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Abstract
Gaussian processes (GPs) can be used to predict future states of a system with credible intervals when considering mul-
tiple previous trajectories for training. For example, predicting the degradation of mechanical structures is one applica-
tion in which they have shown their usefulness. In modeling the system output as a GP, the output is presumed to be
normally distributed—assuming the predictions to be defined from negative to positive infinity. However, this assump-
tion does not hold in many applications as, for example, crack lengths and damage indices can only assume positive val-
ues. Moreover, several degradation trajectories for training are rare in real-world applications, and the current state of a
monitored system, which is used to update the prediction, can often be not directly measured. This paper presents an
approach that utilizes warped GPs for treating data that is not normally distributed while considering multiple degrada-
tion trajectories for training. The approach is successfully applied to two different crack propagation examples: first, an
analytically computed pre-cracked infinite plate, and second, two equally manufactured aluminum structures that resem-
ble a lower section of a wing. For the investigated aerospace structures, we use finite element (FE) simulations to gener-
ate multiple degradation trajectories for training. To estimate their hidden degradation states, we infer the current crack
length from strain measurements by using Bayesian inference. The results show that the approach of warped GPs pro-
vides more accurate predictions than using standard ones for non-normally distributed data, as is the case for crack
growth problems. The approach enables quick training of warped GPs while considering multiple training trajectories.
Additionally, the crack lengths estimated from strain measurements agree well with the visually inspected ones.
Ultimately, the presented approach enables estimating the current and future degradation states with credible intervals
that can be used to improve maintenance scheduling.
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Introduction

Mechanical structures are usually used under changing
load conditions and must withstand fatigue loads.
Fixed inspection intervals ensure safe operation but are
often too conservative, resulting in unnecessary system
downtimes and increased operational costs. In order to
overcome these drawbacks, new approaches consider
variable inspection intervals. These include structural
health monitoring (SHM) and prognostics and health
management (PHM). While SHM monitors the current
state of a system by processing sensor data, PHM
extends this by predicting the state of the system and
thus forecasting future damages.1 This leads to benefits

such as improved operational reliability and reduced
operating costs.2
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Several machine learning methods can be used to
predict the degradation of structures. Since recurrent
neural networks (NNs) are explicitly suitable for deal-
ing with time-series data, they are widely used for
prognostics.3 For example, Do et al.4 utilizes recurrent
NNs to predict the crack growth in structures and
Malhi et al.5 to estimate the degradation of bearings.
Moreover, Heimes6 and Peng et al.7 used them to fore-
cast the time to failure of turbines. However, one
drawback of recurrent NNs is that they do not provide
any information on their predictions’ uncertainties by
default, which is especially important for fatigue
problems.

Support vector machines are another method that
researchers frequently use. Many authors8–13 utilized
support vector machines to predict the degradation of
bearings. Furthermore, Fumeo et al.14 used them to
estimate the remaining useful life of railway transpor-
tation systems. As recurrent NNs, support vector
machines do not provide estimates about the uncer-
tainty associated with the prediction by default. Yet,
the fatigue life of structures, especially at the beginning
of usage, is highly uncertain. Using a prediction
method that does not account for uncertainties would
suggest a false certainty about the fatigue life.

By contrast, Gaussian process regression (GPR) is a
data-driven approach for PHM15 which has the advan-
tage of modeling the uncertainty of the predicted states.
This is particularly important in fatigue mechanics
since fatigue-induced damage is highly uncertain.16

Even though there exist methods for leveraging recur-
rent NNs and support vector machines to predict their
outputs with credible intervals (e.g. mixture density
networks or relevance vector machines), Gaussian pro-
cesses (GPs) describe distributions of trajectories rather
than points and thus enable predicting the entire degra-
dation process instead of merely the fatigue life. This
allows us to estimate the probability of failure for each
future time point. A GP is defined by a mean and cov-
ariance function17,18 that greatly influences prediction
accuracy. In order to improve the selection of these
functions, Pfingstl and Zimmermann19 introduced an
approach to infer them from previously collected tra-
jectories. Yet, a major disadvantage of GPs is that they
presume the data to be normally distributed, thus
assuming the predictions to be defined from negative
to positive infinity.

Contribution

In many applications, presuming normally distributed
data is not valid as, for example, crack lengths and
damage indices can only assume positive values.
Moreover, training data such as degradation trajec-
tories of aircraft structures is often rare in real-world

applications, and the state of the system, for example,
the crack length, is hidden. In order to improve and uti-
lize GPs for PHM problems, we (1) transform the data
before training the GP, (2) incorporate prior knowl-
edge by using analytical equations and results from
finite element (FE) analyses, and (3) infer the hidden
state of the system from sensor data by applying
Bayesian inference. The proposed approach is used to
predict the crack growth in an infinite plate and in two
similar aerospace structures resembling a lower part of
an aircraft wing. Even though it is currently common
practice in the aviation industry to repair a crack as
soon as it is detected, in the future, with a fully operat-
ing SHM system, this might become too expensive.
Predicting the crack growth makes it possible to wait
until either multiple parts require repair or structural
integrity can no longer be assured. Current require-
ments are primarily based on NDI/visual inspections
where the aircraft is already grounded, and the location
can be accessed rather easily once the engineer has
found the crack. This might change when reliable SHM
systems are demonstrated. The proposed approach is
not limited to predicting crack lengths. Predicting other
damage indices is also possible.

Definition of terms

In the course of this work, we distinguish between pre-
vious and current data. In this paper, previous data con-
sists of several trajectories describing the degradation
of a mechanical system. These trajectories can be gath-
ered by executing simulations or experiments. By con-
trast, current data represents the data of the currently
monitored mechanical system for which degradation is
to be predicted. Furthermore, we use the term degrada-
tion to describe the fatigue process in mechanical sys-
tems. In this paper, we use this term particularly for
propagating fatigue cracks.

