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Introduction: Hematologists analyze microscopic images of red blood cells to study
their morphology and functionality, detect disorders and search for drugs. However,
accurate analysis of a large number of red blood cells needs automated computational
approaches that rely on annotated datasets, expensive computational resources, and
computer science expertise. We introduce RedTell, an AI tool for the interpretable
analysis of red blood cell morphology comprising four single-cell modules:
segmentation, feature extraction, assistance in data annotation, and classification.

Methods: Cell segmentation is performed by a trained Mask R-CNN working
robustly on a wide range of datasets requiring no or minimum fine-tuning. Over
130 features that are regularly used in research are extracted for every detected
red blood cell. If required, users can train task-specific, highly accurate decision
tree-based classifiers to categorize cells, requiring a minimal number of
annotations and providing interpretable feature importance.

Results:Wedemonstrate RedTell’s applicability and power in three case studies. In
the first case study we analyze the difference of the extracted features between
the cells coming from patients suffering from different diseases, in the second
study we use RedTell to analyze the control samples and use the extracted
features to classify cells into echinocytes, discocytes and stomatocytes and
finally in the last use case we distinguish sickle cells in sickle cell disease patients.

Discussion:We believe that RedTell can accelerate and standardize red blood cell
research and help gain new insights into mechanisms, diagnosis, and treatment of
red blood cell associated disorders.
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Introduction

Hematologists analyze human red blood cells (RBCs) under the microscope to detect
abnormalities in RBC morphology, and to study and diagnose disorders (Bouyer et al., 2011;
Makhro et al., 2016; Fermo et al., 2017). This manual process is time-consuming, subjective
and prone to variability and errors. Moreover, whenever a vast number of single cells needs
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to be analyzed, manual analysis is impossible, making automatic,
high throughput image analysis an essential element in microscopy
based RBC research.

Artificial Intelligence (AI) is emerging as one of the main
technologies enabling automated processing of blood microscopy
images (Deshpande et al., 2021). A typical workflow includes
segmentation, feature extraction and classification based on extracted
RBC features (Devi et al., 2018; Petrović et al., 2020; Wong et al., 2021).
Segmentation is commonly performed through classical computer
vision algorithms including operations such as thresholding, image
filtering, morphological operators, etc. followed by watershed
transforms (Sharif et al., 2012) and ellipse fitting (Naruenatthanaset
et al., 2020) to separate single cells. Multi-purpose computational tools
provide segmentation algorithms based on the mentionedmethods and
enable feature extraction of single cell morphology, with CellProfiler
(Stirling et al., 2021) and ImageJ (Schneider et al., 2012) being the two
most commonly used open-source softwares for microscopy image
analysis. However, pipelines and macros require the optimization of
many hyperparameters, which are specific for images and experimental
setups, and thus do not generalize well to other datasets (Sinha et al.,
2015). Alternatively, machine learning methods are employed. For
instance, Savkare and Narote (2015) suggest segmenting cells with a
k-mean clustering followed by cell separation using a watershed
algorithm. In a more modern approach, Wong et al. (2021) use a
U-Net (Ronneberger et al., 2015) model to segment RBCs followed by a
support vector machine classifier (Suykens and Vandewalle, 1999) to
separate overlapping cells, cell morphological features are extracted and
used for a cell type classification task with a TabNet (Arik and Pfister,
2019) model. In one of our previous works, we suggest a fully
convolutional Alexnet architecture to segment single RBCs using a
sliding window approach to prevent overlapping segmentation (Sadafi
et al., 2018). A more robust strategy (Dhieb et al., 2019) suggests a cell
counting method based on a Mask R-CNN (He et al., 2017), an
architecture able to distinguish between single cells, and thus
requiring no further post-processing to separate overlapping detections.

As for the classification of the single cells, rule-based approaches,
k-nearest neighbors, support vector machines or other classical
machine learning methods have been employed (Akrimi et al.,
2014; Piety et al., 2015). Specifically, tree-based classifiers such as
random forest or gradient boosting were shown to be superior when
distinguishing between normal, sickle and other abnormally shaped
RBCs based on the previously extracted features (Petrović et al.,
2020). Also deep learning based methods were considered for RBC
classification. For instance (Alzubaidi et al., 2020; Parab and
Mehendale, 2021), and (Savkare and Narote, 2015;
Naruenatthanaset et al., 2020) use deep convolutional neural
networks for this purpose (Sadafi et al., 2019; Song et al., 2021).
apply Fast R-CNN and Faster R-CNN models to differentiate
between 14 and 7 RBC subtypes, respectively. The most recent
work suggests a pipeline based on deep ensemble learning for RBC
morphology classification (Routt et al., 2023). Such methods result
in a higher classification accuracy in multi-class settings. However,
they take images as input and process them to obtain a useful
representation of features, which are completely model generated
and are not interpretable as opposed to extraction of hand-crafted
features. Moreover, they require a large amount of annotated data to
achieve a proper generalization power. As a rule, most work on RBC
classification mainly focuses on fitting a classifier for a specific task

and specific dataset. Extension of deep classification models to a new
task or dataset requires programming skills and computer science
expertise to gain a deep understanding of algorithms and adjust
them properly. Additionally, their application on a new task requires
understanding and running source code, which is not always given
(Wagner et al., 2022).

This paper introduces RedTell, an AI tool for interpretable analysis
of RBC morphology. RedTell enables single-cell segmentation,
extraction of cell morphology features, and RBC classification
without any prior knowledge and extensive user interaction. RedTell
is a fully automated tool expecting expert input only for cell annotations.
It can assist a wide range of research questions by 1) providing a robust
RBC segmentation model with the possibility of adaptation to new
datasets with or without fine-tuning, 2) extracting a wide range of RBC
morphological features as described in the literature (Veluchamy, 2012;
Devi et al., 2018) and 3) enabling task- and dataset-specific explainable
classification algorithms with a low amount of annotated input images.
The results of every step of the RedTell pipeline can be directly used for
the downstream analysis. RBC counting, comparison of cell type and
feature distribution in different experiments or sample groups, or
diagnosis of diseases with irregular cell morphology (such as sickle
cell disease) are just some of the possible scenarios where RedTell can be
applied. We showcase the abilities of RedTell in three different case
studies. First, we show that extracted features have different
distributions for healthy and anemia patients. Next, we use RedTell
to distinguish cells in the stomatocyte-discotye-echinocyte (SDE)
sequence in control samples. Finally, we use RedTell to classify
sickle cells in samples of sickle cell disease patients.

