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Abstract
The market for on-demand mobility services is growing worldwide. These services include, for example, ride-hailing, ride-
sharing, and car-sharing. Large-scale fleets of such services collect GPS trajectory (probe vehicle) data constantly everywhere
in the network. At a certain penetration rate, this data becomes representative of the entire road network. It can give valu-
able insights into traffic dynamics and the evolution of congestion. In this paper, we use such GPS trajectory data from
Chengdu, China, to investigate the stability and recurrence of macroscopic traffic patterns. Using the two-fluid theory, we
find that the two-fluid coefficients are robust on between-day variation, not only supporting the theory itself but also empha-
sizing that the general evolution of traffic is a robust pattern. We investigate the deviations from the model using time series
analysis of the residuals of the two-fluid model. Here, we find evidence for daily and weekly seasonality in the residuals, indi-
cating that congestion patterns are convincingly recurring. These patterns can be used for network-wide traffic state predic-
tion. We conclude that GPS trajectory data from large on-demand mobility fleets is a promising data source for observing
traffic patterns in urban road networks once the data becomes representative.
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Measuring traffic in a metropolis can be costly for the
traffic management center as it needs to install many
stationary sensors and accompanying communication
infrastructure. Since the advent of GPS probe vehicle
data, traffic state information is reported by the moving
vehicles, aggregated, and returned to all drivers (1).
While stationary sensors commonly measure traffic flows
well, the GPS probe vehicle data performs better on
recording speeds (2). Thus, a fusion from both sources
can improve the network-wide traffic state estimation
(3). Currently, many probe vehicle data providers do not
offer the original vehicle trajectories for privacy reasons,
but rather aggregate the data to trip, origin–destination,
traffic volumes, and speed data on road segments with a
typical length of around 100m. Consequently, no other
trip-related information is available that could be infor-
mative for traffic state estimation. However, in recent
years, on-demand mobility vehicles and taxis have turned
into a large fleet of moving sensors that report at a large
scale and in almost real time their trajectories, not only
for traffic management but also for third-party applica-
tions and research. As this data is constantly collected, it

offers the opportunity for the first time to study the sta-
bility and recurrence of congestion patterns at a large
scale both temporally and spatially. Predicting patterns
in addition to speeds allows for the dimensionality to be
reduced to its most essential dimensions, simplifying the
prediction and allowing the explanation of them more
comprehensibly.

The interest in network-level traffic dynamics models
can be traced back to the late 1960s and can be categor-
ized into three eras: (i) flow–speed relationships until
1979, (ii) two-fluid theory from 1979 to 2007, and (iii) the
network macroscopic fundamental diagram (NMFD)
from 2007 to the present (4). When discussing the suit-
ability of a fleet of moving sensors for network traffic
state estimation (5)—or arterial traffic state estimation
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(6)—the use of the two-fluid theory seems intriguing as,
compared with the other two approaches, it primarily
relies on vehicle trajectories and speed measurements that
are provided by such a fleet, and no flow measurements.
Although its era has come to an end, it is still being used,
sometimes together with NMFD models, for example,
based on taxi data (7) or drone data (8), or as a means
for fusing data sources (9). As with the NMFD (10, 11),
the two-fluid parameters also depend on network topol-
ogy and network features (12–14). The evidence further
shows that the two-fluid parameters depend on driving
behavior (aggressive/conservative) and crash rates, result-
ing from drivers’ objective of maximizing the quality of
their journeys by traveling fast and maintaining safety
(15, 16). Once the vehicle fleet is large enough to be repre-
sentative of the entire network, this fleet data can be used
to detect and model the traffic patterns of the monitored
road network. Working on patterns instead of using the
full traffic data reduces the dimensionality of the problem
(e.g., reducing thousands of streets to a few congestion
patterns), which makes the complexity of dynamic urban
traffic more comprehensible. Thus, these patterns act as
a support for selecting adequate measures for traffic
management, for example, if a specific pattern of traffic
flows is linked to a bottleneck activation pattern. This
network-level perspective has already been shown, for
example, for loop detector data (17) and automated
number-plate recognition system data (18), where the
complexity of urban traffic dynamics has been reduced to
a few clusters. It must not be limited to traffic state esti-
mation, but can also be used to inform about other
events such as weather (19), from which further measures
for traffic management can be drawn. The advancement
of deep learning techniques for congestion prediction in
the big data age (20) may also support the development
of high-resolution spatio-temporal pattern detection
algorithms.

