed highest expression at the pericentral zone and gradual

decrease in expression toward the periportal area. Likewise, periportally enriched

genes, such as Cyp2f2 Alb, and Acly showed gradual increase in expression level

in nuclei ordered from CV to PV. Overall, this heatmap represents in an easily

interpretable way the bi-directional expression gradient of zonation markers in

the mouse liver by visualizing the expression levels of 40 genes simultaneously

that were differentially expressed between PV and CV. Looking at individual

marker genes, however, allows to explore their changes in mean expression along

the vector of pseudospace referring to zonation in more detail. For instance,

figure 3.11 E shows that especially Alb and Pck1 gradually increase in mean

expression from pericentral to periportal, with the out-most assigned nuclei

each representing the lowest, and highest expression level, respectively (Figure

3.11 E). Pck1 shows a step-wise increase indicating the presence of zones along
the lobule, whereas e.g. Cyp27a1 is most highly expressed in nuclei assigned

close to CV from where the expression continuously decreases.
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A B

Figure 3.12: A Representative image of the (IF)/RNA-FISH co-detection analysis per-

formed on a liver lobule by Dr. Kelvin Yin. The mRNA expression levels of Cyp2e1-2 are

shown in green and of Cyp2f2 in yellow (top; the fluorescence intensity of each gene was

normalized against the background). Line plots showing the normalized fluorescence

intensity over a linear distance (100 µm) from CV to PV, separately for the two markers,

and in combination (bottom, mean ± s.d. is shown). B The normalized fluorescence

intensity of Cyp2e1-2 and Cyp2f2, respectively, was categorized in regards to 2n or 4n

mono-nucleated or bi-nucleated hepatocytes. Ploidy status was determined by 𝛽-catenin

(magenta) and DAPI (cyan) staining. No significant changes were detected, neither

between ploidy levels nor the number of nuclei per cell (ns= not significant, unpaired

t-test, lines in the scatter plots indicate mean ± s.d.).

Figure adapted from Richter et al. [117].

These findings from the snRNA-seq2 data were again experimentally validated

by Dr. Kelvin Yin through immunofluorescence (IF)/RNA-FISH co-detection

("RNAscope"). As shown in figure 3.12 A, mRNA of Cyp2e1 was pericentrally en-

riched whereas mRNA of Cyp2f2 was periportally enriched. Through measuring

fluorescence intensities along the liver lobule, the bi-directional expression gradi-

ent as seen in the nuclear transcriptomic data was further confirmed for the two
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selected marker genes. Moreover, the RNAscope method was used to investigate

differences in the mRNA expression levels between mono- and bi-nucleated 2n

or 4n cells. No significant differences were found between mono-nucleated and

bi-nucleated cells (figure 3.12 B).

To further investigate the relationship between zonation and polyploidy, data

was analysed from mouse livers where zonation was disrupted. A collabora-

tion with Prof. Dr. Neil Henderson (University of Edinburgh) led to study an

additional mouse model of liver fibrosis, which has been shown to disrupt zona-

tion [158][159][160][161][162]. Prof. Henderson established a working mouse

model of liver fibrosis by treating the mice with carbon tetrachloride (CCl4),

inducing hepatocyte necrosis, structural changes around the central vein, and

activation of hepatic stellate cells [159][163]. In this model, CCl4 is diluted in

olive oil, and control mice are thus treated with olive oil alone. As shown in

figure 3.13 (left), the analysis of the snRNA-seq2 data from mice treated with

olive oil confirmed the findings of a pericentral enrichment of 4n hepatocytes.

Louvain clustering again was able to separate and assign to either a PV or a

CV region (Figure 3.13 A). The percentage of 2n and 4n hepatocytes in each

of the two zones reflected the previous findings in wild-type, untreated mice

with 2n being periportally, and 4n hepatocytes being pericentrally enriched.

Visually, this can be inspected when comparing figure 3.11 B and figure 3.13 B.

The spatial distribution of marker gene expression, depicted in figure 3.13 C,

showed similar zonation patterns between CV and PV as had been observed in

the wild-type untreated mice (Figure 3.11). This additionally indicated that in

wild type animals, the relationship between zonation and ploidy is comparable

between mice from different labs and is not affected by the administration of

olive oil. However, when zonation patterns were disrupted through fibrosis, gene

expression of zonation markers was affected. As shown in figure 3.13 (right),

assignment of zones through Louvain clustering became more challenging as

zonation marker genes followed less clear zonation patterns (Figure 3.13 F). For

instance, the pericentral markers Cyp27a1 and Gsta3 were expressed in the same

nuclei (located in the lower left corner of the diffusion map) as the periportal

markers Alb and Cyp2f2. Overall, fewer nuclei were assigned to CV in the fibrosis

model (Figure 3.13 A). Additionally, fewer 2n hepatocytes were found in the

fibrotic liver (Figure 3.13 E).
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Zones Ploidy Zones PloidyA

C F

B D E

Figure 3.13: A Diffusion maps of a control mouse model treated with olive oil, colored

by assigned zones (left) and ploidy status (right). B Bar plot showing the percentage of

2n, and 4n nuclei in CV, and PV, respectively. CDiffusion maps of a control mouse model

treated with olive oil, colored by representative zonation markers (left: not-zonated

markers, middle: CV markers, right: PV markers. D Diffusion maps of a mouse model

treated with CCl4 to model liver fibrosis, colored by assigned zones (left) and ploidy

status (right). E Bar plot showing the percentage of 2n, and 4n nuclei in CV, and PV,

respectively. F Diffusion maps of a mouse model treated with CCl4 to model liver

fibrosis, colored by representative zonation markers (left: not-zonated markers, middle:

CV markers, right: PV markers.

Figure adapted from Richter et al. [117].
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Figure 3.14: A Heatmap showing the bi-directional gene expression gradient for the

top 30 DEGs between CV and PV, for a control mouse model treated with olive oil (top).

Line plots show the mean expression of representative zonation markers along the

vector of pseudospace (bottom; first column: CV markers, second column: PV markers).

B Heatmap showing the bi-directional gene expression gradient for the top 30 DEGs

between CV and PV, for a mouse model treated with CCl4 to induce liver fibrosis (top).

Line plots show the mean expression of representative zonation markers along the

vector of pseudospace (bottom; first column: CV markers, second column: PV markers).

Figure taken from Richter et al. [117].
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Disruption of zonation patterns in a fibrotic mouse model was even more

evident when looking at the expression of individual marker genes along the

vector of diffusion pseudospace for both the olive oil and the CCl4 treated mice.

Figure 3.14 shows the bi-directional expression gradient for 40 zonation markers

between CV and PV (top), as well as for individual marker genes (bottom). For

the olive oil treatment (Figure 3.14 A) the spatial expression changes followed

the expected bi-directional zonation patterns from CV to PV. For the CCl4 treated

mice, however, the bi-directional expression gradient was less evident. While

the expected increase in expression from CV to PV could partially be observed

for Cyp2f2, Alb, Pck1, and Acly, pericentral marker genes were not found to

gradually decrease along the vector of pseudospace (Figure 3.14 B).

In summary, this chapter provided evidence for functional differences between

2n and 4n hepatocytes with zonation being a factor that is interconnected with

these ploidy-associated differences. Both 2n and 4n hepatocytes showed gene

expression profiles associated with regenerative potential. In comparison to 2n

hepatocytes, 4n hepatocytes showed lower transcriptional variability, and an

enrichment in xenobiotic metabolism, which is related to their rather pericentral

gene expression profile.
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4 Zonation-independent
hepatocyte heterogeneity

The focus of this chapter lies on studying what cellular heterogeneity is present
in primary human hepatocytes (PHHs) in vitro. Since PHHs are taken out of the
lobular environment of the liver, they lack zonation patterns in 2D culture. Moreover,
they tend to lose their characteristic hepatocyte-like phenotype over time in culture.
In summary, this chapter focuses on dissecting the cellular heterogeneity in PHHs,
which are a seemingly homogeneous population of cells. In addition to this, this
chapter addresses how this heterogeneity plays a role under chronic exposure to free
fatty acids (FFA), and the effect of a cocktail of five drugs to functionally study the
transcriptional responses of individual cells to a defined metabolic challenge. The
majority of results presented here can be found in Sanchez-Quant et al. 2023 [164].

4.1 Method overview

Donors Treatment conditions on 
primary human hepatocytes

Live cell
enrichment

scRNAseqA

Figure 4.1: A Illustration of the workflow performed by the experimentalist to obtain

the scRNA-seq data from in vitro PHHs.
Figure adapted from Sanchez-Quant et al. [164]

The experiments to generate the data for this project were performed by

Eva Sánchez-Quant and Dr. Ioannis Deligiannis. In brief, as depicted in figure

4.1 A, cyropreserved primary human hepatocytes (PHHs) from four healthy

human donors were cultured under different treatment conditions. To model

hepatic steatosis, cells from the same donor were split into two groups and
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Chapter 4 Zonation-independent hepatocyte heterogeneity

incubated with DMSO or free fatty acids (FFA), respectively. Furthermore, the

cells were treated with a cocktail composed of five drugs, as will be described

in greater detail below. For the assessment of the metabolic capacity of PHHs

under different conditions. Thus, there are four conditions in the experimental

design: (i) untreated (DMSO), (ii) incubated with FFA without cocktail treatment

(FFA), (iii) treated with the five-drug cocktail (Cocktail), and (iv) incubated with

FFA and the cocktail (FFA+Cocktail).

4.2 Characterization of PHH heterogeneity

Analysis of every donor individually revealed cellular heterogeneity in all four

human donors that was independent of treatment condition. After determining

that transcriptionally similar subgroups were present in all donors, the cells

from all four donors were computationally combined by applying Harmony.
Four subgroups of PHHs were identified (Methods). Figure 4.2 A depicts the

four hepatocyte subgroups that were detected independently of the treatment

condition in all four human donors. To exclude potential contamination of other

liver cell types leading to subgroup detection, the expression of key hepatocyte

marker genes was explored showing that all subgroups expressed hepatocyte

marker genes. This analysis indicated no contamination by other cell types

(Figure 4.2 B, left).

Studies on the opportunities and limitations of hepatocytes in culture as a

model to assess drug metabolism have shown that PHHs tend to undergo loss

of expression along culture time [114][115][165]. This leads to PHHs in culture

gradually losing their characteristic hepatocyte-like transcriptomic phenotype

[95]. From single cell transcriptomic data, this can be shown by the percentage

of cells in a subgroup expressing a given gene. The idea behind this is that

loss of expression would lead to more stochastic gene expression, i.e. genes

would be expressed in fewer cells within a group of cells that is undergoing de-

differentiation. As shown in figure 4.2 C, genes in subgroup IV were expressed in

a lower percentage of cells in comparison to the other three subgroups. Subgroup

IV was thus labeled as the group of PHHs losing their expression whereas the

other three subgroups were defined as metabolically active.

62



Characterization of PHH heterogeneity Section 4.2

Donors

Treatment

Subgroups
Hepatocytes Subgroup I Subgroup II Subgroup III

I
II
III
IV

DMSO
FFA
Cocktail
FFA+ 
Cocktail

Donor1
Donor2
Donor3
Donor4

A

C D E

B

Loss of 
expression

Cell cycle Sterols & BA CH & Phase II Lipids & Phase III

Figure 4.2: A UMAPs of the in vitro data set, colored by subgroups (top), treatment

conditions (middle), and donors (bottom). B UMAPs of the in vitro data set, colored
by marker gene expression of key hepatocyte markers (first column), marker genes

for subgroup I (second column), subgroup II (third column), and subgroup III (fourth

column). C Box plot showing the percentage of cells in which a given gene expressed

for the four identified subgroups. D Bar plot for the percentage of cells in each sub-

group computationally assigned to the different cell cycle phases G1, S, and G2M using

cyclone. D Dot plot showing representative marker genes used to characterize the three

metabolically active subgroups in vitro. Scaled mean expression is shown for the four

subgroups in vitro (top) and for similar subgroups identified in a human in vivo data set
from Aizarani et al. (bottom).

Figure adapted from Sanchez-Quant et al. [164]
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Apart from identifying the cells losing their characteristic expression profile,

cell cycle analysis was performed using cyclone [144]. The majority of hepa-

tocytes reside in the liver in a non-divisive, quiescent state with an estimated

turnover of 1 in 10,000 to 40,000 [145][146]. Therefore, only a small percentage

of cells is expected to be in division. Nevertheless, this analysis was performed

to check whether cell division contributes to the separation into subgroups.

While indeed the majority of hepatocytes were computationally assigned to

G1/G0 phase, subgroup III showed an enrichment of cells in S- and G2M-phase

(Figure 4.2 D). To further investigate the functional specialization of each of the

metabolically active subgroups, known marker genes for metabolic pathways

were used. The list used was compiled from literature by Eva Sánchez-Quant

and is available at the publication associated to this project [164]. Figure 4.2 E

illustrates representative marker genes for each of the three metabolically active

subgroups. Subgroup I was found to involve in the metabolism of bile acids and

sterols, marked by the expression of genes, such as CYP8B1, CYP27A1, HSD17B4,

HSD3B7, and HMGCS2. Subgroup II was characterized by carbohydrate and

phase II metabolism, indicated by the expression of LDHA, GSTO1, SULT2A1,

GAMT, and GSTZ1. Apart from the enrichment of S-phase associated cells,

subgroup III was characterized by lipid and phase III metabolism, represented

by expression of ABCC2, ABCC3, PLIN5, MLXIPL, and LDLR.

4.2.1 Zonation-independent heterogeneity in vivo

The presence of these three hepatocyte subgroups was further confirmed in

publicly available in vivo data sets from human livers. Aizarani et al. have

performed a study in which they analyzed the single cell profiles in the in
vivo liver from nine human donors [19]. These donors were a mixture of male

and female patients that covered a similar age range (34-77 years old) as the

donors, from which the in vitro PHHs were taken (26-57 years old) [19]. Figure

4.2 E shows that after normalization and clustering of this data set (Methods),

three subgroups were identified with similar gene expression profiles as the

metabolically active subgroups in the in vitro data set. For this analysis, the

marker gene expression was compared between in vivo clusters and in vitro
subgroups (Figure 4.2 E).

As mentioned in the beginning of this chapter, the standard 2D culture model

used for this project does not retain zonation patterns [95]. However, analyzing

in vivo data allows exploring the relationship between the identified hepatocyte
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subgroups and zonation. In a first step to do so, it was hence assessed whether

zonation could still play a role in the identification of subgroups in vitro. The
PHHs were therefore scored for their expression of zonation marker genes, taken

from Aizarani et al. [19]. As described in the method section of this thesis, cells

were assigned to CV, mid-zone, or PV based on their zonation marker scores.

Briefly, cells with simultaneous high CV and low PV scores were assigned to CV,

and vice versa, whereas cells with moderate CV and PV scores were assigned to

mid-zone (Methods). It was found that, in vitro, no particular subgroup showed

enrichment of either pericentral (CV), periportal (PV), or mid-zonal expression

profiles (Figure 4.3 A-C). This indicates that subgroups of PHH do not show

zonation patterns after 72h in 2D culture.
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Figure 4.3: UMAPs depicting the in vitro data set, colored by A pericentral score, B
mid-zonal score, and C periportal score.

To further explore this observation in a setting where zonation was present,

the in vivo data from Aizarani et al. was again used. Figure 4.4 A-C illustrates that

distinct patterns were detected in vivo for CV, mid-zonal, and PV marker genes,

whereas these patterns were not found in vitro. Leveraging the information about

the identified subgroups on the in vivo UMAP, it can be observed that the gene

expression profiles of individual cells within subgroups are affected by zonation

(Figure 4.4 D-E). For example, cells in subgroup I showed mutually exclusive

high scores for either CV or PV markers. Calculating the percentage of cells

assigned to each of these zones for the three subgroups revealed that, overall,

the highest percentage of periportal-assigned cells was observed for subgroup I.

In general, all subgroups were present in all three zones, with subgroup II having
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the highest percentage of mid-zone assigned cells and cells in subgroup III being

rather assigned to mid- or CV than to PV (Figure 4.4 F).
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Figure 4.4: A-E UMAPs showing the Aizarani in vivo data set, colored by pericentral

score (A), mid-zonal score (B), periportal score (C), subgroup annotation based on the

findings in vitro (D), and assigned zones based on the scores from A-C (E). F Bar plot

depicting the percentage of cells belonging to a given subgroup in each of the assigned

zones (CV, Mid, PV).

Figure adapted from Sanchez-Quant et al. [122]

4.2.2 Comparison of in vitro and in vivo

After establishing the relationship between zonation and subgroup formation,

the findings were further validated by assessing another in vivo data set from
MacParland et al. [18]. Their study is comprised of single cell transcriptomic

data from the livers of five deceased human donors (4 male, 1 female), covering
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a donor age range of 21 to 65 years. They report the presence of six distinct

clusters of hepatocytes in the liver that could partially be linked to zonation [18].

To further investigate the role of zonation in the subgroups, the gene expression

profiles of those in vivo clusters were compared to the three metabolically active

subgroups identified in vitro. Figure 4.5 A shows the percentage of overlaps for

the top 500 genes per subgroup between the in vitro subgroups and the in vivo
clusters from MacParland et al..

MacParland 3
MacParland 5
MacParland 4
III
I
IV
MacParland 2
MacParland 1
II
MacParland 6

MacParland 1
MacParland 2
MacParland 3
MacParland 4
MacParland 5
MacParland 6

I
II
III

0.25 0.5 0.75 1

UMAP1

U
M

AP
2

UMAP1

% overlap top 500 genes 
per group

Clusters in
MacParland et al.