The novelty of RedTell includes feature extraction from images
in fluorescent (in our case Fluo-4 was used as a fluorescent dye to
detect Ca2+) channel, vesicle detection in the Fluo-4 channel, and
the increased interpretability: we explicitly provide segmentation
and classification results overlaid on the original images, meaningful
key characteristics of RBCs widely used by hematologists and feature
importance to explain predictions of classification algorithms.

Materials and methods

RedTell is an AI tool developed to facilitate the analysis of
microscopic images of human RBCs. It consists of four steps:

1. Accurate cell segmentation
2. Extraction of hand-crafted morphological features from

brightfield and fluorescence (Ca2+-dependent Fluo-4 signal as
an example) channels including vesicle detection and counting

3. Assistance in data annotation
4. Single RBC classification

Every step can be executed by a simple command in the
terminal. RedTell is a software package implemented in Python
and is easily accessible through the command line under any
operating system. Code and extensive documentation as well as
CoMMiTMenT and MemSID datasets used in the manuscript are
provided under https://github.com/marrlab/redtell. The software is
distributed under MIT license without any restrictions for academic
and non-academic use. An overview of RedTell’s functional pipeline
is given in Figure 1A. In the following we describe each step in detail.
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Datasets

CoMMiTMenT and MemSID datasets
We use CoMMiTMenT dataset to develop the segmentation

solution in RedTell as well as consider it to evaluate feature
extraction and classification functionality of the tool. The
dataset consists of 3 patients with Thalassemia, 9 patients

with sickle cell disease, 8 patients with hereditary xerocytosis
caused by mutation in PIEZO1 channel, and 13 patients with
hereditary spherocytosis. 26 individuals are in a healthy control
group.

An Axiocam mounted on a Axiovert 200 m Zeiss microscope
with a ×100 objective was used to obtain the images. No staining or
preprocessing is performed.

FIGURE 1
RedTell facilitates single red blood cell profiling by extracting interpretable features and enabling accurate cell classification. (A) Overview of the RedTell
functional pipeline: Single red blood cells inmicroscopy images are segmented, 135morphological features are extracted, and cells are classified into different cell
types. (B) RedTell provides a table with extracted features, brightfield images overlayed with segmentation results, and fluorescent images with detected vesicles
highlighted white boxes. (C) RedTell supports annotation of single-cells for automated supervised machine learning based on interpretable features.
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The CoMMiTMenT study was funded by the European Seventh
Framework Program under grant agreement number 602121
(CoMMiTMenT) and from the European Union’s
FP7 Programme. The study protocols were approved by the
Medical Ethical Research Board of the University Medical Center
Utrecht, the Netherlands, under reference code 15/426 M and by the
Ethical Committee of Clinical Investigations of Hospital Clinic,
Spain (IDIBAPS) under reference code 2013/8436. Additional
blood samples of patients with sickle cell disease were obtained
from the participants of the MemSID clinical trial performed at the
University hospital Zurich (#NCT02615847 at https://clinicaltrials.
gov/). The trial protocol was approved by the Ethics committee of
Canton Zurich (KEK-ZH 2015-0297).

External datasets

We also consider three publically available datasets of blood
smear microscopic images: ThalassemiaPBS (Tyas et al., 2022) and
MP-IDB (Loddo et al., 2019). Chula-RBC-12-Dataset
(Naruenatthanaset et al., 2020) on ThalassemiaPBS consists of
80 images obtained from four thalassemia patients (20 images for
each patient), and covers RBCs of various morphology. The raw
images have no annotations. Cropped single-cell images are assigned
in a separate dataset to one of 9 morphological subtypes. MP-IDB
dataset consists of 229 images of patients affected by four different
kinds of malaria parasite. Each image contains RBCs with at least
1 cell hosting a parasite. Only such cells are annotated with a
segmentation mask and parasite’s kind and life-cycle stage.
Chula-RBC-12-Dataset covers 706 images of RBC (no further
details about patient pool are given). It includes labels for every
RBC in 12 different morphological subtypes in form of point
annotations, no segmentation masks are provided. Due to the
limited availability of relevant annotations, we use the described
datasets to qualitatively assess the generalization ability of our
segmentation model.

Cell segmentation

Accurate cell segmentation is the first essential step for studying
morphological features of red blood cells. Single-cell segmentation
masks provide exact cell localizations in the image and allow
computation of precise cell features. We approach the
segmentation task by using a Mask R-CNN model (He et al.,
2017), an artificial neural network that extends R-CNN based
models (Girshick et al., 2014; Girshick, 2015; Ren et al., 2015)
consisting of two stages: 1) a region proposal network to propose
and evaluate various locations of objects in the image, and 2) a three
head network analyzing objects one by one for object classification
and bounding box location refinement. Such architectures have been
effective in various image segmentation scenarios (Chiao et al., 2019;
Huang et al., 2019) and applied on red blood cell microscopy images
with a large diversity of cellular morphologies (Dhieb et al., 2019;
Sadafi et al., 2019; Sadafi et al., 2020; Loh et al., 2021). Mask R-CNN
advances its forerunners by preserving spatial information of
regions corresponding to the objects in the images and by having
an additional, fully convolutional head for object segmentation.

