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Abstract

Data are indispensable for transport modeling and analyses, providing insights into
travel patterns and behavior. Researchers and practitioners often face challenges due
to insufficient and low-quality data. Advancements in sensing and communication
technologies have led to the development of non-conventional and emerging data sources.
These data are increasingly being used in transport research. There is no doubt that with
the new kinds of data, we can explore new opportunities in transport research to address
the limitations of traditional data. However, the fact that these data are generated from
a wide variety of sources that have their own shortcomings leads to new challenges. For
example, these data may be inaccessible or insufficient for a given task. Further, data
from open sources tend to come without any guaranteed quality, thus leading to a further
burden on the data consumers for their validation. Therefore, we face a situation where
despite seeming data abundance, we face challenges when it comes to using them for
mobility analyses and transport modeling.

In this dissertation, we aim to address this paradox of data insufficiency in view of the
diverse sources and varied data availability. We provide a conceptual and methodological
framework to classify the diverse data sources based on their openness and then use them
to tackle data insufficiency in different contexts. We conceptualize and demonstrate three
sets of approaches to bridge the gap due to the lack of usable data. First, we use data
from emerging sources [drone videography and Point of Interest (POI) busyness data from
mobile crowd sensing], address their quality, and apply them to novel use cases. Second,
we address the gap between the information from conventional and non-conventional
data sources. This is demonstrated by applying a transfer learning-based indirect traffic
estimation framework to estimate the sparse traffic flow data from relatively abundant
traffic speed data. Third, we propose a methodological framework to address system
underdeterminedness due to the limited availability of conventional data. We demonstrate
that in the context of calibration of large-scale traffic simulations, simple heuristics, and
machine learning-based techniques can help to obtain precise estimates. Through these
selective transport analyses with different data sources, we further state-of-the-art research
in addressing data insufficiency in different contexts. This dissertation contributes on
theoretical, methodological, and practical levels to motivate researchers and practitioners
for data-efficient transport analyses and modeling.
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Zusammenfassung

Daten sind für die Verkehrsmodellierung und -analyse unverzichtbar, da sie Einblicke
in Reisemuster und -verhalten bieten. Forscher und Praktiker stehen oft vor Herausfor-
derungen, die auf unzureichende und qualitativ schlechte Daten zurückzuführen sind.
Fortschritte in der Erfassungs- und Kommunikationstechnologie haben zur Entwicklung
unkonventioneller und neuer Datenquellen geführt. Diese Daten werden zunehmend in
der Verkehrsforschung genutzt. Es besteht kein Zweifel daran, dass wir mit den neuen
Arten von Daten neue Möglichkeiten in der Verkehrsforschung erkunden können, um die
Beschränkungen der traditionellen Daten zu überwinden. Die Tatsache, dass diese Daten
aus einer Vielzahl von Quellen stammen, die ihre eigenen Unzulänglichkeiten haben, führt
jedoch zu neuen Herausforderungen. So können diese Daten beispielsweise unzugänglich
oder für eine bestimmte Aufgabe unzureichend sein. Darüber hinaus haben diese Daten
aus offenen Quellen in der Regel keine garantierte Qualität, was zu einer weiteren Bela-
stung der Datenkonsumenten bei der Validierung der Daten führt. Daher stehen wir vor
der Situation, dass wir trotz des scheinbaren Überflusses an Daten vor Herausforderungen
stehen, wenn es darum geht, diese für Mobilitätsanalysen und Verkehrsmodellierung zu
nutzen.

In dieser Dissertation wollen wir dieses Paradoxon der unzureichenden Datenverfügbar-
keit in Anbetracht der verschiedenen Quellen und der unterschiedlichen Verfügbarkeit
von Daten angehen. Wir bieten einen konzeptionellen und methodischen Rahmen, um
die verschiedenen Datenquellen auf der Grundlage ihrer Offenheit zu klassifizieren und
sie dann zu nutzen, um Datenmängel in verschiedenen Kontexten zu beheben. Wir
konzipieren und demonstrieren drei verschiedene Ansätze, um die Lücke zu schließen, die
durch den Mangel an verwertbaren Daten entsteht. Erstens verwenden wir Daten aus neu
entstehenden Quellen [Drohnenvideografie und POI Busyness-Daten aus mobilem Crowd
Sensing], untersuchen deren Qualität und wenden sie auf neuartige Anwendungsfälle
an. Zweitens gehen wir auf die Lücke zwischen den Informationen aus konventionel-
len und nicht-konventionellen Datenquellen ein. Dies wird durch die Anwendung eines
auf Transfer-Lernen basierenden Rahmens für die indirekte Schätzung des Verkehrsauf-
kommens demonstriert, um die spärlichen Verkehrsflussdaten aus relativ reichhaltigen
Verkehrsgeschwindigkeitsdaten zu schätzen. Drittens schlagen wir einen methodischen
Rahmen vor, um der Unterbestimmtheit des Systems aufgrund der begrenzten Verfügbar-
keit konventioneller Daten zu begegnen. Wir zeigen, dass bei der Kalibrierung von
groß angelegten Verkehrssimulationen einfache Heuristiken und auf maschinellem Lernen
basierende Techniken helfen können, präzise Schätzungen zu erhalten. Durch diese geziel-
ten Experimente, die Verkehrsanalyseanwendungen mit unterschiedlichen Datenquellen
einbeziehen, bringen wir den Stand der Forschung weiter voran. Diese Dissertation trägt
auf theoretischer, methodischer und praktischer Ebene dazu bei, Forscher und Praktiker
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Zusammenfassung

zu motivieren, die verfügbaren Daten und die jüngsten Innovationen im Bereich des
maschinellen Lernens für Verkehrsmodellierungs- und Data-Mining-Anwendungen zu
nutzen.
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1 Introduction

1.1 Motivation

Transport systems play a key role in supporting economic growth and development
(Canning & Fay, 1993). They play a critical role in everyday life by providing mobility
to people and goods. Transport models are the foundation of planning transport and
traffic systems. Apart from conventional transport models (travel demand and supply
modeling), transport data mining and data science are also increasingly popular areas of
research to uncover travel behavior and mobility patterns (C. Chen et al., 2016). These
areas are grounded in applying scientific methods to transport data to extract valuable
knowledge from them. For instance, in data science approaches (Mart́ınez-Plumed et
al., 2021), statistical and data-driven models are used to explore, explain, and forecast
behavior and processes in transport systems (Vlahogianni et al., 2004). Depending on
the detail and context, these models can capture components of travel demand, mobility
behavior, and transport supply. These data-driven models provide insights into travel
behavior and mobility patterns and augment our knowledge to build better transport
models further.

Data are enablers for analysis and modeling as well as efficient and sustainable design
and operation of the transport systems. The Merriam-Webster dictionary defines data as
“factual information used as a basis for reasoning, discussion, and calculation” (Merriam-
Webster, 2020). The input and validation data for travel demand and supply models,
such as trip- and activity-based models, depend on the modeling task. Conventional (or
traditional) data sources commonly include household (survey) data, socio-demographic
data, land-use information, and transportation network data (Castiglione et al., 2014).
Further, suppose modeling deals with a specific phenomenon [such as Electric Vehicles’
(EVs) adoption or transport emissions]. In that case, additional data (such as the present
share of EVs and emission data) are needed. Further details and methodological steps are
required depending on the analysis and modeling requirements (Castiglione et al., 2014).
Traditionally, transport models require vast amounts of data to represent travel demand
and transport supply. Conventional data collection methods, including household
travel surveys, loop detectors, and census, tend to cost more and take longer (Willumsen,
2021). In addition, conventional data from relevant authorities may be restricted or lack
usability with the fast-changing landscape of open-source transport modeling formats
and tools. Hence, exclusive reliance on conventional data often limits researchers and
practitioners in their modeling pursuit.

Data from non-conventional sources help to overcome some of these limitations (Willum-
sen, 2021). Non-conventional data sources, such as mobile phones, social media, and
public transport smart cards, can be collected and have influenced and evolved how
we conduct mobility analyses and travel forecasting. For example, cellular data is a
rich source of origin-destination flows (Caceres et al., 2007) and OpenStreetMaps is a
common source to extract and develop road transport network models (Ziemke et al.,
2019). Similarly, for other non-conventional data, existing studies have demonstrated
their varied applications in transport modeling in different contexts (Mahajan et al.,
2022). Recent advances in sensing and communication technologies have made collecting
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new types of non-conventional data possible, also referred to as emerging data. We use
the term “emerging data” to refer to data types emerging from relatively newer sources,
such as mobile crowdsensing social media and drone videography (Harrison et al., 2020).
By definition, emerging data are a subset of non-conventional data. An example of the
emerging data collection method is mobile crowdsensing, where smartphones are used to
collect the data over a large scale (Liu et al., 2016), and then the data is transmitted to
the central repository via the internet. Another example is drone videography. Drones
can record the agents (people or vehicles) from an aerial point-of-view from which agents’
naturalistic driving behavior can be extracted for potential applications in traffic research.
Non-conventional data allows us to have more information and uncover new dynamics,
thanks to the higher frequency, coverage, and spatial-temporal and contextual details
(Harrison et al., 2020; Torre-Bastida et al., 2018). This means that with these new types
of data, it could be possible to address the limitations of conventional data. For instance,
conventional archived data does not allow modelers to analyze real-time mobility patterns
in response to special events or interventions. However, streaming data from emerging
data sources could be helpful in such applications for informed decision-making.
Despite the flux of studies demonstrating the application of a wide variety of data in

research (Mahajan et al., 2022), the availability of these data for practice faces a major
challenge and has a wide variability and lack of harmonization across regions (Máchová
& Lněnička, 2017). For instance, mobile phone data are promising in terms of their
applications (Willumsen, 2021), but they are proprietary, privacy sensitive, and not free
of charge. Even if some of the data are available to the user free of charge, it does not
necessarily mean that they can be used (Mahajan et al., 2022). The usability of the data
depends on many factors, such as data formats and data quality (Máchová et al., 2018;
R. Y. Wang & Strong, 1996). In the case of priced data, data providers are incentivized
to ensure adequate data quality. However, this is not necessarily true in the case of
public data sources, such as open data. In these cases, the burden for data pre-processing,
cleaning, and validation is mostly with the data consumer since, generally, openness
compliance licenses exclude such guarantees or liability (Creative Commons, 2023). Data
pre-processing can be expensive in terms of time and cost. Due to a lack of resources,
data users might not be motivated to use the available data if the pre-processing costs
are substantial. Even if specific data are available (and usable) for a location or a region,
the same may not hold true for another location (Barrington-Leigh & Millard-Ball, 2017).
Further, in many cases, the available data are insufficient for reliable modeling or analysis
(ITF, 2021).

Apart from newer data collection methods, advances in computing hardware and open
source software have made the state-of-the-art machine learning models accessible to a
broader research community (Langenkamp & Yue, 2022). In transport research too, this
is evident from the steep rise in the number of publications using big data and machine
learning algorithms for a variety of applications (Kaffash et al., 2021). For instance,
machine learning models are increasingly used for prediction and forecasting tasks in
traffic and mobility behavior research (Tizghadam et al., 2019). Machine learning is “a
branch of artificial intelligence concerned with the construction of programs that learn
from experience” (A Dictionary of Computing , 2008) or in other words, it is a process of
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training models or machines by learning from the data, as opposed to the set of explicit
manual instructions. Corollary to the famous “law of the hammer” quote by Abraham
Maslow (Wikipedia, 2023) is that with the popularity of machine learning “hammer”, not
every problem should be treated as a nail. Instead, novel use cases for solving existing
challenges with conventional and non-conventional data need to be identified. These use
cases could pertain to the processing and analyzing of conventional and new data to
unlock their full potential (Anda et al., 2017).