Subgroup 
annotation

A B

Figure 4.5: A Heatmap showing the percentage of overlap for the top 500 genes per

in vitro subgroups I-III and the six in vivo clusters reporter in MacParland et al. [18].
B UMAPs showing the MacParland in vivo data set, colored by their reported cluster

annotation (left), and the identified subgroups based on the in vitro findings (right).

Especially in vivo clusters 1, 2, and 6 showed high gene expression similarity

to subgroup II. In vitro subgroups I and III showed higher similarity to each other

than to any of the in vivo clusters, although subgroup III also had high gene

expression similarity to cluster 4. Therefore, clusters 1, 2, and 6 were labeled

as subgroup II; cluster 4 was labeled as subgroup III; and clusters 3 and 5 were

labeled as subgroup I since they expressed some marker genes of subgroup I

(Figure 4.5 B)[18]. The split between cluster 3 and 5 in this in vivo data set could
be due to inter-donor heterogeneity as the majority of cells in cluster 3 were

coming from one donor [18]. Together with the general differences between in
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vivo and the 2D in vitro culture of PHHs, this observation could partially explain

the low similarity to in vitro subgroup I for these clusters.
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Figure 4.6: A Heatmap depicting the percentage of overlap between the top 500 genes

per group in the two in vivo and the in vitro data after annotating the subgroups

separately for the two in vivo data sets based on the findings in vitro. B-C UMAP of

the two in vivo data sets after data integration using scGen, colored by data set (B) and
annotated subgroup (C). D Heatmap showing the correlation of gene expression for the

top 10 DEGs per subgroup between the integrated in vivo and the in vitro data.
Figure adapted and expanded from Sanchez-Quant et al. [122]

Combining both in vivo liver data sets, figure 4.6 A shows the percentage of

overlap between the top 500 genes per subgroup for all three data sets (two in vivo
and one in vivo). Overall, the in vitro subgroup II showed high gene expression

similarity with the corresponding in vivo clusters (Figure 4.6 A). In contrast,
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subgroup I and III were more similar to each other within the two in vivo than to

the in vitro subgroup III cells. Increasing the number of cells in an analysis has

been associated to higher statistical power to draw robust conclusions [47][48].

Hence, to increase the power for the comparison between in vitro and in vivo
while also decreasing the impact of inter-donor heterogeneity, the two publicly

available in vivo data sets were computationally combined as described in the

methods section. In brief, subgroups were annotated separately for the two in
vivo data sets and scGen was used for data integration. The common embedding

for both in vivo data sets, colored by subgroup annotation, can be seen in Figure

4.6 C. In line with the previous findings, cells in subgroup II formed a tightly

integrated cluster, which located separately on the UMAP, whereas subgroup

I and III were closer to each other (Figure 4.6 C). After the integration using

scGen, the correlation of expression between in vitro and in vivo was calculated
for the top 10 DEGs per subgroup (Figure 4.6 D). Despite the low percentage of

shared genes previously observed between in vitro and in vivo for subgroup III

(Figure 4.6 A), the top 10 genes were highly correlated between in vivo and in
vitro (Figure 4.6 D).

Moreover, the threemetabolically active subgroups annotated in the integrated

in vivo data sets showed high relative expression of the marker genes that were

used for the initial subgroup characterization in vitro (Figure 4.7 A). This indicated
that the three metabolically active subgroups indeed showed similar functional

specialization in vitro and in vivo.

Additionally, integrating the two in vivo data sets led to more power in an-

alyzing the relationship between subgroups and zonation. To do so, the cells

were ordered based on the vector of diffusion pseudospace starting at the cell

with the lowest CV score per subgroup (Figure 4.7 B). In the integrated in vivo
subgroup I, periportal marker genes, such as HMGCS2, decreased in their mean

expression along the pseudospace vector whereas pericentral marker genes, such

as CYP8B1, increased. The same trend could be observed in subgroup III. In

subgroup II, however, gene expression generally decreased along the vector of

pseudospace (Figure 4.7 B, middle). This indicated that for subgroup II, gene

expression was not following zonation patterns as the pseudotime algorithm

instead ordered cells by overall expression level, regardless of the marker gene.

Overall, the subgroups identified in vitro could successfully be identified in
vivo. While zonation patterns where absent in vitro, marker gene expression in

subgroups of hepatocytes was observed to be influenced by zonation in vivo.
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Figure 4.7: A Dot plot showing relative expression levels of the marker genes used

to characterize the subgroups in vitro on the integrated in vivo data set. Dot size

corresponds to percentage of cells in which a gene is expressed, color refers to scaled

mean expression level. B Line plots showing the mean expression for selected zonated

subgroup marker genes. Columns correspond to subgroups identified in the integrated

in vivo data set, top row shows representative periportal marker genes, bottom row

shows representative pericentral marker genes.

4.2.3 Lipid accumulation affects cellular heterogeneity in PHHs

After computationally confirming the presence of the in vitro subgroups in two in
vivo data sets, the next question to answer was how this cellular heterogeneity is

affected by internal and external factors. During the span of life, hepatocytes can
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accumulate lipids intracellularly, referred to as hepatic steatosis and a hallmark of

NAFLD [166]. In vivo studies using single cell transcriptomics in mouse models

have shown that hepatic steatosis changes the composition and transcriptomic

profile of non-parenchymal cells [27][26]. For instance, hepatic steatosis has

been observed to lead to higher infiltration of immune cells in the liver and a

transcriptomic shift towards immune response pathways in several cell types,

yet in-depth studies on hepatocytes remain challenging due to the difficulty of

isolating fresh and intact hepatocytes from the liver tissue [27][26]. Bulk studies

of hepatocytes have reported that lipid accumulation can lead to disruptions in

lipid metabolism and increased chemokine production [166][167]. At single cell

resolution, it has been shown that periportal hepatocytes down-regulate their

expression profiles upon intracellular lipid accumulation [7]. For this project,

the question was how different subgroups of PHHs in culture respond to the

intracellular lipid accumulation in the absence of zonation. Apart from calcu-

lating changes in gene expression, cellular heterogeneity can also be measured

in transcriptional variability. In general, higher transcriptional variability is

associated to less coordinated responses to a stimulus [132]. As described for the

snRNA-seq2 data set in the previous chapter, the coefficient of variation can be

used to estimate transcriptional variability. Figure 4.8 A shows the comparison of

the coefficient of variation between FFA- and untreated cells per subgroup. Over-

all, cells that were losing their characteristic expression in culture (subgroup IV)

had the highest transcriptional variability regardless of their treatment with FFA.

Accumulation of FFA led to increased transcriptional variability in subgroups I

and II, whereas a significant decrease in transcriptional variability was observed

for subgroup III. Taking into account that subgroup III is characterized by genes

involved in lipid metabolism, the decrease in transcriptional variability in this

subgroup suggests that these cells show a more coordinated gene expression in

response to lipid accumulation. Aside from FFA accumulation changing the tran-

scriptional variability in the subgroups, the proportion of treated and untreated

cells captured differed between subgroups. The proportion of FFA-treated cells

was particularly high for subgroup IV, suggesting that FFA accumulation could

lead to increased loss of expression in culture (Figure 4.8 B). The ratio of palmitic

to oleic acid used to model steatosis here has been shown to yield only minor

lipotoxic and apoptotic effects [96]. Nevertheless, FFA treatment in general has

been reported to trigger apoptosis, hence providing a potential mechanism how

lipid accumulation could increase loss of expression in culture [168].
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Figure 4.8: A Box plots showing the coefficient of variation for FFA- and DMSO treated

cells in every subgroup (*=Bonferroni-adjusted p-value < 0.05, MannWhitneyU -test). B
Violin plots depicting i) the expression levels of the marker genes used for subgroup

characterization in figure 4.2 D (top), and ii) the top 5 DEGs between DMSO and FFA

for each subgroup (bottom, *=Bonferroni-adjusted p-value < 0.05). C Scatter plot of

the top 7 GO pathways the DEGs between FFA and DMSO in each metabolically active

subgroup are enriched in. Figure adapted from Sanchez-Quant et al. [164]

To therefore answer the question whether intracellular lipid accumulation can

influence the transcriptomic profiles of PHH subgroups, the expression of the
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subgroup-specific metabolic marker genes was investigated comparing untreated

to FFA-treated cells (Figure 4.8 C, top). Among the representative markers

only HMGCS2, a marker for bile metabolism used to characterize subgroup

I, was significantly up-regulated upon accumulation of FFA. In the presence

of intracellular lipids, in all subgroups perilipid protein 2 (PLIN2) was found

among the top 5 significantly up-regulated genes. PLIN2 involved in the coating

and storage of lipid droplets, therefore suggesting that the storage of lipids in

droplets could be performed similarly across hepatocyte subgroups. Moreover,

the top five DEGs per subgroup were mostly genes associated to either the

metabolism of lipids, or the inflammatory stress response associated to the

progression of NAFLD (Figure 4.8 C, bottom). For example, FABP1 in subgroup

II, and ACADVL in subgroup III are both involved in the oxidation of fatty

acids [169][170]. In contrast, TNFAIP3 in subgroup I, and LGALS1 in subgroup

II have been shown to be up-regulated in NAFLD [171][172]. The expression

of genes known to be involved in the different steps of lipid clearance were

investigated per subgroup between untreated and FFA-treated cells (Figure 4.8

D). Furthermore, since hepatic steatosis leads to the progression of NAFLD

mainly through inflammation, genes associated to inflammation and cellular

stress were also investigated [166].

With the aim to functionally characterize the transcriptomic differences upon

FFA in each of the subgroups, gene ontology analysis for biological processes was

performed on the DEGs. As illustrated in figure 4.8 D, subgroup I up-regulated

pathways related to chemokine signaling, indicating the potential relevance of

this subgroup in the progression of NAFLD. Subgroup II up-regulated pathways

related to the clearance of neutral lipids and involved in triglyceride metabolism.

The pathways of lipid and carbohydrate metabolism have been shown to be

intertwined, playing a role in type II diabetes [173]. These results hence further

support the evidence that subgroup II’s response stem from the initial involve-

ment in carbohydrate metabolism. Finally, subgroup III up-regulated pathways

involved in the lipid and fatty acid metabolism, again indicating a more coordi-

nated response towards the intracellular lipid accumulation in comparison to

the other subgroups.
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4.2.4 PHH heterogeneity influences drug-metabolic capacity in
vitro

Altered lipid metabolism has furthermore been shown to be associated to changes

in the cytochrome P450 pathways [174][9]. Despite their tendency to undergo

de-differentiation in culture, PHHs have been shown to express the majority

of drug-metabolising enzymes, respond to enzyme inducers, and produce a

metabolic profile similar to in vivo [95]. Moreover, the PHHs used in this the-

sis were certified by the supplier Lonza to be plateable and characterized for

transporter and enzyme activity as well as their induction potential. As men-

tioned in the introduction of this thesis, PHHs are considered the gold standard

model to study drug metabolism and potential drug-drug interactions in vitro.
Generally, applying a drug cocktail allows to study the activity of several cy-

tochromes simultaneously [110][112]. The Sanofi-Aventis cocktail used here

for the assessment of drug metabolism in PHHs has been shown to be safe

for in vivo studies and no pharmacokinetical interactions within the cocktail

have been observed in the original study [110]. The compounds of this cocktail

are selective for the five cytochromes, CYP1A2 (caffeine), CYP2C9 (S-warfarin),

CYP2C19 (omeprazole), CYP2D6 (metoprolol), and CYP3A4 (midazolam). More

recently, CYP2B6, CYP2C9 and CYP3A4 have been reported to contribute to the

metabolism of metoprolol in vitro, but their contribution was concluded to be

minor and not compromising the appropriateness of metoprolol as phenotyping

probe for CYP2D6 [175]. Furthermore, the Basel cocktail using the same com-

pounds for CYP1A2, CYP2C19, CYP2D6, and CYP3A4 (but losartam for CYP2C9

instead of S-warfarin) has been shown to be suitable for assessing metabolic

capacity of PHHs in culture [112]. The expression level of cytochromes can be

used to phenotype the metabolic activity of hepatocytes [97]. Here, in addition

to focusing on the targeted cytochromes, measuring the whole transcriptome

allows for in-depth characterization of the hepatocyte response to a metabolic

challenge at single cell resolution.

To contrast which information is obtained through a single cell study in

comparison to bulk, the transcriptomic response to the Sanofi-Aventis drug

cocktail was first measured at the pseudobulk level. Figure 4.9 A, left, shows the

expression levels of the five targeted cytochromes, averaged across all cells, in

response to the cocktail in comparison to DMSO.
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Figure 4.9: A Stacked violin plots showing the expression levels of the targeted five

cytochromes in DMSO versus cocktail treatment for all cells (Pseudobulk, left) and

separately for each subgroup (Subgroups, right) (*=Bonferroni-adjusted p-value < 0.05,

|log2-fold change| > 1, t-test). B Volcano plot depicting significance level (-log10(p-value))

against effect size (log2-fold change) for the comparison between cocktail and DMSO

in pseudobulk (green=up-regulated in cocktail, purple=up-regulated in DMSO, labels

highlight genes up-regulated in all subgroups). C Dot plot showing per subgroup, the

log2-fold change (dot size and color intensity) between cocktail (green) and DMSO

(purple) for genes that are significantly i) up-regulated in all subgroups (left), ii) up-

regulated specifically in only one subgroup (middle), and iii) down-regulated in all

subgroups (right). Grey indicates no significance. D Venn diagram showing the overlap

between genes that are significantly up-regulated upon cocktail treatment between

subgroups. E Scatter plot showing which drug-metabolism related pathways (CTD

database) genes are enriched in that are specifically up-regulated in a given subgroup

(color) upon cocktail treatment. Dot size represents number of genes overlapping in a

given pathway. Figure taken from Sanchez-Quant et al. [164]
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Significant differential expression of a gene was determined by a p-value

below 0.05 and an absolute effect size (log2-fold change) of greater than 1. It has

previously been reported that metoprolol can inhibit the expression of CYP2D6

and CYP3A4, but not affecting the metabolism of midazolam by CYP3A4 [176].

Furthermore, omeprazole can inhibit expression of CYP2C19 [177]. However, no

down-regulation of any of the five targeted cytochromes was observable at both,

the pseudobulk and individual subgroup level, indicating no inhibitory effects

of the compounds at the transcriptome level in the studied PHHs (Figure 4.9

A). While the expression levels of CYP2D6 and CYP2C19 were comparable to

baseline DMSO-levels, CYP3A4 and CYP1A2 were significantly up-regulated in

the pseudobulk of all cells in response to cocktail. CYP2C9 was also up-regulated

but had a low log2-fold change towards DMSO. Additionally, dissecting the effect

of the cocktail per identified subgroup revealed subgroup-specific effects for

the expression of the five cytochromes in response to the cocktail (Figure 4.9 A,

right). For instance, the expression level of CYP3A4 was increased 3.4-fold in

the pseudobulk of all cells upon cocktail treatment. Specifically in subgroup III,

however, no significant up-regulation was observed for this gene in response to

the cocktail whereas an 4-fold increase was observed in subgroup I.

Expanding the analysis from the five cytochromes mediating the metabolism

of the five compounds of the cocktail, the effect of the cocktail on the whole tran-

scriptome was analyzed. In the pseudobulk, the cocktail led to down-regulation

of genes associated to alcohol metabolism, ADH1B and ADH1C (Figure 4.9 B).

These genes were among six genes that were consistently down-regulated across

all four subgroups (Figure 4.9 C, right). On the other hand, the cocktail led to

increased expression of phase I drug-metabolism related genes, such as CYP1A2,

CYP1A1, CYP1B1, and CYP2B6 as well as genes related to stress-response, such

as GDF15 and RGS9 (Figure 4.9 B). Overall, eight genes were consistently up-

regulated upon cocktail treatment across all four subgroups (Figure 4.9 C, left).

However, each subgroup showed subgroup-specific up-regulation of a list of

genes upon cocktail treatment. For example, ATF3 and SRD5A2 were only

up-regulated in subgroup I, CYP2U1 and SLC4A7 were only up-regulated in

subgroup II, PLIN2 and OSGIN1 were only up-regulated in subgroup III, and

MT1E and FADS were only up-regulated in subgroup IV (Figure 4.9 C, middle).

These representative genes again reflect the unique metabolic profiles of the

individual subgroups. For instance, PLIN2 and OSGIN1 are genes involved in
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the coating and metabolism of lipids, indicating that hepatocytes maintain their

specialization and respond accordingly in a metabolic challenge.

Overall, the number of specifically up-regulated genes in response to the

cocktail was similar between the three metabolically active subgroups and was

122 for subgroup I, 102 for subgroup II, and 126 for subgroup III. In line with

the loss of characteristic expression, subgroup IV showed the least amount of

specifically up-regulated genes, 64 (Figure 4.9 D). The transcriptomic differences

observed between subgroups in the response to the five-drug cocktail suggests

subgroup-specific pathway expression under metabolic challenges. To therefore

measure this in an unsupervised manner, gene ontology analysis was performed.

Instead of using the pathways related to biological processes that such analyses

are usually performed on, a database was used containing pathways related to

metabolism of xenobiotic compounds (Comparative Toxicogenomics Database,

CTD) [178][179]. This led to the observation that, in response to the cocktail, the

three metabolically active subgroups indeed expressed pathways related to the

metabolism of different compounds in a subgroup-specific manner. For example,

cells in subgroup I were the only ones up-regulating the pathways responsible

for the metabolism of progesterone and plant oil, among others. Furthermore,

specifically for subgroup II the pathways for Calcitriol and Cisplatin were up-

regulated. Finally, only in subgroup III the pathways for Quercetin and Reactive

Oxygen Species (ROS) were up-regulated (Figure 4.9 E).

