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Abstract: Reverse osmosis (RO) is a widely used membrane technology for producing process water
or tap water that is receiving increased attention due to water scarcity caused by climate change.
A significant challenge in any membrane filtration is the presence of deposits on the membrane
surfaces, which negatively affect filtration performance. Biofouling, the formation of biological
deposits, poses a significant challenge in RO processes. Early detection and removal of biofouling are
essential for effective sanitation and prevention of biological growth in RO-spiral wound modules.
This study introduces two methods for the early detection of biofouling, capable of identifying
initial stages of biological growth and biofouling in the spacer-filled feed channel. One method
utilizes polymer optical fibre sensors that can be easily integrated into standard spiral wound
modules. Additionally, image analysis was used to monitor and analyze biofouling in laboratory
experiments, providing a complementary approach. To validate the effectiveness of the developed
sensing approaches, accelerated biofouling experiments were conducted using a membrane flat
module, and the results were compared with common online and offline detection methods. The
reported approaches enable the detection of biofouling before known online parameters become
indicative, effectively providing an online detection with sensitivities otherwise only achieved
through offline characterization methods.

Keywords: reverse osmosis; biofouling; in-situ detection; polymer optical fiber sensors; image analysis

1. Introduction

Water scarcity is increasing, which can be primarily attributed to the effects of a rapidly
growing world population, climate change, and increasing industrialization [1]. Conse-
quently, different membrane separation technologies have gained significant research
attention in recent years [2]. Among these processes, reverse osmosis (RO) stands out as
an effective method for water purification, capable of removing inorganic, organic, and
pathogenic pollutants from the feed water [3].

However, a notable drawback of such separation technologies is the formation of
deposits on the surface of the membrane. Biological deposits can, for example, pose
a significant challenge when raw waters with high organic loads are purified through
membrane separation techniques [4]. Microorganisms (MO) tend to adhere to the surfaces
within the spiral wound membrane modules (SWM) [5]. Once attached, these MOs rapidly
produce extracellular polysaccharides (EPS) and proteins that serve as a protective barrier
against cleaning and disinfection agents. Consequently, completely inactivating or cleaning
the MOs from the membrane surface becomes nearly impossible [6]. One effective strategy
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to address the presence of MOs and high organic loads in RO systems is the implementation
of pre-treatments that effectively reduce the organic components in the feed water. There-
fore, advanced oxidation strategies based on peroxydisulfate are discussed as oxidizing
agents that can remove organic pollutants from the water [7]. Alternatively, inactivation of
already attached MOs at an early stage can be targeted, specifically before the onset of EPS
production. By intervening at this early stage, it becomes possible to rinse the MOs out of
the SWM along with organic deposits. As early as 1997, Flemming et al. proposed that
cleaning of RO systems should occur before biofouling impacts membrane permeability,
before pressure drops in the feed channel, or before membrane biodegradation begins [6].

Hence, a crucial requirement in any anti-fouling strategy is an early in-situ detection
of microbial attachment. So far, however, only offline analyses can detect microbial growth
in the first attaching and propagation phase. In a recent study, the biofilm formed on
the surface of an RO-membrane surface was chemically characterized using ATR–FTIR
spectroscopy [4,8]. Another suitable approach to detect a biofilm is to measure the amount
of total organic carbon (TOC) [9,10]. A comparison of the TOC values in the feed and
retentate allows us to draw conclusions about the accumulated biomass in an RO system.
The number of viable MOs is represented by the parameter colony forming units (CFU),
which are determined as the cultivable MOs in the water [3]. However, determining the
CFUs may be an inaccurate measure due to the presence of clustered cells or non-cultivable
MOs in the water [11]. To address this limitation, Vrouwenvelder et al. proposed measuring
the concentration of adenosine triphosphate (ATP) as an additional offline parameter, as
the ATP concentration is directly proportional to all viable cells present in the characterized
waters or biofilms [3,10,11].

However, all offline analytical methods demand significant time-, personnel-, and
cost-intensive methods. For instance, the cultivation of MOs according to the German
tap-water regulation takes 72 h. Hence, there is a pressing need for developing in-situ
analyses of process data and the development of methods that enable biofilm monitoring
with sufficient sensitivity to detect the earliest stages of organic and MO accumulation on
membrane surfaces [11].

