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 1 Aim of the work and summary 

 Over  the  last  decade  a  plethora  of  genetic  loci  influencing  susceptibility  to  human  common 

 complex  disease  have  been  identified.  The  next  challenge  is  to  identify  the  underlying 

 mechanisms  driving  disease  risk  for  each  of  these  individual  trait-  and  disease-associated  genetic 

 loci  and  to  understand  patterns  of  cellular  programs  that  are  shared  between  loci  of  a  particular 

 disease,  and  across  diseases.  Development  of  novel  technologies  and  approaches  to  characterize 

 and  recover  disease-relevant  and  cell-type  specific  phenotypes  at  scale  will  be  powerful  in 

 elucidating  mechanistic  insights  of  genetic  signals  and  to  generate  hypotheses  about  therapeutic 

 interventions. 

 In  this  thesis  I  present  and  discuss  three  manuscripts,  which  I  have  co-led.  The  first  manuscript 

 describes  the  systematic  characterization  of  mechanisms  of  disease-associated  genetic  and 

 polygenic  variation  using  a  high-content  imaging  based  phenotypic  profiling  assay,  namely 

 LipocyteProfiler.  In  the  second  manuscript,  I  report  the  identification  of  cellular  and 

 morphological  consequences  of  the  2q24.3  metabolic  risk  locus  in  adipose  derived  mesenchymal 

 stem  cells.  Using  LipocyteProfiler,  I  characterize  the  underlying  mechanism  of  this  locus  on 

 adipocyte-specific  actin-cytoskeleton  remodelling  and  consequently  adipocyte  differentiation. 

 Finally,  the  third  manuscript  elucidates  cellular  pr  ograms  underlying  the  18q21.33  locus 

 association  characterized  by  a  lipodystrophy-like  phenotype  in  visceral  and  subcutaneous 

 adipocytes  by  integrating  image-based  profiles  and  transcriptomic  data.  Lastly,  I  summarize  my 

 work  on  a  CRISPR/Cas9-based  tool  to  engineer  genetic  variants  in  vitro  to  establish  causality 

 between  genetic  variation  and  molecular  and  cellular  phenotypic  effects.  While  this  work  is  not 

 at  a  point  to  compile  a  manuscript,  it  contributes  to  the  evaluation  of  CRISPR-based  genetic 

 perturbation schemes in the context of extreme phenotype recovery. 

 Together,  the  data  presented  in  this  thesis  demonstrate  novel  frameworks  for  the  dissection  of 

 pathophysiology  of  common  complex  diseases  at  scale  and  may  support  the  development  of 

 novel therapeutic targets for personalized medicine. 
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 2 Ziel der Arbeit und Zusammenfassung 

 Im  letzten  Jahrzehnt  wurde  eine  Vielzahl  von  Genloki  identifiziert,  die  die  Anfälligkeit  für 

 Volkskrankheiten  des  Menschen  beeinflussen.  Die  Herausforderung  besteht  nun  darin,  die 

 zugrunde  liegenden  Mechanismen  zu  identifizieren,  die  dem  Krankheitsrisiko  für  jeden  dieser 

 merkmals-  und  krankheits-assoziierten  genetischen  Loki  zugrunde  liegen  und  Muster  zellulärer 

 Programme  zu  verstehen,  die  mehreren  Loki  einer  bestimmten  Krankheit  unterliegen.  Die 

 Entwicklung  neuer  Technologien  und  Ansätze  zur  skalierbaren  Charakterisierung  von 

 krankheitsrelevanten  und  zelltypspezifischen  Phänotypen  wird  dazu  beitragen,  mechanistische 

 Einblicke  in  genetische  Signale  zu  bekommen  und  Hypothesen  über  therapeutische 

 Interventionen zu generieren. 

 In  dieser  Dissertation  präsentiere  und  diskutiere  ich  drei  Manuskripte,  an  deren  Entstehung  ich 

 maßgeblich  mitgearbeitet  habe.  Das  erste  Manuskript  beschreibt  die  systematische 

 Charakterisierung  von  Mechanismen,  die  krankheits-assoziierter  genetischer  und  polygenetischer 

 Variation  zugrunde  liegen.  Hierzu  habe  ich  eine  auf  High-Content  Imaging  basierende 

 phänotypische  Profiling  Methode,  die  wir  LipocyteProfiler  genannt  haben,  mitentwickelt  und 

 angewandt.  Im  zweiten  Manuskript  identifiziere  ich  zelluläre  und  morphologische  Konsequenzen 

 des  metabolischen  Risiko-Lokus  2q24.3  in  aus  Fettgewebe  stammenden  mesenchymalen 

 Stammzellen.  Unter  Verwendung  von  LipocyteProfiler  charakterisiere  ich  die  zugrunde 

 liegenden  Mechanismen  dieses  Lokus  auf  die  Adipozyten-spezifische 

 Aktin-Zytoskelett-Umstrukturierung  und  die  daraus  resultierenden  Folgen  für  die 

 Differenzierung  von  Adipozyten.  Das  dritte  Manuskript  beschäftigt  sich  mit  den  zellulären 

 Programmen,  die  der  Assoziation  des  18q21.33  -Lokus  mit  Lipodystrophie-ähnlichen  Phänotypen 

 in  viszeralen  und  subkutanen  Adipozyten  zugrunde  liegen,  unter  Einbindung  von  High  Content 

 Imaging  Profilierungs  und  Transkriptom  Daten-Analysen.  Schließlich  fasse  ich  meine  Arbeit  an 

 einer  auf  CRISPR/Cas9  basierenden  Methode  zusammen,  um  genetische  Varianten  in-vitro  zu 

 modifizieren,  um  Kausalität  zwischen  genetischen  Veränderungen  und  molekularen  und 

 zellulären  phänotypischen  Effekten  herzustellen.  Obwohl  diese  Arbeit  noch  nicht  an  dem  Punkt 

 ist,  um  daraus  ein  Manuskript  zu  erstellen,  trägt  sie  zur  Bewertung  von  CRISPR-basierten 

 genetischen Modifikation im Kontext der Entstehung von extremen Phänotypen bei. 
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 Gemeinsam  bieten  die  in  dieser  Dissertation  präsentierten  Daten  ein  neues  Gerüst  für  die 

 skalierbare  Analysen  der  Pathophysiologie  komplexer  Volkskrankheiten  und  können  die 

 Entwicklung neuer therapeutischer Interventionen für Personalisierte Medizin unterstützen. 

 3 Introduction 

 3.1 Genetic variation influences susceptibility to disease 

 3.1.1  Human  geneticists  have  identified  thousands  of  genetic  loci  associated  with  hundreds 

 of diseases and traits 

 In  2003  researchers  of  the  international  human  genome  sequencing  consortium  published  the 

 complete  genetic  code  in  humans  1  .  Advances  of  high-throughput  sequencing  technologies  and 

 efforts  of  the  International  HapMap  project  to  characterize  haplotype  structures  and  common 

 patterns  of  genetic  variation  inheritance  2–4  paved  the  way  to  systematically  study  and  elucidate 

 the contribution of genetics to human traits and diseases. 

 Since  then,  genomes  of  hundreds  of  thousands  of  individuals  have  been  genotyped  and/or 

 sequenced,  identifying  common  variations  of  nucleotides  between  individuals  with  the  same 

 traits  or  diseases.  These  single  base-pair  (bp)  DNA  variations  among  individuals,  called 

 single-nucleotide  polymorphism  (SNP),  occur  on  average  every  300bp  in  the  geno  me  5  .  Many  of 

 those  SNPs  lie  within  so-called  haplotypes  and  are  inherited  together.  More  specifically, 

 haplotypes  are  genomic  regions  that  are  more  likely  to  preserve  linear  structure  during 

 recombination  of  meiosis.  Therefore,  nearby  SNPs  of  a  haplotype  are  more  likely  to  stay  together 

 during  meiosis  and  to  be  inherited  together.  This  likelihood  can  be  quantified  using  linkage 

 disequilibrium  (LD)  and  depends  on  recombination  rates.  As  a  consequence,  SNPs  with  high  LD 

 are  more  frequently  inherited  together  than  SNPs  in  low  LD  6  .  By  defining  common  patterns  of 

 inheritance  of  genetic  variation  using  LD  structures,  scientists  are  able  to  interrogate  SNPs  at 

 genome-scale,  by  genotyping  one  SNP  of  a  haplotype,  namely  tag-SNP,  and  imputing  other 

 SNPs  using  LD  structures.  Using  this  approach  enabled  genome-wide  association  studies 

 (GWAS)  of  large  cohorts,  in  which  disease  or  traits  within  a  population  were  found  to  be 

 associated  with  genome-wide  genetic  variation,  and  led  to  the  discovery  of  genetic  variants 

 associated with human disease and traits (Figure 1). 
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 Comprehensive  genome-wide-association  studies  have  since 

 discovered  thousands  of  loci  associated  with  hundreds  of 

 human  traits  and  diseases  7  .  It  is  now  known  that  genetic 

 variants  tend  to  be  spread  across  the  whole  genome  and 

 have  pleiotropic  effects,  i.e.  one  variant  influencing  more 

 than  one  trait  in  a  context-specific  manner,  including 

 different  cell  types,  regulation  of  different  genes,  action 

 under  specific  conditions,  altogether  resulting  in  a  variety  of 

 intermediate  phenotypes  converging  in  a  complex  disease 

 phenotype.  Interestingly,  over  90%  of  those  trait-  and 

 disease-associated  SNPs  are  mapped  to  the  non-coding 

 genome  8,9  ,  suggesting  susceptibility  to  common  complex 

 diseases  is  due  to  alterations  in  gene  regulatory  networks, 

 rather  than  changes  of  protein-coding  sequences.  Further, 

 common  variants  often  lie  within  complex  haplotypes  with 

 a  lot  of  variants  in  high  LD  making  it  computationally  and 

 experimentally  challenging  to  identify  the  causal  variant  10  . 

 Taken  together,  the  characterization  of  underlying 

 mechanisms leading from  genetic variation to disease  phenotype remains an obstacle. 

 3.1.2  Characterizing  the  underlying  mechanisms  of  disease-associated  genetic  variation  is 

 challenging 

 First  attempts  to  dissect  genetic  variants  associated  with  disease  were  focused  on  rare  variants  (< 

 0.5%  minor  allele  frequency  (MAF))  with  large  phenotypic  effects  mediated  through  the 

 regulation  of  a  single  gene  leading  to  deleterious  effects  on  protein  function  11  .  So-called 

 monogenic  diseases  occur  within  families  and  are  identified  using  linkage  analysis,  pedigrees 

 and  nowadays  whole  exome  sequencing  or  whole  genome  sequencing,  followed  by  functional  in 

 vitro  and  in vivo  assays  12  . 

 Other  than  monogenic  diseases,  also  known  as  Mendelian  disorders,  caused  by  typically  one  rare 

 mutation  with  large  effects,  common  diseases,  such  as  diabetes,  obesity,  cardiovascular  diseases, 

 psychiatric  illnesses  and  inflammatory  diseases,  are  associated  with  common  variants  with 
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 higher  allele  frequency  (>  5%  MAF)  within  populations  12  .  Each  common  variant  usually  has 

 only  small  to  modest  phenotypic  effects,  however  many  common  variants  are  thought  to 

 influence human disease and in combination lead to complex functional consequences  13–15  . 

 Initially,  the  understanding  of 

 genetic  inheritability  on  common 

 complex  disease  was  that  multiple 

 genetic  variants  -  polygenic  -  with 

 small  effects  in  concert  would 

 explain  genetic  susceptibility  for 

 disease  16  .  However,  unexpectedly 

 most  genome-wide  significant  hits 

 identified  by  GWAS  could  not 

 explain  total  vulnerability  for 

 common  disease,  and  the  question 

 arose  what  contributes  to  the 

 missing  genetic  signal.  Over  the 

 years,  this  so-called  “missing 

 heritability”  14,17,18  mystery  has  been  addressed  and  is  expected  to  be  mostly  resolved  with 

 increasing  large-scale  sequencing  studies  in  diverse  ancestries  enabled  by  advances  in 

 sequencing  technologies.  It  was  also  observed  that  rare  variants  could  have  modest  rather  than 

 deleterious  effects,  based  on  the  notion  that  rare  variants  have  likely  arisen  after  migration  out  of 

 Africa  and  as  such  shared  among  closely  related  geographical  and  ethnical  groups  19  .  With 

 emerging  population-based  sequencing  studies  the  genetics  community  has  realized  that  the 

 genetic  architecture  of  complex  diseases  and  traits  can  be  explained  by  a  continuous  spectrum  of 

 variant  allele  frequencies  and  associated  effects,  which  together  support  a  primary  role  of 

 common  variants  in  the  pathogenesis  of  common  complex  diseases  and  traits.  This  expansion  of 

 knowledge  of  genetic  architecture  and  genetic  contribution  to  common  complex  diseases 

 changed  the  historical  understanding  of  two  distinct  models  (monogenic  and  polygenic)  to  a 

 spectrum of allele frequencies and effect sizes influencing common diseases  11  (Figure 2). 
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 In  parallel,  advances  in  understanding  the  structure  and  function  of  the  human  genome  were  used 

 to  unravel  genetic  association  with  human  disease.  For  example,  novel  approaches  to  study 

 epigenetic  regulation  of  genetic  information  in  context  of  cell  type  specificity  and  environmental 

 conditions  20  ,  21  ,  conformation  and  physical  contacts  across  the  genome  22  ,  and  functional 

 relationship  between  genetic  variation  and  gene  expression  across 

 cell  types  and  environmental  conditions  23,24  were  applied  to  identify 

 mechanism of genotype-phenotype association. 

 Another  fundamental  discovery  was  made  in  2012,  when  scientists 

 discovered  and  engineered  natural  defense  tools  of  prokaryotic 

 organisms  to  edit  or  perturb  the  genetic  code  of  humans  25  .  The 

 discovery  of  CRISPR  genome  editing  technologies  and  its  growing 

 applications  and  scaling  approaches  emerged  as  a  new  dimension  for 

 characterizing  the  function  of  genetic  variants  and  epigenetic 

 regulation,  and  accelerated  advances  in  the  field  of  functional 

 genomics. 

 In  parallel,  read-outs  were  developed  to  assess  functional 

 consequences  of  natural  genetic  variation  or  introduced  genetic 

 manipulation  on  intermediate  (eg.  transcriptome,  proteome)  and 

 complex  phenotypes.  However,  technologies  to  systematically 

 interrogate genetic variation are currently sparse. 

 3.1.3  Single  locus  dissection  studies  showcase  the 

 variant-to-function concept 

 Over  the  last  decades  thousands  of  associations  of  common  genetic 

 variation  with  diseases  have  been  identified  through  GWAS 

 leveraging  large  biobanks.  However,  advances  in  understanding 

 how  these  variants  are  linked  to  disease,  by  step-by-step 

 characterization  of  their  mechanisms  involving  identification  of 

 cell-type/s  and  context  of  action,  mediated  target  gene/genes,  effects 

 on  molecular,  cellular  and  physiological  processes,  is  challenging 
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 and therefore has not proceeded as fast as identifying those variants  12  (Figure 3). 

 Studies  of  dissecting  human  disease-associated  genetic  variants  are  time  consuming  and 

 experimentally  exhausting,  hence  scientists  focused  on  dissecting  one  locus  at  a  time.  Successful 

 single-locus  dissection  studies,  like  the  dissection  of  the  FTO  locus  26  or  the  characterization  of 

 common  complex  variants  affecting  red  blood  cells  27  ,  are  pioneering  studies  and  showcased  the 

 idea  of  variant-to-function  approaches  in  the  field  of  functional  genomics.  These  studies  also 

 demonstrated  that  genetic  variants  can  regulate  target  genes  in  far  distance  including  target  genes 

 without obvious connection or previously thought relationship to pathophysiology of disease  26  . 

 To  path  from  a  full  understanding  of  genetic  variation  and  characterization  of  mechanistic 

 insights  to  clinical  application  and  ultimately  genomic  medicine,  efforts  of  dissecting 

 one-locus-at-the-time  are  ineffective  and  insufficient  to  keep  up  with  the  speed  of  genome-wide 

 variant  discovery.  Hence,  novel  approaches  are  needed  to  systematically  dissect  genome-wide 

 genetic  risk  loci  across  diseases  and  different  ethnicities/populations  12  .  The  ongoing  rise  of  new 

 scalable  technologies  and  data  integration  of  complex  readouts  assessing  epigenomics, 

 transcriptomics,  proteomics  and  morphological  and  cellular  signatures,  will  help  to  accelerate 

 functional genomics and translation of genomics into clinical practice. 

 3.2  Integration  of  phenotypic  profiling  technologies  accelerate  functional  characterization 

 of genetic variation 

 3.2.1 Multiparametric image-based phenotypic profiling quantifies complex phenotypes 

 To  investigate  and  quantify  complex  disease-associated  phenotypes,  phenotypic  profiling 

 technologies  are  powerful  tools.  Phenotypic  profiling  assays  cover  the  full  spectrum  of 

 phenotypic  read-outs,  e.g.  transcriptomic,  proteomic,  metabolomic  and  image-based 

 technologies  28  . 

 Image-based  profiling  provides  high  information  content  that  is  currently  several  orders  of 

 magnitude  higher  than  other  phenotypic  profiling  tools  28  .  While  observations  by-eye  can  capture 

 one  or  few  cellular  characteristics  and  are  often  biased  from  a  priori  knowledge,  image-based 
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 profiling  technologies  simultaneously  score  thousands  of  features  of  fluorescence-labeled 

 cellular components in a relatively unbiased way  29  . 

 One  example  of  an  established  high-content  imaging  method  is  Cell  Painting  30  .  Cell  Painting 

 multiplexes  six  fluorescent  dyes  for  generic  cellular  organelles  to  reveal  large  amounts  of 

 morphological  signatures,  while  maintaining  compatibility  with  standard  microscopy  systems, 

 and  using  relatively  inexpensive  easy-to-use  fluorescence  dyes  (instead  of  high-cost  antibodies), 

 making  it  generalizable,  inexpensive  and  broadly  applicable  to  perform  high-throughput 

 experiments  30  . 

 Biological  information  gained  by  thousands  of  precise  measurements  elucidate  a  complex 

 phenotype  that  might  represent  the  convergence  of  genetic,  transcriptional,  and  proteomic 

 states  31,32  .  Due  to  the  quantity  of  information  obtained,  appropriate  image  analysis  pipelines  are 

 needed  to  process  and  generate  intuitive  data  outputs  which  are  relatively  easy  to  understand. 

 One  example  of  such  pipelines  is  the  open  source  software  Cell  Profiler  29  .  Cell  Profiler  uses  a 

 supervised  machine  learning  algorithm  to  extract  thousands  of  features  from  fluorescence 

 microscope  images.  Each  feature  represents  the  quantification,  obtained  by  different 

 measurements,  of  either  cell  size,  shape,  fluorescence  stain  intensity,  object  granularity,  or  pixel 

 patterning  of  different  cellular  sub-compartments  or  organelles.  The  features  in  concert  provide 

 information-rich cellular and morphological profiles  29  (Figure 4). 

 Since  the  development  of  multiparametric  high-content  imaging  assays,  scientists  used 

 image-based  phenotypic  profiling  or  screening  to  illuminate  mechanism  of  action  of  small 

 molecules,  ascertain  compound  toxicity,  generate  compound  fingerprints,  and  to  annotated  gene 

 function in gene expression screens or CRISPR/Cas9 gene perturbation screens  33–38  . 
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 However,  disease-aware  customised  high-content  imaging  assays  for  specific  disease-relevant 

 cell  models,  e.g.  adipocytes,  to  interrogate  genetic  association  signals  of  common  complex 

 disease, such as metabolic traits, are currently missing. 

 3.2.2  Disease-relevant  high-fidelity  cellular  model  systems  are  necessary  to  study  genetic 

 association with disease 

 Although  morphological  profiling  enables  unconstrained  discovery,  interpretation  of  profiles  to 

 obtain  biological  meaningful  results  is  challenging  and  stays  often  at  an  abstract  and  d  escriptive 

 level,  making  it  hard  to  decipher  mechanistic  underpinnings  of  genetic  variation.  To  gain 

 biological  meaningful  insights  and  create  appropriate  disease  models  enabling  studying 

 pathophysiology,  disease-relevant  cell  assays,  including  disease-relevant  cell-types  and 

 conditions, are needed. 

 Immortalised  cell-lines,  although  limitless  available  and  therefore  mostly  used  to  study  cell 

 biology,  are  not  necessarily  the  perfect  model  system  due  to  several  limitations  such  as:  (1)  they 

 harbor  complex  genetic  aberrations,  and  are  often  not  diploid;  (2)  they  are  adapted  to 

 standardized  unphysiological  culture  conditions;  and  (3)  they  are  often  derived  from  tissue  of 

 diseased individuals, hence have little to no similarity to their original derived tissue  39  . 

 In  recent  years,  efforts  in  reprogramming  and  differentiation  of  isogenic  pluripotent  stem  cells 

 (iPSC)  have  been  made  to  obtain  more  suitable  cell  models  as  well  as  to  increase  genetic 

 heterogeneity  in  cell  models  that  can  be  leveraged  to  study  natural  genetic  variation  and  how  this 

 contributes  to  cell  behaviour  and  disease  40–42  .  Although,  iPSCs  are  a  great  resource  some  things 

 need  to  be  considered  when  using  iPSCs:  (1)  reprogramming  and  culturing  potentially  introduce 

 unwanted  epigenetic  and/or  genetic  variability  that  provide  noise  and  may  confound  downstream 

 analysis  43,44  ,  (2)  differentiation  protocols  can  be  inefficient,  and  (3)  high  experience  and  detailed 

 experimental  planning  is  needed  to  use  them  successfully  39  .  The  Human  Induced  Pluripotent 

 Stem  Cells  Initiative  (HipSci,  http://www.hipsci.org/  ),  as  one  example,  started  to  build  a  large 

 biobank  of  comprehensively  characterized  isogenic  pluripotent  stem  cells  (iPSC)  from  healthy 

 and  diseased  donors  for  the  research  community  to  study  population-based  genetic  variation. 

 Indeed,  it  has  been  reported  that  common  genetic  variation  drives  molecular  heterogeneity  in 

 human  iPSCs  and  quantitative  assays  of  cell  morphology  demonstrated  a  donor  contribution  in 

 the  range  of  8%-23%  42  .  Identifying  extrinsic  versus  intrinsic  drivers  of  variation  in  cell  behaviour 
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 in  human  iPSC  lines  further  revealed  that  genetic  variation  contributes  to  phenotypic  variation  45  . 

 This  suggests  that  genetically-driven  intrinsic  differences  are  maintained  in  these  cells  and  that 

 they can be used to study inter-individual genetic variation. 

 A  potentially  more  biologically  relevant  alternative  to  iPSCs  are  primary  cells  derived  from 

 disease-relevant  tissue  from  healthy  and  unhealthy  donors.  For  example  it  was  previously  shown 

 that  human  adipose-tissue  derived  mesenchymal  stem  cells  can  be  differentiated  into  fully 

 functional  adipocytes  and  therefore  have  been  used  to  study  adipocyte  biology  46,47  and 

 adipose-related metabolic disease phenotypes  48,49  . 

 With  the  creation  of  large  biobanks  and  the  development  of  high-throughput  technologies  for 

 epi-/genetic  screens  and  phenotypic  profiling  powerful  tools  are  in  place  and  need  to  be 

 systematically  applied  in  appropriate  disease  models  to  comprehensively  characterize  genetic 

 variation  on  population  scale.  The  integration  of  these  different  data  is  challenging,  but  impactful 

 when  elucidating  underlying  mechanisms  of  disease-associated  genetic  variation  and  further 

 identifying personalized drugs. 

 3.3 Metabolic diseases are influenced by complex genetic variation 

 3.3.1 Metabolic traits are highly heritable 

 The  prevalence  of  metabolic  diseases  like  type  2  diabetes  (T2D)  and  obesity  are  rising 

 worldwide  especially  in  developing  countries  and  are  a  threat  for  public  health.  Metabolic 

 diseases  are  interrelated  and  often  described  in  context  of  the  metabolic  syndrome,  which 

 summarises  the  collective  manifestation  of  metabolic  traits,  such  as  dyslipidemia,  hypertension 

 and  elevated  glucose,  and  associate  with  increased  risk  for  cardiovascular  diseases  and  common 

 cancer resulting in higher morbidity and mortality  50–52  . 

 Metabolic  disease/traits  are  heritable  and  GWAS  of  clinically  phenotyped  populations  for 

 metabolic  disease/traits  including  T2D,  fasting  glucose,  waist-to-hip  ratio  and  body  mass  index 

 have  identified  hundreds  of  genetic  loci  11  .  Together,  these  genetic  risk  loci  harbor  thousands  of 

 associated  variants  that  point  to  a  diverse  set  of  tissues  of  action  and  biological  mechanisms, 

 including  adipocytes  and  their  precursors  26,53–56  .  However,  the  majority  of  loci  have  not  been 

 conclusively linked to their effector genes and biological mechanisms  57  . 
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 Overall  heritability  of  T2D,  for  example,  is  estimated  to  be  25-80%  58,59  .  T2D  is  a  heterogeneous 

 disease  associated  with  various  metabolic  traits  (e.g.  hyperglycemia,  insulin  resistance,  adverse 

 waist-to-hip  ratio,  hyperlipidemia),  and  known  to  be  influenced  by  genetic,  environmental,  and 

 behavioural  factors;  to  implicate  various  organs  (e.g.  adipose  tissue,  skeletal  muscle,  liver  and 

 pancreas);  to  lead  to  various  metabolic  dysregulation  impacting  whole  body  physiology; 

 converging  in  a  complex  disease  phenotype  60–63  .  Therefore,  T2D  is  no  longer  thought  to  be  only  a 

 disease of hyperglycemia, but rather a syndrome of multiple metabolic disturbances  60,64  . 

 Although  monogenic  forms  of  T2D,  like  maturity-onset  diabetes  of  the  young  (MODY)  ,  occur 

 within  affected  families  and  map  to  rare  variants  with  strong  phenotypic  effects,  the  majority  of 

 the  genetic  inheritability  is  explained  by  common  variants  that  lie  in  intronic  or  intergenic 

 regions  often  mapping  to  regulatory  elements  11  .  Due  to  their  characteristics  genetic  variants 

 associated  with  type  2  diabetes  are  thought  to  be  cell-type  and  context-specific,  and  often  have 

 pleiotropic  effects.  To  unravel  the  complexity  of  association  of  genetic  variation  and  disease 

 phenotype,  researchers  developed  frameworks  using  epigenomic  and  transcriptomic  data  to  score 

 loci  according  to  their  tissue  of  action  62  or  cluster  loci  according  to  their  phenotypic 

 presentation  63  .  However,  as  eluted  to  above  the  functional  consequences  of  associated  genetic 

 variants are poorly understood. 

 3.3.2 Lipodystrophy-like phenotypes demonstrate complexity of metabolic disease 

 The  clinical  presentation  of  T2D  is  often  complex  involving  the  collective  manifestation  of 

 metabolic  traits.  Causal  mechanisms  and  their  interactions  of  metabolic  traits  are  not  fully 

 understood,  complicating  prevention  and  management  of  disease  with  established  therapeutic 

 options. 

 Lipodystrophy-like  phenotypes,  for  example,  demonstrate  heterogeneity  of  metabolic  traits 

 associated  with  T2D  in  context  of  underlying  mechanism  and  phenotypic  presentation.  Although 

 T2D  is  often  associated  with  obesity,  there  is  growing  evidence  that  some  patients  with  normal 

 weight  occasionally  are  characterized  by  metabolic  abnormalities.  These  patients  are  described  in 

 literature  as  metabolically  obese  normal-weight  (MONW)  individuals  65  .  GWAS  for  insulin 

 resistance,  known  as  key  mediator  of  elevated  metabolic  and  cardiovascular  risk  66,67  ,  identified 

 loci  that  are  linked  to  a  lipodystrophy-like  phenotype  with  insulin  resistance,  elevated 

 waist-to-hip  ratio,  normal  body  mass  index  (BMI)  with  central  adiposity  and  peripheral  fat 
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 depletion  68  .  Lipodystrophy  syndromes  are  known  as  a  monogenic  disease  and  molecular 

 mechanisms  of  affected  genes  have  been  previously  described.  However,  some  of  the 

 lipodystrophic  features  are  also  present  in  general  populations  suggesting  that  the  spectrum  of 

 disease  susceptibility,  from  low  to  high  polygenic  risk,  is  linked  to  a  spectrum  of  phenotypic 

 effects,  ranging  from  minor  lipodystrophic  clinical  representations  to  a  severe  clinical  phenotype, 

 like  familial  partial  lipodystrophy  type  1  (  FPLD1)  or  Köbberling-type  lipodystrophy  68,69  . 

 However,  a  comprehensive  understanding  of  the  underlying  mechanistic  regulation  of  polygenic 

 risk for lipodystrophy-like phenotypes and mediated genes are missing. 

 3.3.3 Polygenic risk scores quantify individual genetic liability of metabolic disease 

 Historically,  genetic  testing  in  the  clinic  to  predict  or  diagnose  an  individual's  risk  to  a  particular 

 disease  was  employed  in  monogenic  disease  that  ran  in  families  and  where  the  effect  size  was 

 relatively  large  70  .  More  recently,  the  realisation  that  thousands  of  genetic  loci  influence  an 

 individual's  susceptibility  to  develop  a  common  complex  disease  led  to  the  concept  of  generating 

 a combined score, called polygenic risk score, to predict genetic vulnerability of an individual  71  . 

 Polygenic  risk,  a  cumulative  risk  of  millions  of  genetic  common  variants  associated  with  disease, 

 is  scored  by  combining  genetic 

 information  of  all  single  variants 

 associated  with  a  particular 

 disease  into  a  number  representing 

 an  individual's  polygenic  risk 

 score  (Figure  5).  Today,  such 

 scores  have  been  generated  for 

 various  common  diseases,  like 

 obesity  72  ,  coronary  artery  disease  71 

 and  type  2  diabetes  73  .  It  has  been 

 shown  that  individuals  at  the  tail 

 ends  of  polygenic  risk  scores  (top 

 and  bottom  2.5%)  differ  10-times 

 in  their  prevalence  to  T2D  73  . 

 Additionally,  the  effect  of 
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 polygenic  scores  for  obesity  for  example,  can  be  similar  to  rare,  monogenic  forms  of  this 

 disease  71,72  ,  and  a  high  polygenic  score  is  a  strong  risk  factor  for  severe  obesity  and  associated 

 diseases.  However,  the  molecular  mechanisms  underlying  differential  polygenic  scores  are  not 

 characterized yet. 

 Polygenic  risk  scores  (PRS)  quantify  disease  predisposition  and  have  the  potential,  especially  in 

 combination  with  other  clinical  data  to  advance  prevention,  progression,  and  clinical 

 management  of  disease.  Although,  PRSs  are  promising,  they  are  not  routinely  used  in  clinic,  due 

 to  several  obstacles:  (1)  PRS  are  constructed  based  on  genomic  data  of  Europeans,  and  show 

 reduced  performance  in  other  ethnicities  74,75  ;  (2)  type  2  diabetes  is  influenced  by  genetic  and 

 non-genetic  factors  (eg.  lifestyle,  environment),  hence  conclusions  only  based  on  PRS  without 

 considering  non-genetic  influences  could  lead  to  misleading  risk  prediction;  (3)  established 

 clinical  parameters  and  biomarkers  already  perform  quite  well  in  predicting  type  2  diabetes 

 raising  the  question  what  additional  benefit  PRS  could  add  61  ;  (4)  type  2  diabetes  is  a 

 heterogeneous disease, involving many cellular processes, which are not fully understood  64  . 

 To  tackle  the  latter,  partitioned  -  process  specific  -  polygenic  scores  were  generated  by  clustering 

 genetic  variants  due  to  biological  processes  62  .  Clinically  informed,  genetically  anchored  scores, 

 account  for  genetic  and  phenotypic  heterogeneity  of  metabolic  disease  like  T2D  and  are  likely  to 

 be  more  informative  for  optimizing  clinical  management  (eg.  selecting  a  process-tailored  drug) 

 and monitoring disease progression  61  . 

 The  complexity  of  metabolic  phenotypes  and  their  interrelationship  showcase  the  challenge  of 

 elucidating  genetic  association  with  metabolic  disease.  Leveraging  genetically-driven  differences 

 in  cell  behaviour  in  relevant  cell  types  (e.g.  adipocytes  and  hepatocytes  for  T2D  traits)  using 

 PRSs  together  with  scalable  disease-relevant  profiling  assays  therefore  have  the  potential  for 

 unravelling underlying molecular mechanisms of polygenic disease. 

 3.3.4 Genome engineering is necessary to establish causality of disease mechanisms 

 Over  the  last  decade,  genome  engineering  technologies  have  been  developed  and  optimised  to 

 perform  targeted  genome  modifications.  The  toolbox  of  CRISPR-based  genome  engineering 

 technologies  has  been  expanded  with  versatile  approaches  to  study  genetic  variation  at  scale  and 

 to perform precise genome editing enabling to establish causality of disease mechanisms. 
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 Genetic  screens  are  powerful  assays  to  study  genetic  variation  at  scale  using  CRISPR  or  RNA 

 interference  (RNAi)  technologies  76  .  Over  the  last  decade  various  applications  have  been 

 developed  to  study  gene  function  (eg.  CRISPR  knockout  screens  77,78  )  and  interactions  (eg. 

 Perturb-seq  79  ),  functional  consequences  of  SNPs  (eg.  base  editor  screens  80  ),  and  genetic 

 regulatory  elements  (eg.  CRISPR  interference,  CRISPR  activation  screens  81,82  )  in  pooled  or 

 arrayed  experimental  settings  combined  with  high-throughput  phenotypic  read-out  technologies 

 (eg. single cell transcriptomics and epigenomics, high-content imaging)  12,83  . 

 To  ascertain  causality  between  a  genetic  variant  and  disease  phenotype,  genome  engineering 

 approaches  are  necessary.  CRISPR-based  technologies  are  powerful  tools  to  edit 

 disease-associated  genetic  variation.  Today,  many  approaches  exist  using  either  classic 

 CRISPR/Cas9-mediated  homology-directed  repair  pathways  or  novel  technologies  like  base 

 editor  84–86  or  prime  editor  87  .  However  ,  currently  available  approaches  mostly  have  low  editing 

 efficiency  88  ,  often  require  time  consuming  single  clonal  expansion  steps,  potentially  introduce 

 transcriptome-wide  off-target  edits  89  ,  and/or  are  hampered  by  limited  targetability  of  much  of  the 

 genome  84,87  .  To  leverage  the  power  of  genetic  engineering  tools  for  systematically  characterizing 

 functional  consequences  of  identified  genetic  variants  (coding  and  non-coding),  it  is  necessary  to 

 optimise  for  tools  that  are  broadly  applicable,  that  edit  accurately  (only  change  a  predetermined 

 mutation) and are scalable by reducing experimental time and costs. 

 Together,  phenotypic  profiling  in  combination  with  CRISPR  engineering  approaches  pave  the 

 way  for  recovering  extreme  phenotypes  and  establishing  causality  between  genetic  modifications 

 and disease pathophysiology. 

 In  this  thesis,  I  present  and  discuss  three  manuscripts  aiming  to  create  frameworks  for  dissecting 

 disease-associated  genetic  variation  at  scale.  First,  I  introduce  a  framework  for  systematically 

 characterizing  underlying  mechanisms  of  disease-associated  genetic  and  polygenic  variation 

 using  high-content  imaging,  called  LipocyteProfiler.  In  the  second  manuscript,  I  apply 

 LipocyteProfiler  on  the  2q24.3  metabolic  risk  locus  and  identify  cellular  and  morphological 

 consequences  of  the  2q24.3  metabolic  risk  locus  on  actin  cytoskeleton  remodeling  and 
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 consequently  adipocyte  differentiation  in  human  adipose  derived  mesenchymal  stem  cells.  In  the 

 third  manuscript,  I  elucidate  cellular  programs  of  the  18q21.33  locus  association  with  a 

 lipodystrophy-like  phenotype  in  visceral  and  subcutaneous  adipocytes  by  integrating 

 image-based  profiling  and  transcriptional  data.  Finally,  I  briefly  introduce  my  work  to  develop 

 and  test  an  experimental  method,  CRISPR-SAVE,  to  engineer  genetic  variation  in  a  human 

 adipocyte  model  system  and  stress  its  challenges  and  limitations  that  I  discovered  while 

 developing the approach. 

 4 Summary of publications 

 4.1  Discovering  cellular  programs  of  intrinsic  and  extrinsic  drivers  of  metabolic  traits  using 

 LipocyteProfiler 

 This  manuscript  describes  the  development  and  application  of  a  multiparametric  phenotypic 

 profiling  assay  that  I  co-developed  to  characterize  extrinsic  and  intrinsic  drivers  of  metabolic 

 disease  in  lipid-filled  cell  types,  called  LipocyteProfiler.  This  work  was  co-led  by  Samantha 

 Laber and myself. 

 Rationale:  Thus  far,  image-based  phenotypic  profiling  assays  have  been  limited  to  capture 

 generic  morphological  structures  of  cellular  organelles  and  cellular  processes,  such  as  cell 

 proliferation  and  growth  30  .  Leveraging  high-information  content  obtained  from  image-based 

 phenotypic  profiling  to  discover  cell-  and/or  disease-specific  processes  requires  customized 

 assays,  which  could  be  used  to  link  genetic  variation  to  disease-relevant  cellular  programs  at 

 scale. 

 Lipid  droplets  are  storage  organelles  and  involved  in  whole  body  metabolism  and  energy 

 homeostasis.  They  are  found  in  all  cell  types,  either  as  part  of  physiological  processes  or  under 

 pathophysiological  conditions  90  .  Dynamics  of  lipid  droplet  formation  are  highly  relevant 

 processes  for  the  manifestation  and  progression  of  metabolic  disease.  Due  to  their  morphological 

 characteristics,  lipid  droplets  and  their  dynamic  changes  can  be  captured  and  studied  using 

 image-based profiling. 
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 In  this  manuscript,  we  introduce  LipocyteProfiler,  a  metabolic  disease-oriented  phenotypic 

 profiling  system  for  lipid-accumulating  cells  that  can  be  used  to  generate  high-throughput 

 disease-focused  read-outs.  LipocyteProfiler  is  a  modified  version  of  CellPainting  30  by 

 incorporating  BODIPY,  a  dye  that  stains  neutral  lipids,  to  measure  morphological  and  cellular 

 profiles  of  lipid-related  features,  and  thus  captures  lipocyte-relevant  phenotypes  in  addition  to 

 generic morphological profiles. 

 Results  and  Contribution:  Briefly,  we  validated  LipocyteProfiler  by  testing  its  ability  to  capture 

 phenotypes  of  interest:  (1)  We  showed  its  ability  to  identify  known  lipocyte  specific  biology  (e.g. 

 lipid  accumulation  capacity  during  differentiation);  (2)  we  knocked-out  genes  known  to  alter 

 adipogenesis  or  adipocyte  function  using  a  CRISPR/Cas9  and  assessed  morphological  and 

 cellular  signatures;  (3)  we  integrated  gene  expression  of  RNA-seq  data  with  lipocyte  profiles  of 

 corresponding  AMSCs  and  identified  biological  meaningful  feature-gene  connections;  and  (4) 

 we  characterized  cellular  programs  of  drug  perturbations.  Next,  we  applied  LipocyteProfiler  to 

 subcutaneous  and  visceral  human  adipocytes  and  demonstrated  its  ability  to  identify  adipose 

 depot-specific  morphological  and  cellular  signatures.  We  then  used  our  assay  to  discover  novel 

 functional  insights  of  genetic  association  to  polygenic  risk  of  metabolic  traits,  including  insulin 

 resistance,  waist-to-hip  ratio  and  the  polygenic  contribution  to  lipodystrophy.  In  summary,  we 

 demonstrated  that  LipocyteProfiler  presents  a  comprehensive  framework  to  interrogate  genetic 

 signals and environmental effects associated with complex human disease in an unbiased way. 