4.2.5 Intracellular lipid accumulation diminishes
drug-metabolism in a subgroup-specific manner

Changes in pathways related to drug metabolism, particularly in the cytochrome

P450 pathway, have been observed in response to changes in lipid metabolism

[174][9][180]. Furthermore, hepatic steatosis observed in NAFLD can increase

drug-induced liver injury (DILI) [180]. Likewise, the co-administration of several

drugs simultaneously also leads to a higher incidence of DILI [181][182]. Hence,

combining and expanding the findings from the previous two sections of this

thesis, the impact of intracellular lipid accumulation was assessed on the drug-

metabolism related pathways. As a first step, the expression level of the five

cytochromes targeted by the Sanofi-Aventis cocktail was measured in PHHs

either treated with the cocktail alone or treated with the cocktail after incubation

with FFA. In every of the characterized PHH subgroups, the log2-fold change of

the expression towards baseline (DMSO) levels was measured for each targeted
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cytochrome. Figure 4.10 A shows that across all subgroups, the expression of

the five cytochromes was generally lower in cells that were incubated with

FFA before cocktail administration. For example, in subgroup I, CYP3A4 and

CYP1A2 were significantly up-regulated upon cocktail incubation in otherwise

untreated cells. However, when the cells were incubated with FFA before cocktail

treatment, only CYP1A2 was still significantly up-regulated. Specifically in

subgroup III, CYP2D6, CYP2C19, CYP2C9, and CYP3A4 were significantly down-

regulated towards DMSO levels when cells were treated with the cocktail after

FFA-incubation.

A

Figure 4.10:ADumbbell plot depicting in each subgroup the log2-fold change of each of

the targeted cytochromes to DMSO baseline levels. Colors refer to treatment condition

(green=cocktail, red=FFA+cocktail), dot size represents percentage of cells in which gene

is expressed. (*=Bonferroni-adjusted p-value <0.05 and |log2-fold change| > 1, t-test).

Figure adapted from Sanchez-Quant et al. [164]

Measuring the whole transcriptome allows the quantification and characteri-

zation of which genes and pathways are differentially expressed in response to

cocktail and in the response to FFA+cocktail, and their overlap (Figure 4.11 A).

Of the 498 genes up-regulated across all cells upon cocktail treatment, 234 were

also up-regulated in FFA+cocktail, whereas 264 were solely up-regulated under

cocktail treatment. Likewise, 602 genes were specifically up-regulated when the

cells were treated with FFA+cocktail. Gene ontology analysis in showed that the

genes specifically up-regulated in cocktail-treated cells (but not in FFA+cocktail
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treated cells) were enriched in pathways responsible for xenobiotic metabolism

(Figure 4.11 B, top, green). Genes that were up-regulated in both, cocktail and

FFA+cocktail conditions, were enriched in pathways related to the response to

stimuli, but less specific for xenobiotic metabolism (Figure 4.11 B, middle, beige).

Finally, the genes that were specifically up-regulated in FFA+cocktail treated

cells were enriched in pathways related to stress response and general biological

processes (Figure 4.11 B, bottom, red). Subgroup I showed the highest percentage

of genes specifically up-regulated in cocktail whereas subgroup II showed the

highest percentage of genes specifically up-regulated in FFA+cocktail. Over-

all, similar percentages were observed for the genes in those categories for all

subgroups (Figure 4.11 C). This indicated that intracellular lipid accumulation

affected the expression of drug-related genes to a similar extent in all subgroups.

Figure 4.11: A Venn diagram depicting the overlap of genes up-regulated in cocktail

and FFA+cocktail treatment across all PHHs. B Scatter plot showing the GO pathways

the genes are enriched in that are i) specifically up-regulated in cocktail (top, green),

ii) up-regulated both in cocktail and FFA+cocktail (middle, beige), iii) specifically up-

regulated in FFA+cocktail (bottom, red). C Bar plot showing the percentage of genes in

each category for all four PHH subgroups.

Figure adapted from Sanchez-Quant et al. [164]

Finally, it was investigated how lipid accumulation changes the transcriptional

landscape in response to a five-drug cocktail. For this, gene set enrichment

analysis (GSEA) was performed comparing the cells treated with FFA+cocktail

to the cells treated with cocktail. The pathway for insulin resistance was among

the pathways enriched in the cells treated with FFA+cocktail (Figure 4.12 A).
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A

C D

B
Insulin resistance pathway

Metabolism of xenobiotics by 
cytochrome P450

Insulin resistance pathway
Log2-fold change over DMSO

Xenobiotic metabolism
Log2-fold change over DMSO

FFA Cocktail FFA+Cocktail

FFA Cocktail FFA+Cocktail

Figure 4.12: A GSEA plot for FFA+cocktail versus cocktail for the pathway "Insulin

resistance pathway", that the genes specifically up-regulated in FFA+cocktail were

enriched in. B Heatmap showing log2-fold change towards DMSO levels for genes in

the insulin resistance pathway. C GSEA plot for FFA+cocktail versus cocktail for the

pathway "Metabolism of xenobitics by cytochrome P450", that the genes specifically

up-regulated in cocktail were enriched in. DHeatmap showing log2-fold change towards

DMSO levels for genes related to drug-metabolic pathways.

Figure adapted from Sanchez-Quant et al. [164]
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Measuring the log2-fold change towards baseline DMSO levels of the individ-

ual genes in this pathway revealed that incubation with either FFA or cocktail

alone did not lead to high up-regulation of the genes in all subgroups (Figure 4.12

B). Only the combined treatment of FFA+cocktail led to consistent up-regulation

of genes in the insulin resistance pathway. This indicated that, in lines with

reported literature, hepatic steatosis can be linked with adverse drug reactions,

for instance through insulin resistance [183][184][185]. Furthermore, the com-

parison of cocktail and FFA+Cocktail treated cells revealed that FFA+Cocktail led

to down-regulation of the pathway "metabolism of xenobiotics by cytochrome

P450" (Figure 4.12 C). In line with Aubert et al., this provides evidence that

intracellular lipid accumulation changes P450 expression and leads to dimin-

ished drug-metabolic capacity [180]. Investigating the log2-fold towards DMSO

of genes in drug-related pathways showed that FFA treatment alone did not

significantly change the expression of these genes, despite several cytochromes

associated to both, FFA and drug metabolism [186]. Moreover, while cocktail

treatment alone led to up-regulation of several drug-related genes, treatment

with FFA+cocktail diminished the level of up-regulation across subgroups or

even led to their down-regulation (Figure 4.12 D). Specifically for subgroup III,

expression of CYP2C19, CYP2C8, CYP2D6, CYP3A4, and CYP3A5 was particu-

larly diminished towards DMSO levels in FFA+Cocktail treated cells (Figure 4.12

D, right). These results indicate that intracellular lipid accumulation affects the

gene expression network along multiple pathways. The combination of intracel-

lular lipid accumulation and a five drug challenge diminished the drug-related

response of PHHs and increased potentially cytotoxic cellular mechanisms, such

as insulin resistance. Particularly subgroup III showed diminished drug-related

metabolic capacity under FFA+Cocktail treatment.

Overall, this chapter shows that in the absence of zonation, previously unob-

served cellular heterogeneity is retained in PHHs in vitro in the form of metabol-

ically specialized hepatocyte subgroups. These subgroups respond differently to

metabolic challenges, such as intracellular lipid accumulation and a five drug

cocktail. When PHHs were treated with FFA and the cocktail, they increased

expression of genes related to insulin resistance but decreased drug-related

metabolism. This effect was particularly evident in subgroup III. In summary,

these result indicate that the subgroup-composition of the tissue in vivo could
influence the effect of hepatic steatosis, the drug metabolic capacity, and the risk

of developing adverse drug reactions.
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5.1 Analysis of single cell RNA sequencing data

The technological advances of the last decade enable the in-depth character-

ization of cellular heterogeneity at single cell resolution [33][187][40]. Since

their establishment, scRNA-seq experiments offer a powerful tool to study the

transcriptome of individual cells [33]. However, computational analysis of the

data from such an experiment needs to ensure that the obtained results reflect

true biological differences between cells. Thus, the quality control measures

and subsequent analysis decisions, e.g. data normalization and batch correction,

need to be done carefully to reach meaningful conclusions on the respective

biological question. Moreover, the biological questions explored in this thesis re-

quired different experimental approaches. The main goal of the Ploidy&Zonation

project was to characterize transcriptomic differences between 2n and 4n hepa-

tocytes in healthy adult mice, whereas the PHH diversity project aimed to study

cellular heterogeneity of PHH in response to a stimulus. Depending on the

experimental approach and chemistry used for library preparation, i.e., droplet-

based or plate-based, the sequencing depth obtained per single nucleus or cell

varies substantially [39][57]. To address the respective biological questions, the

data presented in this thesis has been generated using two different experimen-

tal protocols, namely the plate-based method snRNA-seq2 developed for the

Ploidy&Zonation project, and a droplet-based method by 10X Genomics for the
PHH diversity project. Plate-based methods are generally designed to achieve

higher sequencing depths but comparatively low numbers of cells/nuclei whereas

droplet-based methods yield a high throughput of single cells/nuclei at a shal-

lower sequencing depth [57][56]. Because of the difference in cellular (or nuclear)

throughput between these two approaches, close to 2,500 nuclei were analyzed

in the plate-based Ploidy&Zonation project, and an overall amount of roughly

65,000 single cells in the droplet-based PHH diversity data set. Furthermore, the

average number of reads differed at two orders of magnitudes, at around 7,000

per single cell in the PHH diversity project, and 700,000 per single nucleus in the
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Ploidy&Zonation project. These results are in line with droplet-based methods

yielding lower coverage than plate-based ones. These differences between a

plate-based approach such as SMART-seq2 and a droplet-based approach such

as 10X Genomics have also been reported to result in higher number of detected

genes for SMART-seq2 and more cellular clusters in 10X [56].

In summary, choosing the SMART-seq2 protocol to study the impact of ploidy

in the young adult mouse liver allowed the in-depth characterization of the two

populations, including the detection of usually lowly abundant transcription

factors and the comparison of isoform expression. Contrary to this, the high cell

throughput achieved by a 10X Genomics experiment enabled the detection of

hepatocyte subgroups.

Apart from the choice between plate- and droplet-based sequencing tech-

niques, a limiting factor in experimental design is the quality and quantity of

the input material that can be obtained. When intact single cells are obtained, it

allows the analysis of reads stemming from the nucleus, cytoplasmic reads, and

mitochondrial reads. The quantification of mitochondrial reads is often used

for quality control as under stressful conditions, cells have been observed to

up-regulate the mitochondrial reads as they become apoptotic [188][189]. A

high number of mitochondrial reads is therefore considered an indicator for poor

quality cells [189]. For example, in the PHH diversity project, cells were removed

if their fraction of mitochondrial reads was above 10 % of all reads. However,

the isolation of intact single cells is not always feasible. Human samples are

usually archived fixed in formalin and paraffin-embedded (FFPE) and sometimes

preserved frozen in biobanks. Because working on frozen samples limits the

isolation of intact single cells at high yield, studying the respective health or

disease condition of these samples is challenging using standard scRNA-seq

pipelines [139] [140][141]. The work of this thesis shows that the snRNA-seq2

method, tailored for frozen archived liver samples and developed by Dr. Ioannis

Deligiannis in the Martinez-Jimenez lab, allows the successful characterization

of single nuclei at the transcriptomic level. Moreover, it leads to the detection of

around 3,600 genes per single nucleus (Figure 2.1), which is higher number than

other s*RNA-seq methods achieve [16][37][19][28]. In line with previous reports,

the gene expression in the nuclear extracts correlated at a Pearson correlation

of 0.62 to whole cell extracts, deeming the method suitable to infer cellular

function from the single nuclei [143]. Moreover, in line with SMART-seq2 yield-

ing more detected genes and less noise for lowly expressed genes, expression
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of transcription factors could be measured and compared between conditions

from snRNA-seq2 [56]. This therefore is a promising method to study archived

samples and dissect the cellular heterogeneity and gene regulation in health and

disease states from archived human samples [117].

Regardless of the chosen s*RNA-seq method, investigating the impact of

biological conditions (e.g. ploidy status, lipid accumulation, or multiple drug

administration) requires to separate biological variation from technical noise.

For instance, figure 2.1 showed that nuclei prepared on the same 384-well plate

can differ substantially in the amount of transcripts per nucleus. Therefore,

measures to adjust for technical differences need to be considered. Additionally,

as the amount of cDNA obtained from a single cell or nucleus is usually too

low for direct sequencing, molecules are commonly amplified in a polymerase

chain reaction (PCR). However, a technical obstacle during the reaction is the

generation of PCR duplicates, i.e. several reads stemming from the same initial

mRNA molecule, which can bias differential expression analysis [57][124]. Two

commonly used approaches exist to handle PCR duplicates. Experimentally,

a careful validation of the number of PCR cycles needed depending on the

cell type and the amount of cells is performed to minimize the impact of PCR

duplicates. Moreover, their occurrence can be removed through the addition

of unique molecular identifiers (UMIs) [190]. Essentially, each initial mRNA

molecule gets labeled by a UMI, so that in the end only unique molecules are

counted for each gene. In the absence of UMIs, PCR duplicates can be removed

computationally by removing reads that have the identical start and stop site as

this indicates they are coming from the same molecule [191]. However, despite

successful removal of PCR duplicates, bias during PCR amplification can still

impose issues for downstream analysis. For instance, longer genes have a higher

chance of amplification than shorter ones [76]. This is particularly important

when analyzing full-length transcript data and needs to be taken into account

to remove unwanted technical variation. Moreover, ERCC spike-ins have been

shown to be amplified differently from endogenous transcripts [84]. Initially

developed for bulk experiments, the idea of incorporating ERCCs is to add the

same amount of synthetic molecules to each sample (or single cell) and thereby

be able to dissect technical noise from biological variation [81]. In the snRNA-seq

data set, the amplification bias between ERCCs and endogeneous transcripts

could be confirmed for some of the plates (Figure 2.1). Therefore, the relationship
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between ERCC and endogenous transcripts was used for the development of a

new, conservative normalization technique (Methods).

5.1.1 Normalization

In general, normalization aims to remove differences between samples or cells

stemming from technical sources [73][72]. A common and well-established

normalization technique is called library size normalization, where each cell’s

total read count is divided by the average library size [77][78]. However, this

approach has been shown to be insufficient for removing all the technical vari-

ation in single cell experiments [70][124]. Lun et al. have suggested that this

is potentially due to different cell types featuring different amounts of mRNA

levels. Therefore they have developed an approach in which the difference in

mRNA amount between cell types is considered, called scran, which outperforms

simple library size normalization techniques [70][124]. In the comparison of 2n

against 4n hepatocytes in this thesis, however, conservation of differences in

mRNA levels was deemed inappropriate for assessing differences that are not

associated to the levels of transcript abundance alone. In particular, scran led to

the detection of over 1,250 up-regulated genes in 4n, which is a comparatively

large number and indicates that these results were partially driven by the dif-

ference in transcript abundance between 2n and 4n hepatocytes. The adjusted

normalization approach (ERN) presented in chapter 2 of this thesis instead led

to the detection of 241 up-regulated genes in 4n (Figure 2.2). This suggests that

normalizing data with different ploidy status benefits from using the ERCCs as a

resource to minimize the impact of genome content on differential expression.

Overall, the ERN normalization approach diminishes the effect of mRNA amount

between 2n and 4n hepatocytes and still enables the successful dissection of the

different liver cell types.

5.1.2 Cell type identification

While the results of the Ploidy&Zonation project indicate that scran showed a

better performance at separating cell types from each other, the ERN approach

presented in this thesis also allowed recovering the expected proportions of

cell types in the liver (Figure 2.2). Regarding cell type identification, the largest

discrepancy between the two tested normalization techniques was found in the

assignment of lymphocytes and endothelial cells (Figure 2.2). One potential
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reason for this observation is that scran preserves differences in mRNA content

between cell types, and therefore, leads to more power to dissect those cell types

by clustering [124]. Independently of the normalization technique, the ability

to successfully dissect immune cell types could be a general limitation of the

experimental approach. Denisenko et al. have shown that sequencing RNA

from single nuclei leads to poorer detection of immune cells in comparison to

whole cell extracts [125]. Thus, low capture efficiency of the lymphocytes in

this experiment could result in their less reliable identification regardless of the

normalization approach. In general, the appropriate normalization technique

depends on the respective biological question and the subsequent experimental

design. In the Ploidy&Zonation project, the ERN approach was developed and

tailored to fit the task of identifying biologically relevant changes between 2n

and 4n hepatocytes. The ERN approach requires ERCCs to be present in a data

set and relies on the assumption that cells or nuclei with a higher fraction of

ERCC reads tend to have a lower fraction of endogenous reads, and vice versa.