So far, online analyses only indirectly recognize the effects of biofilm formation in
membrane processes. Vrouwenvelder et al. proposed a membrane fouling simulator (MFS)
be installed prior to the first SWM in an RO plant to additionally measure changes in
the feed-channel pressure drop or the permeate flux [10]. This method can detect biofilm
formation before the biofouling impacts the SWM of the RO plant [12]. However, an MFS
only measures the consequences of biofouling and does not assess the presence of MOs on
the surfaces of RO membranes themselves.

In this context, the present study introduces two approaches:

1. A new fiber optical sensor for biofouling detection, which can be easily integrated into
both newly constructed and existing SWMs. This sensor provides a reliable method
for detecting biofouling in real time within the RO system.

2. The implementation of image analysis techniques for membrane flat modules that are
often used in laboratory experiments.

Overall, the approaches present advancements in both in-situ biofouling detection
using fiber-optical sensors within SWMs and image analysis techniques applicable to
membrane flat modules, thereby enhancing our understanding of biofouling processes in
RO systems.

2. Materials and Methods
2.1. RO-Pilot Plant

The polymer optical fiber (POF) sensors were tested in the same RO pilot plant as
previously described by some of us [13]. The only changes made to the current RO setup
were the camera position and composition of the water used for the biofouling experiments.
The following Figure 1 shows the RO pilot plant used for the present study:
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Figure 1. Schematic description of the reverse osmosis plant with integrated polymer optical fibers,
sensors, and permeate and retentate rejection.

The camera was installed on the feed side of the RO flat module because this is the
anticipated location where biofouling should start [10].

Before every experiment, the RO plant was cleaned and disinfected using 0.1 wt%
NaOH, 5 wt% citric acid, and 0.25 wt% H2O2. DOW XLE membranes and a Toray spacer
were used for the experiments. The membranes were compacted using a NaCl solution with
a conductivity of 200 µS/cm for at least 96 h. Subsequently, the feed water (composition
described below) was continuously introduced into the feed vessel.

The feed water used in the experiments consisted of a mixture of Freising tap water
(20%) and desalinated water (80%). This composition was chosen to prevent exceeding
the calcite solubility product and to inhibit crystal formation. In addition, an autoclaved
nutrient solution was added to the feed water to give concentrations (C:N:P) of 500 µg/L,
100 µg/L, and 50 µg/L, respectively. This was achieved by dosing 3.42 mg/L sodium
acetate, 1.21 mg/L sodium nitrate, and 0.39 mg/L sodium phosphate into the feed, which
had an approximate flow rate of 11.5 L/h. These C:N:P concentrations were half of those
used in RO systems previously reported in the literature [3,14]. Throughout the experiment,
the retentate and permeate streams were discarded.

2.2. POF-Sensor

The POF-sensor principle is presented in Figure 2. Polymer optical fibers consist of
a core made of polymethylmethacrylate (PMMA) and a fluoropolymer cladding, which
maintains the total internal reflection in the fiber core. In this study, the cladding of the
fiber was removed on a length of ca. 5 cm in two different methods: chemical removal
with ethyl acetate or mechanical removal using a 350-grid abrasive paper. The removal of
the fiber’s cladding enables the interaction of light with deposits on the fiber surface. As
recently demonstrated by Hager et al., such a POF sensor is capable of detecting crystals
on the fiber surface [13,15]. It is worth noting that the removal of the cladding influences
the surface roughness of the fiber. This can be seen in Figure 2, which shows a comparison
of scanning electron microscopy (SEM) images of the surface observed after removing the
cladding via different methods.

The fibers were installed below the feed spacer or as a spacer substitute. The setup
with the incorporated fibers, the feed spacer, and the RO membrane is shown in Figure 3.
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Figure 2. Mode of operation of the fiber-optical sensor. Top: schematic description of the optical fiber
with removed fluoropolymer cladding and the two modes of interaction between light and deposits
on the surface: scattering and evanescence-based attenuation. Bottom: scanning electron images
(SEM) images of the sensor zone. In the left image, the cladding is removed using ethylaceteate, and
in the right micrograph by mechanical abrasion.
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2.3. Offline Analytic

The following paragraphs describe the offline analysis of the water and the biofilm
formation during and after the experiments:

TOC
The analysis of the TOC content as non-purgeable organic carbon (NPOC) was carried

out by the Research Center Weihenstephan for Brewing and Food Quality according to
DIN EN 1484:1997-08.

