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ParFlow hydrological model at
0.6 km for climate resilient water
resource management over
Germany
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In the context of the repeated droughts that have a�ected central Europe over the

last years (2018–2020, 2022), climate-resilient management of water resources,

based on timely information about the current state of the terrestrial water cycle

and forecasts of its evolution, has gained an increasing importance. To achieve

this, we propose a new setup for simulations of the terrestrial water cycle using

the integrated hydrological model ParFlow/CLM at high spatial and temporal

resolution (i.e., 0.611 km, hourly time step) over Germany and the neighboring

regions. We show that this setup can be used as a basis for a monitoring

and forecasting system that aims to provide stakeholders from many sectors,

but especially agriculture, with diagnostics and indicators highlighting di�erent

aspects of subsurface water states and fluxes, such as subsurface water storage,

seepage water, capillary rise, or fraction of plant available water for di�erent

(root-)depths. The validation of the new simulation setup with observation-based

data monthly over the period 2011–2020 yields good results for all major

components of the terrestrial water cycle analyzed here, i.e., volumetric soil

moisture, evapotranspiration, water table depth, and river discharge. As this setup

relies on a standardized grid definition and recent globally available static fields and

parameters (e.g., topography, soil hydraulic properties, land cover), the workflow

could easily be transferred tomany regions of the Earth, including sparsely gauged

regions, since ParFlow/CLM does not require calibration.

KEYWORDS

monitoring and forecasting, stakeholder relevant scales, ParFlow/CLM hydrological

model, high-resolution hydrological modeling, subsurface water resources, terrestrial

water budget, applied information, computing on GPUs
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1. Introduction

Monitoring and forecasting the terrestrial water cycle, and in
particular the subsurface water states and fluxes, are increasingly
relevant for many sectors, especially for agriculture, e.g., for
estimating water availability, groundwater recharge, and water
stress for plants, eventually influencing irrigation decision-
making, for characterizing the workability and trafficability of
fields, and for evaluating leaching of pesticides and fertilizers
(Babaeian et al., 2019). Stakeholders from the agricultural sector
cope with the interplay between their measures to adapt to
or mitigate the impacts of extreme weather events, global
warming, optimized and sustainablemanagement practices, market
imperatives, and environmental policy constraints (Klages et al.,
2020). For example, monitoring and forecasting seepage water
may serve two goals. It helps to gauge if nutrients might
leach out of the root zone after fertilization, thus becoming
unavailable for the plants, and it helps to assess leaching
to groundwater resources whose protection is targeted by
environmental policies (Knoll et al., 2020; Wendland et al.,
2020).

In addition, a soil moisture deficit during spring has been
observed in central Europe for more than 10 years (Ionita et al.,
2020). Droughts affected the same region in 2018, 2019, 2020,
and 2022 during the spring-to-summer vegetation period (e.g.,
Boergens et al., 2020). These circumstances emphasize the need for
a monitoring and forecasting system of terrestrial water resources
at the high spatial resolution, eventually contributing to a digital
twin that enables a representation, e.g., of local variations in
groundwater levels or inter-field dynamics of subsurface water

Abbreviations: ADAPTER, ADAPt TERrestrial systems; ASTER, Advanced

Spaceborne Thermal Emission and Reflection Radiometer; CDO, Climate

Data Operators; CLC, Corine Land Cover; CLM, Common Land Model;

CLM-Community, Climate Limited-area Modeling Community; CORDEX,

COordinated Regional Downscaling EXperiment; DE-0055, DE06 grid at

0.0055◦ resolution (in rotated coordinates); DE06, ParFlow/CLM simulation

setup at 0.6 km resolution over Germany and surrounding regions; DEM,

Digital Elevation Model; ECMWF, European Centre; ENS, 50-member

ensemble 10-day forecast from ECMWF; ERA5, Fifth generation ECMWF

atmospheric reanalysis; ESA CCI, European Space Agency Climate Change

Initiative; ET, Evapotranspiration; EUR-11, Pan-European CORDEX grid

at 11 km resolution; EXTPAR, External Parameter for Numerical Weather

Prediction and Climate Application; GDEM, Global Digital Elevation Model;

GLEAM, Global Land Evaporation Amsterdam Model; GPU, Graphics

Processing Unit; GRDC, Global Runo� Data Centre; HPC, High Performance

Computing; HRES, High resolution deterministic 10-day forecast from

ECMWF; IGBP, International Geosphere-Biosphere Programme; IHM,

Integrated Hydrological Model; IHME, International Hydrogeological Map of

Europe; JSC, Jülich Supercomputing Centre; KGE, Kling-Gupta e�ciency

score; LAI, Leaf Area Index; LSM, Land Surface Model; MERIT DEM, Multi-

Error-Removed Improved-Terrain DEM; NSE, Nash-Sutcli�e e�ciency score;

PDE, Partial Di�erential Equations; PFT, Plant Functional Type; Q, Discharge;

RMSE, Root-mean-square error; SEAS, 50-member seasonal 7-month

forecast from ECMWF; TSMP, Terrestrial Systems Modelling Platform; USDA,

United States Department of Agriculture; volSM, volumetric Soil Moisture;

WTD, Water Table Depth.

flow (Pylianidis et al., 2021). Especially stakeholders from the
agricultural sector (e.g., farmers, advisers, plant breeders, and
cooperatives) increasingly have to deal with extreme weather events
like droughts that affect crop growth and yield, and soil and
water resources (Rosenzweig et al., 2001; Naumann et al., 2021).
For example, Brás et al. (2021) showed that drought impacts
on crop yield tripled over the last decades in Europe. Cropland
and grassland are particularly affected by droughts resulting in
major yield reduction (Ciais et al., 2005; Reinermann et al.,
2019). Consecutive droughts are even more problematic, because a
sufficient recovery of the subsurface water resources is not possible
between the events, increasing their impacts from year to year
(Rosenzweig et al., 2001; Hartick et al., 2021; Moravec et al., 2021).
For example, the meteorological drought (i.e., precipitation deficit
over several weeks to months) that affected central Europe in
2019 was less pronounced than in 2018, but the subsurface water
deficit increased even more leading to a more severe agricultural
drought than in 2018 (Boergens et al., 2020), emphasizing the
importance of characterizing droughts based on soil hydrological
processes. Future projections show an increase in frequency,
duration, and spatial extent for both meteorological (Spinoni et al.,
2020) and soil moisture (Grillakis, 2019) droughts in Europe—
and particularly eastern and southern Europe—even for scenarios
with a strong limitation of greenhouse gas emissions. Multi-year
and consecutive drought events are also projected to become
more frequent, last longer, and affect larger areas over the next
decades in central Europe (Samaniego et al., 2018; Hari et al.,
2020), regardless of the climate change scenario and even for
scenarios meeting the goal of the Paris agreement to limit the
global temperature increase from 1.5◦C to 2◦C (Lehner et al.,
2017).

In that context, hydrological models are increasingly used
for prototypical or even operational monitoring of droughts or,
more generally, subsurface water deficit and the associated impacts,
e.g., on water stress for plants (Dasgupta et al., 2023). Prominent
examples are the German (Zink et al., 2016), Czech (Trnka et al.,
2020), and Swiss (Zappa et al., 2014) drought monitors. Beyond
the monitoring providing information about the evolution of the
subsurface water deficit over the last few weeks or even months,
the latter two examples also provide short-term forecasts (5–10
days in advance) and even subseasonal outlooks. To meet their
societal aim of providing information on stakeholder relevant
scales, the hydrological models behind these drought monitors
run at the high spatial resolution, ranging from 4 km down
to 0.5 km or even 0.2 km for selected catchments of the Swiss
drought monitor.