Figure 2.1 D shows that this is the case in the Ploidy&Zonation project. Hence,

in a setting where the biological question is centered in finding differences that

can be confounded by genomic content, a normalization approach making use

of external spike-ins can be advisable. However, in the absence of ERCCs, such

an approach cannot be applied. At the time of this thesis, 10X Genomics does not
recommend the use of ERCCs [121]. As discussed above, the droplet-based 10X
Genomics method offers the opportunity to achieve a high throughput of single

cells, which allows to better identify cellular subtypes [56]. This methodwas used

for the PHHdiversity project as the project aimed to dissect cellular heterogeneity

in a seemingly homogeneous population of cells, shifting the focus from the

difference in ploidy status to instead identify variation among a large amount of

hepatocytes. For normalization of this data set, scran was used because a recent

benchmarking study showed that it outperformed other common normalization

techniques at removing technical variation while retaining biological variation

[124]. Four subgroups of PHHs were identified in the PHH diversity project that

were not confounded by library size. Instead, these subgroups were characterized

by metabolic specialization, indicating that indeed scran was able to remove the

technical effect of library size and retain biological variation. As the subgroups

were not driven by library size it can be hypothesized that hepatocytes with

different ploidy status were distributed evenly among subgroups. However,

further studies would be needed to confirm this.
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5.1.3 Batch correction

Correct cell type identification and downstream analysis rely on the removal of

unwanted variation. While normalization is designed to mainly remove technical

biases within a given batch, its power is limited when fluctuation in data quality

is high between batches [124][126]. In the snRNA-seq2 data set, each plate used

to prepare single nuclei for sequencing represents a batch. Similar sequencing

depths were obtained for all plates in this data set. Hence, ComBat was used as

batch correction method since it has been shown to achieve good results for small

to medium batch effects [126]. ComBat uses a linear model assigning similar

values of mean and variance for all genes before performing batch adjustments

on the count matrix [127]. As shown in figure 2.3, ComBat successfully removed

unwanted inter-batch variation for the snRNA-seq2 data set. On the other hand,

the batch integration was more challenging for the PHH diversity project. The

presence of similar cellular structure between donors for the PHH diversity

data was promising for the successful combination of the batches (Figure 2.4).

Nevertheless, the difference in sequencing depth for the two batches required

a more powerful batch correction approach. Luecken et al. have performed

a thorough comparison of different batch correction techniques, investigating

their level of data set integration and conservation of biological variance [126].

Both, Harmony, and scGenwere placed among the top ranking methods for batch

integration. While scGen received an overall higher ranking than Harmony, the
latter was shown to perform best on pancreatic data. In this thesis, comparison

of scGen and Harmony showed that similar results could be obtained with both

methods (Figure 2.7). However, scGen needs a cell type annotation to use for data

integration [129]. The power of detecting cellular substructure in a seemingly

homogeneous population of cells increases with the number of cells available

[48]. Thus, defining PHH subgroups prior to integration is less powerful than

identifying them on the combined batches, arguing favorably for an unsupervised

integrationmethod that needs no prior knowledge. The goal of the PHH diversity

project was to identify and characterize cellular heterogeneity within a single

cell type, the PHHs. Therefore, since the true subgroups cannot be known

beforehand, scGen was deemed the less appropriate tool. Generally, obtaining

similar results with two different integration approaches validated the presence

of similar subgroups in PHHs. In summary,Harmony led to successful integration
of the two batches while conserving the biological variation present in all four

donors (Figure 2.6). Overall, for both projects presented in this thesis, batch
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correction allowed for a more reliable characterization of cell types and cellular

subtypes.

5.2 Transcriptional heterogeneity

After the characterization of cellular groups of interest, larger-scale differences

between these groups are usually measured by calculating differential expres-

sion. Hereby, the mean expression levels of each gene are compared between

conditions, usually through a t-test [77][78]. However, more subtle differences

between conditions can be assessed by looking at the deviations of genes from

their respective means in the conditions [192][134]. This is called transcriptional

heterogeneity and can be measured by calculating the coefficient of variation

[45][138]. It has been shown that lowly expressed genes generally harbour a

higher coefficient of variation, biasing the correct assessment of highly variable

genes [77][131]. In this thesis, the relationship between lowmean expression and

high coefficient of variation was confirmed in the snRNA-seq2 data (Figure 2.8).

Therefore, calling genes highly variable based on high coefficient of variation

was shown to be biased towards lowly expressed genes (Figure 2.8). Canchola

et al. have furthermore reported spurious values for the coefficient of variation

when applying the traditional formula on log-transformed data and suggested

an adapted formula for this use-case [138]. As shown for the snRNA-seq2 data,

applying this formula for the calculation resulted in an unbiased assessment of

highly variable genes (Figure 2.8). Furthermore, the presence of ERCCs allowed

to calculate a threshold for separating technical from true biological variation.

Overall, a reliable calculation for transcriptional variability is crucial to iden-

tify fluctuations of gene expression in single cells. This can become especially

relevant when investigating the cells’ response to a stimulus as higher transcrip-

tional variability has been shown to indicate a less coordinated response to the

stimulus [133][132].

While studying the response of dendritic cells to lipopolysaccharide, Shalek

et al. have reported the existence of small functional differences within this

seemingly homogeneous cell population. These differences were indicated by

changes in the gene expression distribution, i.e., immune genes were found to

show bimodal expression patterns, partially linked to known maturity states of

dendritic cells [192]. Similarly, the PHH diversity project in this thesis showed

that, in response to lipid accumulation, hepatocyte subgroups can shift gene
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expression towards less coordinated responses and potentially contribute to

disease progression. For instance, subgroups I and II of PHH in vitro showed
increased variability in response to lipid accumulation whereas subgroup III

showed a decrease. This indicates that different subgroups of PHH have different

capacity to handle and clear lipid accumulation, which may play a role in diseases

such as non-alcoholic liver disease (NAFLD). In vivo, NAFLD can develop from

intracellular lipid accumulation and has been shown to change the cell type

composition of the liver [26][7].

Intracellular lipid accumulation in hepatocytes has additionally been shown

to occur during healthy aging [92]. Aging is associated with an increase in tran-

scriptional variability in several tissues and cell types, including heart, lung, and

immune cells [193][132][133]. The data analyzed in the PHH diversity project

comes from human donors covering an age range of 18 to 57 years. Thus, human

variability and age-related differences could influence transcriptional variabil-

ity between and across subgroups. While the sample size was unfortunately

not sufficient to study the impact of age on this data set, further studies on

age-associated cellular heterogeneity will contribute to our understanding of

transcriptional variability in the liver.

Moreover, both aging and NAFLD have been associated to an increase in

polyploid hepatocytes [4][60]. However, before studying the impact of aging or

a disease on a tissue, it is important to know the cellular heterogeneity under

physiological conditions. Hence, the Ploidy&Zonation project presented in this

thesis aimed to dissect heterogeneity between 2n and 4n hepatocytes in young

healthy mice. As shown in chapter 3 of this thesis, shifts in the gene expression

distribution were observed for several key hepatic marker genes. For instance,

transcription factors Ppar𝛼 ,Mlxipl, Rxra, Nr1i2, andNr1i3 changed in distribution
between 2n and 4n hepatocytes (Figure 3.8). This indicates that gene regula-

tory programs slightly differ between 2n and 4n hepatocytes in healthy young

mouse liver. With old and diseased individuals harbouring higher proportions

of polyploid hepatocytes, these differences in gene regulatory programs might

change in disease conditions [60][4][61]. Generally, the Ploidy&Zonation project

showed that 4n hepatocytes feature less noisy gene expression in comparison to

2n hepatocytes, which is in line with an earlier study by Bahar and Halpern et
al. [14].
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5.3 Polyploidy in the liver

Increased polyploidization has been observed in NAFLD and is also associated

to poor prognosis in hepatocellular carcinoma (HCC) [4][5]. To shed light on

the role of polyploidy in the young healthy adult mouse liver, the transcrip-

tomic profile was compared between 2n and 4n hepatocytes. Most of the key

transcription factors that were analyzed showed changes in their distribution

as described above. However, no significant difference in their expression level

were measured between 2n and 4n hepatocytes in young healthy mice. Fur-

thermore, isoform expression for these transcription factors was observed to be

similar between 2n and 4n hepatocytes 3.5. These results indicate that in young

healthy mice, the gene regulatory programs are overall similar between 2n and

4n hepatocytes with the only differences being measurable in the gene expression

distribution. However, differential expression analysis on the snRNA-seq2 data

revealed that 2n hepatocytes are rather involved in the metabolism of proteins

and carbohydrates whereas gene expression in 4n hepatocytes is enriched in

pathways related to lipid, sterol, and xenobiotic metabolism. Additionally, genes

were identified that showed no significant changes in mean expression between

2n and 4n hepatocytes but which significantly changed in their expression dis-

tribution. For instance, genes related to glucose and lipid metabolism, such

as Gk and Apob, respectively, changed their distribution between 2n and 4n

hepatocytes. This again indicates the presence of small functional differences

in sub-populations of cells, that can become relevant in response to external or

internal factors [192].

A known internal factor is the existence of higher ploidy levels in the liver.

The analysis of nuclei from 8n, and 16n cells has shown the presence of genes

increasing in expression level with ploidy as well as genes that decrease with

ploidy. Among the genes that increased from 4n to 16n were the solute carriers

Slc9a9 and Slc44a2 (Figure 3.9). Slc9a9 has been shown to maintain cellular

homeostasis through proton exchange [194][195]. Likewise, Slc44a2 orchestrates

the uptake of choline into the cell and choline deficiency has been associated

to NAFLD in humans [196]. At the same time, larger cells have been shown

to produce higher amounts of mRNA and proteins [67][66]. The results from

this analysis therefore indicate how polyploid cells increase their capability for

certain molecular uptake to sustain to larger energy demand while maintaining

healthy levels of metabolites. On the other hand, Slc19a1 and Slc27a2 were found
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to decrease with ploidy status. Slc19a1 is responsible for the uptake of cyclic

dinucleotides whereas Slc27a2 (also known as Fatp2) enables uptake of fatty

acids [197][198]. Depletion of Slc27a2 has been shown to increase the expression

of genes regulated by transcription factor Ppar𝛼 , such as genes involved in fatty

acid metabolism [198]. Future studies are needed to shed light on the relationship

between changed gene regulatory networks in polyploid cells and the association

to chronic liver diseases such as NAFLD and HCC. In summary, these results

suggests that, in young healthy mice, gene expression in polyploid hepatocytes

is tightly coordinated and adapted to sustain cellular homeostasis and normal

metabolic functionality.

5.4 Stem cell properties in hepatocytes

Polyploid hepatocytes have been shown to proliferate at a slower rate than diploid

hepatocytes [199]. Despite their slow proliferation, recent reports have suggested

their involvement in tissue regeneration after liver injury [200][201]. This

raises the question to which extent polyploid hepatocyte feature stem cell-like

properties. In line with studies from Chen et al. and Lin et al., the results from the

Ploidy&Zonation project in this thesis indicate that both, 2n and 4n hepatocytes,

share stem cell properties [153][201]. In particular, co-expression of nine selected

stem cell marker genes was found in similar proportions of nuclei in both, 2n

and 4n hepatocytes. These results were also validated by Dr. Kelvin Yin through

immunofluorescence staining of Lgr5 mRNA in 2n and 4n hepatocytes. In a

recent study, Matsumoto et al. have performed amultiple color reporter assay and

concluded that, upon liver injury, polyploid hepatocytes undergo reduction of

ploidy level and subsequent re-polyploidization [202]. Hence, the data analyzed

in the present thesis are in line with recent literature and strongly suggest

a stem cell potential of polyploid hepatocytes. Apart from the regenerative

potential of polyploid hepatocytes, divergent evidence has been reported for the

presence of a stem cell niche in the liver. For example, Kuwahara et al. have
performed a labeling approach leading to the suggestion of stem cell "hot-spots"

in association to bile ducts [203]. Similarly, Wang et al. have reported the

presence of a pericentral stem cell niche fueling regeneration through expression

of Axin2 [152]. However, Sun et al. have reported evenly distributed expression

of Axin2 along the liver lobule [154]. Likewise, regenerative marker gene Tert has
also been shown to be expressed evenly across the liver lobule [153], whereas an
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enrichment of Lgr5 has been observed at the pericentral area [154]. In line with

these reports, the immunofluorescence RNA staining for Lgr5 showed a higher

proportion of Lgr5+ cells at the central vein. In summary, it can be postulated

that both, 2n and 4n hepatocytes, share regenerative potential whereas some

stem cell markers are potentially enriched at the pericentral region.

5.5 Zonation

The bi-directional expression gradient between the pericentral and the periportal

area in the liver lobule is referred to as zonation [11][157]. Resulting from the

gradual supply of oxygen and nutrients from periportal to pericentral, zonation

leads to a division of labor in hepatocytes [6]. While periportal hepatocytes

involve in gluconeogenesis and protein metabolism, pericentral hepatocytes are

rather performing glycolysis and metabolism of xenobiotics [89]. To obtain an in-

depth characterization of gene expression in hepatocytes along the liver lobule,

Halpern et al. combined single-molecule imaging with scRNA-seq, identifying

marker genes for nine zones from pericentral to periportal [16]. For instance,

Glul, Cyp27a1, and Cyp2e1 represent pericentral marker genes whereas Alb,
Pck1, and Gls2 are associated to the periportal area. Putting the transcriptome

of single nuclei into the context of zonation, these marker genes were used

to generate a vector of diffusion pseudospace, ordering the nuclei from the

most pericentral to the most periportal expression profile. This is based on

recent developments on the analysis of scRNA-seq data, in which cells are

ordered based on similarities between their gene expression profiles [90][204][91].

Indeed, this analysis enabled the identification of pericentral- and periportal-

associated nuclei and the bi-directional expression gradient of respective marker

genes. The presence of a bi-directional expression gradient as seen in the nuclei

transcriptomic data was experimentally validated by Dr. Kelvin Yin through

measuring mRNA fluorescence intensities of PV marker Cyp2f2 and CV marker

Cyp2e1 along the liver lobule. This additional experiment confirmed that the

results obtained through snRNA-seq2 were also measurable on the intact tissue.

Thus, the results from the Ploidy&Zonation project indicate that the analysis of

the whole transcriptome in single nuclei allows an in-depth characterization of

the changes in gene expression along a spatial trajectory.

Especially in the last ten years, insights have been gained into how hepato-

cytes are distributed along this trajectory with regards to their ploidy status. For
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instance, Morales-Navarette et al. have found that hepatocyte volume increases

from periportal to pericentral, indicating higher ploidy levels near the central

vein [15]. Likewise, Tanami et al. have used single-molecule imaging which led

to the conclusion that 2n hepatocytes reside closer to the periportal vein while 4n

hepatocytes show higher abundances at the mid-lobular and central vein areas

[85]. In line with these studies, nuclei from the Ploidy&Zonation project assigned

to PV were enriched in 2n nuclei whereas the proportion of 4n nuclei was higher

in the nuclei assigned to CV. A recent study by Katsuda et al., however, performed

single cell quantitative PCR on FACS-sorted 2n, 4n, and 8n cells and reported a

pericentral gene expression profile in 2n cells [156]. This could potentially be

due to hepatobiliary cells infiltrating the 2n hepatocyte population as their gene

expression profile is similar to hepatocytes [21][22]. Hence, these populations

could be difficult to disentangle without having the whole transcriptome or

spatial information available. As both, pericentral hepatocytes and hepatobiliary

cells, are involved in bile synthesis, having hepatobiliary cells present in the

population could therefore explain a pericentral gene expression profile within

2n cells [88]. In the snRNA-seq2 data set here, 2n hepatocytes featured a peri-

portal gene expression profile in comparison to 4n hepatocytes. For example,

performing gene ontology analysis revealed that the top 100 up-regulated genes

in 2n hepatocytes were enriched in gluconeogenesis, which has been associated

to the periportal region [157][6]. Furthermore, periportal marker genes Pck1,
Alb, and Cyp2f2 were significantly up-regulated in 2n hepatocytes. Additionally,

marker genes for the periportal-associated protein metabolism, such as Gls2 and
Hal, were up-regulated in 2n hepatocytes. In contrast to that, 4n hepatocytes

were enriched in genes related to xenobiotic metabolism, associated to the peri-

central area [88][16][89]. For instance, cytochromes from the P450 family of

enzymes, such as Cyp2e1, Cyp1a2, and Cyp7a1 were significantly up-regulated in
4n hepatocytes. Together these results indicate that the differences between 2n

and 4n hepatocytes in young healthy mouse livers are partially driven by their

respective location along the liver lobule. In summary, 2n hepatocytes exhibit a

periportal, whereas 4n hepatocytes exhibit a pericentral gene expression profile

5.6 Zonation-independent hepatocyte heterogeneity

It has been demonstrated that liver zonation influences gene expression pat-

terns in vivo. To closely study this effect in vitro, several approaches have been
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developed to model zonation, mainly through generating an oxygen-gradient

similar to the physiological condition in vivo [97]. For example, Scheidecker

et al. have shown that modeling zonation in primary rat hepatocytes through

biomimetic supply of oxygen induces drug metabolism in concordance to what is

seen in vivo [116]. However, an inappropriate oxygen concentration can lead to

undesirable gene expression profiles, associated to e.g. hepatocellular carcinoma

and increased drug-induced injury [116]. The 2D culture of primary human hep-

atocytes (PHHs) represents the gold standard model for testing drug metabolism

in vitro [97]. Without biomimetic supply of oxygen, no zonation patterns are

present in PHHs in culture [97]. This was also shown in the transcriptomics

data set of the PHH diversity project in this thesis. Calculating scores for the

expression of CV, and PV markers, respectively, showed no enrichment of a CV

or PV profile in any of the cells. However, as described in chapter 4 of this thesis,

analysis of the individual donors revealed an underlying cellular heterogeneity

that was consistently present across all four donors, independently of treatment

condition and zonation. Thus, four subgroups sharing similar gene expression

profiles across donors were defined. In line with studies from Hu et al. and
Heslop et al., one of the subgroups was shown to have de-differentiated along

culture time resulting in a loss of the hepatocyte-like transcriptomic phenotype

[114][115]. The other three identified subgroups showed distinct gene expression

profiles suggesting their respective functional specialization. While subgroup I

expressed genes related to bile acid and sterol metabolism, subgroup II expressed

genes involved in carbohydrate and phase II metabolism. Finally, subgroup

III expressed markers related to lipid and phase III metabolism. The analysis

of two publicly available data sets from a total of 14 human livers confirmed

the presence of these three metabolically active hepatocyte subgroups in vivo
[19][18]. In one of the two publicly available data sets, MacParland et al. have
reported the presence of six clusters of hepatocytes in vivo that were found

to be partially influenced by zonation [18]. The comparison of this data set to

the PHH data revealed that three of their clusters showed high transcriptomic

similarity to in vitro subgroup II hepatocytes, whereas the other two subgroups

from the PHH data were more difficult to annotate on this in vivo data set. This
could potentially be due to inter-individual differences among the donors or due

to the PHHs being cultured for 72 hours. Nevertheless, investigating the gene

expression patterns of the PHH subgroups in the clusters of the publicly available
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in vivo data sets led to the successful identification of the three metabolically

active PHH subgroups in vivo.