RedTell provides a ready-to-use Mask R-CNNmodel trained on
the brightfield images of the control samples from the
CoMMiTMenT dataset annotated on the single-cell level as
introduced by (Sadafi et al., 2020) as an accurate and robust
segmentation solution. In the dataset, every image contains on
average only 44.2 cells. Furthermore, RedTell enables automated
training of new Mask R-CNN segmentation models on any custom
dataset with annotated images provided.

Feature extraction

RedTell supports capturing of valuable biological insights in
the analysis of RBCs by extracting interpretable hand-crafted
features for every segmented cell. Every feature represents a
meaningful characteristic of a cell describing its morphology.
The features are extracted from two modalities: 1) brightfield
microscopy and 2) fluorescence microscopy. Both image types
are converted to grayscale for feature acquisition.

Feature extraction from brightfield channel
The feature set provided by the RedTell can be categorized into

three different groups:
- Shape features, which describe cell morphology and include

characteristics such as area, length of minor and major axes, aspect
ratio and eccentricity. The shape features are widely used to
distinguish between normal and irregular RBC for automated
diagnosis of RBC disorders such as sickle cell disease or
thalassemia (Chy and Anisur Rahaman, 2019; Das et al., 2020;
Tyas et al., 2020).

- Intensity-based statistical features, which describe cell
properties derived from intensity distribution of pixels
corresponding to a cell such as mean intensity, standard
deviation, skewness and kurtosis. Such features were shown to
be useful to differentiate between healthy and sickle RBCs based
on the intensities of color and grayscale images. (Akrimi et al.,
2014; Tyas et al., 2020). Intensity features are particularly
meaningful when extracted from the images of the
fluorescence microscopy as they provide insights about cell
behavior measured by the activation of the fluorescence as
reviewed in (Coffman and Wu, 2012).

- Texture features, which reflect local distribution of pixel
intensities and characterize homogeneity and texture of a cell.
For every cell we extract the histogram, Gray Level Co-
occurrence Matrix (GLCM) and Gray Level Dependence Matrix
(GLDM), which represent a relationship between adjacent pixels
and include features such as contrast and dissimilarity. We further
extract the Gray Level Size Zone Matrix (GLSZM) and the Gray
Level Run Length Matrix (GLRLM) to indicate basic structures
within a cell such as the size of the largest region of the same pixel
intensity. Texture features have been successfully exploited for the
RBC classification in blood smear images (Veluchamy, 2012; Akrimi
et al., 2014; Chy and Anisur Rahaman, 2019).

Shape features are directly obtained from segmentation masks of
the cells, while intensity and texture features are calculated after co-
localizing the single-cell masks in the normalized images of
brightfield and fluorescent channels. One of the biggest
advantages of calculating features based on single-cell masks is
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focusing only on pixel values that are corresponding to a cell rather
than its surrounding artifacts and noise.

Feature extraction from fluorescence channel
Segmentation masks obtained from the brightfield channel

provide the exact cell positions. However, the brightfield and
fluorescent channel images are produced sequentially. As the
microscope stage and the imaging chamber containing RBCs may
move during the switch from one channel to the other or due to the
tumbling of RBC membrane, slight displacement in the position of a
given cell may be introduced which becomes visible why sets of
brightfield and fluorescent images are overlaid. An approach to train
a separate Mask R-CNN model for cell detection and segmentation
in a fluorescent channel requires additional annotation of the cells in
fluorescent images and introduces a non-trivial task of the
assignment of detections between brightfield and fluorescent
channels. Instead, we propose applying segmentation masks
obtained from the brightfield channel directly to the fluorescent
channel images. We approach a possible slight shift in cell position
by excluding image background defined as pixels with zero intensity
from the feature extraction. This approach can be justified by the fact
that intensity value distribution is homogenous or symmetric with
respect to the cell center, and covering only a part of the cell provides
a reasonable estimate for the entire object. We further eliminate for
feature extraction pixels corresponding to the intracellular artifacts
such as vesicles, which we detect with an algorithm as
described next.

Vesicle detection
We further detect and count vesicles, intracellular

compartments of RBCs as first described by (Lew et al.,
1985) in sickle cell patients. The vesicles are inside-out
facing parts of the plasma membrane containing the plasma
membrane Ca2+ pump (PMCA). The latter effectively
sequesters Ca2+ into the vesicles preventing activation of
Ca2+-dependent K+ (Gardos) channels. The measurements
of the abundance, size and Ca2+ storage capacity of the
vesicles in RBCs provide information on the Ca2+ leak
through the membrane and the ability of the cells to avoid
Ca2+ overload. These tasks are best achieved by imaging of the
average levels of free Ca2+ ions in living RBCs as well as the
distribution of Ca2+ ions within the cells (between the cytosol
and the intracellular vesicles) performed using Fluo-4 AM
fluorescent dye. This dye was proven to be the best for use in
RBCs due to its high fluorescence intensity with a high degree of
quenching of the fluorescent signal by hemoglobin being
produced (Kaestner et al., 2006; Wang et al., 2022).

Single snapshots provide information on the current levels of
Ca2+ in RBCs and their compartments. Functional tests, in which
Ca2+ uptake via the Ca2+-permeable channels is stimulated
mechanically or chemically, allow to monitor dynamics of
Ca2+ movement across the membrane as time lapse image
sequences are obtained for the same set of cells (Hänggi et al.,
2014; Fermo et al., 2017; Makhro et al., 2017). These tests give
indications on the abundance and/or activity of the Ca2+-
permeable channels and PMCAs, that maintain the
intracellular Ca2+ levels, that, in turn, are involved in

regulation of RBC dehydration and deformability (Muravyov
and Tikhomirova, 2012; Kaestner et al., 2020).