On a subseasonal to seasonal time scale, hydrological modeling
approaches predicting the subsurface water budget are increasingly
developed with the overall aim of improving the prediction
of subsurface water resources and droughts (Dasgupta et al.,
2023). For example, some studies analyze the added value of
seasonal soil moisture drought predictions obtained by forcing a
conceptual hydrological model with numerical weather predictions
in comparison with ensemble discharge predictions using historical
meteorological data (e.g., Thober et al., 2015) or a climatology
(e.g., Bogner et al., 2018). Other studies highlight the importance
of factors like snow or temperature on the predictability of soil
moisture, e.g., Orth and Seneviratne (2013) over Switzerland,
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Penland et al. (2021) over California, and Singla et al. (2012) over
France. Recently, the European Commission and the Copernicus
Climate Change Service (C3S) supported a demonstrator project,
EDgE (End-to-end -Demonstrator for improved decision-making
in the water sector in Europe), that aimed to provide pan-European,
high-resolution seasonal forecasts and climate projections of
user-tailored products, including information on the uncertainty,
using a multi-model approach, to support decision-making in
the water sector (Samaniego et al., 2019; Wanders et al.,
2019).

In this context, we developed and operated a simulation
setup (called hereafter DE06, as it is centered over Germany
with a resolution of 0.611 km × 0.611 km) based on the
established hydrological model ParFlow/CLM that allows
for the representation of the surface and 3D subsurface
hydrodynamics as well as the atmosphere–land surface
interactions at a high spatial and temporal resolution over
central Europe. DE06 has been designed and implemented with
the following objectives:

- To provide relevant information to stakeholders about all
components of the terrestrial water cycle, such as diagnostics
on the (1) water table depth and groundwater recharge,
allowing, for example, the monitoring of the recovery of
subsurface water resources after a drought; (2) soil moisture
in the root zone, delivering information on water stress for
plants, and thus irrigation requirements, but also on the
workability and trafficability of agricultural fields; and (3)
water fluxes in the unsaturated zone providing support for
estimating the leakage of nutrients and pollutants into deeper
soil layers and even into the groundwater. As explained
below, the modeling system presented here calculates the
water state and fluxes in a three-dimensional matrix ranging
from the surface and the variably saturated zone to the
groundwater, which allows us to derive any diagnostics based
on soil water and shallow groundwater within the model’s
vertical extent.

- To allow for an efficient quasi-operational computation of
daily short-term forecasts with a lead time of up to 10
days, including a representative ensemble for estimating
the impact of the driving atmospheric conditions and their
uncertainty on the subsurface water budget, but also for
probabilistic ensemble predictions on subseasonal to seasonal
timescales, thus providing information that may be utilized to
support stakeholder decisions based, e.g., on the diagnostics
explained above.

- To allow for the calculation of a reference time series over
the past years to analyze recent hydrometeorological extremes
and their impacts on the subsurface water budget and the
parameters explained above, and to put the forecasts in a
climatological context (e.g., through anomalies).

- To be usable as a stand-alone hydrological model system of the
variably saturated zone directly driven by a few near-surface
atmospheric parameters, but also offering the possibility of
being integrated as a hydrological module in a fully coupled
terrestrial modeling platform, e.g., via a coupling with a
regional atmospheric model and a land surface model.

This study serves four goals: (i) to present the DE06 setup;
(ii) to present the subsurface water resources monitoring and
forecasting system relying on DE06; (iii) to show validation
results of some key terrestrial water cycle components relevant
to stakeholders and their requirements; and (iv) to present
prototypical applications, and information products, of the new
quasi-operational, prototypical setup.

This study has the following structure: Section 2 presents the
DE06 simulation setup and configuration in detail and explains
how the static fields for themodel parameterization were generated;
Section 3 presents the monitoring and forecasting system based
on DE06, the different types of simulations that are performed,
their atmospheric forcing, and their initialization; Section 4
presents a comparison of the simulated reference time series with
observational data for four relevant variables of the subsurface
water budget; Section 5 presents an application example of DE06
in forecast mode, aimed to provide information on the subsurface
water resources; and finally, Section 6 presents the conclusion.

2. Methodology

2.1. ParFlow/CLM

In this study, we use the integrated hydrological model (IHM)
ParFlow v3.8.0. ParFlow is a parallel fully coupled model that
uses partial differential equations (PDE) to simulate unsaturated
and groundwater flow, as well as surface flow (Maxwell et al.,
2016; Kuffour et al., 2020) in a continuum approach. The variably
saturated subsurface flow is calculated with the Richards equation,
and the kinematic wave equation is applied to calculate overland
flow (Kollet and Maxwell, 2006). Topography is represented
through a terrain-following grid (Kuffour et al., 2020). The water
retention and hydraulic conductivity curves as key soil hydraulic
properties are described by the Mualem–van Genuchten functions
(Van Genuchten, 1980), and their parameters are estimated with
pedotransfer functions. An important advantage of physics-based
IHMs as opposed to lumped hydrological models is that they do
not require extensive calibration steps to produce robust results
(Poméon et al., 2020; Saadi et al., 2023a). For example, using the
DE06 setup presented here, Saadi et al. (2023a) showed that, even
without calibration, ParFlow gives similar results compared to a
calibrated lumped model, for the discharge during the extreme
flooding event of mid-July 2021 in western Germany.

Over the last 15 years, ParFlow has become a well-established
simulation platform among the integrated, physics-based models,
used in different setups, for many model domains and applications.
For example, it has been used for theoretical hydrodynamic
exercises and sensitivity studies (e.g., Maxwell and Kollet, 2008a;
Frei et al., 2009; Kollet, 2009; Schalge et al., 2019; Maina et al., 2020;
Schreiner-McGraw and Ajami, 2020), model intercomparisons
(Maxwell et al., 2014; Koch et al., 2016), watershed hydrodynamics
and hydrological scaling (Maxwell and Kollet, 2008b; Rahman et al.,
2014; Fang et al., 2015), and as the hydrological component in
the fully coupled Terrestrial Systems Modelling Platform (TSMP),
both for analyses and sensitivity assessments at the climatic scale
(Keune et al., 2016, 2018; Furusho-Percot et al., 2019, 2022;
Hartick et al., 2021), and within prototypical forecasting systems
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(Kollet et al., 2018). ParFlow is also applied to perform high-
resolution simulations at continental scale, e.g., at 1 km over a
major part of continental North America (Maxwell et al., 2015;
O’Neill et al., 2021). Finally, as mentioned above, and even if its
primary aim is the monitoring and forecasting of subsurface water
resources, DE06 has already been applied in studies related to
the unprecedented flood event that affected western Germany and
eastern Belgium in mid-July 2021. Saadi et al. (2023a) assessed
the effect of different radar-based precipitation products on the
simulated hydrological response, and in particular the stream
discharge, and Saadi et al. (2023b) analyzed the added value of these
products for flood nowcasting.

To represent atmosphere–surface–subsurface interactions, we
use the land surface model CLM (Common Land Model) modified
by Dai et al. (2003) and integrated as a module into ParFlow
(Kuffour et al., 2020). This allows a coupled representation of the
water, energy, and momentum exchanges between the surface and
the subsurface with the near-surface atmospheric states given as
boundary conditions (see below for the atmospheric forcing).

Other boundary conditions, i.e., at the lateral and bottom
boundaries of the domain, are all defined as no-flow conditions
(O’Neill et al., 2021). Thus, the only source of water is precipitation,
and the sinks are evapotranspiration and routing of overland flow
out of the domain via rivers. The boundaries are arbitrary and
placed at large distances to exclude boundary impacts from the
region of interest. To honor flow-through lakes, lake volumes
are included as low-conductivity hydrofacies types that are fully
saturated in the simulations with ponded water being routed via
the overland flow boundary conditions. While this is a simplifying
approximation of reality, it constitutes an improvement to previous
lake approximations using constant head boundary conditions.
Note, the ocean areas are approximated the same way, to relax the
assumption of the constant head along the coast line and improve
computational efficiency.