 I  was  mainly  responsible  for  the  following  parts  of  the  manuscript:  (1)  I  differentiated  65  adipose 

 derived  mesenchymal  stem  cells  (AMSCs)  of  the  Munich  Obesity  BioBank  (MOBB).  (2)  I 

 carried  out  a  customised  staining  protocol  in  AMSCs,  namely  LipocytePainting,  at  four  time 

 points  of  adipocyte  differentiation.  (3)  I  generated  a  Cas9  stable  cell  line  of  an  established  white 

 adipocyte  line  (hWAT)  91  and  performed  a  pilot  CRISPR/Cas9  knockout  screen  of  42  genes, 

 known  to  be  involved  in  adipocyte  function,  using  LipocyteProfiler  as  a  read-out.  (3)  I  conceived 

 the  analytical  LipocyteProfiler  framework  and  performed  all  computations  on  high-content 

 imaging  data  and  RNA-seq  data.  (4)  I  discussed  all  results  with  my  co-authors  and  contributed 

 equally to the visualization of the results and writing of the manuscript. 
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 4.2  A  non-coding  variant  linked  to  metabolic  obesity  with  normal  weight  affects  actin 

 remodelling in subcutaneous adipocyte 

 This  manuscript  reports  the  functional  characterization  of  the  link  between  the  2q24.3  locus  and 

 a  lipodystrophy-like  phenotype,  characterized  by  increased  risk  of  type  2  diabetes  and  decreased 

 risk of adiposity related traits. 

 Rationale:  When  I  joined  the  project,  my  co-authors  had  identified  the  causal  variant 

 (rs6712203),  the  putative  target  gene  (  COBLL1  )  and  identified  a  function  of  COBLL1  in 

 cytoskeletal  remodeling  during  adipocyte  differentiation,  subsequently  resulting  in  impaired 

 insulin  sensitivit  y.  To  further  link  functional  consequences  of  the  2q24.3  locus  on  morphological 

 and  cellular  phenotypes  in  AMSCs,  I  used  LipocyteProfiler  for  image-based  phenotypic  profiling 

 at this locus. 

 Results  and  Contribution:  My  contribution  consisted  of  linking  the  risk  haplotype  at  this  locus  to 

 its  phenotypic  consequences  using  LipocyteProfiler,  that  I  had  co-developed  (see  4.1).  More 

 specifically,  I  performed  LipocytePainting  at  3-4  time  points  of  differentiation  in  a  number  of 

 settings:  (1)  using  siRNA  for  COBLL1  knockdown  in  pre-adipocytes  (knockdown  was 

 performed  by  Samantha  Laber),  followed  by  14  days  of  differentiation  to  assess  morphological 

 consequences  on  actin  cytoskeleton  remodeling  and  differentiation  capacity  in  subcutaneous 

 AMSCs  following  COBLL1  knockdown;  (2)  using  LipocytePainting  data  that  I  had  generated  in 

 4.1  by  stratifying  samples  based  on  rs6712203  genotype  to  assess  consequences  on 

 morphological  and  cellular  signatures  in  visceral  and  subcutaneous  adipocytes  at  four  time  points 

 of  adipogenesis;  (3)  using  mouse  AMSCs  from  Cobll1  -KO  animals,  isolated  by  Debora  Sobreira 

 from the University of Chicago, which were differentiated for 10 days. 

 Finally,  I  compared  morphological  profiles  driven  by  genetic  variation  of  rs6712203  with 

 siRNA-mediated  targeted  gene  perturbation  of  COBLL1  and  identified  that  the  risk  haplotype 

 matches  a  profile  of  perturbed  COBLL1  expression  by  altering  actin  cytoskeleton  remodeling 

 during  adipocyte  differentiation,  and  subsequently  lipid  accumulation  capacity  in  mature 

 subcutaneous  adipocytes.  I  did  not  observe  any  phenotypic  effects  in  visceral  adipocytes, 

 suggesting  that  underlying  mechanisms  of  2q24.3  locus  are  specific  for  adipose  depot.  In  the 

 murine  model  I  found  that  Cobll1  knockout  in  mice  affects  actin  cytoskeleton  remodeling  and 
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 lipid  accumulation  during  in  vitro  adipocyte  differentiation,  mimicking  our  observations  in 

 human  adipocytes.  I  discussed  and  interpreted  my  results  with  my  co-authors  and  was 

 responsible  for  visualization  of  the  results,  compiling  of  the  figures  and  writing  the  first  draft  of 

 the image-based profiling part of the manuscript. 

 4.3  A  non-coding  metabolic  risk  variant,  rs12454712,  associates  with  context-dependent 

 adipocyte molecular and cellular programs in humans 

 This  manuscript  describes  the  functional  dissection  of  the  18q21.33  pleiotropic  risk  locus, 

 associated  with  a  lipodystrophy-like  phenotype,  into  mediating  mechanisms.  This  work  was 

 co-led by Samantha Laber and myself. 

 Rationale:  With  the  advent  of  GWAS  hundreds  of  disease-associated  genetic  loci  have  been 

 identified  that  map  to  more  than  one  disease  or  trait,  act  in  different  cell-types  and/or  under 

 specific  conditions,  and  converge  on  a  complex  phenotype.  Type  2  diabetes  is  a  heterogeneous 

 disease  associated  with  hundreds  of  genetic  loci  with  pleiotropic  effects  making  it  challenging  to 

 characterize  mechanistic  underpinnings  of  genetic  risk  loci  by  linking  genetic  variation  to 

 phenotypes. 

 In  this  study,  we  elucidate  functional  consequences  of  the  18q21.33  metabolic  risk  locus 

 associated  with  a  lipodystrophy-like  phenotype  in  visceral  and  subcutaneous  adipocytes  by 

 integrating transcriptional and image-based profiling. 

 Results  and  Contribution:  Briefly,  we  identified  the  pleiotropic  characteristics  of  18q21.33 

 illuminating  different  cellular  programs  in  visceral  and  subcutaneous  differentiated  adipocytes 

 mainly  mediated  through  three  target  genes  BCL2  ,  KDSR  and  VPS4B  .  By  phenotypic  profiling, 

 using  LipocyteProfiler,  we  characterized  depot-  and  context-specific  cellular  pathways  of 

 apoptosis  and  altered  thermogenesis  activity  in  subcutaneous  and  visceral  adipocytes, 

 respectively,  which  are  cellular  phenotypes  relevant  for  peripheral  subcutaneous  fat  depletion 

 and  central  adiposity  on  the  organismal  level.  Finally,  we  identified  similarities  in  morphological 

 and  cellular  signatures  between  genetically-driven  signals  of  18q21.33  locus  and  polygenic  risk 

 for  waist-to-hip  ratio  adjusted  for  BMI  (WHRadjBMI;  the  morphological  and  cellular  profile  for 
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 WHRadjBMI  polygenic  risk  was  generated  in  4.1)  in  subcutaneous  mature  adipocytes.  Together 

 these  results  highlight  the  complexity  of  pleiotropic  loci  and  their  association  with  heterogeneous 

 disease phenotypes and provide an approach for resolving their mechanistic underpinnings. 

 My  contribution  to  this  study  consisted  of  the  following:  (1)  I  analysed  high-content  imaging 

 data  using  the  framework  I  developed  in  4.1  and  RNA-seq  data  we  generated  in  4.1  stratified 

 based  on  rs12454712  genotype  in  subcutaneous  and  visceral  AMSCs  at  4  time  point  of 

 differentiation.  (3)  I  performed  LipocytePainting  in  subcutaneous  AMSCs  following 

 siRNA-mediated  BCL2  knockdown  in  preadipocytes,  which  was  performed  by  Samantha  Laber, 

 and  14  days  of  differentiation  at  four  time  points  and  analysed  the  data  using  LipocyteProfiler. 

 (4)  I  discussed  the  results  with  my  co-authors  and  contributed  equally  to  the  visualization  and 

 writing of the manuscript. 

 4.4. CRISPR-SAVE, a  piggyBac  -mediated CRISPR/Cas9  genome editing approach 

 In  this  project  I  developed  a  piggyBac  -mediated  CRISPR/Cas9  genome  editing  tool,  namely 

 CRISPR-SAVE,  which  potentially  enables  scalable  accurate  variant  editing  in  future  studies.  I 

 tested  the  approach  in  an  established  cell  model  of  immortalised  white  adipose-derived 

 mesenchymal  cells  (hWAT)  91  using  prioritised  variants  of  the  2q24.3  metabolic  risk  locus  that  we 

 functionally characterized in 4.2. 

 Rationale  and  Contribution:  To  establish  causality  between  genetic  variants  and  morphological 

 and  cellular  profiles  identified  by  LipocyteProfiler,  we  aimed  to  develop  a  tool  to  engineer 

 genetic  variants  recovering  genetically-driven  phenotypes.  The  approach  builds  on  a  method 

 described  in  92  and  performs  genome  modifications  in  four  steps:  (1)  Ribonucleoprotein  complex 

 (RNP),  Cas9  complexed  with  a  guide  RNA  (gRNA),  and  a  single  stranded  DNA  (ssDNA)  repair 

 template  comprising  homology  arms  (~600bp)  and  a  selection  cassette  flanked  by  piggyBac 

 transposase-specific  inverted  repeat  sequences  are  delivered  to  the  cell.  (2)  Cells  that  have 

 integrated  the  selection  cassette  are  selected  by  antibiotic-based  and  FACS-assisted  double 

 positive  selection.  (3)  After  enrichment  of  cells  that  underwent  genomic  modifications,  a 

 piggyBac  transposase  removes  the  selection  cassette  traceless.  (4)  FACS-assisted  negative 
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 selection  enriches  transposon-negative  edited  cells  (Figure  6).  Together,  CRISPR-SAVE  holds 

 promise  to  ameliorate  one  challenge  of  genome  editing,  the  need  for  single  clonal  expansion  of 

 correctly  edited  cells,  and  further  allows  for  higher  efficiencies,  reduced  hands-on  (cloning-free) 

 and faster (no single-cloning required) generation of targeted genome modifications. 

 I  optimised  CRISPR-SAVE  in  hWAT  and  was  able  to  (1)  increase  mono-allelic  on-target 

 integration  efficiency  of  the  selection  cassette  by  optimising  the  delivery  format  and/or  design  of 

 Cas9,  gRNA,  and  DNA  repair  template.  (2)  Using  RNP  instead  of  Cas9/gRNA  encoded  on 

 plasmid  and  long  ssDNA  instead  of  dsDNA  repair  template,  I  was  able  to  decrease  off-target  and 

 random  integration  events.  (3)  I  improved  piggyBac  -mediated  transposon  removal  in  terms  of 

 experimental  turn  around  time  and  cytotoxicity.  I  demonstrated  its  ability  to  enrich  mono-allelic 

 edited  cells  within  ~5-6  weeks  in  a  pooled  format.  To  comprehensively  characterize  edited  cell 

 pools  and  corresponding  single  cell  expansion  derived  clones  I  used  Sanger  and  Next-Generation 

 Sequencing  technologies  revealing  vulnerabilities  of  the  reported  approach.  More  specifically,  I 

 observed  genetic  modification  at  the  transposon  excision  site  and  hypothesised  that  during 

 mono-allelic  piggyBac  -mediated  excision  of  the  selection  cassette  homologous  recombination 

 mechanisms  between  wild-type  and  edited  DNA  strand  occur  resulting  in  genomic  aberrations  at 

 transposon removal site. 

 In  this  project,  I  led  the  conceptual  work  of  all  optimizations  and  the  experimental  work. 

 However,  further  optimization  is  necessary  to  investigate  causal  drivers  of  the  observed  genomic 

 modifications  e.g.  generating  bi-allelically  modified  cells  which  might  resolve  genetic 

 modifications at the transposon removal region. 

 5 Discussion 

 The  manuscripts  presented  in  this  dissertation  introduce  a  framework  -  LipocyteProfiler  -  for 

 characterizing  associations  of  genetic  variation  with  metabolic  disease  by  phenotypic  profiling  of 

 disease-relevant  cell  models  and  integration  of  genetic/polygenic,  epigenetic,  transcriptional  and 

 image-based  multiparametric  data  in  lipocytes.  Lipocytes  are  cells  that  accumulate  lipids  either 

 under  physiological  conditions,  like  adipocytes,  hepatocytes,  macrophages/foam  cells  and  glial 
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 cells  90,93–96  ,  or  under  pathophysiological  conditions,  like  vascular  smooth  muscle  cells,  skeletal 

 muscle  cells,  renal  podocytes  and  cancer  cells  97–101  .  We  functionally  validated  our  assay  using 

 adipocytes  and  hepatocytes  which  are  highly  specialized  cells  to  store  excess  energy  in  the  form 

 of  lipid  droplets  and  are  associated  with  metabolic  disease.  We  assessed  and  perturbed  their 

 capacity  to  accumulate  lipids;  and  used  the  assay  to  identify  morphological  and  cellular 

 signatures  of  cellular  programs  of  marker  gene  expression  or  drug  treatment.  Furthermore,  we 

 used  LipocyteProfiler  to  discover  novel  mechanistic  underpinnings  of  polygenic  effects  on 

 metabolic  traits  like  insulin  resistance  and  lipodystrophy,  and  used  it  to  functionally  dissect  two 

 metabolic risk loci,  2q24.3  and  18q21.33,  associated  with lipodystrophy-like phenotyp  e. 

 Briefly,  in  the  second  manuscript  I  applied  LipocyteProfiler  on  2q24.3  metabolic  risk  locus 

 associated  with  increased  risk  for  T2D  and  decreased  risk  for  adiposity.  I  identified 

 morphological  and  cellular  consequences  on  actin  cytoskeleton  remodeling  during  adipogenesis, 

 and  subsequently  lipid  storage  resulting  in  a  complex  phenotype  of  disturbed  insulin  sensitivity 

 and  fat  distribution.  The  study  supports  the  hypothesis  that  adipocyte  dysfunction  and  impaired 

 adipocyte  tissue  expandability  influences  insulin  resistance  68,102,103  .  Notably,  the  2q24.3  metabolic 

 risk  locus  has  been  previously  associated  with  a  lipodystrophy-like  phenotype  68  and  identified  as 

 one  of  the  top  scoring  loci  among  20  T2D  risk  loci  in  the  lipodystrophy  cluster  described  in 

 Udler  et  al.  62  ,  inferring  strong  contribution  to  a  lipodystrophic-like  phenotype  mediated  through 

 adipose  tissue.  Previous  studies  have  characterized  functional  consequences  of  some  identified 

 metabolic  risk  loci  associated  with  MONW  (eg.  FAM13A  locus  was  linked  to  fat  distribution  and 

 adipocyte  differentiation  104  )  revealing  distinct  underlying  cellular  programs  of  the  observed 

 phenotype  102,105  .  In  the  presented  manuscript  (4.2),  we  linked  the  2q24.3  lipodystrophy  risk  locus 

 to  its  functional  variant,  its  cell  type  and  context  specific  effect,  its  regulatory  element  and 

 effector  gene,  and  characterized  its  cellular  program  comprising  the  perturbation  of  actin 

 cytoskeleton  remodeling  during  subcutaneous  adipocyte  differentiation  resulting  in  distrubed 

 lipid  metabolism  and  insulin  sensitivity  in  mature  subcutaneous  adipocytes.  Indeed,  actin 

 cytoskeleton  remodeling  has  been  described  to  play  a  key  role  in  adipocyte  differentiation  and 

 function  such  as  regulating  lipid  droplet  formation  and  insulin-stimulated  GLUT4  vesicles 

 trafficking  and  fusion  106  .  Although  the  identified  variant  rs6712203  scored  highest  across  all 

 2q24.3  haplotype  variants  in  our  sequence  based  predictive  models  ,  other  variants  of  this  locus 
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 are  predicted  to  affect  regulatory  activity  as  well.  Therefore  further  studies,  including 

 CRISPR-based  genome  engineering  approaches  like  CRISPR-SAVE  (described  in  4.4),  are 

 necessary  to  test  the  hypothesis  that  multiple  variants  of  the  2q24.3  risk  locus  could  act  in 

 concert  regulating  the  identified  target  gene  COBLL1  along  with  other  effector  genes  like 

 GRB14  .  Together,  this  manuscript  demonstrates  a  step-by-step  dissection  of  a  common  genetic 

 locus integrating epigenetic, transcriptional, morphological and cellular signatures. 

 In  the  third  manuscript,  we  applied  LipocyteProfiler  on  18q21.33  risk  locus  associated  with  a 

 lipodystrophy-like  phenotype,  and  illuminate  mechanistic  insights  underlying  its  pleiotropic 

 effects  in  different  cell-types  and  conditions  resulting  in  a  complex  phenotype.  In  light  of  the 

 pleiotropic  effects,  phenotypic  informed  clustering  of  T2D-associated  genetic  variants  showed 

 that  some  variants  show  strong  weighting  in  more  than  one  cluster,  suggesting  that  these  are 

 involved  in  more  than  one  mechanistic  process  62  .  Extensive  pleiotropic  effects  have  been 

 described  across  loci  (90%  of  loci  associated  with  multiple  traits)  ,  SNPs,  and  gene  sets 

 underlying  genetic  associations  with  human  traits  107  .  In  the  third  reported  manuscript  (4.3),  we 

 highlighted  the  complexity  of  determining  underlying  mechanisms  of  liability  of  disease  by 

 identifying  pleiotropic  effects  of  the  18q21.33  metabolic  risk  locus  mediated  through  at  least 

 three  cell  types  (muscle,  visceral  and  subcutaneous  adipose  tissue),  three  target  genes  (BCL2, 

 KDSR,  and  VPS4B),  and  distinct  cellular  programs  (eg.  apoptosis,  oxidative  phosphorylation). 

 Pleiotropy  is  thought  to  support  identifying  reasons  for  comorbidity  between  traits,  characterize 

 underlying  shared  genetic  mechanisms,  and  may  aid  in  establishing  the  direction  of  causality 

 between  traits  107  .  For  example  BCL2  -inhibitors  (eg.  Venetoclax)  are  established  drugs  for  the 

 treatment  of  chronic  lymphocytic  leukemia  and  lymphoma  by  inhibiting  tumor  cell  proliferation 

 and  inducing  apoptosis.  I  ntriguingly  ,  a  reported  drug  side  effect  of  Venetoclax  is  hyperglycemia 

 (occured  in  16%  of  patients  (5%  showed  severe  hyperglycemia)  in  a  1-year  follow-up  clinical 

 trial  108  ),  which  is  in  line  with  the  described  association  of  the  18q21.33  locus  with  impaired 

 insulin  sensitivity  mediated  through  BCL2  as  effector  gene  in  subcutaneous  adipocytes.  Using 

 image-based  phenotypic  profiling  we  identified  shared  morphological  and  cellular  signatures 

 between  the  18q21.33  metabolic  risk  locus  and  polygenic  risk  of  adverse  body  fat  distribution  in 

 subcutaneous  adipocytes  pointing  to  mitochondrial-related  cellular  programs  involved  in  the 

 regulation  of  apoptotic  processes.  Indeed,  it  has  been  previously  reported  that  impaired 
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 mitochondrial  function  influences  insulin  resistance  49,109  and  that  apoptotic  processes  might  be 

 involved  in  adverse  body  fat  distribution  110  .  Further,  it  is  known  that  visceral  adipose  tissue  stores 

 fat  when  subcutaneous  adipose  tissue  cannot  accommodate  excess  fat  because  of  its  limited 

 expandability  which  is  associated  with  impaired  insulin  sensitivity  and  risk  of  developing  type  2 

 diabetes  and  cardiovascular  disease  111  .  Based  on  our  findings  we  hypothesized  that  the  18q21.33 

 metabolic  risk  locus  and  polygenic  risk  of  increased  waist-to-hip  ratio  in  subcutaneous 

 adipocytes  modify  similar  pathways  resulting  in  limited  expandability  of  peripheral  fat  storage 

 capacity and central fat accumulation which is linked to adverse metabolic effects. 

 The  three  reported  studies  showcase  a  framework  that  can  be  used  to  study  functional  genetics  of 

 single  loci  and  polygenic  signals,  however  due  to  the  small  sample  size  the  reported  findings 

 should be further validated in future studies. 

 The  introduced  framework  and  the  two  single  locus  applications  demonstrate,  consistent  with 

 literature,  that  disease-relevant  high-confidence  cellular  models  are  necessary  in  discovering 

 underlying  mechanisms  of  disease  risk.  LipocyteProfiling  of  primary  AMSCs  revealed  that 

 genetically-driven  disease-relevant  cellular  processes  are  specific  to  adipose  depot, 

 differentiation  state,  and  conditions.  Comparably  to  the  natural  genetic  variation  that  was 

 reported  for  donor-derived  iPSCs  ranging  from  5  to  46%  42  ,  we  observed  inter-individual  genetic 

 variation  of  3  to  41%  and  low  variability  explained  by  extrinsic,  experimentally  introduced 

 confounders  (eg.  batch-to-batch  variation  explained  on  average  6.02%  and  cell  plating  density  on 

 average  3.75%  of  total  variability).  Batch-to-batch  variation  is  wide-spread  in  high-throughput 

 methodologies  and  poses  a  major  challenge  112  .  Since  undetection  can  lead  to  misinterpretation 

 and  false  conclusion,  identifying  and  accounting  for  batch  effects  that  result  from  undesired 

 technical  variation  (eg.  changes  in  laboratory  conditions,  handling  variability  between 

 experimentalists)  rather  than  representing  a  meaningful  biological  result  is  an  important 

 preliminary  step  112,113  .  In  the  reported  LipocyteProfiler  framework,  we  applied  quality  control 

 steps  before  downstream  data  processing  (eg.  removed  images  on  well  edges  and  images  with 

 low  cell  number),  normalised  data,  applied  feature  selection  steps  (e.g.  removed  features  that  are 

 known  to  be  noisy  and  generally  unreliable),  and  quantified  batch  effects  by  differentiating  three 

 control  cell  lines  in  parallel.  To  account  for  variable  feature-specific  contributions  of  batch,  sex, 
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 age,  and  BMI  to  overall  feature  variance,  we  corrected  for  those  covariables  in  our  analyses  . 

 Based  on  these  steps  we  gained  confidence  that  LipocyteProfiler  can  be  used  to  study  the  effect 

 of genetic contributions to morphological and cellular programs  . 

 However,  it  will  be  necessary  in  the  future  to  substantially  increase  sample  size  to  capture  the 

 full  range  of  allele  frequencies,  to  further  standardize,  automate  strategies,  and  use  suitable 

 controls  to  keep  technical  confounders  as  low  as  possible,  while  power  to  detect  contribution  of 

 natural  genetic  variability  increases.  Notably,  power  calculation  of  genome-wide  functional 

 studies  in  vitro  could  differ  from  previous  calculations  of  similar  studies  in  whole  tissue,  due  to 

 the  heterogeneity  of  cell  states  in  whole  tissue.  Cells  cultured  and  differentiated  in  vitro  are 

 enriched  for  cell-type  and  cell-state  of  interest,  whereas  whole  tissue  is  composed  of  various 

 cell-types  of  different  differentiation  states,  which  introduces  noise  and  therefore  reduces  power 

 to  detect  disease-relevant  phenotypes  39  .  The  reported  studies  demonstrated  the  ability  to  detect 

 subtle  phenotypes  with  small  sample  sizes  in  disease-relevant  cell  models,  suggesting  that 

 relatively  small  sample  size  --  if  selected  thoroughly  for  example  by  sampling  from  the  tail  ends 

 of  PRS  distributions  --  might  be  sufficient  to  perform  in  vitro  functional  genetic  studies  using 

 multiparametric  phenotypic  profiling  assays  in  disease-  relevant  models.  While  our  work  serves 

 as  proof-of-principle  that  genetic  variants  affect  morphological  and  cellular  phenotypes,  the 

 majority  of  the  signals  we  detected  did  not  survive  multiple  testing  schemes,  stressing  the  need  to 

 (1)  substantially  increase  sample  size  when  testing  more  than  one  genetic  risk  locus  for 

 phenotype  associations  and  (2)  combine  phenotypic  profiling  assays  such  as  LipocyteProfiler 

 with CRISPR-based engineering approaches. 

 CRISPR-based  genome  engineering  tools  are  necessary  to  establish  causality  between  genetic 

 variants  and  genetically-driven  disease  phenotypes.  These  tools  need  to  be  accurate,  versatilly 

 applicable,  and  scalable.  The  reported  approach,  CRISPR-SAVE,  introduces  strategies  to 

 overcome  challenges  such  as  increasing  editing  efficiency,  decreasing  undesired  modification 

 (off-targets  and/or  random  integration)  and  improving  scalability  by  reducing  time  and  cost 

 consuming  experimental  procedures.  However,  it  also  demonstrated  pitfalls  limiting  precise 

 predetermined  genome  modifications  requiring  further  optimisation  efforts.  Nevertheless,  the 

 combination  of  phenotypic  profiling  approaches  like  LipcoteProfiler  and  CRISPR-based  genome 
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 engineering  tools  hold  great  promise  to  characterize  functional  consequences  of  genetic  variants 

 and to recover genetically-driven phenotypes. 

 Pooled  experimental  designs  rather  than  arrayed  assays  can  process  many  samples  in  parallel, 

 reducing  experimental  costs  and  time,  and  have  the  ability  to  culture  cells  under  the  same 

 environmental  conditions,  reducing  batch  effects  and  increasing  statistical  power.  However, 

 pooled  assays  for  population-scale  genetic  studies  face  different  experimental  challenges,  like 

 heterogeneity  of  growth  rate  and  differentiation  capacity  between  donors,  and  analytical 

 challenges  like  deconvolution  of  individual  genotype-phenotype  relationship  83,114  .  Studies, 

 namely  village-in-dish  114  and  pooled  optical  screens  83  ,  introduced  frameworks  of  pooled  designs 

 to  elucidate  genetic  association  with  complex  phenotypes.  In  future,  combining  appropriate 

 large-scale  experimental  and  analytical  approaches  will  be  necessary  to  characterize 

 genotype-phenotype  association  at  genome  scale  in  disease-relevant  cell  models  in  a 

 well-controlled, experimental feasible and inexpensive way. 

 Etiology  of  metabolic  disease  is  multifactorial,  including  intrinsic  and  extrinsic  factors.  Some 

 genetically-driven  phenotypic  effects  may  be  conditional  on  environmental  stimulation.  For 

 example,  we  showed  that  morphological  and  cellular  signatures  of  different  polygenic  risk  for 

 metabolic  traits  or  locus-specific  effects  of  2q24.3  and  18q21.33  were  specific  to  adipose  depot 

 and  differentiation  state.  Additionally,  risk  allele  carriers  of  18q21.33  show  different  responses  to 

 free  fatty  acid  treatment  in  visceral  adipocytes.  Similar  observation  was  previously  described 

 when  studying  expression  quantitative  trait  loci  (eQTLs)  115  .  In  this  context,  it  was  shown  that 

 some  eQTLs  are  context-specific  and  can  only  be  observed  under  specific  environmental 

 simulations,  and  therefore  are  called  dynamic  eQTLs  116  .  These  findings  demonstrate  that  besides 

 disease  relevant  cell  models,  potentially  disease-causing  environmental  conditions  should  be 

 included  in  study  designs  to  capture  the  full  bandwidth  of  multifactorial,  modifiable  disease 

 phenotypes. 

 Genetic  association  signals  of  complex  traits  are  spread  across  the  whole  genome  and  are  in 

 close  proximity  to  genes  without  obvious  connection  to  disease.  This  implies  that  pleiotropy  is  a 

 wide-spread  feature  of  pathophysiology  of  common  complex  diseases  and  that  gene  expression  is 

 affected  globally,  including  genes  that  are  previously  thought  to  have  no  obvious  influence  on 

 disease.  Further,  it  is  known  that  these  variants  lie  more  likely  in  open  chromatin  of  cell-type 
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 specific  regulatory  elements  rather  than  ubiquitously  regulating  elements  11  .  The  omnigenic 

 model  16  describes  the  hypothesis  that,  due  to  the  architecture  of  common  genetic  variants  and 

 associated  gene  regulation,  complex  indirect  networks  of  genes  contribute  to  total  heritability 

 and  converge  in  core  pathways  directly  affecting  disease  phenotypes.  This  implies  that  mapping 

 cell-specific regulatory networks will be essential to fully understand human disease biology. 

 In  the  reported  manuscripts,  we  demonstrated  that  Lipocyte  profiling  captures  cellular  networks 

 of  complex  phenotypes,  which  may  be  explained  by  the  fact  that  image-based  profiling  captures 

 a  magnitude  of  subtle  morphological  and  cellular  changes  downstream  of  complex 

 transcriptional  and  protein-protein  interaction  networks.  In  the  future,  systematic  integration  of 

 “omics”  data,  including  epigenomics,  transcriptomics,  proteomics,  and  metabolomics,  with 

 high-content  imaging  may  further  improve  to  capture  disease-relevant  cell-specific  regulatory 

 networks associated with genetic variation. 

 Polygenic  risk  scores  have  the  potential  to  provide  clinical  benefit  by  quantifying  disease 

 predisposition,  predicting  disease  progression,  propensity  to  develop  disease  complications,  and 

 response  to  pharmacological  and  behavioral  interventions  61  .  Process-specific  PRSs  quantify 

 polygenic  risk  of  individuals  belonging  to  phenotypic-informed  subclusters  of  T2D.  It  was 

 shown  that  one  third  of  individuals  scored  highest  for  at  least  one  cluster,  and  most  of  them 

 (75%)  scored  lower  in  other  clusters  62  .  Therefore,  understanding  of  mechanistic  insights  of 

 process-specific  PRSs  by  characterizing  the  influence  of  a  high  polygenic  risk  score  on 

 molecular  and  cellular  pathways  of  a  specific  process,  as  demonstrated  in  LipocyteProfiler 

 manuscript,  is  impactful  and  may  accelerate  clinic  application.  Individuals  predominantly 

 assigned  to  one  disease-driving  process  could  particularly  benefit,  in  combination  with 

 established  biomarkers,  from  process-tailored  drugs  and  improvements  of  tailored  monitoring  of 

 progression  and  complications.  Expanding  the  phenotypic  profiling  approaches,  by  integrating 

 more  phenotypic  data  (eg.  metabolomics)  and  generating  phenotypic  profiles  under  various 

 disease-relevant  environmental  conditions  (eg.  metabolic  challenges,  drug  treatments)  may 

 further  illuminate  intrinsic  and  extrinsic  drivers  of  disease-relevant  cellular  programs.  Further, 

 most  GWAS  have  been  performed  in  Europeans,  most  large  biobanks  consist  of  samples  of 

 European  ancestry,  and  polygenic  scores  have  been  calculated  from  European  sequences  74,75,117  . 

 However,  it  was  shown  that  accuracy  in  predicting  polygenic  risk  in  other  ethnicities  is  reduced, 

 due  to  different  allele  frequencies  and  strength  of  correlation  with  disease  74,75  .  This  implies  that 
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 genetically  mediated  cellular  programs  may  differ  between  different  populations  and  ethnicities. 

 Therefore,  calculation  of  polygenic  risk  scores  and  characterization  of  genetically-driven 

 mechanistic  insights  should  be  assessed  across  populations  and  ethnicities  to  develop  novel 

 therapy strategies, including pharmacological and behavioral intervention, for everyone. 

 In  summary,  multiparametric  genotypic/phenotypic  profiling  of  large  diverse  cohorts  of 

 disease-relevant  cellular  and  environmental  models,  with  standardized  well-controlled 

 experimental  settings,  will  provide  an  unique  possibility  to  characterize  genetic  association  with 

 cellular  function  in  an  unbiased  genome-wide  manner.  Such  technologies,  if  combined  with  large 

 biobanks  of  primary  and  iPS  derived  cells  and  scalable  CRISPR  perturbation  schemes,  will 

 advance  the  field  of  functional  genomics  and  pharmacogenomics  making  it  possible  to  develop 

 tailored  therapeutic  hypotheses  for  individual  patients  with  common  complex  and  heterogeneous 

 disease. 
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SUMMARY

A primary obstacle in translating genetic associations with disease into therapeutic strategies is elucidating
the cellular programs affected by genetic risk variants and effector genes. Here, we introduce
LipocyteProfiler, a cardiometabolic-disease-oriented high-content image-based profiling tool that enables
evaluation of thousands of morphological and cellular profiles that can be systematically linked to genes
and genetic variants relevant to cardiometabolic disease. We show that LipocyteProfiler allows surveillance
of diverse cellular programs by generating rich context- and process-specific cellular profiles across hepa-
tocyte and adipocyte cell-state transitions. We use LipocyteProfiler to identify known and novel cellular
mechanisms altered by polygenic risk of metabolic disease, including insulin resistance, fat distribution,
and the polygenic contribution to lipodystrophy. LipocyteProfiler paves the way for large-scale forward
and reverse deep phenotypic profiling in lipocytes and provides a framework for the unbiased identification
of causal relationships between genetic variants and cellular programs relevant to human disease.

INTRODUCTIONQ7Q4Q3
Q2

With the rise of human genome sequencing data, the number
of genetic variants known to be associated with human dis-
eases has increased substantially; however, elucidating the
pathogenic mechanisms through which genetic variants
impact disease remains limiting. Phenotypic profiling is a
powerful tool to systematically discover external and internal
regulators of biological processes in cellular systems in an un-
biased manner.1–4 High-content imaging is an established

multi-parametric approach that captures and quantifies bio-
logical processes from microscopy images, yielding a rich
set of morphological and cellular profiles.5 To date, image-
based profiling has been used in small-molecule screens to
identify compound fingerprints, ascertain compound toxicity,
and predict compound assay activity6–9 and in gene expres-
sion screens to annotate gene function.10 In all cases, the
basic strategy is to match the profile of a given sample based
on similarity to morphological profiles of previously annotated
samples.
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Figure 1. LipocyteProfiler creates rich morphological and cellular profiles in adipocytes that are informative for known cellular functions
(A) Schematic of LipocyteProfiler, which is a high-content imaging assay that multiplexes six fluorescent stains imaged in four channels in conjunction with an

automated image-analysis pipeline to generate rich morphological and cellular profiles in lipid-storing cell types (lipocytes), such as adipocytes during differ-

entiation.

(legend continued on next page)
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In metabolism, lipid droplets represent a relevant feature that
is amenable to image-based profiling. Lipid droplets are storage
organelles central to both whole-body metabolism and energy
homeostasis. These droplets are highly dynamic and found in
all cell types.11 They are functional in either cellular homeostasis
in lipid-accumulating cells (lipocytes), such as adipocytes, hepa-
tocytes, macrophages/foam cells, and glial cells,11–15 or in path-
ophysiological processes in cells including vascular smooth
muscle cells, skeletal muscle cells, renal podocytes, and cancer
cells.16–20 Changes in lipid-droplet dynamics such as the num-
ber and size of lipid droplets and overall lipid content are associ-
ated with the progression of numerous metabolic diseases
including type 2 diabetes (T2D), obesity, and non-alcoholic fatty
liver disease.21

Here, we introduce LipocyteProfiler, a metabolic-disease-ori-
ented phenotypic profiling system for lipid-accumulating cells
bridging the gap between high-throughput generalizable assays
and low-throughput, highly customized, disease-focused read-
outs. LipocyteProfiler is an adaptation of Cell Painting5,22–24

that incorporates BODIPY to measure dynamic features of lipid
droplets and thus captures lipocyte-relevant phenotypes in
addition to generic morphological profiles.

Design
Elucidating cellular programs that underlie the association of ge-
netic variants, regulatory elements, and genes with diseases
largely remains a non-systematic, labor- and cost-intensive
endeavor that is biased toward hypotheses drawn from a priori
knowledge. High-content imaging captures and quantifies
numerous distinct biological processes from microscopy images
in an unbiased manner, yielding a rich set of morphological and
cellular profiles.5

Thus far the phenotypic data ascertained from scalable
morphological profiling assays has been limited to features infor-
mative for the generic organelles of the cell.5,22,23 This includes

structural information about nuclei, endoplasmic reticulum, cyto-
skeleton, and mitochondria, or generic processes, such as cell
growth or proliferation. It is currently unknown how gene and
compound effects translate to changes in specific cellular path-
ways and processes. Image-based deep cellular phenotypic
profiling tools provide a plethora of quantitative features. Howev-
er, narrowing down these high-dimensional data matrices to a
set of the most informative features that drive cellular processes
requires differentiating first-order from second-order relation-
ships among the features. As such, there is a pressing need to
develop foundational technologies that allow systematic linking
of genetic variation to disease-relevant cellular programs at
scale and in a broadly accessible way.
To quantitatively map dynamic and context-dependent

morphological and cellular signatures in lipocytes as well as
discover intrinsic and extrinsic drivers of cellular programs, we
developed a high-content image-based profiling approach
called LipocyteProfiler (Figure 1A). LipocyteProfiler is an unbi-
ased high-throughput profiling assay that generates rich generic
and lipocyte-specific cellular profiles from six multiplexed fluo-
rescent dyes imaged in four channels (Figure 1B) in conjunction
with an automated image-analysis pipeline (see STAR Methods
and Method S1).
LipocyteProfiler extracts 3,005morphological and cellular fea-

tures that map to three cellular compartments (Cell, Cytoplasm,
and Nucleus) across four organelles, namely nucleus (Hoechst),
Mito (MitoTracker red, which stains mitochondria), AGP (actin,
Golgi, plasma membrane; stained with phalloidin [F-actin cyto-
skeleton] and wheat germ agglutinin [Golgi and plasma mem-
branes]), and Lipid (BODIPY, which stains neutral lipids, multi-
plexed with SYTO14, which stains nucleoli and cytoplasmic
RNA) (Figures 1C and S1A). Within each compartment and chan-
nel, features quantify morphological changes based on four
different measurement classes: Intensity, Granularity, Texture,
and Others (Figures 1C and S1A).

(B) Representative microscopy image of fully differentiated adipocytes for four individual channels and a merged representation across channels. Scale bars,

10 mm.

(C) LipocyteProfiler extracts 3,005morphological and cellular features thatmap to three cellular compartments and across four channels using four measurement

classes.

(D) Schematic of LipocyteProfiling in differentiating hWAT at four time points of adipocyte differentiation (days 0, 3, 8, 14). Representative images of AMSCs

stained using LipocytePainting at four time points of differentiation (days 0, 3, 8, 14). Scale bars, 10 mm.

(E) CytoplasmMedianIntensity Lipid, a measurement of lipid content within a cell, significantly increases with adipogenic differentiation and decreases following

CRISPR-Cas9-mediated knockdown of PPARG in differentiated white adipocytes. Data are shown for two guides used (g1 and g2), and y axis shows LP units

(normalized LipocyteProfiling [LP] values across three batches, see STAR Methods).

(F) Number of large Lipid objects informative for large lipid droplets are absent in the progenitor state (day 0) and in early differentiation (day 3) and progressively

increase in later stages of differentiation (days 8 and 14). Number of large Lipid objects is reduced following CRISPR-Cas9-mediated knockout (KO) of PPARG

(data are shown for two guides used [g1 and g2]) and PLIN1, at day 14 of differentiation. y axis shows LP units (normalized LP values across three batches, see

STAR Methods).

(G) Morphological profiles of white (hWAT) and brown (hBAT) adipocytes at day 14 of differentiation differ significantly across all feature classes (FDR < 0.1%).

Features are clustered based on effect size. Features with the highest effect size in hWAT and hBAT adipocytes are lipid- and mitochondria-related, respectively.

Graph shows zoom-in for top ten features with largest effect sizes in hWAT (top panel) and hBAT (bottom panel).

(H) Lipid Granularity measures, as spectra of 16 lipid-droplet size measures, show size-specific changes in hWAT and hBAT during differentiation. See also

Figure S1H. Granularity features informative for larger lipid droplets (Lipid Granularity 10–16) correlate positively with PLIN1 gene expression and are reduced in

PLIN1-KO adipocytes. See also Figures S1I and S1J (PLIN2, FASN-KO). y axis shows autoscaled LP units (normalized LP values across three batches, seeSTAR

Methods).

(I) Brown adipocytes (hBAT) show higher Mito_Texture_InfoMeas1, a measure of spatial relationship between specific intensity values, compared with white

adipocytes (hWAT). CRISPR-Cas9-mediated knockout ofMFN1, amitochondrial fusion gene, changesMito_Texture_InfoMeas1 (data shown for two guides used

[g1 and g2]). y axis shows LP units (normalized LP values across three batches [hBAT/hWAT] or normalized across CRISPR-KO data, see STAR Methods).