However, none of these analyses combine the ques-
tions of stability and recurrence of congestion patterns
based on trajectory data over a long time period.
Stability focuses on how congestion varies over time
(range and severity) and how fast the network can
recover from congestion, while recurrence studies the
repeating patterns of congestion. In some cities, the
transportation network company (TNC) already oper-
ates large fleets, but the intriguing question is whether
such a data source can be used as a sensor for traffic
management, in particular traffic state estimation and
prediction. Here, we consequently investigate the funda-
mental suitability of the data source for such problems.

In this paper, we use an open-access trajectory data
set from Chengdu, China that covers 30 days, which
reports the waypoints of on average 1,250 vehicles circu-
lating simultaneously in the city. From this data, we

estimate the two-fluid relationship (5) and show that the
postulated relationship is indeed robust over several
days. Also, we find a strong linear relationship as
R2 ’ 0:98. To recover as much variance as possible from
the data, we then study the stability and recurrence of
patterns not on the two-fluid relationship itself, but the
residuals between the observed and predicted relation-
ship. In the residual data, we find substantial daily and
weekly seasonality. In other words, the deviation from
the two-fluid relationship is recurrent and robust over
the observation period. In future research, we will extend
the time series analysis not only to a longer time period
but also to more cities in our samples. This enriched data
set will then be used to investigate and find explanatory
variables for the distribution and seasonality of residuals.
Nevertheless, it should be noted that we lack ground
truth data and thus our analysis presents the first evi-
dence that such large-scale fleet trajectory data is an
appropriate basis for investigating the performance of
urban road networks and the stability and recurrence of
congestion patterns.

This paper is organized as follows. In the next section,
we introduce the data used in this analysis. Thereafter,
we present our methodology to investigate the robust-
ness and recurrence of congestion patterns in Chengdu.
We then proceed by presenting the results of our analy-
sis, before closing the paper by discussing our findings.

Data Set and Study Area

In this study, we utilize the GPS trajectory data set pro-
vided by the Didi Chuxing GAIA Open Dataset. Didi
Chuxing is one of the biggest leading TNCs worldwide,
providing transportation services such as ride-hailing
and ride-sharing. Over 10 billion passenger trips are pro-
vided by the Didi platform per year (21). In this study,
the data is only from ride-hailing services (22). Here, we
use the GPS trajectory data set collected from Chengdu,
China in 2016, which has been extensively used by other
researchers in previous years. These studies involve dif-
ferent topics including data processing and outlier detec-
tion (23), demand prediction (24–29), order dispatching
(30, 31), ride-splitting (32), traffic flow prediction (33,
34), and also travel time prediction (35, 36).

The GPS trajectory data was recorded in November
2016 with an average frequency of 3.11 s. The data
include five variables: driver ID, order ID, timestamp,
longitude, and latitude. In the analyzed data set, driver
ID labels the identities of drivers, while order ID stands
for individual orders. One driver can accept several
orders in a single day, that is, the same driver ID is usu-
ally linked to several different order IDs within one day.
Driver ID and order ID have already been anonymized
for privacy. Examples of the GPS trajectory data are
given in Table 1.
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The data used in this study cover the area shown in
Figure 1 with OpenStreetMap (OSM) as the background
(37). It corresponds to the northeast corner of the area
within the third ring road in Chengdu, which is covered
with a high resolution. For example, for November 1,
2016, there are 32,155,517 GPS records in total, belong-
ing to 181,172 orders and 35,449 drivers. Thus, each
driver has roughly 5.11 orders per day, and each order
contains 177.5 GPS records. Considering the average fre-
quency as 3.11 s, the average trip duration is 9.2min.

Figure 2 describes how GPS records are distributed
per hour within one day (November 1, 2016). Ride-hail-
ing services are concentrated mainly from 8:00 a.m. to
11:00 p.m. in Chengdu. The original data possess a GPS
shift because of the unique Chinese geographical coordi-
nate system (38), which we have fixed during pre-process-
ing. To investigate the coverage of services, we visualize
the GPS records as trajectories in Figure 3 with data
aggregated from 9:00 a.m. to 9:05 a.m. and in Figure 4
from 9:00 a.m. to 9:01 a.m., on November 1, 2016. We
find that a 1 min trajectory data aggregation might not
be representative of the study area, while 5 min data

aggregation is able to cover most roads. Therefore, 5 min
is selected as the aggregation level. In conclusion, the
penetration rate of the ride-hailing fleet by Didi within 5
min is high enough for further aggregation and investiga-
tion of the traffic states in the city.