To reduce the computational time in the forecast-driven setup,
and as the primary goal of DE06 are subsurface water resources
instead of discharge, the overland flow routing is not simulated
explicitly in most of our simulations (described below in the
section about the monitoring and forecasting system). Thus, the
discharge, if needed, may be calculated during post-processing
using a run-off approach based on the ponding height accumulated
over the catchment area for each time step. This implies two
simplifications: (1) possible re-infiltration of overland flow further
downstream along the river network, at grid points where there
might be no exfiltration, is ignored, and (2) calculated discharge
is instantaneous, i.e., the delay in the overland flow generation or
exfiltration and its measurement at the catchment outlet is ignored.

We run ParFlow/CLM on the GPU (Graphics Processing
Unit) compute nodes of the JUWELS Booster high-performance
computing (HPC) system at the Jülich Supercomputing Centre
(JSC) in Germany. Hokkanen et al. (2021) have implemented
software functionalities to efficiently run the model on such
accelerated HPC systems. This is a prerequisite to operating
ParFlow/CLM in a quasi-operational monitoring and forecasting
mode at high resolution over a large model domain (see Section 3).
Only a single compute node with four GPUs is needed to run a 10-
day forecast in 6–10 h wall clock time, depending on the number of
iterations needed by the solver to converge to a solution.

2.2. Model domain and grid

The DE06 ParFlow/CLM setup uses a Cartesian grid with
equidistant grid spacing in the lateral direction of 2,000 × 2,000
grid cells with a resolution of 0.0055◦ × 0.0055◦ (∼ 0.611 km ×

0.611 km) covering Germany and the neighboring regions (called
hereafter DE-0055). This grid extends over 15 terrain-following
vertical model layers. Their thickness increases with depth, the
uppermost layer reaching from the surface to 2 cm depth and the
lowest layer extending from 42m to 60m below the surface.

To facilitate the comparison with other model outputs and data
sets, the DE-0055 grid has been defined as a rotated-pole equal area
grid inscribed into the widely used EUR-11 grid of the COordinated
Regional Downscaling EXperiment (CORDEX) (Gutowski et al.,
2016). DE-0055 uses the EUR-11 rotated pole parameters, and the
horizontal resolution and the grid edges are defined so that each
EUR-11 0.11◦ grid cell has 20× 20 DE-0055 grid cells inscribed. As
the DE-0055 grid is located near the geographic center of the EUR-
11 grid, it is defined in the vicinity of the equator on the rotated
grid, where the convergence of the longitudes is almost negligible,
so that we can reasonably assume that DE-0055 has equal area grid
cells everywhere. The largest difference in grid cell area over the grid
is about 0.6%. The grid compatibility also simplifies coupling, e.g.,
within the TSMP framework, where, e.g., the COSMO atmospheric
model uses the EUR-11 grid (Kollet et al., 2018).

The domain extent of the DE-0055 grid meets twomain criteria
(see Figure 1): (i) large central European river basins, such as the
Elbe and Rhine river basins, where many socio-economic activities
take place, have to be fully included in the domain. This increases
the impact and relevance of the simulations and allows for a
comparison of river discharge with other models or observations;
and (ii) a margin of at least 200 km, which excludes impacts of the
arbitrary lateral no-flow boundary conditions.

2.3. Static fields—Soil and surface
parameterization

To build a realistic heterogeneous model setup, ParFlow
requires static fields containing information on the topography and
the soil’s hydraulic properties. CLM needs information on the land
cover and the soil color. To ensure consistency among all static
fields, a land–sea mask has also been defined and applied, as the
original data sets come from different sources and are characterized
by different spatial resolutions. Because the workflow to set up
DE06 is aimed to be relocatable to any other region in the world,
we exclusively use global databases to generate the static fields and
parameters needed by ParFlow/CLM.

2.3.1. Land–lake–sea mask
The land–sea mask has been generated based on Advanced

Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) Global Digital Elevation Model (GDEM) (Abrams et al.,
2020; original resolution 1′′) with the tool EXTPAR (External
Parameter for Numerical Weather Prediction and Climate
Application) via the web interface WebPEP, developed and made
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FIGURE 1

Main static fields utilized in this study as they are regridded on the DE-0055 grid. (A) ASTER GDEM elevation above sea level and imposed streams

(blue lines) derived from the hydrological adjusted MERIT DEM used to generate the slopes. (B) IGBP land cover types based on CLC2018. (C) USDA

soil texture types based on SoilGrids250m texture data and alluvium for the uppermost layer (0.00–0.02m depth). (D) IHME aquifer types in the

lowest layer (42–60m depth).

available by the Climate Limited-area Modeling Community
(CLM-Community). Using the EXTPAR tool ensures that the
model grid and static fields are compatible with the EUR-11
grid specification.

To keep the possibility to assign different hydraulic parameters
to “sea” and “lake” grid cells (see below), we have already
distinguished them in the mask, thus building a ternary land–lake–
sea mask.
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2.3.2. Slopes
As we run ParFlow with the terrain-following grid option,

topographic slopes derived from a DEM (Digital Elevation Model)
are required. These slopes are calculated based on the ASTER
GDEM projected onto the DE-0055 grid with the EXTPAR tool as
explained above (see the GDEM in Figure 1A), using procedures
from the TSMP modeling framework (Shrestha, 2019). The slopes
are defined to give a D4 flow direction for each grid cell (i.e., the
flow is directed toward N, E, S, or W), meaning that they have a
non-zero value either in the x-direction or in the y-direction. The
Shrestha (2019) algorithms ensure that each grid cell is drained
out of the domain at the domain margin, avoiding the water to
concentrate in local depressions, as ParFlow does not handle the
overflow. This also leads to the construction of an artificial drainage
network in the lakes and seas. Furthermore, to avoid exaggerated
drainage and thereby drying along the coasts, we have decreased
the slopes over all lakes and seas to the lowest allowed slope value,
i.e., |10e-6|, based on the land–lake–sea mask, thus strongly slowing
down the water flow, except in the drainage channels to ensure
efficient drainage throughout the domain.

As the slopes are calculated based on a DEM, they might lead
to wrong river trajectories, especially in flat terrain, in the case of
channelized rivers, or regions below sea level. The most notable
examples in our domain are the Rhine andMeuse river mouths and
the Ijsselmeer region in The Netherlands. The resulting artifacts in
the hydrological network are avoided by imposing (or “burning”)
the correct river trajectories to the slopes during their computation.
Hydrologically adjusted DEMs present an elevation that has been
modified so that the resulting hydrological network is correctly
located. In DE06, we use the hydrologically adjusted DEM at a
3′′ resolution from the MERIT database (Yamazaki et al., 2019).
It has been projected onto the DE-0055 grid by selecting for each
DE-0055 grid cell, the lowest elevation value among all nearest
neighbors in the MERIT-adjusted DEM. This regridding, as the
regridding of almost all static fields explained below, has been
performed with the Python package xESMF (https://github.com/
pangeo-data/xESMF). The steepness of the slopes is thus calculated
with the ASTER DEM, and their direction is corrected using the
MERIT-adjusted DEM, where needed.

A visual comparison of the hydrological network built by
ParFlow after a few hundred time steps of the first spin-up phase
(see below) with the rivers of the HydroSheds database (Lehner
et al., 2008) shows a very good agreement besides some local
differences (data not shown).

2.3.3. Soil types—Soil hydraulic parameters
To solve the water flow equations in variably saturated porous

media, ParFlow needs soil hydraulic parameters to be defined for
each grid cell. These parameters are the porosity, the saturated
hydraulic conductivity, and the parameters defining the Van
Genuchten relationships (Van Genuchten, 1980), i.e., the saturated
and residual water content, alpha, and N values.