(J) Mito_MedianIntensity is higher in brown (hBAT) compared with white (hWAT) adipocytes throughout differentiation and decreased after CRISPR-Cas9-

mediated knockout of PPARGC1A in hWAT. y axis shows LP units (normalized LP values across three batches, see STAR Methods).
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More specifically, Intensity features are a collection of fea-
tures that measure pixel intensities across an image using
various measurement types such as MedianIntensity, MaxIn-
tensity, and RadialDistribution of Intensity. Texture features
describe the complexity or homogeneity within an image of
a compartment using a plethora of different quantification ap-
proaches including Entropy, AngularSecondMoment, and
Variance measurements. Granularity features are informative
for a spectrum of different structural elements (sizes 1–16)
that fit into an image. For example, Granularity Lipid features
are indicative for small (sizes 1–5), medium (sizes 6–10), and
large (sizes 11–16) lipid droplets. The fourth measurement
class, referred to as Other features, is a composition of
different measurements that quantify shape, size, and count
of cells as well as correlations between different channel in-
tensities (e.g., between Mito and Lipid). In concert, these fea-
tures build rich lipocyte-specific cellular profiles that enable
elucidation of cellular programs that link genetic loci and vari-
ation to human disease.

To nominate LipocyteProfiler core features that drive cellular
processes we applied an information theoretic algorithm, which
reduces the 3,005 LipocyteProfiler features, based on mutual in-
formation (MI) between features, and prioritizes first-order inter-
actions indicative of direct interactions between features25–27

(Figure S1B). By representing features as nodes of a graph and
MI-based calculated interactions between features as weighted
edges, we constructed an MI network representing interactions
between the features. After ranking the nodes based on their de-
gree of connectivity (number of edges), we defined
LipocyteProfiler core features as those features among the
75% upper quantile of the ranked nodes and the lower 25%
percentile of the averageMI. TheMI-based feature reductions al-
lowed us to nominate approximately one-third of the features as
core features (Figures S1B and S1C) that can be used to identify
intrinsic and extrinsic drivers of phenotypic changes in a
concise way.

We demonstrate that our LipocyteProfiler tool can identify
diverse cardiometabolic-disease-relevant cellular mecha-
nisms by generating context-, process-, and allele-specific
morphological and cellular profiles. We prototyped
LipocyteProfiler in adipocytes and hepatocytes, which are
highly specialized cells that store excess energy in the form
of lipid droplets and have key roles in cardiometabolic dis-
ease. First, we demonstrate that LipocyteProfiler can identify
meaningful changes in feature profiles (1) during adipocyte
differentiation, (2) across white and brown adipocyte lineages,
and (3) following genetic and drug perturbations. Next, we
correlated LipocyteProfiler features with transcriptomic data
from RNA sequencing (RNA-seq) to link gene sets with
morphological and cellular features, capturing a broad range
of cellular activity in differentiating adipocytes. We then
applied LipocyteProfiler to connect polygenic risk scores for
type 2 diabetes (T2D)-related traits to cellular phenotypes
and discover novel trait-specific cellular mechanisms underly-
ing polygenic risk. Finally, we used our method to uncover
cellular traits under the genetic control of an individual genetic
risk locus, demonstrated for the 2p23.3 metabolic risk locus at
DNMT3A.28

RESULTS

LipocyteProfiler generates meaningful morphological
and cellular profiles in differentiating adipocytes
To test the ability of LipocyteProfiler to extract biologically mean-
ingful high-dimensional representations of morphological and
cellular programs, we used our metabolic-disease-oriented im-
age-based profiling tool to detect (1) changes associated with
adipocyte differentiation, (2) differences between white and
brown adipocytes, and (3) phenotypic effects of directed gene
perturbation using CRISPR-Cas9 to knock out key regulators
of adipocyte function.
First, we applied LipocyteProfiler to amodel of adipocyte differ-

entiation using an established white adipocyte line (hWAT),29

which undergoes phenotypic changes from fibroblast-shaped to
spherical lipid-filled cells during differentiation (days 0, 3, 8, and
14; Figure 1D). We mapped the phenotypic signature of progres-
sive lipid accumulation and cytoskeletal remodeling during adipo-
cyte differentiation in hWAT using tractable Lipid and AGP fea-
tures. We show that cytoplasmic intensity of Lipid, a proxy of
overall lipid content within a cell, increased with adipogenic differ-
entiation (Figure 1E). In addition, large Lipid objects (large lipid
droplets)wereabsent in theprogenitor state (day0)and inearlydif-
ferentiation (day 3), and the number of these objects increased in
later stages of differentiation (Figure 1F). We confirmed that
CRISPR-Cas9-directed perturbation of PPARG, the master regu-
lator of adipogenesis, decreases theoverallLipid Intensity in differ-
entiatedwhite adipocytes (guide 1 adjusted p [adj.p] = 2.03 10!3,
guide 2 adj.p = 2.0310!4; Figure 1E). Furthermore, large Lipid ob-
jects present at day 14 of differentiation were reduced when we
perturbed regulators of lipid accumulation, PPARG (guide 1
adj.p = 8.0 3 10!3, guide 2 adj.p = 1 3 10!2) and PLIN1 (adj.p =
8.0 3 10!2), a key regulator of lipid-droplet homeostasis (Fig-
ure 1F). These data demonstrate that LipocyteProfiler detects ex-
pectedchanges in lipiddynamicsassociatedwithadipocytediffer-
entiation. Another cellular change that occurs during adipocyte
differentiation is a drastic reorganization of the actin cytoskeleton,
which transitions fromwell-defined stress fibers in pre-adipocytes
to relatively thick cortical actin lining composed of patches of
punctate F-actin at the inner surface of the plasma membrane in
fully differentiated adipocytes30 (Figure S1D). This cytoskeletal re-
modeling is stimulated by insulin and essential for GLUT4 translo-
cation into the membrane to facilitate insulin-responsive glucose
uptake in the cell.30 Concordantly, we found that CRISPR-Cas9-
mediated disruption of the insulin receptor (INSR) and insulin re-
ceptor substrate 1 (IRS1) in pre-adipocytes altered AGP Texture
features (describing the smoothness of a given stain) inmature ad-
ipocytesatday14ofdifferentiation (FigureS1E).Specifically, INSR
and IRS knockout reduced variation of cytoplasmic AGP stain in-
tensities most significantly near the plasma membrane (Cyto-
plasm_RadialDisribution_RadialCV_AGP_4_of_4, IRS1 guide 1
adj.p = 8.0 3 10!3, guide 2 adj.p = 8.0 3 10!2; INSR guide 1
adj.p = 8.0 3 10!2, guide 2 adj.p = 2.0 3 10!2), indicative of less
punctuated AGP, which is in line with less cortical actin in INSR-
and IRS-knockout cells.
Next, we used brown and white adipocyte model systems to

elucidate mitochondrial and lipid-related informational content.
Intrinsic differences distinguishing white and brown adipocytes
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Figure 2. LipocyteProfiler identifies distinct depot-specific morphological and cellular signatures associated with differentiation trajec-
tories in both visceral and subcutaneous AMSCs
(A) Human AMSCs isolated from subcutaneous and visceral adipose depots were differentiated for 14 days, and LipocyteProfiler and RNA-seq profiling were

performed throughout adipocyte differentiation (days 0, 3, 8, and 14).

(legend continued on next page)
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are known to be predominantly driven by differences in mito-
chondrial number and activity that translate into differential lipid
accumulation.31 Using an established brown adipocyte line
derived from human neck fat (hBAT) from the same individual
as for the hWAT line, we showed that morphological profiles
from differentiated hWAT and hBAT differ significantly in every
channel and feature category (Figure 1G). Lipid Granularitymea-
sures, a class of metrics that capture the typical sizes of bright
spots for a stain, predominated among those increased in
hWAT. During adipocyte differentiation, lipid droplets typically in-
crease first in number and then enlarge and fuse to form larger
lipid droplets over the course of maturation.32 We observed
that the number of small and medium-sized lipid droplets (Lipid
Granularity measures 1–9) present in early differentiating hWAT
saturate in early stages of differentiation (Figure 1H). Larger lipid
droplets (Lipid Granularity measures 10–16) increase in terminal
differentiation, indicating that lipid droplets form in early differen-
tiation and grow thereafter, a process that is reflected in Lipid
Granularity measures and Lipid objects count (Figures 1H and
S1F). Consistent with the notion that adipocytes from brown ad-
ipose have smaller lipid droplets, we found that during differenti-
ation, hBAT adipocytesQ10 accumulate fewer medium-sized and
large lipid droplets as seen by lower values across the spectra
of granularity (Figures 1H and S1G). Intuitively, LipocyteProfiler-
derived size estimates showed that white hWAT are larger than
brown hBAT adipocytes after 14 days of adipogenic differentia-
tion as cells become lipid laden (Cells_AreaShape_Area p =
5.13 10!5; Figure S1H). To test whether lipid-droplet-associated
perilipins can be linked to lipid-droplet sizes, we correlated Lipid
Granularity measures with mRNA expression levels of PLIN1,
which is specifically expressed in adipocytes where it directs
the formation of large lipid droplets33,34 and PLIN2, the only
constitutively and ubiquitously expressed lipid-droplet protein
that is associated with a range of lipid droplets in diverse cell
types.35,36 We observed that mRNA expression levels of PLIN1
positively correlated with the Lipid Granularity features informa-
tive for larger spot sizes (Lipid Granularitymeasures 12–16) (Fig-
ure 1H). PLIN2 correlated best with Lipid Granularitymeasures of
smaller and larger spectra (Figure S1I). Accordingly, when we
knocked outPLIN1 and FASN, genes involved in lipid-droplet dy-
namics and lipidmetabolism,we observed a size-specific reduc-
tion of Lipid Granularity (Figures 1H andS1J), suggesting that
Lipid Granularity features are a suitable output measure of lipid-
droplet size spectra and an indicator of adipocyte differentiation.

Consistent with the relevance of mitochondria for brown
adipocyte function, mitochondrial measures were among the
features that increased the most in hBAT (Figure 1G), particularly
the Texture feature Cells_Texture_InfoMeas1_Mito (p = 1.0 3
10!3), which describes the overall information content based
on the smoothness of a given stain. Perturbation of MFN1, a
mitochondrial fusion gene, increased Cells_Texture_Info-
Meas1_Mito in hWAT adipocytes (adj.p = 4.0 3 10!2; Figure 1I),
suggesting that the higher values of this measurement in differ-
entiated hBAT could be indicative of higher mitochondrial fission
in hBAT compared with hWAT. This finding is consistent with
brown adipocytes elevating mitochondrial thermogenesis by
increasing mitochondrial fission.37 hBAT adipocytes are further
characterized by increased Mito Intensity compared with
hWAT adipocytes throughout differentiation, with the most sub-
stantial increase in the fully differentiated state (median, day 8
adj.p = 1.63 10!3, day 14 adj.p = 1.33 10!3; Figure 1J), demon-
strating that LipocyteProfiler can identify known cellular pro-
grams that distinguish different adipocyte lineages. Indeed,
when we perturbed PPARGC1A, the master regulator of mito-
chondrial biogenesis and thermogenesis in adipocytes, using
CRISPR-Cas9-mediated knockout in hWAT, mitochondrial in-
tensity decreased (guide 1 adj.p = 1.7 3 10!5, guide 2 adj.p =
8.83 10!7; Figure 1J). We also confirmed similar morphological
and cellular differences between brown hBAT adipocytes and
another established white adipocyte cell line, differentiated
SGBS (Simpson-Golabi-Behmel syndrome) cells (Figure S2A).
Taken together, our data demonstrate that LipocyteProfiler can
generate rich sets of morphological and cellular features that
correlate with cellular function.

LipocyteProfiler identifies distinct depot-specific
signatures associated with differentiation trajectories
in visceral and subcutaneous adipocytes
We next used LipocyteProfiler to distinguish phenotypes of pri-
mary human adipose-derived mesenchymal stem cells
(AMSCs) derived from the two main adipose tissue depots in
the body, namely subcutaneous and visceral, across the course
of differentiation (Figure 2A). We differentiated subcutaneous
and visceral AMSCs and generated morphological profiles at
days 0, 3, 8, and 14 using LipocyteProfiler and validated suc-
cessful differentiation in both depots by an increase of adipogen-
esis marker genes (LIPE, PPARG, PLIN1, GLUT4) (Figure S2B).
Concomitantly, we used RNA-seq to profile the transcriptome

(B) LipocyteProfiler and transcriptome profiles show time-course-specific signatures revealing a differentiation trajectory, but only LipocyteProfiler additionally

resolves adipose-depot-specific signatures.

(C) Subcutaneous and visceral AMSCs at terminal differentiation (day 14) have distinct morphological and cellular profiles with differences that are spread across

all channels. See also Figure S2C (volcano plot reporting the !log10 p value and the effect comparing subcutaneous and visceral adipocytes, t test).

(D) Sample progression discovery analysis (SPD). Proportions of subgroups of features characterizing differentiation differ between subcutaneous and visceral

adipocytes and dynamically change over the course of differentiation. In both depots, Mito features drive differentiation predominantly in the early phase of

differentiation (days 0–3) whereas Lipid features predominate in the terminal phases (days 8–14). See also Figure S2D for SPD of hWAT and SGBS.

(E) The number of lipid droplets is higher in subcutaneous AMSCs than in visceral AMSCs at terminal differentiation. y axis shows LP units (normalized LP values

across eight batches, see STAR Methods).

(F) Mature subcutaneous AMSCs have larger intracellular lipid droplets compared with visceral AMSCs at day 14 of differentiation (Lipid Granularity). y axis shows

autoscaled LP units (normalized LP values across eight batches, see STAR Methods).

(G) Lipid Granularity from subcutaneous AMSCs at day 14 of differentiation correlates positively with floating mature adipocyte diameter but shows an inverse

relationship for visceral adipose tissue, suggesting distinct cellular mechanisms that lead to adipose tissue hypertrophy in these two depots. y axis shows

autoscaled LP units (normalized LP values across eight batches; x axis, histology adipocytes diameter [mm], see STAR Methods).
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on the same differentiation time points. We observed that both
the morphological and transcriptomic profiles show time-
course-specific signatures revealing a differentiation trajectory;
however, only morphological profiles generated by
LipocyteProfiler also resolved adipose-depot-specific signa-
tures throughout differentiation (Figure 2B). At day 14 of differen-
tiation, morphological differences between subcutaneous and
visceral adipocytes were spread across a large number of fea-
tures in all feature classes (Figures 2C and S2C).
To discover patterns associated with progression through

adipocyte differentiation in each depot, we performed a sample
progression discovery analysis (SPD).38 SPD clusters samples to
reveal their underlying progression and simultaneously identifies
subsets of features that show the same progression pattern and
are illustrative of differentiation. We discovered that subsets of
features distinguish the differentiation patterns of subcutaneous
and visceral adipocytes and that most dominant feature classes
were dynamically changing over the time course of differentia-
tion (Figure 2D). In visceral adipocytes, the early phase of differ-
entiation was predominantly associated with mitochondrial fea-
tures, whereas terminal phases of differentiation were primarily
associated with changes in lipid-related features (Figure 2D). In
subcutaneous adipocytes, we observed that the feature classes
(actin cytoskeleton, lipid, mitochondrial, and nucleic acid) were
more evenly involved through adipogenesis and that the contri-
bution of Lipid features started in early phases of differentiation,
consistent with an earlier initiation of lipid accumulation in subcu-
taneous compared with visceral adipocytes (Figure 2D). To
demonstrate that LipocyteProfiler captures consistent morpho-
logical patterns across white adipocyte models, we applied
SPD to differentiate white adipocytes and show that SGBS cells,
the immortalized subcutaneous hWAT line, and subcutaneous
AMSCs progress similarly throughout adipocyte differentiation
(Figure S2D). More specifically, we show that among the feature
classes, Lipid features contribute the most to dynamical
changes during adipocyte differentiation. SGBS cells begin the
differentiation process by initiating theQ11 formation of lipid droplets
(percentage of Lipid features between day 0 and day 3), which
grow in the later stages (contribution of AGP features between
days 8 and 14). These dynamic changes are similar to morpho-
logical changes of subcutaneous adipocytes and indicate that
LipocyteProfiler can capture cell-specific morphological
characteristics.
We next compared lipid-related signatures in mature AMSCs

and observed that subcutaneous AMSCs hadmore lipid droplets
than visceral AMSCs (Cells_LipidObject_count, Figure 2E, q =
3.2 3 10!4, false discovery rate [FDR] < 1%). More specifically,
mature subcutaneous AMSCs showed significantly higher Lipid
Granularity of small to medium-sized lipid objects, whereas
visceral adipocytes showed higher Lipid Granularity of very small
lipid objects, suggesting that mature subcutaneous AMSCs
have larger intracellular lipid droplets compared with visceral
AMSCs, which present higher abundance of very small lipid
droplets (Figure 2F). These apparent intrinsic differences in dif-
ferentiation capacity and lipid accumulation between subcu-
taneous and visceral AMSCs are consistent with previously
described distinctions between AMSC depot properties across
differentiation.39 Our data suggest that LipocyteProfiler can facil-

itate identification of distinct lineage differences and programs of
cellular differentiation.
Lastly, to assess the in vivo relevance of morphological fea-

tures of in vitro differentiated adipocytes, we correlated Lipid
Granularity features of adipocytes at day 14 of differentiation
with diameter estimates of tissue-derived mature adipocytes
from the same individual (see STAR Methods). We showed that
changes in Lipid Granularity of in vitro differentiated female sub-
cutaneous adipocytes correlated significantly with the mean
diameter of mature adipocytes (Figure 2G). More specifically,
medium-size granularity measures increased with larger in vivo
size estimates, suggesting that in vivo adipocyte size is reflected
by medium-sized lipid droplets in subcutaneous adipocytes that
have been differentiated in vitro. Strikingly, we found the oppo-
site effect between correlation of visceral Lipid Granularity and
diameter estimates from mature adipocytes, suggesting that
subcutaneous and visceral adipose tissues differ in cellular pro-
grams that govern depot-specific adipose tissue expansion,
which may account for different depot-specific susceptibility to
metabolic diseases. Indeed, white adipose depots have been re-
ported to differ in their respective mechanisms of fat mass
expansion under metabolic challenges, with subcutaneous adi-
pose tissue being more capable of hyperplasia whereas visceral
adipose tissue expands mainly via hypertrophy.40

LipocyteProfiler features reflect transcriptional states
in adipocytes
To identify relevant processes that manifest in morphological
and cellular features and to identify pathways of a given set of
features, we next used a linear mixed model to link the expres-
sion of 52,170 genes derived from RNA-seq with each of the im-
age-based LipocyteProfiler features in subcutaneous adipo-
cytes at day 14 of differentiation across 26 individuals
(Figure 3A and STARMethods). We found 20,296 non-redundant
significant feature-gene connections that were composed of
7,012 genes and 669 features (FDR < 0.01%, Figure 3B and
Table S1A; FDR < 0.1%: 44,736 non-redundant feature-gene
connections, 10,931 genes and 869 features, Figure S3A and
Table S1B), and mapped across all channels (Figure 3A).
Although features from every channel had significant gene corre-
lations, Lipid features showed the highest number of gene con-
nections compared with any other channel. This suggests that
lipid-droplet structure, localization, and dynamics in adipocytes
most closely represent the transcriptional state of the differenti-
ated cell (Figure 3B). Pathway enrichment analyses of lists of
genes connected to a feature at FDR < 0.01% add support to
the idea Q12that genes that correlated with a particular feature are
biologically meaningful. For example, Mito Granularity associ-
ated with genes that are enriched for pathways such as the
tricarboxylic acid cycle (TCA), which oxidizes acetyl-coenzyme
A inmitochondria,41 and lipid and lipoprotein metabolism and tri-
glyceride biosynthesis, which are known to involve mitochon-
drial processes (pathway enrichment analysis FDR < 5%). This
connection between lipid and mitochondrial processes was
also detected in feature-gene associations for Lipid Intensity,
which associates with genes significantly enriched in oxidative
phosphorylation (OXPHOS) and b-oxidation (WikiPathway 368
and WikiPathway 143), and Lipid Granularity in the cytoplasm,
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Figure 3. Correlations between morphological and transcriptional profiles
(A) Linear mixed model (LMM) was applied to correlate 2,760 morphological features derived from LipocyteProfiler with 52,170 transcripts derived from RNA-seq

in matched samples of subcutaneous AMSCs at terminal differentiation (day 14). With FDR < 0.01%, we discover 20,296 non-redundant connections that map to

669 morphological features and 7,012 genes.

(B) Network of transcript-LipocyteProfiler feature correlations (significant connections FDR < 0.01%). Genes correlated with individual LipocyteProfiler features

are enriched for relevant pathways (FDR < 5%). Node size is determined by number of connections. See also Figure S3A for a network with a significance level

threshold of FDR < 0.1%.

(C) LipocyteProfiler signatures of adipocyte marker genes SCD, PLIN2, LIPE, GLUT4, TIMM22, and INSR recapitulate their known cellular function. Features are

clustered based on beta of linear regression.
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Figure 4. LipocyteProfiler identifies molecular mechanisms of drug stimulations in adipocytes and hepatocytes
(A) LipocyteProfiler was performed in visceral AMSCs (n = 3) treated with the b-adrenergic receptor agonist isoproterenol for 24 h.

(B) Isoproterenol treatment results in changes of lipid-related andmitochondrial traits in visceral AMSCs at day 14 of differentiation. See also Figure S3B (volcano

plot reporting the !log10 p value and the effect comparing isoproterenol-treated cells and DMSO-treated cells, t test).

(C and D) Isoproterenol treatment of visceral AMSCs increaseMito and Lipid TextureDifferenceVariance while decreasing the respective LargeLipidObjectmean

radius features. y axis shows LP units (normalized LP values across eight batches, see STAR Methods).

(E) Isoproterenol treatment reduces lipid-droplet sizes measured via lipid granularity. y axis shows autoscaled LP units (normalized LP values across eight

batches, see STAR Methods).

(F) Oleic acid treatment in PHH results in changes of lipid-related features.

(legend continued on next page)
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which associates with genes involved in fatty acid oxidation,
mitochondrial long-chain fatty acid b-oxidation, and the TCA cy-
cle. Finally, correlation features, which capture the overlap be-
tween lipid droplets, mitochondria, and AGP, were enriched for
cytoplasmic ribosomal proteins, genes involved in mitochondrial
long-chain fatty acid b-oxidation, and genes involved in insulin
signaling in human adipocytes (Figures 3B and S3A; Table S1).

In addition to examining genes connected to feature groups,
we also explored morphological features connected to specific
genes. We found that morphological signatures of SCD, PLIN2,
LIPE, GLUT4, TIMM22, and INSR revealed their known cellular
functions (Figure 3C and Table S2). For example, the expression
of TIMM22, a mitochondrial membrane gene, was most strongly
correlated with Mito Texture. Expression of the insulin receptor
(INSR) most strongly correlated with Lipid Intensity features
indicative of lipid accumulation. PLIN2 and GLUT4 showed the
highest positive and negative correlations with Lipid and AGP
features, respectively. Together, these data show that mecha-
nistic information gained from LipocyteProfiler features is not
limited to generic cellular organelles but reflects the transcrip-
tional state of the cell and can be deployed to gain relevant
mechanistic insights.

LipocyteProfiler identifies cellular processes affected
by drug perturbations in adipocytes and hepatocytes
To investigate whether LipocyteProfiler can identify effects of
drug perturbations on cellular profiles, we first compared subcu-
taneous and visceral adipocytes that had been stimulated with
the b-adrenergic agonist isoproterenol (Figure 4A). Isoproterenol
is known to induce lipolysis and increase mitochondrial energy
dissipation.42 We observed that visceral adipocytes responded
to isoproterenol treatment by changes in Lipid andMito features
(Figure 4B; Tables S3A and S3B). More specifically, we observed
that isoproterenol-treated visceral adipocytes were character-
ized by differences in mitochondrial Texture (Difference Vari-
ance, q = 4.4 3 10!2), indicative of a less-smooth appearance
of mitochondrial staining compared with DMSO-treated controls
(Figure 4C). This suggests that isoproterenol treatment results in
more hyperpolarized and fragmented mitochondria, which is a
reported mechanism of norepinephrine-stimulated browning in
adipocytes.37 Isoproterenol-treated visceral adipocytes are
further characterized by increased Lipid Difference Variance
(q = 1.8 3 10!2) and decreased area of large Lipid objects, i.e.,
decreased mean radius and area of large lipid droplets (q =
2.5 3 10!2) (Figure 4D) as well as decreased Lipid Granularity
across the full granularity size spectra, particularly at the smallest
lipid-droplet sizes (Figure 4E). In fact, LipocyteProfiler core fea-
tures highlight the importance of decreased lipid-droplet size
and lipid intensity (Table S3B). This pattern suggests less overall
lipid content in isoproterenol-treated lipolytic visceral adipo-
cytes. Finally, the phenotypic response following isoproterenol
treatment was predominant in visceral adipocytes, as we did

not observe a significant effect (FDR < 5%) in subcutaneous ad-
ipocytes (Figure S3B). Indeed, adrenergic induced lipolysis is
observed to be higher in visceral than subcutaneous in over-
weight and obese individuals.43,44

To test LipocyteProfiler in cell types beyond adipocytes, we
assayed the effects of oleic acid andmetformin in primary human
hepatocytes (PHH). Consistent with the finding that free fatty
acid treatment induces lipid-droplet accumulation in PHH,45

our results showed that treatment of PHH with oleic acid yielded
predominantly Lipid feature changes in the cell (Figure 4F and
Table S4), with a morphological profile indicative of increased
lipid-droplet number (LargeLipidObjects_Count, q = 3.4 3
10!10) and overall lipid content (Cells_MeanIntensity_Lipid, q =
1.5 3 10!5) as well as differences in Texture (Cells_Texture_En-
tropy_Lipid, q = 1.2 3 10!8; Cells_Texture_AngularSecondMo-
ment_Lipid, q = 1.8 3 10!6; Figure 4G). By contrast, treatment
of PHH with metformin caused morphological and cellular
changes that were spread across all channels (Figure 4H and
Table S5), with a profile suggestive of smaller cells (Cells_Area-
Shape_Area, q = 2.0 3 10!11; Cells_AreaShape_MinorAxi-
sLength, q = 7.2 3 10!12) with increased mitochondrial mem-
brane potential (Cells_MeanIntensity_Mito, q = 8.9 3 10!4),
and mitochondrial heterogeneity (Cells_Texture_AngularSe-
condMoment_Mito, q = 7.6 3 10!6; Cells_Texture_Entropy_-
Mito, q = 9.8 3 10!7; Cells_Texture_InfoMeas1_Mito, q =
3.3 3 10!13). Additionally, we observed reduced lipid content
(Cells_MeanIntensity_Lipid, q = 9.0 3 10!7), reduced lipid-
droplet number (LargeLipidObjects_Count, q = 4.8 3 10!8),
and differences in Texture (Cells_Texture_Entropy_Lipid, q =
7.1 3 10!5) (Figure 4I). This concerted effect of metformin on
mitochondrial structure and function as well as lipid-related fea-
tures is consistent with a less uniform appearance of the cyto-
skeleton, Golgi, and plasmamembrane in metformin-treated he-
patocytes compared with control (Cells_Texture_Angular
SecondMoment_AGP, q = 1.9 3 10!8, Figure 4I). Indeed, pro-
longed treatment with high doses of metformin leads to mito-
chondrial uncoupling, resulting in mitochondrial hyperpolar-
ization and diminished lipid accumulation in PHH.45–47

Together, these data demonstrate that morphological and
cellular profiles of drug perturbation in lipocytes yield cellular sig-
natures reflecting known biology and drug action in a single
concerted snapshot of cell behavior.

Polygenic risk effects for insulin resistance affects lipid
degradation in differentiated visceral adipocytes
Next, we used LipocyteProfiler to discover cellular programs of
metabolic polygenic risk in adipocytes. For systematic profiling
of AMSCs in the context of natural genetic variation (Table S6),
we first assessed the effect of both technical and biological vari-
ance on LipocyteProfiler features. To obtain a measure of batch-
to-batch variance associated with our experimental setup, we
differentiated hWAT, hBAT, and SGBS preadipocytes48 in three

(G) Oleic acid treatment in PHH affects lipid-related morphological features suggestive of increased lipid-droplet size and number. y axis shows LP units

(normalized LP values across PHH data, see STAR Methods).

(H) Metformin treatment in PHH results in global changes affecting features across all channels.

(I) Metformin effect in hepatocytes is suggestive of increased mitochondrial activity, while lipid-droplet size and number are reduced. Metformin-treated he-

patocytes are also smaller and show reduced cytoskeletal randomness. y axis shows LP units (normalized LP values across PHH data, see STAR Methods).
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Figure 5. Polygenic risk effects for insulin resistance affect lipid degradation in differentiated visceral adipocytes
(A) Donors from the bottom and top 25 percentiles of genome-wide PRS for three T2D-related traits (HOMA-IR, T2D, WHRadjBMI) were selected to compare

LipocyteProfiles across the time course of visceral and subcutaneous adipocyte differentiation.

(B) LipocyteProfiler applied to visceral and subcutaneous differentiating adipocytes reveals trait-specific polygenic effects on image-based cellular signatures for

HOMA-IR in differentiated visceral AMSCs (day 14; largely Lipid features) and WHRadjBMI in subcutaneous adipocytes (day 14, largelyMito and Lipid features),

but no effect for T2D. See also Figures S5A and S5D (days 0, 3, and 8).

(legend continued on next page)
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independent experiments and found no significant batch effect
(BEscore 0.0047, 0.0001, and 0.0003; Figure S4A). We also used
a machine-learning-based classification model49 to predict vari-
ablessuchasbatchandcell type,basedon themorphological pro-
file. We show that the accuracy of predicting cell type is substan-
tially higher than predicting batch (Figure S4A), indicating that our
LipocyteProfiler framework can detect intrinsic versus extrinsic
variance in our dataset with low batch effect and high accuracy.
Second, we performed a variance component analysis across 65
donor-derived differentiating AMSCs to assess the contribution
of intrinsic genetic variation compared with the contribution of
other possible confounding factors such as batch, T2D status,
age, sex, body mass index (BMI), cell density, and passage num-
ber. In total, we found that across all samples and batches, the
largest contributor to feature variance was donor ID, accounting
for 17.03% (interquartile range 11.45%–21.95%) of variance (Fig-
ure S4B). Other factors appeared to contribute only marginally to
overall variance of the data, including extrinsic factors such as
batch effect (6.02%, 3.94%–8.84%), plating density (3.75%,
1.55%–5.61%) and intrinsic factors such as sex (0.86%, 0.26%–
2.44%), age (0.55%, 0.15%–1.39%), BMI (0.41%, 0.07%–
1.33%), and T2D (0.19%, 0.03%–0.59%). These data suggest
that LipocyteProfiler allows us to detect and distinguish interindi-
vidual genetic feature variation to a similar degree as reported for
human induced pluripotent stem cells (iPSCs), where quantitative
assays of cell morphology demonstrated a donor contribution to
interindividual variation in the range of 8%–23%.50 To account
for the variable feature-specific contributions of batch, sex, age,
and BMI to overall feature variance, we corrected for those cova-
riables in our analyses. Together, these data suggest that
LipocyteProfiler features can beused to study the effect of genetic
contributions to morphological and cellular programs.

To ascertain the effect of polygenic risk for metabolic disease
on cellular programs, we used the latest genome-wide associa-
tion study (GWAS) summary statistics for T2D. We constructed
individual genome-wide polygenic risk scores (PRSs) for three
T2D-related traits that have been linked to adipose tissue:
T2D,51 insulin resistance by homeostasis measure assessment
(HOMA-IR52,53), and waist-to-hip ratio adjusted for BMI
(WHRadjBMI54). To evaluate whether HOMA-IR PRS effects
are confounded by BMI, we compared the distribution of BMI
between groups of high, medium, and low HOMA-IR PRS car-
riers and observed that HOMA-IR PRS appears to be largely in-
dependent of BMI (Kolmogorov-Smirnov tests: top 25% and
bottom 25% p = 0.797, Figure S4C). Next, we selected donors
from the bottom and top 25th percentiles of these genome-
wide PRS distributions (referred to as low and high polygenic
risk) and compared LipocyteProfiler features across the time
course of visceral and subcutaneous adipocyte differentiation
in high and low polygenic risk groups (Figures 5A, 5B, S5A,
and S5D; Tables S7 and S8).

We found significant effects on image-based cellular signa-
tures for HOMA-IR and WHRadjBMI, but no polygenic effect for
T2D (Figures 5B, S5A, and S5D; Tables S7 and S8). More specif-
ically, we observed an effect of HOMA-IR polygenic risk on
cellular profiles at day 14 in visceral adipocytes (38 features,
FDR<5%, Figure 5BandTable S7A), indicating a spatiotemporal
and depot-specific effect of polygenic risk for insulin resistance.
The features that differed between the high and low HOMA-IR
PRS carriers were mostly Lipid features (Figure 5B). Visceral ad-
ipocytes from high polygenic risk individuals showed increased
Lipid Granularity (q = 2.0 3 10!2), increased Cytoplasm_Textur-
e_SumEntropy_Lipid (q = 2.73 10!2), increased Cells_AreaSha-
pe_Zernike_8_4 (q = 2.7 3 10!2), decreased Cytoplasm_Textur-
e_InverseDifferenceMoment_Lipid (q = 2.73 10!2), and reduced
Cytoplasm_Texture_AngularSecondMoment_Lipid (q = 3.7 3
10!3) in the cytoplasm compared with low polygenic risk individ-
uals (Figure 5C). The data further reveal that the pattern that con-
trasts between high and low HOMA-IR polygenic risk carriers is
driven by lipid-informative LipocyteProfiler core features. Cellular
signatures of high HOMA-IR polygenic risk carriers include core
features that describe increased Lipid Granularity, increased
Lipid Radial Distribution in the middle rings of the cell, and
increased Cell Area (Tables S7B–S7D). These data indicate that
visceral adipocytes from individuals with high compared with
low polygenic risk for insulin resistance are characterized by a
lipid-rich cellular profile, driven by key features informative for
increased number of small to medium-sized lipid droplets, less
homogeneous lipid-droplet distribution, and larger adipocytes,
indicating excessive lipid accumulation in visceral adipocytes
from individuals at high polygenic risk. Notably, the pattern that
differentiates individuals at high and low polygenic risk recapitu-
lates signatures that resemble an inhibition of lipolysis, as
demonstrated by the inverse direction of effect in isoproterenol-
stimulated visceral AMSCs shown in Figure 4. Furthermore, we
observed that lower HOMA-IR PRS increases the number of
small lipid droplets in visceral adipocytes, which are precisely
the features affected in response to isoproterenol (Figures S5B
and 4E). Together, these image-derived rich representations of
cellular signatures describe a cellular program that is character-
ized by a metabolic switch toward lipid accumulation rather
than lipolysis in visceral adipocytes derived from individuals at
high polygenic risk for insulin resistance.
To further resolve the cellular program underlying HOMA-IR

PRSs in visceral adipocytes and ascertain the effects of polygenic
risk for HOMA-IR ongene expression, we integrated image-based
information from LipocyteProfiler with RNA-seq data from the
same donor-derived samples. Looking at mRNA levels for 512
genes known to be involved in adipocyte differentiation and func-
tion (gene set enrichment analysis hallmark gene sets for adipo-
genesis, fatty acid metabolism, and glycolysis55,56), we identified
51 genes under the polygenic control of HOMA-IR (FDR < 10%)

(C) HOMA-IR polygenic risk in visceral AMSCs manifested in altered lipid texture, lipid granularity, and cell shape features, resembling an inhibition of lipolysis. y

axis shows LP units (normalized LP values across eight batches, see STAR Methods). See also Figure 4B (isoproterenol stimulation).

(D) Linear regression of gene expression levels of 512 genes known to be involved in adipocyte function with HOMA-IR PRS.

(E) Pathway enrichment analysis of genes that correlate with HOMA-IR PRSs (FDR < 10%) in visceral adipocytes highlight biological processes related to glucose

metabolism, fatty acid transport, degradation, and lipolysis (KEGG pathways 2019).

(F) Representative genes that associate with HOMA-IR PRS in visceral adipocytes.
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in fully differentiated visceral adipocytes (Figure 5D and Table S9).
Genes correlating with the HOMA-IR PRS were enriched for bio-
logical processes related to glucose metabolism, fatty acid trans-
port, degradation, and lipolysis (Figure 5E and Table S10). Nega-
tively correlated genes include ACAA1 (p = 1.6 3 10!2, q =
9.53 10!2) and SCP2 (p = 9.03 10!4, q = 5.13 10!2) (Figure 5F),
consistent with an inhibition of lipolysis and lipid degradation in
visceral adipocytes from individuals at high polygenic risk for
HOMA-IR. Positively correlated genes include GYS1, which is a
regulator of glycogenbiosynthesis shown tocausally linkglycogen
metabolism to lipid-droplet formation in brown adipocytes57 (p =
5.5310!3, q = 7.8310!2, Figure 5F). Additionally,multiple critical
enzymes of the glycolysis pathway (TPI1 [q = 9.2 3 10!2], PFKP
[q = 9.2 3 10!2], PGK [q = 9.5 3 10!2], Figure 5F), and marker
genes of energy metabolism (AK2 and AK4; Figure S5C) are posi-
tively correlated with HOMA-IR PRS, suggesting a metabolic
switch from lipolytic degradationof triglycerides toglycolytic activ-
ity. Although a causal link between visceral adipose mass and in-
sulin resistance has been widely observed,58 the mechanism
behind this observation is not understood. Together, orthogonal
evidence fromboth high-content image- and RNA-based profiling
experiments in subcutaneous and visceral AMSCs suggests that
individualswith high polygenic risk for HOMA-IR are characterized
by blocking lipid degradation in visceral adipocytes.