Methodology

We introduce this study’s methodology step-wise.
Following the introduction of the two-fluid theory, we
perform a temporal aggregation of the data to extract
macroscopic traffic indicators. Then, we use this aggre-
gated data to estimate the two-fluid model parameters.
After calculating the residuals between the real data and
the estimation from the two-fluid model, we finally ana-
lyze the temporal correlations of the residuals by using
time series analysis.

Two-Fluid Model

The two-fluid model is a concise model for urban road
traffic developed by Herman and Prigogine (5).
According to the model’s assumptions, traffic consists of
two fluids: moving and stopped vehicles. A speed thresh-
old is selected to define whether a vehicle stops. This
threshold might differ among different data sets: for
high-frequency recordings of 1 s, a low threshold can
capture the stopped state more accurately; for a lower
frequency, a looser threshold can avoid misclassification.
All involved variables of the two-fluid model are sum-
marized in Table 2.

Based on the definition of the variables in Table 2, the
following relationships can be set:

Tmin = 60=vmax T = 60=v T = Tr + Ts ð1Þ

fr + fs = 1 ð2Þ

Here, trip time per unit distance equals the reciprocal
of travel speed. Average trip time per unit distance T con-
tains two parts: moving time Tr and stopped time Ts. The
fractions of two fluids are denoted as fr for the moving
vehicles and fs for the stopped vehicles. By definition, the
sum of both fractions has to equal one.

The two-fluid model possesses three key assumptions.
The first assumes a linear relationship between the frac-
tion of moving vehicles fr and the average speed v that
exists as Equation 3.

v= vrfr + vsfs = vrfr + 0fs = vrfr ð3Þ

The average speed v is defined as the average speed
from the moving and stopped fluids: v= vrfr + vsfs.
Theoretically, vs = 0.

The second assumption is based on the ergodic theory:
the average speed of moving vehicles vr is proportional to

Table 1. Format of the Original Data Set

Variable Example

Anonymous driver ID 389b1a63fca70651270be4d9e6446
Anonymous order ID 413994a1c492c8901d5db1baf1c7c
Timestamp 1477962003
Longitude 104.0579
Latitude 30.67172

Figure 1. Study area of the data set.
Note: Scale bar at the bottom left.
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the fraction of moving vehicles fr in the entire network as
formalized in Equation 4 (5). Here, vmax is the maximum
average vehicle speed for the whole fleet and n is a model
parameter that characterizes the network performance.

vr = vmax(1� fs)
n = vmax(fr)

n ð4Þ

The third assumption states that the ratio of stopped
time Ts to average trip time T is approximately equal to
the fraction of stopped vehicles in the whole network.

Ts

T
= fs ð5Þ

Based on these three assumptions, the two-fluid theo-
ry’s main relationship is finalized in Equation 6.

Ts = T � Tmin

1
n+ 1 � T n

n+ 1 ð6Þ

where Tmin and n are network-specific model parameters.
As first published by Ardekani and Herman (12), this

can be transformed into a linear relationship between the
logarithms of the average trip time T and running time
Tr in Equation 7.

logTr =
1

n+ 1
log Tmin +

n

n+ 1
logT ð7Þ

Data Aggregation

To estimate two-fluid parameters, we need first to aggre-
gate raw individual GPS records. Following the findings
from Figure 3, we set the aggregation interval to 5 min.
Then, we use function distm from R package geosphere
to calculate the distance between two records, which is
then divided by the time interval to calculate the vehicle’s
instant speed.

To calculate the fraction of stopped vehicles fs, a defi-
nition of a speed threshold is required. A vehicle is
labeled as ‘‘stopped’’ when its speed is below this thresh-
old. By plotting the density curve of speeds lower than
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Figure 2. Distribution of global positioning system (GPS) records over hours of one day.

Table 2. Summary of Variables

Category Variable Description Unit

Two-fluid n Indicator of network performance na
Tmin Minimum trip time per unit distance min/km
vmax Maximum average vehicle speed km/h

Fraction fr Fraction of moving vehicles na
fs Fraction of stopped vehicles na

Speed v Average speed km/h
vr Average speed of moving vehicles km/h
vs Average speed of stopped vehicles km/h

Trip time T Average trip time per unit distance min/km
Tr Average running time per unit distance min/km
Ts Average stopped time per unit distance min/km

Note: na = not applicable.
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20km/h in Figure 5, we conclude that 5 km/h serves as a
good threshold for stopped vehicles. When the speed is
equal to zero, the density is the highest. It keeps decreas-
ing between 0 and 5 km/h and becomes stable afterward.
Considering the average interval as 3.11 s, the vehicle
with an average speed of 5 km/h has traveled roughly
4.5m between two consecutive observations, which can
be assumed to be stopped given the current GPS
accuracy.