In the publicly available in vivo data sets, gene expression is affected by

zonation [19][18]. This allowed to study the relationship between zonation and

the subgroups’ gene expression profiles in vivo. While CV, midzonal, and PV

expression patterns were found in all three subgroups, subgroup III had the

smallest proportion of cells exhibiting a periportal gene expression profile. This

could indicate a smaller proportion of subgroup III hepatocytes near the portal

vein in vivo. In general, xenobiotic metabolism predominantly takes place at the

pericentral region in the liver lobule [6]. Hence, their specialization into phase

III metabolism could suggest a rather midzonal to pericentral role of subgroup

III hepatocytes. Overall, no subgroup was found to correspond to a specific zone

indicating that also in vivo the subgroups are present independent of zonation.
However, marker gene expression within the identified subgroups showed zonal

patterning in vivo. For instance, cells within subgroup I in the Aizarani et al.
data set showed distinct patterns for CV and PV marker genes and a split of the

population into cells exhibiting a PV, and CV expression profile, respectively

(Figure 4.4).

Data integration of the two publicly available in vivo data sets from 14 human

donors increased the power of analysing the impact of zonation on gene expres-

sion within the metabolically active subgroups [19][18]. Moreover, trajectory

inference from scRNA-seq data allowed to order cells by the similarities of their

gene expression profiles [90][204]. Ordering the cells in each subgroup in vivo
from the most PV to the most CV expression profile enabled to investigate the

impact of zonation on each subgroup separately. In subgroup II, marker gene

expression did not follow the expected zonation trajectory from PV to CV (Fig-

ure 3.11). This indicated that zonation was not a main driver of variation for

subgroup II cells, and thus, that their gene expression profile was comparatively

independent of zonation. However, the trajectory analysis revealed zonation-

related labor-separation within subgroup I and III. For instance, in line with the

known spatial separation of the pathway synthesizing bile acids from cholesterol,

CYP8B1 showed pericentral enrichment in subgroup I, whereas HMGCS2 was
periportally enriched [157][6]. Moreover, expression in subgroup III reflected

the reports from Halpern et al. and Aizarani et al., in which expression levels

of Apob were highest in the midzonal regions while Mlxipl was pericentrally
enriched [16]. In summary, the metabolic specialization into subgroups that was
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identified in PHHs in vitro was also present in vivo and independent of zonation.

Furthermore, the in-depth study of hepatocytes from 14 human donors showed

that specific marker genes within the subgroups showed spatial patterning in
vivo.

5.7 Intracellular lipid accumulation

Recently, zonation has been shown to impact the cellular response to intracel-

lular lipid accumulation [7]. In Park et al., mice fed a high-fat diet have shown

an increased lipid droplet accumulation in CV hepatocytes, whereas PV hepa-

tocytes down-regulated their characteristic gene expression profiles upon lipid

accumulation [7]. Apart from the zonation-related heterogeneity found among

hepatocytes, this thesis has demonstrated the existence of hepatocyte subgroups

characterized by zonation-independent metabolic heterogeneity, both in in vivo
and in vitro. Therefore, studying the effect of intracellular lipid accumulation on

these subgroups provides another layer of how steatosis affects hepatocytes. For

instance, as described above, lipid accumulation differently impacts transcrip-

tional variability in the PHH subgroups. Increased transcriptional variability has

been linked to destabilization of biological programs during ageing and a less

coordinated response of cells to a stimulus [133][130][132]. The PHH diversity

project has shown that transcriptional variability is increased in subgroup I

and II in response to intracellular lipid accumulation, indicating that these cells

showed a less coordinated transcriptomic response to hepatic steatosis.

Moreover, studies by Anstee et al. and Pan et al. have shown that hepatic

steatosis leads to increased expression of inflammatory pathways [205][167].

In particular, increased expression levels of chemokines, driving inflammatory

responses, have been observed in NAFLD [167]. In the PHH diversity project,

subgroup I showed increased expression of chemokines, suggesting this sub-

group is more susceptible to inflammation and has greater potential to drive

disease progression in vivo. Additionally, in subgroup II, intracellular lipid accu-

mulation triggered the up-regulation of pathways involved in the clearance of

neutral lipids and triglycerides. Triglycerides have been shown to accumulate

within hepatocytes in NAFLD [206]. Adaptations in gene expression to clear the

triglycerides from the cells through 𝛽-oxidation can result in increased levels

of reactive oxygen species (ROS) [207]. While ROS levels were not directly

measured from the PHHs, the gene expression profile of subgroup II cells in-
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deed suggests oxidative stress. For example, the LGALS family of genes has

been associated to oxidative stress in cancer and LGALS1 was among the top

five up-regulated genes in response to lipid accumulation in subgroup II [208].

Taken together, these results indicate that triglyceride accumulation associated

to steatosis triggers their increased clearance and subsequent oxidative stress in

subgroup II hepatocytes.

Subgroup III hepatocytes also up-regulated pathways related to triglyceride

clearance in response to intracellular lipid accumulation. However, to a higher

extent, they up-regulated genes enriched in pathways for lipid metabolism and

the regulation of lipid metabolism. Across all treatment conditions, subgroup III

cells were characterized by phase III and lipid metabolism, but the expression of

genes related to lipid metabolism was further increased in the model of hepatic

steatosis. Moreover, transcriptional variability was significantly decreased in

this subgroup. These findings indicate that hepatocytes showing a transcrip-

tomic specialization in lipid metabolism react in a more targeted fashion to

hepatic steatosis. In summary, intracellular lipid accumulation triggers cellular

responses specifically for each of the specialized hepatocyte subgroups. With the

characterization of metabolically distinct hepatocytes that exist independently

of zonation, this in vitro study offers a new aspect for future in vivo studies

investigating the impact of steatosis at single cell resolution.

5.8 Drug metabolism in healthy and steatotic PHHs

NAFLD and its associated changes in lipid metabolism has been shown to directly

impact the expression of genes in the cytochrome P450 superfamily [174][9].

Members of this superfamily orchestrate phase I metabolism of xenobiotic sub-

stances, inwhich oxidation, reduction, hydrolysis, and cyclization reactions occur

[102]. Subsequent phase II drug metabolism is carried out by GST, SULT, UGT,

and NAT families of enzymes [106]. Finally, the catabolites of drug metabolism

are excreted from the cell by transmembrane transporter proteins [107]. De-

spite their tendency to undergo de-differentiation after 72h in culture, PHHs

have been shown to express the majority of these drug-metabolising enzymes,

respond to enzyme inducers, and produce a metabolic profile similar to in vivo
[95][115]. Furthermore, among others, Bosilikovska et al. have shown their

usability to study the activity of cytochromes upon stimulus [113][112][110]. Of

particular interest here are the enzymes CYP1A2, CYP2C9, CYP2C19, CYP2D6,
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and CYP3A4 as they are involved in the metabolism of 70-80 % of all commonly

used drugs [12][105].

In comparison to studying the effect of individual drugs, a cocktail approach al-

lows to investigate the activity of several cytochromes simultaneously [110][112]

[113]. The Sanofi-Aventis cocktail used here consists of these selective sub-

strates for each of the aforementioned five cytochromes: caffeine (CYP1A2),

S-warfarin (CYP2C9), omeprazole (CYP2C19), metoprolol (CYP2D6), and mi-

dazolam (CYP3A4) [110]. While the original study reported no interactions in

the metabolism of those compounds, a more recent study by Berger et al. has
reported that CYP2B6, CYP2C9 and CYP3A4 contribute to the metabolism of

metoprolol in vitro [110][175]. However, the authors conclude that the contri-
bution is minor and does not compromise the appropriateness of metoprolol as

phenotyping probe for CYP2D6 [175]. Additionally, Borkar et al. have shown
that metoprolol can inhibit the expression of CYP2D6 and CYP3A4, but that this

does not affect the metabolism of midazolam by CYP3A4 [176]. Furthermore,

a time-dependent inhibitory effect of CYP2C19 expression has been reported

for treatment with omeprazole [177]. Overall, the Sanofi-Aventis cocktail is

considered suitable to measure liver metabolic capacity in vivo, study drug-drug

interactions of new drugs in development, and phenotype cytochrome activity

both in vivo and in vitro [110][209]. Exploring the gene expression profile of sin-

gle hepatocytes in response to this cocktail enabled the detection of subtle effects

that are potentially concealed in bulk studies. Pseudo-bulk analysis of the single

cell data showed induced expression levels of CYP2C9, CYP3A4 and CYP1A2

upon cocktail treatment, although CYP2C9 had a low log2-fold change towards

DMSO. Expression levels of CYP2D6 and CYP2C19 were comparable to baseline

DMSO-levels, which could be linked to the previously reported pharmacokinetic

effects of metoprolol and omeprazole [176][177]. However, no down-regulation

of any of the five targeted cytochromes was observable, suggesting no inhibitory

effects of the compounds on the targeted cytochromes in the studied PHHs at

the transcriptome level. Across all subgroups, treatment with the Sanofi-Aventis

cocktail led to down-regulation of the alcohol-dehydrogenases ADH1B and

ADH1C (Figure 4.9 C). These genes are main contributors to successful alcohol

clearance in the liver [210]. Hence, their consistent down-regulation could lead

to potential accumulation of alcohol, which represents an interaction between

alcohol and drug metabolism that has previously been reported to lead to adverse

drug reactions [211][212]. Moreover, at single cell resolution, differences in the
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expression level of the five targeted cytochromes were observable between the

subgroups. Along with the loss of their characteristic hepatocyte-like expres-

sion, cells in subgroup IV showed the least expression levels of the five targeted

cytochromes. This could become relevant when testing the efficacy and safety of

new drugs in bulk studies. Despite PHHs overall retaining their drug-metabolic

capacities in vitro, the proportion of cells losing their expression could partially

conceal the true levels of cytochrome induction or inhibition across all cells in

response to a drug when bulk studies are performed [95]. This is of concern as

correct measures of cytochrome inhibition and induction in response to drugs

are considered crucial for the assessment of potential drug-drug interactions

and toxicity [111]. Additionally, different levels of cytochrome expression were

also found between the three metabolically active subgroups. For instance,

CYP3A4 was 4-fold induced over DMSO-levels in subgroup I while no significant

up-regulation was observed in subgroup III hepatocytes. Overall, these results

highlight the impact of hepatocyte specialization for the accurate assessment of

drug efficacy, toxicity, and potentially, drug-drug interactions.

Studies have reported that the expression of cytochrome P450 enzymes is

furthermore impacted by aging and human ethnicity [213][214][215]. The donors

from which the PHHs were acquired for the PHH diversity project were from

different ethnic groups (three Caucasian and one Hispanic) and covered an age-

range of 18 to 57 years. Thus, this human variability could also contribute to

heterogeneity in the expression of cytochromes. While the sample size did not

allow to investigate the effect of age or ethnic group in this data set, the overall

expression levels of CYP2C9 were found to be overall higher than the expression

levels of the other four cytochromes (Figure 4.9). This is in line with a study by

Liu et al., who reported higher basal expression levels of CYP2C9 in comparison

to CYP1A2 and CYP2D6 for African Americans, Caucasians, and Hispanics [215].

Investigating the effect of the Sanofi-Aventis cocktail on the whole transcrip-

tome of PHHs at single cell resolution further revealed how metabolic specializa-

tion impacts the drug-metabolism related response to a specific drug challenge.

For instance, PLIN2 and OSGIN1 are involved in the coating and metabolism of

lipids and were significantly up-regulated in response to the cocktail in subgroup

III hepatocytes specialized in lipid and phase III metabolism [206]. This suggests

that the identified PHH subgroups maintain their metabolic specialization in

response to a stimulus. Performing gene ontology analysis on pathways related

to the catabolism of xenobiotic compounds further increased the evidence for
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subgroup-specific responses to a drug challenge [178]. While some pathways

were shared between subgroups, every subgroup up-regulated specific pathways

associated to the metabolism of different xenobiotic compounds in response to

the cocktail. This suggests that metabolic specialization of hepatocytes could

eventually impact what xenobiotic compounds the cells are able to metabolize.

Especially in vivo where gene expression within the subgroups is additionally in-

fluenced by zonation, individual hepatocytes might be more efficient at clearance

of certain compounds whereas others might be more susceptible to contribute

to drug-induced liver injury.

Furthermore, drug-induced liver injury and adverse drug reactions have been

reported to occur more frequently in patients suffering from NAFLD [180][207].

Changes in the drug-related metabolism under steatosis include changes in

the gene expression of cytochromes in phase I [174][9][180]. Comparing the

expression of the five targeted cytochromes in response to the Sanofi-Aventis

cocktail revealed overall lower expression levels in the steatosis model than

under physiological condition across PHH subgroups. In particular, subgroup III

hepatocytes significantly down-regulated four of the five targeted cytochromes

towards their baseline DMSO levels when the cocktail was administered to

cells experiencing intracellular lipid accumulation. In otherwise untreated cells,

administration of the Sanofi-Aventis moderately induced expression of genes in

the cytochrome P450 pathway, confirming the retained drug-metabolic capacity

of PHHs in vitro [95]. However, while the cells still up-regulated genes related

to stimulus responses, the presence of intracellular lipid accumulation led to

a gene expression profile that was less specific to drug metabolism. Moreover,

PHHs treated with both, FFA and the cocktail, specifically up-regulated genes

enriched in pathways related to general cellular processes and response to lipid.

These results suggest diminished capacity for drug clearance in PHHs under

hepatic steatosis. Eventually, this could contribute to drug toxicity as reported

in patients suffering from chronic liver diseases [216][217]. Furthermore, the

changes in amount of differential expression between cocktail treatment alone

and FFA+cocktail treatment was similar between subgroups. While this does not

indicate which specific pathways are affected per subgroup, the low amount of

drug-specific genes upon intracellular lipid accumulation indicate diminished

drug-related metabolic efficiency across all subgroups.

The administration of certain drugs has been associated to trigger insulin

resistance in some patients in vivo [218][219]. To study this, the effect of the
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cocktail-treatment was tested on steatotic and otherwise untreated PHHs in
vitro. It was revealed that the combination of steatosis and drug administration

triggered up-regulation of genes in the insulin resistance pathway. Neither the

steatosis model, nor the admission of the Sanofi-Aventis cocktail alone led to an

up-regulation of insulin resistance related genes in any of the subgroups. Fur-

thermore, in comparison to cocktail-treatment alone, cocktail-treatment under

modelled steatosis led to the down-regulation of cytochrome P450 superfamily

genes. These results provide further evidence for less efficient drug clearance

and the potential development of adverse drug-reactions in hepatocytes un-

der steatosis [207][219]. Under DMSO, PHHs up-regulated cytochrome P450

genes to initiate drug clearance, whereas steatosis diminished the level of cy-

tochrome expression in all subgroups. In particular, subgroup III hepatocytes

down-regulated the expression of several cytochromes when the cocktail was

administered in the presence of intracellular lipid accumulation. This suggests

that lipid accumulation has an inhibitory effect on the cytochromes in subgroup

III hepatocytes and thus, drug metabolism is particularly impaired in these cells

under hepatic steatosis. Previously, variability in the incidence and progression

of NAFLD has been observed between patients associated to genetic and en-

vironmental factors [220]. However, the results of this thesis suggest that the

proportions of different hepatocyte subgroups in a patient could also contribute

to this variability. Especially, different proportions of subgroups could influence

which xenobiotic compounds the patient can efficiently clear, and the risk of

developing adverse drug reactions under steatosis.

102



6 Conclusions and Outlook

Single cell RNA-sequencing has made it possible to characterize and study func-

tional differences in a seemingly homogeneous population of cells [33][54][187].

However, the experimental design and data analysis influence the interpretation

of the results [124]. For instance, conserving differences in the mRNA content

between cell types has been confirmed to be advantageous for correct cell type

identification [70][124]. On the other hand, when investigating the differences

between cells featuring whole genome duplication, the results shown here in-

dicate the benefit of adapting library size normalization to regard differences

in genome content. Thus, not only the experimental design, but also the steps

along the computational analysis need to be considered individually for each

biological question, depending on the specific context.