Polygenic risk for lipodystrophy-like phenotype
manifests in cellular programs indicating reduced lipid
accumulation capacity in subcutaneous adipocytes
To resolve polygenic effects on adipocyte cellular programs
beyond heterogeneous T2D and insulin resistance traits, we
used the clinically informed process-specific partitioned PRS
of lipodystrophy,59 and tested for association of the lipodystro-
phy-like PRS and LipocyteProfiler features throughout adipocyte
differentiation (linear regression adjusted for BMI, age, sex, and
principal component 1 [PC1], FDR < 5%; Table S11 and Fig-
ure 6A). The lipodystrophy PRS was constructed based on 20
T2D-associated loci that were grouped together as having
similar associations with a lipodystrophy-like phenotype, signi-
fying insulin resistance with a lower BMI59 (Figure 6A). We found
that polygenic risk of lipodystrophy associates with distinctive
features in theMito, AGP, and Lipid categories in subcutaneous
AMSCs at day 8 and day 14 of differentiation, whereas increased
lipodystrophy PRS associates primarily with Lipid features in
visceral adipocytes at nominal significance (Figures 6B–6D and
S6A; Table S11A). This highlights a depot- and spatiotemporal-
dependent effect of polygenic risk on cellular profiles captured
with LipocyteProfiler. Using the LipocyteProfiler core feature
set, we identified Mito Intensity, Texture, and Granularity fea-
tures, AGP Granularity features, and Lipid Intensity features to
be most informative for driving the lipodystrophy PRS cellular
process in subcutaneous adipocytes (Table S11B). More specif-
ically, the profiles that associate with lipodystrophy polygenic
risk include core features informative for increased mitochon-
drial membrane potential (e.g., Cells_Intensity_Integrated_Inten-
sity_Mito q = 3.43 10!2;Cells_Intensity_Mean Intensity_Mito q =
3.43 10!2; Table S11B), changes to the actin cytoskeleton indi-
cating decreased cortical actin at the plasma membrane (e.g.,
Cells_RadialDistribution_FracAtD_AGP ring 2 of 4 q = 3.4 3

10!2 and 3 of 4 q = 3.4 3 10!2; Figure S6B and Table S11B),
and decreased lipid accumulation in subcutaneous adipocytes
(e.g., Cells_RadialDistribution_RadialCV_Lipid_4of4 q = 3.4 3
10!2, Cells_Texture_DifferenceEntropy_Lipid_10_00 q = 3.4 3
10!2; Table S11B). Strikingly, representative images of subcu-
taneous adipocytes derived from individuals at the tail ends of
lipodystrophy PRS (high risk [25th percentiles] compared with
low risk [bottom 25th percentiles]) confirm that adipocytes from
high PRS carriers have increased mitochondrial stain inten-
sity—indicating higher mitochondrial membrane potential60—
accompanied by smaller lipid droplets on average compared
with adipocytes from individuals with low PRS (Figure 6D). We
also note that CRISPR-Cas9-mediated knockout of the mono-
genic familial partial lipodystrophy gene PLIN1 maps to features
informative for decreased number of medium- and large-sized
lipid droplets (Figure 1H), matching the polygenic risk effect.
To assess whether the identified cellular changes underlying lip-
odystrophy polygenic risk resemble cellular drivers of mono-
genic forms of lipodystrophy, we next correlated expression of
marker genes of monogenic familial partial lipodystrophy syn-
dromes (PPARG, LIPE, PLIN1, AKT2, CIDEC, LMNA, and
ZMPSTE24) with LipocyteProfiler features across subcutaneous
adipocytes from 26 individuals. We found similar cellular signa-
tures between profiles from monogenic lipodystrophy-associ-
ated genes and the polygenic lipodystrophy profile, with high ef-
fect sizes of Mito and AGP features (Figure S6C). These results
suggest that polygenic and monogenic forms of lipodystrophy
converge on similar cellular mechanisms involving increased
mitochondrial activity and decreased lipid accumulation in sub-
cutaneous adipocytes from high PRS donors. This finding is
consistent with the fact that different monogenic forms of lipo-
dystrophy showed similar consequences on mitochondrial
OXPHOS in patient samples.61

To further resolve the cellular pathways of lipodystrophy poly-
genic risk that could underlie themorphological signature in sub-
cutaneous adipocytes, we created a network of genes linked to
features identified to be under the control of lipodystrophy poly-
genic risk. This analysis identified 23 genes that had ten or more
connections to features derived from the lipodystrophy PRS
LipocyteProfiler (FDR < 0.1%, Figure 6E). Sixteen of those genes
are significantly (FDR < 10%) correlated with the lipodystrophy
PRS (Figure S6D). For example, we found EHHADH (a marker
gene of peroxisomal b-oxidation) and NFATC3 (a gene involved
in mitochondrial fragmentation and previously linked to a lipody-
strophic phenotype in mice62) to be positively correlated with
increased polygenic risk (q < 0.1 in both cases; Figure S6D), sug-
gesting that gene networks identified through LipocyteProfiler
signatures recapitulate mechanisms of polygenic risk and that
LipocyteProfiler can be used to identify molecular mechanisms
of disease risk.
Together, these data map aggregated polygenic risk for a lip-

odystrophy-like phenotype onto cellular programs characterized
by increasedmitochondrial activity and decreased lipid accumu-
lation in subcutaneous adipocytes, which is consistent with the
notion that limited peripheral storage capacity of adipose tissue
underlies polygenic lipodystrophy.63
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Allele-specific effect of the 2p23.3 lipodystrophy-like
locus on mitochondrial fragmentation and lipid
accumulation in visceral adipocytes
To confirm that LipocyteProfiler can link an individual genetic risk
locus to meaningful cellular profiles in visceral adipocytes, we
investigated a locus on chromosome 2, spanning the DNMT3A
gene at location 2p23.3, which is one out of the 20 lipodystrophy
process-specific risk loci included in the lipodystrophy PRS an-
alyses. The 2p23.3 metabolic risk haplotype (minor allele fre-
quency of 0.35 in 1000 Genomes Phase 3 combined popula-
tions) is associated with a higher risk for T2D and WHRadjBMI
(Figure 7A). To map the 2p23.3 metabolic risk locus to cellular

functions, we compared LipocyteProfiler features of subcutane-
ous and visceral AMSCs from risk and non-risk haplotype car-
riers at three time points during adipocyte differentiation: before
(day 0), early (day3), and terminal (day 14) differentiation (Fig-
ure 7B). In visceral AMSCs, we identified 92 and 23 core features
that are significantly different between haplotypes at day 3 and
day 14 of differentiation, respectively (Figure 7C and
Table S12). At day 3, 70% of significantly different image-based
features are mitochondrial, and on day 14, 80% of differential
features are lipid-related. These findings suggest that the
2p23.3 locus is associated with a mitochondrial function pheno-
type during early differentiation, which then progress to altered

Figure 6. Polygenic risk for lipodystrophy-like phenotype manifests in cellular programs that indicate increased mitochondrial activity,
reduced actin cytoskeleton remodeling, and reduced lipid accumulation capacity in subcutaneous adipocytes
(A) Schematic of T2D process-specific PRS (left panel). Lipodystrophy-specific PRS consists of 20 T2D-associated loci contributing to polygenic risk for a

lipodystrophy-like phenotype.59 y axis: weights of individual loci; x axis: effect size of individual loci contributing to polygenic risk for a lipodystrophy-like

phenotype.

(B–D) Depot-specific effects on LipocyteProfiles in AMSCs at day 14 are under the polygenic control of the lipodystrophy cluster with a mitochondrial and AGP-

driven profile in subcutaneous AMSCs (B), whereas in visceral AMSCs mostly Lipid features were associated with increased polygenic risk (C). See also Figure

S6A (days 0, 3, and 8). Computationally averaged images of subcutaneous AMSCs from low- and high-risk allele carriers for lipodystrophy PRS show higher

mitochondrial intensity, reduced cortical actin, and reduced lipid-droplet size in high-risk carriers (D).

(E) Gene-feature connections for lipodystrophy PRS-mediated differential features are enriched for Mitochondrial Intensity features informative for mitochondrial

membrane potential in subcutaneous AMSCs at day 14 (FDR < 0.1%). See also Figure S6D.

Please cite this article in press as: Laber et al., Discovering cellular programs of intrinsic and extrinsic drivers of metabolic traits using LipocyteProfiler,
Cell Genomics (2023), https://doi.org/10.1016/j.xgen.2023.100346

14 Cell Genomics 3, 100346, July 12, 2023

XGEN 100346

Technology
ll

OPEN ACCESS



Figure 7. 2p23.3 lipodystrophy-like locus effect on mitochondrial fragmentation and lipid accumulation in visceral adipocytes
(A) PheWAS64 at the 2q23.3 risk locus shows associations with height, WHRadjBMI, T2D, and Calcium.

(B) LipocyteProfiler was performed in subcutaneous and visceral AMSCs of eight risk and six non-risk haplotype carriers across adipocyte differentiation (days 0,

3, and 14).

(C) In visceral AMSCs, 74 and 76 features were different between haplotypes at day 3 and day 14 of differentiation, respectively, with 70% of differential features

at day 3 being mitochondrial and 80% lipid-related at day 14.

(D)Representative imagesof visceralAMSCs fromrisk (top)andnon-risk (bottom)haplotypeatday3ofdifferentiationstainedusingLipocytePainting.Scalebars, 10mm.

(E) Mito MaxIntensity and Mito Texture Entropy were higher at day 3 of differentiation in visceral AMSCs from six risk haplotype carriers, suggesting more

fragmented and higher mitochondrial membrane potential. y axis shows LP units (normalized LP values across eight batches, see STAR Methods).

(legend continued on next page)
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lipid-droplet formation in mature visceral adipocytes. Represen-
tative microscopic images from day 3 of differentiation show
higher mitochondrial stain intensities in risk haplotype carriers
(Figure 7D). The top-scoring, most differential mitochondrial fea-
tures (Cells_MaxIntensity_Mito q = 3.5 3 10!2, Cells_Textur-
e_Entropy_Mito q = 3.5 3 10!2, and Cytoplasm_Granularity_7_-
Mito q = 3.8 3 10!2; Figures 7E and S7A) are increased in
metabolic risk carriers, suggestive of less tubular mitochondria
with increased mitochondrial membrane potential and altered
function. At day 14 of differentiation, AMSCs from metabolic
risk haplotype carriers show smaller lipid droplets in representa-
tive microscopic images (Figure 7F). More specifically, we
observed that risk haplotype carriers have decreased Lipid In-
tensity (q = 1.9 3 10!2; Figure 7G) in the cell and a smaller
area of large Lipid objects (LargeLipidobjects_AreaShape q =
3.5 3 10!2; Figure 7G), suggesting a lipid phenotype character-
ized by reduced lipid-droplet stabilization and/or formation.
Distinct core features drive the genetic effect in visceral adipo-
cytes at day 3, including Mito Texture (e.g., DifferenceVariance
and Entropy) and at day 14 Lipid Texture features
(Table S12A), highlighting cellular processes. This profile is asso-
ciated with increased mature adipocyte diameter estimates (Fig-
ure 2) and suggests that risk haplotype carriers have a cellular
profile that is consistent with visceral WAT hypertrophy. We
further note that our findings in human adipocytes are corrobo-
rated by organismal perturbation of the candidate effector tran-
script DNMT3A in mice, where deletion of Dnmt3a results in
changes of whole-body fat mass (Figure S7B)65 and protects
from high-fat-diet-induced insulin resistance, which is mainly
attributed to actions in visceral adipose tissue.66 Together, these
data demonstrate that LipocyteProfiler captures complex
cellular phenotypes associated with genetic risk for cardiometa-
bolic diseases and traits and allows the effective resolution of
spatial-temporal context of action. With LipocyteProfiler, we
generated a resource that enables unbiasedmechanistic interro-
gation of the hundreds of cardiometabolic disease loci with un-
known functions. We have provided all data and software as
open-access and open-source for the community.

DISCUSSION

We present a novel high-content image-based profiling frame-
work, LipocyteProfiler, for enabling the identification of causal re-
lationships between natural genetic variation, effect of drugs, and
physiologically relevant stimulations, and the identificationQ13 of
effector geneswith cellular programs in the context of cardiometa-
bolic disease. We provide proof-of-principle results showcasing
that we can link natural genetic variation to distinct morphological
andcellularprofilesusingLipocyteProfiler-baseddeepphenotypic
profiles generated in primary AMSCs with a given genetic back-
ground.Thisdemonstrates thatLipocyteProfiler isuseful for unrav-
eling disease-relevant complex cellular programs beyond hypoth-

esis-driven cell-based readouts alone. We show that the
information gained from LipocyteProfiler can report on both phys-
iological and pathological states of the cell and identify cellular
traitsunderlyingcell-state transitions, providingacontrolled toolkit
to interrogate dynamic rather than static programs. Using
LipocyteProfiler in defined cell states, we can robustly detect sub-
tle phenotypic differences driven by drug treatment, genetic
perturbation, and natural genetic variation. Our ability to detect
these subtle changes might be a consequence of cell traits
capturing the downstream manifestations of genomic, transcrip-
tional, and proteomic effects. We show that polygenic risk for
metabolic traits converges into discrete pathways and mecha-
nisms. LipocyteProfiler elucidates morphological and cellular sig-
natures underlying differential polygenic metabolic risk specific to
distinct adipose depots, metabolic traits, and cell-developmental
time points. For example, we observed polygenic effects on lipid
degradation in visceral adipocytes in the context of insulin resis-
tance, and mitochondrial activity and cytoskeleton remodeling in
subcutaneous adipocytes under the control of lipodystrophy-spe-
cificpolygeniccontributors toT2D risk.Wenote that themitochon-
drial and actin cytoskeleton informative cellular programs which
associate with a lipodystrophy-like phenotype show similarities
to morphological signatures associated with genome-wide poly-
genic risk for WHRadjBMI, a proxy of unfavorable fat distribution.
Futurework using other adiposity PRSs such as described inMar-
tin et al.67 will help to identify genetic drivers of cardiometabolic
disease and further deconvolve the cellular programs underlying
favorable und unfavorable adiposity.
LipocyteProfiler enables scalable, unbiased, mechanistic

interrogation of metabolic disease loci whose functions remain
unknown. By linking image-based profiles to transcriptional
states, we provide a rich resource of gene-cellular trait connec-
tions that relate image-based features to biological processes.
We envision that LipocyteProfiler-generated quantitative, high-
dimensional representations of morphological and cellular fea-
tures will complement the palette of omics-based profiling read-
outs. Combined with forward and reverse genetic screens, this
can link genetic perturbations to cellular programs in lipid-accu-
mulating cells. We also note that LipocyteProfiler may generate a
suitably complex readout to contribute to ongoing endeavors in
the community to improve differentiation protocols of iPSCs and
discover cellular programs underlying genetic perturbations in
high-throughput genetic screens. Moreover, we expect that
the power to identify genetic drivers for metabolic diseases will
be demonstrated using a plethora of univariate and multivariate
genome-wide polygenic scores to resolve the molecular hetero-
geneities of T2D and other cardiometabolic traits. Finally, we
expect that, with increased sample sizes, our approach will
help to pave the way to map cellular quantitative trait loci in pop-
ulation-scale image-based profiling endeavors (GWAS-in-a-
dish) to link common genetic risk variation to lipocyte pheno-
types and accelerate therapeutic pathway discoveries. Our

(F) Representative images of visceral AMSCs from risk (top) and non-risk (bottom) haplotype at day 14 of differentiation stained using LipocytePainting. Scale

bars, 10 mm.

(G) LargeLipidObject MedianIntensitywas lower and Lipid Texture AngularSecondMoment was higher at day 14 of differentiation in visceral AMSCs from six risk

haplotype carriers, suggesting a perturbed lipid phenotype characterized by reduced lipid-droplet stabilization and/or formation. y axis shows LP units

(normalized LP values across eight batches, see STAR Methods).
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disease-oriented LipocyteProfiler image-based profiling tool can
be modified by swapping or adding different disease-relevant
dyes or antibodies of interest and could be applied to disease-
relevant models for any disease of interest.

Limitations of the study
A primary limitation in the current study is the low sample size to
link genetic variants to cellular and morphological processes,
and as such we were not able to stratify by sex or other covari-
ates. Findings presented here in our proof-of principle study
need to be replicated in larger population-scale experiments in
the future, which will help to evaluate reproducibility of our re-
sults and evaluate sex-specific polygenic risk effects in the
context of cardiometabolic traits. We further acknowledge that
the AMSCs are derived from patients undergoing abdominal
laparoscopic surgery, and as such the BMI distribution of the pa-
tient cohort is skewed to high BMI (mean 49.34 ± SD 11.28).
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Human adipose-derived mesenchymal stem cells Munich Obesity BioBank (MOBB) NA

Primary human hepatocytes BioIVT YNZ

Chemicals, peptides, and recombinant proteins

MitoTrackerTM Deep Red FM Molecular Probes, Inc. M22426

BODIPYTM 505/515 Molecular Probes, Inc. D3921

Alexa FluorTM 568 Phalloidin Life Technologies Corp. A12380

Hoechst 33342 Molecular Probes, Inc. H3570

Wheat Germ Agglutinin, Alexa FluorTM 555 Conjugate Molecular Probes, Inc. W32464

SYTOTM 14 Green Fluorescent Nucleic Acid Stain Molecular Probes, Inc. S7576

16% Paraformaldehyde, methanol-free Electron Microscopy Sciences 15710-S

Hank’s Balanced Salt Solution (1x), HBSS Life Technologies Corp. 14025076

Triton X-100 Merck KGaA X100

Phalloidin-Atto-565 Merck KGaA 94072

Critical commercial assays

Infinium HTS assay + GSA Bead Chips Illumina, Inc. NA

Deposited data

Raw data and code GitHub https://github.com/ClaussnitzerLab/

Lipocyte-Profiler

Experimental models: Cell lines

hWAT Xue et al.29 https://doi.org/10.1038/nm.3881

hBAT Xue et al.29 https://doi.org/10.1038/nm.3881

SGBS Wabitsch et al. 2001 https://doi.org/10.1038/sj.ijo.0801520

Cas9 expressing hWAT This paper NA

Oligonucleotides

guide sequences targeting:

PPARG: ATACACAGGTGCAATCAAAG

and CAACTTTGGGATCAGCTCCG;

PPARGC1A TATTGAACGCACCTTAAGTG

and AGTCCTCACTGGTGGACACG;

MFN1: CACCAGGTCATCTCTCAAGA

and TTATATGGCCAATCCCACTA;

PLIN1: TCACGGCAGATACTTACCAG

and TCTGCACGGTGTATCGAGAG;

INSR: TTATCGGCGATATGGTGATG

and AGTGAGTATGAGGATTCGGC;

IRS1 CCCAGGACCCGCATTCAAAG

and CCGAAGCACTAGATCGCCGT

This paper NA

non-targeted controls (control

guide sequences):

ATCAGGCCTTGTCCGTGATT;

TACGTCATTAAGAGTTCAAC;

GACAGTGAAATTAGCTCCCA;

GATTCATACTAAACACTCTAx;

CCTAGTTCATAAGCTACGCC

This paper NA

Software and algorithms

LipocyteProfiler This paper https://github.com/ClaussnitzerLab/

Lipocyte-Profiler
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Melina
Claussnitzer (melina@broadinstitute.com).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The codes are publicly available on GitHub https://github.com/ClaussnitzerLab/Lipocyte-Profiler and https://zenodo.org/record/
7341916#.ZCtCjuzMKJ9. The high content imaging data are available at the Cell Painting Gallery on the Registry of Open Data on
AWS (https://registry.opendata.aws/cellpainting-gallery/) under accession number cpg0011. The transcriptomics data are available
on the GEO (Accession number GSE184089).

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

CRISPResso Pinello et al.68 https://doi.org/10.1038/nbt.3583

PLINK Purcell et al.69 and

Chang et al. 2015

https://doi.org/10.1086/519795

and https://doi.org/10.1186/

s13742-015-0047-8

SHAPEIT2 Delaneau et al.70 https://doi.org/10.1038/nmeth.2307

PRS-CS Ge et al.71 https://doi.org/10.1038/s41467-019-09718-5

LDpred Vilhjálmsson et al.72 https://doi.org/10.1016/j.ajhg.2015.09.001

igraph Csardi et al. 2006 https://igraph.org

Enrichr Chen et al. 2013 https://maayanlab.cloud/Enrichr/

FastQC Babraham Bioinformatics https://www.bioinformatics.babraham.ac.uk/

projects/fastqc/

STAR Dobin et al.73 https://doi.org/10.1093/bioinformatics/bts635

DESeq2 Love et al.74 https://doi.org/10.1186/s13059-014-0550-8

CellProfiler 3.1.9 Carpenter et al. 2006 https://doi.org/10.1186/gb-2006-7-10-r100

Harmony 4.9 PerkinElmer Inc. HH17000010

ARACNE Margolin et al.75 https://doi.org/10.1186/1471-2105-7-S1-S7

UMAP R package 0.2.7.0 McInnes et al.76 https://doi.org/10.21105/joss.00861

ComplexHeatmap Bioconductor

package 2.7.7

Gu et al.77 https://doi.org/10.1093/bioinformatics/btw313

Sample Progression Discovery (SPD) Qui et al. 2011 https://doi.org/10.1371/journal.pcbi.1001123.

g001

BEclear Akulenko et al.78 https://doi.org/10.1371/journal.pone.0159921

R 3.6.1 The R Foundation

for Statistical Computing

NA

Other

CellCarrier Ultra 96 well plate,

black (now: PhenoPlateTM 96-well)

PerkinElmer Inc. #6005550

CellCarrier Ultra 96 well plate,

black (now: PhenoPlateTM 96-well);

collagen-coated

PerkinElmer Inc. #6055700

Opera Phenix! High-Content Screening System PerkinElmer Inc. NA

Leica DMi8 microscope with

HC PL APO 363/1.40 oil objective

Leica Microsystems

GmbH

NA

MGB Biobank data Partners HealthCare

hospitals

NA
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human primary AMSC isolation/abdominal laparoscopy cohort–Munich obesity BioBank/MOBB
We obtained AMSCs from subcutaneous and visceral adipose tissue from patients undergoing a range of abdominal laparoscopic
surgeries (sleeve gastrectomy, fundoplication or appendectomy). The visceral adipose tissue is derived from the proximity of the
angle of His and subcutaneous adipose tissue obtained from beneath the skin at the site of surgical incision. Additionally, human
liposuction material was obtained. Each participant gave written informed consent before inclusion and the study protocol was
approved by the ethics committee of the Technical University of Munich (Study No 5716/13). Isolation of AMSCs was performed
as previously described in.79 For a subset of donors, purity of AMSCs was assessed as previously described in.80 Briefly, cells
were stained with 0.05mg CD34, 0.125mg CD29, 0.375mg CD31, 0.125mg CD45 per 250K cells and analyzed on CytoFlex together
with negative control samples of corresponding AMSCs.

Differentiation of human AMSCs
For imaging, cells were seeded at 10K cells/well in 96-well plates (Cell Carrier, Perkin Elmer #6005550) and induced 4 days after
seeding. For RNAseq, cells were seeded at 40K cells/well in 12-well dishes (Corning). Before Induction cells were cultured in prolif-
eration medium (Basic medium consisting of DMEM-F12 1% Penicillin - Streptomycin, 33mMBiotin and 17mMPantothenate supple-
mented with 0.13mM Insulin, 0.01mg/ml EGF, 0.001mg/ml FGF, 2.5%FCS). Adipogenic differentiation was induced by changing cul-
ture medium to induction medium. (Basic medium supplemented with 0.861mM Insulin, 1nM T3, 0.1mM Cortisol, 0.01 mg/ml
Transferrin, 1mM Rosiglitazone, 25nM Dexamethasone, 2.5nM IBMX). On day 3 of adipogenic differentiation culture medium was
changed to differentiation medium (Basic medium supplemented with 0.861mM Insulin, 1nM T3, 0.1mM Cortisol, 0.01 mg/ml Trans-
ferrin). Medium was changed every 3 days. Visceral-derived AMSCs were differentiated by further adding 2% FBS as well as 0.1mM
oleic and linoleic acid to the induction and differentiation media. For isoproterenol stimulation experiments, 1uM isoproterenol was
added to the differentiation media and cells treated overnight.

Primary human hepatocyte culture
Primary human hepatocytes (PHH) were purchased from BioIVT. Donor lot YNZwas used in this study. PHHwere thawed and imme-
diately resuspended in CP media (BioIVT) supplemented with torpedo antibiotic (BioIVT). Cell count and viability were assessed by
trypan blue exclusion test prior to plating. Hepatocytes were plated onto collagen-coated Cellcarrier-96 Ultra Microplates (Perkin
Elmer) at a density of 50,000 cells per well in CP media supplemented. Four hours after plating, media was replaced with fresh
CP media. After 24 h, media was replaced with fresh CP media or CP media containing oleic acid (0.3mM) or metformin (5mM). He-
patocytes were incubated for an additional 24 h prior to processing.

MGB Biobank cohort
The MGB Biobank81 maintains blood and DNA samples from more than 60,000 consented patients seen at Partners HealthCare
hospitals, including Massachusetts General Hospital, Brigham and Women’s Hospital, McLean Hospital, and Spaulding Rehabil-
itation Hospital, all in the USA. Patients are recruited in the context of clinical care appointments at more than 40 sites, clinics, and
electronically through the patient portal at Partners HealthCare. Biobank subjects provide consent for the use of their samples
and data in broad-based research. The Partners Biobank works closely with the Partners Research Patient Data Registry
(RPDR), the Partners’ enterprise scale data repository designed to foster investigator access to a wide variety of phenotypic
data on more than 4 million Partners HealthCare patients. Approval for analysis of Biobank data was obtained by Partners
IRB, study 2016P001018.
Type 2 diabetes status was defined based on ‘‘curated phenotypes’’ developed by the Biobank Portal team using both structured

and unstructured electronic medical record (EMR) data and clinical, computational and statistical methods. Natural Language Pro-
cessing (NLP) was used to extract data from narrative text. Chart reviews by disease experts helped identify features and variables
associated with particular phenotypes and were also used to validate results of the algorithms. The process produced robust pheno-
type algorithms that were evaluated usingmetrics such as sensitivity, the proportion of true positives correctly identified as such, and
positive predictive value (PPV), the proportion of individuals classified as cases by the algorithm.82

a. Control selection criteria.
1. Individuals determined by the ‘‘curated disease’’ algorithm employed above to have no history of type 2 diabetes with NPV

of 99%.
2. Individuals at least age 55.
3. Individuals with HbA1c less than 5.7

b. Case selection criteria.
1. Individuals determined by the ‘‘curated disease’’ algorithm employed above to have type 2 diabetes with PPV of 99%
2. Individuals at least age 30 given the higher rate of false positive diagnoses in younger individuals.
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Genomic data for 30,240 participants was generated with the Illumina Multi-Ethnic Genotyping Array, which covers more than 1.7
million markers, including content from over 36,000 individuals, and is enriched for exome content with >400,000 markers missense,
nonsense, indels, and synonymous variants.

METHOD DETAILS

LipocytePainting
Human primary AMSCs and PHHwere plated in 96-well CellCarrier Black plates (PerkinElmer #6005550). AMSCswere differentiated
for 14 days, and high content imaging was performed at day 0, day 3, day 8 and day 14 of adipogenic differentiation in replicates of 4
per donor/time point/depot (inter-replicate variance of 0.075). Primary human hepatocytes were stained after 48 h in culture, and 24h
following treatment with oleic acid or metformin. On the respective day of the assay, cell culture media was removed and replaced by
0.5uM Mitotracker staining solution (1mM MitoTracker Deep Red stock (Invitrogen #M22426) diluted in culture media) to each well
followed by 30 min incubation at 37"C protected from light. After 30min Mitotracker staining solution was removed and cells were
washed twice with Dulbecco’s Phosphate-Buffered Saline (1X), DPBS (Corning #21-030-CV) and 2.9uM BODIPY staining solution
(3.8mMBODIPY 505/515 stock (Thermofisher #D3921) diluted in DPBS) was added followed by 15min incubation at 37"C protected
from light. Subsequently, cells were fixed by adding 16% Methanol-free Paraformaldehyde, PFA (Electron Microscopy Sciences
#15710-S) directly to the BODIPY staining solution to a final concentration of 3.2% and incubated for 20 min at RT protected
from light. PFA was removed and cells were washed once with Hank’s Balanced Salt Solution (1x), HBSS (Gibco #14025076). To
permeabilize cells 0.1% Triton X-100 (Sigma Aldrich #X100) was added and incubated at RT for 10 min protected from light. After
Permeabilization multi-stain solution (10 units of Alexa Fluor 568 Phalloidin (ThermoFisher #A12380), 0.01 mg/ml Hoechst 33342 (In-
vitrogen #H3570), 0.0015 mg/ml Wheat Germ Agglutinin, Alexa Fluor 555 Conjugate (ThermoFisher #W32464), 3uM SYTO 14 Green
Fluorescent Nucleic Acid Stain (Invitrogen #S7576) diluted in HBSS) was added and cells were incubated at RT for 10 min protected
from light. Finally, staining solution was removed and cells were washed three times with HBSS. Cells were imaged using a Opera
Phenix High content screening system using confocal, 203 objective. Per well we imaged 25 fields.

Staining and microscopy of actin-cytoskeleton in subcutaneous AMSCs
To stain the actin cytoskeleton, and nuclei, cells were washed twice with ice-cold PBS and fixed with paraformaldehyde Roti-Histofix
4% (Roth, Karlsruhe,Germany) for 15min.Cellswerewashed twicewith ice-coldPBS for 5min and incubatedwith ice-cold0.1%Triton
X-/PBS (Roth, Karlsruhe,Germany) for 5min.Cellswerewashed twicewithPBSandstainedwith0.46%BisbenzimideH33258 (Sigma-
Aldrich, Steinheim, Germany), and 1% Phalloidin-Atto-565 (Sigma-Aldrich, Steinheim, Germany). Cells were incubated for 1 h at RT in
the dark. Afterward, cells were washed twicewith PBS for 5min and kept in PBS at 4"C until imaging. Imageswere acquired on a Leica
DMi8 microscope using the HC PL APO363/1.40 oil objective. Images were processed using the Leica LasX software.

Isolation and adipocyte diameter determination of floating mature adipocytes
Mature adipocyte isolation was carried out as described earlier.83 Immediately after isolation, approximately 50 mL of the adipocyte
suspension was pipetted onto a glass slide and the diameter of 100 cells was manually determined under a light microscope.

CRISPR-Cas9-mediated knockout of adipocyte marker genes
We generated a hWAT cell-line stably expressing Cas9 as previously described in Shalem et al.84 We validated the generated line by
assessing Cas9 activity (90%) and adipocyte differentiation capacity using adipocyte marker gene expression and morphological
profiling. CRISPR-Cas9mediated knockdown of PPARG, PPARGC1AA,MFN1, PLIN1, INSR, and IRS1was performed in pre-adipo-
cytes (5 days before differentiation) using three replicates per guide and two guides per gene (guide sequences targeting PPARG:
ATACACAGGTGCAATCAAAG and CAACTTTGGGATCAGCTCCG; PPARGC1A TATTGAACGCACCTTAAGTG and AGTCCTCACT
GGTGGACACG; MFN1: CACCAGGTCATCTCTCAAGA and TTATATGGCCAATCCCACTA; PLIN1: TCACGGCAGATACTTACC
AG and TCTGCACGGTGTATCGAGAG; INSR: TTATCGGCGATATGGTGATG and AGTGAGTATGAGGATTCGGC; IRS1 CCCAGGA
CCCGCATTCAAAG and CCGAAGCACTAGATCGCCGT) as well as five non-targeted controls (control guide sequences: ATCAG
GCCTTGTCCGTGATT, TACGTCATTAAGAGTTCAAC, GACAGTGAAATTAGCTCCCA, GATTCATACTAAACACTCTA, CCTAGTTATA
AGCTACGCC) in an 96-well arrayed format. Guide on-target efficiency was assessed using Next-generation sequencing followed by
CRISPResso analysis.68 AMSCswere stained using LipocytePainting (see above) on day 14 of differentiation. After feature extraction
and QC steps (see also LipocyteProfiling), we removed samples where guide cutting efficiency was <10% or where discrepancy be-
tween the two guides was equal or above 10%. For visualizations we used one non-targeted control that showed lowest standard
deviation of replicates and was closest to the median of all five non-targeted controls across all LipocyteProfiler features.

QUANTIFICATION AND STATISTICAL DETAILS

LipocyteProfiling
Quantitation was performed using CellProfiler 3.1.9. Prior to processing, flat field illumination correction was performed using func-
tions generated from themedian intensity across each plate. Nuclei were identified using theDAPI stain and then expanded to identify
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wholecells using thePhalloidin/WGAandBODIPYstains.Regionsof cytoplasmwere thendeterminedby removing theNuclei from the
Cell segmentations. Speckles of BODIPY staining were enhanced to assist in detection of small and large individual Lipid objects. For
each object set measurements were collected representing size, shape, intensity, granularity, texture, colocalization and distance to
neighboring objects. After LipocyteProfiler (LP) feature extraction data was filtered by applying automated andmanual quality control
steps. First, fieldswith a total cell count less than50 cellswere removed.Second, every fieldwasassessedvisually and fields thatwere
corruptedby experimental induced technical artifactswere removed. Furthermore, blocklisted features(Way, 2020), LP-featuresmea-
surement categoryManders, RWC and Costes, that are known to be noisy and generally unreliable were removed. Additionally, LP-
features named SmallLipidObjetcs, that measure small objects stained by SYTO14 rather than lipid informative objects, were also
removed. After filtering datawere normalized per plate using a robust scaling approach85 that subtracts themedian fromeach variable
and divides it by the interquartile range. Individual wells were aggregated for downstream analysis by cell depot and day of differen-
tiation. Subsequent data analyses were performed in R3.6.1 and MATLAB using base packages unless noted.
To assess batch effects we visualized the data using a Principal component analysis and quantified it using a Kolmogorov-Smirnov

test implemented in the ‘‘BEclear’’ R package.78 Additionally we applied a k-nearest neighbor (knn) supervised machine learning
based classification algorithm implemented in the ‘‘class’’ R package49 to investigate the accuracy of predicting biological and tech-
nical variation. For this analysis the dataset, consisting of 3 different cell types (hWAT, hBAT, SGBS) distributed on the 96-well plate,
imaged at 4 days of differentiation, was split into equally balanced testing (n = 18) and training (n = 56) sets. Accuracy of this clas-
sification model was predicted based on three different categories, i.e. cell type, batch and column of the 96-well plate. (https://
github.com/ClaussnitzerLab/Lipocyte-Profiler)
Fordimensionality reduction visualizationUniformmanifoldapproximationandprojectionmaps (UMAP)werecreatedusing theUMAP

R package version 0.2.7.076 (https://github.com/ClaussnitzerLab/Lipocyte-Profiler). To visualize LipocyteProfiler features and their ef-
fect size ComplexHeatmap Bioconductor package version 2.7.777 was used (https://github.com/ClaussnitzerLab/Lipocyte-Profiler)
To identify patternsof adipocytedifferentiation underlying themorphological profilesa sampleprogressiondiscovery analysis (SPD)

was performed using the algorithm previously described in Qiu et al.38 Briefly, the two adipose depots were analyzed separately, and
features were clustered into modules based on correlation (correlation coefficient 0.6). Minimal spanning trees (MST) were con-
structed for eachmodule andMSTsof eachmodule are correlatedwith eachother.Modules that support commonMSTwere selected
and an overall MST based on features of all selected modules were reconstructed.
Variance component analysis was performed by fitting multivariable linear regression models - yi# xi + zi + . - where y denotes an

LipocyteProfiler feature of individual i and x, z, etc. independent variables that could confound identification of biological sources of
variability of the dataset. Independent variables are experimental batch, adipose depot, passaging before freezing, season and year
of AMSCs isolation, sex, age, BMI, T2D status of individual, LipocyteProfiler feature Cells_Neighbors_PercentTouching_Adjacent
corresponding to density of cell seeding and identification numbers of individuals. (https://github.com/ClaussnitzerLab/Lipocyte-
Profiler)
To test whether there is a difference of morphological profiles on the tail ends of polygenic risk scores (PRS) for T2D, HOMA-IR and

WHRadjBMI a multi-way analysis of variance (ANOVA) was performed. Individuals belonging to top 25% and bottom 25% of PRS
score distribution are categorized into a categorical variable with 2 levels, top 25%or 25%bottom, according to their PRS percentile.
Differences of morphological profiles are predicted using the categorized PRS variable adjusted for sex, age, BMI and batch. Addi-
tionally linear regression models were fitted adjusted for sex, age, BMI, batch and PC1 to predict differences of morphological and
cellular profiles based polygenic risk for metabolic traits. To overcome multiple testing burden p values were corrected using false
positive rate (FDR) described in R package ‘‘qvalue’’ (qvalue, no date). Features with FDR <5% were classified to be significantly
impacted by the PRS variable. (https://github.com/ClaussnitzerLab/Lipocyte-Profiler) To decrease complexity we first removed fea-
tures based on effect size and measurement type/class, and second removed features that correlate r > 0.85 with at least 10% of
features of remaining features (https://github.com/ClaussnitzerLab/Lipocyte-Profiler).

LipocyteProfiler feature reduction using ARACNE
Algorithm for theReconstruction of AccurateCellular Networks, ARACNE26,75,86 is a software packagedesigned to capture regulatory
networks from gene expression data. The method makes use of mutual information (MI) ranking to prioritize first order relationships
(also known as direct regulatory relations) among genes, and to generate accurate maps of the regulatory network. The use of MI for
the prioritization of biomolecular and clinical characteristics has been demonstrated previously calculated by the algorithm can be
used to prioritize interactions between other cellular andmolecular characteristics.25,27,87 In this study, we use the ARACNE algorithm
to construct agraphwhere its nodes represent the LipocyteProfiler’s features and itsweighted edges representMIbetweenprioritized
first order relations between the nodes.We then build on this network to reduce the dimensionality of the LipocyteProfiler total feature
space. Since the graph is constructed based on the calculatedMI, the number of significant interactions of a node can be used to: (1)
identify information hubs in the graph based on the number of connectivities of the nodes. After ranking the nodes based on their num-
ber of edges, a 75%upper quantile cutoffwas applied todefine the information hubs, (2) identify nodeswith lowconnectivity that share
minimal information.We calculated the average ofweights (MI) of outgoing edges fromevery node and considered this average as the
MI represented by the node. By ranking the nodes based on their calculated MI and applying a 25% lower quantile cutoff, we could
identify the non-hub nodes that share minimal information (Figures S1B and S1C). The characterization of these two types of nodes
play an important role in reducing the dimensionality of the LipocyteProfiler feature spacewhilemitigating the overall information loss.
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Weclassify thoseLipocyteProfiler features identifiedas informationhubsor thatpassedtheMIcutoff as ‘‘LipocyteProfilercore features’’.
We applied the two criteria on the total 3,005 LipocyteProfiler input features of visceral and subcutaneous derivedAMSCs resulting in two
setsofadiposedepot-dependentLipocyteProfilercore featuresets.Asa result, 986 featureswere labeledasLipocyteProfilercore features
for visceral adipocytes and 1,002 for subcutaneous adipocytes. Between the two sets, there are 770 shared core features. The scripts for
executing the ARACNE algorithm on the LipocyteProfiler features and the post processing steps for identifying the LipocyteProfiler core
features are available through the GitHub page (https://github.com/ClaussnitzerLab/Lipocyte-Profiler).

Generating of average cells
For each group of interest, cells were pooled and divided into 100 clusters via K-Means clustering (scikit-learn). Individual cells were
then sampled from the cluster closest to a theoretical point representing the mean of all object measurements, as determined by a
Euclidean distance matrix.

RNA-seq
RNA-seq data were processed using FastQC88 and spliced reads were aligned to human genome assembly (hg19) using STAR73 fol-
lowed by counting gene levels using RsubreadRpackage.89 Next, raw read countswere normalized using theDESseq2Rpackage.74

For differential expression analysis on the tail ends of polygenic risk scores (PRS) for HOMA-IR a multi-way analysis of variance (AN-
OVA) was performed on subset of 512 genes (GSEA hallmark gene sets for adipogenesis, fatty acid metabolism and glycolysis). In-
dividuals belonging to top 25%and bottom 25%of PRS score distribution are categorized into a categorical variable with 2 levels, top
25% or 25% bottom, according to their PRS percentile. Differences in transcriptional profiles are predicted using categorized PRS
variable adjusted for sex, age, BMI and batch. To overcome multiple testing burden p values were corrected using false positive
rate (FDR) described in R package ‘‘qvalue’’ (qvalue). Genes with FDR <10% were classified to be significantly impacted by PRS
and were uploaded to Enrichr to analyze them as a gene list against the WikiPathways. (https://github.com/ClaussnitzerLab/
Lipocyte-Profiler)

Gene expression and LipocyteProfiler feature network
A linear regression model was fitted of 2,760 LP-features and global transcriptome RNA-seq data adjusted for sex, age, BMI and
batch in subcutaneous AMSCs at day 14 of differentiation. Gene LP features associations were declared to be significant when pass-
ing the FDR cut-off of FDR< 0.01% (FDR<0.1%). LP features belonging to Cells category were used for further analysis. Associations
between genes and LP features were visualized using ‘‘igraph’’ R package (Csardi, Nepusz and Others, 2006 - https://igraph.org/)
(https://github.com/ClaussnitzerLab/Lipocyte-Profiler). Genes that are connected to top scoring LP features were uploaded to En-
richr to analyze them as a gene list againstWikiPathways or BioPlanet. Adipocytemarker genes,SCD,PLIN2, LIPE, INSR,GLUT4 and
TIMM22, were chosen to demonstrate morphological profiles matching their known pathways, by identifying LP features that asso-
ciate with those genes with a global significant level of FDR<5%. (https://github.com/ClaussnitzerLab/Lipocyte-Profiler)

Quality control of genotyping data
Genotyping of all samples was performed in two separate batches using the Infinium HTS assay on Global Screening Array bead-
chips. Since the two sets of samples were genotyped with different versions of the beadchips and in different batches, we Qced,
imputed, and generated the genome-wide polygenic scores separately and combined the results afterward.