For each aggregation period, the variables listed in
Table 3 are then generated. The speed v is calculated as
the average speed of all vehicles in each interval, while
the fraction of stopped vehicles fs is determined as the
number of observation points of stopped vehicles’ overall
trajectory measurements. All observations receive the
same weight. Vehicle number nveh is the number of
unique vehicles running inside the study area during the
aggregation interval.

Estimating the Two-Fluid Parameters and Residuals

Using the linear model from Equation 7, two-fluid
parameters n and Tmin can be estimated using ordinary
least squares. Defining that a= n=(n+ 1) and b=
1=(n+ 1) log Tmin, the two parameters of interest can be
derived as shown in Equations 8 and 9.

n=
a

1� a
ð8Þ

Tmin = 10
b

1�a ð9Þ

The residuals e are calculated in Equation 10 where T̂

is the predicted value from the two-fluid model.

e= T � T̂ ð10Þ

The residuals capture all the variations and trends in
the data that are not described by the two-fluid model.
The advantage of using the residuals instead of
the observed values is that the expectable part is removed
from the data and only the information of the
deviation part is used for the time series. In describing
time series patterns, there is usually a distinction of three

Figure 4. Global positioning system (GPS) trajectories in a 1 min
period (9:00–9:01 a.m., November 1, 2016).

Figure 3. Global positioning system (GPS) trajectories in a 5 min
period (9:00–9:05 a.m., November 1, 2016).
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Figure 5. Density plot (logarithm) of speeds lower than 20 km/h
in one day.
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components (39). Trend refers to a long-term change in
data. Cycle occurs when these are repeated patterns such
as rises and falls of a non-fixed frequency, while season-
ality, corresponding to its name, is always of a fixed fre-
quency. In time series analysis, the term trend is also
used to combine both trend and cycle as just defined.

Here, we focus on the seasonality in the residuals of
the two-fluid model. We assume that seasonality exists in
the residuals because of day-of-week (DoW) and hour-
of-day factors. Therefore, the residuals are not station-
ary. To make the time series stationary, we keep differen-
tiating residuals until certain conditions have been met.
The number of differentiation steps is called degree d.
Here, we use an autoregressive integrated moving aver-
age (ARIMA) model, where integrated refers to this dif-
ferentiation process. In addition, ARIMA includes an
autoregressive component and a moving average compo-
nent. The former forecasts the variable using a linear
combination of past p values of the variable and the lat-
ter using past q forecast errors. An ARIMA model has
the following form:

y
0

t = c+f1y
0

t�1 + � � � +fpy
0

t�p

+ u1et�1 + � � � + uqet�q + et

ð11Þ

where y
0
t is the differentiated time series with degree d, fi

and ui are the model coefficients. y
0
t�i stands for the past

prediction and et�i is for the past forecast error. Here, the
error term et�i is assumed to be independent and identi-
cally distributed, which follows a normal distribution
with mean of zero and variance s2.

Results and Analysis

In this section, we present the results following the same
sequence as in the Methodology section.

Data Filtering

Before estimating the two-fluid model, the empirical data
has to be checked for outliers as current GPS measure-
ments come with errors. For example, the maximum

speed is 288km/h, which is unreasonable and unfeasible.
Therefore, we investigated the speed distribution of all
vehicles in the downtown area. Figure 6 shows the distri-
bution of speed values. In total, 0.03% of observations
are greater than 80 km/h. Speeds that exceed this limit
are consequently rare. Considering the trajectories with
speeds over 120km/h we find that most of them result
from sudden GPS drifts. Contrarily, speeds in the range
from 80 to 120km/h still look reasonable but may indi-
cate speeding during non-peak hours as supported by the
findings from a single day shown in Figure 7. Thus, we
decided to remove all trajectory parts from the data that
exceed 120km/h to avoid an impact of clear erroneous
measurements on our results. For the remaining observa-
tions, the aggregation of the data to a macroscopic net-
work state may equal the small errors or GPS drift,
assuming that the error process itself is unbiased
(Gaussian process, etc.).