We can detect inside-out vesicles in the images of Fluo-4
channel as small regions with high intensity values inside the
RBCs [e.g., (Hänggi et al., 2014)] as vesicles are filled with Ca2+
as it gets actively pumped into them by the plasma membrane Ca2+
ATPases against the gradient, and function as intracellular Ca2+
stores. Such intraerythrocytic compartmentalisation of Ca2+ is
particularly prominent in RBCs of patients with sickle cell
disease, where excessive membrane Ca2+ leak is compensated by
Ca2+ sequestration into the internal stores preventing immediate
terminal dehydration of the cells due to the opening of Ca2+-
dependent K+ (Gardos) channels (Lew et al., 1985). Ca2+
overload in RBCs was shown to be a non-specific indicator of
multiple hereditary hemolytic anemias and it is more
pronounced in patients with severe disease manifestation (Hänggi
et al., 2014; Hertz et al., 2017).

Therefore the number of vesicles found in every cell can be
considered as a meaningful, clinically relevant feature. Moreover,
vesicles having higher Ca2+ concentration can affect the value of
intensity and texture features and should be ignored while
calculating the features. We introduce an algorithm for vesicle
detection and elimination by determining the local maxima of
intensity values.

Let I ∈ RX×Y be an image represented by pixel intensities. Then

Ud x, y( ): � x̂, ŷ( ) ∈ I x̂, ŷ( ) − x, y( )
����
∣∣∣∣

∣∣∣∣|1 < d{ }

defines a set of pixel intensities in a ball with radius d> 0 around the
pixel (x, y) ∈ I with respect to the L1 distance and

�Ud x, y( ): � 1

Ud x, y( )
∣∣∣∣

∣∣∣∣
∑

x̂,ŷ( )∈Ud x,y( )
I x̂, ŷ( )

is the average intensity value inUd(x, y). The vesicle is then defined
as a region Uv(x+, y+) around the local maximum (x+, y+) ∈ I,
which satisfies

�Uv x+, y+( ) − t > 1

Uc x+, y+( ) \Uv x+, y+( )
∣∣∣∣

∣∣∣∣
∑

x,y( ) ∈ Uc x+ ,y+( ) \Uv x+ ,y+( )
I x, y( )

where v, c and t are predefined constants. v is an estimate of
vesicle radius and the threshold t corresponds to the least
assumed difference in mean intensity values inside a vesicle
and a region around it. To determine the local maxima of the
image we apply a median filter of size m × m and a maximum
filter of size v. This ensures detection of at most one maximum
within a single vesicle. We calculate local maxima on the whole
original image of the fluorescent channel and map a detected
vesicle to a specific cell if it is inside its segmentation mask. Thus,
we limit the search for local maxima only on the image section
belonging to the cell. The parameters m, d, t, v and c are
dependent on the dataset and should be adjusted accordingly.
For our dataset, we experimentally determined parameters which
provide good vesicle detection results to be � 3 , d � 10 for local
maximum determination, v � 4 and c � 8 for vesicle and
neighborhood definition and 1 for intensity difference
threshold between vesicle and neighborhood region.
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We remove a vesicle by setting I(x, y) � 0 for
(x, y) ∈ Uv(x+, y+). Pixels corresponding to the vesicles are
artifacts within the cell image and treated similarly to the
background pixels, they should not contribute to calculation of
the intensity and texture features.

In total, we extract 135 features: 14 shape features from
segmentation masks for the brightfield channel, 18 intensity and
42 texture features from each brightfield and fluorescent channels,
and we further obtain the number of vesicles if the fluorescent
channel is Ca2+ channel. We use python libraries skimage (van der
Walt et al., 2014) and pyradiomics (van Griethuysen et al., 2017) for
the extraction of shape features and intensity and texture features,
respectively. Shape features are biologically most relevant, while
intensity and texture features are primarily useful for classification.
We list all extracted features in Table 1.

Cell classification

For many applications such as image-based disease diagnosis
there is a need for classification of cells found in the images into
specific cell types. Features extracted by RedTell are a valuable
resource facilitating this challenging task. These features are
successfully used in some relevant works to obtain methods to
distinguish different cell types of interest (Tomari et al., 2014;
Chy and Anisur Rahaman, 2019). In addition to feature
extraction, RedTell also provides an automated training
procedure for binary or multi-class classification algorithms
without requiring extensive user interaction. Experts can train
their task specific and dataset specific classifier by only
annotating a small subset of the cells without the need for
accessing sophisticated high performance computing
resources. RedTell is designed to reduce the total number of
annotations necessary for training of a classifier while achieving
high classification accuracy (see Figures 7, 8).

Annotation
RedTell supports annotation procedure for generating ground

truth necessary for training of classification algorithms. For this, it
randomly selects N segmented cells with extracted features, saves
single-cell images with unique identifiers and provides a label table
containing a column of unique cell identifiers and a label column.
(see Figure 1C). Looking at each single-cell image an expert
determines the cell label and enters it into the table in the
corresponding row. Random sampling of cells for annotation
should provide various cells across different images of the dataset
and groups, e.g., patient, diseases or experimental settings, to cover a
wider range of cells of different morphology. It also ensures that class
distribution of the annotated part of the dataset properly reflects
class distribution of the entire dataset. Annotated cells with non-
empty labels compose a training set for supervised classification The
goal is to predict a cell type for non-annotated cells and include the
results in the feature output table.

Classification algorithms
For classification, we suggest using tree-based algorithms

decision tree, random forest and LightGBM as 1) they do not
require a large amount of data to achieve a high classification

accuracy and 2) are interpretable by providing feature
importance when discriminating between cell classes in every
decision node. Furthermore, random forest and LightGBM are
ensemble methods aggregating predictions from multiple decision
trees to increase accuracy, robustness, and prevent overfitting. All
three algorithms are interpretable by design and allow measurement
of feature importance in classification. Decision tree is built on
optimizing an information criterion (entropy or GINI). The
criterion determines which features to use for a node split when
building a decision tree. Features with the highest information gain
or decrease in impurity in case of entropy and GINI, respectively, are
considered to have the largest impact on classification results. For
the random forest classifier, for each feature its importance is
calculated as average information gain or impurity decrease over
all decision trees. In contrast, the LightGBMmodel does not use any
information criterion to build the decision trees and is optimized
with gradient boosting. Importance for each feature is given by the
number of node splits utilizing the features calculated over all
decision trees.