1.2 Problem definition and dissertation objectives

Transport systems are evolving unprecedentedly in terms of changes to demand and
supply components, patterns, and their interactions (Hoppe et al., 2014). This motivates
researchers and practitioners to advance their models, for instance, by developing large-
scale models and simulations to increase spatial coverage and account for complex
interactions or use real-time predictive frameworks for fast, responsive traffic and transport
management. Designing and developing detailed and advanced spatial-temporal models
is challenging because such models are data-hungry and need more and better data (ITF,
2021; Willumsen, 2021). The open data movement has undoubtedly helped improve
access to more data (M. Janssen et al., 2012), but not all open data are usable. Further,
the data’s usability depends on the application’s context and goal. Lack of usable data
or data insufficiency or scarcity is a challenge in many research areas (Alzubaidi
et al., 2023). In transport research and modeling, data insufficiency affects different
stages of transport data mining, model development, calibration, and validation. For
instance, traffic flow/ volume data from loop detectors (data source) are commonly
used to calibrate and validate traffic simulation models (application). In large-scale
traffic simulation models, the observed data from sensors covering only a small part of
the network is insufficient for the “unique” and reliable estimation of these parameters
(Gupta, 2005). Data insufficiency can span spatial, temporal, and contextual dimensions
for a given data source and application, e.g., the loop detector data are generally spatially
sparse. Traditional archived data are inadequate for dynamic operational applications,
such as during special planned or unplanned events when the transport systems can
behave unusually. For these cases, access to dynamic or real-time data is required. Thus,
transport modeling or analysis cannot be done without access to sufficient good-quality
and suitable data. Only when good quality data is available can modelers and data users
create value out of the data.

Apart from having sufficient and suitable data, models also need to evolve. Milne and
Watling (2019) reviewed implications of big data in the context of transport planning
and listed “big challenges for big data”. One of the main challenges is “re-specifying
analytical and predictive modeling approaches in response to the modified data landscape
and the new insights it facilitates” (Milne & Watling, 2019). The need for new model-
ing approaches arises because the emerging data sources may not have been designed
specifically for transport planning and management, in contrast to the traditional data
(household or origin-destination surveys). Data-driven or machine learning models are
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increasingly used because of their better predictive performance. For example, a study by
Vlahogianni et al. (2004) has noted the advantages of these machine learning models, such
as accurate results, successful modeling of complex spatial and temporal relationships,
and the ability to model non-linear relationships. Considering the issues surrounding
data quality and insufficiency, it is not sufficient to apply data-driven models but to
meticulously design models while addressing the data hungriness of the typical machine
learning (Adadi, 2021).

Nowadays, many traditional and emerging data are open-sourced or “somewhat”
publicly available (Mahajan, Cantelmo, et al., 2023) and thus offer the potential for use
in transport modeling or transport data mining. The utility of emerging data depends
on whether they can replace, complement, or supplement traditional data sources in
solving the current challenges in transport analyses and modeling (Mahajan, Cantelmo,
et al., 2023). The spatial or temporal overlap among data from different sources can
help to augment information to capture real-world phenomena (Milne & Watling, 2019)
and better understand travel behavior and model traffic dynamics. In view of the above,
this dissertation aims to use publicly available data to address the challenges of data
insufficiency or limited observability in large-scale analysis of mobility behavior and traffic
systems. Data insufficiency depends on the context of the data being used and the goal
of the analysis, and thus there could be a lack of data on varying levels. Incorporating
publicly available data for research and practice can be viewed as a two-step process.

1. The first step is to identify the appropriate data sources and enable access to these
data. It is important to understand what makes the data open and how to classify
the prominent transport datasets according to their openness systematically. Based
on this classification system, we can identify and collect publicly available data
from conventional and non-conventional data sources.

2. In the second step, data are processed and applied for transport-related research,
such as data analysis, predictive modeling, and model calibration. While conven-
tional data sources are well documented and studied, emerging data collection
methods, such as mobile crowd sensing or drone videography, are still in the early
phases of their application in transport research. Thus, the analysis of conventional
or non-conventional data will focus on the aspects relevant to each data. On the
one hand, for conventional data sources, it is interesting to see how to scale these
data for unobserved parts, i.e., addressing their sparsity. On the other hand, for
emerging data sources, data processing to remove errors and their novel use cases
are interesting avenues for research. Therefore, this step can be further subdivided
into four perspectives:

a) Gathering and processing data from emerging data sources

b) Developing methods using non-conventional data for new use cases in analysis
and modeling

c) Developing machine learning models that utilize data from available non-
conventional sources to address sparsity of conventional data
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d) Developing new methods for efficient use of data from conventional sources

Though the above perspectives can be non-exhaustive, these provide a conceptual
direction to tackle data insufficiency by using available data and novel methods. To
demonstrate the above perspectives in the context of transport and mobility-related
analysis, we list down the following Primary Research Questions (PRQs) as a focus of
this dissertation:

How to address data insufficiency in transport analysis and modeling by

PRQ(1): understanding the public availability of transport data systemati-
cally?

PRQ(2): enhancing the usability of emerging data?

PRQ(3): applying available emerging data for novel use cases?

PRQ(4): using machine learning methods to tackle limitations of conven-
tional data ?

To operationalize the research in this dissertation, we have identified and listed the
following Secondary Research Questions (SRQs). The background behind these questions
will be provided and discussed later (Chapter 2) in the dissertation. The SRQs can be
broadly divided along three dimensions:

1. PRQ(1) is further divided into following SRQs on reviewing transport data openness:

SRQ(1): What are the main attributes to classify data based on their public
availability or openness?

SRQ(2): Which categories of the proposed typology do the prominent non-
conventional data used for transport analyses belong to?

SRQ(3): What are the common applications of these data for transport modeling?

SRQ(4): What are the strengths and weaknesses of these data in terms of their
applications and availability?

2. PRQ(2) and PRQ(3) lead to following SRQs on creating value from emerging data:

SRQ(5): How to develop a scalable methodology to treat noise and anomalies in
emerging data?

SRQ(6): How to apply publicly available crowdsensing information for changes
in spatial-temporal demand patterns during special events?

3. PRQ(4) is further divided into following SRQs on development of data-efficient
methods:

SRQ(7): How to use machine learning to automate the calibration of large-scale
traffic simulations?
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SRQ(8): How to use ensembling to obtain precise traffic simulation calibration
parameters?

SRQ(9): How to use transfer learning to address the sparsity of dynamic link
flows at the network level?

SRQ(10): What are the conditions for the successful transfer of pre-trained models?

The above SRQs lead to the framing of the following set of Research Objectives (ROs):

RO(1): Develop a systematic typology to scope the data landscape and classify the
non-conventional data according to openness.

RO(2): Investigate the applications of prominent non-conventional data sources in
transport modeling research.

RO(3): Develop and evaluate a scalable method for improving the usability and
quality of publicly available data from emerging sources.

RO(4): Identify and apply publicly available opportunistic data for novel use cases
and demonstrate their application.

RO(5): Develop and evaluate data-efficient methods to tackle challenges due to
insufficient conventional data for traffic prediction and calibration.

1.3 Dissertation contributions

This doctoral dissertation contains the author’s research towards identifying new data
sources, their novel application for mobility analyses, and data-efficient methods to
address the data quality and data scarcity for traffic behavior and transport model
calibration. Below is a summary of the dissertation’s theoretical, methodological, and
practical contributions. The mapping between the research questions and corresponding
contributions is illustrated in Table 1.1.

1. Theoretical and methodological contributions

a) Data openness typology.

b) Review and SWOT analysis of non-conventional data sources.

c) Scalable methodology for treating errors in emerging data.

d) Opportunistic application of emerging data for analyzing mobility patterns
during special events.

e) Efficient and automated framework for large-scale traffic simulation calibration.

f) Transfer learning-based methodology to address the gap between conventional
and non-conventional data.

2. Practical contributions
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a) Open source codes for treatment of noise and anomaly in vehicle trajectory
data from drone videography.

b) Shared source code for fast-asynchronous data collection of live POI busyness
data.

c) Open source platform to automate the calibration of large-scale demand
(origin-destination) and supply parameters.

d) Open source traffic data curated from diverse sources for two cities.

1.4 Dissertation design and structure

The overall outline of the dissertation is shown in Figure 1.1. First, the foundation of this
dissertation is established by reviewing the state-of-the-art literature on topics (transport
data openness, errors in emerging data, emerging data for special events, methods
for large-scale traffic simulation calibration, and indirect flow estimation) motivated
by the PRQs set out in the current Chapter. This review helps to define the SRQs
and ROs. To fulfill the objectives of this dissertation, five studies are conducted to
review and demonstrate data openness, novel emerging data applications, and data-
efficient traffic prediction and simulation calibration methods. The contents of these five
studies are derived from the author’s publications during his doctoral research (Mahajan,
Barmpounakis, et al., 2023; Mahajan et al., 2021, in review; Mahajan, Cantelmo, et al.,
2023; Mahajan et al., 2022). The implementation (Figure 1.1) of the research can be
divided into three dimensions: data openness, emerging data, and new methods. First,
we conceptually investigate data openness and develop a framework to deal systematically
with transport data. The second and third dimensions involve data-driven modeling, i.e.,
the pipeline of steps such as goal definition, data collection, data preparation, modeling
or simulation, and evaluation (Chapman et al., 2000). This process is iterative and is
incrementally improved based on the feedback, e.g., from the evaluation step. Specifically,
in the second dimension, the main focus is on improving or showing the potential of
emerging data. Here we develop methodological frameworks to process emerging data
and apply them for transport analyses. Whereas in the third dimension, the focus is
on developing methods to exploit the conventional and non-conventional data. Here,
we develop new and efficient methods using established data to deal with challenges in
traffic simulation calibration and forecasting.

This dissertation is structured into four parts with eight chapters (Figure 1.2) as
follows:

• The Part I contains the following three chapters, which provide the current state of
the literature on the topics covered in this dissertation and provide a theoretical
framework for data openness.

– In Chapter 1 (current Chapter), we introduce the motivation and problem
statement, research questions, objectives, contributions, and the structure of
this dissertation.
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Figure 1.1: Dissertation outline
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– InChapter 2, we provide the background of the research topics and establishes
the research context and practical importance of this research. We also provides
the basis for SRQs and ROs.

– In Chapter 3, we introduce the data openness typology applied to prominent
non-conventional data used in transport research. We review the applications
of non-conventional data in transport modeling to identify potential data and
opportunities.