The next step is to remove all observations with a very
small fleet size and most likely an unrepresentative fleet.
We remove all observations from 11:59 p.m. to 6:00 a.m.
for all days as these time periods are either without

Table 3. Variables of One Aggregated Period

Variable Symbol Example Meaning

Start time ts 1477929722 Timestamp of the earliest record
End time te 1477930022 Timestamp of the latest record
Observations N 2289 Number of available GPS records
Average speed v 23.92 Average speed (km/h)
Stop fraction fs 0.29 Percentage of stopped vehicles
Vehicle number nveh 13 Number of vehicles in the interval

Note: GPS = global positioning system.
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Figure 6. Unfiltered speed distribution of the entire data set.
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congestion or with free flow on every road but also with
smaller fleet size compared with daytime hours. Further,
we define a threshold for the number of vehicles in the
fleet. We set this threshold based on the relationship
shown in Figure 8 between the number of vehicles in the
aggregation period and its (inverted) cumulative share at
the location of the steepest slope. This location is identi-
fied using differentiation. The threshold is selected as 112
vehicles and we filter out the observations that have
fewer vehicles in one aggregation period. An aggregation
interval of 5 min results in 288 available intervals per
day. Therefore, the 30-day data set contains 8,640 inter-
vals. From these 8,640 observations, 93.0% (i.e., 8,031
observations) are kept for further analysis.

The Two-Fluid Relationship

Each aggregated period contains trip time T and the
fraction of stopped vehicles fs to compute the logarithm

of travel time log T , stop time Ts (see Equation 5), running
time Tr (see Equation 1) and its logarithm log Tr. Figure 9
shows the relationship between trip time T and stop time
Ts. With the increase of stop time (units: min/km), the
average speed is reduced, and thus, trip time T increases.
Similarly, a clear linear relation is apparent in Figure 10 as
expected from Equation 6, although there are still some
outliers for certain days, probably because of non-
recurrent events. Consequently, the available data gener-
ally supports the application of the two-fluid theory.

Model Estimates Analysis

For linear regression, we do not create one single model
for all days but 30 single-day models to find day-specific
slopes and intercepts, resulting in series of two-fluid
model coefficients n and Tmin (Equations 8 and 9).
Examples from the first sevendays are given in Table 4.
We conclude with the following findings:

� All models have R2 ’ 0:98, indicating strong linear
relationships between dependent variable logTr

and independent variable logT .
� The two coefficients for the two-fluid model vary

slightly, which arguably depends on the interac-
tions of local road network structure and traffic
demand.

� Compared with weekdays, weekends, especially
Sundays (bold in Table 4), have a substantial
change in both coefficients. The minimal trip time
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Figure 7. Frequency distribution of 80 to 120 km/h observations
on November 1, 2016.
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Figure 8. Percentage of observations versus available vehicles.
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Tmin is the lowest on Sunday, indicating the high-
est maximum speed.

Figure 11 compares how the model coefficients fluctu-
ate over time: the red line shows n and the blue line repre-
sents tmin. Table 5 presents the sample summary statistics
of these two coefficients. Though there are minor differ-
ences, both variables show a correlation coefficient of
20.991. This value indicates that these two coefficients
are strongly correlated. In the following, we analyze the
data by exploiting the time series seasonality patterns
that cannot be represented by a linear regression model.
Future research can then investigate how temporal
demand patterns influence this distribution.

Residual Analysis

Residuals are calculated from the model estimations and
visualized in Figure 12 (absolute values) and Figure 13
(scaled residuals). The red horizontal dashed line indi-
cates zero and ‘‘DoW’’ represents day-of-week. In both
figures, significant recurring daily patterns can be
observed that we can extrapolate to a similar weekly
pattern.

Figures 14 and 15 present the daily and weekly sea-
sonality extracted from a time series decomposition,
where the frequency is set to one day and one week.
Daily seasonality shows a ‘‘W’’-shaped pattern with two
drop-downs that might be caused by two traffic peaks
and corresponding demand increases. Similarly, weekly
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Figure 11. Fluctuation of model coefficients over 30 days.

Table 4. Example of Output From Linear Regression Estimation

Date Day-of-week Observations Intercept Slope R2 n Tmin

2016-11-01 Tue 265 20.0284 0.680 0.986 2.13 0.814
2016-11-02 Wed 248 20.0227 0.667 0.987 2.00 0.855
2016-11-03 Thu 256 20.0213 0.661 0.980 1.95 0.865
2016-11-04 Fri 257 20.0152 0.642 0.979 1.80 0.907
2016-11-05 Sat 277 20.0244 0.664 0.987 1.98 0.846
2016-11-06 Sun 274 20.0349 0.700 0.986 2.34 0.765
2016-11-07 Mon 256 20.0167 0.653 0.989 1.89 0.895

Note: Bold font highlights substantial change in both coefficients on Sunday.