A 3-step quality control protocol was applied using PLINK,69,90 and included 2 stages of SNP removal and an intermediate stage of
sample exclusion. The exclusion criteria for genetic markers consisted of: proportion of missingnessR0.05, HWE p% 1 x 10–20 for
all the cohort, and MAF <0.001. This protocol for genetic markers was performed twice, before and after sample exclusion. For the
individuals, we considered the following exclusion criteria: gender discordance, subject relatedness (pairs with PI-HATR0.125 from
which we removed the individual with the highest proportion of missingness), sample call rates R0.02 and population structure
showing more than 4 standard deviations within the distribution of the study population according to the first seven principal com-
ponents. After QC, 35 subjects remained for the analysis for which we had matched LipocyteProfiler imaging data.

Genotypes were phased with SHAPEIT2,70 and then performed genotype imputation with the Michigan Imputation server, using
Haplotype Reference Consortium (HRC)91 as reference panel. We excluded variants with an info imputation r-squared <0.5 and a
MAF <0.005.

Constructing PRSs
Genome-wide polygenic scores were computed using PRS-CS71 and using the ‘‘auto’’ parameter to specify the phi shrinkage
parameter. We computed the PRS-CS polygenic scores for the following traits: T2D,51 BMI, waist-to-hip ratio adjusted and unad-
justed by BMI, and stratified by sex and combined.54 Genome-wide PRS for HOMA-IRwere computedwith LdPred72 using summary
statistics from Dupuis et al. (Dupuis et al., 2010). Process-specific PRSs were constructed based on five clusters defined in Udler
et al.59 by selecting the SNPs that had weight larger than 0.75 for each of a given cluster.

All PRSs were tested for association with T2D and with BMI using the 30,240 MGB Biobank samples from European Ancestry
defined based on self-reported and principal components.
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A non-coding variant linked to metabolic 
obesity with normal weight affects actin 
remodelling in subcutaneous adipocytes

Recent large-scale genomic association studies found evidence for a 
genetic link between increased risk of type 2 diabetes and decreased risk 
for adiposity-related traits, reminiscent of metabolically obese normal 
weight (MONW) association signatures. However, the target genes and 
cellular mechanisms driving such MONW associations remain to be 
identified. Here, we systematically identify the cellular programmes of one 
of the top-scoring MONW risk loci, the 2q24.3 risk locus, in subcutaneous 
adipocytes. We identify a causal genetic variant, rs6712203, an intronic 
single-nucleotide polymorphism in the COBLL1 gene, which changes the 
conserved transcription factor motif of POU domain, class 2, transcription 
factor 2, and leads to differential COBLL1 gene expression by altering 
the enhancer activity at the locus in subcutaneous adipocytes. We then 
establish the cellular programme under the genetic control of the 2q24.3 
MONW risk locus and the effector gene COBLL1, which is characterized by 
impaired actin cytoskeleton remodelling in differentiating subcutaneous 
adipocytes and subsequent failure of these cells to accumulate lipids and 
develop into metabolically active and insulin-sensitive adipocytes. Finally, 
we show that perturbations of the effector gene Cobll1 in a mouse model 
result in organismal phenotypes matching the MONW association signature, 
including decreased subcutaneous body fat mass and body weight along 
with impaired glucose tolerance. Taken together, our results provide a 
mechanistic link between the genetic risk for insulin resistance and low 
adiposity, providing a potential therapeutic hypothesis and a framework for 
future identification of causal relationships between genome associations 
and cellular programmes in other disorders.

Obesity and type 2 diabetes (T2D)-related traits are intimately linked 
by both environmental and genetic factors. The global prevalence 
of obesity and T2D has risen dramatically

.

m
 over the past century and 

both diseases constitute a serious increasing public health concern 
worldwide, with T2D predicted to rise in prevalence from 451 to 693 
million people between 2017 and 2045 (ref. 1). Most epidemiological 

and genetic studies have linked obesity to the pathogenesis of T2D 
through positive phenotypic correlations between adiposity and T2D. 
However, a small number of loci have been identified that do not follow 
this pattern or even correlate in the opposite phenotypic direction2. 
Also, up to 45% of individuals with obesity do not present with poor 
glycaemic or lipid profiles, commonly called the metabolically healthy 
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regulatory variants) define two alternative haplotypes: the ancestral 
haplotype 1 (frequency 38% in European individuals), associated with 
a decreased risk for the MONW association pattern; and haplotype 2 
(frequency 62%), associated with an increased MONW risk. To connect 
genetic variants at the 2q24.3 locus to relevant cell types and cell states, 
we examined chromatin state maps across 127 reference epigenomes 
from the Roadmap Epigenomics and the ENCODE consortium (Fig. 1b 
and Extended Data Fig. 1d). We found that the locus maps to multiple 
enhancer signatures, including active enhancers in mesenchymal stem 
cells, adipocyte progenitors and adipocytes (Fig. 1b). Several of the 20 
non-coding variants map within or in the vicinity of regions with active 
enhancer chromatin states, suggesting that the 2q24.3 locus acts in 
adipocytes through gene regulatory mechanisms.

Next, we examined whether the two haplotypes (risk compared to 
non-risk) showed differences in chromatin structure during adipocyte 
differentiation. Specifically, we performed assays for enhancer activity 
(H3K27 acetylation (H3K27ac) chromatin immunoprecipitation fol-
lowed by sequencing (ChIP–seq)) and chromatin accessibility (assay 
for transposase-accessible chromatin with sequencing (ATAC–seq)) on 
adipose-derived mesenchymal stem cells (AMSCs) from heterozygous 
individuals across a time course of differentiation (before induction 
(day 0), early differentiation (day 2), intermediate differentiation 
(day 6) and terminal differentiation (day 14)), and compared the num-
bers of reads from the two haplotypes (Extended Data Fig. 1e). The 
MONW risk haplotype (haplotype 2) was associated with a decrease 
in H3K27ac, a proxy of enhancer activity, and chromatin accessibil-
ity, with the MONW risk haplotype enriched by roughly 1.5-fold. The 
allele-specific difference in chromatin accessibility was reproducible 
across three heterozygous lines (Supplementary Tables 1 and 2), was 
most pronounced at day 0 of differentiation and declined after induc-
tion of differentiation (Extended Data Fig. 1f). These results indicate 
that haplotype 1 is associated with an active enhancer state, whereas 
haplotype 2 is associated with a weak enhancer state primarily in adi-
pocyte progenitors.

The rs6712203 variant affects adipocyte COBLL1 expression
To identify which of the 20 candidate regulatory variants is likely to 
mediate the differential enhancer activity in adipocyte progenitors, 
we used two orthogonal computational approaches to prioritize vari-
ants, phylogenetic module complexity analysis (PMCA)28–30 and Bas-
sett31 (Fig. 2a–c and Supplementary Tables 3 and 4). PMCA assesses 
evolutionary conservation of sequence, order and distance (in human 
and at least one other vertebrate species) of groups of at least three 
transcription factor binding motifs within a 120-bp region. Basset uses 
a sequence-based deep convolutional neural network (CNN) approach 
to predict the effects of non-coding variants on regulatory activity by 
training on the sequence content of a given epigenomic mark in a tis-
sue or cell type of interest. After training on genome-wide chromatin 
accessibility (ATAC–seq) data in numerous cell types, including AMSC 
progenitors, before induction (day 0), one variant, rs6712203, stood 
out as consistently showing the highest score for PMCA and Bassett 
(Fig. 2a). Bassett predicted that the T allele on the protective haplotype 
increases chromatin accessibility relative to the C allele on the risk 
haplotype in adipocyte progenitors. These sequence-based estimates 
of rs6712203 C>T single-nucleotide change importance are consist-
ent with the variant overlapping an active enhancer associated with 
H3K27ac and H3K4 mono-methylation in adipocyte progenitors. In 
line with the variant importance at rs6712203, conditional analyses of 
anthropometric and glycaemic traits defining MONW in the UKB con-
firmed an rs6712203 C/T association consistent with a primary effect 
in female participants for fat mass (β = 0.022, P = 4.1 × 10−08 in females 
and β = 0.0084, P = 0.052 in males, difference P = 0.019), hip circum-
ference (β = 0.037, P = 4.3 × 10−15 in females and β = 0.0097, P = 0.008 
in males, difference P = 4.3 × 10−06) and T2D in both females and males 
(females β = −0.11, P = 1.4 × 10−07 and males β = −0.068, P = 2.4 × 10−05, 

obese (MHO). Concurrently, up to 30% of normal-weight individuals 
present with significant cardiometabolic risk factors, known as the 
metabolically obese normal weight (MONW)3–10.
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Genome-wide association studies (GWAS) identified more than 
700 genomic loci associated with glycaemic traits and T2D and more 
than 1,000 loci associated with adiposity-related traits, including 
body mass index (BMI) as a proxy of overall obesity, waist:hip ratio 
(WHR) as a proxy of body fat distribution, body fat percentage and 
direct measures of subcutaneous adipose tissue (SAT) and visceral 
adipose tissue (VAT) mass2,11–20. A small proportion of T2D genetic risk 
loci have been associated with decreased body fat percentage and a 
decreased SAT:VAT ratio2,21–23. Notably, these MONW/MHO genetic 
risk loci are characterized by distinct association signatures implying 
locus-specific cellular programmes2,21–23.

The metabolic risk haplotype at 2q24.3 displays cross-phenotype 
association signatures that are reminiscent of the MONW phenotype 
and are associated with an increased risk of T2D, increased homeostatic 
model assessment for insulin resistance, increased WHR adjusted 
for BMI and decreased body fat percentage, decreased estimated 
SAT mass and cardiometabolic trait risk2,15,24–26. Consistent with these 
associations, the 2q24.3 locus falls into the lipodystrophy cluster of 
T2D loci27, suggesting adipocytes as the mediating cell type at this 
locus. Notably, among the 20 loci identified in the T2D lipodystrophy 
process-specific cluster27, the 2q24.3 locus is the top-scoring one, sug-
gesting the strongest contribution to a lipodystrophic-like phenotype 
among the T2D GWAS loci.

However, like the vast majority of genetic risk loci identified 
through GWAS, the mechanism of the 2q24.3 metabolic risk locus is 
currently unknown. There are multiple factors that still confound the 
goal of converting genetic associations into specific knowledge, that 
is, pinpointing the causal variant(s), target gene(s) and mechanism(s). 
First, the resolution of association mapping is inherently limited by 
the haplotype structure of the human genome because a common 
variant in the population is usually strongly genetically linked to many 
neighbouring variants. Second, the genetic architecture of common 
diseases is fundamentally different to that of rare diseases, as over 
80% of associated regions do not contain any protein-altering com-
mon variants28. Importantly, genetics and descriptive catalogues of 
molecular activity alone are, for non-coding signals at least, insufficient 
to build compelling proof for a chain of causation that stretches from 
variant to phenotype. In this study, we set out to combine statistical 
and experimental methods to identify the mechanism by which 2q24.3 
confers decreased adiposity and increased risk of T2D (Extended Data 
Fig. 1a), possibly enabling further development of therapeutic strate-
gies to alter glycaemic control.

Results
The 2q24.3 risk locus maps to adipocyte enhancer signatures
To identify diseases and traits associated with the 2q24.3 locus tagged 
by the variant rs3923113, we visualized large-scale phenome-wide 
associations from the UK Biobank (UKB) and from a meta-analysis 
of a series of metabolic traits (Fig. 1a and Extended Data Fig. 1b). We 
observed that the 2q24.3 locus was associated with increased T2D risk, 
increased fasting insulin levels and a series of body fat-related traits, 
including increased WHR adjusted for BMI, but decreased trunk fat 
percentage, arm fat percentage, hip circumference and whole-body 
fat mass, suggesting a complex pleiotropic risk locus consistent with 
a MONW association signature, that is, a lean, metabolically unhealthy  
phenotype.

The 2q24.3 locus tagged by rs3923113 encompasses 55 kb, spanning 
from the COBLL1 intronic regions to the intergenic region between 
GRB14 and COBLL1 (Extended Data Fig. 1c

.

m
). The MONW locus har-

bours 20 non-coding single0nucleotide polymorphisms (SNPs) in high 
linkage disequilibrium (LD) (r2 > 0.8, 1000 Genomes Project Phase 1 
EUR). These single-nucleotide variants (referred to as the candidate 
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difference P = 0.098, Supplementary Table 5 and Extended Data Figs. 1g 
and 2). Furthermore, we observed that the rs6712203 association with 
T2D was dependent on BMI (β = −0.0028, P = 0.70 in normal weight 
and underweight and β = −0.093, P = 2.92 × 10−06 in obese, difference 
P = 2.0 × 10−05, Supplementary Table 6).

We next used three-dimensional genome conformation data from 
Hi-C assays in normal human epidermal keratinocytes and human 
fibroblasts32 to define the physical boundaries of potential proxi-
mal and long-distant target genes. We found that the locus lies in a 
well-defined contact domain containing only two genes, cordon-bleu 
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Fig. 1 | The pleiotropic 2q24.3 MONW locus is associated with increased 
risk for T2D and decreased adiposity-related traits, and maps to sparse 
enhancer signatures in adipocytes. a, Phenome-wide association studies of 
trait associations at the rs3923113-tagged haplotype in the UKB87. The colours 
represent trait classes while individual rs3923113 variant association P values are 
shown on the y axis. The direction of effect is indicated by the orientation of the 
triangles: upward, increase; downward, decrease. b, Chromatin state annotations 
for the 55-kb-long MONW risk locus. Genomic intervals are shown across 127 
human cell types and tissues reference epigenomes profiled by the Roadmap 

Epigenomics project, based on a 25-state chromatin state model (for the colours, 
see Fig. 

.

m
S1) learned from 12 epigenomic marks using imputed signal tracks at 

25-nucleotide resolution88. Chromatin states considered included Polycomb 
repressed states (grey, H3K27me3), weak enhancers (yellow, H3K4me1 only), 
strong enhancers (orange, also H3K27ac) and transcribed enhancers (green, also 
H3K36me3) (https://www.freepatentsonline.com/y2022/0243178.html). ES, 
embryonic stem; ESC, embryonic stem cell; GI, gastrointestinal; iPSC, induced 
pluripotent stem cell; MSC, mesenchymal stem cell.
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WH2 repeat protein like 1 (COBLL1) and growth factor receptor bound 
protein 14 (GRB14) (Extended Data Fig. 3a), without any evidence for 
long-range chromatin interactions. To dissect which of these two 
genes are targeted by rs6712203, we undertook a CRISPR interference 
(CRISPRi) approach by engineering immortalized human preadipo-
cytes (in human white adipose tissue (hWAT))33 to stably express a 

catalytically dead Cas9 fused to a Krüppel-associated box (KRAB) 
domain34 (Extended Data Fig. 3b). Transduction of Cas9 Endonucle-
ase Dead (dCas9)-hWAT preadipocytes with increasing amounts of 
lentiviral particles carrying single-guide RNAs (sgRNAs) targeting 
the transcriptional start sites (TSS) of COBLL1 and GRB14 genes led 
to dose-dependent downregulation of mRNA expression by 72% and 
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Fig. 2 | rs6712203 is a functional variant at the 2q24.3 MONW locus. 
 a, Phylogenetic conservation analysis and CNN-based prediction of chromatin 
accessibility for 20 highly linked (LD = r2 > 0.8) variants at the 2q24.3 locus 
(tag SNP rs3923113). Phylogenetic conservation scores of jointly conserved 
motifs using PMCA are shown on the x axis29. PMCA was used to identify 
orthologous regions in 20 vertebrates and to scan the 120-bp sequence context 
for groups of transcription factor binding site motifs whose sequence, order 
and distance range is conserved across species. Scores indicate the count of 
non-overlapping jointly conserved transcription factor binding site motifs 
whose relative positions within the window are conserved. Predicted relative 
change in chromatin accessibility (SNP accessibility difference SAD scores) 
in preadipocytes (day 0 of differentiation) for each SNP comparing alleles on 
haplotype 1 and haplotype 2 is shown on the y axis. A deep CNN Basset31 was 
trained on genome-wide ATAC–seq data assayed in preadipocytes. Alleles were 
assigned to each SNP in the haplotype and evaluated for predicted accessibility. 
b, Both PMCA and Basset predicted rs6712203 as a functional variant. For the 
C allele, there are no nucleotide variants that reduce binding in the rs6712203 

region. Each position on the x axis represents a nucleotide and the four values 
in the heatmap correspond to all possible substitutions. c, For the T allele, in 
silico saturation mutagenesis suggests that binding loss of the POU2F motif that 
overlaps rs6712203, including the C allele itself, results in reduced predicted 
chromatin accessibility. d, Intragenomic replicates35 predict a higher binding 
affinity of POU2 family transcription factors for the T than C allele to both 
strands. Offsets from instances of the given k-mer sequence are shown on the 
x axis. Estimated affinity of binding (https://www.freepatentsonline.com/
y2022/0243178.html) is shown on the y axis. A model with 8-mers is shown; 
alternatives with 6-mers through to 9-mers are shown in Extended Data Fig. 3b. 
e, Generation of rs6712203 CRISPR–Cas9 engineered lines starting from SGBS 
preadipocytes (heterozygous for rs6712203) edited to the homozygous risk 
(CC, yellow) and non-risk (TT, blue) alleles and qPCR-based gene expression 
measurement of COBLL1 conditional on the regulator POU2F2. n = 3 biologically 
independent experiments. f, Schematic model of the regulatory circuitry under 
the genetic control of rs6712203.
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96% compared to non-targeting negative controls (Extended Data 
Fig. 3c). At the highest dose, COBLL1 protein was reduced by 56% with-
out effects of sgRNAs targeting the GRB14 TSS on COBLL1 expression 
(Extended Data Fig. 3d). After confirming the knockdown efficiency and 
specificity of our system, we next designed a panel of six sgRNAs sur-
rounding the rs6712203 variant (Extended Data Fig. 3e) and additional 
non-targeting and COBLL1/GRB14 TSS controls to assess its effects on 
COBLL1 and GRB14 mRNA expression. All TSS sgRNAs led to a reduc-
tion in COBLL1 and GRB14 mRNA content by 64% and 94% without any 
interference on each other (Extended Data Fig. 3f,g). More importantly, 
all tested sgRNAs, with exception of sgRNA 1, led to significant down-
regulation of COBLL1 over a range of 20–40% compared to negative 
controls (Extended Data Fig. 3f), while no effects were observed on 
GRB14 (Extended Data Fig. 3g), thus pointing to COBLL1 as the primary 
target of rs6712203.

We next performed in silico saturation mutagenesis to evalu-
ate the predicted change in chromatin accessibility from mutation 
at every position into each alternative nucleotide within a 30-bp 
region surrounding rs6712203 using ATAC–seq data during AMSC 
differentiation. We found that the rs6712203 T allele is critical for a 
POU2F2 motif (Fig. 2d). The C allele of this SNP converts the chroma-
tin in this site into a less accessible chromatin, supporting a model in 
which a transcription factor, possibly POU2F2, differentially binds 
to these allelic variants of rs6712203. To estimate the preferential 
binding affinity of POU2F2 to the C risk compared to the T non-risk 
allele, we used the intragenomic replicate (IGR) method35 on pub-
licly available POU2F2 ChIP–seq data from the ENCODE project. By 
comparing the frequency of k-mers matching the rs6712203 T allele 
versus the C allele, we confirmed that POU2F2 preferentially binds to 
the T allele (9-mer change in affinity −0.38, two-tailed permutation 
P < 0.0034) (Fig. 2d and Extended Data Fig. 3h). These data suggest 
an increased POU2F2 binding to the rs6712203 T non-risk allele and 
suggest POU2F2 as the upstream regulator of variant action at this  
locus.

We next sought to establish rs6712203 causality by directly con-
firming that the haplotype-specific effects on enhancer activity and 
POU2F2 binding are mediated by rs6712203 using CRISPR-based 
genome editing at this SNP. We edited the human Simpson–Golabi–
Behmel syndrome (SGBS) preadipocytes (n = 5) that are heterozygous 
at rs6712203 to create isogenic lines for the homozygous TT (non-risk 
genotype) and homozygous CC (risk genotype) alleles. In line with 
the CRISPRi rs6712203 enhancer repression experiments outlined 
above, we observed that cells harbouring the CC homozygous risk 
showed 2.4-fold lower COBLL1 expression levels compared to the TT 

non-risk genotype (Fig. 2e), pointing towards COBLL1 as a target gene 
of the rs6712203 regulatory circuitry. To test a cis/trans-conditional 
effect of the rs6712203 variant and the upstream regulator POU2F2 
on target gene expression, we performed targeted small interfering 
RNA (siRNA)-mediated ablation of POU2F2 in SGBS cells and found 
that silencing of POU2F2 in TT allele carriers reduces COBLL1 gene 
expression to the level of CC allele carriers in preadipocytes (Fig. 2e), 
confirming POU2F2 as a functional regulator at the locus.

Together, our computational and experimental approaches sup-
port a model where the causal MONW variant rs6712203 regulates 
COBLL1 gene expression in a POU2F2-dependent manner (Fig. 2f).

COBLL1 affects actin remodelling in subcutaneous adipocytes
To understand the role of COBLL1 in adipocyte cellular programmes, 
we examined the gene expression and cellular localization of COBLL1 
in differentiating adipocytes. We observed that COBLL1 is expressed 
at all stages of adipocyte differentiation with an increase in mRNA over 
the course of differentiation (Extended Data Fig. 4a). We observed 
consistently higher COBLL1 mRNA levels in subcutaneous compared 
to visceral adipocytes across the adipocyte differentiation process 
(Extended Data Fig. 4a). Overall, we found an enrichment of COBLL1 
gene expression in adipose tissue compared to 146 other tissues and 
cell types36 (Extended Data Fig. 4b).

To connect the 2q24.3 locus to cellular functions in adipose tissue, 
we used genome-wide coexpression matrices in adipocytes matched 
with a series of cellular assays. We identified COBLL1 coregulated 
genes in genome-wide expression data from primary human AMSCs 
in a cohort of 12 healthy, non-obese individuals. COBLL1 coexpressed 
genes were highly enriched in biological processes related to regula-
tion of actin cytoskeleton and regulation of lipolysis in adipocytes, 
including integrin subunit alpha M (ITGAM), phosphatidylinositol
-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), 
rho-associated protein kinase 2 (ROCK2), integrin alpha-1 (ITGA1), and 
rho guanine nucleotide exchange factor 7 (ARHGEF7), CRK

.

m
, fibroblast 

growth factor receptor 2 (FGFR2) and rho guanine nucleotide exchange 
factor 6 (ARHGEF6) (Fig. 3a, Extended Data Fig. 4c,d and Supplemen-
tary Tables 7–10), which are implicated in actin remodelling processes 
and insulin responsiveness37–40. This is consistent with recent studies 
showing that COBLL1 possesses a Wiskott–Aldrich syndrome protein 
homology 2 actin monomer-binding domain, and promotes filamen-
tous actin (F-actin) formation in Cos-7, neuronal and prostate cancer 
cells41,42. Finally, we found a significantly decreased relative COBLL1 
gene expression after a weight loss of 6.9 ± 1.9 kg in 18 women with 
obesity (BMI = 34.9 ± 3.8 kg m−2) (Extended Data Fig. 4e).
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Fig. 3 | The 2q24.3 effector gene COBLL1 affects actin remodelling processes 
in differentiating adipocytes. a, Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment of genes correlated with COBLL1 in adipocytes 
using Enrichr89,90. n = 30 donors, P values were derived from a hypergeometric 
test. b, Schematic of siCOBLL1 experiments in AMSCs across differentiation. 
AMSCs from a normal-weight female donor were silenced 3 d before induction 
and LipocyteProfiling (days 0, 3, 8 and 14 of differentiation), n = 3. c, Image-
based profiles of siCOBLL1-treated compared to non-targeting siRNA-treated 
AMSCs on day 14; two-sided t-test, significance level FDR < 5%, n = 3. d, Pie chart 
illustrating differential features per channel and measurement class comparing 
siCOBLL1 and the non-targeting siRNA control on day 14. e,f, Spatial intensity 
distribution of AGP informative for the actin cytoskeleton in the centre of the 
cytoplasm: Cytoplasm_RadialDistribution_FracAtD_AGP_1of4 (e) and juxtaposed 
to the plasma membrane (Cytoplasm_RadialDistribution_RadialCV_AGP_4of4) 
(f). Two-sided t-test, n = 3 biologically independent experiments, median ± 95% 
confidence interval (CI). g, Representative images of COBLL1 knockdown and 
non-targeting siRNA control at days 0 and 14 of differentiation. COBLL1 staining: 
anti-COBLL1 primary and donkey anti-rabbit IgG H&L secondary antibodies. 
Actin staining: phalloidin–Atto 565. Olympus FLUOVIEW FV1000 CLSM 

Inverse microscope (40× magnification). Images were processed with Image 
J. Dotted square: image zoom-in. h,i, Texture of BODIPY stain (Cells_Texture_
Correlation_Lipid_10_01) (h) and granularity measures of the BODIPY stain (Cells_
Granularity_3_BODIPY) (i) in siCOBLL1 knockdown and non-targeting siRNA; 
two-sided t-test, n = 3 biologically independent experiments, median ± 95% CI. 
 j, Oil Red O staining in SGBS adipocytes after stable lentiviral COBLL1 knockdown 
(shCOBLL1) versus empty vector control (shEV); scale bar, 15 mm. k, GAPDH 
metabolic activity in differentiated shCOBLL1 compared to non-targeting 
siRNA adipocytes. Paired Student’s t-test, median ± 95% CI, n = 3. l, Basal and 
insulin-stimulated 3H-2-DG uptake in differentiated shCOBLL1 compared to 
shEV adipocytes. One-way analysis of variance (ANOVA) with Tukey’s honestly 
significant difference (HSD) test, median ± 95% CI, n = 3 biologically independent 
experiments. m, Basal and isoproterenol-stimulated lipolysis rate measured 
using glycerol 

.

m
release in differentiated shCOBLL1 compared to shEV adipocytes. 

One-way ANOVA with Tukey’s HSD test, median ± 95% CI, n = 3 biologically 
independent experiments. n, Western blots for lipolysis-relevant proteins 
assayed in basal or isoproterenol/IBMX-stimulated shCOBLL1 versus shEV 
adipocytes (n = 2).
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To identify morphological and cellular traits associated with 
altered COBLL1 expression, we used siRNA-mediated knockdown of 
COBLL1 in AMSCs coupled with a high-content imaging assay that we 
recently developed, LipocyteProfiler43. LipocyteProfiler reports on 
general and adipocyte-specific cellular traits for preadipocytes before 
differentiation (day 0), and at three time points of adipocyte differentia-
tion (3 d (day 3), 9 d (day 9) and 14 d (day 14) after adipogenic induction) 
(Fig. 3b). We examined 1,175 quantitative features, spread across two 
cellular compartments (whole-cell and cytoplasm only) and five dyes 
informative for morphological and adipocyte cellular traits (BODIPY, 
phalloidin, wheat germ agglutinin (WGA), SYTO14 and MitoTracker 
(Methods) imaged in four fluorescence channels (Fig. 3b). We observed 
that COBLL1 knockdown in proliferating preadipocytes with 80% knock-
down efficiency (Extended Data Fig. 5a) results in changes of diverse 
morphological and cellular features across adipocyte differentiation 
with a peak at the later stages of differentiation (Fig. 3c and Extended 
Data Fig. 5b–d). On day 14 of differentiation, 156 features differed sig-
nificantly (false discovery rate (FDR) < 5%) between COBLL1 knockdown 
and non-targeting control, spread across lipid (23.1%), actin, Golgi, 
plasma membrane (AGP)-related (33.3%) and mitochondrial (16.0%) 
channels (Fig. 3d and Supplementary Table 11). For AGP-related cellular 
processes, we observed that COBLL1 knockdown alters the spatial inten-
sity distribution of AGP across the cytoplasm. We previously observed 
that these AGP-related features can be indicative of actin cytoskel-
eton remodelling during differentiation43. After COBLL1 silencing, we 
observed increased actin-associated intensity in the centre of the cell 
(day 9 P = 0.037; Fig. 3e) and decreased actin-associated intensity at 
the cell cortex (day 9 P = 0.013, day 14 P = 0.026; Fig. 3f) in differenti-
ated subcutaneous adipocytes. This indicates that COBLL1 has a role 
in remodelling the actin cytoskeleton during adipocyte maturation, 
as reduced levels of COBLL1 disturb the disassembly of F-actin stress 
fibres across the cytoplasm and the reassembling to cortical F-actin 
(F-actin juxtaposed to the plasma membrane).

The disturbed actin remodelling process was accompanied by 
lowered differentiation capacity as shown by decreased lipid droplet 
formation. More specifically, we confirmed that COBLL1 knockdown 
was associated with a decreased disassembly of stiff F-actin stress 
fibres reaching in the middle of the cell body, at the expense of F-actin 
structure assembly at the cell cortex in differentiated cells (Fig. 3g and 
Extended Data Fig. 5e). Consistent with the notion that remodelling 
of F-actin stress fibres into cortical actin is linked to adipocyte differ-
entiation, COBLL1-ablated adipocytes showed significant changes in 
both texture of lipid-related pixels (Cells_Texture_Correlation_Lipid; 
pixel intensities of BODIPY stain within the cell are more similar, day 
3 P = 0.017 and day 14 P= 0.039; Fig. 3h) and lipid-related granularity 
measures (a class of metrics that captures the typical sizes of bright 
spots for the BODIPY stain) within the cell compared to adipocytes 
expressing COBLL1. More specifically, we observed that silencing 
of COBLL1 results in adipocytes with fewer smaller-sized lipid drop-
lets (Cells_Granularity_Lipid 3, day 14 P = 0.0483; Fig. 3i) and more 
medium-to-large-sized lipid droplets in mature adipocytes (Cells_Gran-
ularity_Lipid 11, day 3 P = 0.0412 and day 14 P = 0.0486; Fig. 3i), and an 
overall decrease in lipid droplet numbers (Cellls_Children_LargeLipi-
dObjects_Count, P = 0.006; Extended Data Fig. 5f). These data indicate 
a disturbed lipid droplet formation and adipogenic differentiation in 
COBLL1-ablated cells, driven by an altered cytoskeleton remodelling.

To investigate if the COBLL1 effect on actin remodelling in adipo-
cytes impacts adipocyte cellular programmes related to metabolic 
disease, we performed stable ablation of COBLL1 using lentivirus 
(shCOBLL1) in differentiating adipocytes. We observed that ablation of 
COBLL1 resulted in a decreased capacity to differentiate into metaboli-
cally active, round-shaped, lipid-filled mature adipocytes, as shown by 
decreased Oil Red O staining of accumulated triglycerides (Fig. 3j), adi-
pocyte differentiation marker gene expression (Extended Data Fig. 5g) 
and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 
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measurements (2.1-fold, P = 3 × 10−3; Fig. 3k). We further found a cor-
relation between the mRNA levels of COBLL1 and leptin, an adipokine 
produced in proportion to the size of fat depots44 in SAT (r = 0.74, 
P = 5 × 10−5) (Extended Data Fig. 5h,i). This effect on leptin is consist-
ent with GWAS of serum leptin levels (rs6712203 C allele β = 0.0308, 
P = 9 × 10−6 and β = 0.0236, P = 1 × 10−5 (BMI-adjusted)) in Kilpeläinen 
et al.45; and β  = 0.0285, P = 0.005889 in Folkersen et al.46. We further 
found a 3.4-fold (P = 2 × 10−7) decrease of insulin-responsive glucose 
uptake in shCOBLL1 adipocytes compared to non-targeting control, as 
measured by radiolabelled 3H-2-deoxyglucose (3H-2-DG) uptake assays 
(Fig. 3l). The failure of shCOBLL1 adipocytes to respond to insulin may 
have resulted from both lowered differentiation efficiency and failure 
of the cortical actin remodelling that mediates GLUT4 vesicle traffick-
ing. Finally, we observed a failure of shCOBLL1 adipocytes to break 
down triglycerides to free fatty acids and glycerol through lipolysis 
after β-adrenergic stimulation using isoproterenol and the phospho-
diesterase inhibitor IBMX compared to their control cells (Fig. 3m). 
This was accompanied with decreased protein levels of the lipolytic 
enzymes adipocyte triglyceride lipase, hormone-sensitive lipase (HSL), 
protein kinase A-dependent serine phosphorylated HSL (pHSL660, 
pHSL563) and on the lipid droplet-associated protein perilipin-1 (PLIN) 
(Fig. 3n). Notably, we did not observe an effect on cellular and mor-
phological features when silencing COBLL1 after induction of differ-
entiation (Extended Data Fig. 5j,k), suggesting that COBLL1 acts early 
in differentiation, with phenotypic effects primarily manifesting in 
mature adipocytes. We also did not observe an effect when COBLL1 
was ablated in visceral AMSCs (Extended Data Fig. 5l), indicating that 
COBLL1 is critically involved in actin remodelling processes in subcu-
taneous adipocytes.

We additionally examined the effect of GRB14 stable knockdown 
in AMSCs and observed that GRB14 ablation (knockdown efficiency 
of 61%) did not significantly decrease in adipocyte differentiation 
capacity as measured by Oil Red O staining, GAPDH activity (Extended 
Data Fig. 5m,n) or insulin-responsive glucose uptake and GLUT4 gene 
expression (Extended Data Fig. 5o,p), supporting COBLL1 as the effec-
tor gene at this locus.

The MONW haplotype affects the adipocyte actin 
cytoskeleton
To confirm that the changes on the actin cytoskeleton and subsequent 
effects on adipocyte functions are under the genetic control of the 
rs6712203 MONW risk haplotype, we used LipocyteProfiler43 to phe-
notypically profile primary human adipocytes differentiation through-
out from individuals carrying the risk haplotype (n = 6) compared the 
non-risk haplotype (n = 7) (Fig. 4a). The data revealed that AGP and lipid 
features informative for the actin cytoskeleton and lipid accumulation 
differed in subcutaneous adipocytes from rs6712203 metabolic risk ver-
sus non-risk haplotype carriers (Fig. 4b,c and Extended Data Fig. 6a–c). 
More specifically, we found that 77 morphological features, spread 
across lipid (16.9%), actin-associated AGP (45.5%) and mitochondrial 
(26.0%) channels, significantly differed between the haplotypes on day 
14 of differentiation (FDR = 5%; Supplementary Table 12). We did not 
observe any significant difference in visceral adipocytes (Fig. 4d and 
Extended Data Fig. 6d–f), which is consistent with the depot-specific 
effect of COBLL1 knockdown (Extended Data Fig. 5k). Notably, we found 
that the risk haplotype associates with increased actin-associated 
intensity in the centre of the cell (day 0 P = 0.018, day 3 P = 0.042, day 
9 P = 0.011 day 14 P = 0.009; Fig. 4e) and decreased actin-associated 
intensity at the cell cortex (day 9 P = 0.024, day 14 P = 0.009; Fig. 4f). 
These data recapitulate our findings after COBLL1 knockdown and 
confirms that adipocytes from risk allele carriers are characterized 
by less cortical actin, which is required for insulin-stimulated glucose 
uptake in those cells and therefore directly relevant to fasting insulin 
levels and T2D. Furthermore, we observed a risk haplotype associa-
tion with higher lipid object counts (day 8 P = 0.043, day 14 P = 0.034; 
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Fig. 4g), which is representative of several lipid droplets, and higher 
lipid-related intensity (day 8 P = 0.001; Fig. 4h), which is indicative of 
dysfunctional lipid droplet formation. These genetic effects on the 
actin cytoskeleton dynamics and lipid accumulation in AMSCs are 
coherent with the effects we observed after the COBLL1 knockdown 
experiments (Fig. 3b–f,h,i), indicating that altered COBLL1 expression 
in the risk haplotype underlies the observed phenotypic effects in 
adipocytes. Summarized, these data show that the rs6712203 MONW 
risk locus, by altering COBLL1 mRNA expression levels, impacts actin 
remodelling in differentiating adipocytes, thereby strongly affecting 
fat mass-relevant and T2D-relevant cellular programmes including 

adipocyte differentiation, lipid droplet formation, stimulated lipolysis 
rate and insulin-stimulated glucose uptake.

Cobll1-deficient mice are metabolically obese normal weight
We generated a CRISPR-engineered Cobll1 knockout (Cobll1−/−) mouse 
model to determine a potential role for Cobll1 in the regulation of meta-
bolic function in vivo (Extended Data Fig. 7a,b). First, we sought to 
assess the effect of Cobll1 knockout on morphological and cellular 
profiles in differentiating murine SAT AMSCs by LipocyteProfiler (days 
0, 2 and 10 of differentiation; Fig. 5a). We found that mostly lipid fea-
tures significantly (FDR < 5%) differed between knockout and control at 
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Fig. 4 | The rs6712203 MONW risk haplotype affects actin remodelling in 
adipocytes and adipocyte lipid storage capacity. a, Schematic of adipocyte 
differentiation and LipocyteProfiling of subcutaneous AMSCs derived from TT 
(n = 7) and CC (n = 6) allele carriers of rs6712203 using LipocyteProfiler43.  
b,d, Differences in morphological profiles between TT (n = 7) and CC (n = 6) allele 
carriers at day 14 in subcutaneous (b) and visceral (d) AMSCs (multi-way ANOVA, 
significance level FDR < 5%). c, Pie chart illustrating non-redundant differential 
features per channel and class of measurement at day 14 of subcutaneous 
adipocyte differentiation in rs6712003 homozygous risk carriers compared to 

non-risk carriers. e,f, Spatial intensity distribution of AGP in the centre of the 
cytoplasm near the nucleus in subcutaneous adipocytes derived from TT (n = 7), 
TC (n = 14) and CC (n = 6) carriers of rs6712203 (Cytoplasm_RadialDistribution_
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Multi-way ANOVA; data represent the median ± 95% CI. g,h, Lipid droplet count 
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(Cells_Intensity_IntegratedIntensity_Lipid) (h) throughout differentiation. Multi-
way ANOVA; data represent the median ± 95% CI.
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day 10 of differentiation (Fig. 5b,c and Extended Data Fig. 7c–e). More 
specifically, the data revealed that the AMSCs of Cobll1 knockout mice 
showed fewer and smaller lipid droplets (Lipid object_count P = 0.0017, 
Lipid_Granularity size measure 3 P = 0.0003, Fig. 5d,e), lower lipid inten-
sity (P = 0.0073; Fig. 5f) and, in line with the lipid-related observation, 
decreased actin cytoskeleton-related heterogeneity across the cyto-
plasm (Cytoplasm_Texture_Entropy_AGP, P = 0.0200; Fig. 5g). These 
findings indicate that Cobll1 knockout in mice affects actin cytoskel-
eton remodelling and lipid accumulation during in vitro adipocyte 
differentiation, mimicking our observations in human adipocytes. 
Indeed, when examining the effect of Cobll1 knockout adipocytes on 
lipid accumulation using Oil Red O, we observed fewer differentiated 
adipocytes in Cobll1−/− compared to wild-type (WT) cells (Fig. 5h). We 
also observed significantly lower GAPDH activity, an indicator of adipo-
cyte differentiation, in Cobll1−/− mice compared to their WT littermates 
(P = 0.004) (Fig. 5i), suggesting that the ablation of Cobll1−/− leads to 
impaired adipogenesis, supporting our finding in human adipocytes.

To assess the impact of the 2q24.3 MONW locus effector COBLL1 
on organismal processes, we assayed for growth and body composition 
phenotypes in Cobll1−/− mice. At 10 weeks of age, Cobll1−/− homozygous 
animals displayed 20–25% less weight gain compared to the WT control 
and Cobll1 heterozygous (Cobll1+/−) littermates (Fig. 5j,k), reflecting a 
significant reduction in total fat mass percentage (3–5%), but with no 
difference in body length or in bone mineral density (BMD), suggesting 
that the phenotype of Cobll1−/− is due to reduced fat mass (Fig. 5l–n). 
Next, we examined glucose homeostasis by performing intraperitoneal 
glucose tolerance tests (IPGTTs). Cobll1−/− mice displayed impaired glu-
cose tolerance compared to WT and heterozygous littermates (Fig. 5o). 
In conclusion, the phenotypic characteristics of the Cobll1 knockout 
mouse model recapitulate the MONW association patterns observed 
in humans and demonstrate how abrogation of Cobll1 links molecular 
and cellular phenotypes to organismal-level metabolic phenotypes 
associated with genetic variation in the 2q24.3 locus in humans.