Gaussian processes

Over the last decade, many researchers have frequently
been using GPR for nonlinear regression, see
Reference,20–32 as the model provides not only the pre-
dicted function value itself but also its credible interval.
A GP is fully defined by its mean and covariance func-
tions, my, u(x) and ky, u(x, x0), with

y;GP(my, u(x), ky, u(x, x0)), ð1Þ

where usually predefined mean and covariance func-
tions with some free parameters u are used. These
parameters are optimized by minimizing the negative
log-likelihood (NLL) in order to fit the model to the
training data.
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Basis functions

In order to use GPs for PHM, an approach based
on several previously collected trajectories was
recently published by Pfingstl and Zimmermann.19 By
using p linearly independent basis functions
fy(x) = ½f(1)

y , :::,f(p)
y �
> with k 2 1, :::, p to fit all m previ-

ously collected trajectories fx(j), y(j)g with j 2 1, :::,m

f (j)
y (x(j)) = y(j) = fy(x(j))>b(j), ð2Þ

the GP can be expressed as

my(x) = fy(x)>m̂b ð3Þ

ky(x, x0) = fy(x)>Ŝbfy(x0) ð4Þ

fy(x) = y;GP(my(x), ky(x, x0)), ð5Þ

where m̂b and Ŝb are the sample mean vector and the
sample covariance matrix of the fitting coefficients b(j),
respectively. The fitting coefficients b(j) can be deter-
mined by applying linear regression. Therefore, no free
parameters u of the mean and covariance function have
to be optimized by minimizing the NLL. This turns
the, in general, non-convex optimization problem into
a convex one and thus significantly reduces the training
time, see Reference19 for more details.

The approach first tries to describe all possible func-
tions by a GP. Second, after determining the mean and
covariance function, the GP can be updated by com-
puting the conditional distribution based on currently
measured data, that is, data describing the current state
of the monitored system. When the mean function
my(x) and the covariance function ky(x, x0) are defined,
and we have measured the data y( + ) (e.g., crack
lengths) at the locations x( + ) (e.g., numbers of cycles),
we can compute the conditional distribution (e.g., over
the crack length) at the location x (e.g., a future num-
ber of cycles) by

f (x) jx( + ), y( + );GP myj+ (x), kyj+ (x, x0)
� �

, ð6Þ

with

myj+ (x) = my(x) + ky(x, x( + ))

ðky(x( + ), x( + )) + s2
yIÞ
�1

y( + ) � my(x( + ))
� � ð7Þ

and

kyj+ (x, x0) = ky(x, x)� ky(x, x( + ))

ðky(x( + ), x( + )) + s2
yIÞ
�1

ky(x, x( + ))
>
,

ð8Þ

where sy is the observation error. The conditional dis-
tribution described by the conditional mean myj+ (x)
and variance kyj+ (x, x) is then our prediction at x. We
can, of course, evaluate the conditional distribution at

multiple locations x, allowing us to rather predict the
entire future degradation trajectory than just a single
point in future. By splitting the approach into a train-
ing and an updating process, the method enables pre-
dicting the degradation trajectory rapidly since only the
conditional distribution (Equations (7) and (8)) must
be evaluated.

Warped GPs

By modeling the system output with a GP, the output
is assumed to be normally distributed—presuming it to
be defined from negative to positive infinity. This
assumption, however, is often not valid as, for exam-
ple, crack lengths, damage indices, sunlight time, etc.,
are only defined in the positive domain. For a better
treatment of data that is not normally distributed,
Snelson et al.33 introduced warped GPs. The idea is to
transform the observed space y onto a latent space z
by a so-called warping function cu(y) = z which usually
has some free parameters u. The GP is then modeled in
the latent space z as

cu(y) = z;GP(mz, u(x), kz, u(x, x0)), ð9Þ

where mz, u(x) and kz, u(x, x0) are the mean and covar-
iance function in the latent space z, respectively. For
predicting the function values of the observed space y,
the predictions of z have to be transformed by the
inverse warping function c�1

u (z).
Some researchers have already used warped GPs,

for example, to predict the power supplies of wind tur-
bines. In contrast to wind speeds, power supplies can-
not be assumed to be normally distributed due to the
nonlinear correlation between wind speed and power.34

Therefore, the authors of35–37 utilized warped GPs to
predict the power supplies of wind turbines. They used
a sum of tanh as their warping function and proved the
approach’s usefulness on real data. Moreover, Mateo-
Sanchis et al.38 applied warped GPs to oceanic content
data. They predicted the oceanic chlorophyll content
from multispectral data and concluded that warped
GPs outperform standard GPs. Again, a sum of tanh

as the warping function was used.
However, if the inverse warping function is not

available in closed form, which is the case in the before-
mentioned papers, additional complexity arises from
numerical approximations.39 Therefore, one can use,
for example, the Box–Cox transformation40

cu(y) =
yu1�1

u1
, if u1 6¼ 0

log y, if u1 = 0 :

�
ð10Þ

as the warping function. For example, Rios and
Tobar39 utilized a slightly adjusted type of the Box–
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Cox transformation function and showed its effective-
ness on real data, enforcing their predicted yearly sun-
spot numbers to be strictly positive. A similar
application of warped GPs was presented by Goncxalves
et al.41 The authors estimated future sunspot numbers
and enforced their predictions to be positive by using
an integrated softplus function in their warping
function.