Table 5. Two-Fluid Theory Parameters

Variable Sample size Mean Variance Standard deviation

n 30 2.706 0.035 0.186
Tmin 30 0.833 0.002 0.048
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seasonality can also be viewed as a combination of seven
consecutive daily patterns.

For modeling time series data, an ARIMA model is
used. Since seasonality exists in the data, the observed
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Figure 12. Residual values over one week.
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Figure 14. Seasonality from time series decomposition: daily pattern.
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residual time series data is not yet stationary. To test sta-
tistically for this, we utilize the Kwiatkowski-Phillips-
Schmidt-Shin (KPSS) test (40), a unit root test, with the
null hypothesis being that the data is stationary. After
one degree differencing, the p-value of the test is as low
as 0.0022, proving that the null hypothesis must be
rejected. Thus, ARIMA can be applied on the differen-
tiated residual time series as shown in Figure 16.

The auto.arima function from R package forecast has
been used to search iteratively for the best ARIMA
model. The best ARIMA has been proposed with a
dimension of (0,0,4). Considering the onedegree of dif-
ferencing already made, this leads to the final ARIMA
model with p= 0, d = 1, and q= 4. This model is a spe-
cial case of the moving average model. We then checked

the residuals from the ARIMA model (i.e., not the input
residuals) shown in Figure 17. The results suggest that
the residuals follow a normal distribution with zero
mean. There is no further significant correlation in the
residuals’ time series as seen in the auto-correlation func-
tion. However, the time plot of the residuals exhibits a
sharp peak in the middle of the time series, which might
be from a special non-recurrent event in the road net-
work. Except for this sharp peak, the variation of the
residuals stays within the same limits over time, that is,
the variance is constant.

From the stable two-fluid model coefficients and the
revealed seasonality, we can conclude that our approach
to using TNC vehicles for macroscopic traffic state
estimation with the two-fluid theory seems robust.

Figure 15. Seasonality from time series decomposition: weekly pattern.
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Figure 16. Differenced residual time series over one week.
Note: DoW = day-of-week.
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Consequently, we can utilize such data and models to
forecast traffic states with recurrent and non-recurrent
components.

Conclusion

This research retrieved one-month GPS trajectory data
from Didi Chuxing, a TNC providing large amounts of
on-demand mobility services in China. The original data
set comprised more than 30million GPS records per day
in Chengdu, China. The original data offer a good cover-
age of the road network and recurrent patterns, and the
data set thus is capable of representing the general traffic
state. We aggregated the data to 5min intervals and esti-
mated traffic states that are required for the two-fluid
model of urban traffic (5). Our results showed, first, that
traffic in Chengdu indeed exhibits convincingly the rela-
tionship postulated by the two-fluid theory with an aver-
age R2 ’ 0:98. Second, estimating daily two-fluid theory
parameters (Table 5) revealed that they are robust con-
cerning between-day variation. Third, we calculated the
residuals of the two-fluid model to understand the fluc-
tuations around the general model trend and to further
investigate its temporal patterns. We found that the

residuals exhibit a strong daily and weekly pattern,
which can be modeled by an ARIMA model, supporting
the idea that the congestion patterns are robust and
recurrent, and thus they can be used for predictions.
Based on this, in future research, we will then establish
the relationship between spatio-temporal traffic patterns
and the two-fluid model parameters as well as the mod-
el’s residuals.