Figure 1.2: Dissertation structure

• The Part II contains two chapters, which are focused on creating value from
the emerging data sources by improving their quality and demonstrating novel
applications:

– In Chapter 4, we consider the processing of errors in vehicle trajectory data
from drone videography. We propose an efficient machine learning method to
treat the noise and anomalies. The proposed method focuses on automating
the anomaly detection process because of the diversity and complexity of the
data to replace the manual specification of heuristics.
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Table 1.1: Mapping of the research questions, objectives, chapters and publications

Primary
questions

Secondary
questions

Objectives Contributing
chapter(s)

Publications

PRQ(1) SRQ(1),
SRQ(2)

RO(1) Chapter 3 Mahajan et al. (2022)

PRQ(1) SRQ(3),
SRQ(4)

RO(2) Chapter 3 Mahajan et al. (2022)

PRQ(2) SRQ(5) RO(3) Chapter 4 Mahajan, Barm-
pounakis, et al. (2023)

PRQ(3) SRQ(6) RO(4) Chapter 5 Mahajan et al. (2021)
PRQ(4) SRQ(7),

SRQ(8),
SRQ(9),
SRQ(10)

RO(5) Chapter 6,
Chapter 7

Mahajan et al. (in re-
view); Mahajan, Can-
telmo, et al. (2023)

– In Chapter 5, we demonstrate the use of unique crowd-sensing data collected
from sources in the public domain and their application to analyze mobility
patterns.

• The Part III contains the following two chapters, which are focused on the develop-
ment of data-efficient methods using conventional and non-conventional data to
tackle data insufficiency:

– In Chapter 6, we present a methodological framework to automate large-scale
demand and supply calibration of traffic simulations and address bias-variance
in the calibration estimates.

– In Chapter 7, we address the insufficiency of conventional data with the
help of auxiliary non-conventional data sources from the public domain and
transfer learning.

• The Part IV contains the following chapter and concludes the dissertation:

– In Chapter 8, we discuss the research findings and their broad theoretical
and practical implications, summarize the overall limitations, and provide an
outlook on future directions.

Finally, an overview of the mapping between the PRQs, SRQs, ROs, chapters, and
publications is provided in Table 1.1.
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2 Background

2.1 Introduction

In this chapter, we identify the PRQs and SRQs by reviewing the literature and latest
developments in the field. This chapter identifies specific data and challenges in transport
modeling to demonstrate the development and application of methods to tackle this
dissertation’s problem statement or PRQs. Using this discussion, we identify and list
specific SRQs and ROs.

This chapter is structured as follows: the following section provides the background on
data openness and applications, focusing on transport modeling and analysis. The third
section discusses the literature on data errors in trajectory data and why it is crucial to
develop methods to process the data from emerging sources such as drone videography
and improve the data quality. The fourth section highlights the need for other emerging
data (crowdsensed busyness trends) for opportunistic applications during special events
or interventions. The above sections lay the groundwork for research involving emerging
data sources in this dissertation.

The following two sections are focused on reviewing the studies to identify the need to
develop efficient methods. The fifth section discusses the need for developing efficient
model calibration methods using traditional data. The sixth subsection identifies the
research gaps due to the lack of conventional traffic data and the need to estimate them
from auxiliary and non-conventional data sources indirectly. Finally, we summarize the
ROs of this dissertation and link them with the corresponding Research Questions (RQs)

2.2 Data openness and emerging data

2.2.1 Data flow: from sources to users

The spread of mobile phones, affordable sensors, and the internet and innovations in
communication technologies have created a data-generating ecosystem and led to an
explosion of data available for transport analyses. This data revolution has prompted
public and private organizations to release their data in part or entirely to the public
as a free or paid product or service, with or without restrictions. Simultaneously, the
advances in computing and telecommunication technologies have encouraged users to
explore innovative use cases of the available data. Public transport schedule data [through
the use of the General Transit Feed Specification (GTFS)], for example, are used to
provide real-time public transport information through smartphone applications1.

Before introducing the concept of Public Data, it is vital to understand a few key terms
related to the data landscape with reference to transport data. This and the following
paragraphs are primarily based on the report “Enabling Access to and Sharing of Data”
(OECD, 2019). Generally, data are produced from personal or non-personal sources. Data
from a personal source contain information that can be used to identify the data subjects.
In such a scenario, the data will be referred to as personal data. The personal data source
can be smartphones, social media accounts, or onboard vehicle sensors, and non-personal

1https://developers.google.com/transit/gtfs-realtime
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data sources can be inductive loop detectors or weather monitoring stations. Specialized
de-identification techniques such as anonymization, unlinking, or aggregation transform
personal data into non-personal data. Two such examples are traffic speed datasets
(by TomTom2 and Uber3) or public transport flow data (from smart cards), where
the personally identifiable information is removed, and data from numerous personal
subjects are aggregated. Another distinction to note here is that the mode of personal
data collection is primarily of two types: volunteered and observed (OECD, 2019). For
the former, a person or an individual can either actively or passively, but consciously,
contribute to the data collection, even if they are using a service, such as participating
in a household survey or crowdsourcing data. For the latter, the data are captured or
observed passively, as in mobile devices with enabled Global Navigation Satellite System
(GNSS), such as Global Positioning System (GPS). Here, the primary motivation for an
individual is always to use a service instead of offering the data. Generally, the individual
is required to give a one-time consent, after which the data collection occurs passively
unless the consent is revoked. Organizations collect the data, perform data processing
(cleaning, curation, analysis) and create different value-added data products. This new
information is called derived or inferred data (OECD, 2019).

Data is primarily owned by either the public or the private sector. The ownership is
governed by who was involved in the data generation and production stages. In addition
to these entities, individual(s) or household(s) might also have some ownership rights
in the case of personal data, depending on the prevailing laws and contractual rights.
Public and private organizations incur expenses for data collection, production, and
operation. Private-sector and most public-sector data are initially proprietary (OECD,
2019). Communities consisting of individuals with common goals can also act as data
collectors via crowdsourcing and share the data amongst themselves or with the public,
e.g., OpenStreetMaps (OSM)4. An organization decides if it is suitable (minimum privacy
and commercial risks), easy (marginal sharing costs), and beneficial (reciprocity, tangible
and intangible benefits) to share their data publicly. Some data, such as individuals’
GNSS mobility traces or ride-hailing ridership, might be sensitive and cannot be released
without anonymization. Data with no or limited risks can be shared with partner
organizations, clients, communities, or the general public.

2.2.2 Proprietary, public and open data

The public and proprietary data are differentiated in Figure 2.1. Informally, the term
“Public data5” refers to publicly available, free data with or without usage restrictions. In
this chapter, we formally define public data as a superset of open data, inspired by Kerle
(2018) and Wynne-Jones (2019). When data are accessible, allowed to be used for any

2https://www.tomtom.com/products/historical-traffic-stats/
3https://movement.uber.com/
4www.openstreetmap.org/
5We could not find an official definition of “public data” in two popular dictionaries, namely Oxford
and Merriam Webster, although there are references in the grey literature (Kerle, 2018; Wynne-Jones,
2019)
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purpose, and redistributed free of charge with almost no restrictions, they can be termed
Open data (The World Bank, 2019).

Figure 2.1: Overview of the production and operational flow of the data, partly inspired by
OECD (2019).

In this paper, the term public data refers to data that are accessible and free of cost.
Unlike open data, public data can be restricted in their usage (e.g., non-commercial
licensing) and shareability. Consequently, while open data are always “public,” public
data are not necessarily “open”. Furthermore, public data are not the same as Public
Sector Information (PSI), where the latter denotes data emerging from government
institutions. During the past few years, the data revolution has played a definitive role
in creating public awareness and participation in using public data. The number of
published articles shows that research using public data has gained momentum in the last
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15 years (Figure 2.2). This rise in public or open data research was strengthened by policy
initiatives introduced in 2009/2010 to increase access to government data. The open data
revolution received a significant push by Obama’s Open Government Directive in 2009
(U.S. Government, 2009) to increase transparency in the Executive branch. This step was
complemented by other initiatives, such as the OGP (2011) initiative, the amendment
to the EU’s PSI Directive in 2013 (European Commission, 2013) or the G8 Open Data
Charter in 2013 (Welle Donker & van Loenen, 2017). These and many other initiatives
in different parts of the world continue to advance the formalization of open data’s legal
and technical aspects (K. Janssen, 2011).
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Figure 2.2: The trend of articles in SCOPUS published from 2005 to 2019 with the keywords:
(top) “public data”, “publicly available data”, “open data”, and “open government
data”; (bottom) combinations of “publicly available data” (left) and “open data”
(right) with transport domain keywords. The analysis was done in early 2020, so
the articles up to 2019 were analyzed.

The trend of the studies reflects that the term “open data” is more prevalent in the
scientific literature than “public data” (Figure 2.2). The same trend is also observed
in studies related to the transport domain. However, using the terms “open data” and
“public data” interchangeably can be misleading. For instance, European Data Portal
(2018) refers to the Uber Movement dataset as private open data, even though Uber
(a private company) does not allow its data for commercial purposes. Thus, these
specific data do not entirely fulfill the open data principles stated by the Sunlight
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Foundation (2010). There are several reasons why private organizations and even
public sector institutions are unwilling to share their data. Protecting user privacy
and business interests are two commonly cited reasons for this reluctance (K. Janssen,
2011). Some other (non-exhaustive) reasons include bureaucratic laxity, lack of political
support, fear of public criticism (especially for public sector organizations), lack of skills,
infrastructure, and demand for the data (Young & Verhulst, 2016). However, private (or
even public) organizations may permit limited data usage for research, non-commercial,
and commercial purposes with a “razor and blades” model for creating vendor lock-in
(Welle Donker & van Loenen, 2016). For example, Twitter’s Application Programming
Interface (API) and Google’s routing APIs allow limited free usage. In the transport
domain, researchers, academics, and even policymakers can profit from such data by using
it for modeling and data mining applications (Chaniotakis & Antoniou, 2015; Y. Cui et
al., 2018; Llorca et al., 2018). Therefore, public data often are valuable for data users
even if they come with certain restrictions.

Data-based value creation can be accelerated by both the providers and the users. On
the one hand, the supply or availability of data (by a provider) in the public domain
will result in more proof of concepts and applications for those specific datasets, e.g.,
geotagged text from Twitter. On the other hand, demand for some actionable data for
humanitarian and societal causes can push organizations to innovate, collaborate and
share the data (Google Mobility Reports6, Facebook’s Data for Good7). Public data also
holds the potential to support research and validation. However, in some cases, sharing
data might be a challenge for researchers. Childs et al. (2014) find that researchers face
pressure from funding organizations to open the research data, which may be impossible
due to professional ethical and methodological concerns. Further, the different scientific
disciplines differ in their needs and use of the data (Arzberger et al., 2004).

2.2.3 Prominent non-conventional and emerging data in transport

The current data age (innovation and improvements in information, communication, and
computing) allows using passively collected, big and crowdsourced data in transport
modeling. For example, data from mobile devices, social media, and Automatic Fare
Collection (AFC) sources are often labeled as Big data, allowing researchers to analyze
their role, benefits, and challenges due to their “Big” nature. Milne and Watling (2019)
studied the implications of big data for transport systems planning and highlighted
future challenges. Welch and Widita (2019) reviewed big data applications in public
transport under different categories, including user behavior and demand. On a similar
note, Zannat and Choudhury (2019) analyzed the role of big data in public transport
planning by focusing on the three types of data, namely smart card data, mobile phone
data, and GNSS/ Automatic Vehicle Location (AVL) data. Prominent non-conventional
and emerging data include:

6https://www.google.com/covid19/mobility/
7https://dataforgood.fb.com
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1. Social media has grown dramatically over the last decade. Over 4 billion people
worldwide used social media in 2022 (Statista, 2023). Social media applications are
popular for social networking (Facebook, LinkedIn), microblogging (Twitter, Sina-
Weibo), location discovery (Foursquare, Google Places), media sharing (Instagram,
Flickr), as well as rating and reviewing (Yelp, Trip Advisor). Social Media data
can be featured alongside the geographic location captured through mobile devices
(smartphones and wearables). These geotagged social media data are sometimes
referred to as Geographical Social Media (GSM) services or Location-Based Social
Network (LBSN). Chaniotakis et al. (2016) and Rashidi et al. (2017) reviewed the
potential of social media data for travel behavior modeling.