Discussion
The 2q24.3 locus is pleiotropic in nature and, intriguingly, is associated 
with increased risk of T2D and simultaneously with decreased body fat 
percentage, reminiscent of a MONW phenotype association signature. 
In this study, we applied a series of experimental and computational 
approaches to systematically dissect the 2q24.3 metabolic risk locus 
and link it to a causal variant (rs6712203), its effector gene (COBLL1), its 
causal cell type, cell context (developmental time point, adipose depot) 
and cellular mechanisms (actin remodelling). These altered cellular 
functions, that is, adipocyte differentiation into metabolically active 
subcutaneous adipocytes, lipid metabolism and insulin-responsive 
glucose uptake, are relevant for T2D, and body fat percentage and dis-
tribution. When ablating Cobll1 in mice, we showed a lipodystrophy-like 
phenotype, recapitulating the pleiotropic association with T2D and 
decreased body fat mass in humans. Thus, we provide genetic and 
mechanistic evidence that a common genetic variant limits peripheral 
energy storage capacity and simultaneously impairs insulin respon-
siveness.

The results of this study lend support to the common hypothesis 
that the individual risk of T2D and fasting insulin is modified by changes 
to the mass, distribution and function of adipose tissue23,47, and that a 
metabolically healthy state is largely dependent on SAT expandabil-
ity. Inherited and acquired lipodystrophies, as characterized by the 
selective or global perturbation of adipose tissue function, mass and 
distribution, result in severe forms of insulin resistance and diabetes; 
shared molecular mechanisms between rare familial partial lipodys-
trophy type 1 and common forms of insulin resistance at the genetic 
level have been suggested previously23. Several common metabolic 
risk loci are characterized by a MONW and MHO association; distinct 
association signatures suggest that multiple mechanisms are involved, 
most of which are to be identified21,22,48. Previous work has convincingly 

implicated variants at the FAM13A locus to affect metabolic disease 
risk by affecting subcutaneous adipocyte differentiation48. In this 
work, we implicate for the first time actin cytoskeleton remodelling 
as a critical factor for subcutaneous adipocyte function and as caus-
ally involved in metabolic disease progression in humans, stressing 
the notion that MONW and MHO predisposing loci control distinct 
cellular programmes.

We observed evidence of sex-dimorphic effects when condi-
tioning MONW traits on rs6712203, which is in line with a reported 
sexual dimorphism for WHR consistently conveying stronger effects 
in women15,26,49,50 and a sex-independent effect on T2D11–14, and with a 
sex-dimorphic effect on gene expression for COBLL1 but not for GRB14 
(ref. 19). While we did not observe a phenotypic effect of Cobll1 knock-
out in female mice, we cannot exclude the possibility that this is due 
.

m
to well-known sexual dimorphism in mouse metabolic phenotypes51.

The COBLL1 protein has been introduced as a biomarker of high 
prognostic value for different types of cancer, a modulator of cell 
morphology in prostate cancer42, and lipid metabolism and insulin 
signalling in adipocytes52. In this study, we established chain of causa-
tion linking the 2q24.3 locus to its functional variant, its adipocyte 
cell type-specific and context-specific effects, its regulatory element, 
its effector gene COBLL1 and finally its causal cellular function, that 
is, actin remodelling in differentiating adipocytes, which is under 
the genetic control of both locus and target gene. These findings are 
in line with recent reports linking actin dynamics, regulated by the 
F-actin:G-actin ratio, and insulin-stimulated trafficking and fusion of 
GLUT4 vesicles53–55. Actin remodelling also occurs in hypertrophically 
differentiated adipocytes55,56, an essential adaptive mechanism of 
post-mitotic cells, such as mature adipocytes, and was recently linked 
to cellular senescence in states of obesity and insulin resistance57. 
An unresolved question to be addressed in future work is whether 
COBLL1-mediated actin dynamics contributes to metabolic functions 
of certain adipocyte subpopulations with different degrees of insulin 
sensitivity as recently identified by single-cell and spatial transcriptom-
ics58,59. Furthermore, while we did not observe a haplotype-dependent 
effect on actin cytoskeleton remodelling in visceral adipocytes, further 
studies are warranted to elucidate how actin depolymerization and 
repolymerization during the differentiation process may differ in 
subcutaneous compared to visceral adipocytes.

Besides COBLL1, the insulin receptor adaptor protein GRB14 has 
an intuitive effector target

.

m
 gene at the 2q24.3 locus. GRB14 is a negative 

regulator of insulin signalling60,61. In line with our findings, physiologi-
cal studies in GRB14 knockout mice show increased glucose tolerance 
and insulin sensitivity linked to higher IRS1 and Akt phosphorylation in 
liver and skeletal muscle but not adipose tissue62, which may

.

m
 rely more 

on regulation of proximal insulin signalling by GRB10 (refs. 62–65). 
Somewhat contradictory to these findings and to the results reported in 
this present work, a recent study reported that CRISPR–Cas9-mediated 
ablation of GRB14 in human SGBS preadipocytes resulted in decreased 
preadipocyte proliferation, adipocyte differentiation and adipocyte 
insulin responsiveness52. This contradiction might be explained by the 
fact that different perturbation schemes were applied, that is, small 
hairpin RNA (shRNA)-mediated silencing of GRB14 as described in this 
study compared to CRISPR–Cas9 knockout of GRB14, which may be 
confounded by the number of cells in a population that do not produce 
knockout phenotypes66 (González et al.67); also partial loss-of-function 
or gain-of-function phenotypes can be generated by Cas9-induced 
in-frame insertion and deletions, and hypomorphic alleles67, which 
can obscure the readout. COBLL1 as the effector gene that underlies 
the T2D association is further corroborated by recent exome chip 
and exome sequencing studies linking an rs7607980 coding variant in 
the COBLL1 gene to T2D and glycaemic traits (minor allele frequency 
(MAF) = 0.12, P = 4.7 × 10−11)68–70. Furthermore, recent rare variant aggre-
gation analyses at COBLL1 revealed nominal association with WHR71 but 
not with GRB14, which agrees with our findings that COBLL1 drives at 
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least part of the 2q24.3 genetic risk. Our sequence-based predictive 
models scored rs6712203 highest across all 2q24.3 haplotype variants; 
our experimental data provide evidence that the SNP rs6712203 acts as 
a causal regulatory variant which, at least in part, drives effects at the 
2q24.3 MONW locus tagged by rs3923113. Notably, our sequence-based 
models predict additional variants at the locus to affect regulatory 
activity; at least two additional variants, rs12692737 and rs10179126, 
are associated with allelic chromatin accessibility bias. Therefore, while 
beyond the scope of our study, we note that our work does not preclude 
multiple variants acting in concert at this locus in a cell state-dependent 
manner, potentially implicating GRB14 along with COBLL1 as effector 
genes. Furthermore, besides rs3923113, recent large-scale genetic 
association studies identified multiple additional signals tagged by 
other lead SNPs in reasonably high LD that associate with metabolic dis-
ease13,25; also, the effect of indels should be evaluated in future studies.

In conclusion, the 2q24.3 locus is a prime example of a common 
genetic locus that predisposes to limited peripheral adipose storage 
capacity and insulin resistance, driven by an impairment of dynamic 
actin cytoskeleton remodelling of the differentiating subcutaneous 
adipocyte. Our study epitomizes the potential of translating pleio-
tropic genetic loci into mechanistic understanding towards therapeutic 
hypotheses.

Methods
Human primary AMSCs isolation and needle biopsies
We obtained AMSCs from the adipose tissue of patients undergoing 
a range of abdominal laparoscopic surgeries (sleeve gastrectomy, 
fundoplication or appendectomy). VAT was derived from the prox-
imity of the angle of His and SAT was obtained from beneath the 
skin at the site of surgical incision. Human liposuction material was 
obtained from a private plastic surgery clinic. Isolation of AMSCs 
was performed as described previously72,73. Abdominal specimens 
from SAT were obtained by needle aspiration before and 4 weeks after 
a very-low-calorie diet (800 kcal). Study design and the abdominal 
needle aspiration procedure were previously described in Ott et al.74.

Each participant gave written informed consent before inclusion 
and the study protocol was approved by the ethics committee of the 
Technical University of Munich (147 study no. 5716/13).

Differentiation of human AMSCs
For imaging, cells were seeded at 10,000 cells per well in 96-well plates 
(high-content imaging; CellCarrier plates, catalogue no. 6005550; 
PerkinElmer) or seeded at 18,000 cells per well in collagen IV-coated 
8-well µ-slides (higher-resolution imaging; catalogue no. 80822, ibidi) 
and induced 4 d after seeding. For RNA sequencing (RNA-seq), cells 
were seeded at 40,000 cells per well in 12-well dishes (Corning). Before 
induction, cells were cultured in proliferation medium (DMEM/F-12, 
1% penicillin-streptomycin, 33 µM biotin, 17 µM pantothenate sup-
plemented with 0.13 µM insulin, 0.01 µg ml−1 epidermal growth factor, 
0.001 µg ml−1 fibroblast growth factor, 2.5% FCS). Subcutaneous and 
visceral adipogenic differentiation was induced by changing culture 
medium to induction medium (basic medium supplemented with 
0.861 µM insulin, 1 nM T3, 0.1 µM cortisol, 0.01 mg ml−1 transferrin, 
1 µM rosiglitazone, 25 nM dexamethasone and 2.5 nM IBMX; for visceral 
AMSCs, 0.1 mM oleic and linoleic acid and 2% FCS were also used). On 
day 3 of adipogenic differentiation, culture medium was changed to 
differentiation medium (basic medium supplemented with 0.861 µM 
insulin, 1 nM T3, 0.1 µM cortisol, 0.01 mg ml−1 transferrin; for visceral 
AMSCs, 0.1 mM oleic and linoleic acid and 2% FCS were also used.

Genotyping
Genotyping was performed using the Illumina Global Screening bead-
chip array. DNA was extracted using QIAGEN’s DNeasy Blood and Tissue 
Kit (catalogue no. 69504) and sent to the Oxford Genotyping Centre 
for genotyping on the Infinium HTS assay on Global Screening Array 

bead-chips (Illumina). Genotype quality control (QC) was done using 
GenomeStudio and genotypes were converted into PLINK format. 
We checked sample missingness but found no sample with missing-
ness greater than 5%. For the remaining sample QC steps, we reduced 
the genotyping data down to a set of high-quality SNPs. These SNPs 
were: (1) common (MAF > 0%); (2) missingness < 0.1%; (3) independent, 
pruned at an LD (R2) threshold of 0.2; (4) autosomal only; (5) outside the 
lactase locus (chromosome 2), the major histocompatibility complex 
(chromosome 6), and outside the inversions on chromosomes 8 and 17; 
and (6) in Hardy–Weinberg equilibrium (P > 1 × 10−3). Using the remain-
ing approximately 65,000 SNPs, we checked samples for inbreeding 
(--het in PLINK), but found no samples with excess homozygosity or 
heterozygosity (no sample more than 6 s.d. from the mean). We also 
checked for relatedness (--genome in PLINK) and found one pair of 
samples to be identical; we kept the sample with the higher overall 
genotyping rate. Finally, we performed principal component analysis 
using EIGENSTRAT and projected the samples onto data from HapMap 
3, which includes samples from 11 global populations. Six samples had 
some non-European ancestral background, while most samples were of 
European descent. We did not remove any samples at this step, select-
ing to adjust for principal components (PCs) in genome-wide testing. 
Adjustment for PCs failed to eliminate population stratification; there-
fore, we restricted the process to samples of European descent only, 
defined as samples falling within ±10 s.d. of the first and second PCs of 
the CEU (Utah residents with Northern and Western European ancestry) 
and TSI (Tuscans in Italy) samples included in the HapMap 3 

.
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Finally, sex information was received after the initial sample QC was 
complete. One sample with potentially mismatching sex information 
(comparing genotype and phenotype information) was discovered 
after analyses were complete and therefore remained in the analysis.

SNP QC. We removed monomorphic SNPs and all SNPs with miss-
ingness greater than 5% and out of Hardy–Weinberg equilibrium 
(P < 1 × 10−6). We set heterozygous haploid sites to missing to enable 
downstream imputation. The final cleaned dataset included 190 sam-
ples and approximately 700,000 SNPs.

Genotype imputation. We performed imputation via the Michigan 
Imputation Server as described in Glastonbury et al.75. Briefly, we 
aligned SNPs to the positive strand and then uploaded the data (in 
VCF format) to the server. We imputed the data using the Haplotype 
Reference Consortium panel. We selected EAGLE as the phasing tool 
to phase the data. To impute chromosome X, we followed the server 
protocol for imputing this chromosome (including using SHAPEIT to 
perform the phasing step).

ATAC–seq in immortalized AMSCs
ATAC–seq was performed by adapting the protocol from Buenrostro 
et al.76 by adding a nucleus preparation step. Differentiating cells were 
lysed directly in the culture plate before adipogenesis was induced 
(days 0, 3, 6 and 14). Ice-cold lysis buffer was added directly onto cells 
grown in a 12-well plate. Plates were incubated on ice for 10 min until 
cells were permeabilized and nuclei released. Cells in lysis buffer were 
gently scraped off the well and transferred into a chilled 1.5-ml tube 
to create crude nuclei. Nuclei were spun down at 600g for 10 min at 
4 °C. Nuclei pellets were then resuspended in 40 µl Tagmentation 
DNA Buffer (catalogue no. FC-121-1031, Nextera) and the quality of the 
nuclei was assessed using trypan blue. The volume of 50,000 nuclei 
was determined using a haemocytometer. The transposition reac-
tion was performed as described previously76. All tagmented DNA 
was PCR-amplified for eight cycles using the following PCR condi-
tions: 72 °C for 5 min, 98 °C for 30 s, followed by thermocycling at 
98 °C for 10 s, 63 °C for 30 s and 72 °C for 1 min. The quality of the 
ATAC–seq libraries was assessed using a Bioanalyzer High Sensitivity 
Chip (Applied Biosystems). All libraries had a mean fragment size of 

Q18

http://www.nature.com/natmetab


Nature Metabolism

Article https://doi.org/10.1038/s42255-023-00807-w

approximately 200 bp and characteristic nucleosome patterning, indi-
cating good quality. Libraries were pooled and sequenced on a HiSeq 
4000 system (Illumina), generating 50 million 75-bp paired-end reads 
per sample. To reduce bias due to PCR amplification of libraries, dupli-
cate reads were removed. Sequencing reads were aligned to the hs37d5 
reference genome; the Burrows–Wheeler Aligner-MEM was used for 
mapping. All experiments were performed in technical duplicates.

LipocyteProfiling in human and mouse AMSCs
The full LipocyteProfiler protocol is described in Laber et al.43. Briefly, 
human and mouse AMSCs were plated and differentiated in 96-well 
CellCarrier plates for high-content imaging at days 0, 3, 8 and 14 of 
differentiation. On the respective day of the assay, cell culture medium 
was removed and replaced with 0.5 µM MitoTracker staining solution 
(1 mM MitoTracker Deep Red stock (catalogue no. M22426, Invitrogen) 
diluted in culture medium) to each well followed by 30-min incubation 
at 37 °C protected from light. After 30 min, the MitoTracker staining 
solution was removed and cells were washed twice with Dulbecco’s PBS 
(1×) (catalogue no. 21-030-CV, Corning) and 2.9 µM BODIPY staining 
solution (3.8 mM BODIPY 505/515 stock (catalogue no. D3921, Thermo 
Fisher Scientific) diluted in Dulbecco’s PBS) was added followed by 
15-min incubation at 37 °C protected from light. Subsequently, cells 
were fixed by adding 16% methanol-free paraformaldehyde (PFA) 
(catalogue no. 15710-S, Electron Microscopy Sciences) directly to the 
BODIPY staining solution to a final concentration of 3.2% and incubated 
for 20 min at room temperature protected from light. PFA was removed 
and cells were washed once with Hank’s Balanced Salt Solution (HBSS) 
(1×) (catalogue no. 14025076, Gibco). To permeabilize cells, 0.1% Triton 
X-100 (catalogue no. X100, Sigma-Aldrich) was added and incubated at 
room temperature for 10 min protected from light. After permeabiliza-
tion, multi-stain solution (10 U Alexa Fluor 568 phalloidin (catalogue 
no. A12380, Thermo Fisher Scientific), 0.01 mg ml−1 Hoechst 33342 
(catalogue no. H3570, Invitrogen), 0.0015 mg ml−1 WGA, Alexa Fluor 555 
conjugate (catalogue no. W32464, Thermo Fisher Scientific), and 3 µM 
SYTO 14 Green Fluorescent Nucleic Acid Stain (catalogue no. S7576, 
Invitrogen) diluted in HBSS) was added and cells were incubated at 
room temperature for 10 min protected from light. The staining solu-
tion was removed and cells were washed three times with HBSS. Cells 
(25 fields per well) were imaged with an Opera Phenix High-Content 
Screening System.

Staining and microscopy
To stain the actin cytoskeleton, COBLL1 and nuclei, cells were washed 
twice with ice-cold PBS and fixed with PFA Roti-Histofix 4% (Roth) for 
15 min. Cells were washed twice with ice-cold PBS for 5 min and incu-
bated with ice-cold 0.1% Triton X-100/PBS (Roth). Cells were washed 
again twice with PBS and incubated for 1 h at room temperature with 4% 
BSA, then incubated with 1:100 primary COBLL1 antibody (catalogue 
no. HPA053344, Atlas Antibodies, lot no. 000010746) overnight at 4 °C, 
followed by 1 h at room temperature (final concentration = 2 µg ml−1). 
Cells were washed twice with PBS and stained with 0.46% bisBenzimide 
H 33258 (Sigma-Aldrich), 1% phalloidin–Atto 565 (Sigma-Aldrich) and 
a secondary antibody against COBLL1 (1:200 Alexa Fluor 488, Abcam) 
at a final concentration of 0.01 mg ml−1). Cells were incubated for 1 h 
at room temperature in the dark. Afterwards, cells were washed twice 
with PBS for 5 min and kept in PBS at 4 °C until imaging. Images were 
acquired on a Leica DMi8 microscope (Leica Microsystems) using the 
HC PL APO 63×/1.40 oil objective. Images were processed with the 
Leica LASX software.

LipocyteProfiler
The full LipocyteProfiler protocol is described in Laber et al.43. Quan-
titation was performed using CellProfiler v.3.1.9. Before processing, 
flat-field illumination correction was performed using functions gener-
ated from the mean intensity across each plate. Nuclei were identified 

using with 4,6-diamidino-2-phenylindole stain and then expanded 
to identify whole cells using the AGP and BODIPY stains. Regions of 
the cytoplasm were determined by removing the nuclei from the cell 
segmentations. Speckles of BODIPY staining were enhanced to assist 
in the detection of small and large individual BODIPY objects. For each 
object set, measurements were collected representing size, shape, 
intensity, granularity, texture, colocalization and distance to neigh-
bouring objects. After the feature extraction, data were filtered by 
applying automated and manual QC steps. First, fields with a total cell 
count less than 50 cells were removed. Second, fields that were cor-
rupted by experimentally induced technical artefacts were removed 
by applying a manually defined QC mask. Furthermore, blocklisted 
features known to be noisy and generally unreliable were removed. 
After filtering, data were normalized per plate using a robust scaling 
approach that subtracts the median from each variable and divides it 
by the interquartile range. For each individual, wells were aggregated 
for downstream analysis by cell depot and day of differentiation. Sub-
sequent data analyses were performed in R v.3.6.1 using base packages 
unless noted. For dimensionality reduction visualization, uniform 
manifold approximation and projection (UMAP) maps were created 
using the UMAP R package (https://github.com/lmcinnes/umap) with 
default settings.

To test for a difference in morphological profiles at any day of 
differentiation due to COBLL1 knockdown, individuals were analysed 
separately using a t-test. To test for a difference in morphological pro-
files at any day of differentiation between risk and non-risk haplotypes, 
a multi-way ANOVA was performed. Differences in morphological 
profiles between TT (n = 7) and CC (n = 6) allele carriers were adjusted 
for sex, age, BMI and batch. To overcome multiple-testing burden, P 
values were corrected using the FDR described in the R package qvalue 
(https://github.com/StoreyLab/qvalue). Features with an FDR < 5% 
were classified as significant and filtered based on redundancy and 
effect size.

COBLL1 silencing using siRNA
All silencing experiments were performed on four technical replicates. 
One day before silencing, AMSCs were plated into 96-well plates with 
10,000 cells per well or collagen IV-coated 8-well glass µ-slides with 
18,000 cells per well using growth medium. RNA-based silencing of 
COBLL1 was performed using the RNAiMAX Reagent (catalogue no. 
13778075, Thermo Fisher Scientific) according to the manufacturer’s 
protocol. Briefly, Lipofectamine RNAiMAX Transfection Reagent was 
diluted in Opti-MEM medium (catalogue no. 11058021, Gibco). At the 
same time, siRNA was diluted in Opti-MEM medium. Then, diluted 
siRNA was added to the diluted Lipofectamine RNAiMAX reagent at 
a 1:1 ratio and incubated for 5 min. Coated 8-well glass µ-slides were 
incubated for 20 min at room temperature. The concentration of rea-
gents per well in a 96-well plate were 0.5 µl (10 µM) of silencing oligonu-
cleotides (catalogue no. 4392420, Ambion) or negative control duplex 
(catalogue no. 4390846, Ambion) and 1.5 µl Lipofectamine RNAiMAX 
Reagent. The plate was gently swirled and placed in a 37 °C incubator at 
5% CO2 for 3 d. Cells were then induced to differentiate using a standard 
differentiation cocktail or collected for gene expression analysis to 
assess knockdown efficiency.

RNA preparation and quantitative PCR
Total RNA was extracted with TRIzol (catalogue no. 15596026, Ambion) 
and the Direct-zol RNA MiniPrep Kit (catalogue no. R2052, Zymo 
Research) according to the manufacturer’s instructions. Complemen-
tary DNA (cDNA) was synthesized with the High-Capacity cDNA Reverse 
Transcription Kit (catalogue no. 4368814, Applied Biosystems) accord-
ing to the manufacturer’s instructions. Quantitative PCR (qPCR) was 
performed using the PCR Master Mix (catalogue no. K0172, Thermo 
Fisher Scientific) and TaqMan probes for the target gene COBLL1 (cata-
logue no. 4448892, ID: Hs01117513_m1, Thermo Fisher Scientific) and 
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the housekeeping gene CANX (catalogue no. 4448892, ID Hs01558409_
m1, Thermo Fisher Scientific). Relative gene expression was calculated 
by the Ţҭ��

�ā method. Target gene expression was normalized to the 
expression of CANX.

RNA-seq and splicing analysis
RNA-seq reads were trimmed using SeqPurge with the following com-
mand: SeqPurge -a1 CTGTCTCTTATACACATCTCCGAGCCCACGAGAC 
-a2 CTGTCTCTTATACACATCTGACGCTGCCGACGA.

For the transcript-level quantification, trimmed reads were ana-
lysed with Kallisto (with 25 bootstraps) and the transcripts per million 
(TPM) estimates were log-transformed; the top 10 PCs were computed. 
Next, reads were summed across all transcripts of a given gene to obtain 
gene-level estimates of the expression in each sample.

For the splicing analysis with Leafcutter, reads were mapped 
with STAR using the following parameters: STAR--twopassMode 
Basic--outSAMstrandField intronMotif--readFilesCommand 
zcat--outSAMtype BAM Unsorted.

They were then processed using Samtools and RegTools to convert 
to a JUNC file with the following command: regtools junctions extract 
-s 1 -a 8 -m 50 -M 500000.

Finally, reads were clustered into splicing events with the following 
command from the Leafcutter project: leafcutter_cluster_regtools.py 
-j <files> -m 50 -l 500000. These clusters were then converted to TPM 
and modelled as a function of the rs6712203 genotype.

RNA pathway enrichment analysis
Transcript-level (log) RNA expression was compared between COBLL1 
and all other quantified genes using linear regression. The effect of 
COBLL1 on other genes was compared and adjusted for the expression 
PCs, sample depot source, cell line and day of differentiation. This 
resulted in effect sizes of individual genes in terms of how similar they 
were to COBLL1; those with estimates that had a Bonferroni-adjusted 
P > 1 × 10−13 and an absolute effect size less than 0.1 or greater than 10 
were excluded. Similarly expressed genes with strong association with 
COBLL1 were uploaded to Enrichr and analysed as a gene list against the 
KEGG, and the WikiPathways and HCI pathways. The full set of tests is 
available at https://maayanlab.cloud/Enrichr/enrich?dataset=1a9a0
7019bfd8bbddc6eb6c26641bfef; the sensitivity evaluation in which 
very-lowly-expressed and highly-expressed genes were not excluded 
are available at https://maayanlab.cloud/Enrichr/enrich?dataset=231
b12708d04818007d93364e489fab7.

PMCA variant conservation analysis
The PMCA results were replicated from Claussnitzer et al.29. Briefly, 
transcription factor binding sites and their cooccurrence across spe-
cies were tallied and classified into complex and non-complex regions. 
Complex regions were counted on the basis of motifs aligned across 
species and were then plotted against Basset scores to discover puta-
tive causal variants.

Basset variant effect prediction analysis
Basset models were trained and evaluated as in Sobreira et al.77. Mod-
els were trained to capture chromatin regulation relevant to adipo-
cyte differentiation and a number of other metabolic tissues; these 
effects were estimated by determining the difference in effect between 
alleles at each variant. The variants with the largest effect on acces-
sibility were considered the most important and most likely to be  
causal.

Allele-specific accessibility analysis
Allele-specific analyses were performed as in Sinnott-Armstrong et al.78. 
Briefly, reads were aligned from a heterozygous individual on the basis 
of the variant; the number of reads supporting each allele were tallied 
at each time point and across variants on the haplotype.

Conditional and BMI-dependent variant association analysis
Variants (n = 6,167) within 100 kb of rs6712203 were included in the 
analysis. White British individuals in the UKB were analysed with phe-
notype type 2 diabetes (as described in Eastwood et al.79), log WHR 
adjusted for BMI, hip circumference and whole-body fat mass. Indi-
viduals were stratified on the basis of reported sex and filtered to 
White British unrelated individuals as described in Sinnott-Armstrong 
et al.80. Conditional analyses and all associations were performed using 
PLINK 2.0.

POU2F2 affinity modelling using the IGR method
The IGR method was used for POU2F2 affinity modelling using the 
POU2F2 ChIP–seq data35. To correct for systematic bias in the sequenc-
ing depth around particular k-mers, all scores were offset by a base-
line value, defined as the average signal between the forward and 
reverse complement instances of the k-mer between −200 and −195 and 
between 195 and 199 bases away from the k-mer centre. To include only 
large-effect binding differences, the prominence was defined as the 
maximum score across any point in the context of either the forward 
or reverse complement version of the k-mer for both alleles and the 
maximum difference as the maximum absolute difference in scores 
between the two alleles at any point in the window. The baseline ratio 
was defined as the ratio of the maximum difference to the prominence, 
which varied between 0 (if the two alleles were equal at all points) and 
2 (if they were perfectly complementary at their highest absolute  
point).

To map high-quality putative disrupted binding sites, the k-mer 
sequence that gave the highest affinity under the germline was recorded 
as reference and the k-mer sequence that gave the highest affinity 
under the somatic variant as alternate. The quality of a given k-mer was 
defined as the correlation between the average context plot forward 
and the reverse of the average context plot of the reverse complement; 
the symmetry of a given k-mer was the correlation between the average 
context plot forward and the average context plot reverse. Quality was 
high when the antiparallel binding was preserved, and symmetry was 
high when the peak signal was centred with respect to the variant. The 
results were included as passed when the Bonferroni-corrected P value 
for the comparison was less than 0.05, the baseline ratio was greater 
than 0.5, quality and symmetry were both greater than 0.85 for one of 
the alleles, and quality and symmetry were both greater than 0.5 for 
the other allele.

Microarray expression data
A global gene expression measurement was performed, using Illumina 
HumanRef-8 v.3 BeadChip microarrays from whole abdominal SAT. 
Signal intensities were quantile-normalized before the correlation 
analysis.

SGBS genome editing
To edit the rs6712203 heterozygous allele in SGBS preadipocytes to 
the homozygous risk (CC) and non-risk (TT) alleles, we applied the 
CRISPR–Cas9 homology-directed repair genome editing approach. 
The hCas9 vector was purchased from Addgene (plasmid no. 41815). 
The guide sequence was selected using the design tool (Zhang Lab, 
MIT) with a predicted number of 228 potential off-target sites, located 
211 bp upstream of rs6712203. It was cloned in front of the U6 pro-
moter into the BbsI cloning site of the sgRNA expression vector (R. 
Kühn, Helmholtz Zentrum München), using the double-stranded 
oligonucleotides 5′-CACCGACTCTCCACTACCATTGCCA-3′ and 5′- 
AAACTGGCAATGGTAGTGGAGAGTC-3′. To amplify the 2,009-bp 
homology region with the risk or non-risk allele of rs6712203 at 
mid-position, the genomic DNA (gDNA) of SGBS cells was amplified 
with the primers 5′-GGTGGTCCCATTAAAAAGAAAGAAGCTTGG-3′ and 
5′-CTTCTCTTTTACCCTGCTGGCTACTGGTTG-3′ using High-Fidelity 
Q5 DNA polymerase (New England Biolabs). The gel-purified PCR 
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product was cloned into the blunt end pJet1.2 vector using the 
CloneJET PCR Cloning Kit (Fermentas). A clone with the rs6712203 
C allele was selected and the corresponding T allele vector was gen-
erated using the Q5 Site-Directed Mutagenesis Kit (New England 
Biolabs) with the primers 5′-TCATTCATCATATGCAATTCTGG-3′ 
and 5′-GGCAAATTAATATTTAGGATTATATC-3′. To avoid Cas9 reac-
tivity after genome editing, the NGG guide target sequence was  
mutated to NCG in both homology vectors with the primers 
5′-CCATTGCCAACGGCTGAGTCAG-3′ and 5′-TAGTGGAGAGTT 
CTCACAAAAC-3′. SGBS cells were cotransfected with green fluorescent 
protein (Lonza), hCas9, the respective sgRNA and pMACS v.4.1 (Miltenyi 
Biotec) plasmids using the Amaxa Nucleofector device (programme 
U-033) (Lonza). Cells were sorted using the MACSelect Transfected 
Cell Selection Kit (Miltenyi Biotec). The integrity of each edited vector 
construct and the SGBS cell nucleotide exchange was confirmed by 
DNA sequencing (Eurofins).

Lentiviral SGBS cell transduction
The MISSON Lentiviral Packaging Mix (Sigma-Aldrich) was used accord-
ing to the manufacturer’s instructions. Packaging HEK 293T cells 
were grown in a low-antibiotic growth medium (DMEM, 10% FCS, 0.1% 
penicillin-streptomycin). When cells were approximately 70% conflu-
ent, they were cotransfected using X-treme GENE HP (Roche), with the 
packaging plasmid pCMVdeltaR8.91, the envelope plasmid pMD2.G 
and the pLKO-based plasmid containing shRNA against the human 
target gene COBLL1 (NM_014900.2-3071s1c1), COBLL1 (NM_014900.2-
4440s1c1), GRB14 (NM_004490.1-1243s1c1) or empty vector MISSION 
TRC2 pLKO.5-puro plasmid (Sigma-Aldrich). Cells were incubated for 
24 h, and the medium was discarded and replaced with a serum-rich 
medium (30% FCS). The supernatant containing the viable virus parti-
cles was collected 48 and 72 h after transfection, centrifuged to remove 
cellular debris and stored at −80 °C.

SGBS cells were seeded at a concentration of 2.6 × 104 cells per 
6-well plate and grown in normal growth medium. After 24 h the 
medium was replaced and supplemented with 8 µg ml−1 Polybrene 
(Sigma-Aldrich) and virus supernatant with a multiplicity of infection 
of 2. On consecutive days, cells were washed with PBS and medium was 
replaced to remove the virus. The medium was supplemented with 
0.5 µg ml−1 puromycin 96 h after infection to select stable clones. When 
cells were grown confluent, puromycin was removed from the medium 
and cells were differentiated until day 16. Target gene silencing was 
confirmed by qPCR with reverse transcription (RT–qPCR).

Generation of dCas-hWAT preadipocyte cell line
We generated an hWAT cell line, an established white adipocyte line33, 
stably expressing dCas9-KRAB. Lentivirus was delivered to preadipo-
cytes using spinfection. For single-copy integration, the virus titre was 
optimized to reach an integration efficiency of 30-40%. Four days after 
infection, we positively selected for cells expressing the integrated 
transgene using blasticidin. We validated the generated line by assess-
ing dCas9-KRAB activity delivering a sgRNA targeting CD81, stably 
expressed in adipocytes, and measuring CD81 gene expression.

CRISPRi
sgRNAs targeting TSS were designed using CRISPick (https://por-
tals.broadinstitute.org/gppx/crispick/public) and sgRNAs targeting 
non-coding regions were designed with assistance from the Genetic 
Perturbation Platform at the Broad Institute. Guide sequences are 
as follows: non-targeting control 1: AAAAAGCTTCCGCCTGATGG; 
non-targeting control 2: CGTCCCTTCGTCTCTGCTTA; non-targeting 
control 3: TCACCTCCGAACGAACACCT; non-targeting control 4: 
GGACGCACCATTCCGGGTGA; COBLL1_1: AGCTCGCCTGTTCTCCCTCG; 
COBLL1_2: GAGTAGGAGAGGAAGCCGCG; COBLL1_3: AGAGCCGAGCG-
GCAAGAGCG; COBLL1_4: GAGCCGAGCGGCAAGAGCGC; GRB14_1: 
ACCACACCTGCAGAGCGCTC; GRB14_2: GCCCGAGCGCTCTGCAGGTG; 

GRB14_3: CGAGCGCTCTGCAGGTGTGG; GRB14_4: CACCACACCT-
GCAGAGCGCT; RS4: AGAGTTCTCACAAAACTCCA; RS9: CTCTC-
CACTACCATTGCCAA; RS20: CCATTGCCAAGGGCTGAGTC; RS1: 
CATCACATGCAATTCTGGCA; RS8: AATACAAATAGAGCAAGTAT; RS11: 
TTGTAAGTGGAAAAAAAGCT. sgRNAs were cloned into the BsmBI site 
of a lentiviral pXPR_050 vector (plasmid no. 96925, Addgene)81 and 
verified using Sanger sequencing.

Lentiviral particles were generated by transfecting HEK 293T cells 
(8 × 105 per well of a 6-well plate seeded the day before transfection) 
with 1,250 ng sgRNA, 1,250 ng psPAX2 and 250 ng vesicular stomatitis 
virus G vectors using a TransIT-LT1 transfection reagent at 8.5 µl per 
well (Mirus Bio). Viral particles were collected 72 h after transfection, 
passed through a 0.45-µm filter, aliquoted and stored at −80 °C until 
use. For lentiviral transduction by spinfection, cells were seeded at 
1 × 105 per well of 12-well plates in the presence of 50, 250 or 500 µl viral 
supernatant and Polybrene (4 µg ml−1) and spun at 930 g for 2 h. Cells 
were selected with 1 µg ml−1 puromycin for 3 d, split once and collected 
6 d after transduction for RNA extraction and gene expression by qPCR. 
Cas9 expression and COBLL1 knockdown were verified by western blot 
using specific antibodies (Cas9: catalogue no. C15310258, Diagenode; 
COBLL1: catalogue no. HPA053344, Sigma-Aldrich). Ponceau-S staining 
or β-actin (catalogue no. 4970, Cell Signaling Technology).

Measurement of GAPDH activity
Cells were grown to confluence and differentiated until day 16 in 6-well 
plates. Cells were collected in a GPADH buffer with 0.05 M Tris-HCl (pH 
7.4), 1 mM EDTA and 1 mM mercaptoethanol before they were stored 
at −80 °C until further use. Samples were gently defrosted at 4 °C and 
sonified for 7 s at 29%, and centrifuged for 10 min at 10,000g at 4 °C. 
GAPDH activity was measured as described previously82. Briefly, GAPDH 
activity was assessed, measuring the conversion of dihydroxyacetone 
phosphate (Sigma-Aldrich) in the presence of the coenzyme nicoti-
namide adenine dinucleotide (NADH) (Omnilab) at a wavelength of 
340 nm, using the Infinite 200 (Tecan). Protein concentrations were 
assessed using the BCA-reducing agent compatible protein assay kit 
(Thermo Fisher Scientific) with BSA standard samples in GAPDH buffer 
for quantification. The value for each condition was calculated using 
the ratio between GAPDH activity and protein concentration.

Glucose uptake, lipolysis and western blot analysis
For glucose, glycerol and western blot analysis, shRNA COBLL1, shRNA 
empty vector and shRNA GRB14 SGBS cells were differentiated until 
day 16 in 6-well plates.

The insulin-stimulated 2-DG uptake experiment was performed 
as described previously83. Briefly, cells were incubated in glucose-free 
DMEM and F-12 (1:1) containing 1% penicillin-streptomycin, 16 µM 
biotin, 36 µM pantothenic acid, 14.3 mM NaHCO3 and 0.5 mM sodium 
pyruvate(Sigma-Aldrich) for 12 h. The medium was replaced with 
118 mM NaCl, 1.2 mM KH2PO4, 4.8 mM KCl, 1.2 mM MgSO4, 2.5 mM CaCl2, 
10 mM HEPES, 2.5 mM sodium pyruvate (Sigma-Aldrich) and 0.5% BSA 
(Sigma-Aldrich), pH 7,35. After 1.5 h the same buffer was added fresh 
either without supplement or with 1 µM insulin for 30 min. Radioactive 
uptake was started by adding KRH 3H-2-DG at an activity of 1 µCi ml−1 
and 50 µM 2-DG. Cells were incubated for 30 min and then washed with 
PBS. Cells were scraped off after adding 200 µl IGEPAL and 150 µM phlo-
retin. Radioactivity was measured using liquid scintillation counting 
with an external standard. Protein concentrations to normalize 2-DG 
uptake were measured.

To measure glycerol release, cells were washed with PBS and incu-
bated for 3 h in phenol red-free DMEM containing 2% free fatty acid-free 
BSA (Roth). The medium was changed and cells were incubated for 
1 h without supplement for basal lipolysis or the addition of 10 µM 
isoproterenol (Sigma-Aldrich) and 0.5 mM IBMX for stimulated lipoly-
sis. The supernatant was collected for spectrophotometric glycerol 
measurement in a Sirius tube luminometer (Berthold Technologies) 
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using glycerol kinase (Sigma-Aldrich) and the ATP Kit SL (BioThema). 
Remaining cells were collected for protein quantification and west-
ern blot analysis in radioimmunoprecipitation assay buffer contain-
ing 50 mM Tris-HCl (pH 8), 150 mM NaCl, 0.2% SDS, 1% NP-40, 0.5% 
deoxycholate, 1 mM phenylmethylsulfonyl fluoride, phosphatase and 
protease inhibitors. Western blot analysis was performed using a mouse 
anti-human GAPDH IgG (Ambion) and the Lipolysis Activation Antibody 
Sampler Kit (catalogue no. 8334, Cell Signaling Technology) according 
to the manufacturer’s protocol. Secondary IRDye IgG (LI-COR) was 
used to generate the fluorescence, detected by the Odyssey scanner  
(LI-COR).

Relative gene expression RT–qPCR
Primer pairs were designed using published nucleotide sequences 
from the human genome (GenBank NCBI/UCSC) and Ensembl, prim-
er3input84, net primer (PREMIER Biosoft) and primer blast (NCBI Gen-
Bank)85. Primers against the human target genes COBLL1 (forward 
TGATCCTGACTCAGCCCTT, reverse CAACTACCTTCTTTCCATTGC) 
LEPTIN (forward TGGGAAGGAAAATGCATTGGG, reverse ATAAGGTCAG-
GATGGGGTGG) and GLUT4 (forward CTGTGCCATCCTGATGACTG, 
reverse CCAGGGCCAATCTCAAAA) and the reference genes HPRT1 
(forward TGAAAAGGACCCCACGAAG, reverse AAGCAGATGGCCA-
CAGAACTAG), PPIA (forward TGGTTCCCAGTTTTTCATC, reverse 
CGAGTTGTCCACAGTCAGC) and IPO8 (forward CGGATTATAGTCTCT-
GACCATGTG, reverse TGTGTCACCATGTTCTTCAGG) were synthesized 
by Eurofins.