The presented analysis will be developed further in
several directions to address its limitations. First, the
data is still biased, likely caused by the single data source
from ride-hailing vehicles. It is reasonable that ride-
hailing vehicles tend to travel more within the entertain-
ment and restaurants area, causing a biased estimation of
the total average speed for the whole network. To solve
this, we plan in the next steps to introduce more data
sources, like loop detector data, and use data fusion tech-
niques to understand and then minimize the potential
biases. In future research we will also extend the sample
not only to a longer time period but also to include more
cities. This will enable further study on how representa-
tive TNC vehicles are as a sensor for traffic management
and how stable and recurrent congestion patterns are
across cities.
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In closing, our analysis has three important implica-
tions. First, the results presented in this paper contribute
to recent work on estimating the parameters for the two-
fluid theory model. On the one hand, these results support
earlier findings that taxi GPS data can indeed be used for
two-fluid theory model parameter estimation and subse-
quent network monitoring (7), but at a much larger scale.
Building on the multi-modal extension of the two-fluid
model presented by Paipuri et al. (8), our findings (robust
parameters and predictable seasonality) underline our
motivation that such taxi vehicles can be used as moving
sensors to inform about the multi-modal traffic state once
a multi-modal speed model like the two-fluid model is
calibrated, for example, based on drone data. This link
will be investigated in future research. Second, having a
large fleet of moving sensors is a promising tool for moni-
toring and predicting the performance of urban road net-
works. Our results have shown that the data from on-
demand mobility services can be used to inform about the
network-wide traffic state in its dynamics and stability of
patterns over time. Although we lack a ground truth ref-
erence to assess the representativeness of the data, we can
infer that revealed patterns can be used for predicting
comparative traffic patterns. Consequently, traffic man-
agement centers should have an interest in obtaining such
trajectory data for improving their traffic state estimation,
in particular when complemented with a pattern predic-
tion. As many cities already have a fleet of vehicles for
many services, they could in principle rely on them as
moving sensors if they do not wish to rely on (commer-
cial) on-demand mobility trajectory data. Third, as trajec-
tory data is now available at a large scale to estimate the
two-fluid models in almost every city, this model should
be further exploited to understand which factors drive the
network performance, similar to an analysis based on sta-
tionary detector data (11).
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17. Ambühl, L., A. Loder, L. Leclercq, and M. Menendez.

Disentangling the City Traffic Rhythms: A Longitudinal

Analysis of MFD Patterns Over a Year. Transportation

Research Part C: Emerging Technologies, Vol. 126, 2021, p.

103065. https://doi.org/10.1016/j.trc.2021.103065.
18. Lopez, C., L. Leclercq, P. Krishnakumari, N. Chiabaut,

and H. van Lint. Revealing the Day-to-Day Regularity of

Urban Congestion Patterns With 3D Speed Maps. Scien-

tific Reports, Vol. 7, 2017, p. 14029. https://doi.org/10.

1038/s41598-017-14237-8.
19. Hintz, K. S., K. O’Boyle, S. L. Dance, S. Al-Ali, I. Ansper,

D. Blaauboer, M. Clark, et al. Collecting and Utilising

Crowdsourced Data for Numerical Weather Prediction:

Propositions From the Meeting Held in Copenhagen, 4–5

December 2018. Atmospheric Science Letters, Vol. 20, No.

7, 2019, p. e921.
20. Kumar, N., and M. Raubal. Applications of Deep Learn-

ing in Congestion Detection, Prediction and Alleviation: A

Survey. Transportation Research Part C: Emerging Technol-

ogies, Vol. 133, 2021, p. 103432. https://doi.org/10.1016/j.

trc.2021.103432.
21. Didi Chuxing. About Us. Didi, 2021. https://www.didiglo

bal.com/about-didi/about-us. Accessed July 31, 2021.

22. Didi Chuxing. DiDi Research Outreach Initiative. Didi, 2022.

https://outreach.didichuxing.com/en/. Accessed October 13,

2022.
23. Zhang, J., and Y. Sun. An Automatic Data Cleaning

Method for GPS Trajectory Data on Didi Chuxing GAIA

Open Dataset Using Machine Learning Algorithms. Proc.,

6th International Conference on Systems and Informatics

(ICSAI), Shanghai, China, IEEE, New York, 2019,

pp. 1522–1526.
24. Wang, C., Y. Hou, and M. Barth. Data-Driven Multi-Step

Demand Prediction for Ride-Hailing Services Using Con-

volutional Neural Network. In Proc., Advances in Com-

puter Vision: Science and Information Conference (K. Arai,

and S. Kapoor, eds.), Las Vegas, NV, April 25–26, 2019,

Springer, Cham, pp. 11–22.
25. Huang, Z., G. Huang, Z. Chen, C. Wu, X. Ma, and H.

Wang. Multi-Regional Online Car-Hailing Order Quantity

Forecasting Based on the Convolutional Neural Network.

Information, Vol. 10, No. 6, 2019, p. 193.
26. Niu, K., C. Wang, X. Zhou, and T. Zhou. Predicting Ride-

Hailing Service Demand via RPA-LSTM. IEEE Transac-

tions on Vehicular Technology, Vol. 68, No. 5, 2019,

pp. 4213–4222.
27. Kuang, L., X. Yan, X. Tan, S. Li, and X. Yang. Predicting

Taxi Demand Based on 3D Convolutional Neural Network

and Multi-Task Learning. Remote Sensing, Vol. 11, No. 11,

2019, p. 1265.
28. Liang, X. Applied Deep Learning in Intelligent Transporta-

tion Systems and Embedding Exploration. PhD thesis. New

Jersey Institute of Technology, 2019.
29. Khezerlou, A. V., X. Zhou, L. Tong, Y. Li, and J. Luo.