Using the TOC concentrations in the feed and the retentate, TOCFeed and TOCRet,
respectively, in combination with the flow rates in the feed and the retentate,

.
VFeed and

.
VRet, respectively, the carbon rate (

.
C) [mg/h] was balanced.

.
C = TOCRet ·

.
VRet − TOCFeed ·

.
VFeed (1)

ATP
ATP samples were immediately frozen after sample collection by submersion in liquid

nitrogen to avoid the degradation of extracellular ATP. Subsequently, frozen samples were
immediately thawed and measured. Measurements of ATP content were conducted using
the EnSURE Touch™ (Sundern, Germany) luminometer from Hygiena (Camarillo, TX,
USA) using UltraSnap™, Aquasnap™ Total, and Aquasnap™ Free testers in accordance
with the manufacturer’s instructions. ATP standards were prepared using adenosine
5′-triphosphate disodium salt from Sigma-Aldrich Chemistry (St. Louis, MO, USA).

CFU
The determination of the colony-forming units of cultivable microorganisms at

22 and 36 ◦C was carried out by the Research Center Weihenstephan for Brewing and
Food Quality in accordance with the norm DIN EN ISO 6222:1999-07 corresponding to
§ 15 (1c) of the German tap water regulation (TrinkwV).

16S rRNA
Sampling was performed after the end of the experiment by sterile swabs (TexwipeTM,

Kernersville, NC, USA) directly from the membrane. Samples were processed by ZIEL—
Institute for Food & Health, according to Reitmeier et al. [16] with primers 341F/785R. In
deviation from the experimental instructions, DNA isolation was carried out after bead
beating using the Maxwell® RSC Fecal Microbiome DNA Kit in the MaxWell device from
Promega (Walldorf, Germany).

2.4. Online Analytic

Feed channel pressure drop (FCP)
The FCP value was measured using Endress &Hauser differential pressure sensors

(Type PMD75).
Permeability
The permeability was calculated using the flow rate of the permeate (

.
Vp) with respect

to the net transmembrane pressure TMPnet and the membrane area A.

Pw =
.

Vp

/
A · TMPnet (2)

2.5. Image Analysis

A Basler ac-A3088-57uc camera with a CMOS sensor and with 6.4 MP resolution was
used to take photos of the membrane surface at 1 h time intervals. The photos were taken
in reflected light mode at the feed side of the membrane flat module. The light was turned
on for 2 min to avoid algae growth on the membrane surface. The photos were then stored
as .tiff data with image sizes of 2064 × 3088 × 3 pixels. The terms ‘matrix’, ‘photo’, and
‘image’ are interchangeably used throughout the following text, as they all refer to the same
visual representation. The matrices were analyzed using Matlab® R2021a. The Matlab®
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code is organized into two steps with (A) the image registration and (B) the calculation of
image similarities.

(A) Image registration: The motion of the module (due to motor movement etc.) re-
sulted in an imperfect alignment, so the captured images corresponded to different
coordinates on the membrane surface. Therefore, it was necessary to perform image
registration to align the images. This process followed the four steps of image reg-
istration as outlined by Zitová and Flusser [17]: feature detection, feature matching,
transform model estimation, image resampling, and transformation.

1. A distinctive section of the photo containing specific features of a cropped
reference greyscale image was manually selected.

2. The images were aligned. The Matlab® function normxcorr2 was used to cre-
ate a normalized cross-correlation matrix between the selected feature image
section and the sensed images of the time series, which were transformed into
greyscale images. This function moves the smaller matrix containing the features
across the bigger matrix to find the location via the maximum in matching [18].
Next, parameters for further transformation, namely aligning the sensed images
around the selected features, had to be extracted using the Matlab® functions
find and max.

3. The gained parameters were then used to align the color images. To be able to
transform the images around the same coordinates, they had to be cut in size;
thus, gaining room for movement. Hence, the registered images were somewhat
smaller than the original ones and consisted of 1937 × 2913 × 3 pixels. As
a result of the registration process, all images of the time series had the same
size and were centered around the same distinctive features.