Even though these studies show that warped GPs
are able to deal with non-normally distributed data,
researchers tend to use them rarely. This might be
because the warping function introduces additional
parameters to the modeling task. These parameters
must be optimized in addition to the mean and covar-
iance function parameters. Therefore, one entailed
problem is the arising computational complexity by
determining not only the mean and covariance function
parameters but also the ones of the warping function.
Another problem is that after introducing a warping
function, an optimizer might find, in fact, a different
solution. But the result is not necessarily better, as
minimizing the NLL is, in general, a non-convex opti-
mization problem. In order to remove the mean and
covariance function parameters, we can derive these
functions from previously gathered trajectories. In this
way, we significantly reduce the computational com-
plexity and additionally integrate prior knowledge into
warped GPs.

Approach

In order to exploit the advantages of warped GPs and
the use of basis functions for inferring the GP model
quickly from previously collected data, both
approaches are combined in the following. For doing
so, it is assumed that the warped realizations f (j)

z (x)
can be approximated by a linear combination of p line-
arly independent basis functions fz(x) = ½f(1)

z , :::,f(p)
z �
>

in the latent space z. The warped trajectories
fx(j),cu(y(j)) = z(j)g can therefore be represented by a
weighted sum of basis functions as

f (j)
z (x(j)) = z(j) = cu(y(j)) = fz(x

(j))>b(j) ð11Þ

and the GP in the latent space as

mz(x) = fz(x)>m̂b ð12Þ

kz(x, x0) = fz(x)>Ŝb fz(x
0) ð13Þ

fz(x) = z;GP(mz(x), kz(x, x0)): ð14Þ

Note that the GP model is independent of any free
parameter u. However, by introducing a warping
function, free parameters, which need to be

optimized, are integrated in the formulation. In order
to determine the free parameters, the NLL in the
observed space py is minimized. If the warping func-
tion is strictly monotonic, the optimization problem
can be stated as

u� = argmin
u
�
Xm

j = 1

log py(y(j))

= argmin
u
�
Xm

j = 1

log pz(z
(j)) det diag

dcu(z(j))

dy

� �����
����

� �

= argmin
u
�
Xm

j = 1

log pz(cu(y(j))) +
Xnj

i = 1

log
dcu(y(i, j))

dy

����
����

 !

ð15Þ

with the given probability density function in the latent
space

pz(z
(j)) =

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2p)nj detKz

p

exp� 1

2
cu(y(j))� mz(x

(j))
� �>

K�1
z

cu(y(j))� mz(x
(j))

� �
,

ð16Þ

where nj is the number of data points of trajectory j,
and

Kz = kz(x
(j), x(j)) + diags2

z (y(j)): ð17Þ

The gradient with respect to the parameter uq is given by

∂

∂uq

� log py(y(j)) =
1

2

∂cu(y(j))

∂uq

� �>
K�1

z cu(y(j))� mz(x
(j))

� � 

+ cu(y(j))� mz(x
(j))

� �>
K�1

z

∂cu(y(j))

∂uq

� ��

�
Xnj

i = 1

dcu(y(i, j))

dy

� ��1
∂

∂uq

∂cu(y(i, j))

∂y

� � !
:

ð18Þ

By transforming the observed data into the latent
space, the observation error is warped too. A constant
observation error in the observed space sy can be
approximated in the latent space by

sz(y) = sy

dcu(y)

dy

����
����: ð19Þ

This approximation is particularly accurate if the
observation error sy and the second derivative of the
warping function at y are rather small. Considering this
nonconstant observation error in the latent space, a
weighted least squares regression is applied to deter-
mine the weights of the basis functions
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b̂(j) = F(j)>
z WF(j)

z

� ��1
F(j)>

z Wz(j), ð20Þ

with

W= diag
dcu(y(j))

dy

� ��2

ð21Þ

and

F(j)
z = Fz(x

(j)) = f(1)
z (x(j)), :::,f(p)

z (x(j))
	 


: ð22Þ

Now, the mean and covariance function can be deter-
mined with Equations (20)–(22) (fitting coefficients)
and 12–13 (mean and covariance function) within
every iteration step of the warping function parameter
optimization. The result of the presented approach is
an optimized warping function and a determined GP
in the latent space. The observation error sy can be
approximated by

ŝy =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

Xm

j = 1

1

nj � p

Xnj

i = 1

c�1
u (F(j)

z b̂
(j)

)� y(j)
� �2

vuut : ð23Þ

Afterwards, the conditional distribution in the latent
space can be computed by substituting my(x), ky(x, x0),
y( + ) and s2

yI for mz(x), kz(x, x
0), z( + ) and diag s2

z (y(j)) in
Equations (7) and (8).

Application to an infinite plate

As a first example, we examine the proposed method on
an academic example, a pre-cracked infinite plate, for
which the underlying formulas and solutions are known.

Data generation

Considering an infinite plate with a centered crack, the
range of the stress intensity factor (SIF) DKI can be
expressed by

DKI (a) = Ds‘

ffiffiffiffiffiffi
pa
p

, ð24Þ

where a is the crack length and Ds‘ the remotely
applied stress range. With Paris’ law

da=dN = CDKI (a)a, ð25Þ

where C and a are material parameters, the crack
growth rate da=dN can be quantified. With the initial
condition N0 = 0 and an initial crack length a0, the dif-
ferential equation in Equation (25) can be analytically
solved by

a(N) =
(2� a)CDsa

‘p
a
2

2
N + a

2�a
2

0

� � 2
2�a

, ð26Þ

where N is the number of cycles. For this example, 50
trajectories are simulated by setting Ds‘ = 48:26 MPa,

a0 = 9310�3m, a = 2:9, and sampling C from a

normal distribution with mC = 8:7096310�11 and

sC = 1:519310�11 (C with ½da=dN �=m=cycle and

½DKI �=MPa
ffiffiffiffi
m
p

) for each trajectory. Often, researchers
assume C to follow a log-normal distribution. A log-
normal distribution approaches a normal distribution

for mC

sC
! ‘. In our case, mC

sC
= 5:73 which approximately

leads to a normal distribution. This is why we can
assume C to be normally distributed. In order to repre-
sent the measurement noise, an observation error

sy;N (0, 0:16310�6m2) is added to the computed

crack lengths. Figure 1(a) displays the crack growth
trajectories already split into training and test data.