Forecasting Gathering Events Through Trajectory Desti-

nation Prediction: A Dynamic Hybrid Model. IEEE Trans-

actions on Knowledge and Data Engineering, Vol. 33, No. 3,

2019, pp. 991–1004.
30. Shi, D., X. Li, M. Li, J. Wang, P. Li, and M. Pan. Optimal

Transportation Network Company Vehicle Dispatching

via Deep Deterministic Policy Gradient. In Proc., Wireless

Algorithms, Systems, and Applications: International Con-

ference on Wireless Algorithms, Systems, and Applications

(E. Biagioni, Y. Zheng, and S. Cheng, eds.), Honolulu, HI,

June 24–26, 2019, Springer, Cham, pp. 297–309.
31. He, S., and K. G. Shin. Spatio-Temporal Capsule-Based

Reinforcement Learning for Mobility-on-Demand Net-

work Coordination. Proc., The World Wide Web Confer-

ence, San Francisco, CA, 2019, pp. 2806–2813.
32. Li, W., Z. Pu, Y. Li, and X. J. Ban. Characterization of

Ridesplitting Based on Observed Data: A Case Study of

Chengdu, China. Transportation Research Part C: Emer-

ging Technologies, Vol. 100, 2019, pp. 330–353.
33. Zhang, Y., T. Cheng, and Y. Ren. A Graph Deep Learn-

ing Method for Short-Term Traffic Forecasting on Large

Road Networks. Computer-Aided Civil and Infrastructure

Engineering, Vol. 34, No. 10, 2019, pp. 877–896.
34. Luo, X., B. Liu, P. J. Jin, Y. Cao, and W. Hu. Arterial

Traffic Flow Estimation Based on Vehicle-to-Cloud Vehi-

cle Trajectory Data Considering Multi-Intersection Inter-

action and Coordination. Transportation Research Record:

Zhang et al 115

https://doi.org/10.3389/ffutr.2021.665006
https://doi.org/10.3389/ffutr.2021.665006
https://doi.org/10.1016/j.trc.2013.06.009
https://doi.org/10.1016/j.trc.2013.06.009
https://doi.org/10.1016/j.trc.2021.103065
https://doi.org/10.1038/s41598-017-14237-8
https://doi.org/10.1038/s41598-017-14237-8
https://doi.org/10.1016/j.trc.2021.103432
https://doi.org/10.1016/j.trc.2021.103432
https://www.didiglobal.com/about-didi/about-us
https://www.didiglobal.com/about-didi/about-us


Journal of the Transportation Research Board, 2019. 2673:
68–83.

35. Gao, R., X. Guo, F. Sun, L. Dai, J. Zhu, C. Hu, and H. Li.
Aggressive Driving Saves More Time? Multi-Task Learn-
ing for Customized Travel Time Estimation. Proc., 28th
International Joint Conference on Artificial Intelligence,

IJCAI, Macao, China, 2019, pp. 1689–1696.
36. Zhang, X., L. Xie, Z. Wang, and J. Zhou. Boosted Trajec-

tory Calibration for Traffic State Estimation. Proc., 2019
IEEE International Conference on Data Mining (ICDM),
Beijing, China, IEEE, New York, 2019, pp. 866–875.

37. OpenStreetMap. OpenStreetMap. 2021. https://openstreet-
map.org. Accessed July 31, 2021.

38. Lee, G., et al. eviltransform. googollee, 2015. https://github.

com/googollee/eviltransform.
39. Kaiser, R., and A. Maravall Herrero. Short-Term and

Long-Term Trends, Seasonal Adjustment, and the Business

Cycle. Banco de España, Servicio de Estudios, Madrid,

Spain, 1999.
40. Kwiatkowski, D., P. C. Phillips, P. Schmidt, and Y. Shin.

Testing the Null Hypothesis of Stationarity Against the

Alternative of a Unit Root: How Sure Are we That Eco-

nomic Time Series Have a Unit Root? Journal of Econo-

metrics, Vol. 54, No. 1–3, 1992, pp. 159–178.

116 Transportation Research Record 2677(5)

https://openstreetmap.org
https://openstreetmap.org
https://github.com/googollee/eviltransform
https://github.com/googollee/eviltransform