For the upper layers (soil and regolith), these parameters have
been estimated globally in the framework of the Rosetta model
(Zhang and Schaap, 2017) for the 12 USDA texture classes. For
each grid cell of the DE-0055 grid, we have determined the USDA

texture class based on the texture data (sand, silt, and clay fractions)
of the global SoilGrids data set v2017 at 250m resolution (Hengl
et al., 2017), which have been bilinearly interpolated on the DE-
0055 grid (Figure 1C). Since the SoilGrids texture fractions vary
over seven layers from the surface to 2m depth, they have been
linearly interpolated to the depth layers used in DE06. Below 2m,
they are considered constant.

For the deeper layers (in the bedrock), the aquifer types are
defined by the six types of the “International Hydrogeological
Map of Europe 1:1,500,000” (IHME1500, Duscher et al., 2015,
Figure 1D). In DE06, these aquifers are characterized by different
saturated hydraulic conductivity values. The transition between the
SoilGrids-based USDA texture classes and the IHME1500 aquifers
is determined by the depth-to-bedrock information available in
the SoilGrids database. Note that the deepest layer, from 42m
to 60m depth, has IHME1500 aquifers everywhere, regardless of
the depth-to-bedrock.

Furthermore, to account for the higher hydraulic conductivity
in the river beds, i.e., alluvium, we have superimposed the stream
segments of the rivers computed during the slope generation
process as a supplementary type above the depth-to-bedrock.

Finally, as explained above, we consider all seas and lakes
identified in the land–lake–sea mask as supplementary soil types
homogeneous over the entire soil depth and characterized by a
very low saturated hydraulic conductivity. As this setup focuses
on subsurface water resources, we do not attempt to represent
realistically the water states and fluxes in open water bodies. A very
low saturated hydraulic conductivity leads to almost no subsurface
water fluxes in the lakes and seas. This makes it easier for the
solver to converge to a solution. It also ensures that the “soil
patches” representing the lakes and seas always remain saturated,
which is essential to avoid dry artifacts along the coastlines due to
exaggerated drainage into the water bodies; this would happen if
they were not saturated.

2.3.4. Land cover
ParFlow’s CLM module is based on the 18 IGBP (International

Geosphere-Biosphere Programme) land cover types, which are then
translated to Plant Functional Types (PFTs) based on parameters
like the leaf- and stem-area indices, the roughness length, and leaf
and stem visible and near-infrared reflectance and transmittance.

In DE06, we chose to use the Europe-wide Corine Land Cover
CLC2018 v20 data set available at a resolution of 100m (Corine
Land Cover, 2018). First, we converted the 44 CLC2018 land cover
types to the 18 IGBP types. Then, we regridded the resulting land
cover onto the DE-0055 grid with the k-nearest neighbor method,
meaning that the most frequent land cover type among the nearest
neighbors of a given DE-0055 grid cell is attributed to this cell
(Figure 1B). Note that the IGBP types “permanent wetlands” and
“snow and ice” are not supported by ParFlow/CLM, thus we have
replaced these land cover types with “grasslands” and “barren or
sparsely vegetated,” respectively.

2.3.5. Soil color
For calculating the radiation budget, CLM also needs the soil

color to be split into eight classes following the IGBP definition. For
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each soil color class, albedo values depending on radiation (short vs.
long-wave) and soil moisture (dry vs. wet) are defined in the CLM
parametrization. Here, we use the global soil color v2008 data set
from the Community Land Model and available at 0.5◦ resolution,
which we reduced from 20 to 8 classes.

3. Monitoring and forecasting system

3.1. Atmospheric forcing

ParFlow/CLM requires eight surface and near-surface
atmospheric parameters as forcing (names in CMOR standard):
near-surface air temperature (tas), specific humidity (huss),
meridional (vas) and zonal (uas) wind speed components, surface
air pressure (ps), total precipitation (pr), and visible (rsds) and
infrared (rlds) downward radiation at the surface. Here, we use the
near-surface parameters at their standard height, i.e., 2m for air
temperature and specific humidity and 10m for wind speed.

Since the main purpose of DE06 is to generate forecasts of the
subsurface water budget, we use several weather forecast products
from the ECMWF (European Centre for Medium-Range Weather
Forecasts) (Owens and Hewson, 2018): the deterministic medium-
range forecast HRES, the probabilistic medium-range 50-member
ensemble forecast ENS, and the probabilistic seasonal 50-member
ensemble forecast SEAS. The ParFlow/CLM simulations performed
with these data are presented in more detail below. All ECMWF
data are downloaded at the initial resolution of HRES, i.e., 0.1◦

× 0.1◦ (∼11 km). They are then projected onto the DE-0055 grid
with the CDO (Climate Data Operators) bicubic remapping tool
(Schulzweida, 2021). We also make use of CDO to interpolate the
data to an hourly time step when they are only available at a 3- or
even 6-h time step. Note that as the specific humidity at 2m is not
available as HRES output, we calculate it based on the dew point at
2m and the surface air pressure following the equation of Bolton
(1980) before the regridding.

Maina et al. (2020) analyzed the sensitivity of ParFlow/CLM
simulation results to the resolution of the atmospheric forcing for a
watershed located in northern California. This watershed compares
very well with the DE-0055 domain, both in its resolution and in the
complexity and heterogeneity of the simulated region, as it extends
from a mountain range to a wide fluvial plain, with heterogeneous
soil and land cover properties. Based on their conclusions, we
can assume that the main spatial patterns and temporal evolution
of the hydrological processes might be well-captured, even with
an atmospheric forcing resolution of about 11 km. The largest
biases due to the atmospheric forcing resolution would appear
(i) in relation to the snow accumulation and melt, especially in
mountainous regions like the Alps, and (ii) for a short time period
during and after local precipitation events like rain showers.

3.2. Initialization of the simulation

Because we do not know a priori the state of the subsurface
water budget, and particularly the depth of the groundwater table,
at the very beginning of the simulation period, the simulation has to
be spun-up first. This means that it is started with arbitrary initial

conditions and is then run over a longer period to progressively
reach a dynamical equilibrium. As this equilibrium is reached by
the system based on the physical equations governing the terrestrial
water cycle and on the properties (soil hydraulic parameters,
elevation, land cover, etc.) of the surface and subsurface, no
calibration is required.

For this simulation, the spin-up started with an almost
homogeneous, idealized setup. Its complexity was gradually
increased by introducing the heterogeneous static fields and
forcings (here ECMWFHRES) described above. Figure 2 shows the
step-by-step spin-up evolution, where each step was retained until
the model system reached an intermediate equilibrium. Gradually
stepping up the simulations’ complexity has two reasons:

(i) Inserting the heterogeneous static fields progressively makes
it easier to track and identify artifacts and inconsistencies that
these fields might introduce into the simulation. Especially during
the spin-up with idealized atmospheric forcing (i.e., constant
precipitation), it is easier to identify artifacts, e.g., due to the
interplay of the slopes and the soil hydraulic properties, or to
verify that the river network is realistic (similar to a parking lot
experiment). These artifacts can then be corrected without having
to re-run the spin-up from the beginning.

(ii) As ParFlow uses an iterative PDE solver, a solution is
difficult when starting with fully heterogeneous static fields. It
would then have to reconcile an oversimplified subsurface water
state far from equilibrium with complex, heterogeneous fields.
The complexity of the system would be even more accentuated
through the heterogeneous atmospheric forcing, especially when
the infiltration rate is high, e.g., due to snow melt or heavy rain.
A progressive complexification of the system allows us to gradually
move from the very idealized and unrealistic initial condition to a
more complex and realistic situation.

3.3. Monitoring and forecasting
system—simulations

Relying on the ParFlow/CLMmodel setup and the atmospheric
forcing data described in the previous sections, we developed a
monitoring and forecasting system of the terrestrial water cycle
over Germany and the neighboring regions consisting of the
following five simulations.

- A deterministic medium-range forecast is run every day,
driven by ECMWF HRES data over the whole available
forecast period, i.e., 240 h. Note that for practical reasons of
data availability and our forecast clock, we use the HRES
forecast initialized at 12 UTC.