Training of GPs

First, a GP without the use of a warping function is
trained on 35 trajectories of the simulation data repre-
senting previously collected data. A set of polynomial
basis functions fy(x) with orders 0 to 5 is chosen,
resulting in a polynomial mean and covariance func-
tion of order 5, see Equations (2)–(4). The determined
GP with its mean function and symmetric 95% cred-
ible region is shown in Figure 1(b). The figure reveals
that the credible region assumes negative values, which
is nonphysical since crack lengths can only be zero or
positive.

In the second case, the warping function in
Equation (10) is considered. The free parameter u1 is
optimized with respect to Equation (15). In this case,
two polynomial basis functions in the latent space
fz(x) with orders 0 and 1 are chosen since the inner
part of Equation (26) represents a GP with straight
lines. This is because the parameters a, Ds‘ and a0 are
constants, N is the variable, and C is normally distribu-
ted. The optimization of the warping function should
therefore lead to the inverse of the outer exponent

u�1 =
2� a

2
= � 0:45 ð27Þ

such that the latent space is modeled by a GP with
straight lines. In this example, the optimizer leads to a
value of û1 = � 0:4489 with a relative error of 0.25%,
which is a close approximation of the optimal solution.
The difference results from approximating the observa-
tion error in the latent space with Equation (19).
Considering the trajectories without the added noise
leads to the analytical solution.

The resulting GP in the latent space and the corre-
sponding warped GP, which is mapped to the observed
space by the inverse warping function, are shown in
Figures 1(c) and (d), respectively. Figure 1(d) shows
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that the credible region of the warped GP assumes only
positive values. Figure 1(c) additionally shows that the
combination of the warping function and the choice of
polynomial basis functions with orders 0 and 1 leads to
the desired solution. During the optimization process,
the optimizer tries, on the one hand, to warp the data
such that the trajectories follow a normal distribution
in the latent space. On the other hand, the optimiza-
tion tries to straighten the simulated data in the latent
space to fit the presumed basis functions.

Figure 2 shows another effect related to the trans-
formation, which we mentioned at the end of the
Approach section. The constant observation error sy,
see Figure 2(a), is warped too and varies over N in the
latent space, see Figure 2(b). For higher cycle numbers,
the error sz decreases. The proposed approach takes
this into account by applying weighted least squares

regression and approximating the warped observation
error sz according to Equation (19).

Condition GPs on current crack length data

In the next step, we gradually condition the GPs on cur-
rently observed data to update the prediction for an
unseen trajectory according to Equations (6)–(8). This is
done for the entire test set, even though only one test tra-
jectory is depicted here. Figure 3 shows the GP’s predic-
tion of the longest test trajectory (indicated in red)
conditioned on currently observed data. Since the moni-
toring process is continuous, not all measurements are
available from the beginning. The currently available
ones are shown in black. In both cases (standard and
warped), the credible regions narrow down with more
available current data. Figure 3(a) reveals that the stan-
dard GP initially updates the mean function so that it
becomes negative. This is because the current data has a
relatively flat trend which, in combination with the
assumed basis functions, results in such predictions. By
comparison, the warped GP in Figure 3(b) shows strictly
positive predictions. The warped GP is conditioned in
the latent space, and the results are afterwards mapped
to the observed space by the inverse of the warping func-
tion, leading to strictly positive predictions.

In order to compare the two models, the mean nega-
tive log-likelihood (MNLL), the mean absolute error
(MAE), and the root mean squared error (RMSE) of
the test set are quantified. The crack lengths predicted
at the trajectory’s last number of cycles for each condi-
tioning step are compared to the latest realized crack
length for all metrics. The results are listed in Table 1.
For all metrics, the warped GP performs better than
the standard GP as it predicts strictly positive crack
lengths and resembles the optimal solution (GP with
straight lines in the latent space with u�1 = � 0:45)
closely. The advantage of warped GPs is particularly
apparent for long trajectories. One reason for this is

(a) (b)

(c) (d)

Figure 1. (a) Crack growth trajectories, (b) GP in the
observed space, (c) warped GP in the latent space and (d) in the
observed space.
GP: Gaussian process.

Figure 2. Observation error in (a) observed space and (b)
latent space.

Figure 3. Crack growth prediction for the infinite plate at
cycle number 38,000 of (a) GP and (b) warped GP.
GP: Gaussian process.
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that long trajectories have a relatively small slope at
the beginning.

As we have seen, utilizing the Box–Cox transforma-
tion for warping our data leads to approximations close
to the analytical solution for the infinite plate example.
However, using this exact type of transformation func-
tion results in imaginary numbers if u1 is not an integer
and y is negative. Additionally, if u1 is an even number,
the warping function becomes non-monotonic over
y 2 R, violating our assumption.

As presented earlier, we first compute our predic-
tions in the latent space and second map them by the
inverse warping function to the observed space. Since
the inverse of the Box–Cox transformation reads

c�1
u (z) = y = (u1z + 1)

1
u1 =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
u1z + 1u1

p
, ð28Þ

we must also ensure that z ø � 1
u1

for u1.0 and z<� 1
u1

for u1\0 (both for u1 6¼ 0 and u1 6¼ 1). In the infinite
plate example, we do not encounter any of the before-
mentioned problems as our data is strictly positive
(y.0) and our predictions in the latent space comply
with the requirement z<� 1

u1
.