The process of image registration is sketched in Figure 4.
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(B) Image similarities:

A Pearson correlation coefficient is a very suitable tool to measure pixel-by-pixel
image similarities [19,20]. Therefore, analysis of image similarities was carried out via
a 2-dimensional Pearson correlation coefficient. Using our image analysis, we determined
the different red, green, and blue layers of one RGB image and compared them with
a reference matrix, which is the RGB image at the initial time. This photo was taken before
the compaction phase ended and the feed water was changed to the tap water desalinated
mixture with dosed nutrients.

A correlation coefficient for each sensed image was calculated in the time series and
for each RGB layer. The single layers were separated via the Matlab® function imsplit,
resulting in three 2D grayscale matrices, each representing one RGB layer. Next, a reference
picture, matrix A of size 1937 × 2913, was compared with each sensed image layer, matrix
B of the same size, using the following equation:

r =
∑m ∑n

(
Amn − A

)(
Bmn − B

)√
(∑m ∑n

(
Amn − A

)2
)(∑m ∑n(Bmn − B)2)

(3)

with Amn as the reference matrix of size mxn and Bmn as the sensed matrix of the same size.
A and B are the mean pixel intensities of Amn and Bmn with m = 1937 and n = 2913.

The calculated correlation coefficient serves as a measure of the deviation between
an image captured at a specific time and the initial reference image, quantifying the level
of similarity between the two images.

3. Results and Discussion

The results are divided into three experimental parts to demonstrate the function of
the POF and the image analysis for early biofouling detection on RO membranes.

3.1. Conditioning: POF-Transmissions in Water

The initial set of experiments aimed to demonstrate the long-term effects of POF trans-
mission. The POFs were integrated into an RO system under normal filtration conditions,
without forming deposits on the membrane and spacer surfaces. The RO system operated
using a 2 g/L NaCl feed solution over the course of several days, with the retentate and per-
meate flowing back into the feed vessel. Figure 5 illustrates the time series of transmission
obtained from these experiments, which were conducted in triplicate.
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Figure 5. Plot showing the light transmission of POFs as a function of time. The feed in the experiment
was an aqueous NaCl solution (2 g/L).

The recorded time series clearly show an asymptotically decreasing light transmission.
The magnitude of the total decrease varied among the three experimental runs. In all
experiments, the decrease in light transmission ends after ca. 72 h and a limiting value
appears to be reached after 96 h.

Additionally, all three recorded time series exhibit daily variations. These variations
are attributed to the daily cycle of temperature fluctuations, which result in changes in
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the mechanical stresses experienced by the membrane flat module, due to a differential
thermal expansion of the metal screws used to compress the module.

These findings are in line with previous reports that have documented a similar influ-
ence of water adsorption and mechanical stress on the light transmission of POFs [2,21,22].

3.2. First Validation: POF-Sensors in a Yeast Suspension

The second series of experiments aimed to investigate the impact of viable cells and
organic suspensions on the light transmission of the POFs.

In contrast to the above-described experiment, the POF was not installed in the RO-flat
module but in a water bath, to which a yeast suspension was added after a conditioning
period of 71 h. Two fibers were installed in the water bath: a reference fiber with intact
fluoropolymer cladding and a sensor fiber with mechanically removed cladding. Figure 6
shows representative results of one of the three experimental runs with this setup.
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Figure 6 shows a plot of the recorded transmission over time. The plot shows a nearly
constant time series for the transmission of light through the reference fiber over the course
of the whole experiment. The plot for the sensor fiber, by contrast, showed a sharp drop in
the intensity of transmitted light upon the addition of yeast to the water bath. Hence, the
light transmission was significantly influenced by the presence of viable cells. The other
two experiments gave similar results.

As previously observed, both time series showed small intensity fluctuations over
the course of 24 h due to the daily temperature cycle. The conditioning period ended
earlier than in the setup where the POFs were installed in the membrane flat module (see
Section 3.1). The yeast was added to a water bath and therefore the POFs were not installed
in the membrane flat module, where the screws of the module compress the POFs. The
absence of screw pressure (as illustrated in Figure 1) may have facilitated the adaption of
the POFs to the experimental conditions.

3.3. Second Validation: Biofilm Detection in the RO Pilot Plant

In this following section, the capability of the selected POF sensor and our image
analysis approach toward detecting biofouling in RO systems at an early stage is evaluated
and compared with current online detection methods.
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Prior to the experiments, the POF sensors were conditioned for at least 96 h using
a NaCl solution to avoid any effects on the intensity of transmitted light due to water
adsorption or mechanically induced transmission loss. The experiment was executed three
times. Because the results of all experiments were very similar (see Figure 10), we will
focus on discussing the findings from one experiment.