Overall, the analysis of single cell transcriptomic data presented in this thesis

has led to the identification and characterization of hepatic cellular heterogene-

ity in vivo, and in vitro. With the recent advances in the field of single cell

genomics, it is now possible to study gene regulation by assessing chromatin

openness [221][222] and DNA methylation [223]. Both -omics can also be mea-

sured together with gene expression within the same single cell [224][225]. In

the context of polyploidyzation in the liver, this paves the way to study gene

dosage compensation, i.e. mechanisms that allow cells to establish functional

mRNA levels despite having more than two copies of a given gene. Exploring the

regulatory landscape behind genes increasing or decreasing in their expression

level with higher ploidy shown in this thesis could give an entry point for under-

standing gene dosage compensation and lead to a better understanding of ploidy

contributing to tissue function. In line with previous studies, the snRNA-seq2

data here revealed that, in the young healthy adult mouse liver, 2n hepatocytes

feature a rather periportal gene expression profile whereas 4n hepatocytes ex-

press pericentral pathways [15][85]. This suggests that polyploidyzation and

zonation are connected. Here, gene expression in the context of zonation was

studied using well-established zonation marker genes and diffusion maps, but

recent technological advances now enable to explore transcriptomics directly in
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the spatial context of a tissue [226][227]. This technique is called spatial tran-

scriptomics and offers a promising approach to further study zonation, especially

in the context of chronic liver diseases [228]. For instance, in the present thesis,

fibrosis in a mouse model has been shown to disrupt zonation patterns. While

sample sizes were not sufficient to perform statistical testing, the fibrosis model

showed a decrease of 2n hepatocytes in comparison to wild type animals. These

findings indicate a complex interplay between ploidy level and zonation that is

affected by chronic liver disease. Applying spatial transcriptomic techniques to

measure the impact of chronic liver diseases on zonal expression patterns will

hence improve the understanding of these diseases and yield potential treatment

targets in the future.

Accumulation of lipids, referred to as hepatic steatosis, is associated to the

development of chronic liver diseases, such as NAFLD. Research has shown that

in vivo, hepatic steatosis alters the transcriptional landscape of hepatocytes in
a zonation-dependent manner [27][7]. While the context of zonation is lost in

the standard 2D culture of primary human hepatocytes in vitro, the results in
this thesis indicate that zonation-independent metabolic specialization exists in
vitro and in vivo. Therefore, susceptibility to the development of NAFLD and

other chronic liver conditions may be impacted by the proportions of different

subgroups of hepatocytes in humans. For instance, based on their metabolic

profile, some hepatocytes may be more susceptible to contribute to inflammation

in hepatic steatosis whereas others can help with lipid clearance but are at higher

risk for developing adverse drug reactions and contribute to drug-induced liver

injury. The impact of hepatocyte subgroups has therefore to be further studied

carefully in vivo, especially in the context of drug toxicity and hepatic steatosis.

Additionally, increased levels of bi-nucleated tetraploid hepatocytes have been

shown to arise in NAFLD in vivo [4]. However, how ploidy status impacts

hepatocyte function under hepatic steatosis also remains to be studied in the

future.

In this thesis, cellular heterogeneity of hepatocytes is reflected in polyploidy,

zonation, and metabolic specialization. Under physiological conditions, these

factors are intertwined to sustain healthy hepatic functionality. Intrinsic and

external perturbations such as lipid accumulation, senescence or drug adminis-

tration can, however, disrupt metabolism by causing imbalance between these

different layers of heterogeneity. Future studies applying new technologies

therefore need to take into account how the polyploidy, zonation, and metabolic
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specialization shape the response to different stimuli, such as disease, polyphar-

macy, aging, and a combination thereof.
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7.1 Background

In eukaryotic cells, DNA is stored in the nucleus, where genes get transcribed

by RNA-polymerase II. The resulting messenger RNA (mRNA) molecules get

subsequently capped at their 5’ end and poly-adenylated at their 3’ end before

they get exported from the nucleus, undergo splicing, and are translated into

proteins. Thus, measuring gene expression - and thereby inferring information

on what proteins eventually end up defining the cells functionality - can be

performed by extracting the mRNA from cells or nuclei. While nuclei do not

contained mature, spliced mRNA, the nuclear transcriptome is still representative

of the whole cell [143]. Usually, the mRNA molecules within a cell/nucleus (or

within a bulk of cells) are captured by their poly-adenylated end [229][230].

Other methods, including capture by cap-sequence or rRNA-depletion without

pre-selection, have been described but are considered less efficient and are

therefore less commonly used [231] [230]. The captured mRNA molecules are

then reverse transcribed to generate cDNA that is amplified and subsequently

sequenced. To understand which genes are expressed to what extent in a single

cell/nucleus at the time of collection, those reads have to be assigned to a single

cell/nucleus and aligned to a reference genome and counted in a meaningful

context. Assigning reads to individual cells/nuclei generally works by using a

barcode to label each individual cell/nucleus. Through the tremendous work

of the last decades, regions in the human as well as the mouse genome have

been and are being annotated, leading to a publicly available resource making

it possible to quantify reads in a meaningful context [232][233]. Moreover,

algorithms have been developed to align reads to a reference genome taking into

account splice junctions to better handle reads stemming from RNA-sequencing

[118].

There are two major ways to label single cells or nuclei with barcodes. The

first one relies on putting the cells/nuclei into the wells of plates containing the
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barcodes [234], while the second one makes use of liquid droplets to encapsulate

the cells or nuclei [55].

7.2 Read alignment and building count matrices

For the single nucleus RNA-sequencing data set coming from adult mouse liver

cells, a plate-based sequencing approach was used, meaning that single nuclei

were sorted into 384-well plates through fluorescence activated cell sorting

(FACS)[31]. Raw sequencing reads were aligned against a customized genome

containing the mm10 (GRCm38, assembly version 93) genome, as well as the

ERCC92 sequences [80]. This was performed through the use of STAR-2.7.1a

with the parameters –outFilterMultimapNmax 1 –outSAMtype BAM SortedByCo-
ordinate. During the amplification step in library preparation, molecules will be

duplicated, leading to potential biases when analysing the number of counts per

gene. Thus, PCR-duplicates need to be accounted for. Computationally, they can

be removed by using the picard tool MarkDuplicates, which was performed here

using version 2.20.2 with the parameter REMOVE_DUPLICATES set to true. In
standard single cell RNA-sequencing analysis, reads would then be counted in

the context of exons, i.e. generating a count matrix containing the information

which exons are present to which extent in the single cells. This data set, how-

ever, has been produced using a method developed by Picelli et al., leading to
the generation of full-length transcripts [53]. Moreover, nuclei contain a larger

proportion of unspliced transcripts than whole cells. Therefore, a more versatile

approach for counting reads has been chosen to retain the information. In every

nucleus, reads were counted per transcript and then aggregated per genes by

using htseq-count, version 0.11.3 with -m intersection-nonempty -f bam -r pos
-s no –nonunique all -t transcript -i gene_id –additional-attr=gene_name. Thus,
this ensured that reads mapping to more than one gene were counted for the

gene they mapped to by larger proportion, and that reads mapping in equal

proportions to two genes were counted for both genes. This approach resulted

in a raw count matrix of 2,496 single nuclei times 54,329 genes.

The data were generated by Dr. Ioannis Deligiannis using SMARTer chemistry,

which yields full-length transcripts. Thus, count matrices for exons, introns

and individual transcripts were built in addition to the count matrix based on

genes per nucleus. To generate the intronic and exonic count matrix the R-based

tool featureCounts was used [235]. This was mainly done to specifically count
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what number of overall reads were falling into introns and exons, respectively.

Moreover, by counting the reads associated to individual transcripts per nucleus,

the presence of alternative transcripts and their respective share per single

nucleus can be identified. This was performed using the pseudo-alignment tool

kallisto [236]. In the context of whole genes, this can be used to identify which

transcripts are preferentially transcribed for a given gene. Disentangling this

information in individual cell types and cell states can eventually lead to the

detection of differences in which transcripts are preferentially transcribed in a

given cell type or state. For instance, in the context of hepatocyte ploidy, this

analysis can be used to identify differences in alternative transcript preferences

between diploid (2n) and tetraploid (4n) hepatocytes.

The PHH diversity project aimed to characterize cellular heterogeneity of

primary human hepatocytes (PHHs) in response to a five-drug cocktail. For this

project, experiments for data generation were performed by Eva Sanchez-Quant

and Dr. Ioannis Deligiannis using the 10X Genomics Single Cell 3’ Reagent

Kit for library preparation and the 10X Genomics Chromium platform for se-

quencing. In this case, whole cells were encapsulated into droplets and both,

nuclear and cytoplasmic mRNA was captured. For each of the two batches, the

raw reads were subsequently aligned to GRCh38 and counted in the context

of exons using the software cellranger, version 4.0.0 by 10X Genomics with

standard parameters. Different methods exist to account for PCR duplicates

stemming from the cDNA amplification step in library preparation. Other than

removing them computationally after alignment as described above, they can

experimentally be controlled for through the use of unique molecular identifiers

(UMIs)[190], a method where every molecule gets labelled by a barcode and

only unique molecules get counted. This approach was used here, and thus,

no computational identification method was needed. The two count matrices

generated through cellranger were finally concatenated using the AnnData func-

tion AnnData.concatenate(), resulting in a combined count matrix of 63,527 cells

times 19,971 genes.

In both main projects reported in this thesis, the raw count matrix was loaded

into python and stored as an AnnData object, anndata version 0.7.1. The respec-

tive downstream analyses, described in detail in the following sections, were in

parts inspired and adapted from Luecken et al. [44].
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7.3 Quality control and filtering

In the Ploidy&Zonation project, reads were not only mapped against the mouse

mm10 genome but also against the sequences of 92 spike-ins (ERCC92). To

calculate the percentage of ERCC reads per single nucleus, the reported number

of uniquely mapped reads per nucleus was taken from the STAR log file and

ERCC reads were counted from the according .bam file. From that, the proportion

of ERCC reads per uniquely mapped reads per nucleus were calculated and added

to the nuclei metadata in R version 4.0.3 [237]. The complete table containing

nuclei metadata was added to the count matrix in python version 3.7.6. In

order to remove low quality nuclei, in the initial count matrix of 2,496 single

nuclei times 54,329 genes, nuclei were kept if the percentage of ERCC reads was

between than 5% and 90%, and if nuclei had more than 1,000 genes detected. The

R tool scPower was used to perform a power analysis reporting the power to

detect rare cell types in the population [48]. With the data coming from four

biological replicates with an average of 624 single nuclei per replicate, the power

to detect at least five cells from a cell type making up 2% of the population was

0.98. The detection of rare cell types was not an aim of this project and the

power to detect at least five cells from a cell type making up only 1% of the

population instead was only 0.31. Therefore, this analysis was used as a basis to

remove genes that were present in less than 1% of the population (fewer than 25

nuclei) and had low coverage (fewer than 250 reads) to reduce noise stemming

from lowly expressed genes. During the FACS sorting of nuclei into the wells

of 384-well plates, some events might have occurred where either no nucleus

had been sorted into a well, or two single nuclei ended up in one well. In these

cases, the events had been noted down and data from the respective wells were

removed from the analysis. Eventually, nuclei were kept if they had less than

7,000 genes detected, and a library size between 10,000 and 300,000 reads per

nucleus. This filtering process resulted in a count matrix of 2,016 single nuclei

times 19,340 genes. Additionally to the 2n and 4n nuclei, hepatocyte nuclei with

eight, and sixteen genome copies were isolated and sequenced by Dr. Kelvin Yin.

Since they were processed under another chemistry, yielding a higher number of

genes per single nucleus, these nuclei with higher ploidies were kept if they had

at least 1% ERCC reads, between 1,000 and 12,000 genes, and 5,000 to 700,000

reads covered per nucleus. Furthermore, 2n and 4n nuclei from another healthy

wild type control mouse and a mouse treated with carbon tetrachloride (CCl4)
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to model liver fibrosis were isolated and sequenced. This fibrotic mouse model

was established by Prof. Dr. Neil Henderson, and the respective samples were

processed and sequenced by Dr. Ioannis Deligiannis. These samples were again

processed with the chemistry providing a higher number of reads and genes per

nucleus. Hence, the filtering was adapted to keep nuclei if they had between

30,000 and 1,000,000 reads. After normalisation, nuclei with more than 300,000

gene-length normalized counts were further removed. For this fibrosis data set,

the hepatocytes were computationally separated from the non-parenchymal

nuclei by an initial Louvain clustering at a resolution of 0.2. Finally, differential

expression analysis and the pseudospatial ordering based on zonation markers

was performed individually for the wild type nuclei and the nuclei from the

CCl4-treated animal.

For the human data set, cells were kept if they had a minimum of 1,000 reads

and 500 genes. Genes were removed if they were present in less than 5 cells

and had more than 5 million reads. In liquid droplet based methods, the capture

of more than one single cell within on droplet can occur, which is referred

to as doublets []. Therefore, computational methods have been developed to

detect these doublets and subsequently remove them from downstream analyses.

This is especially relevant for data sets composed of several cell types where a

doublet can consist of a mixture of two cell types. However, as described above,

hepatocytes are subject to polyploidization. Thus, it was expected that not only

diploid, but also tetraploid cells were present in the study, with tetraploid cells

naturally being of larger size than diploid cells [66]. Moreover, intracellular lipid

accumulation results in the enlargement of cells rendering it unlikely that more

than one single cell is captured in a liquid droplet during library preparation. Due

to these properties, a lenient cutoff of 0.15 was selected for eliminating potential

doublets, leading to the removal of 1.7% of cells using scrublet [238]. Finally, the
proportion of mitochondrial reads per cell is an indicator for oxidative stress

[188][189]. The majority of cells (around 96%) in this data set had a proportion

of mitochondrial below 1%, indicating that only few cells were under oxidative

stress. This is most likely due to the cells having been filtered for viability using

magnetic beads. Due to the overall low number of mitochondrial reads, cells

with more than 1% mitochondrial reads were removed, resulting in a filtered

matrix of 49,378 cells times 16,256 genes.

111



Chapter 7 Methods

7.4 Normalization

In the snRNA-seq2 data set, ERCC spike-ins were used as a tool to control

for technical noise. When libraries containing both ERCCs and endogenous

transcripts get sequenced to saturation, the proportional amounts of recovered

synthetic spike-ins and endogenous transcripts depend on the number of en-

dogenous starting material. During library preparation of this data set, two

different dilutions were used when adding the spike-ins, 1:100,000, and 1:300,000,

respectively. Thus, the ERCC size factor per nucleus was calculated separately

for the two dilutions by taking the sum of ERCC reads per nucleus and dividing

it by the mean ERCC reads across all nuclei in one dilution. Methods generating

full-length transcripts can experience bias in which genes are sequenced more

deeply due to their corresponding gene length. Hence, it is good practise to

normalize transcript counts by gene length to adjust for this. Per gene, read

counts were therefore first divided by the respective gene length in kilobases (kb).

Since the proportional number of endogenous transcripts against ERCC reads

depends on the input amount of endogenous transcripts, it was anticipated that

tetraploid hepatocytes would on average have higher proportion of endogenous

transcripts than diploid hepatocytes. To avoid differential expression between

diploid and tetraploid hepatocytes to be purely driven by the higher number of

counts in tetraploid nuclei, an adjusted normalization approach was developed,

in which the ratios of endogenous to ERCC reads were considered per nucleus.

In that approach, the scaling factor per nucleus was calculated by dividing the

sum of endogenous transcript counts per nucleus by 10,000 times the previously

calculated ERCC size factor. The endogenous transcript counts per nucleus were

divided by this factor. Thereby, the counts in a nucleus with few endogenous

transcript reads and many ERCC reads were divided by a smaller factor than

counts in a nucleus with many endogenous reads and proportionally few ERCC

reads. The formula used for this normalization was

𝑥 ′
𝑖 𝑗 =

𝑥𝑖 𝑗

𝐿𝑗∑𝑁
𝑗

𝑥𝑖 𝑗

𝐿𝑗

10000·𝑠 𝑓𝑖

(7.1)

where 𝑥 ′
𝑖 𝑗 is the normalized count of gene j in cell i, 𝐿 𝑗 is the length of gene j

and 𝑠 𝑓𝑖 is the ERCC size factor of cell i. This normalization technique is referred

to as ERN (ERCC ratio normalization) in the thesis.
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A further filtering step was performed after normalization, in which nuclei

with more than 50,000 gene length-normalized counts were removed. Out of

the total 11 plates sequenced in this study, two were technical replicates of

other plates. Since by containing the same nuclei as SNI-160 and SNI-116, these

two technical replicate plates (SNI-234(R2) and SNI-635(R2)) did not contain

additional information. Hence, they were subsequently removed from the down-

stream analyses. This resulted in a final normalized count matrix of 1,649 nuclei

times 19,258 genes. This count matrix was then log-transformed by adding one

to every value in the matrix to remove zeros and applying a natural logarithm.

When sequencing the PHHs for the PHH diversity project in this thesis,

their respective genome content was unknown and ERCCs were not present.

Therefore, normalization was performed using scran[70]. This normalization

method first subsets the data into groups with similar library sizes by performing

hierarchical clustering using a distance metric based on Spearman’s correlation.

Then, scaling factors are calculated for every cell within a group by randomly

pooling subsets of cells in a group, summing their library sizes and comparing

to the average library size of that group. This is performed iterative to finally

de-convolute scaling factors for every single cell from the set of pool-wise size

factors. Finally, normalization is performed between groups.