These constraints limit the applicability of this spe-
cific type of Box–Cox transformation. Since the Box–
Cox transformation can be useful even in situations
where no power transformation can produce normality
exactly,42 it is worth adjusting it. Bickel and Doksum43

presented the modified Box–Cox transformation
function

c(y) = z =
sgn(y) yj ju1 � 1

u1

for u1 . 0, ð29Þ

which was also used by Rios and Tobar.39 This modifi-
cation leads to strictly monotonic warping functions
over y 2 R also if u1 becomes an even number. Yet, for
u1\0, the modified Box–Cox transformation function
results in a discontinuity at y = 0. Therefore, we must
constrain u1 to be positive, ensuring our warping func-
tion complies with the assumptions made for our
approach.

Ultimately, the infinite plate example reveals the
great predictive capabilities of warped GPs. Since the
GP is modeled in a latent space, the warping approach
is more flexible than standard GPs. The approach

enables the prediction of non-normally distributed tra-
jectories, which is especially useful for PHM problems
due to their non-negative nature. By contrast, since
standard GPs rely on a normal distribution, the possi-
ble functions of their conditional distribution can
become negative. Yet, one drawback of warped GPs is
that the parameters of the warping function need to be
optimized, leading to greater computational effort.

Application to an aerospace structure

The method proposed in the Approach section is also
applied to predict the crack growth in an aluminum
panel that resembles a lower section of a civil aircraft
wing. The structure is made of the aluminum alloy Al
2024-T351 with Young’s modulus of E = 72, 000 MPa
and a Poisson’s ratio of n = 0:34. It is 1,920 mm long
and 570 mm wide and has an elliptical armhole in its
center with a length of 135 mm and a width of 75 mm.
Around the armhole are 16 holes with a diameter of
4 mm. The specimen is shown in Figure 4(a).

The armhole in the center of the structure is usually
covered by a lid that is fixed on the smaller holes
around it. The armhole allows reaching into the wing
to inspect the inner part of the structure with an endo-
scope. This aerospace structure is prone to fatigue

Table 1. Evaluation results for the infinite plate of the standard and warped GP.

Model MNLL MAE RMSE

GP 23.6 14.7 mm 22.2 mm
Warped GP 24.7 232.2% 6.8 mm 253.6% 6.8 mm 269.4%

GP: Gaussian process; MNLL: mean negative log-likelihood; MAE: mean absolute error; RMSE: root mean squared error.

(a) (b)

Figure 4. (a) Specimen and (b) CAD of the test rig.
CAD: computer-aided design
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cracks, and it is used to showcase the developed
method on warped GPs.

The present section is divided into five parts: First,
we describe the experimental setup of the executed fati-
gue tests. Second, the simulation of multiple crack
growth trajectories for generating training data is
explained. Third, the generated trajectories are used
for training a warped GP according to the proposed
method. Fourth, we show how to estimate the current
state of the structure, that is, the current crack length,
based on measured strain data. And fifth, future crack
lengths are predicted by using the trained warped GP
and the estimated current crack lengths.

Experimental setup

During the fatigue test of the aerospace structure, the
load was applied by a hydraulic cylinder at an angle in
order to represent the shear stresses in a wing resulting
from twisting, see Figure 4(b). The loading program is
based on four different flight types, A, B, C, and D, to
realistically simulate the forces acting on an aircraft
wing, see Figure 5.

They consist of 230, 190, 114, and 146 load steps,
respectively. The flight types are ordered randomly for
the first 100 flights and repeated consecutively after-
wards. The occurrences of the different flight types, A,
B, C, and D, in the first 100 flights are 55, 15, 20, and
10 times, respectively.

Two equally manufactured specimens, P02T01 and
P03T01, were tested with the same loading program.
Several sensors were attached to the panel to monitor
the structures. They were predominantly positioned
according to the method described in Reference.44,45

According to this method, the change of strain regions
due to different possible cracks are evaluated with FE
analyses. Based on a certain requirement for the change
of strain that can be detected by the applied sensors,
the positions that satisfy this requirement for every pos-
sible crack are determined. Therefore, the method
ensures that the deployed sensors are able to detect the
occurring cracks. In total, two single strain gauges and

three strain rosettes were attached to specimen P02T01
and two single strain gauges and four strain rosettes to
specimen P03T01, see Figures 6(a) and (b). For each
flight, the strains were measured at every load step.

The experiments were run until final fracture of the
structure, see Figure 7. During the experiment, the
structure was regularly inspected by test engineers in
order to detect cracks and measure their lengths.

Generation of training data

The method proposed in the Approach section enables
integrating prior knowledge from previously collected
degradation trajectories into GPs. As large structural
fatigue tests are usually carried out only once, previ-
ously measured degradation trajectories are missing.
However, due to analytical equations and FE analyses,
much of the degradation behavior is understood a
priori. In order to integrate this knowledge into GPs,
degradation trajectories are gathered by conducting
virtual simulations. First, the fatigue life and second,
the crack growth are computed to simulate the

(a) (b)

Figure 5. Loading program with flight types (a) A and B and
(b) C and D.

Figure 6. Sensors of (a) P02T01 and (b) P03T01 with the two
investigated strain directions Q3A1 and Q3A2.

Figure 7. Fatigue process of aerospace structure with (a)
intact structure, (b) crack growth, and (c) final fracture.
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structure’s degradation. The entire simulation process
is schematically shown in Figure 8.