2. Mobile phones act as ubiquitous sensors and generate large amounts of location
data of basically two types: mobile phone network data (H. Huang et al., 2019)
and sensor data (Prelipcean et al., 2017; Zannat & Choudhury, 2019). The network
data is generated when the user makes/ receives a call or SMS, accesses the internet,
and during network-related events such as location updates (H. Huang et al., 2019).
The smartphone sensor data, consisting primarily of GPS and motion sensors, are
collected through mobile applications. Both the network and sensor data have
applications in travel behavior modeling (Gadziński, 2018; Rojas et al., 2016).

3. Crowdsensed information, for example, consists of large datasets built with the help
of a large group of people. In Mobile Crowdsensing, individuals “collectively share
data and extract information” with the help of a sensing device (like smartphones)
towards a common goal (Liu et al., 2016), such as identifying spatial-temporal
patterns of a phenomenon. Crowdsensed data from mobile phones and social media
platforms (Chaniotakis et al., 2016; Efthymiou & Antoniou, 2012), such as Twitter
data, can, for example, help to study highly dynamic and disruptive events (Bagrow
et al., 2011; Chaniotakis et al., 2017).

4. Traffic data collection is transforming, too. Antoniou et al. (2011) proposed a
classification based on data collection functionalities of the sensor, i.e., point sensor,
point-point sensor, and area-wide sensors. AVL is a computer-based system to
collect and transmit information about the vehicle’s actual location (Strong &
Wolenetz, 2005). AVL data can be collected primarily by following three methods:

a) On-board sensors: GPS provides information about a user’s or vehicle’s
location, time, and velocity at any moment, based on signal exchange with
a system of more than 20 satellites. Vehicles equipped with onboard sensors
participate in transmitting their location data using GPS receivers. These
data are called probe vehicles or Floating Car Data (FCD) (Westerman, 1995).
Besides navigation devices, smartphones carried in private cars and commercial
and transit fleets are also used to transmit GPS location data by, e.g., Google
Maps, INRIX, Waze, or TomTom. As these data are collected with the help
of several devices on the road, they are also referred to as crowdsourced traffic
or AVL data (Travers, 2010).
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b) Static ground-based scanners: WIFI/ Bluetooth scanners can be an alternative
to conventional fixed signposts, street cameras, or loop detectors for traffic
data collection. Bluetooth is a short-distance communication protocol used
by mobile phones and vehicles. A Bluetooth inquiry device searches for
nearby Bluetooth devices and two devices connect if they operate at the same
frequency (Bhaskar & Chung, 2013). The use of Media Access Control (MAC)8

data from the WIFI signals also follows a similar principle.

c) Mobile (moving) scanners like drones are relatively new candidates for traffic
data collection. A few pilot studies have recently demonstrated their applica-
tion in collecting rich traffic data (Barmpounakis & Geroliminis, 2020). In
recent years, advances such as fast microprocessors, efficient storage, and
wireless communication technologies have allowed the use of drones for many
civil applications (González-Jorge et al., 2017). Aerial footage from Unmanned
Aerial Systems (UAS) or more commonly known as “drones”, is one of the
newest methods for collecting traffic data and has notable advantages such as
observation of naturalistic driving behavior and detailed driving trajectory
(Barmpounakis et al., 2016; Pham et al., 2020).

5. AFC systems are popular among transit agencies, especially in closed transit systems.
These systems use contact or contactless smart cards for efficient fare collection and
help control station access. Smart cards can store and process passenger data, such
as personal information, trip data (boarding and/ or alighting time and location,
frequency of use), and fare transactions (Pelletier et al., 2011). These data are
known as AFC data, and public transit planning and modeling have benefited from
them (Faroqi et al., 2018; Pelletier et al., 2011).

6. Volunteered Geographic Information (VGI) belongs to the context of big data and
represents crowdsourced georeferenced data that are recorded voluntarily by a large
user community. VGI emerged during the first decade of the 21st century and is
mostly driven by communities, such as OSM (OpenStreetMap Contributors, 2018).
As data are crowdsourced, they are usually available free of charge and, therefore,
are open.

Certain datasets have gained prominence due to their standardization. Google de-
veloped GTFS for an online public transport trip planner in Portland, Oregon. Since
then, it has been applied to many regions worldwide and was established as the de-facto
standard for sharing public transport schedules. Similarly, the General Bikeshare Feed
Specification (GBFS), an open data standard for bike and scooter sharing systems, was
developed under the North American Bikeshare Association (2015). It aims to provide
real-time information about bike-sharing systems’ current status and availability.

8Unique identifier assigned to a device by the device manufacturer for communication within a network
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2.2.4 Research gaps

The potential of a few emerging data, such as social media and mobile phone data,
has been demonstrated in previous transport modeling studies (Milne & Watling, 2019;
Rashidi et al., 2017; Zannat & Choudhury, 2019). Nevertheless, there is a need to
systematically define and discuss public data for transport modeling to clarify the topic.
This could benefit mobility data providers and users to understand the non-conventional
data for transport modeling in terms of their applications and availability in one place.
This could also help initiate a conversation and efforts to make the high-potential
transport data a priority for increased access and sharing. To the best of our knowledge,
most review studies on transport-related datasets mentioned above do not focus on the
openness or public availability aspects, which are crucial from data users’ viewpoint. For
a comprehensive overview, it is essential to concurrently analyze these data’s applications,
specifically in transport modeling. Because of the above, we see an opportunity to address
the following SRQs:

SRQ(1): What are the main attributes to classify data based on their public availability
or openness?

SRQ(2): Which categories of the proposed typology do the prominent non-conventional
data used for transport analyses belong to?

SRQ(3): What are the common applications of these data for transport modeling?

SRQ(4): What are the strengths and weaknesses of these data in terms of their applica-
tions and availability?

2.3 Errors in traffic data from emerging sources

2.3.1 Data errors

Researchers and practitioners need real-world traffic data to study traffic behavior
and implement traffic management strategies. Traffic data collection can be primarily
classified into three types, point measurements (loop detectors), point-to-point (FCD
and Bluetooth scanners) or edge measurements, and area-wide measurements (Antoniou
et al., 2011). Sensor measurements often come with errors, and thus errors are prevalent
in traffic data too. Noise and anomalies (outliers) are two common types of errors (Teh
et al., 2020). These errors deviate the measured signal from its desirable value, and
therefore the data require processing before use. The desired value is the best possible
representation of the true underlying signal that can be measured (O’Haver, 2022). The
desired value may differ from the absolute true value of a signal that may or may not be
possible to measure. Processing time-series or sequence data is classified into three main
tasks: filtering, smoothing, and prediction. Kalman (1960) formalized the distinction
between filtering and smoothing. Suppose the observed time sequence y(t0), . . . , y(tn) of
length n+ 1 from which we need to estimate the unobservable or desired value of the
true signal at t = ti, where ti is the time of interest. If ti < tn, it is data smoothing,
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whereas if ti = tn, it is data filtering, and if ti > tn, then it is a prediction task (Kalman,
1960). In the following paragraphs, we briefly introduce the topics of noise and anomaly,
followed by a discussion of a few studies on vehicle trajectory datasets from the traffic
research domain.

2.3.1.1 Noise

Noise is the unwanted component of the signal which is not relevant to a specific task.
Removal or treatment of noise is a general prerequisite for data usage. The source of
noise in the data can be the measuring device or sensor and its surroundings during the
data collection, e.g., in drone videography, noise can be introduced due to the vibrations
of the camera apparatus. This could be characterized by the presence of a periodic
high-frequency signal superimposed on the desired value. Data processing methods can
also introduce noise in the data, e.g., extraction of trajectories from even a stabilized
video could be noisy depending on the algorithms and tools used. For time-series data,
smoothing refers to a broad array of methods to remove the noise from the data. This is
commonly done by allowing only the low frequency of the signal to pass while attenuating
the high-frequency component (Holloway, 1958). The moving average filter is one of
the most common low-pass filters, where the current estimate is the rolling average of
neighboring values.

Savitzky-Golay (SG) filter is another example of a low-pass filter. SG filter is an
efficient method of data smoothing using local least-square polynomial approximation
(Schafer, 2011). Polynomial fitting on a sub-sequence of length 2M+1 (where M is a
positive integer) and then evaluation of the polynomial’s output at the central point is
equivalent to the convolution of the sub-sequence with a fixed set of integers (impulse
response) (Savitzky & Golay, 1964). The output samples (y) obtained from the discrete
convolution of fixed weights (h) with the input sample (x) is shown in equation 2.1
(Schafer, 2011):

y[n] =

M∑
m=−M

h[m] · x[n−m] =

n+M∑
m=n−M

h[n−m] · x[m] (2.1)

For a uniformly spaced sequence, the weights are computed only once based on the
length of the sub-sequence (window size 2M+1) and the polynomial degree. This is
beneficial for the sensor data because the sensor data are generally generated at a fixed
frequency and equally spaced. Common weights for every convolution operation on the
sub-sequence make it highly efficient in speed and memory. The output of the SG filter
is suitable for subsequent application of the anomaly detection algorithm due to the high
signal-noise ratio. For a polynomial of degree 0 or 1, SG filter is equivalent to a moving
average filter (Savitzky & Golay, 1964).

Gaussian Filter (GF) is another popular filter, especially in image processing. As the
name suggests, the input sample is convoluted with a Gaussian kernel (Equation 2.2) to
get the smoothed estimates:

24



2.3 Errors in traffic data from emerging sources

N(x) =
1√
2πσ

e−
x2

2σ2 (2.2)

Where σ is the standard deviation. The kernel is truncated symmetrically beyond
a specified number of σ. The output of the GF is weighted more towards the central
values of the input samples due to the characteristic shape of the Gaussian kernel. This
makes the GF a gentler smoothing filter than a moving average filter (Fisher et al.,
1997). We want to point out that the methodical steps in noise filters, such as numerical
approximation or truncation, could introduce or exacerbate errors in processed data
(Rafati Fard et al., 2017). It is a trade-off between introducing these errors and removing
the data’s noise. Filters are justified if their output is closer to the desired value than
the input data.

2.3.1.2 Anomalies

The term “anomaly” refers to a behavior different from the usual or representative
behavior of the system (Chandola et al., 2009). When the primary objective is to recover
the representative signal, anomalies are detected, removed, or replaced. In contrast to
noise, anomalies are not always unwanted. Anomaly detection in time-series data is an
active research topic. It is also the primary focus in various fields, such as finance, network
security, and health (Chandola et al., 2009). Time-series data can consist of either a single-
point anomaly or an anomalous sub-sequence. In high-frequency sensor data, sequence
anomalies can be prominent as a single disturbance in the signal can span over multiple
points. For instance, unrealistic high transient values or peaks can characterize anomalies
in the data. Chandola et al. (2009) categorized the anomaly detection techniques under
classification, clustering, nearest-neighbor, statistical, information-theoretic, and spectral-
based methods. Anomaly detection can be seen as a supervised learning task, but this is
practically constrained due to the often unavailability of ground-truth labels. This is why
unsupervised techniques hold significant potential for anomaly detection. These methods
aim to find the best separation between the usual and anomalous data points/ sequences
based on the specified parameters (distance, density, and probability). For instance,
Eskin (2000) used a machine learning model to learn the probability distribution over
the data and then applied a statistical test to detect the anomalies.