Automated machine learning
Development of a classifier is performed bymeans of Automated

Machine Learning (AutoML) (He et al., 2019), which automatically
determines the optimal hyperparameters for every classification
algorithm included in the tool and provides the best model for a
given dataset and classification problem. AutoML does not require
from users any technical expertise, programming skills or deep
understanding of algorithms. The RedTell AutoML module
includes no.

- loading the dataset from the feature and label tables,
- generating stratified, image-based or random partitioning of
the dataset for 5-fold cross validation,

- training of 75 classifiers (25 steps of Bayesian hyperparameter
optimization for 3 classification models),

- selecting and saving the best performing model,
- generating model evaluation and model explanation
artifacts, and

- applying the model to the unlabeled observations.

For hyperparameter tuning, we use a 5-fold cross validation with
average balanced accuracy over 5 folds as an optimization objective.
Optimization is performed via Bayesian optimization approach
(Snoek et al., 2012). A partition of the annotated dataset into the
5 folds can be chosen between being completely random or in a
stratified fashion taking the images into account such that
observations coming from a single image are never included in
both training and validation sets. Random partition is appropriate
for smaller datasets where every image contains annotated cells. In
contrast, image-based partition can assess generalization ability
more realistic for a larger dataset where classification of cells on
previously unseen images is expected. To approach a possible class
imbalance in the dataset we use the inverse of class frequency as
weights while optimizing the training objective. RedTell trains a
decision tree classifier, a random forest, and LightBGMmodels with
various sets of hyperparameters. After finding the optimal model
with optimal hyperparameters, the model is fitted on the whole
annotated set obtaining the final classification model. This
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TABLE 1 RedTell extracts 135 interpretable morphological features of RBCs. The table provides a list of features for four feature groups. For every group we
provide the source implementation of feature extraction in the Extracted with column. In particular, the detailed description of every feature and their
computation formulas are provided in the documentation of source libraries. Column Feature prefix gives a prefix used for each feature group in the tables
produced by RedTell after feature extraction.

Feature group Extracted from Feature prefix Extracted with Feature names

Shape features Segmentation mask shape pyradiomics Pixel Surface (Area)

Perimeter

Major Axis Length

Minor Axis Length

Maximum Diameter

Perimeter Surface Ratio

Sphericity

Elongation

skimage Convex Area

Bounding Box Area

Extent

Eccentricity

Equivalent Diameter

Solidity

Intensity-based statistical features Brightfield and fluorescent channel intensity pyradiomics Mean

Variance

Median

Minimum

Maximum

Range

10 Percentile

90 Percentile

Interquartile Range

Mean Absolute Deviation

Robust Mean Absolute Deviation

Root Mean Squared

Entropy

Energy

Total Energy

Uniformity

Skewness

Kurtosis

Texture features Brightfield and fluorescent channel glcm pyradiomics Contrast

Correlation

Autocorrelation

Difference Average

Difference Entropy

(Continued on following page)
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TABLE 1 (Continued) RedTell extracts 135 interpretable morphological features of RBCs. The table provides a list of features for four feature groups. For every
group we provide the source implementation of feature extraction in the Extracted with column. In particular, the detailed description of every feature and their
computation formulas are provided in the documentation of source libraries. Column Feature prefix gives a prefix used for each feature group in the tables
produced by RedTell after feature extraction.

Feature group Extracted from Feature prefix Extracted with Feature names

Difference Variance

Inverse Difference (ID)

Inverse Difference Moment (IDM)

Informational Measure of Correlation 1 (IMC1)

Informational Measure of Correlation 2 (IMC2)

Inverse Variance

Joint Average

Joint Energy

Joint Entropy

Maximal Correlation Coefficient (MCC)

gldm pyradiomics Dependence Entropy

Dependence Non-Uniformity

Dependence Variance

Gray Level Non-Uniformity

Gray Level Variance

gldm_LowGrayLevelEmphasis

gldm_HighGrayLevelEmphasis

glszm pyradiomics High Gray Level Zone Emphasis

Large Area Emphasis

Large Area High Gray Level Emphasis

Large Area Low Gray Level Emphasis

Low Gray Level Zone Emphasis

Size Zone Non-Uniformity

Small Area Emphasis

Small Area High GrayLevel Emphasis

Small Area Low Gray Level Emphasis

glrlm pyradiomics Long Run Emphasis

Long Run High Gray Level Emphasis

Long Run Low Gray Level Emphasis

Low Gray Level Run Emphasis

Run Entropy

Run Length Non-Uniformity

Run Percentage

Run Variance

Short Run Emphasis

Short Run High Gray Level Emphasis

Short Run Low Gray Level Emphasis

Vesicle features Fluorescent channel ca2+ RedTell original Number of vesicles
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classification model is then applied to the unlabeled observations for
class predictions.

Results

In this section, we first discuss and evaluate the proposed cell
segmentation based on a Mask R-CNN and the vesicle detection,
and then showcase the abilities of RedTell in different case studies.
First, we show that extracted features are different for different RBC
disorders. Next, we use RedTell to distinguish cells in the
stomatocyte-discotye-echinocyte (SDE) sequence in control
samples. Finally, we use RedTell to classify sickle cells in patient
samples from the MemSID clinical trial.