Fatigue life. First, an FE analysis is carried out to quan-
tify the stresses in the structure. Two local hot spots
are found at the small holes 5 and 6 on the side toward
the armhole. In the following, we assume the crack to
start at hole 6. However, the methodology can also be
extended to consider cracks starting from multiple
spots by modeling a mixture of GPs.

By applying rainflow counting and the Haigh dia-
gram to the computed stress at hole 6, the stresses for
the entire loading program can be mapped to

amplitude stress blocks with a constant stress ratio of
R = � 1:0. Using Miner’s linear damage accumulation
rule and the 50% S–N curve corresponding to the
structure’s material, the median number of flights after
which a crack will occur can be determined. Note that
we denote the number of flights as Nf. In order to
quantify the uncertainty of the crack initiation, a mate-
rial corresponding scatter parameter s = 0:197 of the S–
N curve from Reference46 is used. The resulting log10
normal distribution and the S–N curve are shown in
Figure 9. Now, the number of flights for an initial
crack Nf, 0 can be sampled from this distribution.

Crack growth. Second, the crack growth in the structure
is evaluated. To quantify the relationship between the
SIF and the crack length a, multiple crack computa-
tions are evaluated using the extended finite element
method (XFEM).47–49 The crack is assumed to first
propagate toward the armhole (crack length a1) and
then toward the edge of the structure (crack length a2),
see Figure 10.

In total, 382 XFEM computations (static analyses),
see Figure 11(a), with different crack lengths are evalu-
ated to quantify the relationship between a and KI .
Figure 11(b) reveals a scatter of the simulated data
mainly toward longer crack lengths (a.30mm). The
scatter results from numerical errors due to larger ele-
ments further away from the armhole. As we do not
want to consider these errors, we model only the
general relationship and not the scatter/distribution of
the data points. Two separate NNs, for a1 and a2, with

Figure 8. Schematic representation on how the crack growth in the aerospace structure is simulated where Fmax is the maximum
force in the loading program.

Figure 9. S–N curve and log10 normal distribution for the
present loading program.
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two and four neurons (one hidden layer) are trained to
map the crack length onto the SIF KI (a), see Figure
11(b).

In this paper, we define the total crack length a as

a =
a1, if a\10mm
a1 + 2r + a2, if a.10mm :

�
ð30Þ

As Pfingstl et al.,44 an initial crack length of
a0 = 0:635mm which is, according to Ryschkewitsch,50

the smallest crack length detectable by eddy current
testing, is assumed. The crack growth can then be com-
puted by the Paris law of Equation (25) with

DKI = KI , max � KI , min: ð31Þ

In order to reduce computational time, the crack
growth computations are simplified by applying rain-
flow counting51 to the load steps of 100 flights to com-
pute the load ranges and using 1=100 of their
frequencies for each flight. Furthermore, we assume
KI , min = 0 and that the crack length is constant during

one flight. According to Virkler et al.,52 crack growth is
subject to great uncertainties. Therefore, C is assumed
to be a random variable that is normally distributed
with mC = 8:7096310�11 and sC = 6:5680310�12

(determined from the crack growth data published by
Virkler et al.52 with C with ½da=dN � = m=cycle and
½DKI �=MPa

ffiffiffiffi
m
p

), and the material parameter a is set to
a = 2:9 according to Spencer et al.53 Moreover, the
error of the load range is varied according to a normal
distribution with sdF = 5:0% for each trajectory. For
computing different crack growth trajectories, a set of
parameters (Nf, 0, C, dF) is sampled for each trajectory.

Figure 12 shows the computed degradation trajec-
tories. Note that the step in each trajectory results from
the two different cracks, a1 and a2, and the added dia-
meter of the hole after crack 1 reaches the armhole.
We can also see the huge scatter of the initial starting
points of the trajectories that results from the S–N
curve distribution shown in Figure 9. Furthermore, the
curvatures of the trajectories vary due to different val-
ues for C and DF. Figure 12 also shows that no obser-
vation error is artificially added to the simulation data.

Training of GP

A warped GP can now be trained on this simulation
data set according to the method proposed in the
Approach section. By using simulation data for train-
ing, however, one has to be sure that the simulations
are correct. When there are doubts about whether the
simulations represent the experiment well, they should
be verified based on experiments before using them as
the training set.

For this example, the modified Box–Cox transfor-
mation of Equation (28) is used as the warping function
and a polynomial of degrees 0 and 1 (intersection and
slope) as basis functions. Therefore, the optimizer tries
again to achieve not only a normal distribution in the
latent space but also straight lines. The optimized

Figure 10. Assumption for crack propagation where crack 1
first propagates toward the armhole (left) and crack 2 to the
edge of the specimen afterwards (right).

(a) (b)

Figure 11. (a) XFEM computation and (b) trained NN.
XFEM: extended finite element method; NN: neural network.
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solution is û1 = 4:46310�8 which is close to a log trans-
formation. And for a log transformation, the distribu-
tion in the observed space is completely defined on the
positive domain. Thus, the predicted crack lengths will
stay positive after transferring the values from the
latent space to the observed space. Moreover, by using
polynomial basis functions of degrees 0 and 1, we
ensure that the resulting predictions are strictly mono-
tonic in the observed space. Since no observation error
is present in the simulation data, a non-weighted least
squares regression is applied to determine the basis
functions’ weights. The modeling error in the latent
space sz,m is assumed to be constant and is approxi-
mated by taking the square root of the average of all
squared residuals in the latent space.