Figure 7 shows the time series of the measured online parameters. The vertical dotted
line marks the end of the conditioning and compaction phase; this also marks the moment
the dosing of nutrients was started and the switch in feed composition to a mixture of tap
water and desalinated water. Figure 7 displays the recorded time series from 96 h onwards,
at which point the POF transmission reached a steady-state level (see Section 3.1).
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The analysis of the recorded time series shows the effect of biofouling at a very early
stage. After the feed water change, the monitored online parameters exhibited changes in
the following temporal order: first, the POF’s light transmission was affected; then, the
correlation coefficient from the image analysis; subsequently, the permeability; and finally,
the FCP value was affected. This temporal order is described in the following paragraphs,
assuming that biological growth affected the parameters.

The light intensity transmitted by the POFs on the feed and the retentate side imme-
diately decreased after the end of compaction and with the onset of dosing nutrients to
the changed feed solution. The POF’s light transmission on the feed side of the membrane
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module stopped decreasing and reached a steady-state level from 240 h onwards while the
retentate fiber’s light transmission continued to decrease.

The correlation coefficients determined by the image analysis followed a similar trend
as the transmission of the POF sensors until 240 h. Subsequently, and nearly simultaneously
with the changes in permeability and FCP, the correlation coefficient of the blue layer in
the RGB image experienced a significant decrease. This observation could potentially
indicate the onset of a phase of exponential growth of a biofilm on the membrane surface.
By contrast, the correlation coefficient of the green layer only slightly decreased over the
course of the whole experiment, whereas the correlation coefficient of the red layer remained
at an almost constant level after the slight decrease following the nutrient dosage. The
variations in the correlation coefficients determined for the R-, G-, and B-layers demonstrate
that a separate evaluation of the color layers of the images is crucial for detecting biofouling.
Furthermore, the differences in the correlation coefficients show the color and brightness
shift from white to brown, which were indicative of the growth of a biofilm.

Figure 7 shows that permeability first increased and later (220 h) decreased. The
increased permeability can be attributed to pH-dependent membrane surface charges,
which changed as a result of the increase in pH from 6.9 to 8 after the compaction, in
agreement with previous reports [23,24].

The FCP value was observed to increase after 221 h, with the increase becoming more
pronounced over time.

The only parameter that stayed almost at a constant level over the course of the
experiment was the salt passage. This indicates the absence of scaling on the RO membrane.
The absence of any crystals on the membrane was independently confirmed by SEM
imaging (not shown here).

All the observed parameter changes indicate an increasing level of biofouling on the
membrane and spacer surfaces. As known from the literature, the MOs adhere first to the
feed spacers and therefore to the POFs, which correlates with the initial changes observed
in the POF transmission and the image analysis [25]. Moreover, the biofilm started growing
on the feed side of the membrane module and later on the retentate side. This phenomenon
can be observed from the signal of the two POF sensors. The transmitted light of the POF on
the feed side decreases first. The stabilization of the signal at a steady-state level suggests
that the biofilm may have completely covered the fiber surface. On the retentate side, the
light transmission through the fiber sensor exhibited a more prolonged decrease compared
with that of the feed fiber, indicating a delayed biofilm growth on the retentate side.

After ca. 236 h, the biofilm had developed on the membrane surface, which reduced the
flux and consequently the permeability. Only a few hours later, the correlation coefficient
of the blue layer in the image analysis showed a second drop.

Because the growth of the biofilm was more pronounced in the feed channel, the
pressure progressively decreased. In our experiment, the change in pressure was the last
parameter to indicate biofouling. The weak increase observed at the beginning of the
experiment was not statistically significant compared with its strongly fluctuating signal.

To validate and compare the POF with offline analytics, which are commonly used
to indicate and measure microbial growth in RO plants [3,9–11], a comparison with the
measured offline parameters was carried out, as shown in Figure 8.