- A 50-member ensemble medium-range forecast forced with
ECMWF ENS is performed over the same lead time (i.e.,
240 h) to assess the uncertainty related to the weather
forecast, especially the precipitation. Note that we calculate
this ensemble every 2 days to limit computational costs and
hence energy consumption. The inertia of the system from one
day to another warrants this approach.

- At the beginning of eachmeteorological season, a probabilistic
50-member ensemble seasonal forecast driven by ECMWF
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FIGURE 2

Flowchart summarizing the main steps of the gradual spin-up, from a simplified homogeneous ParFlow stand-alone setup to a coupled

ParFlow/CLM heterogeneous setup with real data atmospheric forcing. Gray font color indicates homogeneous or idealized forcings and parameters

that have been replaced by heterogeneous and more realistic ones during the spin-up phase.

SEAS is calculated over the entire SEAS forecast period, i.e.,
7 months.

- A reference time series starting on 01 January 2007 is
prolonged by 24 h every day (last step in Figure 2). This
reference simulation provides the initial conditions for
all forecast simulations presented above. Thus, to ensure
consistency between this time series and the forecasts,
we chose to drive it with HRES rather than a reanalysis
such as ERA5, even if we are aware that the Integrated
Forecasting System (IFS) model from ECMWF, which
is utilized to calculate the weather forecasts we use, is
evolving. Hence, our reference time series simply consists of
ParFlow/CLM simulations driven by the first 24 h of each daily
HRES forecast.

- As explained in theMethodology section, all simulations listed
above are run without explicit calculation of the overland flow
routing, mainly to reduce the computing time. Nevertheless,
a second reference time series is calculated every day since
2021, again driven by the first 24 h of each daily HRES forecast,
but with an explicit calculation of the overland flow routing.
Even if DE06 is primarily aimed at subsurface water resources
monitoring and forecasting, this simulation allows us to easily
recalculate a forecast with overland flow if this is of interest
regarding the hydrometeorological situation. If we would have
to initialize a forecast with explicit overland flow calculation
from the reference time series without overland flow, we
would first need to run a spin-up of several months.

Note that this monitoring and forecasting system enables
integration of observation-based precipitation fields, e.g., radar
precipitation data, as replacement of the HRES precipitation as
forcing for the reference time series. This allows us to build the time
series based on more realistic and spatially and temporally detailed
precipitation data than those given by HRES. However, we did not
make use of this capability to compute the reference time series
used for the comparison with observational data described in the
next section.

It is also important to note that ParFlow is technically able to
account for anthropogenic processes like groundwater pumping
or irrigation. Nevertheless, the monitoring and forecasting system
described here is based on a model setup without any human

interventions with the terrestrial water cycle. In fact, including
these processes would require (near) real-time information, e.g., on
the pumping rate and depth or on the location, time, and amount
of irrigation, which is not available. Also, infrastructural alterations
of the river network such as barrages, dams, and man-made lakes
are not included.

4. Validation with observational data

In this section, we validate our reference time series described
above over the period 2011–2020 with observation-based data sets
covering all important components of the surface and subsurface
water budget, namely near-surface volumetric soil moisture, water
table depth, evapotranspiration, and discharge.

To provide a consistent evaluation among the aforementioned
variables, we decided to focus the comparison on monthly mean
anomalies, i.e., monthly mean values from which the long-term
average of the consideredmonth over the whole comparison period
has been subtracted. Two comparison metrics, namely the Pearson
correlation coefficient and the root-mean-square error (RMSE), are
calculated for these monthly mean anomalies. This allows a focus
on the temporal dynamics of the system, but also on the ability of
DE06 to adequately represent the specificities of each month, as (i)
some of the observational data cannot be used directly to compare
absolute values, and (ii) this allows an analysis beyond the seasonal
cycle, which is very pronounced for most of the variables analyzed
here. Nevertheless, the ability of DE06 to reproduce the seasonal
cycle is shown via several time series of zero-centered monthly
means, i.e., monthly means from which the long-term average
over the whole period has been subtracted. The only exception
is discharge, for which we present the widely used Nash–Sutcliffe
and Kling–Gupta efficiency scores calculated based on absolute
monthly mean values, in addition to the correlation on the monthly
mean anomalies.

4.1. Volumetric soil moisture

To validate our results over the whole simulation domain,
we compared the volumetric soil moisture (volSM) simulated
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FIGURE 3

Comparison of the monthly volumetric soil moisture simulated by ParFlow/CLM for the uppermost 2 cm and regridded on the ESA CCI grid and the

ESA CCI soil moisture over 2011–2020. (A) Pearson correlation coe�cient of the monthly mean anomalies (colors). Black dots indicate ESA CCI grid

cells where the correlation is statistically significant (p-value < 0.01). (B) Root-mean-square error of the monthly mean anomalies (RMSEa), in

m3/m3. (C)(a)–(f) Time series of zero-centered monthly mean volumetric soil moisture anomalies for six arbitrary selected grid cells marked on the

map in (B), in m3/m3.

by ParFlow/CLM with the satellite-based ESA CCI (European
Space Agency Climate Change Initiative) combined daily soil
moisture product v06.1 (Dorigo et al., 2017; Gruber et al., 2019).
For the comparison, monthly data for the common time period
2011–2020 are used. The ParFlow/CLM data from the uppermost
layer (0–2 cm depth) are aggregated to the coarser ESA CCI
grid (resolution of 0.25◦) by averaging all nearest neighbor DE-
0055 grid cells for each ESA CCI grid cell, as the soil moisture
can only be derived from satellite observations for the few
uppermost centimeters. As stated in Dorigo et al. (2015), ESA
CCI volSM is scaled against the GLDAS-Noah land surface model
(LSM) and thus it cannot be considered an independent data
set for comparing absolute values and assessing model biases.
Therefore, we focus our analysis on the temporal dynamics and
monthly anomalies.

The Pearson correlation coefficient between themonthly volSM
anomalies of ParFlow/CLM and ESA CCI shows values above 0.5
over 80% of the simulation domain, which indicates that DE06 can
reproduce the observed near-surface soil moisture (Figure 3A). We
consider these as good results, especially since (i) the atmospheric
forcing used for the simulations, i.e., the deterministic forecast
HRES from ECMWF, adds more uncertainty compared to, e.g.,
a reanalysis that integrates a large number of observations, and
(ii) DE06 has not been calibrated with any observational data.
The correlation values obtained here are of the same order of
magnitude or even higher than those obtained by Dorigo et al.
(2017) over the same region when comparing a previous version
of the ESA CCI combined product (v03.2) with soil moisture from
the ERA-Interim reanalysis. The lower correlation over the Alps
can be explained by the frozen soil that is not taken into account
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FIGURE 4

Comparison of the monthly actual evapotranspiration simulated by ParFlow/CLM and regridded on the GLEAM grid and the GLEAM actual

evaporation over 2011–2020. (A) Pearson correlation coe�cient of the monthly mean anomaly (colors). Black dots indicate GLEAM grid cells where

the correlation is statistically significant (p-value < 0.01). (B) Root-mean-square error of the monthly mean evapotranspiration anomaly, in mm/day.

(C)(a)–(f) Time series of zero-centered monthly mean evapotranspiration for six arbitrary selected grid cells marked on the map in (B), in mm/day.

in DE06. This leads to a dry bias during winter, when the soil water
continues to percolate, while there is no recharging infiltration as
the precipitation accumulates as snow on the surface. Furthermore,
this joins the conclusion of Maina et al. (2020) stating that a
coarser resolution of the atmospheric forcing mainly influences
surface and subsurface processes and states as they are directly
linked to the atmosphere, and that this is particularly the case in
mountainous regions.