Red blood cell segmentation

We assess the generalizability of the RBC Mask R-CNN
segmentation model on a subset of control samples from the
CoMMiTMenT dataset (see Materials and Methods) and
investigate how the size of the training set affects model
performance. Although RedTell provides a ready-to-use
segmentation model, it also includes the option to train a new
model for a custom dataset. Here, we are interested in estimating the
number of annotated images necessary to obtain a good
segmentation result. We thus consider 187 images from control
samples containing 8222 annotated RBCs (73% discocytes, 21%

echinocytes and 6% stomatocytes, see Figure 7A).We randomly split
the data into 150 (80%) images for training and 37 (20%) for testing.
From training, we further randomly sample 10, 25, 50, and
100 images to fit a Mask R-CNN model without adjusting model
training hyperparameters for different sizes of the training set. We
perform experiments on three different training and test splits to
obtain confidence intervals for average precision (AP). As shown in
Figure 2A, 50 annotated images suffice to achieve an average AP of
0.98 and 0.95 for IoU thresholds of 0.5 and 0.75, respectively.
Increasing the number of training images improves AP only
decently and mainly narrows the confidence intervals. Moreover,
there is only a negligible visual difference between segmentation
results of the models trained on 25 and 50 images (Figures 2B–D).
Training on only 10 images provides relatively good quantitative
results (AP = 0.963 ± 0.021 at IoU of 0.5) but visual inspection via
RedTell shows that cells are either partially segmented or completely
missed (Figure 2D). Apparently, 10 images are not enough to cover
the full range of cell types present in our dataset. Our experiments
show that at least 25-50 images are needed to observe cells of every
type during training. For datasets of larger blood smear microscopy
images containing hundreds of RBCs, a training set of 25 images can
be considered as a good starting point.

The segmentation model provided in RedTell was trained on all
187 annotated images of the control group. We assess its
generalizability in two settings: 1) internally on images of sickle
cell disease (SCD) from the MemSID trial and thalassemia patients
from the CoMMiTMenT dataset acquired with the samemicroscopy
and sample preparation setup as images used for training, and 2)

FIGURE 2
50 annotated images suffice to train a RBCMask R-CNN segmentationmodel with a good performance. (A) Average precision (AP) curves for IoU of
0.5 and 0.75 calculated on three different train and test splits with a training set consistent of 10, 25, 50, 100, and 150 images, where each image contains
about 44 single RBCs. (B) Sample image from the test set in one of the splits, (C) corresponding ground truth segmentation masks overlaid on raw image
and (D) segmentation results achieved with models trained with datasets of 10, 25, and 50 images overlaid on raw image.
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externally on images of three different publicly available blood smear
datasets with different sample preparation and acquisition
techniques as introduced in Materials and Methods. Since no
ground truth annotations are available, we can only investigate
the model generalizability qualitatively. Figure 3 shows the results
for internal assessment, where our Mask R-CNN model properly
segments irregular cells, sickle cells in case of SCD, and destroyed
cells in case of thalassemia without seeing such cells in the training
set. In Figure 4, we showcase segmentation results on the external
datasets. Ourmodel accurately segments cells of different shapes and
overlapping cells in the images of the ThalassemiaPBS and the
Chula-RBC-12-Dataset datasets. For the MP-IDB dataset, it
provides accurate segmentation masks for isolated cells, but does
not separate rarely presented overlapping cells.

Vesicle detection
Vesicles are remains of cell organelles due to accelerated

erythropoiesis and are indicative of anemia (Alaarg et al., 2013).
The number of vesicles found thus can be considered as a
meaningful single-cell feature. As discussed in Materials and
methods, hyperparameters of the vesicle detection algorithm need
to be set for every dataset. This process is straightforward without
requiring much expertise or programming. For this case study, we
annotated vesicles in 6 sample images randomly selected from the
CoMMiTMenT dataset and the MemSID trial, 2 samples from each
class (i.e., control, SCD and thalassemia). We use 3 images to
determine the optimal parameters for the algorithm with respect
to the accuracy, and the remaining 3 images serve for evaluation to
assess the performance of the vesicle detection algorithm. We

estimate the parameters manually by calculating detection
accuracy and visualizing detection results. A vesicle is considered
to be correctly detected if the predicted point has an Euclidean
distance of ≤5 pixels to the annotated point. Our algorithm detects
vesicles in the test set with high recall (sensitivity) of 0.89 and high
precision of 0.96.We provide vesicle detection results on a test image
of a SCD patient in Figure 5.

Case study 1: extracted features differ
significantly between diseases

Here, we investigate the reasonability of extracted features and
whether they align with known RBC properties or provide new
insights. For simplicity, we consider only shape features, mean
Ca2+ intensity, and the number of vesicles extracted from
39 images of controls, 25 images of SCD and 16 images of
thalassemia patients (Figure 3) from the CoMMiTMenT and
MemSID datasets. We compare the distributions of extracted
features for disease groups and find that they are discriminative
on the image level and can potentially be used for disease diagnosis.
A Kruskal-Wallis test (Kruskal and Wallis 1952) shows a
significant difference (p < 10−6) between disease groups for all
selected features except the solidity (H � 7.16, p � 0.03). For
instance eccentricity, a measure of RBC cytoskeletal integrity
and hemoglobin S aggregation (for SCD), of cells coming from
SCD and thalassemia samples is on average higher for control
group (Figure 6A). Higher values for the diseases can be explained
by aggregation of Hemoglobin S known as sickling for SCD

FIGURE 3
RedTell generalizes to patient images with unseen red blood cell types. (A)Our Mask R-CNNmodel was trained on red blood cell images of healthy
individuals (controls) but can detect and segment different types robustly. (B) Stomatocytes, discocytes and echinocytes (from the left to the right) are
segmented and show characteristic shapes. (C, D) RedTell segmentation generalizes to elongated cells appearing in SCD patients, while ignoring extra-
cellular artifacts such as platelets (orange box in C). (E, F) The model also robustly segments cells of thalassemia patients with strongly irregular
shapes.
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patients (Christoph et al., 2005) and by the instability of
hemoglobins and premature clearance of RBCs in patients with
thalassemia. Also, there is a significant difference in mean Ca2+
intensity between all three disease groups (Figure 6B) that could be
explained by the hyperactivation of the plasma membrane Ca2+
ATPase resulting from its cleavage by Ca2+-dependent protease
mu-calpain (Au, 1987). Moreover, in agreement with the previous
observations (Bookchin et al., 1988) RBCs of SCD and thalassemia
patients have more vesicles inside them to protect the cells from
damage caused by enhanced Ca2+ leak through the plasma
membrane (Figure 6C).