Total RNA was extracted using the RNeasy Mini Kit (QIAGEN) and 
0.5 µg was reverse-transcribed using the High-Capacity cDNA Reverse 
Transcription Kit. RT–qPCR was performed using 96-well plates (black 
frame, white wells) with heat-sealing films, fixed by the 4s2 Automated 
Heat Sealer (all from 4titude). The Maxima SYBR Green Mix (Thermo 
Fisher Scientific) was used for amplification in a RT–qPCR Mastercycler 
ep realplex (Eppendorf), with a denaturation step of 95 °C for 10 min 
and 40 cycles of 95 °C for 15 s and 60 °C for 40 s, followed by a melting 
curve. Relative gene expression was calculated by the Ţҭ��

�ā method86 
with a reference gene index of HPRT, PPIA and IPO8 or the reference 
gene HPRT (weight loss study).

Mice
All mice (C57BL/6J) were originally obtained from the Charles River 
Laboratories. To genetically engineer a Cobll1 whole-body knock-
out (Cobll1−/−) model, we used CRISPR–Cas9 genome editing system. 
Male mice were weaned at 4 weeks of age and body weight was meas-
ured every week from 4 to 14 weeks of age. All mice were housed in 
a temperature-controlled room (22 °C with approximately 50–65% 
humidity) on a 12-h light–dark cycle with ad libitum access to food 
(normal diet: 14% fat, 64.8% carbohydrate and 21.2% protein, catalogue 
no. 2920X, Harlan Teklad) and under pathogen-free conditions. To 
analyse body fat mass (%), body length (cm) and BMD (g cm−2), we 
used the DEXA scan. Before scanning, animals were anaesthetized 
with ketamine. All procedures were conducted with approval from 
the Institutional Animal Care and Use Committee of the University of 
Chicago (no. ACUP-71656; IBC0934).

CRISPR–Cas9-mediated generation of a Cobll1 knockout mouse 
model. To confirm directly that ablation of Cobll1 affects T2D-related 
phenotypes in vivo, we applied the CRISPR–Cas9 system to geneti-
cally engineer a Cobll1 whole-body knockout (Cobll1−/−) model. Using 
specific sgRNAs, we targeted the Cobll1 gene in the C57BL/6 genetic 
background. We used guides with the following sequences: gRNA 
(exon 2) 5′-TTGCTCACTAGTGGGGTCGCAGG-3′ and gRNA (exon 6) 
5′-CTTCCTCCGGCCGAGACGAAGGG-3′.

Genotyping. The genotypes of Cobll1 mutant mice were determined by 
PCR amplification of gDNA extracted from tails. PCR was performed for 

30 cycles at 95 °C for 30 s, 60 °C for 15 s and 72 °C for 30 s, with a final 
extension at 72 °C for 5 min. PCR amplification was performed using the 
following primer sets: forward 5′-AAAAGTTTCCTGATGTGAAAGTCA-3′ 
and reverse 5′-AAAAACAGATGCTCCCCAGA-3′. The PCR products were 
size-separated by electrophoresis on a 4% agarose gel for 1 h.

In vivo glucose tolerance test. At 16 weeks old, mice were tested for 
glucose sensitivity by IPGTT. Before IPGTT, mice were fasted for 4 h 
and an initial blood glucose reading was taken. This fast was followed 
by intraperitoneal injection of 2 mg kg−1 dextrose (catalogue no. CAS 
50-99-7, Merck Millipore) and subsequent blood glucose checks using 
an Accu-Chek Aviva glucometer (Roche). Blood glucose readings were 
taken at 15, 30, 60 and 120 min after dextrose injection. After IPGTT, 
mice resumed a high-fat diet. An unpaired, two-sided Student’s t-test 
was used to test for significance.

Real-time qPCR. After establishment of stable Cobll1 knockout mice, 
ablation of Cobll1 expression was confirmed by RT–qPCR in relevant 
tissues, which showed significant decrease in the mRNA fold change of 
Cobll1 knockout mice compared to WT and heterozygous littermates. 
Total RNA was isolated from the inguinal white fat pad, kidney and 
liver using the RNA extraction reagent RNeasy Mini Kit (catalogue no. 
74104, QIAGEN). cDNA synthesis was performed using the SuperScript 
III First-Strand Synthesis System (catalogue no. 18080-044, Thermo 
Fisher Scientific). Real-time qPCR reactions were performed using the 
SsoAdvanced Universal SYBR Green Supermix (catalogue no. 1725270, 
Bio-Rad Laboratories). Real-time qPCR amplification was performed 
using the primer sets: qPcrF 5′-CGTCACAGAGCAACAAGACA-3′ and 
qPcrR 5′-ACTGAGCACAGAGGAACACG-3′.

Isolation, culture and differentiation of mouse preadipocytes. 
Primary adipocytes were isolated from dissected SAT of 6-week-old 
mice and digested in 1 g ml−1 type I collagenase solution (catalogue 
no. LS004174, Worthington Biochemical Corporation) solution (con-
taining 3.5% BSA v/v (catalogue no. A9418, Merck Millipore)) in a 37 °C 
water bath with shaking at 120 rpm for 45 min. The suspension was 
centrifuged at 250g for 5 min; then, the cell pellet was resuspended 
in culture medium (high-glucose DMEM, catalogue no. D5796, Merck 
Millipore), 20% FCS (catalogue no. A31605-01, Thermo Fisher Scien-
tific), 100 U ml−1 penicillin and 0.1 mg ml−1 streptomycin (catalogue 
no. 15140-122, Thermo Fisher Scientific), was filtered through a 45-µm 
strainer and was seeded in 25-cm2 flasks. Confluent preadipocytes were 
induced for 2 d with an adipogenic medium (high-glucose DMEM, 10% 
FCS, penicillin-streptomycin (10,000 U ml−1, 10,000 µg ml−1), 850 nM 
insulin (catalogue no. 12585014, Thermo Fisher Scientific), 1 nM T3 
(catalogue no. T6397, Merck Millipore), 500 µM IBMX (catalogue no. 
I5879, Merck Millipore), 1 µM dexamethasone (catalogue no. D4902, 
Merck Millipore), 125 µM indomethacin (catalogue no. 70270, Cayman 
Chemical) and 1 µM rosiglitazone (catalogue no. 71740, Cayman Chemi-
cal), and then switched to differentiation medium (adipogenic medium 
without IBMX, dexamethasone and indomethacin). Cells were collected 
on the eight day of differentiation and used for further analysis.

Oil Red O and GAPDH assay of mouse preadipocytes. Oil Red O 
staining was used to assess the presence of lipids in mature adipo-
cytes. For Oil Red O staining, cells were washed with PBS (catalogue 
no. P38135, Merck Millipore) and fixed with 4% PFA (catalogue no. 
P6148, Merck Millipore). Fixed cells were then covered with 3 mg ml−1 
Oil Red O (catalogue no. O0625, Merck Millipore) dissolved in 60% 
isopropanol (v/v) for 20 min; then the dye was washed away with H2O. 
To determine GAPDH activity, we used a commercially available kit 
from Takara Bio (catalogue no. MK426), by monitoring the dihydroxy-
acetone phosphate-dependent oxidation of NADH at 340 nm. Enzyme 
activity was calculated by the formula described in the manufacturer’s 
protocol; GAPDH activity was expressed as U mg−1 protein.
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Statistics and reproducibility
Statistical analyses were performed using a two-tailed Student’s t-test 
or ANOVA to compare the means of two or multiple groups, respec-
tively. No data were excluded from the analyses.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
The ATAC–seq data for the immortalized human adipocytes are depos-
ited in the database of Genotypes and Phenotypes under accession no. 
PRJNA539992. The high-content imaging data are available at the Cell 
Painting Gallery on the Registry of Open Data on Amazon Web Services 
(https://registry.opendata.aws/cellpainting-gallery/) under accession 
no. cpg0011. Source data are provided with this paper.

Code availability
The code used is publicly available on GitHub (https://github.com/
ClaussnitzerLab/). The GitHub LP-2q24.3-metabolic-risk-locus 
repository containing the code and files used to generate Lipo-
cyteProfiles can be accessed at https://github.com/sophiestrobel/
LP-2q24.3-metabolic-risk-locus.git.
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Extended data Fig. 1 | See next page for caption.
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Extended data Fig. 1 | The pleiotropic 2q24.3 MONW locus is associated with 
increased risk for type 2 diabetes and decreased adiposity related traits and 
maps to sparse enhancer signatures in adipocytes. (a) Schematic overview 
for the 2q24.3 metabolic risk locus dissection. Aim of step (top, bold); methods/
experiments used (middle); key finding/result of each step (bottom). (b) PheWAS 
of trait associations at the rs3923113-tagged haplotype of a meta-analysis https://
t2d.hugeamp.org/. Colors represent trait classes while individual rs3923113 
variant association p-values are shown on the Y axis. Direction of effect is 
indicated by orientation of triangles, upward: increase, downward: decrease  
(c) The 2q24.3 MONW locus spans 19 non-coding SNPs in high linkage 
disequilibrium with rs3923113 (LD r2 > 0.8). The region of association localizes  
to a >55 kb interval in an intergenic region between COBLL1 and GRB14.  
(d) Annotation panel and color key for the twenty-five state chromatin model70. 
Rows represent chromatin states abbreviations, columns are emission 
parameters, corresponding to the frequency with which each mark is expected in 
each state (left table) and genome coverage and median enrichments of relevant 
genomic annotations (right panel). TssA: Active TSS, TssAFlnk: Flanking Active 
TSS, TxFlnk: Transcription at gene 5’ and 3’, Tx: Strong Transcription, TxWk: Weak 
Transcription, EnhG: Genic enhancers: Enh: Enhancers, ZNF/Rpts: ZNF genes & 

repeats, Het: Heterochromatin, TssBiv: Bivalent/Poised TSS, BivFlnk: Flanking 
Bivalent TSS/Enhancer, EnhBiv: Bivalent Enhancer, ReprPC: Repressed  
Polycomb, ReprPCWk: Weak Repressed Polycomb, Quies: Quiescent/Low.  
(e) Stranded allele-specific chromatin accessibility measures at the haplotype 
using ATAC-seq data in differentiating adipocytes from a heterozygous 
individual. For each day of differentiation of an individual heterozygous, the 
number of reads overlapping with 20 non-coding SNPs in the haplotype, ordered 
by their start position and strand relative to the position of the variant, are shown. 
More reads indicate higher activity in haplotype 1 (non-risk, blue) compared to 
haplotype 2 (risk yellow). x-axis: offset from SNP position (bp), y-axis: stranded 
read count. (f) Replication of the effect at time 0 (mesenchymal stem cells) with 
ATAC-seq. (g) BMI-dependent variant association analysis. Bar plots represent 
the beta of the rs6712203 association with type 2 diabetes following BMI 
stratification. The cohort analysed is the UK Biobank self-identified white British 
individuals (total N = 327,960; N = 109198 with BMI < 25, N = 140539 with BMI 
between 25 and 30, and N = 78223 with BMI > = 30), and overlay of data points is 
not practical. Betas and 95% confidence intervals are shown, derived from a two-
sided generalized linear model on outcome adjusted for demographic covariates 
(age, sex, genotyping array, 40 PCs).
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Extended data Fig. 2 | See next page for caption.
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Extended data Fig. 2 | Conditional ana- lyses implicating rs6712203 in the 
genetic control of anthropometric traits and type 2 diabetes. a, Conditional 
analyses implicating rs6712203 in the genetic control of anthropometric traits 
and type 2 diabetes. Each panel represents a different trait/sex/conditional 
analysis window, and all panels have an X axis corresponding to 100 kb on 
either side of the rs6712203 variant. The Y axis shows, for each variant in the 

window, the association strength for the given trait conditioned on the variants 
noted in White British participants in UK Biobank with the sex shown, and red 
lines indicate the significance threshold 5 × 10-8). −log10 p-values are shown, 
derived from a two-sided generalized linear model on outcome adjusted for 
demographic covariates (age, sex, genotyping array, 40 PCs).
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Extended data Fig. 3 | See next page for caption.
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Extended data Fig. 3 | Chromatin inter- actions and CRISPRi of 2q24.3 locus 
identify COBLL1 as target genes. (a) Cross-cell type conserved genome-wide 
higher order chromatin interactions for the 2q24.3 locus analyzed by Hi-C 
assays in human fibroblasts (left) and NHEK primary normal human epidermal 
keratinocytes (right), chr2: 163,556,000 - 167,558,000 (hg19), binned at 2 kb 
resolution. (b) Cas9 protein expression in dCas9 hWAT compared to the parental 
hWAT cell line. (c) mRNA expression of COBLL1 and GRB14 in response to 
increasing amounts of lentiviral sgRNA vectors (2 sgRNAs, virus volume 50 µl and 
500 µl) targeting TSS regions of each gene compared to non-targeting controls 
(NT, 2 sgRNAs). Columns are means of individual sgRNAs indicated by different 
symbols. (d) COBLL1 protein expression normalized to b-actin in dCas9 hWATs 
transduced with sgRNAs targeting COBLL1 or GRB14 compared to controls. Top 
panel: Image of gel of representative sgRNA targeting NT, COBLL1 or GRB14. 

Bottom panel: plot of protein expression; 2 sgRNA for each target in 2 replicates. 
(e) Representation of 1,181 bp region flanking the COBLL1 intronic variant 
rs6712203 at the 2q24.3 MONW locus showing individual sgRNAs (n = 6) targeting 
the rs6712203 flanking regulatory region used in the CRISPRi experiments.  
(f, g) mRNA expression of (f) COBLL1 and (g) GRB14 in undifferentiated dCas9-
hWAT preadipocytes at 6 days post lentiviral transduction with sgRNAs targeting 
TSS regions (red: COBLL1 TSS; blue GRB14 TSS) and the rs6712203-flanking 
regulatory element at position 1 to 6 as depicted in (e). Data are mean +/− SEM of 3 
independent experiments. **** P < 0.0001, *** P = 0.0004, ** P = 0.006, * P = 0.013 
– 0.036, two-tailed Student’s t test. (h) Predicted binding of POU2F2 between the 
two alleles using the Intragenomic Replicate Method (Cowper-Sal lari et al. 2012). 
As in Fig. 2d with different kmer counts.
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Extended data Fig. 4 | See next page for caption.
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Extended data Fig. 4 | COBLL1 regulates actin cytoskeleton remodeling.  
(a) COBLL1 expression in subcutaneous and visceral AMSCs throughout 
adipogenic differentiation, N = 4 biologically independent experiments, 
t-test two-sided, data represent median + 95% CI. (b) COBLL1 gene expression 
enrichment across 142 tissues (A-D) from enrichment profiler36. COBLL1 probes 
203641_s_at and 203642_s_at were used for coregulation analysis (E-F).  
(c) Correlation with COBLL1 probe ILMN_1761260 using microarray data from 

lean and individuals with obesity. (d) Enrichment of pathways in the HCI (upper 
panel) and WikiPathways (lower panel) gene set lists from Enrichr, plotted as in 
Fig. 3A (KEGG), with p-value thresholds corresponding to the FDR cutoffs in those 
data. p-values are derived from a hypergeometric test. (e) COBLL1 expression in 
subcutaneous adipose tissue before and after a very low caloric diet (VLCD,  
upper panel, n = 18), corresponding body weight (lower panel), Wilcoxon signed-
rank test.
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Extended data Fig. 5 | See next page for caption.
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Extended data Fig. 5 | Knockdown of COBLL1 affects actin remodeling 
processes in differentiating adipocytes along with adipocyte differentiation, 
insulin sensitivity and lipolysis rate. (a) COBLL1 expression in siCOBLL1 
and siNT at day 0, 3 and 14 of differentiation, N = 3 biologically independent 
experiments, t-test two-sided. knock-down efficiency 80%, mean values + 
SEM. (b–d) Morphological profiles of siCOBLL compared to siNT AMSCs at day 
0 (b) day 3 (c) and day 9 (d) of differentiation, t-test two-sided, significance 
level < 5%FDR. (e)ActinandCOBLL1staininginsiCOBLL1comparedtosiNT 
subcutaneous adipocytes at day 9 using phalloidin and COBLL1 antibody staining 
(HPA053344, Alexa-Fluor 488), magnification x63/oil. Scale bar = 52.8 um. 
Representative results from N = 3 independent experiments. (f) Cells_Children_
LargeBODIPY_objects_count in siCOBLL1- and siNT AMSCs at day 3, 9, 14, N = 3 
biologically independent experiments, t-test two-sided, significance level < 
5% FDR. (G) qPCR-based gene expression of COBLL1 and adipocyte marker 
genes GLUT4, FASN, LIPE, PPARG, PLIN1, FABP4, CEBPA, ADIPOQ in siCOBLL1 
and siNT AMSCs at day 14 of differentiation, t-test two-sided, N = 4 biologically 
independent experiments, mean values +/− SEM. (h) qPCR-based leptin gene 
expression in shCOBLL1 compared to shEV adipocytes. Data are represented 
as median + 95% CI, one-way ANOVA with Tukey’s HSD test, N = 4 biologically 
independent experiments (i) Correlation of COBLL1 mRNA with LEP mRNA in 

subcutaneous adipose tissue from 24 lean individuals measured by Illumina 
microarrays. The pearson’s correlation coefficient r and p-value are depicted 
(j) Schematic of siCOBLL1 KD and AMSCs differentiation. (k) UMAP-based 
dimensionality reduction of LipocyteProfiler features in siCOBLL1 and siNT 
AMSCs. (l) Actin and COBLL1 staining in siCOBLL1 and siNT visceral adipocytes 
at day 14 using phalloidin and COBLL1 antibody staining (HPA053344, Alexa-
Fluor 488), magnification x63/oil. Representative result from N = 2 independent 
experiments, scale bar = 52,8um (m) Representative Oil-Red-O lipid staining 
in SGBS adipocytes following lentiviral COBLL1 knock-down (shCOBLL1, 
knock-down efficiency 69%) and GRB14 (shGRB14, knock-down efficiency 61%) 
compared to empty vector control (shEV), scale bar = 15 mm. (n) GPDH metabolic 
activity in shCOBLL1, shGRB14 and shEV SGBS adipocytes, one-way ANOVA with 
Tukey’s HSD test, mean + 95% CI, N = 4 biologically independent experiments (o) 
Basal and insulin-stimulated 3H-2-deoxyglucose uptake in shCOBLL1, shGRB14 
and shEV SGBS adipocytes, one-way ANOVA with Tukey’s HSD test, mean + 95% 
CI, N = 4 biologically independent experiments, 1st and 3rd quartiles (box) and 
median (middle line) are indicated, p = 4.3 × 10-8. (p) qPCR-based GLUT4 gene 
expression in shCOBLL1, shGRB14 and shEV adipocytes, one-way ANOVA with 
Tukey’s HSD test, mean + 95% CI, N = 4 biologically independent experiments.

http://www.nature.com/natmetab


Nature Metabolism

Article https://doi.org/10.1038/s42255-023-00807-w

Extended data Fig. 6 | Lipocyte profiles of risk versus non-risk haplotype 
carriers. (a–c) Differences in morphological profiles between TT (n = 7) and 
CC (n = 6) allele carriers at day 0 (a), day 3 (b) and day 8 (c) in subcutaneous 
AMSCs (multi-way ANOVA, significance level < 5% FDR). (d–f) Differences in 

morphological profiles between TT (n = 7) and CC (n = 6) allele carriers at (d) day 
0, (e) day 3 and (f) day 8 in visceral AMSCs (multi-way ANOVA, significance level 
< 5% FDR).
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Extended data Fig. 7 | Generation of COBLL1 mutant mice using CRISPR/
Cas9 editing. (a) Overview of the CRISPR/- Cas9 strategy to delete ~20 kb of the 
Cobll1 gene. The gRNA-targeting sequences (gRNAs) are underlined, and the 
PAM sequences are indicated in bold. Exons are represented as thick black boxes, 
introns are indicated as black lines with arrows, and the yellow boxes indicate the 
DNA-targeting region. Red hexagon indicates a stop codon gen- erating a Cobll1 
truncated protein. Agarose gel showing the PCR products generated from DNA 
containing success- fully targeted Cobll1 from F0 mouse tail genomic DNA. The 
308 bp band corresponds to the genomic deletion. (b) A real-time quantitative 
PCR of levels of Cobll1 mRNA in white adipose tissue (WAT), liver and kidney of 

Cobll1 WT, Cobll1 heterozygous (+/−) and null knockout Cobll1 (−/−) animals to 
confirm the Cobll1 ablation in knockout animals. Each group was analyzed using 
5 different mice and the values were expressed as the mean ± s.e.m and P values 
by Student’s t-test. the experiment was repeated independently two times with 
similar results. (c) Pie chart illustrating non-redundant differential features 
per channel and class of measurement at day 8 of subcutaneous adipocyte 
differentiation in rs6712003 homozygous risk compared to non-risk carriers.  
(d, e) Differences in morphological profiles between AMSCs from Cobll1−/− mice 
(n = 3) and WT (n = 4) at (h) day 0 (i) day 2 (t-test two-sided, significance level < 
5%FDR).
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Abstract:
Hypothesis: Most disease-associated genetic loci map to more than one disease or trait,

suggesting they may give rise to complex disease phenotypes through effects on multiple

genes, cell types, cell states, and/or cellular programs. In this context, a single genetic variant
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may unfold its effect on molecular, cellular and organismal functions in a highly

context-dependent manner, reminiscent of molecular and cellular pleiotropy. Here, we test this

paradigm by honing in on a genetic risk locus on chromosome 18 that is associated with

multiple metabolic traits reminiscent of a lipodystrophy association signature and has been

fine-mapped to the same variant, rs12454712, for each trait.

Methods: We analyze a suite of molecular and cellular data types and perform deep phenotypic

profiling of cells derived from metabolic risk and non-risk carriers using integrated

high-dimensional image-based morphological and transcriptomics profiling data to

mechanistically interrogate a genetic risk loci in an unbiased manner.

Results: We show that the risk genotype of rs12454712 modifies expression levels of at least

three effector transcripts at specific temporal stages in different metabolic cell types, and results

in distinct cellular and morphological representations that might converge to modulate disease

susceptibility. Most notably, we found that rs12454712 decreases expression of BCL2 and

KDSR, and that both rs12454712 and BCL2 knockdown lead to increased mitochondrial

fragmentation, decreased lipid accumulation, and increased apoptosis in subcutaneous

adipocytes. In visceral adipocytes we observed that rs12454712 increases expression of

VPS4B, and is associated with decreased mitochondrial activity and thermogenesis rate.

Conclusions: Together, our data reveal highly context-dependent effects of a single metabolic

risk variant rs12454712 on molecular and cellular functions in metabolic cells, highlighting the

complexities underlying disease-associated loci in humans. We showcase a framework of

unbiased dissection of mediating molecular and cellular mechanisms.

Main Text:

The overwhelming majority of trait-associated loci identified through genome-wide association

studies (GWAS) overlap with loci from multiple traits (Watanabe et al. 2019; Franzén et al.

2016). Such pleiotropy at individual genetic trait loci might arise from a single variant in a given

trait-associated haplotype affecting multiple cell types and cell states of action, multiple effector

genes, and cellular programs. In fact, genetic variants have been shown to modulate gene

expression and splicing processes dependent on cellular context and environmental factors

(Findley et al. 2021). Cell context can differ depending on environmental factors, differentiation

dynamics, and anatomical location of a given tissue. For instance, adipose tissue present in

subcutaneous areas and visceral areas in the abdominal cavity are characterized by substantial
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differences at the anatomical, molecular and cellular level, and are known to have physiological,

clinical and prognostic implications for cardiometabolic traits (Karlsson et al. 2019).

Here, we showcase a scenario in which a single non-coding genetic variant links to multiple

effector genes, and cellular programs depending on its cellular context. More specifically, we

chose the 18q21.33 locus which harbors a single variant, rs12454712, in the trait-associated

credible set that robustly associates with increased risk of type 2 diabetes (T2D), and falls into a

subtype of insulin resistance with a “lipodystrophy-like” fat distribution (low body mass index

(BMI), low adiponectin levels, and high-density lipoprotein cholesterol levels, and high

triglyceride levels) (Udler et al. 2018; Yaghootkar et al. 2014).

By combining novel experimental and statistical methods, we mechanistically dissect this locus

to identify mediating cell types and target genes, as well as developmental time-points of action

and cellular functions that could account for the associated phenotypes in humans.

rs12454712 affects three target genes in a context-dependent manner
First, we used PheWAS to jointly analyze hundreds of traits and disease states in several

biobanks, and we found rs12454712 to be associated with a number of related metabolic traits

(Figure 1a, PheWAS from AMP T2D Knowledge Portal; Figure S1a, PheWAS in UKBB (Taliun et

al. 2020)), including increased risk for T2D adjusted for BMI, increased waist-to-hip ratio

adjusted for BMI (WHRadjBMI), increased triglyceride levels, decreased BMI, decreased weight,

and decreased hip circumference (Walford et al. 2016); (Mahajan et al. 2018); (Pulit et al. 2019).

This association signature indicates that the rs12454712 T allele associates with a lean but

metabolically unhealthy phenotype compared to the C allele, which is consistent with a clinical

presentation of lipodystrophy in TT carriers. While the GWAS association with WHRadjBMI has

previously been reported to be female-specific (Shungin et al. 2015), the GWAS association

with BMI is not sex specific (Pulit et al. 2019). To identify the potential tissues of action, we next

overlapped rs12454712 with chromatin state maps across reference epigenomes from 833 cell

types and tissues (Boix et al. 2021) and found that this locus maps to an active regulatory

element (Figure 1b, Figure S1c), particularly in adipose and skeletal muscle, suggesting that

this locus mediates T2D risk through actions in these two T2D-relevant tissues (Figure 1b).

These findings are further supported by predictions from the computational ‘Tissue of Action’

model (Torres et al. 2020) scoring both skeletal muscle and adipose as the tissues that most

likely mediate T2D risk at this genetic signal.
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The variant rs12454712 maps to the first intron of the BCL2 (B-cell lymphoma 2) gene, and the

BCL2 promoter is the closest promoter to the locus. Fine-mapping of this locus showed that the

99% credible set for association with T2D consists of only this variant (Mahajan et al. 2018), and

there are no variants in linkage disequilibrium with rs12454712, suggesting that rs12454712 is

the single causal variant at the locus. Based on these fine-mapping data, we focused our

characterization of this locus on this single variant. To identify possible effector transcript(s)

mediating risk at the 18q21.33 locus, we used orthogonal genetics and epigenetics based

approaches to assess the regulatory architecture surrounding rs12454712 in skeletal muscle

and adipose tissue. More specifically, we examined (1) Hi-C in human mesenchymal stem cells

(MSCs) which give rise to adipocytes and skeletal myocytes (Dixon et al. 2015), (2) promoter

capture Hi-C in adipocytes, (3) Activity-by-contact predictions linking enhancers to genes in

adipocytes, adipose tissue and psoas muscle (Fulco et al. 2019), and (4) eQTL data in skeletal

muscle from the STARNET consortium (Franzén et al. 2016) and in adipose from in-house

differentiating subcutaneous and visceral adipocytes.

Three-dimensional chromosomal conformation HiC data in MSCs revealed that the locus has a

concise topologically associated domain (TAD) structure, encompassing three protein-coding

genes: BCL2, KDSR, and VPS4B (Figure S1b).

In skeletal muscle, activity-by-contact (ABC) (Fulco et al. 2019) target gene predictions

implicated BCL2 as the target gene of the rs12454712 locus. Indeed, we confirm an eQTL in

skeletal muscle data from the STARNET consortium, with the TT risk genotype being associated

with lower BCL2 expression compared to the CC non-risk haplotype (Figure 1c, Figure S1e).

This is in line with recent studies reporting that BCL2 is a crucial regulator of stimulus-induced

autophagy in vivo and is required for muscle glucose homeostasis (Fernández et al. 2018; He et

al. 2012).

In adipocytes, promoter Capture Hi-C showed that the regulatory region encompassing

rs12454712 forms functional connections to the BCL2 promoter and the ABC model predicts

regulation of BCL2, KDSR and VPS4B (Figure 1c; Figure S1d). We and others have previously

found that T2D and obesity risk variants can show context-specific effects during adipogenesis

(Claussnitzer et al. 2015; Sobreira et al. 2021; Sinnott-Armstrong et al. 2021). Accordingly, we

explored the potential genotype-driven gene expression differences at this locus across four
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time points during differentiation of both subcutaneous and visceral adipocytes (Figure 1d-e).

Because the rs12454712 genotype has been associated with sex-specific effects we balanced

distribution of sexes as much as possible given limited sample size (see Methods) and we

adjusted for sex for all subsequent analyses. We observed a dose-dependent effect of the

rs12454712 genotype on BCL2 and KDSR expression in undifferentiated subcutaneous AMSCs

(day 0) with significantly reduced expression associated with the TT risk genotype compared to

the CC genotype (Figure 1e). These genotype-dependent gene expression changes were

blunted following induction of adipogenic differentiation (Figure S1f, upper panel). In visceral

AMSCs, we found a dose-dependent effect where the TT risk genotype is associated with

increased VPS4B expression at day 0 (Figure 1e), but had no effect after differentiation was

induced (Figure S1f, lower panel). Thus, the effect of rs12454712 on BCL2 and KDSR in

subcutaneous and VPS4B expression in visceral AMSCs is specific to preadipocytes, which is

consistent with the absence of eQTLs in mature adipocytes. In line with these findings there are

no published eQTLs in adipose tissue from both depots in GTEx and STARNET (Consortium

and GTEx Consortium 2017; Franzén et al. 2016).

Together, these data point towards a regulatory network in which rs12454712 affects at least

three target genes (BCL2, VPS4B, KDSR) in at least three tissue types (subcutaneous

preadipocytes, visceral preadipocytes, skeletal muscle) at specific developmental windows.

rs12454712 alters apoptotic and lipid degradation processes in subcutaneous adipocytes
Given that rs12454712 is most strongly associated with body fat distribution, which has been

shown to be primarily driven by effects in adipose tissue (Shungin et al. 2015; Pulit et al. 2019),

we next set out to dissect the mechanistic consequences of rs12454712 variation in adipocytes

from both subcutaneous and visceral adipose depots.

To identify possible functional consequences of rs12454712 in adipocytes, we compared cell

morphological profiles from homozygous TT, homozygous CC, and heterozygous CT allele

carriers in primary human subcutaneous and visceral AMSCs throughout adipocyte

differentiation (Figure 2a) using LipocyteProfiler, an unbiased high-content image-based profiling

assay for metabolic cell types (Laber et al., n.d.). In brief, LipocyteProfiler generates

high-dimensional representations of morphological and cellular profiles consisting of ~3,000

features describing the structure, function, and relationship between cellular organelles as

imaged in four channels, namely AGP (actin cytoskeleton, Golgi and plasma membrane), Lipid
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(lipid droplets and cytoplasmic RNA), Mito (mitochondria) and DNA (nucleic-acid) (Laber et al.,

n.d.).

We profiled subcutaneous and visceral adipocytes at four stages of differentiation, including the

adipocyte progenitor state (Day 0), early differentiating adipocytes (Day 3), intermediate

differentiation (Day 8) and fully differentiated adipocytes (Day 14). In light of limited sample

sizes for deep phenotypic profiling of differentiating adipocytes in our experiments (TT: n=11,

females n=7, males n=4: CC: n=5, females n=4, males n=1: CT: n=9, females n=8, males n=1),

we were not able to stratify by sex. Instead we adjusted for sex in all analyses to account for

sex-specific effects as observed for the association of rs12454712 with WHRadjBMI. We found

that the morphological profiles of subcutaneous AMSCs with rs12454712 TT and CC genotypes

differed significantly at the later stages of adipocyte differentiation (day 8 and day 14) rather

than the preadipocyte cell state (Figure 2b). On day 8 of differentiation, we found 172

non-redundant features to be significantly different between the risk and the non-risk genotypes

(FDR<0.05), most of which map to mitochondria-related features (Figure 2b). We visually

confirmed a genotype-driven effect on mitochondrial features in subcutaneous adipocytes at day

8 in representative images of cells from each genotype. In detail, we observed higher

mitochondrial stain intensity (Figure 2c, left) and an overall enrichment of mitochondrial features

among upregulated features (Figure 2c, middle, Table S1) in the TT risk compared to the CC

non-risk subcutaneous adipocyte. Three of the most significant feature differences between

genotypes on day 8 were features informative for the structural appearance of mitochondria

indicating a cellular signature of increased mitochondrial fragmentation. Other top-scoring

features are mitochondrial intensity features (Figure 2c, right) indicating an increased

mitochondrial membrane potential in TT risk cells (Laber et al., n.d.).

Intriguingly, although target gene expression changes are restricted to undifferentiated

preadipocytes (BCL2 and KDSR in subcutaneous adipocyte progenitors), the described

genotype-driven cellular consequences on mitochondria manifest in maturing adipocytes. To

further assess the effect of target gene expression changes in adipocyte progenitors on the

function of mature adipocytes, we next correlated BCL2, KDSR and VPS4B gene expression

across 26 donor-derived subcutaneous preadipocyte lines at day 0 (the cell stage in which we

saw a genotype-driven effect on BCL2 and KDSR gene expression) with their morphological

profile at day 8 (the cell stage where we observed genotype-driven effects on mitochondrial

morphology and function). Features that associate with BCL2 gene expression at day 0 mostly
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map to the mitochondrial and less to the AGP channel. Features that associate with KDSR

expression levels map to mitochondria, concordant with genotype-driven effects on the

morphological profile when comparing TT with CC carriers at this time-point (Figure S2a). We

further observed that effect sizes of these BCL2 and KDSR associated mitochondrial features

correlated with rs12454712 genotype-dependent features on day 8 of differentiation (BCL2 p <

2.2×10-16, cor = 0.676; KDSR p < 2.2×10-16, cor = 0.694, pearson correlation analysis) (Figure

S2b-c). These data support the notion that BCL2 and KDSR expression in preadipocytes is

associated with the cellular genotype-dependent phenotype in maturing adipocytes, despite the

absence of rs12454712-driven BCL2 or KDSR gene expression changes at this developmental

time point.

In terminally differentiated subcutaneous AMSCs (day 14), the TT risk genotype manifested in a

cellular profile that differed in 171 features from the CC non-risk genotype. These

genotype-dependent features spread across all organelles and feature classes (Figure 2b, d).

Similar to day 8, day 14 adipocytes from TT risk genotype carriers showed a difference in

mitochondrial stain patterns (Cells_Texture_AngularSecondMoment_Mito_20_01,

Cells_Texture_Correlation_Mito_5_00, Cells_Texture_Entropy_Mito_20_01) and higher number

of small mitochondrial fragments (Cytoplasm_Granularity_4_Mito) (Figure 2d, right, Figure S3h,

Table S2), indicating that mitochondrial structure continues to be altered in adipocytes from TT

risk genotype carriers in a manner consistent with increased mitochondrial fragmentation.

Further, adipocytes from TT risk genotype carriers show more and larger lipid droplets

compared to adipocytes from non-risk genotype carriers

(Cells_Mean_LargeLipidObjects_AreaShape_Area, Cytoplasm_Granularity_4_Lipid) (Figure 2d

right, Table S2), which is also visible when comparing representative cells from both genotypes

(Figure 2d, left). Additionally, adipocytes from TT genotype carriers had smaller nuclei

(Nuclei_AreaShape_MedianRadius), fewer cell neighbors

(Cells_Neighbors_NumberOfNeighbors_Adjacent), and a more condensed cytoplasm

(Cytoplasm_AreaShape_Compactness) (Table S2). Increased mitochondrial membrane

potential and mitochondrial fission/fragmentation are early and fundamental hallmarks of

apoptosis, a process that progresses into a distinct set of physical changes involving the

cytoplasm, nucleus, and plasma membrane (Ly, Grubb, and Lawen 2003). Consistent with an

apoptotic phenotype, we observed genotype-dependent morphological changes in different

cellular organelles of adipocytes that have been previously described for apoptotic processes,

including accumulation of cytoplasmic lipid droplets composed largely of neutral lipids (Boren
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and Brindle 2012), smaller nuclei potentially due to condensed chromatin following

endonuclease fragmentation, and round-shaped cells which lose cell-cell contact and shrink

potentially due to disintegration of cell junctions (Ly, Grubb, and Lawen 2003) (Table S2).

To further resolve rs12454712-driven molecular pathways, we next integrated RNAseq data with

LipocyteProfiler image-based genotype-dependent features at day 8 of subcutaneous adipocyte

differentiation. Using a linear regression model, we identified 2,539 genes significantly

associated with the morphological and cellular profile of rs12454712 in subcutaneous

adipocytes (FDR 0.1%); these genes are significantly enriched for pathways characterizing fatty

acid catabolic process (GO:0009062) and associated with apoptosis (GO:0043065) (Table S3).

Together, both morphological profiling and gene expression results indicate rs12454712 alters

apoptotic and lipid degradation processes in primary human subcutaneous adipocytes.

BCL2 silencing mimics morphological and cellular consequences of rs12454712 in
subcutaneous adipocytes
We find that BCL2 is the target gene most strongly altered by rs12454712 in subcutaneous

adipocytes (Figure 1), which is a well-known anti-apoptotic gene (Nagel et al. 2014). To test if

decreased BCL2 induces a cellular signature that resembles the morphological profile of

rs12454712 (i.e. a state of increased apoptosis), we used siRNA-mediated perturbation of BCL2

in primary subcutaneous AMSCs from five normal-weight female individuals (~60% knockdown

efficiency; Figure 2e, Figure S3a) and assessed cell number, cell morphology, and mitochondrial

respiration. By day 14, BCL2 knockdown (KD) reduced cell numbers by ~50% (Figure S3b,

Figure 2f). Interestingly, the pro-apoptotic consequences of BCL2 loss are restricted to mature

adipocytes (days 8 and 14), as there was no difference in cell numbers in AMSCs before

induction of adipogenesis and in early differentiation (days 0 and 3) (Figure 2f). This is in line

with previous studies reporting anti-apoptotic functions of BCL2 family members are restricted to

differentiating cells, and not detected in mesenchymal stem cells (Oliver et al. 2011). When

comparing LipocyteProfiles between BCL2-KD and non-targeting control AMSCs (siNT), we

found that BCL2-KD alters cellular profiles throughout differentiation, with the strongest effect in

day 14 adipocytes where mitochondrial and lipid-related features predominate (Figure 2g,

Figure S3c, Table S4). We found that BCL2-KD increases Mito texture and intensity (Figure

S3d), which was also visible when comparing representative cells from BCL2 silenced and siNT

(Figure S3e). We also observed that smaller Mito granularity features are increased in BCL2-KD

adipocytes, while the larger granularity measurements are decreased (Figure S3f), suggesting
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more fragmented mitochondria in BCL2 knockdown adipocytes (BCL2-KD) compared to siNT.

This phenotype suggests that cells following BCL2-KD are characterized by a mitochondrial

fission process, which is supported by a negative correlation of gene expression levels of hFis,

a mitochondrial fission gene, with larger granularity measures across adipocytes from 26

individuals (Figure S3g). Inversely, gene expression of MFN2, a mitochondrial fusion gene,

correlated negatively with smaller and positively with larger granularity measures, suggesting

that the mitochondrial fragmentation phenotype observed in adipocytes from TT risk genotype

carriers and BCL2-KD adipocytes is indicative of increased mitochondrial fission (Figure S3g-h).

Using RNA-seq based transcriptome-wide gene expression measurements of BCL2 knockdown

versus siNT adipocytes showed that pro-apoptotic genes (e.g. TNFSF10, DCN, CALU, TAGLN)

were significantly upregulated in subcutaneous adipocytes at day 14, whereas genes related to

lipid metabolism (e.g. LIPE, PLIN4, FASN and APOE) were downregulated (Figure 2h, Table

S5), similar to what we had observed for the rs12454712 risk genotype.