The root-mean-square error of the anomalies (RMSEa), which
is widely employed to evaluate soil moisture (e.g., Dorigo et al.,
2015; Zhu et al., 2019; Gruber et al., 2020) and which we define
as the RMSE calculated over the monthly anomalies, shows good
results over the region (Figure 3B). It does not present a clear
spatial pattern, and with an average of 0.02 m3/m3, it lies even
below the uncertainty of the ESA CCI combined product for which

Dorigo et al. (2015) obtained values between 0.03 and 0.09 m3/m3

on a global comparison with 596 in situmeasurement time series.
Finally, a visual comparison of zero-centered monthly mean

time series for some selected grid cells also shows good agreement
between the two data sets (Figure 3C). It is interesting to see that
the amplitudes of the seasonal cycles of volSM match closely, even
if DE06 tends to underestimate the drought years, especially 2018,
compared to ESA CCI.

4.2. Evapotranspiration

For the evapotranspiration (ET), we compare the DE06 results
from ParFlow’s CLM module with the “actual evaporation” (“E”)
from GLEAM v3.5a over their common period, i.e., 2011–2020.
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FIGURE 5

(A) Pearson correlation coe�cient between the monthly mean water table depth anomaly simulated by ParFlow/CLM and observed monthly water

table depth anomaly data over 2011–2016 for all 5,799 grid cells containing observation data. The 4,236 grid cells with a significant correlation

coe�cient (p-value < 0.01) are depicted by big circles. (B) RMSEa over the same data, in m. (C)(a)–(f) Time series of zero-centered monthly means

for six arbitrary selected grid cells marked on the map in (B), in m.

GLEAM (Global Land Evaporation Amsterdam Model) calculates
different evaporation terms daily at 0.25◦ resolution using satellite
and reanalysis data as forcing and via data assimilation (Miralles
et al., 2011; Martens et al., 2017). The “actual evaporation”
from GLEAM corresponds to the sum of all evaporative terms,
i.e., transpiration, bare-soil evaporation, open-water evaporation,
interception loss, and snow sublimation (Miralles et al., 2011). As
for volSM, the simulation results are aggregated by averaging all
DE-0055 nearest neighbors on the coarser GLEAM grid.

The Pearson correlation coefficient calculated on the monthly
mean anomalies lies above 0.5 over 86% of the domain, indicating

that DE06 can represent ET from GLEAM (Figure 4A). This is
confirmed by a visual comparison of the time series of zero-
centered monthly means for some selected grid cells (Figure 4C).
These time series also highlight the ability of ParFlow/CLM
to reproduce the seasonal cycle. The RMSEa also confirms
the good results with an average of 0.15 mm/day over the
domain (Figure 4B). The slightly higher RMSEa values, associated
with a lower Pearson correlation, are observed over the Alps,
where ParFlow/CLM underestimates ET compared to GLEAM,
especially in summer (not shown). This might be due to different
parameterizations controlling the snowmelt, but the different
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FIGURE 6

Comparison of the monthly discharge simulated by ParFlow/CLM and the observed GRDC discharge over 2011–2019. (A) Pearson correlation

coe�cient of the monthly mean discharge anomaly for all 231 grid cells corresponding to a GRDC gauge. The 222 grid cells with a significant

correlation coe�cient (p-value < 0.01) are depicted by big circles. (B) Kling–Gupta e�ciency score (KGE) of the monthly mean discharge. (C)

Cumulative distribution functions for the Pearson correlation coe�cient (R), the Nash–Sutcli�e e�ciency score (NSE), and the Kling–Gupta e�ciency

score (KGE) for the monthly mean discharge. The vertical dotted lines represent the mean flow benchmarks for NSE (0) and KGE (-0.41). (D)

Catchments of the time series shown in (E). (E)(a)–(l) Time series of monthly mean discharge for 12 selected catchments marked on the map in (D).
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FIGURE 7

Examples of diagnostics derived from the forecast by the DE06 ParFlow/CLM simulation initialized at 2022-08-01T12:00Z. The maps show the

deterministic forecast forced by ECMWF HRES for 2022-08-06T12:00Z (h + 120) for the entire DE06 domain extent and the Neckar catchment at

Rockenau. (A) Fraction of plant available water (in %) from surface to 50 cm depth. (B) Subsurface water storage anomaly (in %) over the layer from the

surface to 50cm depth compared to the 31-day long-term mean over 2011–2021 centered on 01 August 2022. (C) Vertical water flow (in mm/day) at

50 cm depth (positive = downward). (D) Time series of daily values for one aggregated 3 × 3 km2 grid tile (i.e., 5x5 grid cells) selected as an example

(see location in the Neckar catchment above). The solid lines (resp. bars) show the deterministic forecast, forced by ECMWF HRES, at the indicated

depths or over the indicated thickness layers. The ensemble spread (min-max) of the 50-member ensemble forced by ECMWF ENS is shown as a

shaded interval around the solid line or a gray vertical line over the bars, respectively. The vertical dotted line indicates the initialization of the forecast

(here, 01 August 2022, 12 UTC). Data before initialization are taken from previous consecutive 24h reference simulations forced by ECMWF HRES.
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resolutions might also influence the results in such regions with
complex terrain. As for volSM, this agrees with the observations of
Maina et al. (2020), as ET is directly dependent on the atmospheric
forcing and thus more sensitive to the impact of its coarser
resolution than, e.g., water table depth (see next section).

4.3. Water table depth

For the comparison of the water table depth (WTD), we used
monthlyWTDmeasurements collected from several German states
and neighboring countries and processed by Ma et al. (2022). The
observed time series are available until 2016 so the comparison
period is 2011–2016. They are assigned to the nearest DE-0055
grid cell. If one grid cell contains more than one WTD well, the
monthly average over all wells is used, resulting in 5799 grid cells
with WTD observations.

As for volSM, we cannot compare the absolute WTD values
and calculate, e.g., biases, as (i) some measurements do not give
the water table depth from the surface, but the groundwater level
above the reference sea level and we do not know the exact altitude
of these wells to calculate the water table depth, and (ii) even at
a high resolution of 0.611 km × 0.611 km, local conditions might
lead to large discrepancies between observed and modeled absolute
WTD values. Thus, we concentrate our analysis on the temporal
dynamics and monthly mean anomalies.

The Pearson correlation coefficient calculated using the
monthly mean anomalies shows good results over wide parts of
the domain, with values above 0.5 for 49% of the wells, regardless
of the soil properties (Figure 5A). A more detailed analysis shows
that the correlation presents much higher values when considering
only shallow groundwater bodies, where the WTD dynamics
might be more tightly coupled to surface exchange processes and
a result of surface–subsurface hydrodynamics. The correlation
coefficient reaches 0.47 on average for WTD < 5m. It has still
an average value of 0.38 where WTD is between 5m and 10m,
and it drops to an average of 0.14 where WTD is deeper than
10m. This can be explained by the less marked connection of
deeper groundwater bodies with the driving source-sink term, i.e.,
precipitation-evapotranspiration, on one side, and the stronger
influence of geological features, such as preferential flow directions,
which are not accounted for in DE06.

The average RMSEa, calculated again over the monthly mean
anomalies, is 0.32m over all 5,799 grid cells. To put it in perspective,
this is much smaller than the average standard deviation of the
observed monthly anomalies, which is about 1.37m. As it appears
on themap, most regions present very low RMSEa values, especially
in the Netherlands, northern Germany, the Rhine Valley, and
Bavaria (Figure 5B). Much higher values are observed, e.g., in
France or Saxony. The highest RMSEa values often coincide with
non-significant or negative correlation coefficient values and the
domain average RMSEa reduces to 0.24m if only grid cells with a
positive and significant correlation are taken into account. It should
be noted here that anthropogenic processes, and in particular
groundwater pumping, which are not accounted for in DE06, can
have a large impact on WTD (O’Neill et al., 2021).