2.3.2 Challenges in traffic data collection from drones

In a study by Barmpounakis and Geroliminis (2020), Authors describe the challenges
associated with collecting drone video data for an extended area. An essential set pertains
before and during the drones’ flight, which must be planned and accurately determined
because of weather, battery backup, video quality, regulatory approvals, and technical
expertise. However, another set of essential challenges pertains to post-processing the
video recording after the drone flight. The researchers use state-of-the-art computer
vision algorithms to detect and track vehicles and extract vehicle trajectories from the
raw videos. Since the errors in the position of the vehicle are in the order of 20 cm or less
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Barmpounakis and Geroliminis (2020), trajectory extraction follows quite accurately the
position of the vehicle. Nevertheless, vehicles are not point objects but cover significant
space; minor errors in the position can accumulate when speed or acceleration variables
are calculated. Furthermore, the urban driving environment is more complex than
highways due to the increased heterogeneity of vehicle classes, traffic signals, congestion,
intersections, parking vehicles, and occlusion due to high-rise buildings and trees. All
these factors could introduce noise and anomalies or outliers in the acceleration profiles of
the extracted trajectories from the drone videos, and thus, the data may require additional
treatment. There is an opportunity to address this issue by analyzing the trajectories
and treating the noise and anomalies to obtain the desired speed and acceleration data.
These data contain many naturalistic trajectories, and thus filtering the anomalies and
smoothing the noise could accelerate subsequent research attempts. For researchers to
fully take advantage of such a detailed and large dataset, it is first necessary to find
appropriate techniques to detect these cases and filter them efficiently.

2.3.3 Noise and anomalies in vehicle trajectories

It is essential to clarify what is considered usual or representative behavior of the system
viz-a-viz “abnormal” or “unusual” within the scope of this research. This sub-section
deals with the naturalistic trajectory data, which is of great interest to the researchers as
it provides in-situ driving behavior. In a recent study (Venthuruthiyil & Chunchu, 2020),
the authors provide a review of the trajectory smoothing/ filtering techniques to process
trajectory data from diverse data sources such as ground-based camera videos, drone
videos, and instrumented vehicles. Since this section focuses on anomaly detection, we
list the range of acceleration and deceleration noted in some previous studies (Figure
2.3). We point out that the drone videography data are still in the early phases, and
thus there are limited studies on processing such data. To compensate for this, we
consider a few prominent studies from other data sources dealing with vehicle trajectories.
We also identify the context (driving environment, vehicle types, data collection, and
processing methods) and data sources in these studies, and find that the acceleration
values have varying ranges. Thus the context of the study should be considered prior to
its acceptability.

Bokare and Maurya (2017) analyzed the acceleration and deceleration behavior of
different vehicles using GPS data. They noted that acceleration rates (for all vehicles
except trucks) increase from minimum to maximum at initial speeds and then decrease
with speed. Sangster et al. (2013) used naturalistic data (“100-Car study”) from different
sources such as GPS, On-board Diagnostics (OBD) and accelerometer box for studying
the car-following behavior. Their study found that lags in GPS data can result in
oscillations in calculated speed. They identified the outliers in the speed and acceleration
time series by checking the observed data against the anticipated physical limitations and
replaced outliers with the interpolated data. As a result, they transformed the maximum
instantaneous acceleration (negative sign for deceleration) ranging [-303.6 m/s2, 303.0
m/s2] in the raw data to [-8.9 m/s2, 9.0 m/s2] in the smoothed data. Punzo et al. (2011)
used jerk values (derivative of acceleration) to identify the infeasible accelerations in Next
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Generation Simulation (NGSIM) dataset, which pertains to highway context. Further
on, Montanino and Punzo (2015) reconstructed trajectories from the NGSIM dataset
using a series of steps such as outlier and noise removal and local reconstruction. They
adopted a threshold of 8 m/s2 and 5 m/s2 for deceleration and acceleration, respectively,
for outlier detection, and after reconstruction, longitudinal accelerations range in [-5
m/s2, 3 m/s2]. They mention that vehicle mistracking is a likely source of error when
extracting the trajectories from the video recordings. Coifman and Li (2017) addressed
the vehicle mistracking by manually re-extracting the trajectories with better quality
from the NGSIM videos while reporting that the errors in the data cannot be corrected
through cleaning or interpolation.

Figure 2.3: Acceleration and deceleration ranges in the selected studies (Ariffin et al., 2017;
Bokare & Maurya, 2017; Deligianni et al., 2017; Kanagaraj et al., 2015; Kruber et
al., 2019; Makridis et al., 2021; Montanino & Punzo, 2015; Sangster et al., 2013;
Venthuruthiyil & Chunchu, 2020; Wood & Zhang, 2021; Xu et al., 2017) including
those using naturalistic trajectory data. ©2023 IEEE.

Analysis by Kruber et al. (2019) on a newer dataset [Highway Drone (highD)] on
German freeways found the longitudinal acceleration in the range [-6.3 m/s2, 5.6 m/s2].
Xu et al. (2017) collected longitudinal acceleration data using motion sensors on a two-lane
mountain highway. They applied data filtering and peak detection algorithms to remove
noise and determine the maximum accelerations. According to their findings, acceleration
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values ranged between [-7.1 m/s2, 2.8 m/s2] and [-1.2 m/s2, 1.4 m/s2] for small and heavy
vehicles, respectively. In the urban driving context, Kanagaraj et al. (2015) extracted
trajectories from a video recording on a section of the road. They smoothed the data
using locally weighted regression and obtained longitudinal accelerations in [-4.6 m/s2,
4.7 m/s2]. OpenACC is a recently released dataset related to car-following experiments.
In this study, Makridis et al. (2021) used U-Blox M8 devices that were equipped with
motion sensors and GNSS receivers. They post-processed speed and acceleration values
using the piece-wise cubic polynomial to compensate for the noise levels in the raw data.
The range of accelerations is about [-12 m/s2, 10 m/s2] considering human and Adaptive
Cruise Control (ACC) drivers. Rafati Fard et al. (2017) used wavelet transform and
wavelet-based filter to process the outliers and noise in the NGSIM data. Their method
detects outliers based on the local properties of the data and thus is an improvement
over globally defined thresholds. Venthuruthiyil and Chunchu (2018) reconstructed an
error-prone trajectory from video data using locally weighted polynomial regression. In
their recent work, Venthuruthiyil and Chunchu (2020) processed drone video data by
retrieving missing data and then smoothing them. Before smoothing, they removed the
outliers using a median filter. A median filter is a statistical filter wherein the window size
and threshold are specified to detect outliers. Afterward, they processed the data using
the combination Recursively Ensembled Low-pass filter (RELP) and adaptive tri-cubic
kernel.

2.3.4 Research gaps

From the above discussion, we find that studies for highway driving are more prevalent
than urban driving. The range of practical or possible acceleration/ deceleration can
depend on many factors, such as desired speed, driving context (intersection, highway,
ramp), vehicle class and type, driving style, surrounding vehicles, and data sources. One
of the challenges of drone videography is that the errors in the data are not consistent
as it could be a result of extrinsic (wind burst, object occlusion) and intrinsic (image
processing, object tracking (Coifman & Li, 2017)) causes, e.g., the reasons for outliers
in the drone data could be i) a sudden wind burst that can move the drone, ii) tracked
vehicles with reduced visibility (minor roads, occlusion due to buildings or trees), iii)
vehicles being tracked in the edges or not well-calibrated areas of the video. Although
computer vision algorithms have advanced massively during recent years, it has been
recognized in previous studies that trajectory data from drone videography have a heavy-
tailed data distribution due to outliers and needs special treatment (Barmpounakis &
Geroliminis, 2020; Venthuruthiyil & Chunchu, 2020).

Compared to noise treatment, outlier detection is a relatively challenging task to
identify systematic issues during the data collection process, thus requiring specialized
treatment. Accelerations with unrealistic peaks characterize outliers. They are generally
removed in the trajectory datasets using a pre-defined threshold (Montanino & Punzo,
2013) or a statistical filter (such as the median filter used in (Venthuruthiyil & Chunchu,
2020)) on the speed or acceleration series. Such thresholds are manually defined by
domain experts with care so that possible driving observations are not classified as outliers
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(false positives) (Montanino & Punzo, 2015). Simple heuristics such as global thresholds
are also trajectory invariant and cannot account for complex scenarios. An all-embracing
and insufficiently flexible filter would not be suitable, as there is always the caveat of
over-smoothing or false positives. It overlooks crucial information, especially when it
comes to lane-changing maneuvers or aggressive driving behavior like harsh acceleration
or harsh deceleration (Barmpounakis et al., 2020; Mahajan et al., 2020; Vlahogianni &
Barmpounakis, 2017). Outlier detection is challenging, given the heterogeneity of traffic
and driving behaviors.

We want to point out the drawbacks of simple and popular outlier detection methods,
namely z-score or modified z-score algorithms. Using domain expertise to label the
anomalies, one needs to specify the window size (over which statistical measure such as
mean or median is estimated) and threshold distance (such as the number of standard
deviations). There is a trade-off between false positives and false negatives depending on
the window size and threshold distance, which emphasizes fine-tuning these parameters.
The use of mean or median statistics can be biased in urban traffic when the vehicle is
stationary at the intersection and thus needs tuning for each vehicle.
Research by Rafati Fard et al. (2017) is based on local detection of outliers using

wavelet transforms. The use of wavelet transform has its challenges, such as the selection
of the mother wavelet (Rafati Fard et al., 2017). Large and diverse datasets, such as
the pNEUMA dataset from drones, demand complex heuristics for anomaly detection,
and their manual specification is impractical. The above aspects emphasize selecting a
scalable methodology for a large dataset, which exploits data-driven or machine learning
models and replaces complex heuristics. In view of the above discussion, we aim to
address the following SRQs:

SRQ(5): How to develop a scalable methodology to treat noise and anomalies in vehicle
trajectories from drone videography data?

2.4 Opportunistic data from emerging sources for mobility
analysis

2.4.1 Human mobility during special events

Human mobility is a complex phenomenon, the manifestation of people undertaking
different daily activities to satisfy their needs and wants. The performance of such
activities depends on various population and environmental factors. The interaction of
land-use and transport systems in activity generation has also been widely researched
and modeled (Acheampong & Silva, 2015). Places well connected with transport systems
and dense neighborhoods will generate more trips than less connected and sparse neigh-
borhoods. The interaction between land use and transport and individual constraints is
captured by the concept of accessibility (Geurs & van Wee, 2004; Hansen, 1959). Apart
from the above “structural” factors, planned or unplanned special events (Dunn, 2007),
weather conditions (Cantelmo et al., 2020; Sabir, 2010) can also influence where, when,
and how people move in the short term. Cities strive to plan, design, and operate their
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transportation systems based on the forecasted demand derived from the activities due
to these factors.