Case study 2: discriminating cell types in
control samples

We apply RedTell to classify stomatocyte, discocyte and echinocyte
RBC subtypes (Figure 7A) in the samples from healthy controls. This
case study also investigates how the number of annotated cells affects
classification accuracy. The same CoMMiTMenT subset used in the
segmentation experiments is annotated for classification. We first run
RedTell to segment cells, to extract features and to compare detection
labels with their corresponding groundtruth. We use bipartite graph
matching (Bernardin and Stiefelhagen, 2008) to map centroids of the

FIGURE 5
RedTell accurately detects vesicles in Ca2+ channel. (A, B) Test image in brightfield channel with overlaid predicted segmentation masks (A), and in
Ca2+ channel (B). (C) Overlaid brightfield and Ca2+ channel with visualized vesicle detection. Most vesicles are detected correctly (white boxes), with
only 3 detections being false negatives (red boxes) and no false positives.

FIGURE 4
RedTell’s segmentationmodel trained on the CoMMiTMenT dataset accurately segments RBCs in blood smear images from three different external
datasets with strong domain shifts without need for re-training. Resized raw images (top) and segmentation results (bottom) show randomly selected
images from the ThalassemiaPBS (A), Chula-RBC-12-Dataset (B), and Malaria parasite MP-IDB (C) dataset.
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detected cells to the centroids of the ground truth annotations and
match cells and determine their subtype label.We arrive at an unbalanced
dataset, consisting of 8063 annotated cells, with 5% stomatocytes, 75%
discocytes, and 20% echinocytes.We consider this a challenging problem
for imbalanced multi-class classification as well as binary classification
(one-versus-all for all three subtypes). We perform a random stratified
imagewise 3 fold cross validation split into training (6000 cells) and
validation (2063 cells) sets. Moreover, for every fold RedTell considers
randomly stratified image-grouped sampled different fractions of training
data to find the best model and evaluate on the test test. Figure 7B shows
balanced accuracy achieved with the best classifiers from the RedTell
Auto-MLmodule (decision tree, random forest or LightGBM) calculated
on the test with confidence interval of 0.95 for multi-class and binary
tasks. In both multi-class and binary settings, classification accuracy
increases with the size of the training set. 200 annotated cells suffice to
reach an average accuracy >70% for multi-class and >78% for binary
classification. The highest classification accuracy of 0.92 is achieved for
the echinocyte classification with 6000 cells in the training set. Increasing
the size of the training set from 200 to 6000 images boosts multi-class
accuracy from 72% to 82%, with an average improvement of 10%. For
binary classification, this leads to an increase in accuracy between 3% and
5%. The difference between classification performance when training
with 200 and 1000 annotated cells is less significant and falls within
confidence intervals. Figure 7C shows the confusion matrix for the
LightGBM model provided by RedTell’s Auto-ML module as the best
classification model when training in multi-class settings with
4000 annotated cells. The model achieves 83% and 78% accuracy and
balanced accuracy, respectively. Stomatocyte-discocyte-echinocyte
fractions are given by 11%-75%-14% against true 6%-86%-8% in the
test set, preserving the right order. Important features for the LightGBM
classification model are provided in Figure 7D, ranked according to their
relative importance and normalized by the value of the most important
feature. Solidity and circularity from the shape feature set are most
important, followed by three intensity-based features. Figure 7E shows
the distribution of solidity and circularity across different cell subtypes.
Both features are biologically reasonable and critical to differentiate
echinocytes from discocytes and stomatocytes, as echinocytes are
porous and have noticeably different shapes. Kruskal-Wallis and post
hocDunn Bonferroni tests show significant difference insolidity between
echinocytes and discocytes and between echinocytes and stomatocytes,

and significant difference in circularity between all 3 cell subtypes. To
differentiate stomatocytes from other cell subtypes the model relies on
intensity-based features such as minimum intensity, skewness and
energy.

Case study 3: sickle cell classification

In our final case study, we use RedTell for sickle cell classification.
Sickle cells have elongated forms (Figure 8A) first reported by (Herrick,
1910) and are used to diagnose SCD since then. We pick 25 images of
sickle cell patients from the MemSID dataset and use RedTell to
segment the cells, extract features, and randomly sample 300 cells
for labeling. The class distribution in the resulting dataset is unbalanced,
containing 80%normal cells and 20% sickle cells. Following the learning
curve obtained for the binary classification problem in case study 2, we
randomly select 200 annotated cells for training and 100 cells for testing.
We use the RedTell’s Auto-MLmodule to train a classifier and obtain a
random forest model, achieving balanced accuracy of 0.94, accuracy of
0.96 and both precision and recall of 0.90. Only 4 out of 100 cells are
incorrectly classified (Figures 8C, D). One cell incorrectly predicted as
normal starts to become sickle and is not elongated much, another one
is on the border of the images and only partially visible Figure 8D. Cells
incorrectly predicted as sickle cells are also not visible in their entirety
being in the dark spots or out of focus. Partial cell visibility affects
extracted features. In particular, it drastically affects the values of the
classifier’s important features (Figure 8B). Random forest model uses
biologically meaningful characteristics of cell morphology to
differentiate between 2 cell types. The mean ranks of the two most
important features, eccentricity and minor axis length, differ
significantly (p � 4.92*10−26; p � 3.68*10−14 Mann-Whitney-U-Test
(Mann and Whitney, 1947)) for normal and sickle cells (Figure 8E).

Discussion

We introduced RedTell, a package for automated analysis of
microscopic images of RBCs. Its functionality includes RBC
detection and segmentation, extraction of cell morphological
properties and single cell classification. RedTell aims to accelerate

FIGURE 6
Case study 1—Single red blood cell features differ significantly between healthy and disease samples. Distribution of selected extracted features
between SCD, thalassemia patients and healthy controls. H-statistics and p -values for the Kruskal-Wallis test are provided in the titles of the boxplots. The
post hoc Dunn Bonferroni test shows significant difference (p < 0.05) between control-SCD and control-thalassemia pairs for eccentricity (A) and
between all pairs for mean Ca2+ intensity (B) and number of vesicles (C).