We next investigated whether these BCL2-KD-induced morphological changes translate into

altered mitochondrial respiration in a mitochondrial stress test using the Seahorse Bioflux

Analyser. BCL2-KD increases the oxygen consumption rate (OCR) and extracellular acidification

rate (ECR) (Figure S3i), revealing a more energetic profile in BCL2-KD adipocytes compared to

siNT cells (Figure S3i). This is consistent with a recent study reporting an increase in maximal

respiration in subcutaneous adipocytes of metabollically unhealthy obese subjects compared to

metabolically healthy obese (Böhm et al. 2020), suggesting that mitochondrial impairment and a

possible increased mitochondrial permeability could be an underlying mechanism in

subcutaneous adipocytes.

Together, these results suggest that BCL2-KD induces mitochondrial fission, reduces cell

number, and increases OCR and extracellular acidification rate in subcutaneous adipocytes.

These cellular consequences are consistent with effects of the rs12454712 TT risk genotype on

mitochondrial fragmentation processes and are consistent with initiation of the apoptotic

program in primary human subcutaneous adipocytes.

rs12454712 associates with reduced mitochondrial thermogenic capacity and increased
lipid accumulation in mature visceral adipocytes
Next, we sought to investigate which cellular programs underlie the association of rs12454712

with a lipodystrophy-like phenotype in primary human visceral AMSCs. We observed an
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rs12454712 genotype-driven effect predominantly on mitochondrial-associated morphological

features at day 14 of differentiation (Figure 3a, Table S6). Specifically, we observed higher cell

number, decreased mitochondrial stain intensity (indicative of lower mitochondrial membrane

potential), and features indicating differences in mitochondrial structure in TT risk genotype

carriers (Figure 3b). To assess whether these genotype-associated cellular changes in visceral

adipocytes could be driven by VPS4B expression changes, we correlated VPS4B expression at

day 0 (where we observed genotype-mediated effect on target gene expression) with both

transcriptome-wide gene expression and LipocyteProfiler-derived features on day 14 of

differentiation. We observed that VPS4B expression in preadipocytes correlates with genes

enriched for OXPHOS pathways (Figure 3c) in differentiated adipocytes. In line with this effect

on oxidative phosphorylation processes we found an enrichment of image-based features

mapping to mitochondria among the correlated features (Figure S4a, upper panel). Indeed,

OXPHOS genes that negatively correlate with VPS4B expression were also negatively

correlated with the TT risk genotype (Figure 3d). Higher expression of VPS4B (as seen in

preadipocytes of the TT risk genotype) correlated negatively with Mito intensity and texture, and

positively with lipid texture features and a feature describing overlap between mitochondrial and

lipid stain (Cells_Mean_LargeLipidObjects_Correlation_K_Lipid_Mito; Figure S4a, bottom

panel), suggesting a profile of reduced mitochondrial membrane potential and higher

colocalization of mitochondria and lipid droplets. This cellular profile may indicate altered

thermogenesis, as mitochondria are anchored to lipid droplets during ATP production and lipid

droplet expansion, but dissociate from lipid droplets during browning-induced fatty acid oxidation

(Benador et al. 2018).

To assess whether visceral AMSCs from rs12454712 TT risk genotype carriers resemble the

morphological profiles that we would expect in a state of reduced thermogenic capacity, we

used two thermogenic stimulatory agents, i.e. isoproterenol and free fatty acids (FFA). We first

compared rs12454712-associate image-based signatures with that of isoproterenol-treated

visceral AMSCs at day 14 (see (Laber et al., n.d.). Isoproterenol is an adrenergic receptor

agonist known to induce adipocyte browning and increase thermogenic capacity (Miller et al.

2015)). We found 313 features that are significantly different following isoproterenol treatment

and 159 features that differ between the rs12454712 genotypes (FDR<5%) (Figure 3e). We

found that the LipocyteProfile associated with the protective C allele resembled the response to

isoproterenol, particularly pointing to features informative for lipid and mitochondria (Figure 3e).

As an orthogonal approach, we differentiated visceral AMSCs with FFA (oleic and linoleic acid;
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see methods), which are known stimulators of thermogenesis (Barquissau et al. 2016). We

characterized rs12454712-driven morphological consequences at three time points of

differentiation (day 3, 8, 14) and confirmed a predominately mitochondrial and lipid-related

morphological profile which is similar to the response to isoproterenol (Figure S4b-c). To further

support that the rs12454712 risk genotype affects thermogenesis rate in visceral AMSC derived

adipocytes following FFA treatment, we compared the percentage of predicted

thermogenesis-active adipocytes between genotypes using the BATLAS webtool (Perdikari et

al. 2018) on RNA-Seq transcripts of cell cultures. We confirmed that FFA treatment increases

the percentage of thermogenically active adipocytes by 36% across all individuals (Figure 3f,

right). Intriguingly, TT risk homozygotes show a lower percentage of thermogenically active

adipocytes compared to CC homozygotes following FFA treatment, despite similar basal levels

(Figure 3f, left), suggesting that visceral AMSCs from TT risk homozygotes have a blunted

response to thermogenic stimuli.

Together, these data support a model in which elevated VSP4B expression in TT risk genotype

carriers causes reduced mitochondrial thermogenic capacity and increased lipid accumulation in

mature visceral adipocytes. We note that we did not observe a similar association with

mitochondrial processes for the other potential target genes, BCL2 and KDSR, in visceral

adipocytes, furthering the evidence that VPS4B and not BCL2 or KDSR is the effector gene in

visceral adipocytes. Our work establishes an adipose depot-dependent effect, in which the T

risk allele associates with distinct target genes and cellular signatures in adipocytes from

subcutaneous and visceral adipose tissue.

Polygenic risk of adverse body fat distribution converges on mitochondrial impairment in
subcutaneous adipocytes
Finally, we sought to decipher whether the mechanisms identified for rs12454712 would align

with global cellular drivers of polygenic risk for increased WHRadjBMI. We compared

morphological and cellular profiles of high and low polygenic risk female individuals for

WHRadjBMI (Figure 4a) ((Laber et al., n.d.), see Methods for details) and observed 113

significant differences between subcutaneous adipocytes of low and high polygenic risk groups

(Figure 4b). This effect was specific for subcutaneous adipocytes as we did not observe an

effect on morphological or cellular programs in visceral adipocytes when ascertaining the effects

of polygenic risk scores for WHRadjBMI on image-based feature representations.

Subcutaneous adipocytes from high polygenic risk carriers are characterized by higher
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mitochondrial intensity and mitochondrial granularity features and higher count of large

lipid-related objects (Figure 4c-d). To identify possible mediating molecular pathways for the

morphological and cellular changes, we used a linear regression model of LipocyteProfiler

features and transcriptome-wide gene expression data from matched AMSCs at day 14 of

differentiation and identified 7,146 genes that correlated with WHRadjBMI-mediated features.

More specifically, the identified WHRadjBMI morphological profile was enriched for genes

involved in deficiency of tricarboxylic acid cycle (TCA) pathway (WP2453; WP78), fatty acid

oxidation (WP143, WP368), and apoptosis modulation and signaling (WP1772) (Figure 4E)

(Table S7), similar to what we observed for the rs12454712 genotype in subcutaneous AMSCs

(see Figure 2). Our data suggest that polygenic risk of adverse body fat distribution at least in

part involves apoptotic pathways characterized by mitochondrial impairment in subcutaneous

adipocytes.

Discussion
In our work we decipher distinct granular mechanisms underlying the single metabolic risk

variant, rs12454712, which associates with a trait signature reminiscent of polygenic

lipodystrophy. We show that the rs12454712 T risk allele affects (1) BCL2 gene expression in

skeletal muscle, (2) BCL2 and KDSR gene expression in primary human subcutaneous

adipocyte progenitors, and (3) VPS4B gene expression in primary human visceral adipocyte

progenitors in a cell-autonomous manner. We further associated variant effects to depot-specific

cellular programs, namely mitochondrial fragmentation and increased apoptosis rate in

subcutaneous adipocytes, and decreased thermogenesis rate in visceral adipocytes (Figure 4f).

Consistent with our results, rs12454712 has recently been implicated in affecting BCL2

expression in Simpson-Golabi-Behmel syndrome adipose cells, and BCL2 has been implicated

by the same group in apoptosis rate in murine 3T3-L1 adipocytes (Dong et al., n.d.).

In light of the fact that the 18q21.33 locus harbors only a single variant in the fine-mapped

credible set, our work highlights the complexities in dissecting disease-associated loci in

humans, which typically harbor dozens of tightly linked genetic variants. This complexity is

further observed in analyses of adipose depots in humans. When we investigated sex-specific

associations of rs12454712 with MRI-quantified visceral (VAT), abdominal subcutaneous

(ASAT), and gluteofemoral (GFAT) adipose tissue volumes adjusted for BMI and height in

37,641 UK Biobank participants (Agrawal, Klarqvist, et al., n.d.) 2021; (Agrawal, Wang, et al.,
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n.d.) rs12454712 is associated with a nominal reduction in GFATadjBMI volume in females (beta

female = -0.032, P = 0.002; beta male = -0.018, P = 0.09); a nominal increase in ASATadjBMI

volume (beta male = 0.015, P = 0.15; beta female = 0.024, P = 0.02), and has no effect on

VATadjBMI volume. These data indicate that–similar to depot-specific cellular effects observed

in our study–rs12454712 has depot-specific effects on complex adipose volume traits. As we

were not able to test cellular effects in gluteofemoral AMSCs, future phenotypic profiling

experiments in AMSCs derived from the gluteofemoral region will further our understanding of

rs12454712 depot-specific effects on adipocyte metabolism and how these translate to complex

physiological phenotypes.

Here, we showcase a framework based on integration of high-content image based profiling

coupled with transcriptomics in a relatively small set of primary human AMSCs that enables

systematic and unbiased mechanistic interrogation of genetic risk loci. Specifically, our

framework allowed us to i) unravel the spatio-temporal complexities of a risk locus that

modulated target gene expression at a specific developmental window and manifested in

cellular phenotypes at another, and to ii) identify cellular mechanism by comparing

genotype-driven morphological profiles with signatures of cellular traits (e.g. ROS, apoptosis

and thermogenesis).

Due to their apoptotic properties, BCL2 inhibitors are currently used in the clinic for chronic

lymphocytic leukemia and small lymphocytic lymphoma. Importantly, pharmacological inhibition

of BCL2 using venetoclax has been reported to cause hyperglycemia in 16% of patients and

severe hyperglycemia in 5% in a 1 year follow up clinical trial (Roberts et al. 2016), as well as

loss of body weight (de Vos et al. 2018; Konopleva et al. 2014; Leung, Thomé, and Dispenzieri

2018), indicating that BCL2 inhibition can lead to systemic metabolic adverse effects including

reduced insulin sensitivity, even during weight loss.

Our study has several limitations. While this study focused on molecular and cellular effects of

the rs12454712 target gene BCL2, future studies need to validate the role of VPS4B and KDSR

on cellular functions using directed perturbations. Further, it will be necessary to address the

role of rs124554712 in other tissues, especially in skeletal muscle, which will likely be driving at

least part of the insulin resistance association at this locus. We exploited genotype-driven

morphological profiles in primary cells from a relatively small cohort of 26 donors and our study

was potentially underpowered to detect effects of polygenic risk for WHRadjBMI in visceral cells.
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The rs12454712 association with WHRadjBMI has been shown to be sex-specific, while the

association with BMI and T2D does not appear to be sex-specific (Shungin et al. 2015; Pulit et

al. 2019) Due to the small sample size we were not able to stratify the data by sex and chose to

adjust for sex instead. Future studies comparing effects in females and males will be imprtant to

evaluate sex specificity of the effects we observed. Together, future population-scale profiling of

primary human cells, enabled by larger and standardized biobanks of human primary cells, will

be critical and transformative to further validate the findings and dissect the mechanisms

presented in this study.

Figure Legends

Fig.1 rs12454712 is associated with a lipodystrophy-like phenotype and is predicted to
regulate target genes in adipose tissue.

a. Phenome-wide association study (PheWAS) (Taliun et al. 2020) for rs12454712 shows

associations with a number of metabolic traits, including insulin sensitivity, BMI,

BMI-adjusted T2D, T2D, BMI-adjusted waist-to-hip ratio (WHRadjBMI) and WHR. See

also Figure S1a

b. The 18q21.33 locus contains no other variants in high linkage disequilibrium with the

lead variant rs12454712 and overlaps active regulatory marks in adipose tissue and

skeletal muscle. Image visualized using the T2D knowledge portal. See also Figure S1c

c. Promoter Capture Hi-C and ABC. See also Figure S1b+d

d. Schematic description of RNA-seq profiling in patient-derived subcutaneous and visceral

adipose-derived mesenchymal stem cells (AMSCs) throughout adipogenesis (day 0, 3,

8, and 14).

e. Gene expression of target genes BCL2, KDSR and VPS4P in visceral and subcutaneous

pre-adipocytes at day 0 of differentiation (subcutaneous: n=3 CC non-risk, n=10 CT

heterozygotes; n=11 TT risk; visceral: n=4 CC non-risk, n=9 CT heterozygotes; n=14 TT risk).

See also Figure S1e

Fig.2 Genotype-specific effect of rs12454712 on ROS and apoptosis in subcutaneous
adipocytes

a. LipocyteProfiler (LipocytePainting staining of cells and LipocyteProfiling feature

extraction) was performed in subcutaneous and visceral AMSCs of eleven risk and five

14



non-risk genotype carriers for rs12454712 at four time points during adipocyte

differentiation (day 0, 3, 8, and 14).

b. LipocyteProfiler reveals rs12454712-mediated effect on morphological phenotype

manifest at later stages of differentiation (day 8 and day 14).

c. Representative images of subcutaneous AMSCs from TT risk (top) and CC non-risk

(bottom) genotypeat day 8 of differentiation stained using LipocytePainting. Scale bar =

10um. At day 8 of differentiation, 172 non-redundant significant features (< 5%FDR)

differ between the genotypes, mostly mapping to mitochondria-related features.

Representative significant features different between genotypes are

Cytoplasm_Texture_InfoMeas2_Mito_5_01, Cells_Intensity_MaxIntensity_Mito,

Cytoplasm_Texture_Entropy_Mito_20_00. See also Table S1 + S8. Y-axis shows LP

units (normalised LP values across eight batches, see methods).
d. Representative images of subcutaneous AMSCs from TT risk (top) and CC non-risk

(bottom) genotypes at day 14 of differentiation stained using LipocyteProfiler. Scale bar

= 10um. At day 14 of differentiation, 174 non-redundant significant features (< 5%FDR)

differ between the genotypes. Representative significant features different between

genotypes are Cells_Texture_Correlation_Mito_5_02, Cytoplasm_Granularity_4_Mito,

Cells_Mean_LargeLipidObjects_AreaShape_MedianRadius. See also Table S2 + S8

Y-axis shows LP units (normalised LP values across eight batches, see methods)

e. BCL2 was silenced in subcutaneous AMSCs using siRNA from five normal-weight

female individuals for assessment of cell number, cell morphology throughout

differentiation using LipocyteProfiler and mitochondrial respiration using the Seahorse

Bioflux Analyser at day14 of differentiation. AMSCs were treated with siBCL2 for 3 days

before induction, at which point knockdown efficiency was ~60% and maintained until

terminal differentiation (measured in n=3). See also Figure S3.

f. BCL2-KD reduced cell numbers measured by Cells_Number_Object_Number in

subcutaneous AMSCs at day 8 and day 14 of differentiation (n=5). See also Figure S3b

g. LipocyteProfiles of BCL2-KD and non-targeting control AMSCs (n=5) show differences

with highest effect size in mitochondrial and lipid-related features at day 14 of adipocyte

differentiation. See also Figure S3c for other time-points and individual features. See

also Table S4.

h. BCL2-KD mediated gene expression changes show upregulation of pro-apoptotic genes

and down-regulation of genes involved in lipid metabolism.
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Fig. 3 Genotype-dependent effect of rs12454712 on thermogenesis and lipid
accumulation in visceral adipocytes

a. LipocyteProfiler in visceral AMSCs of eleven risk and five non-risk genotype carriers for

rs12454712 at four time points during adipocyte differentiation (day 0, 3, 8 and 14)

revealed a genotype-driven change of mitochondrial features specifically on day 14. See

also Figure 4b with free fatty acid treatment

b. Genotype-dependent differential features are

Cells_Texture_InverseDifference_Moment_Mito_10_02,

Cells_Intensity_Mean_Intensity_Mito, and Cells_Neighbors_NumberOfNeighbors_10 at

day 14 of differentiation. See also Table S6 + S8. Y-axis shows LP units (normalised LP

values across eight batches, see methods). Representative images of visceral AMSCs

from TT risk (right) and CC non-risk (left) genotype at day 14 of differentiation stained

using LipocytePainting. Scale bar = 10um.

c. VSPB4 expression in preadipocytes is linked to gene expression changes enriched in

OXPHOS pathways.

d. Identified OXPHOS genes associated with VPS4B expression at day 0 showed the same

direction of effect between genotypes at day 14 of differentiation.

e. Significant features of morphological profile of isoproterenol treatment and/or between

the rs12454712 risk and non-risk genotype (<FDR 5%) mapped predominantly to the

lipid and mitochondria channels and overlapped in their direction of effect. See Figure

S4c with FFA treatment

f. BATLAS-based estimates of thermogenesis-active adipocytes from RNA-seq data in

differentiated visceral adipocytes in response to FFA (Perdikari et al. 2018). FFA

treatment increased the percentage of thermogenic active visceral adipocytes. TT risk

genotype carriers were characterized by a lower percentage of thermogenesis active

adipocytes compared to CC genotype carriers following FFA treatment, despite similar

basal levels.

Fig. 4 Polygenic risk for WHRadjBMI manifests in an apoptotic cellular profile in
subcutaneous adipocytes

a. Schematic of distribution of polygenic risk for WHRadjBMI. Low risk (cyan) refers to the

bottom 25%, high risk (orange) refers to the top 25%, percent within the assessed

cohort.
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b. Lipocyte profile of WHRadjBMI in subcutaneous AMSCs at day 14 mapped to

predominantly lipid- and mitochondrial-related features.

c. Genotype-dependent differential representative features are

Cells_Intensity_Mean_Intensity_Mito, Cytoplasm_Granularity_3_Mito, and

Cells_LargeLipidobjects_Count. Y-axis shows LP units (normalised LP values across

eight batches, see methods)

d. Representative images of subcutaneous AMSCs at day 14 from low (left) and high (right)

polygenic risk female carriers for WHRadjBMI stained using LipocytePainting. Scale bar

= 10um.

e. Pathway enrichment analysis of genes connected to morphological profile of

WHRadjBMI reveal enrichment of lipid degradation and apoptotic processes.

f. Schematic summarizing effect of rs12454712 and high polygenic risk for WHRadjBMI on

mitochondrial function, lipid metabolism and cell number in subcutaneous AMSCs, and

thermogenesis capacity in visceral AMSCs, resulting in a lipodystrophy-like phenotype.

See also Table S9.

Supplementary Figure Legends

Fig. S1 Regulatory landscape around rs12454712.
a. Phenome-wide association study (PheWAS) using UKBB data visualised in the browser

http://big.stats.ox.ac.uk/ (Elliott et al. 2018) for rs12454712 shows associations with a

number of obesity- and fat-related (e.g. Hip circumference) as well as muscle-related

(e.g. Basal metabolic rate) traits.

b. Hi-C in MSCs (Dixon et al. 2015) visualised using the 3D Genome browser (Wang et al.

2018)

c. rs12454712 lies within an active regulatory element assessed by overlapping the locus

with chromatin state maps across 833 reference epigenomes (Boix et al. 2021).

d. Activity-by-contact (ABC) target gene prediction (Fulco et al. 2019) in adipocyte nuclei

(ENCODE Project Consortium 2004; Zhou et al. 2015) and adipocytes differentiated

from adipose-derived mesenchymal stem cells (Schmidt et al. 2015).

e. eQTL starnet browser. (mssm.STARNET.edu)

f. Rs12454712 genotype-dependent expression of target genes BCL2, KDSR and VPS4B

at day 3, 8, and 14 in subcutaneous (top panel) and subcutaneous (bottom panel)

AMSCs.
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Fig. S2 rs12454712 affects target gene expression in preadipocytes manifesting on
morphology in differentiated adipocytes

a. Gene expression of BCL2 and KDSR at day 0 are associated with morphological

consequences at day 8 of differentiation of predominantly mitochondrial features in

subcutaneous AMSCs. VPS4B expression at day 0 shows no morphological

consequences at day 8 of differentiation in subcutaneous adipocytes. Barplots show

percentages of significantly affected features (FDR <5%) from all features of each

channel separately.

b. Correlation between effect sizes of mitochondrial features calculated based on gene

expression of BCL2, KDSR, and VPS4B at day 0 and genotype-driven effect at day 8

demonstrate mitochondrial profiles at day 8 of BCL2 and KDSR gene expression at day

0 and rs12454712-driven effect overlap in terms of effect size and significance. Red =

feature is significantly affected by gene expression at day 0 and rs12454712; blue =

feature is significantly affected by either gene expression at day 0 or rs12454712; grey =

feature is significantly affected by neither gene expression at day 0 nor rs12454712 .

c. Correlations of effect size of lipid, AGP (actin, golgi, plasma membrane), and DNA

features calculated based on gene expression of BCL2, KDSR, and VPS4B at day 0 and

haplotype-driven effect at day 8.

Fig. S3 BCL2-KD affects mitochondrial structure and function
a. BCL2-KD efficiencies at day 0 and day 14 of differentiation as evaluated by qPCR-based

BCL2 mRNA levels, n=3.

b. Cell numbers as assessed using Hoechst staining intensity in BCL2-KD and control

subcutaneous AMSCs of three individuals at day 14 shows reduced cell numbers after

BCL2 knockdown, n=3.

c. LipocyteProfiles of BCL2-KD and non-targeting control AMSCs at day 0, 3, 8 of

differentiation, n=5. See also Figure S2h for day 14.

d. BCL2-KD increases mitochondrial texture (Cytoplams_Texture_InfoMeas2_Mito_5_01;

Cytoplasm_Texture_Entropy_Mito_20_00) and intensity

(Cells_Intensity_MaxIntensity_Mito), resembling the TT risk genotype.

e. Representative images of BCL2-KD (right) and control (left) at day 14 of differentiation.

f. Mitochondrial granularity features (1-16 dot size) were increased in BCL2-KD adipocytes

specifically for the smaller measurements (Cytoplams_Granularity_Mito_2), and
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decreased for the larger measurements, indicating more fragmented mitochondria in

BCL2-KD adipocytes compared to siNT-treated cells.

g. Gene expression of hFIS1, a mitochondrial fission gene, correlated negatively larger

granularity measures across adipocytes derived from 26 individuals. Gene expression of

MFN2, a mitochondrial fusion gene, correlated negatively for smaller and positively with

larger granularity measures.

h. Adipocytes from TT risk genotype carriers showed increased mitochondrial fission

compared to CC non-risk genotype carriers.

i. Mitochondrial stress test using the Seahorse Bioflux Analyser in BCL2-KD and control

AMSCs (n=3) at day 14 of differentiation shows increased maximal OCR (top) in

BCL2-KO AMSCs. A combined measure of OCR and ECR (a measure of extracellular

acidification), revealed that BCL2-KD resulted in a more energetic profile compared to

control.

Fig. S4 rs12454712-driven consequences on visceral AMSCs under free fatty acid
treatment

a. Gene expression of VPS4B at day 0 shows morphological consequences at day 14 of

differentiation of predominantly mitochondrial and lipid features in visceral AMSCs

treated with free fatty acid during adipogenesis. Barplots show percentages of

significantly affected features (FDR <5%) from all features of each channel separately.

Heatmap shows t-statistics of significantly affected features at day 14 from VPS4B

expression at day 0.

b. LipocyteProfiler in visceral AMSCs of eleven risk and five non-risk genotype carriers for

rs12454712 at three time points during adipocyte differentiation (day 3, 8 and 14) under

free fatty acid treatment revealed a genotype-driven effect specifically on day 14 on lipid

and mitochondrial features. Cells_Median_Intensity_Lipid, Cells_Mean_Intensity_Mito

are reduced in TT genotype carriers. See also Figure 3a without free fatty acid treatment

c. Schematic of LipocyteProfiling on visceral AMSCs differentiated under FFA treatment

comparing morphological profiles haploytes and isoproterenol stimulation at day 14.

Significantly affected features (5%FDR) of both comparisons are predominantly lipid and

mitochondrial features and show the same direction of effect.

Supplementary Tables
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Methods

Human primary AMSCs isolation, Munich Obesity BioBank/MOBB
We obtained AMSCs from subcutaneous and visceral adipose tissue from patients undergoing a

range of abdominal laparoscopic surgeries (sleeve gastrectomy, fundoplication or

appendectomy). The visceral adipose tissue is derived from the proximity of the angle of His

and subcutaneous adipose tissue obtained from beneath the skin at the site of surgical incision

(anterior abdominal region). Additionally, human liposuction material was obtained. Each

participant gave written informed consent before inclusion and the study protocol was approved

by the ethics committee of the Technical University of Munich (Study № 5716/13). Isolation of

AMSCs was performed as previously described (Skurk and Hauner 2012). Briefly, Krebs-ringer

phosphate buffer (KRP) containing 4 % bovine serum albumin (BSA) and 200 u/ml collagenase

were added to adipose tissue material and incubated for one hour at 37 °C under strong

agitation in a water bath. After digestion, the supernatant containing mostly lipids from ruptured

mature adipocytes was discarded, while the remaining volume was filtered through a nylon

mesh with 2 mm pore size. The stromal vascular fraction was pelleted by centrifugation at 200 g

for 10 minutes. The supernatant was removed and the pellet was resuspended in an ammonium

chloride-containing buffer for the lysis of erythrocytes. The suspension then was filtered through

250 µm and 150 µm nylon meshes followed by centrifugation at 200 g for 10 minutes. The

supernatant was discarded and the pellet was resuspended in an isolation medium.

Subsequently, cells were seeded into T75 cell culture flasks. On the next day, cells were

washed three times with phosphate-buffered saline (PBS) and the medium was changed to

proliferation medium (PM), which was shown to enrich the stromal vascular fraction for

adipose-derived mesenchymal stem cells. Following, the medium was changed every three

days, and cells underwent proliferation until confluency and cryopreserved afterwards. For a

subset of donors, purity of AMCSs was assessed as previously described (Raajendiran et al.

2019). Briefly, cells were stained with 0.05ug CD34, 0.125ug CD29, 0.375ug CD31, 0.125ug

CD45 per 250K cells and analyzed on CytoFlex together with negative control samples of

corresponding AMSCs.

Differentiation of human AMSCs
For imaging, cells were seeded at 10K cells/well in 96-well plates (Cell Carrier, Perkin Elmer

#6005550) and induced 4 days after seeding. For RNAseq, cells were seeded at 40K cells/well
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in 12-well dishes (Corning) (subcutaneous CC female n=3, male n=0; CT female n=9, male n=1;

TT female n=9, male n=2; visceral CC female n=3, male n=1; CT female n=8, male n=1; TT

female n=10, male n=4). Before Induction cells were cultured in proliferation medium (Basic

medium consisting of DMEM-F12 1% Penicillin - Streptomycin, 33µM Biotin and 17µM

Pantothenate supplemented with 0.13µM Insulin, 0.01ug/ml EGF, 0.001ug/ml FGF, 2.5%FCS).

Adipogenic differentiation was induced by changing culture medium to induction medium. (Basic

medium supplemented with 0.861μM Insulin, 1nM T3, 0.1μM Cortisol, 0.01mg/ml Transferrin,

1μM Rosiglitazone, 25nM Dexamethasone, 2.5nM IBMX). On day 3 of adipogenic differentiation

culture medium was changed to differentiation medium (Basic medium supplemented with

0.861μM Insulin, 1nM T3, 0.1μM Cortisol, 0.01mg/ml Transferrin). Medium was changed every 3

days. Visceral-derived AMSCs were differentiated by further adding 2% FBS as well as 0.1mM

oleic and linoleic acid to the induction and differentiation media. For isoproterenol stimulation

experiments, 1uM isoproterenol was added to the differentiation media and cells treated

overnight.

Genotyping and quality control
Genotyping of all samples was performed in two separate batches using the Infinium HTS assay

on Global Screening Array bead-chips. Since the two sets of samples were genotyped with

different versions of the beadchips and in different batches, we QCed, imputed, and generated

the genome-wide polygenic scores separately and combined the results afterwards.

A 3-step quality control protocol was applied using PLINK(Purcell et al. 2007; Chang et al.

2015), and included 2 stages of SNP removal and an intermediate stage of sample exclusion.

The exclusion criteria for genetic markers consisted of: proportion of missingness ≥ 0.05, HWE

p ≤ 1 x 10-20 for all the cohort, and MAF < 0.001. This protocol for genetic markers was

performed twice, before and after sample exclusion. For the individuals, we considered the

following exclusion criteria: gender discordance, subject relatedness (pairs with PI-HAT ≥ 0.125

from which we removed the individual with the highest proportion of missingness), sample call

rates ≥ 0.02 and population structure showing more than 4 standard deviations within the

distribution of the study population according to the first seven principal components. After QC,

35 subjects remained for the analysis for which we had matched LipocyteProfiler imaging data.

BCL2 silencing using siRNA
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All silencing experiments were performed on 4 technical replicates. One day before silencing,

AMSCs were plated into 96-well plates with 10K cells/well using growth medium. RNA-based

silencing of BCL2 was performed using RNAiMAX Reagent (ThermoFisher #13778075) and

following the manufacturer’s protocol. Briefly, Lipofectamine® RNAiMAX Reagent was diluted in

Opti-MEM medium (Gibco, Cat# 11058021). At the same time, siRNA was diluted in Opti-MEM

medium. Then, diluted siRNA was added to the diluted Lipofectamine® RNAiMAX reagent at a

ratio 1:1 and incubated for 5min. The concentration of reagents per well in a 96-well plate were

0.5μl (10μM) of silencing oligo (Ambion Cat# 4392421, ID s1915) or negative control duplex

(Ambion Cat#4390844), and 1.5μl of lipofectamine RNAiMAX Reagent. The plate was gently

swirled and placed in a 37°C incubator at 5% CO2 for three days. Cells were then induced to

differentiate following the standard differentiation cocktail or harvested for gene expression

analysis to assess knockdown efficiency.

RNA preparation and qPCR
Total RNA was extracted with Trizol (Ambion 15596026) and the Direct-zol RNA MiniPrep Kit

(Zymo R2052) following the manufacturer's instructions. cDNA was synthesized with

High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems 4368814) following the

manufacturer's instructions. qPCR was performed using Thermo Scientific PCR Master Mix

(Thermo Scientific K0172) and taqman probes for target gene BCL2 (Thermo Scientific,

Cat#4448892, ID Hs04986394_s1) and housekeeping gene CANX (Thermo Scientific,

Cat#4448892, ID Hs01558409_m1). Relative gene expression was calculated by the delta delta

Ct method. Target gene expression was normalized to expression levels of CANX.

Lipocyte Painting and Lipocyte Profiling in human AMSCs
Human primary AMSCs were plated and differentiated in 96-well CellCarrier plates (Perkinelmer

#6005550) for 14 days for high content imaging at day 0, day 3, day 8 and day 14 of adipogenic

differentiation. On the respective day of the assay cells were stained following the

LipocytePainting protocol described in (Laber et al., n.d.).

Image processing, quantification, quality control steps, and normalization of LipocyteProfiler

features were performed as previously described in (Laber et al., n.d.).

Subsequent data analyses were performed in R3.6.1using base packages unless noted.

To test whether there is a difference of morphological profiles between the risk versus non-risk

genotype a multi-way analysis of variance (ANOVA) was performed adjusted for sex, age, BMI
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and batch in visceral and subcutaneous AMSCs at four timepoints of differentiation (github). For

BCL2 knockdown analysis we performed a multi-way analysis of variance (ANOVA) comparing

BCL2 silenced cells versus controls (github). To overcome multiple testing burden p-values were

corrected using false positive rate (FDR) described in R package “qvalue”(Qvalue n.d.).

Features with FDR < 5% were classified to be significantly impacted by the PRS variable

(github). To visualize LipocyteProfiles and their effect size ComplexHeatmap Bioconductor

package version 2.7.7(Gu, Eils, and Schlesner 2016) was used (github)

RNA-seq
RNA-seq data were processed using FastQC (Krueger and Others 2015) and spliced reads

were aligned to human genome assembly (hg19) using STAR (Dobin et al. 2013) followed by

counting gene levels using Rsubread R package (Liao, Smyth, and Shi 2019). Next, raw read

counts were normalized using DESseq2 R package (Love, Huber, and Anders 2014). For

genome-wide differential expression analysis of BCL2 silenced versus control subcutaneous

adipocytes at day 14 of differentiation DESseq2 R package (Love, Huber, and Anders 2014)

was used. Genes with an adjusted p-value less/equal than 10e-6 and a fold change of log2 FC

> |0.75| were considered as significant (github).

Selecting representative cell images
For each group of interest, cells were pooled and divided into 100 clusters via K-Means

clustering (scikit-learn). Individual cells were then sampled from the cluster closest to a

theoretical point representing the mean of all object measurements, as determined by a

euclidean distance matrix.

Gene expression and LipocyteProfiler feature network
A linear regression model was fitted of 2,760 LP-features and global transcriptome RNA-seq

data adjusted for sex, age, BMI and batch in subcutaneous AMSCs at day 14 of differentiation.

Gene LP features associations were declared to be significant when passing FDR cut-off of

0.1% FDR. LP features belonging to Cells category were used for further analysis. Associations

between genes and LP features were visualised using “igraph” R package (Csardi, Nepusz, and

Others 2006). Genes that were connected to the morphological and cellular profile between the

genotypeat day8 were uploaded to Enrichr to analyse them as a gene list against Gene

ontology (GO) pathways (github). Genes that were connected to the morphological and cellular
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profile of polygenic risk of WHRadjBMI (generated in (Laber et al., n.d.) were uploaded to

Enrichr to analyze against Wiki pathways (github)

Seahorse
The protocol for a standard bioenergetics profile is composed of basal mitochondrial respiration,

ATP turnover, proton leak and mitochondrial respiratory capacity. First, oxygen consumption rate

(OCR) in basal conditions was determined and used to calculate the basal mitochondrial

respiration. After this, 2 μM oligomycin was injected from the first port to inhibit ATP synthase,

resulting in an accumulation of protons in the mitochondrial intermembrane space and a

reduced activity of the electron transport chain. The resulting decrease in OCR reveals the

respiration driving ATP synthesis in the cells, indicating ATP turnover. Residual oxygen

consumption capacity can be attributed to the proton leak maintaining a minimal ETC and

non-mitochondrial respiration. Next, 2 μM of the mitochondrial uncoupler FCCP was injected

which results in an increase in OCR as the proton gradient across the inner mitochondrial

membrane is dissipated and ETC resumed. This measurement reflects the maximal

mitochondrial respiratory capacity. Finally, 2 μM Rotenone / Antimycin A are injected to

completely stop ETC activity and the OCR reading at this phase reflects non-mitochondrial

respiration. We normalized all data to the relative number of live cells in each well of the 96-well

Seahorse plate.

Oxygen Consumption and Bioenergetics Profile was measured using the XF24 extracellular flux

analyzer from Seahorse Bioscience. The protocol used in this assay was adapted from Gesta et

al., 2011. For this assay, preadipocytes were counted and 10K cells per well were seeded onto

seahorse 96 well plate in 50μl of growth media and left to adhere overnight. The next day,

silencing was performed as seen in the previous section. Three days later, cells were induced to

differentiate within the seahorse plate following the adipogenic differentiation protocol as

described previously. Each cell type was run in 8 replicates. When the cells were terminally

differentiated at day 14 post adipogenic induction, the assay was performed. The evening

before the assay, the seahorse XF-24 instrument cartridge was loaded with seahorse calibrant

and placed in a CO2-free incubator at 37°C overnight.

On the day of the assay, cells were washed in XF Assay Media, L-glutamine 2mM, sodium

pyruvate 2mM, and glucose 10mM (pH was measured and adjusted to pH7.4 at 37°C). The

seahorse plate containing the differentiated adipocytes was then incubated for at least 1 hour at
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37°C in a CO2-free incubator to allow CO2 to diffuse out of solution. According to the

manufacturer's protocol, the ports of the seahorse XF-24 analyser cartridge were then loaded

with the following compounds:

Port A: Oligomycin (complex 1 inhibitor)

Port B: FCCP (carbonyl cyanide-p-trifluoromethoxyphenylhydrazone; mitochondrial uncoupler)

Port C: Rotenone and Antimycin (inhibitors of electron transfer)

Before running the assay, the XF-24 instrument cartridge was calibrated. For total oxygen

consumption rate (OCR) measurements, the minimum OCR reading after Rotenone / Antimycin

A treatment was subtracted from the initial untreated level, following the manufacturer’s

protocol. To directly measure mitochondrial thermogenesis, uncoupled respiration (proton leak)

was measured by subtracting the minimum OCR level after Rotenone / Antimycin from the

minimum level after oligomycin treatment. Oxygen concentrations were measured over time

periods of 4 min with 2 min waiting and 2 min mixing. Normalisation was performed based on

total cell count assessed using Hoechst assay.

ABC predictions
We used the Activity-by-Contact (ABC) model (Fulco et al. 2019) to link noncoding variants in

predicted enhancers to target genes. Briefly, the ABC model involves identifying chromatin

accessible elements that are likely to regulate genes in a given cell type by multiplying an

estimate of enhancer activity (estimated from ATAC-seq or DNase-seq and H3K27ac ChIP-seq

signals) by an estimate of 3D enhancer-promoter contact frequency (estimated from Hi-C

datasets). We used ABC enhancer-gene predictions for skeletal muscle from Nasser et al.

Nature 2021, and further generated ABC predictions in differentiating adipocytes by collecting

ATAC-seq and H3K27ac ChIP-seq datasets as described in (Sinnott-Armstrong et al. 2021). We

then looked for ABC-predicted enhancers that overlap with noncoding variants.

MRI adipose volume associations

Cohort and Trait Definitions

The UK Biobank is an observational study that enrolled over 500,000 individuals between the

ages of 40 and 69 years between 2006 and 2010, of whom 43,521 underwent MRI imaging

between 2014 and 2020 (Agrawal, Klarqvist, et al., n.d.; Littlejohns et al. 2020; Sudlow et al.
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2015) We previously quantified VAT, ASAT, and GFAT volumes in 40,032 individuals of the

imaged cohort after imaging QC as described elsewhere (Agrawal, Klarqvist, et al., n.d.).

Body composition was also assessed using DEXA in 40,798 individuals in the UK Biobank.

Android fat mass (field 23245) and gynoid fat mass (field 23262) were available for download in

5,170 individuals, and could be computed near perfectly in the remaining 35,628 individuals by

multiplying either android total mass (field 23248) with android tissue fat percentage (field

23247) or gynoid total mass (field 23265) with gynoid tissue fat percentage (field 23264) (R2 >

99.7% in the 5,170 individuals with explicit labels).

Study Design

We determined associations between variants rs12454712 and VATadjBMI, ASATadjBMI,

GFATadjBMI, AndroidadjBMI, and GynoidadjBMI. Participants were excluded from analysis if

they met any of the following criteria: (1) mismatch between self-reported sex and sex

chromosome count, (2) sex chromosome aneuploidy, (3) genotyping call rate < 0.95, or (4) were

outliers for heterozygosity. Up to 37,641 participants were available for association with

MRI-derived VATadjBMI, ASATadjBMI, and GFATadjBMI, while up to 38,703 participants were

available for association with DEXA-derived AndroidadjBMI and GynoidadjBMI.

Statistical analysis

MRI-derived fat depot volumes (VAT, ASAT, and GFAT) and DEXA-derived body composition

masses (Android and Gynoid) were adjusted for BMI and height (“adjBMI” traits) by taking

residuals of sex-specific linear regressions against age at the time of MRI, age squared, BMI,

and height.2 Each trait was scaled to mean 0 and variance 1 in sex-specific groups before being

combined for analysis. Hence, effect sizes should be interpreted as relative to sex-specific

standard deviations. Linear regressions between a given trait-variant pair were adjusted for age

at the time of imaging, age squared, sex, the first 10 principal components of genetic ancestry,

genotyping array, and – in the case of VATadjBMI, ASATadjBMI, and GFATadjBMI – MRI

imaging center. Analyses were performed using R 3.6.0 (R Project for Statistical Computing).
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