The time series of centeredmonthlymeans (Figure 5C) confirm
that DE06 is generally able to reproduce the annual cycle and
its amplitude, especially for shallow groundwater bodies, as the
average WTD simulated by ParFlow/CLM lies below 2m for all
time series, except for Figure 5C(c). Here, the simulated average
WTD is around 6m and the temporal dynamics are overestimated
compared to observation, which joins the interpretation of the
correlation of the monthly anomalies explained above.

4.4. Discharge

The simulated discharge (Q) is compared with monthly
observed river gauge data fromGRDC (Global Runoff Data Centre,
56068 Koblenz, Germany). As only little data are already available
for 2020, the time series are compared over the 2011–2019 period.
For each gauge within the domain providing data over this period,
the corresponding catchment on the DE-0055 grid is defined as
the catchment with the closest area to the GRDC catchment area
for outlets located within a radius of five grid cells around the
coordinates of the GRDC outlet. Furthermore, only catchments
that are fully included in the domain and for which the area
difference between the DE-0055 grid and GRDC is below 20% are
retained. As a result, the comparison is made over 231 catchments
of various shapes and sizes (ranging from 1.8 to 160,800 km2)
including subcatchments of the major rivers such as the Rhine,
the Elbe, and the Danube. As explained above, the overland flow
routing is not simulated explicitly in the reference time series
simulation so Q is calculated afterward using a run-off approach
based on the ponding heights in all grid cells at the end of a time
step. At the beginning of a time step, all water ponding on the land
surface is instantaneously routed to the outlet, and the ponding
height at the end of a time step is derived from the simulated flux
across the land surface and the difference between precipitation and
evaporation from the surface during the time step.

With more than 96% of the gauges presenting a value above
0.5, the Pearson correlation coefficient calculated on the monthly
mean anomalies shows a good agreement between the uncalibrated
DE06 and the GRDC observations (Figure 6A). These results are
confirmed by the statistics calculated for monthly mean Q values,
such as the Kling–Gupta efficiency score (KGE) in Figure 6B. The
results do not show any dependency on the location or the size
of the catchments. Figure 6C shows the cumulative distribution
functions of the Nash–Sutcliffe efficiency score (NSE), KGE, and
correlation coefficients for monthly mean values. It appears that
nearly all gauges present a KGE better than the mean flow
benchmark, i.e.,≥-0.41 according to Knoben et al. (2019), and 70%
of them improve the NSE compared to the mean flow benchmark
(i.e., NSE ≥ 0), confirming the capability of DE06 to reproduce
the observed discharge, and especially its temporal dynamics at
the monthly time scale. Finally, the good agreement between
simulation and observations is highlighted by the comparison of
the time series (Figure 6E) for some representative gauges shown
in Figure 6D. The time series confirm that DE06 captures the
temporal dynamics well, but also the absolute monthly mean Q,
especially for above-average and high discharge periods. During
low flow periods, DE06 tends to overestimate Q. In fact, during
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drier periods, the exfiltration of groundwater into the river channels
decreases and might even invert to re-infiltration of overland flow
where the groundwater level decreases sufficiently, thus reducing
the measured river discharge. As explained above, we ignore this
re-infiltration process as we do not explicitly simulate the overland
flow routing in DE06, whichmight explain the overestimation of Q.

5. Application examples

As explained above, DE06 is implemented in a prototypical
monitoring and forecasting system focusing on the surface and
subsurface water budget. It is deployed within the framework of
the ADAPTER (ADAPt TERrestrial systems) project, funded by the
Helmholtz Association of German Research Centres, which aims
to develop simulation-based prototypical information products
to support agriculture increasing its resilience against weather
extremes and climate change in Germany. Thus, this monitoring
and forecasting system aims to provide information on the
evolution of the subsurface water budget that can be used for
decision support. The diagnostics derived from the ParFlow/CLM
simulations and described below have been widely developed in
dialogue with stakeholders from the agricultural sector, such as
farmers, chambers of agriculture, advisers, or plant breeders, in
a so-called co-creation process. Nevertheless, as a multitude of
diagnostics, indicators, and indices based on the subsurface water
state and fluxes can be calculated from these simulations from the
surface down to 60mdepth, thismonitoring and forecasting system
offers the opportunity to provide relevant information to a wide
variety of users and stakeholders (e.g., related to forestry, ecosystem
services, and especially water resources management).

From the ParFlow pressure fields and the soil hydraulic
parameters, various indices and diagnostics describing different
aspects of the subsurface water budget states and fluxes can be
derived (Figure 7) at high spatial resolution for different depth
layers. For example, the fraction of plant available water, which
represents the soil water content scaled between the wilting point
(0%) and the field capacity (100%), provides information on the
water stress plants might suffer (Figure 7A). Another information
on the subsurface water availability, and thus the water stress as well
as the water resources, is provided by the subsurface water storage
given, for example, as the anomaly of the current state compared
to the reference time series over the last 11 years (Figure 7B). A
third example is the vertical water flux, which allows the user
to evaluate whether water is percolating, thus regenerating the
subsurface water resources, but also whether nutrients might leach
out of the root zone into the groundwater (Figure 7C). This kind of
diagnostics can be calculated for every model grid layer, and thus
the depth can be chosen to correspond, e.g., to the root depth of
crops, vegetables, or trees. The daily forecasts of these diagnostics
derived from the DE06 forecasting system are publicly available
on the project’s website (https://adapter-projekt.de/, in German)
either as maps showing the deterministic forecast as shown in
Figures 7A–C or as time series as shown on Figure 7D. Analogously
to meteograms for weather monitoring and forecasting, the time
series provide the users with the evolution of diagnostics of the
terrestrial water cycle at their location (here, aggregated on a 3
× 3 km2 grid). The time series allows for a representation of the

deterministic forecast but also of the 50-member ensemble forecast
to give information on the impact of the uncertainty of the weather
forecast used as forcing on the subsurface water state and fluxes.

6. Summary and conclusion

In this study, we have introduced a new simulation setup
(DE06) at high-resolution (0.611 km) encompassing some of the
major central European river basins, that simulates surface and
subsurface hydrodynamics and water budgets with the integrated
hydrological model ParFlow/CLM aiming to provide users with
relevant information on different components of the subsurface
water budget at impact-relevant spatial and temporal scales. As the
complete subsurface water budget is calculated over a 3D grid from
the surface to 60m depth for variably saturated conditions, all states
and fluxes describing different aspects of the surface and subsurface
water cycle can be derived from DE06. Here, we have outlined
a monitoring and forecasting system, based on DE06 and forced
by weather forecasts from ECMWF, that aims to provide various
diagnostics that are meant to support the agricultural sector, but
also other sectors that require knowledge about subsurface water
resources, in their decision-making. Based on the GPU capability
of ParFlow, enabling highly efficient simulations, the forecasting
system includes a 50-member ensemble that allows an estimation
of the impact of the uncertainty of the atmospheric forcing on the
subsurface water budget.

The validation of the simulated reference time series with
observation-based data over 2011–2020 shows a good agreement,
especially concerning temporal dynamics. The good results
obtained for the comparison of absolute monthly mean discharge
values indicate that, even without calibration, DE06 can reproduce
the observed surface and subsurface water cycle. This is further
confirmed by the good agreement between simulation and
observations for volumetric soil moisture, evapotranspiration, and
water table depth, based on monthly mean anomalies.

In addition to the deterministic and ensemble forecasts over
the next 10 days, we are expanding the monitoring and forecasting
system with probabilistic seasonal ensemble predictions driven
by the seasonal 50-member ensemble weather forecast SEAS
from ECMWF. From these predictions, probabilities and risk
assessments about the expected evolution of subsurface water
resources and their impacts, e.g., recovery of the subsurface
water storage after a drought, water stress for plants, and other
stakeholder-relevant diagnostics, can be derived.