Frontiers in Physiology frontiersin.org12

Sadafi et al. 10.3389/fphys.2023.1058720

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1058720


FIGURE 7
Case study 2—RedTell discriminates red blood cell types with explainable classifiers. (A) Example images of cell subtypes. (B) 200 annotated cells
suffice to reach >70% accuracy for supervised cell type classification. (C)Confusionmatrix obtained for LightGBMmodel, the best classifier formulti-class
classification given 2000 annotated cells. (D) Solidity is the most important feature for the LightGBM classifier. (E) Solidity and circularity is significantly
reduced in echinocytes.

FIGURE 8
Case study—RedTell accurately detects sickle cells. (A) Examples of sickle and normal cells. (B) RedTell considers biologically meaningful features
while performing classification. (C) Confusion matrix with only 4 cells being misclassified. (D) Misclassified cells are only partially visible. (E) Eccentricity
and minor axis length show a significant difference between normal and sickle cells.
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research in hematology and can support diagnosis of disorders
related to RBC morphologies. We showed the applicability of
RedTell for three different case studies. We successfully applied it
in three different case studies. First, we showed that extracted
features have different distributions for healthy and anemia
patients indicating feature usefulness for clinical decision making.
Second, we developed a classifier to differentiate between different
RBC subtypes. Finally, we used RedTell to classify sickle cells in SCD
patient samples.

RedTell enables completely automated feature extraction. As for
classification, it requires only expert annotation of a relatively small
number of cells and no user interaction for training of the classifier.
One of the main advantages of the tool is its interpretability. RedTell
is interpretable tree-fold: 1) the results of cell segmentation in the
brightfield channel, vesicle detection in the fluorescent channel and
classification results are explicitly provided overlayed on the original
images, 2) the extracted features are hand-crafted and reflect
important RBCs properties, well understood and widely used by
hematologists, 3) cell classification models trained within RedTell
incorporate interpretability through ranking the features by their
importance. Moreover, RedTell is the first RBC related work which
suggests feature extraction from images of the fluorescent channels
and introduces an algorithm for vesicle detection for a special case of
Fluo-4 channel. In the following we will discuss single steps of the
RedTell pipeline and suggest future work.

Segmentation. Mask R-CNN trained on the CoMMiTMenT
dataset provides good results on the previously unseen images of
three external datasets. We could not find any publicly available
dataset, where our segmentation model would fail. However, to
further increase its generalization ability to various datasets it would
be reasonable to extend training of the Mask R-CNN with domain
transfer methods (Zhang et al., 2022). Moreover, the segmentation
part of RedTell can be extended by supporting other advanced
machine learning methods, e.g., StarDist (Schmidt et al., 2018),
providing a user a choice between different models to find an
optimal one for a custom dataset.

Feature extraction. RedTell includes extraction of most of the
common features widely used for the RBC analysis. Obviously, the
feature set can be further extended with new features relevant to
some specific user requirement, e.g., GLCM features calculated with
different pixel distances and angles (Petrović et al., 2020), integral-
geometry-based features (Gual-Arnau et al., 2015) or cell
representation features provided by the Mask R-CNN model.
Although such features are of limited interpretability, they can
still improve classification accuracy.

Classification.We decided not to use Mask R-CNN for classification
due to two reasons: 1) it requires a large amount of annotated data for a
good performance, that is, necessarily labeled by an expert whose time is
scarce and expensive, and 2) its performance is highly dependent on the
domain and would work only with images generated under the same
microscopic settings (Salehi, 2022). Although, we show that Mask
R-CNN trained on our data qualitatively provides good segmentation
results on the images from three external datasets (Figure 4), the same
model would fail in the classification task since RBCs have different
degrees of morphological details. We therefore include a classification
module which takes the extracted features as input and thus allows
building classification models for various datasets. Moreover, we decided
to use decision tree classifiers as they resulted in high classification

accuracy in previous work on RBC classification (Petrović et al., 2020)
and are interpretable by design, ranking the features by their importance
and hence allowing researchers to check the algorithmic logic. RedTell
does not provide any classifier, but supports automated training of dataset
and task specific classification algorithms. Due to numerous causes it is
infeasible and beyond our goals to introduce a cell classifier, which works
properly on all datasets. One important reason is interest in
discrimination of different cell types (e.g., echinocyte versus discocyte
or sickle versus normally shaped RBCs) depending on the available data
and research question. Another limitation is varying morphology of the
same cell type in microscopy images obtained under different acquisition
settings. A good approach is development of a classifier specific to a given
research question. Annotation of cell labels is a requirement for this task
andRedTell facilitates annotation procedure. The tool includes tree-based
classification algorithms which are interpretable by design. It is also
possible to extend automated machine learning in RedTell with feature
selection functionality to improve classification accuracy and include
further classification algorithms, e.g., support vector machine (Devi et al.,
2018) or deep learning-basedmethod such as TabNet (Wong et al., 2021).
However, such algorithms require advanced methods for interpretability
(Altmann et al., 2010). Interpretability of the RedTell can further be
improved by enabling local prediction explanation through SHAP
(Lundberg and Lee, 2017) or LIME (Ribeiro et al., 2016), which
provide information on what features and how they affect every
single prediction.

The feature extraction and classification modules of RedTell can be
applied to a broad variety of RBC research questions. In the future, we
will apply RedTell to high throughput analyses, e.g., evaluating drug
efficacy and assessing SCD progression by detecting and extracting
features of sickle cells in blood samples of different patients at different
timepoints, and hope that other researchers will follow. We also expect
to include a graphical user interface for easier interaction with the user
and extend RedTell functionality by providing automated analysis
reports and data visualizations for the most common use cases as
defined in consultation with RBC researchers.
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