First, the negative carbon rate and relatively low CFUs indicate the adhesion and
growing phase of the MOs. This initial biofouling phase ended after ca. 160 h, when the
CFU in the retentate started to increase compared with the feed values. Furthermore, the
carbon rate turned to a positive level. Later, after 207 h, the ATP concentration in the
retentate increased compared with the ATP concentration in the feed. Notably, however,
the ATP value was very low due to the low cell concentration, and it, therefore, remained
difficult to precisely measure the ATP concentration.
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The offline parameters measured at different times indicate the different phases of
biofilm formation in the membrane flat module.

All the changes observed in these parameters mark the beginning of the second phase
of biofouling, the detaching phase, when parts of the biofilm detach from surfaces inside
the membrane flat module. At this stage, the MOs, together with the EPS, flow out of the
membrane flat module and cause a positive carbon rate and higher contents of viable MOs
in the retentate, consequently increasing the ATP concentration. The determined values
indicate that this stage reached a steady-state mode when the biofilm inside the RO module
reached a constant thickness. This equilibrium was indicated by the ATP concentrations
and CFU in the retentate that ceased to increase, corroborating that the mass of growing
biofilm and detaching biofilm are balanced.

The comparison of offline parameters with the new online parameters determined
via the integrated POF sensors and through image analysis validates the new sensors’
functionality. Simultaneously to the negative carbon rate, the POF signal decreased in
parallel with the correlation coefficient from the image analysis. When the second phase
began, the image analysis showed a sharp drop in the correlation coefficient of the blue
layer, and the POF sensor on the feed side turned to a steady-state level (244 h). The
steady-state mode of the retentate fiber from 244 h onward may be caused by a completely
overgrown surface of the POF. This observation is in agreement with previous findings [10].

In the final step, the MOs in the biofilm are compared with the MO found in other RO
plants known from the literature.

Biofilms are composed of an assemblage of MO at a boundary layer consisting of
either a mixed population or individuals of a single species [26]. Typical species found
in biofilms on RO membranes belong to ubiquitous aquatic microorganisms. These in-
clude organisms of the classes Alphaproteobacteria (for example, order/family/genus
Rhizobiales/Bradyrhizobiaceae/Rhodopseudomonas or Sphingomonadales/Sphingomona-
daceae/Sphingomonas), Betaproteobacteria (for example, Burkholderiales/Comamonadaceae/
Acidovorax), and Gammaproteobacteria (Pseudomonadales/Pseudomonadaceae/Pseudomonas
or Xanthomonadales/Xanthomonadaceae/Pseudoxanthomonas) [3,27–29]. Identification
of MOs can be achieved through various methods, including through culturing techniques
(e.g., plate cultures) in combination with Matrix-Assisted Laser Desorption/Ionization
Time-Of-Flight (MALDI-TOF) mass spectrometry analysis or by 16S rRNA sequencing,
and by other methods. However, MALDI-TOF spectrometry has the disadvantage that
cultivability of the organisms is required, which is not always given. On the other hand,
16S rRNA sequencing allows for a fairly accurate estimation of the cultures contained in
the biofilm based on highly conserved RNA segments, but no statement can be made about
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the viability of the detected organism within the biofilm [30]. Here, we chose 16S rRNA
sequencing to analyze the species contained in the biofilm.

Table 1 provides an overview of the microbiological composition of the biofilm.
Most of the identified microorganisms (85%) belong to Alpha- and Gammaproteobac-
teria. Most dominant were the bacteria of the class Gammaproteobacteria, which ac-
counted for 58% of the detected bacteria. Typical biofilm formers such as Acidovorax,
Pseudomonas, and Pseudoxanthomonas were detected in the forced biofilm formation
experiments. The presence of bacteria of the class Bacteroida was also characteristic of
biofilms in membrane processes [31].

Table 1. Relative abundances of MOs from a 16S rRNA analysis of a biofilm on the RO membrane
after a 3-week experiment. Not italic: comments to the MO.

Phylum Class Order Family Genus

Proteobacteria Gammaproteobacteria
(typical biofilm formers) Burkholderiales Commamonadaceae

48% Aquabacterium
29% Acidovorax
3% Delftla

Rhodocyclaceae
Burkholderiaceae

2% Ferribacterium
2% Cupriavidus

Xanthomonadaceae 3% Pseudoxanthomonas
0.8% Stenotrophomonas

Pseudomonales
4% Acinetobacter
1% Pseudomonas
(human pathogenic)

Alphaproteobacteria
(typical biofilm formers) Caulobacteraceae 6% Caulobacter

0.7% Phenylebacterium
Sphingomonadaceae 0.8% Sphingopyxis

1% Rhodobacter

Bacteroidia
0.8% Cytophaga
(Coexisting within potable
water biofilms [31])

In all experiments, the bacteria present in the drinking water pipe system led to
a bacterial community comparable to that in industrial full-scale RO plants. Hence, our
new methods should be suitable for typical biofouling detection in other RO plants.