In case of disruptive and highly dynamic events, such as natural or human-made
hazards, people tend to adapt their short-term (Yabe et al., 2019) and long-term mobility
behavior (Gray & Mueller, 2012; Yamamura et al., 2014) to the prevailing conditions.
For example, travelers might be reluctant to enter the underground metro after an
earthquake or go near the sea coast in case of a cyclone or tsunami warning. COVID-19,
one of the most severe pandemics in the last 100 years, affected almost the entire world
in unprecedented ways. To control COVID-19 transmission, guidelines such as social
distancing, masks, and movement restrictions were recommended or enforced. In response
to these measures, people not only reduce their mobility (Pullano et al., 2020), but also
adapt their travel patterns to limit their exposure by avoiding places with many cases
(Brinkman & Mangum, 2020).

2.4.2 Crowdsensing data for mobility behavior analysis

The study of human activity and travel behavior is traditionally (and commonly) based
on the data from Stated and Revealed preference surveys. Alternate data sources can play
a crucial role, especially during situations like Corona Virus Disease 2019 (COVID-19),
when responses or policies have to be adopted faster, whereas surveys take some time
in planning and execution. Emerging sources of data (Antoniou et al., 2011), such as
social media (Rashidi et al., 2017) or mobile phones (Järv et al., 2014), have pushed the
use of data-centric approaches to study activity patterns. Mobile devices or sensors with
wireless communication or the internet can help understand when, where, and if people
are crowding. Some of these data are available on the internet. They could be exploited
to create the first line of defense against this pandemic and to develop policies to mitigate
its impact on transport systems and local businesses. During COVID-19, Mobile phone
data emerged as a potential source to understand and respond to the pandemic, as it
provides a large spatial-temporal information (Grantz et al., 2020). A study using mobile
phone data found that the lockdown in France caused a 65% reduction in the performed
trips, especially work-related trips during peak hours and long trips (Pullano et al., 2020).
Researchers in the US and China also applied the mobile phone data to establish that
social distancing and decreased mobility (due to restrictions or lockdowns) are positively
correlated to the reduced growth in COVID-19 cases (Badr et al., 2020; Fang et al., 2020).

The importance of public data sources cannot be overstated in the case of special events.
During COVID-19, several organizations came forward by making some of their data
publicly available to help governments and citizens understand the changes in activity
patterns and travel behavior. Some of the prominent examples are COVID-19 Community
Mobility Reports (Google, 2020a) and Apple Mobility Reports (Apple, 2020). Using
these data, we obtain activity and mobility trends for Munich (in Bavaria, Germany),
which provide information about the overall changes in activity and travel mode patterns
in a region, respectively (Figure 2.4). In this Figure, the overall activity and mobility
trends confirm some expected behavioral patterns during COVID-19, such as a decline
in transit mode use, a drop in retail and workplace-related visits, and increased stays
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at residences. The grocery-related visits can be seen to recover from the initial drop in
visits gradually.

One exciting and seemingly potential data set is the crowdsensed check-in rate or
busyness at the POIs. The crowdsensed check-in rate is the representation (in absolute or
relative terms) of the number of people or customers visiting a specific establishment at a
given time, thus showing its busyness. These data are primarily collected from smartphone
applications, in which the user’s location history is enabled, such as geotagged data or
LBSNs. Geotagged tweets (Chaniotakis et al., 2017), Foursquare check-ins (D’Silva et
al., 2018), and popularity trends (Capponi et al., 2019; Timokhin et al., 2020) are some
examples of such data that capture the spatial-temporal evolution of the demand and
have already shown their utility in previous studies.

Figure 2.4: (Top) Activity patterns in Bavaria and (Bottom) travel mode patterns in Munich,
data sources: (Apple, 2020; Google, 2020a)
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2.4.3 Research gaps

The above examples illustrate the potential of passively collected and publicly available
data for informed policy decisions during special events, such as COVID-19. Apart
from the data source, the level of data aggregation also decides its usability. The
aggregated datasets (at the city or county level) do not provide detailed information at
finer geographical scales such as the POI level and thus have limited applications. On
the other hand, disaggregate datasets (at finer geographical scales) could provide richer
information for understanding heterogeneity across POIs and demographics (Roy & Kar,
2020). Thus, disaggregated data allows for analysis at a local level for understanding
the mechanisms between activity patterns and environmental factors, e.g., at the level
of a shop or a transit stop. Therefore, crowdsensed data in disaggregate form could be
potentially useful for analyzing the spatial-temporal changes in demand patterns during
special events and leads to the following SRQ:

SRQ(6): How to apply publicly available crowdsensing information for changes in
spatial-temporal demand patterns during special events?

2.5 Efficient methods for traffic calibration

2.5.1 Traffic simulation calibration

A transportation system comprises different parts and their interactions, resulting in travel
demand and supply of transport services (Cascetta, 2001). Researchers and practitioners
develop transport models to study the effects of an ongoing or new phenomenon on the
transport system, e.g., the effect of new technology or a policy change on - how, when,
from/ to where people move, and their resultant social, economic, and environmental
impacts. While analytical transport models exist, their outputs are often inaccurate
(as they fail to fully capture the complex dynamic interactions in a transport network).
Additionally, the computational burden of these models is high when the goal is to simulate
large-scale scenarios. Dynamic Traffic Assignment (DTA) simulation can represent the
short-term traffic flow variations and behavioral choices in a large-scale network (Ben-
Akiva et al., 2012). Therefore, traffic simulation models are increasingly preferred in
modeling applications.

Calibration of model parameters is a key requirement before the models are applied for
analysis and forecasting, as inaccurate parameters translate into unreliable simulation
outputs. Calibration is the process of finding the simulation model’s parameters so that
the difference between the simulated behavior (counts, travel time, speed) and observed
behavior is minimized. Calibration is formulated as an optimization problem to minimize
the value of the objective function subject to constraints. Thus, calibration of traffic
simulation models depends on three main factors, namely calibration method [objective
or fitness function and its formulation, calibration approach, optimization algorithms,
the Goodness of Fit (GOF) criteria], simulation model (assignment method, level of
detail) and data [Measures of Performance (MOP), data sources, aggregation, coverage]
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(Antoniou et al., 2016). The calibration of DTA models is an active field of research with
applications such as demand calibration and real-time traffic management.

2.5.2 Calibration approaches

Omrani and Kattan (2012) reviewed DTA model calibration, focusing on the calibration
parameters and calibration approach. The calibration parameters belong to two categories:
demand and supply. Demand model parameters pertain to trip generation, destination,
departure time, mode, and pre-trip route choices. OD estimation is a specific case
of demand calibration where time-dependent OD matrices are calibrated. On the
other hand, supply model parameters pertain to during-trip route choice, link and
junction performance functions, traffic flow models, and driving behavior models such as
lane-changing and car-following. Depending on the granularity of the models, such as
macroscopic, mesoscopic, and microscopic simulations, the nature of these parameters
can change.

Researchers have proposed various methods exploiting the interaction of demand-supply
parameters, data, models, and problem structure. Regarding the interaction of parameters,
earlier demand models were calibrated, considering other supply parameters as constant
and vice-versa. These approaches were followed by sequential (or iterative) calibration
(Toledo et al., 2014), where supply calibration is followed by demand calibration in a
loop. These approaches, however, failed to capture the intrinsic interaction between
demand-supply (Toledo et al., 2014). In contrast, simultaneous calibration of all supply
and demand parameters is reported to provide the most efficient estimates (Toledo et
al., 2014), although at the cost of additional complexity. Another important distinction
is between the offline and online calibration procedures depending on the planning or
operational application, respectively. The former calibrates the model parameters given
a set of historical observations. After this initial calibration, these parameters can be
updated based on the real-time or streaming data for prevailing traffic conditions in an
online calibration (Antoniou et al., 2005; Balakrishna et al., 2007).

As for the optimization algorithms, global search methods, EA (Evolutionary Algo-
rithms) (T. Ma & Abdulhai, 2002), are reported to give good quality solutions. The
global search methods are relatively less popular on large-scale networks, presumably
because they become time-consuming and computationally expensive for large problems.
The success of global algorithms depends on the properties of the model and might
not scale very well on large networks. Only a few studies have used the algorithms’
distribution and parallelization to improve the efficiency of these algorithms and demon-
strated their application on medium-sized networks (Omrani & Kattan, 2018). On the
other hand, researchers use local search heuristics, such as Simultaneous Perturbation
Stochastic Approximation (SPSA) (Spall, 1998a), which are efficient in terms of time
and computation. Black-box optimization using approximated gradients is widely used
to calibrate the Origin-Destination (OD) matrices. Large-scale calibration is a highly
under-deterministic problem with multiple possible solutions. Therefore, local search
approaches need enhancements, domain knowledge, and sensitivity analysis to obtain the
desired solution.
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2.5.3 SPSA-based approaches for demand calibration

Demand calibration or estimation/ updating of the OD demand matrices using traffic
counts is a well-studied problem for transport modelers. In fact, OD demand estimation
is a special case of demand calibration where the traffic flow/ counts are used to estimate
the OD matrix (Cascetta et al., 1993). When multiple time-dependent OD matrices are
to be calibrated, the problem is also referred to as Dynamic Origin-destination Demand
Estimation (DODE) (Cantelmo et al., 2018). Researchers have further tried incorporating
domain knowledge to improve the performance of SPSA for demand calibration. Some of
the successful applications of local heuristics are Weighted-SPSA (W-SPSA) (Antoniou et
al., 2015; Lu et al., 2015), cluster-SPSA (c-SPSA) (Tympakianaki et al., 2015), adaptive-
SPSA (Cantelmo, Cipriani, et al., 2014). Djukic et al. (2012) applied Principal Component
Analysis (PCA) to tackle the high dimensionality of the calibrations to capture the input
variation with fewer parameters. Subsequently, the potential of dimensionality reduction
was demonstrated in PC-Generalized Least Squares (GLS) (Prakash et al., 2017), and
PC-SPSA (Qurashi et al., 2022, 2020). Another approach is to assume a prior distribution
(quasi-dynamic assumption) of the data to artificially reduce the number of variables
(Cascetta et al., 2013), or to divide the problem into sub-task (Cantelmo, Viti, et al.,
2014). Using meta-models to provide more domain knowledge in black-box optimization
helps converge faster. For example, Osorio (2019) approximated the network model using
an analytical representation and embedded it as a meta-model within the Simulation
Optimization (SO) algorithm. This approach gave promising results for large-scale
networks. In another recent study by Ho et al. (2023), authors used modified gradients
in SPSA and proposed a differentiable Meta-model assisted SPSA (MSPSA) to speed up
the convergence of the SPSA.