Figures 13(a) and (b) show the training data and the
determined warped GP in the observed and the latent
space. It can be seen that the trajectories are almost
straight lines in the latent space. Moreover, the mean
function and the credible region in the observed space
assume only positive values which is in agreement with
the physics. Figure 13(a) depicts the prediction before
any data of the monitored structure is available.

Estimation of current states

In order to update the trained GP, the current state of
the system has to be observed. As the present GP is
based on crack growth data, the current crack length
must be determined. In the present study, the applied
strain gauges are used to determine the current crack
length. With Bayes law, the crack length a can be
inferred from the measured strain eSG by

p(ajeSG) =
p(eSGja)p(a)Rac

a0

p(eSGja)p(a)da

, ð32Þ

where p(a) is the prior distribution and p(eSGja) the
likelihood. For measuring multiple strains and assum-
ing them to be measured independently, the probability

density function of eSG for s applied strain gauges given
a becomes

p(eSGja) = p(e(1)
SG, . . . , e(s)

SGja) =
Ys

l = 1

p(e(l)
SGja): ð33Þ

Additionally assuming the prior p(a) to be uniformly
distributed within a0 and ac, the probability density
function of a given all strain measurements becomes

p(ajeSG) =

Qs
l = 1

p(e(l)
SGja)

Rac

a0

Qs
l = 1

p(e(l)
SGja)da

: ð34Þ

In order to be able to use Equation (34), the likeli-
hoods p(e(l)

SGja) with l 2 1, :::, s that incorporate how
the measured data eSG depends on the current crack
length a have to be known. Therefore, the strains of all
XFEM computations (see the subsection Generation
of training data) are evaluated for each sensor position
to quantify the relationship between the crack lengths
and the strains. Then, the results are used to fit an NN
for each strain gauge position. Since we only consider
strictly monotonic strain gauges, in total, seven NNs
e(l)
NN(a) are trained. By assuming a normally distributed
measurement error of se = 200 mm=m, the likelihoods
p(e(l)

SGja) are completely defined and can be evaluated.
In order to cancel out the bias term which might

emerge from the difference between the FE analysis
and the real measurement, only the relative change of
strain due to a crack

De(l)
NN, rel(a) =

e(l)
NN(a)� e(l)

NN(a0 = 0)

e(l)
NN(a0 = 0)

ð35Þ

and

De(l)
SG, rel =

e(l)
SG � e(l)

SG(a0 = 0)

e(l)
SG(a0 = 0)

ð36Þ

Figure 12. Computed degradation trajectories.

(a) (b)

Figure 13. Trained GP in (a) the observed space and (b) the
latent space.
GP: Gaussian process.
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are considered. Since settlement effects happen at the
beginning of each test, the measurement of flight 500 is
used as eSG(a0 = 0).

Figures 14(a) and (b) show the absolute strains for
two strain gauge positions computed by FE analyses
(black crosses). Additionally, the blue lines indicate the
trained NNs. As mentioned before, we do not use the
absolute values since there might be a bias term
between the FE analysis and the measurements.
Therefore, we compute the relative change of strains
shown in Figures 14(c) and (d). Moreover, the change
of strains for two different sensor positions (Q3A1 and
Q3A2) over the number of flights are displayed in
Figures 14(e) and (f). By using the strain’s relative
change, all lines begin at zero, canceling the bias term.
The figures also show that if the crack grows, the strain
becomes smaller at the position of sensor Q3A1 and
larger at Q3A2. Furthermore, Q3A1 indicates a very
sensitive behavior for small cracks and Q3A2 for larger
ones. This can be explained by looking at Figure 6(b).
The figure shows that the crack occurs close to posi-
tion Q3A1 and cuts the load path so that smaller

strains are measured. By contrast, position Q3A2 lies
on the opposite side of the crack. If the crack starts
growing, no significant change of the strain is mea-
sured. However, once the crack is long enough, the
load path is shifted to the side of position Q3A2,
increasing the measured strain.

The relative change of strain for every flight is com-
puted by the relative change of the strain–force slope
shown in Figure 15. While the change of the slope for
position Q3A1 can be well distinguished for smaller
numbers of flights (smaller cracks), position Q3A2 is
better for indicating the crack lengths at larger num-
bers of flights (larger cracks), see Figure 15(a) and (b),
respectively.

By using the relative change of strain instead of the
absolute values, the likelihood becomes

p(De(l)
SG, relja) =

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p se

e(l)
NN

(a0)

� �2
s

exp�
De(l)

SG, rel � De(l)
NN, rel(a)

� �2

2 se

(e(l)
NN

(a0)

� �2
,

ð37Þ

which is used instead of p(e(l)
SGja). The current crack

length is determined by

â = argmax p(ajeSG) ð38Þ

and its variance by

s2
a =

ðac

a0

(a� ma)2p(ajeSG)da: ð39Þ

(a) (b)

(c) (d)

(e) (f)

Figure 14. Trained NNs on absolute strains for positions (a)
Q3A1 and (b) Q3A2. NNs representing the relative change of
strains for (c) Q3A1 and (d) Q3A2. Measured change of strains
over the number of flights for (e) Q3A1 and (f) Q3A2.
NNs: neural networks.

Figure 15. Measured strains for different flights at position
(a) Q3A1 and (b) Q3A2. The color indicates a certain number
of flights.
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ma =

ðac

a0

ap(ajeSG)da ð40Þ

Figure 16(a) and (b) show the crack lengths inferred
from the measured strains and the corresponding crack
lengths visually inspected by test engineers for both
specimens. It can be seen that the inferred crack
lengths for P03T01 closely match the inspected ones
(R2 = 0:926), whereas the match of the P02T01 trajec-
tory is not so close (R2 = 0:656). A big step in the
inspected data of specimen P02T01 can be seen. It is
likely that the test engineers did not detect the crack on
the outer part of the small hole straightaway.