3.4. Practical Test: POF-Sensors as Indicators of Cleaning-in-Place

In the following, insight into possible applications of the POF as a biofouling sensor
are provided. The early detection capability of the POF sensors enables the control of
a cleaning-in-place (CIP) procedure for membrane modules. This cleaning process is crucial
to be carried out before the biofilm significantly impacts the permeability or the feed-
channel pressure drop. By implementing effective CIP procedures based on early detection
using POF sensors, sustainable desalination through RO membranes can be achieved, even
for water sources with high organic loads. Figure 9 shows results from an experiment
conducted under accelerated standard conditions, as described in Section 3.3, illustrating
the onset of biofouling in this scenario.

Figure 9 shows four time series. On top, the feed channel pressure drop is shown,
which has been conventionally used to detect biofouling in spacer-filled feed channels in
RO modules. The FCP value remains relatively constant as it is only influenced by the CIP
intervals due to Moody’s law.

The lower diagram provides the time series of the new POF sensors. The sensor POF
shows the typical descending behavior when biofouling occurs.
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Furthermore, a higher crossflow velocity (displayed by
.

VRet) at 128 and 131 h did
not influence the POF signals because no nutrients were dosed to the water and the feed
water was not yet polluted with microbial load. Because the nutrients were dosed after the
compaction and conditioning phase, the POF’s transmission signal began to immediately
decrease compared with the reference fiber. At 151 and 178 h, two CIP intervals were
executed. In Figure 9, it can be observed that the transmission signal of the POF sensor
recovers after each CIP interval. However, the magnitude of the recovery is lower during
the second CIP interval. This could be attributed to the presence of increased quantities
of the EPS matrix within the biofilm, which provides stability and protection against
mechanical cleaning. Prior to the second CIP interval, the signal of the POF sensor reached
a steady-state level, potentially indicating a complete coverage of the fiber surface by the
biofilm. This observation supports the hypothesis of a stronger EPS matrix within the
biofilm during advanced stages of biofouling growth.

4. Conclusions

This publication highlights the advantages of combining two novel detection methods
for early-stage biofouling monitoring in RO modules. The methods are introduced, their
effectiveness is demonstrated, and their benefits are evaluated in comparison with conven-
tional detection methods. By utilizing these new detection methods, it becomes possible to
detect and address biofouling at an early stage, enabling more effective management and
prevention strategies in RO systems.

1. Image analysis can quantify the color changes caused by microbial growth at a very
early stage. A preparatory step is needed to adjust the photo’s positions to the
reference images recorded during the conditioning phase. A 2-dimensional Pearson
correlation coefficient of the R-, G-, and B-layers was calculated for each photograph
of the whole experimental series and compared with the reference image. This results
in a time series of image analysis parameters that can be recorded while biofouling is
affecting the RO process.

2. Polymer optical fibers are a new method to detect biofouling throughout the entire
growth period. The detection process requires the use of conditioned fibers and en-
ables the qualitative detection of biological growth until the fiber surface is completely
covered with biomass. The time series of the transmitted light through the fibers
strongly differs from the changes observed in fibers used to monitor scaling (inorganic
deposit) on the RO membrane.
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Figure 10 provides a visual representation of the early detection and compares the
sensor signals that indicate biofilm presence by means of different detection methods. The
changes in the time series of the sensor signals occur at similar points in time. Image
analysis and the POF’s light transmission indicate the biofouling formation first.
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It should be noted, however, that the exact mechanism behind the POF sensors and
their detection of biological growth remains uncertain. It is unclear whether the light
transmission is influenced by changes in evanescence or if the light is scattered out of the
fiber due to inhomogeneities in the biofilm and resulting refractive index changes.

Further research is needed, especially with fiber optic sensors based on fluorescence
measurements of organic pollutants on the fibers and feed spacers. This may lead to
a species-sensitive measurement of forming biofilms due to the different metabolism prod-
ucts of various bacterial species.
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