2.5.4 Averaging to handle parameter variance

Traffic simulators are stochastic systems, which implies that the simulation outputs
and gradient approximations based on these outputs are stochastic too. Thus, different
types of averaging are used to address this stochasticity. For instance, to address the
variance in the simulation outputs (e.g., due to randomness in flow propagation, and
route choice), averaging multiple simulations is done during each function evaluation.
Random search choice algorithms, such as SPSA, lead to additional stochasticity because
the random choice is made in a selection of perturbation vectors during the gradient
approximation step, which induces randomness in the search process. To address the
randomness in gradient approximation, Spall (1998b) recommended that for each gradient
approximation, an average of a few gradient evaluations in every single iteration should
be used. We term this technique as “gradient replications” to differentiate it from
“gradient averaging” wherein gradients across current and past iterations are averaged.
On this note, Kostic et al. (2017) tested gradient replications and gradient averaging
with the SPSA for demand calibration. They found that gradient replications provide
better convergence, whereas gradient averaging does not provide meaningful benefit,
which supposedly could be due to a highly uneven and complex loss surface. However,

34



2.5 Efficient methods for traffic calibration

in a general context, such averaging is beneficial when the curvature of the objective
function starts to flatten along a dimension, e.g., as in the case of the canal or a valley.
In such situations, gradient descent-based optimization methods can be very slow in
convergence. In these cases, Momentum can help to tackle the slow convergence (Ruder,
2016). Momentum tweaks the gradient descent by providing a short-term memory and
taking the weighted average of the gradients from the past runs. References to gradient
smoothing across iterations for SPSA can be found in literature (Spall, 1998b; Spall &
Cristion, 1994).

Instead of gradients, averaging parameters or iterates (also called weights in machine
learning) across iterations is another popular idea. Spall (2003) mentions that the
innovation of the seminal work of Stochastic approximation method by Robbins and
Monro (1951) is to do a “form of averaging across iterations”. This was followed by
maintaining the running average of the iterates in the case of stochastic optimization
algorithms (Polyak & Juditsky, 1992; Ruppert, 1988) for better convergence. For iterate
averaging to perform better than individual estimates, it is important that the majority
of the individual estimates land within the local neighborhood of the true or desired
estimate. Otherwise, averaging will lead to poorer estimates (Spall, 2003). Different
modifications of iterate averaging are also applied in the case of Stochastic Gradient
Descent (SGD) based algorithms in machine learning, where the running average of the
weights of the neural network helps to smooth the trajectory of the SGD. For instance,
Izmailov et al. (2018) proposed Stochastic Weight Averaging (SWA) where an average
of the points/ iterates traversed by SGD with cyclical or constant learning rate is used.
SWA finds much flatter solutions than SGD, leads to higher test accuracy, and improves
the generalization ability of the neural networks.

Another averaging-related method is based on the ensemble concept. An ensemble
of models means combining the decisions/ predictions of a set of individual models to
provide a better prediction. Dietterich (2000) pointed out that in case of insufficient data,
there can be many possible solutions to a problem, as in the case of an OD estimation
problem. An ensemble of models can help to average the individual model “votes” and
help to obtain optimal predictions. Further, in machine learning, many models use
local search to optimize the objective function and can often get stuck in local optima.
Therefore, an ensemble made by running multiple models with different initializations
can provide better results. Bagging (short for Bootstrap Aggregating) is a common
ensemble method (Breiman, 1996). Bagging predictor (Breiman, 1996) is a technique
in machine learning, where multiple models are trained on subsets of the training data
(bootstrapped datasets) and then the final prediction is the average of the predictions
of these trained models. Bagging is effective if individual models have higher variance.
Bagging is popular in machine learning to reduce the variance of the models. Breiman
(1996) found that for unstable procedures, bagging works well and “can push a good
but unstable procedure a significant step towards optimality”. Bagging is useful if the
individual models have high variance since the variance of the averaged model is reduced.
One can draw parallels between bagging and iterate averaging since both involve using
individual iterates/ models to obtain better estimates.
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2.5.5 Research gaps

For a large-scale simulation scenario, calibration suffers from the “curse of dimension-
ality”(Cascetta et al., 2013; Djukic et al., 2012), because the size of the OD matrix is
large and thus the number of parameters. This means parameter calibration becomes
increasingly difficult with the increase in the number of parameters or OD pairs. For
calibration and validation (Buisson et al., 2014) of the transport models, researchers and
practitioners need MOP. The commonly used MOP is traffic flow data or link volumes.
It is well known that N independent equations are needed to find the unique solution
of the system of linear equations with N unknowns. In transport demand calibration,
the number of unknowns (OD demand pairs) exceeds the number of equations (observed
data). Classically, in the case of a linear system of equations, such a system is referred to
as an “indeterminate” system, meaning that the number of equations is less than the
number of unknowns. The availability of fewer equations compared to the number of
unknowns leads to an under-determined system. This means, that with the available
information, the system parameters cannot be uniquely determined.

Further, the higher the level of error (bias and noise) in a priori OD estimates, it
will be challenging to obtain the desired solution. This is further compounded by the
stochasticity, such as from the gradient approximation or optimization heuristics, vehicle
routing in a simulation model. When the number of unknowns equals the number
of equations, multiple solutions can still occur due to the nonlinear nature of traffic,
not always captured by conventional traffic data (Frederix et al., 2013). The fact that
there are multiple solutions might also make the algorithm prone to getting trapped in
undesired local optima instead of converging to the desired local optima. To reduce the
chance of undesired local optima, extensive analysis is needed to check the reliability
and robustness of the solutions. All these practical challenges can lead to increased
time complexity and computational burden. Moreover, if the calibration approach is not
carefully designed, the calibrated OD parameters might be far from the desired solution.

The next set of challenges pertains to tuning the parameters of the optimization
algorithm. In the case of gradient-based optimization, the learning rate decides the
convergence rate. The algorithm can be very slow if the learning rate is too small. In
contrast, if the learning rate is large, the algorithm can jump beyond the optimum and
oscillate or land in an unsuitable local optimum (too far from the starting iterate), leading
to high variance. Large learning rate values can also lead to high values in the OD matrix,
leading to simulation overload, slow down, and even more time to tune the parameters of
the optimization algorithm. In the literature, for instance, SPSA gain coefficients, i.e.,
step-size (a) and perturbation vector (c), are predominantly manually selected after some
sensitivity analysis. Spall (1998a) suggested that if the parameters to be optimized vary
greatly in magnitude, scaling should be applied to the gain coefficients. Such scaling
was applied to step-size coefficients of SPSA by Tympakianaki et al. (2018). However,
even after scaling, finding the optimal values of gain coefficients requires conducting
sensitivity analysis, and this requires expensive function evaluations. Thus, it takes a
considerable time to select the optimum parameters. The costly function evaluations limit
the application of automatic parameter tuning methods such as Bayesian optimization
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to OD demand estimation. Although Bayesian optimization works better than random
sampling, the former’s application will also be slowed due to time-consuming simulations.
Thus, we conclude that there is no existing systematic approach for automated tuning of
the calibration algorithm’s parameters in the context of OD demand estimation.

The above challenges motivate us to apply enhancements to the existing demand (OD
estimation) and supply calibration framework and propose an end-to-end methodology
to find optimal calibrated estimates while keeping the computational burden in check.
Applying the above-mentioned ensembling techniques with state-of-the-art calibration
algorithms could be beneficial for OD estimation by reducing the estimates’ variance.
To the best of our knowledge, we could not find the application of ensembling for OD
estimation/ demand calibration. Because of the above, we list the following research
questions:

SRQ(7): How to use machine learning to automate the calibration of large-scale traffic
simulations?

SRQ(8): How to use ensembling to obtain precise traffic simulation calibration parame-
ters?

2.6 Indirect flow estimation to tackle sparsity and insufficiency
of traffic flow data

2.6.1 Traffic forecasting

Traffic forecasting is a prevalent task in traffic research with applications in traffic
management. Traffic forecasting is formulated as time series forecasting to predict the
values of a target given input covariates. Forecasting models, where the input and
target variables are the same yet time-lagged, are called autoregressive models since
the future values of the variables are predicted using their past values. Time series
forecasting can be formulated or extended as non-linear time series forecasting, multi-
time step forecasting (predicting a sequence of future values instead of a single value), and
multivariate forecasting (input features consist of multiple time series or scalar variables).
A generalized formulation for autoregressive multivariate and multi-step forecasting is
given below:

[
W, (Xt−kf , . . . , Xt−f , Xt), (Y t−kf , . . . Y t−f , Y t)

]
→

[
Y t+f , Y t+2f , . . . , Y t+(p−1)f , Y t+pf

]
(2.3)

Where W and X are fixed and dynamic input features, respectively. Y is the target
variable. f is the fixed time interval or the granularity of the data; k is the lookback
length, i.e., how much past data the model has access to make a prediction; p is the
prediction or future horizon length; t denotes the current time instant.
In traffic forecasting, common features are traffic variables such as traffic flow, link

speed, trip travel time, traffic density, occupancy, and congestion (Vlahogianni et al.,

37



2 Background

2004). Traffic state is characterized by the three main variables, i.e., flow (or volume),
speed, and density. Regarding targets, the main task in traffic prediction or forecasting
is to predict traffic flow or speed. In this dissertation, we use traffic “flow” for the
volume or number of vehicles passing a road section over time, whereas “speed” is the
link speed which could be space-mean speed or time-mean speed. While researchers
have used different predictors or features in their models, one common feature is using a
time-lagged target variable as one predictor since most time-series forecasting models use
an autoregressive model formulation. Other features are representations/ metrics derived
from trajectory data, covariates (weather or time of the day), spatial-temporal maps, or
videos (S. Wang et al., 2019). Commonly, studies on short-term traffic forecasting deal
with forecasting horizons in the range of a few minutes to a few hours (Vlahogianni et
al., 2014). The following paragraphs provide representative details on models and data
used in traffic forecasting. For a more thorough discussion of traffic forecasting, we refer
the reader to reviews by Vlahogianni et al. (2004, 2014).
Data and models are the main pillars supporting traffic forecasting research. Traffic

data come in many forms, such as point data, point-point data, or area-wide data (Lopes
et al., 2010). The form depends on the method of data collection and its source. Fixed
ground-based sensors, such as induction loop detectors or street-side cameras, detect
vehicles on or across a specific location. They can only provide localized observations such
as flow, density, or spot speed. Traffic data from onboard devices, such as smartphones
or navigation systems, primarily use GNSS receivers to record the location of vehicles
during their trip and, thus, provide mobility metrics (location, speed, travel time) for
trip legs. This data, when gathered from a larger fleet of vehicles, is also known as AVL
data or FCD, or Probe Vehicle Data (PVD). New drone-based data collection methods
can provide observations over an area or part of the network since they have a wide
field of view (Barmpounakis & Geroliminis, 2020). A dataset collected by the California
Transportation Agencies (CalTrans), known as CalTrans Performance Measurement
System (PeMS) is one of the most popular datasets for traffic prediction. This data is
point-type data [from inductive loops, side-fire radar, and magnetometers (California
Department of Transportation, 2020)] containing traffic volume, occupancy, and speed.
Other popular datasets are the Beijing point and trajectory datasets (Tedjopurnomo et
al., 2020).
Researchers have developed a wide range of models for traffic forecasting ranging

from so-called white-box models (statistical models such as simple moving average or
autoregressive regression) to black-box ones (deep learning models such as feedforward
or recurrent graph neural networks) (Vlahogianni et al., 2014). The current state of the
art shows that deep learning has outpaced the traditional time-series forecasting models
such as Autoregressive Integrated Moving Average (ARIMA), as evidenced by recent
studies (T. Ma et al., 2020; Polson & Sokolov, 2017). This development has resulted
in many innovative traffic forecasting model architectures using cross-domain concepts
such as convolutional neural networks and recurrent networks from computer vision and
Natural Language Processing (NLP). Recurrent Neural Network (RNN) are special neural
networks with a chain-like structure capable of learning time dependencies. Long Short
Term Memory (LSTM) networks (Hochreiter, 1991) and Gated Recurrent Units (GRU)

38



2.6 Indirect flow estimation to tackle sparsity and insufficiency of traffic flow data

are specialized to learn long-term dependencies using a similar chain-like structure with
modified units. LSTMs and GRUs have been successfully applied in various tasks such as
language translation and image captioning. In traffic forecasting, too, LSTMs have been
used for extreme event forecasting (Laptev et al., 2017) or network-wide traffic speed
prediction (Z. Cui et al., 2020). Lara-Beńıtez et al. (2021) conducted an experimental
review of multiple deep learning models for time-series forecasting, including traffic
datasets. They found that LSTM and CNN are the best models, the LSTM models
obtaining the most accurate results. It is relevant to point out that their analysis did not
cover relatively new models such as Graph Neural Networks (GNN), transformers, or
models with attention mechanisms. RNN-based architectures struggle to learn long-term
dependence, and thus, attention mechanisms were applied by T. Wu et al. (2018) to
address this shortcoming. The attention mechanisms can identify and select information
in the input relevant to a specific task, even if it is a long-term dependency. The attention
layer assigns weights to specific input sequence regions relevant to the prediction task.