As the P03T01 specimen was tested after P02T01,
the test engineers were already familiar with the type of
structure and were, therefore, able to measure the crack
lengths more accurately. Still, both crack growth beha-
viors are very similar to the inspected ones, and are
close to the simulations in terms of locations, numbers,
and crack growth rate.

Prediction of future states

Although Figures 16(a) and (b) show the entire trajec-
tories of the inferred crack lengths, during the test, the
crack length is only partially known, that is, from
Nf = 0 up to the current number of flights. After each
new flight, the current crack length and its uncertainty
can be determined and used to compute the conditional
GP leading to an updated prediction. For doing so, all
inferred crack lengths â and their estimated observation
errors ŝa up to the current flight cycle are transformed
to the latent space using Equations (10) and (19),
respectively. In this case, the total squared error in the
latent space s2

z is assumed to be the sum of the squared
modeling error s2

z,m and the transformed squared
observation error s2

z, a (s2
z = s2

z, a + s2
z,m). Furthermore,

crack sizes smaller than the initial crack length of
0:635 mm are ignored. Then, the conditional GP is
computed in the latent space using Equations (6)–(8).

The updated prediction is transformed to the observed
space using the inverse warping function.

Figures 17(a) to (h) show the updated predictions
for specimens P02T01 and P03T01 at different time
states. Initially, the GP’s prediction is entirely based on
the knowledge gained from analytical equations and
FE analyses. Once a crack length greater than
0:635 mm is inferred from the strain data, the mean
function starts to change and the credible region nar-
rows down, leading to a more accurate and precise pre-
diction. Since the GP is defined by a set of polynomial
basis functions with orders 0 and 1, the step due to the
two different crack regimes is not apparent in the pre-
diction. As in the infinite plate example, the predictions
are strictly positive again, which complies with the
physics.

Discussion

Warped GPs

As demonstrated for an infinite plate and an aerospace
structure, the proposed approach on warped GPs can
even handle data that is not normally distributed. In
both cases, introducing a warping function leads to pre-
dictions that assume strictly positive values. This is in
agreement with the physics since crack lengths can only
be positive. The approach reproduces the analytical
solution for problems without an observation error and
leads to a close approximation (\0:5%) for cases where
an observation error is present. However, by using
warped GPs, free parameters u are introduced. These
need to be optimized by minimizing the NLL, which is,
in general, a non-convex optimization problem requir-
ing increased computational effort. In contrast to exist-
ing warped GP approaches, no GP parameters of the
mean and covariance function need to be optimized by
minimizing the NLL since the GP is determined by sol-
ving a linear regression problem. By modeling the GP
with a weighted sum of basis functions therefore allows
integrating prior knowledge quickly into GPs.

Simulations

Prior knowledge in the form of degradation trajectories
is often rare, especially if the mechanical system is large
and expensive. Using analytical and FE-based simula-
tions can produce valuable information that can be
incorporated into GPs by the presented approach, see
section Application to an aerospace structure. By split-
ting the approach into two parts, (1) training a GP on
previous data and (2) computing the conditional distri-
bution for updating the prediction based on currently
monitored data, allows rapid predictions that may be

(a) (b)

Figure 16. Inferred crack lengths and visual inspections for
specimen (a) P02T01 and (b) P03T01.
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evaluated online. Nevertheless, incorrectly executed
simulations resulting, for example, from the use of
incorrect parameters, can lead to weak predictions.
Therefore, the simulation and its parameters, as well as
their uncertainties, should be well known. To avoid
overconfidence, it is better to assume overly large var-
iances than variances that are too small since there
might be sources of uncertainties that are not known
in advance.

Hidden state of the system

After the GP is defined by its mean function and covar-
iance function, it can be conditioned on current data.
The current state of the system, however, is often hid-
den. Therefore, the present paper shows how to infer
the crack length from strain data. Based on the

coefficient of determination, the resulting crack lengths
using Bayesian inference match the crack lengths mea-
sured during inspections with R2 = 0:656 and R2 = 0:926

accuracy for the first and second aerospace specimens,
respectively. The approach enables continuous moni-
toring of the crack length and its uncertainty. By using
this information, the GP’s predictions can be continu-
ously updated.

Conclusion

The present paper proposes a PHM algorithm that is
based on GPs. It is successfully applied to an infinite
plate and an aluminum aerospace structure in order to
predict crack growth. The established model predicts
not only the crack length for every future time step but
also its credible intervals. By describing the crack
length as a random variable, different credible regions,
for example, a 99% or 99:999% region, can be com-
puted, which allows the user to ensure different levels
of safety.

The proposed algorithm is based on warped GPs.
Using warped GPs reduced the MAE by 53.6% and
the MNLL by 32.2% for the infinite plate example
investigated in this paper. It also leads to strictly posi-
tive predictions for crack lengths, which is in accor-
dance with the physics. Furthermore, the proposed
approach can quickly integrate prior knowledge in the
form of several previously generated degradation tra-
jectories. Since prior knowledge is often only available
in terms of analytical equations and FE analyses, the
present paper shows how to generate them for an aero-
space structure prone to fatigue cracks. In general, the
simulations must be trustworthy and might be verified
before using them. Therefore, the approach is currently
limited to crack growth predictions for isotropic mate-
rials. In future research work, it would be interesting
to apply a similar approach to composite structures.

In order to update the GP’s prediction, the current
crack lengths are inferred from strain data, which agree
well with the visually inspected ones. Ultimately, the
estimated and predicted crack lengths can be used to
compute the probability of failure and therefore to bet-
ter schedule maintenance tasks.
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