Further analyses may include, for example, a comparison
of the obtained subsurface water budget time series when
forcing DE06 with different atmospheric data sets, e.g., ERA5
reanalysis from ECMWF, and in particular different precipitation
products, e.g., radar or satellite-based precipitation retrievals.
A reanalysis-driven DE06 time series covering more than one
decade would open the opportunity to study the evolution
of the subsurface water budget over a longer period and to
put in perspective the recent extreme hydrometeorological
events, especially the droughts from 2018, 2019, 2020,
and 2022.

The simulation setup presented in this study might further
be improved, for example, by avoiding simplifying the fields
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defining the soil hydraulic properties (i.e., saturated hydraulic
conductivity, porosity, and van Genuchten parameters), by using
the USDA texture classes. Instead, the soil hydraulic properties
could be determined for each grid cell with pedotransfer functions
relying on the soil texture as given by SoilGrids, or even by
using more complex pedotransfer functions, which also integrate,
e.g., the bulk density and/or the soil organic carbon content.
Another improvement could be achieved by an external coupling
of ParFlow with a more complex land surface model that could,
e.g., account for more land cover and crop types, calculate
the carbon and nitrogen cycles, or offer the opportunity to
assimilate satellite-based LAI (leaf area index) data to enhance
the representation of the vegetation cycle. For the reference
time series, long-term and interannual land cover changes could
also be taken into account. A last improvement we want to
emphasize would be the integration of the human impact on
the subsurface water budget into DE06. This would cover a
wide range of features and processes, such as drainage networks,
groundwater pumping, or irrigation. Nevertheless, while ParFlow
can account for these processes, it might be very difficult to
implement them in the monitoring and forecasting system,
especially over such a large domain, as this would require near-real-
time information on, e.g., where, when, and how much water has
been extracted from the system through pumping or added to it
via irrigation.

Finally, since ParFlow/CLM is physics-based and does not
rely on a calibration, which would make its parametrization
climate-dependent, DE06 is also well-suited for climate change
impact studies using future projections from, e.g., a global
climate model or a regional climate model at high resolution.
In this context, the CORDEX-compatible grid used in DE06
facilitates its integration into a fully coupled terrestrial model
system at a convection-permitting scale, hence accounting
for the feedback of the subsurface water budget on the
atmosphere, making it suitable for impact studies both for
recent and future climate conditions. In addition, as it relies
almost entirely on global data sets (e.g., SoilGrids for soil
texture) and globally defined parameters (e.g., USDA soil
texture classification, IGBP land cover types), the workflow,
with which DE06 has been built, can be easily expanded to
the whole European continent or transferred to any region on
the globe, including sparsely gauged regions, as it does not
require calibration.
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(2020). Czech Drought Monitor System for monitoring and forecasting agricultural
drought and drought impacts. Int. J. Climatol. 40, 5941–5958. doi: 10.1002/joc.6557

Van Genuchten, M. T. (1980). A closed-form equation for predicting the
hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44, 892–898.
doi: 10.2136/sssaj1980.03615995004400050002x

Wanders, N., Thober, S., Kumar, R., Pan, M., Sheffield, J., Samaniego, L.,
et al. (2019). Development and evaluation of a pan-European multimodel
seasonal hydrological forecasting system. J. Hydrometeorol. 20, 99–115.
doi: 10.1175/JHM-D-18-0040.1

Wendland, F., Bergmann, S., Eisele, M., Gömann, H., Herrmann, F., Kreins, P.,
et al. (2020). Model-based analysis of nitrate concentration in the leachate – the North
Rhine-Westfalia case study, Germany.Water 12, 550. doi: 10.3390/w12020550

Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P. D., Allen, G. H., and Pavelsky, T.
M. (2019). MERIT hydro: a high-resolution global hydrography map based on latest
topography datasets.Water Resour. Res. 55, 5053–5073. doi: 10.1029/2019WR024873

Zappa, M., Bernhard, L., Spirig, C., Pfaundler, M., Stahl, K., Kruse, S., et al. (2014).
A prototype platform for water resources monitoring and early recognition of critical
droughts in Switzerland. Proc. IAHS 364, 492–498. doi: 10.5194/piahs-364-492-2014

Zhang, Y., and Schaap, M. (2017). Weighted recalibration of the Rosetta
pedotransfer model with improved estimates of hydraulic parameter distributions and
summary statistics (Rosetta3). J. Hydrol. 547, 39–53. doi: 10.1016/j.jhydrol.2017.01.004

Zhu, L., Wang, H., Tong, C., Liu, W., and Du, B. (2019). Evaluation of ESA active,
passive and combined soil moisture products using upscaled ground measurements.
Sensors 19, 2718. doi: 10.3390/s19122718

Zink, M., Samaniego, L., Kumar, R., Thober, S., Mai, J., Schäfer, D.,
et al. (2016). The German drought monitor. Environ. Res. Lett. 11, 074002.
doi: 10.1088/1748-9326/11/7/074002

Frontiers inWater 18 frontiersin.org

https://doi.org/10.3389/frwa.2023.1183642
https://doi.org/10.1016/j.advwatres.2008.01.020
https://doi.org/10.1038/ngeo315
https://doi.org/10.1002/2013WR013725
https://doi.org/10.5194/hess-15-453-2011
https://doi.org/10.1088/1748-9326/abe828
https://doi.org/10.1038/s41558-021-01044-3
https://doi.org/10.5194/gmd-14-7223-2021
https://doi.org/10.1002/jgrd.50846
https://doi.org/10.21957/m1cs7h
https://www.ecmwf.int/node/16559
https://www.ecmwf.int/node/16559
https://doi.org/10.3390/land10070713
https://doi.org/10.3390/w12082157
https://doi.org/10.1016/j.compag.2020.105942
https://doi.org/10.1002/2014WR015738
https://doi.org/10.3390/rs11151783
https://doi.org/10.1023/A:1015086831467
https://doi.org/10.5194/nhess-23-159-2023
https://doi.org/10.1175/JHM-D-22-0121.1
https://doi.org/10.1038/s41558-018-0138-5
https://doi.org/10.1175/BAMS-D-17-0274.1
https://doi.org/10.1002/hyp.13448
https://doi.org/10.1029/2020WR027639
https://doi.org/10.5281/zenodo.5614769
https://doi.org/10.5880/TR32DB.37
https://www.tr32db.uni-koeln.de/search/view.php?doiID=111
https://www.tr32db.uni-koeln.de/search/view.php?doiID=111
https://doi.org/10.5194/hess-16-201-2012
https://doi.org/10.1175/JCLI-D-19-0084.1
https://doi.org/10.1175/JHM-D-15-0053.1
https://doi.org/10.1002/joc.6557
https://doi.org/10.2136/sssaj1980.03615995004400050002x
https://doi.org/10.1175/JHM-D-18-0040.1
https://doi.org/10.3390/w12020550
https://doi.org/10.1029/2019WR024873
https://doi.org/10.5194/piahs-364-492-2014
https://doi.org/10.1016/j.jhydrol.2017.01.004
https://doi.org/10.3390/s19122718
https://doi.org/10.1088/1748-9326/11/7/074002
https://www.frontiersin.org/journals/water
https://www.frontiersin.org

	Hydrological forecasting at impact scale: the integrated ParFlow hydrological model at 0.6km for climate resilient water resource management over Germany
	1. Introduction
	2. Methodology
	2.1. ParFlow/CLM
	2.2. Model domain and grid
	2.3. Static fields—Soil and surface parameterization
	2.3.1. Land–lake–sea mask
	2.3.2. Slopes
	2.3.3. Soil types—Soil hydraulic parameters
	2.3.4. Land cover
	2.3.5. Soil color


	3. Monitoring and forecasting system
	3.1. Atmospheric forcing
	3.2. Initialization of the simulation
	3.3. Monitoring and forecasting system—simulations

	4. Validation with observational data
	4.1. Volumetric soil moisture
	4.2. Evapotranspiration
	4.3. Water table depth
	4.4. Discharge

	5. Application examples
	6. Summary and conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