7.5 Batch correction

The human cell atlas aiming to identify cell types present in humans has shown

that cell types are similar to each other across biological replicates [39]. However,

performing experiments on different days, different machines, or eventually in

different laboratories can lead to unwanted variation in the data, purely driven

by technical artifacts. In order to gain biologically meaningful results, these

effects need to be removed before inferring differences between the conditions

of interest. Experimentally, unwanted technical variation can be kept low by

processing all conditions of interest at the same time in one batch. However,

this is not always feasible and computational methods have been developed to

adjust for technical variation in the data. In the Ploidy&Zonation project, every

plate usually contained a mixture of diploid and tetraploid nuclei stemming

from either one or two mice to minimize batch effects. While parameters were

mostly kept consistent, different ERCC dilutions were used and plates were

processed at different laboratories, rendering batch effect correction between
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plates an important tool to remove unwanted technical variation caused by

these circumstances. Therefore, the tool combat was used to with the plates as a

covariate in the model [127]. Briefly, this method first builds a linear model to

assign similar values of mean and variance for all genes before applying Bayes’

Theorem to estimate the batch adjustments. These adjustments are then used to

change the values within the count matrix, removing the unwanted variation.

Due to different sequencing depths being used for the two pairs of biological

donors in the PHH diversity project of the thesis, batch effects were expected

to be larger than for the snRNA-seq2 data set. Therefore, the integration of the

two batches was an important and major focus of this project to disentangle

the biological sources of cellular heterogeneity. In a first step, each of the

four individual donors was analyzed separately to identify similar sub-types of

hepatocytes between donors. For this individual donor analysis, the two batches

were filtered and normalized separately. Briefly, for the first batch, cells were

kept if they had between 1,000 and 250,000 reads per cell and at least 500 genes

covered. Genes were kept if they were covered at least once in at least five cells.

For the second batch, cells were kept if they had more than 3,000 reads and at

least 500 genes covered, and genes were kept if they had fewer than 5,000,000

reads and were present in at least five cells. In both cases, cells with more then

1% mitochondrial reads were removed and scran was used for normalization.

While in the first batch, pre-clustering was performed and scran was used with

parameter min_mean = 0.01, min_mean was set to 0.001 for the second batch due

to the differences in sequencing depth between the batches. After normalization,

cells with more than 100,000 normalized counts were removed in the first batch.

In the second batch, cells were removed if they had more than 20,000 normalized

counts. To identify similar subgroups of hepatocytes between all four human

donors, Louvain clustering - as described in greater detail in the section below

- was performed in such manner that every cluster contained all treatment

conditions. For all donors, 20 principle components (PCs) were calculated and

the neighboring graph was constructed with 50 neighbors and 10 of the PCs.

The following table describes the Louvain resolution that was used for each of

the four donors and the number of resulting clusters.
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Table 7.1: The Louvain resolution per human donor and resulting number of clusters

Donor identifier Resolution Number of clusters
HUM4152 0.75 7

HUM180812 0.25 4

HUM4190 0.4 5

HUM181641 0.25 4

Comparison of the resulting clusters between donors was done by calculat-

ing the top 1,000 genes per cluster before determining the percentage of their

overlaps between clusters from different donors. Performing hierarchical clus-

tering to identify groups of similar Louvain clusters resulted in the detection

of four groups of Louvain clusters, of which three contained clusters of all four

donors whereas one only contained clusters stemming from the first batch. Two

additional Louvain clusters, stemming from one donor of the first, and a donor

of the second batch, respectively, were not assigned to a group and treated as

individual clusters. Cells from all donors where then pooled together compu-

tationally and annotated according to the identified shared clusters. Filtering

and normalization was performed as described above, and Harmony and scGen
were used as data integration tools to combine the two batches. Briefly, scGen
predicts the impact of a condition on gene expression through a variable autoen-

coder (VAE) depending on the low-dimensional representation of the cells. Here,

the condition of interest is the batch from which each cell is coming and the

goal is to remove its impact on gene expression through the model by adapting

the expression values. scGen is a supervised method relying on the accurate

identification of cell sub-types before integration. This can limit the detection

of cellular heterogeneity beyond the pre-identified sub-types. Therefore, and

since the power to detect cellular sub-types increases with the number of cells

studied, Harmony was also used as an unsupervised method for data integration.

The aim was to clarify whether different integration approaches would lead to

the same result, rendering the detection of sub-types robust and reliable. Due to

the consistency between methods and the advantage given by an unsupervised

method, Harmony was used on the combined, filtered and normalized data set

[128]. Louvain clustering on the Harmony integrated data set led to the detection

that some of the cells from the second batch that had been assigned to subgroup

II were now clustering together with cells from subgroup IV. Therefore, they

were labelled as subgroup IV and the sub-type annotation was transfered to the
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scGen integrated data set to investigate Louvain clustering with respect to those

cells. Indeed, these cells were grouped together at the center of the UMAP based

on the embedding after scGen integration. However, due to the supervised nature
of the scGen integration approach, the annotation performed beforehand limited

their correct assignment. Based on these analyses, the final decision was made

to use Harmony as an unbiased data integration tool in this analysis. Harmony
projects cells from different batches into a shared embedding, in which cells are

grouped by their cell type specific gene expression rather than the variation

stemming from batch effects [128].

7.6 Clustering and annotation

Sequencing the whole transcriptome in mice and humans results in several thou-

sands of genes being detected. Accordingly, a total of 19,258 genes were present

in the snRNA-seq2 data set after filtering. This yields a high dimensionality, in

which not every factor adds relevant information. Hence, this dimensionality

was reduced by performing a principal component analysis (PCA), where factors

are ordered by the amount of variance they explain in the data. To that end, the

first 50 principal components (PCs) were calculated. For the purpose of later

grouping nuclei with similar gene expression profiles together during clustering,

these 50 PCs were used to construct a neighborhood graph based on the 15 near-

est neighbors per nucleus. The connectivities between nuclei were calculated

by Uniform Manifold Approximation and Projection for Dimension Reduction

(UMAP) [239]. For the purpose of visualization, the nuclei were then embedded

in a t-distributed stochastic neighborhood embedding (tSNE) with a perplexity

of 30 and using the first 15 out of the 50 calculated PCs. In addition to that,

UMAP and PCA embeddings were also used for visualization. To group together

nuclei with similar gene expression, Louvain clustering was performed on the

neighbourhood graph. In the Ploidy&Zonation project, an initial resolution of 0.2

was used to computationally separate the nuclei of non-parenchymal liver cells

from the hepatocyte nuclei. Hepatocytes were then temporarily removed from

the normalized expression matrix to further dissect non-parenchymal cell types.

A more in depth Louvain clustering with a resolution of 1 was performed on the

non-parenchymal nuclei, revealing the presence of nine clusters. To annotate

these clusters as cell types, established marker genes were taken and adapted

from Aizarani et al. and PanglaoDB [19][50]. First, the expression levels of these
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marker genes were visually investigated on the t-SNE and in violin plots to

obtain a rough idea of cell type belonging. Subsequently, differential expression

analysis was performed between clusters and the top differential expressed genes

per cluster were investigated for overlaps with the list of known marker genes.

Furthermore, nuclei with an expression level of greater than 50 for the marker

Epcam were annotated as Epcam-positive epithelial cells. As an approach to

separate nuclei coming from bi-nucleated tetraploid (2x2n) hepatocytes from

nuclei from truly diploid hepatocytes, the neighborhood graph was re-calculated

with 300 neighbors for the hepatocytes and Louvain clustering was performed at

resolution 1 and nuclei were again embedded in t-SNE and UMAP. This yielded

no substructure in the hepatocytes that would justify the annotation of 2x2n

hepatocytes in the data.

For analyzing the four human donors individually in the PHH diversity project,

the top 20 PCs were determined, of which the top 10 were used to calculate

the neighborhood graph with 50 neighbors. These parameters were chosen to

capture larger groups of hepatocytes based on the main drivers of variation in

the data. After the data from the four donors had been combined and normal-

ized using scran as described above, the top 50 PCs of the combined data set

were computed and a neighboring graph was constructed with 15 neighbors

in order to calculate a UMAP embedding and Louvain clusters. As mentioned

before, hepatocytes are a large cell type which diminishes their encapsulation

probability. Hence, for two of the samples from a donor in the second batch, the

encapsulation of the cells in liquid droplets was partially unsuccessful during

the 10X library preparation. To identify the cells stemming from these samples,

an initial Louvain resolution of 0.5 was used with the goal to separate incor-

rectly encapsulated cells from the rest, and potentially rescue cells in the failed

samples which were encapsulated correctly. It was observed that cells from

one of these samples indeed clustered apart from the other cells, and two other

clusters containing cells from the failed samples showed fractal structures not

present in the samples in which cells were encapsulated correctly. Hence, these

clusters - that mainly contained cells from the failed samples - were removed,

which resulted in a final matrix of 38,232 cells times 16,256 genes. After that,

the group labels from the individual donor analysis were added as annotation,

again the top 50 PCs were calculated and a neighborhood graph was built with

15 neighbors. UMAP embedding was computed and Louvain clustering was

performed with resolution of 1, leading to the detection that some of the cells
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from the second batch, that were initially annotated as subgroup II, were now

clustering with subgroup IV cells from the first batch. Furthermore, one of the

two donor-specific clusters that had not been assigned to one of the shared

groups between donors showed separation into several clusters on the combined

data set that were hence annotated as subgroup I, and II, depending on the anno-

tation of their surrounding cells in the Louvain cluster. The other donor-specific

cluster was assigned to subgroup IV. Several Louvain clusters were aggregated

to assure that every subgroup of hepatocytes contained cells from all donors. To

correctly aggregate the Louvain clusters and subsequently annotate the result-

ing hepatocyte subgroups, expression of marker genes was investigated in the

Louvain clusters. Thus, known marker genes for specific metabolic pathways

were taken from literature and can be found in the Supplementary Material of

Sanchez-Quant et al. [164]. A limiting feature of primary human hepatocytes in

culture is their loss of characteristic hepatocyte-like transcriptional signature

along culture time [115]. Accordingly, one subgroup of hepatocytes was identi-

fied for which any given gene was expressed in a lower percentage of cells than

for the other three subgroups. Initially, this subgroup had only been detected in

the first batch and cells from the second batch were only annotated accordingly

after integration. This observation was most likely due to the first batch being

sequenced more deeply, allowing to better separate hepatocytes losing their

characteristic expression from dropouts.

7.7 Alternative splicing

Kallisto was used to align the reads from the Ploidy&Zonation project to the

mm10 reference genome with respect to different transcript isoforms of a gene

being present in the nucleus. After subsetting the nuclei to the set of previously

annotated nuclei, this process yielded a matrix of 2,496 nuclei times 118,489

transcripts. Furthermore, transcripts were removed if they were present in

fewer than five nuclei and only hepatocytes were considered, resulting in 1,061

hepatocytes and 56,357 transcripts. Key hepatocyte-specific marker genes were

selected to explore the expression of alternative transcripts between 2n and 4n

hepatocytes for these genes (Figure 3.5).
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7.8 Cell cycle analysis

During the FAC-sorting of single nuclei into the wells of 384-well plates per-

formed by Dr. Ioannis Deligiannis for the Ploidy&Zonation project, the inter-

callating DNA staining dye Hoechst was used. This allowed to separate diploid

from tetraploid hepatocyte nuclei by genome content based on flourescence

intensity. However, it was observed that some presumably tetraploid nuclei were

present in the cluster of non-parenchymal cells. Non-parenchymal cells remain

diploid throughout the lifespan. Therefore, one potential explanation would

be that nuclei during cell division were sorted as tetraploid due to the genome

duplication during replication. Hence, cell cycle analysis was performed using

cyclone to assign nuclei to cell cycle phases [144].

Cultured hepatocytes are not expected to divide. However, it is possible that

hepatocyte were captured during cell division when taken from the donors.

Therefore, cell cycle analysis was performed in the same manner for the PHH

diversity project, highlighting that one of the identified subgroups could be

described as being in division.

7.9 Differential expression analysis

To address differences between groups of interest in the Ploidy&Zonation project,

differential expression analyses were performed on all genes present in the

count matrix by using Welch’s t-test, implemented in the scanpy function

rank_genes_groups. For the non-parenchymal cells this was partially done to

identify known cell type marker genes among the top differential expressed

genes (DEGs) but also to identify differences between the cell types. Moreover,

differential expression analysis was done between diploid and tetraploid hepato-

cytes. In all these analyses, genes were defined as significantly up-regulated if

they had a Bonferroni-adjusted p-value below 0.05 and a log2 fold change above

0.5. Likewise, genes were defined as significantly down-regulated if they had a

Bonferroni-adjusted p-value below 0.05 and a log2 fold change below -0.5. For the

purpose of visualizing the DEGs in an MA-plot without over-plotting, only the

genes with a mean expression between 0.1 and 100 were depicted. Furthermore,

to generate informative heatmaps, the R package ComplexHeatmap was used

with 40 randomly selected nuclei per cell type and their top five up-regulated

genes. For cell types, of which fewer than 40 nuclei were present, all nuclei
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were taken. Additionally to the differential expression analysis, changes in the

distribution of genes were analyzed between 2n and 4n hepatocytes. Thus, a

Kolmogorov-Smirnov test was performed, based on which genes were defined

as significantly changing their expression distribution between the two ploidy

states if they had a p-value below 0.05 and a test statisitc greater than 0.15.

For the PHH diversity project, differential expression analysis was mainly

performed to investigate the impact of a given treatment condition towards

DMSO levels in the functional subgroups of hepatocytes. In the same fashion

as for the snRNA-seq2 data set, Welch’s t-tests were performed for every gene

between groups of interest. When comparing the expression profiles of Cocktail-

and DMSO-treated cells, genes were defined as significantly up-regulated if they

had a Bonferroni-adjusted p-value below 0.05 and a log2 fold change above 1.

Similar, genes with adjusted p-value below 0.05 and log2 fold change below -1

were dedicated significantly down-regulated. In the comparison of FFA-treated

cells to DMSO, an average of 3.5 times fewer genes with positive log2 fold

change were detected than in the comparison of Cocktail to DMSO. Hence, the

cutoff of log2 fold change to call genes significantly up- or down-regulated was

adjusted to characterize the subtler impact of intracellular lipid accumulation.

Accordingly, genes were defined as significantly up- or down-regulated if they

had an adjusted p-value below 0.05 and a log2 fold change higher than 0.75

or below -0.75, respectively. Moreover, to explore the drivers of functional

specialization between subgroups of PHHs, the top 500 DEGs per subgroup

were calculated considering only DMSO-treated cells and used to predict the

underlying transcription factor networks through the online tool ChEA3 [240].
Out of the top 25 predicted transcription factors per subgroup, five were used to

visualize their differential expression between subgroups.

7.10 Gene ontology and gene set enrichment analysis

Based on data bases assigning genes to functional groups of pathways (ontolo-

gies), the lists of DEGs between groups can be used to find enrichment into

pathways, helping to further characterize biological differences between groups

of interest. Therefore, enrichment analysis was done using a Fisher’s exact

test as implemented in the python package gprofiler. When characterizing the

differences between 2n and 4n hepatocytes, as well as the subgroup-specific

impacts of intracellular lipid accumulation, this analysis was done with focus
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on the gene ontology "biological processes (BP)". In both cases, a top number of

pathways were depicted in a dot plot with the pathway names on the y-axis, the

gene ratio on the x-axis, dot color referring to significance level and the dot size

depicting gene overlap.

When comparing Cocktail- to DMSO-treated cells per subgroup, the focus lied

on identifying the subgroup-specific differences in drug metabolism. Hence, only

the subgroup-specific significantly up-regulated genes upon Cocktail treatment

were chosen for gene ontology analysis. Furthermore, the online tool ShinyGO
was used as it allows accessing a data base containing pathways known to

be involved in the metabolism of specific drugs [241][178][179]. Hence, upon

Cocktail treatment, drug metabolism pathways specific for each of the functional

subgroups could be identified. For visualization purposes, respective pathways

were depicted on the x-axis, significance level on the y-axis and dot size referred

to gene overlap.

In addition, the effect of intracellular lipid accumulation on gene expression

of drug metabolism related genes, gene set enrichment analysis (GSEA) was

performed on genes significantly up-regulated upon Cocktail treatment but

not in the FFA+Cocktail treatment condition [242][243]. This showed higher

expression of these genes in Cocktail than in FFA+Cocktail.

7.11 Co-expression analysis of markers genes

Another approach to gain insights into the functional commitment of single

cells is to explore co-expression of key marker genes. For example, studies

have suggested pericentral hepatocytes to serve as a stem cell niche in liver

regeneration [244] while others show even distribution of liver stem cell markers

across the liver lobule [153][154][155]. Hence, as an indicator of regenerative

potential, the co-expression of liver stem cell marker genes was analyzed in

all hepatocytes from the Ploidy&Zonation project, and separately for diploid

and tetraploid hepatocytes. Namely, the marker genes Prom1, Icam1, Sox9, Afp,
Epcam, Axin2, Itga6, Tert, Notch2, Tbx3, and Lgr5 were investigated. To address

whether these genes were co-expressed in a nucleus, gene expression was first

assigned to binary values based onwhether a gene was expressed or not. Thereby,

expression levels of the genes were neglected and only the presence or absence

of a gene in a nucleus was considered. Then, nuclei not expressing any of the

eleven stem cell markers were excluded, yielding a binary matrix of 364 nuclei
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times 11 stem cell markers. This matrix was used to calculate the pairwise

Jaccard distances between marker genes and between nuclei that were further

used to calculate linkage for hierarchical clustering. The formula to calculate

pairwise Jaccard distances can be described as follows:

𝐽 (𝑋,𝑌 ) = |𝑋 ∩ 𝑌 |
|𝑋 ∪ 𝑌 | (7.2)

where X is the binary expression vector of a gene j1 across all nuclei, and Y is

the binary expression vector of gene j2 across all nuclei.

This co-expression analysis was also performed on the data from the PHH di-

versity project to investigate co-expression of genes involved in the three phases

of drug metabolism within the identified subgroups. Furthermore, in this data

set, co-expression of marker genes specific to different metabolic pathways was

investigated with respect to differential expression levels through the calculation

of scores. Briefly, scores for functional groups of marker genes were calculated

for every treatment condition per subgroup in the following way: in every group

of marker genes, the normalized expression of a given gene was summed up

over all cells per subgroup in a treatment condition and weighted by whether it

was significantly up-regulated in this subgroup under this treatment condition

(multiplied by 1.2 if it was and by 0.8 if it was not). Then the mean weighted

expression of the individual genes in a marker gene group was determined and

divided by the number of genes present in that group.

7.12 Transcriptional variability

Transcriptional variability can be measured by calculating the coefficient of

variation of a given gene. This is usually defined as the standard deviation

divided by the mean. However, genes with low expression values have a higher

standard deviation, and therefore, higher transcriptional variability. Furthermore,

calculating the coefficient of variation in the classic way on log-transformed,

normalized expression data may lead to inaccurate values [138]. Hence, to

reduce the impact of lowly expressed genes, in the Ploidy&Zonation data set,

genes that had a mean log-transformed, normalized expression below 0.25 were

removed, leading to the remaining of 2,102 genes in the matrix. Likewise, in the

PHH diversity data set, this filtering led to 3,434 remaining genes. To correctly

calculate the coefficient of variation (CV) on the normalised, log-transformed
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and batch-corrected matrix the formula described in Canchola et al. was used
[138]:

𝐶𝑉 =

√︁
𝑒𝜎

2 − 1 (7.3)

where 𝜎2 is the variation of gene j in the group of interest.

To calculate whether significant differences in transcriptional variability were

present between groups of interest, Mann-Whitney-U tests were performed.

This was done to either infer differences between 2n and 4n hepatocytes or

the impact of treatment condition on transcriptional variability in subgroups

of primary human hepatocytes. Additionally, for the Ploidy&Zonation data set,

highly variable genes in 2n and 4n hepatocytes were defined as genes with a

coefficient of variation greater than 1.7. To identify this specific threshold, the

ERCC reads were used as a measure of baseline, non-biological variability. In

brief, the ERCC reads were normalized in the same way as the endogenous

transcripts, but with 1,000 instead of 10,000 as a scaling factor. The ERCC reads

were then log-transformed and the coefficient of variation of every ERCC was

calculated, yielding 1.66 as the median plus one standard deviation coefficient of

variation for the ERCC reads. Hence, genes with greater coefficients of variation

were defined as highly variable.

7.13 Pseudotemporal ordering

Transcriptome data can be used to construct a trajectory of cells or nuclei,

ordering them based on their gene expression values. In differentiating cells,

this can be used to computationally infer changes between cell states along

the constructed pseudo-time. As hepatocytes in culture are known to lose

their characteristic hepatocyte-like expression along culture time, this could

potentially be used to re-construct the process of expression loss in primary

human hepatocytes in the PHH diversity project. Hence, diffusion pseudotime

was calculated for the cultured hepatocytes based on key hepatic transcription

factors. However, the ordering of cells based on their expression profiles did not

correspond to the levels of gene expression.

Apart from constructing pseudo-time, this type of analysis can also be used to

infer spatial relationships between cells, particularly in the presence of a known

expression gradient as is observed for liver zonation. Thereby, hepatocytes
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can be assigned to different areas of the liver lobule based on their expression

profiles. For the Ploidy&Zonation project, zonation markers were obtained from

literature, specifically from Halpern et al. and Aizarani et al. [16][19]. Since
only endothelial cells and hepatocytes are subject to zonation and the focus

of the Ploidy&Zonation project lied on investigating the relationship between

liver zonation and polyploidization in hepatocytes, non-parenchymal cells were

removed. This resulted in a matrix of 1,061 hepatocyte nuclei times 1,742 zona-

tion marker genes. For this matrix, principle components, the neighborhood

graph using 15 nearest neighbors, as well as t-SNE and UMAP embeddings were

re-calculated. Additionally to PCA, diffusion components were calculated as a

means of dimensionality reduction with respect to ordering the nuclei based

on their expression profiles [90]. Louvain clustering was then performed with

resolution of 0.7. According to the expression levels of zonation marker genes,

clusters 0 and 2 were aggregated into a pericentral cluster, and cluster 1 was

annotated as periportal cluster. This allowed to calculate the percentage of 2n

and 4n hepatocytes assigned to pericentral (CV), and periportal (PV), respec-

tively, yielding a 1.3-time enrichment of 4n nuclei in the pericentral cluster. For

visualization purposes, the tetraploid nuclei were sub-sampled to the number

of diploid hepatocyte nuclei. Differential expression analysis was performed

between the CV and the PV cluster and the top 30 DEGs per cluster were used

for visualization along the vector of pseudospace. Additionally, the pseudospace

vector was divided into ten bins and the mean expression of representative

zonation marker genes was calculated per bin to depict in a line plot.

In the same manner, spatial relationships between hepatocytes were inferred

in the publicly available human liver data [19][18] to explore the relationship

between zonation and the formation of hepatocyte subgroups. As described

further below, the hepatocyte subgroups characterized in the PHH diversity

in vitro data set were identified in two publicly available human in vivo data
sets. The study from Aizarani et al. reported 35 zones along the pericentral-

periportal axis, into which zonation marker genes were grouped. For the purpose

of assigning the hepatocytes from this study to three major zones, pericentral,

mid, and periportal, the number of zones was reduced by grouping the zonation

markers into three groups through binning. Then, the hepatocytes were scored

for the expression of markers of each of the three zones using the scanpy function
sc.tl.score_genes. Based on the respective ranges of scores, appropriate thresholds

were chosen to assign the hepatocytes to zones. Specifically, the cells from
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Aizarani et al. were assigned to the pericentral zone if they had a CV score

greater than 0.45 and a PV score below 1. Furthermore, cells with a PV score

of at least 0.65 and a CV score less or equal than 0.45 were assigned to the

periportal zone. The remaining cells were assigned to the mid-zone. To explore

the contributions of the subgroups to each of the zones, the percentages of cells

in CV, mid, and PV were calculated per subgroup. Additionally, zonation within

subgroups in vivo and in vitro was investigated through marker gene expression.

To that end, zonation marker genes in every subgroup were depicted on UMAPs,

individually for the respective subgroup. After integrating the two in vivo data
sets, the same analysis was performed on the combined data. Adjustments

were made to the thresholds to assign the hepatocytes from both data sets to

the three zones. Hence, cells with a CV score greater than 0.4 and a PV score

below 1 were assigned pericentral; cells with a PV score of at least 0.8 and a CV

score less or equal to 0.4 were assigned to periportal; the remaining cells were

assigned to mid-zone. Calculating the percentage of subgroups per assigned

zone further confirmed that all subgroups were present in the three zones with

subgroup I being the most split into CV and PV and subgroup II and III being

more present in the mid and CV zone. Since zonation had been observed to

influence marker gene expression within the subgroups, the subgroups were

analyzed separately to investigate whether diffusion pseudospace would refer to

zonation. However, exploring this on the integrated data set showed that the

first diffusion component referred to number of genes per cell, thus meaning

that the cells were ordered according to their coverage instead of biological

properties. The number of genes per cell was therefore regressed out using

sc.pp.regress_out. After that, diffusion pseudospace was calculated per subgroup

on the zonation marker genes. To keep the pseudospatial order with respect to

zonation consistent between subgroups, the root cell was chosen as the cell with

the highest PV score within a subgroup. The vector of pseudospace was then

divided into five bins and the mean expression of two representative zonated

marker genes per bin were depicted in a line plot for each subgroup.

7.14 Comparison to other data sets

The snRNA-seq2 data in the Ploidy&Zonation project was based on the develop-

ment of a new laboratory protocol for the isolation of nucleic acids from single

nuclei featuring the addition of a new lysis buffer (LB2), work done by Dr. Ioannis
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Deligiannis. Hence, to highlight the advantages of this new protocol, compar-

isons with other approaches were performed. Firstly, to address the benefit of the

new lysis buffer, one plate was processed without the additional lysis buffer. Pre-

processing and filtering for reads from that plate were performed exactly as for

the other plates. The number of genes per nucleus produced by either protocol

were compared, showing that the addition of LB2 resulted in a greater number of

genes per nucleus. Additionally, the total number of protein coding genes yielded

by both protocols was compared. Despite yielding fewer protein coding genes

and a lower number of genes per nucleus, the plate where LB2 had not been

added was processed for any potential downstream analyses. Hence, nuclei with

fewer than 500 genes and 5,000 counts were removed. Furthermore, the results

from the snRNA-seq2 approach were compared to publicly available data sets.

Hence, data were either downloaded from GEO (accession numbers GSE84498,

GSE124395, GSE1483395) or from https://doi.org/10.6084/m9.figshare.5829687.v7

and https://doi.org/10.6084/m9.figshare.5968960.v215. In the case of raw, unfil-

tered data, genes were removed if they were not expressed in any nucleus or

cell and nuclei or cells were filtered out if they had no genes expressed. For the

snRNA-seq2 data and these publicly available data sets, the numbers of genes

per nucleus or cell was visualized as violin plots. Only protein coding genes

were used to compare the total number of detected genes between data sets. The

overlaps of protein coding genes detected by the different methods was depicted

in Venn diagrams (https://github.com/LankyCyril/pyvenn/blob/master/pyvenn-

demo.ipynb). Finally, to assess whether nuclei appropriately represent the gene

expression of whole single cells, gene expression was correlated between the

snRNA-seq2 data and the Tabula muris smart-seq2 data. For both data sets, only

hepatocytes were considered and the respective raw count matrix on exon reads

was taken. Pearson correlation was then calculated between the log2 mean gene

expression of genes present in both data sets.

In addition to investigating the benefits of LB2 and comparing to publicly

available data sets, the data were further compared to 10X experiments. First,

10X experiments that had been previously performed by Dr. Celia Martinez-

Jimenez were analyzed by aligning the reads to mm10 using 10X Genomics

Cell Ranger v4.0.12. Genes were removed that were not present in any nucleus

and nuclei were removed that had no genes expressed. Again, the number of

genes per nucleus and the number of overall detected protein coding genes were

compared between methods (10X or plate-based, with and without LB2). The
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eventual goal was to address whether similar levels of cellular heterogeneity

within hepatocytes could be detected through performing a 10X experiment at

similar sequencing depth as in the plate-based approach. Hence, an additional

10X experiment on FAC-sorted 4n nuclei treated with an additional lysis buffer

was performed by Dr. Ioannis Deligiannis. This experiment aimed to obtain

550,000 reads per nucleus or more, in concordance to the snRNA-seq2 data. The

resulting reads were also aligned to mm10 using 10X Genomics Cell Ranger

v4.0.012 and nuclei without any genes detected as well as genes not sequenced

in any nuclei were removed. This additional 10X experiment achieved a mean

library size of roughly 1,000,000 reads per single nucleus, yielding a median of

2,776 genes per nucleus.
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Figure 7.1: Blue line plot showing the saturation curve obtained from running cellranger

on a deeply sequenced 10X experiment. Dashed black line shows extrapolation from

the end point of the curve. Dashed red lines indicate the hypothetical sequencing depth

needed to achieve 3,600 genes per nucleus.

Based on the sequencing saturation curve provided by the Cell Ranger output,

extrapolation was done assuming linear continuation from the end of the curve

to address the question what library size would be needed to reach a median of

around 3,600 genes per nucleus as observed in the snRNA-seq2 data set. This

extrapolation was done by taking two data points near the end of the saturation
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curve to calculate a slope, from which it was then estimated at what sequencing

depth a median of 3,600 genes per nucleus would be reached. In this scenario,

an average sequencing depth of 2.3 million reads per nucleus would have been

required to reach a median of 3,600 genes per nucleus. Additionally to the newly

generated 10X data, the data from the first batch of the PHH diversity project

was used for comparison in the same manner. This particular first batch had an

average sequencing depth of around 700,000 reads per cell, yielding a median

of 2,906 genes per cell. Again, data points at the end of the saturation curve

were considered for the calculation of a slope to extrapolate at what sequencing

depth 3,600 genes per cell would be reached. In that data set, a hypothetical

sequencing depth of 2.7 million reads per cell would have been needed to reach

the same amount of genes per cell as observed in the snRNA-seq2 data.
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Figure 7.2: Blue line plot showing the saturation curve obtained from running cellranger

on the first batch of the precision toxicology data set on PHHs performed in a 10X

experiment. Dashed black line shows extrapolation from the end point of the curve.

Dashed red lines indicate the hypothetical sequencing depth needed to achieve 3,600

genes per nucleus.

While for the snRNA-seq2 data set comparisons to other data sets were done

with the purpose of highlighting the advantages of the new method, in the PHH

diversity project, the data was compared to publicly available data to address

to what extent in vivo zonation is related to the identified subgroups. For this

purpose, data from nine human livers were obtained from GEO (Accession num-
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ber GSE124395)[19]. In a first step, genes that were not present in any cell and

cells that did not express any genes were removed. Moreover, only cells with

between 100 and 6,000 genes and 800 and 30,000 reads were kept. Finally, genes

were removed if they were sequenced in fewer than 10 cells, resulting in a count

matrix of 11,059 cells times 19,416 genes. To keep the data sets comparable,

normalization was done using scran with parameter min.mean=0.05 and counts

were log-transformed, after which cells with more than 20,000 normalized counts

were removed. Dimensionality reduction and Louvain clustering was then per-

formed on the remaining 11,043 cells using scanpy functions. An initial Louvain
resolution of 0.08 was chosen to computationally separate the different liver cell

types present in vivo from each other. To identify the hepatocyte cluster, the

expression of key hepatocyte marker genes, such as ALB, HNF4𝛼 , and TTR was

investigated. Based on this, the count matrix was subset to only contain hepato-

cytes, and Louvain clustering was performed at resolution of 0.2, resulting in 6

clusters. The marker genes used to identify hepatocyte subgroups in vitro were
then explored on this in vivo data set. For instance, in comparison to the other

clusters, cluster 0 showed high expression levels of CYP8B1, HSD17B4, HSD3B7,
CYP27A1, NR1H4, and HMGCS2, hence justifying its annotation as subgroup

I, specializing in bile and sterol metabolism. Likewise, clusters 1 and 4 highly

expressed markers such as SULT2A1, LDHA, and GAMT that had been observed

in subgroup II in vitro. Finally, clusters 2, 3, and 5 were defined by expressing

phase III marker genes, such as ABCC2 and ABCC3 as well as lipid metabolism

marker genes, such as PLIN5.

To investigate the relationship between the annotated subgroups and liver

zonation in vivo, zonation markers were obtained from Aizarani et al.[19]. In
order to keep the results easy to interpret, the genes defining each of the 35

zones reported in the original study were grouped into three zones, representing

pericentral (CV), midzonal, and periportal (PV) marker genes. The cells were then

scored for the expression of the marker genes for each of these three zones using

the scanpy function sc.tl.score_genes. Cells with a CV score greater than 0.45 and

a PV score below 1 were assigned pericentral. Cells with a PV score greater or

equal to 0.65 and a CV score smaller or equal to 0.45 were assigned periportal. The

remaining cells were assigned mid-zone. To address the relationship between the

subgroups and zonation, the percentage of cells in each of the three zones was

calculated per subgroup and depicted in a bar plot. Furthermore, the influence

of zonation within each of the subgroups was analyzed by investigating the
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expression of zonated marker genes in every subgroup. The same analysis was

performed on the in vitro data set yielding similar CV and PV scores across all

cells and no zonation patterns of marker genes in the subgroups, confirming that

zonation is not conserved in 2D culture while subgroup specialization remains.

Additionally to the data set from Aizarani et al., data from five human livers were

downloaded from GEO (Accession number GSE115469)[18] to further confirm

the presence of hepatocyte subgroups that are independent of zonation in vivo.
As this data set generated by MacParland et al. had already been pre-processed

and normalized, additional filtering included only the removal of genes that were

sequenced in fewer than three cells. For better comparability of the three data sets,

the normalized counts were log-transformed. The original study’s annotation

was used to computationally isolate the hepatocytes. Louvain clustering was

performed at a resolution of 0.5 to separate subgroups of hepatocytes, resulting in

six clusters showing high similarity to the clusters reported by the original study.

Again, the expression of the subgroup-defining marker genes was investigated

in these clusters leading to the successful identification of the subgroups in this

in vivo data set. Expression of zonation marker genes was also investigated in

this data set, again showing that the subgroups were independent of zonation

while zonation markers showed distinct patterns within the subgroups. To

increase the power for the identification of similar hepatocyte subgroups in vitro
and in vivo, the two in vivo data sets were integrated using scGen [129]. The

concordance of hepatocyte subgroups between in vitro and in vivowas quantified
by calculating the top 10 DEGs for every in vitro subgroup and correlating their

scaled mean expression to their scaled mean expression in the integrated in vivo
data. Furthermore, combining the in vivo data sets also increased the power

for the accurate assessment of the relationship between zonation and subgroup

specialization as described above.
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