GNNs have recently gained popularity due to their ability to handle non-euclidean data.
GNN models can also handle topological correlations between entities in the data using
node and edge features in graphs. Further, GNN has been applied on Spatio-temporal
datasets, e.g., by stacking time-dependent graph snapshots leading to architectures such
as Graph RNN (GRNN) (X. Wang et al., 2018), Diffusion Convolutional RNN (DC-RNN)
(Li et al., 2017), Temporal Graph Convolutional Networks (T-GCN) (Zhao et al., 2020),
consisting of Graph Convolutional Networks (GCN) to handle spatial features and either
of the RNN, GRU or LSTM units to handle the temporal features. Buroni et al. (2021)
applied a multi-task learning strategy with GCNs to predict flow and speed and tested
their method on different types of roads. Despite the benefits of GNNs, Zhao et al. (2020)
found that graph networks struggle to predict peaks because of averaging effects.

2.6.2 Traffic state estimation

Traffic state estimation is closely related to traffic forecasting with some notable differences.
The process of inferring traffic state variables using partially observed information is
known as traffic state estimation (Seo et al., 2017). In the comprehensive review by Seo
et al. (2017), authors classified traffic state estimation methods into three categories:
model-driven, data-driven, and streaming-data-driven, based on preliminary information
and input data. When the target or the predicted variable is traffic flow, it is called traffic
flow estimation. Since practitioners and researchers use different traffic data for flow
estimation, it can also be classified into direct and indirect methods based on the applied
data collection methodology. Direct methods refer to counting vehicles on the road using
manual or automatic techniques (magnetic loop detectors, gantry cameras, or drone
videography). Direct methods use physical, visual (street cameras, drone videography, or
satellite imagery), acoustic (Lefebvre et al., 2017), or other signals (Bluetooth or cellular)
to detect the presence of a vehicle. Indirect methods try to estimate the flow using
exogenously-correlated data. As shown by Aslam et al. (2012), indirect methods use
analytical and data-driven models for mapping predictor variables to the flow variables.
A generalized multivariate and multi-step formulation for indirect state estimation is
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given in Equation 2.4. A clear distinction from Equation 2.3 is that the time-lagged
target variable is not available as a predictor in the indirect traffic state estimation. Thus,
for a given domain and data, the indirect state estimation is more challenging than traffic
forecasting due to less information in its predictors.

[
W, (Xt−kf , . . . , Xt−f , Xt)

]
→

[
Y t+f , Y t+2f , . . . , Y t+(p−1)f , Y t+pf

]
(2.4)

In this paragraph, we review some representative studies on dynamic and indirect
flow estimation. The traffic fundamental diagram is one of the most popular and well-
established models relating traffic state variables (flow, speed, and density or occupancy).
Different fundamental diagrams, such as Greenshield’s fundamental diagram (Greenshields
et al., 1935), correlate traffic flow with speed (Kühne, 2008). Therefore, readily available
speed data (together with other covariates) can be used to predict traffic flows if the
fundamental relationship is manifested. One drawback of the fundamental diagram is
that it lacks a time-dependent representation of traffic state variables and, thus, requires
suitable model extensions for a dynamic representation. To handle this, Neumann et
al. (2013) used Bayesian networks to model the time dependencies and predict traffic
flows (from six hundred detectors) from speed data for the city of Berlin. Kumarage et al.
(2018) used K-nearest neighbor regression with spatial-temporal attributes to predict flow
at fewer locations. Pun et al. (2019) used topological and geometric features for traffic
flow estimation. Gkountouna et al. (2020) used data from thirty-six sensor locations for
developing bi-level flow estimation models. The novelty in their method was the use of
principal component analysis and clustering to identify road segment archetypes in the
first level. This information is used in the second-level regression model. Rinaldi and
Viti (2020) used a Kalman filtering framework for flow estimation. Zhang et al. (2020)
used a geometric matrix completion model for network-wide traffic flow estimation, using
real-world (twenty-four road segments) and synthetic datasets. Recently, Abdelraouf et
al. (2022) used speed and volume features from PVD as an input to recurrent GCN to
predict the traffic state parameters. In contrast to other indirect estimation works, using
the flow from PVD as an additional feature provides direct information for accurate
prediction but also makes the model dependent on such data. Among the above, only a
few studies (Abdelraouf et al., 2022; Neumann et al., 2013) consider data from more than
a hundred detectors, whereas the other studies use relatively minor datasets. Further,
Neumann et al. (2013) note that their model performance was not accurate enough for
freeways or roads with higher speed limits. Traffic flow estimation is complicated by
static or dynamic changes in link characteristics such as speed limit, the number of lanes,
data collection, data quality (presence of noise and anomalies), and data processing
(smoothing, aggregation). Further, the methodological steps are pivotal when processing
raw FCD to obtain link speed data (Zhu et al., 2009). These factors can distort and
induce scatter in the fundamental diagram, thus rendering indirect traffic flow estimation
quite challenging.
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2.6.3 Transfer learning

Machine learning models, also in the case of traffic forecasting and traffic state estimation
models, are developed assuming that the training data and test data “must be in the
same feature space and have the same distribution” (S. J. Pan & Yang, 2010). However,
this does not generally hold true when applying models to the new study area. The
data distributions from the two study areas can differ even if the same set of features
is developed for the data from two locations. This will have an impact on the model’s
performance. This challenge is tackled using transfer learning, which is improving the
learning of a new task (target task) using the knowledge from an already learned related
task (source task) (Torrey & Shavlik, 2010).

Transfer learning is defined formally in terms of domain and task in the survey
paper by S. J. Pan and Yang (2010). A domain D consists of a feature space X
(X = {x1, . . . , xn} ∈ X ) and a marginal probability distribution P (X) (S. J. Pan &
Yang, 2010). A task consists of a label space Y and an objective predictive function
f(·) (denoted by T = {Y, f(·)} ) (S. J. Pan & Yang, 2010). The objective predictive
function is not observed but can be learned from the training data. f(x) can be written
as P (y | x). After the model is learned on the source domain (DS) for a source task (TS),
the aim is to transfer the learned knowledge for learning the target predictive function
fT (·) for solving the target task (TT ) in the target domain (DT ) (S. J. Pan & Yang,
2010), where DS ̸= DT , or TS ̸= TT . For instance, two cities, even with the same road
links, could display different levels and patterns of traffic flow, depending on local traffic
conditions.

S. J. Pan and Yang (2010) noted four transfer learning algorithms based on how
the knowledge is transferred from the source task to the target task. These four types
are instance-based, feature-based, model-based, and relation-based algorithms. In deep
learning, using pre-trained models for secondary tasks is essentially the same as model-
based transfer learning (S. J. Pan & Yang, 2010). In model-based transfer learning, it
is assumed that the model’s parameters learned from the source domain will be helpful
for the target task in the target domain. These parameters and hyperparameters are
fine-tuned using the limited training data from the target domain.

For short-term travel-time prediction, Luan et al. (2018) showed that link-to-link
transfer of their model is possible but emphasized further research into factors that
affect transferability. Li et al. (2021) and Mallick et al. (2021) used transfer learning
techniques in short-term traffic prediction using source and target links consisting of
links from different locations. Li et al. (2021) found that transfer learning can provide
more accurate predictions when the source and target links have consistent data patterns.
When abundant labeled data is available, training a model from scratch without any pre-
trained model makes sense. Mallick et al. (2021) proposed the Transfer Learning-DCRNN
model using a graph-partitioning-based transfer learning approach for short-term traffic
forecasting, which outperformed other models. Using source knowledge through transfer
learning can help to reduce dependence on large datasets and improve the existing models.
Investigating when or at what levels of data transfer learning outperforms the new models
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2.6 Indirect flow estimation to tackle sparsity and insufficiency of traffic flow data

trained from scratch is a promising research direction. Transfer learning for indirect
traffic flow estimation is still not explored.

2.6.4 Research gaps

One of the main features of traffic flow forecasting methods is that time-lagged flow or
speed data are used as an input in autoregressive formulations (T. Ma et al., 2020; Polson
& Sokolov, 2017). For instance, past/ time-lagged values of a signal (flow or speed) or
variable are used to predict a future variable (speed or flow, respectively). However, in
some cases, such flow data is wholly or partially unavailable, i.e., spatially sparse or comes
with large temporal lag, thus, posing challenges for deploying traffic prediction models
and their applications in dynamic or real-time settings. Moreover, using benchmark
datasets, such as the Caltrans PeMS (California Department of Transportation, 2020),
does not portray the data availability challenges, varying from region to region. Hence,
it could inhibit the practical deployment of traffic forecasting models.

Another issue worth highlighting is the ease of collection and data availability. Speed
and flow (volume) data tell us different aspects of the traffic state. Flow tells us about
the load on the link or the number of vehicles passing through a specific road and has
applications in highway and pavement design, highway-side advertising, and commercial
or real-estate investments. This work uses the term “link” to imply road segments.
Speed depicts the link’s congestion, travel time, or time delay. Speed does not directly
represent the number of vehicles on the road. Instead, speed data is used to provide
travel time estimates or the level of service on the road. Traffic flow data are more
challenging to collect than link speed data since the latter can be approximated from a
sample of vehicles (Aslam et al., 2012; Neumann et al., 2013). Speed data are derived by
aggregating the traces from a fleet of cars, also known as PVD or FCD, or mobile phones
via the GNSS receivers. This is one of the reasons network-wide traffic speed data are
more prevalent for more cities than traffic flow data. Many companies (TomTom, 2021;
Uber Movement, 2020a) collect data from vehicle fleets or smartphones, and some make
it publicly available to a certain extent (Mahajan et al., 2022). For instance, Uber, a
global ride-hailing company, shared such data during 2016-2020 for many cities worldwide
under non-commercial use licenses (Uber Movement, 2020a). The data is available for
download in bulk. In addition, navigation companies such as TomTom provide link speed
data with limited free API calls followed by paid usage.

On the other hand, collecting traffic flow or count data requires dedicated hardware
or collection methods which incur time and cost burdens. Specifically, traffic flow data
is primarily collected via magnetic loop detectors installed on the streets. Such data
collection infrastructure comes with high installation costs, is not scalable, and is common
in many cities. As a result, traffic flow data are not available for many cities worldwide
and are scarce even for cities in developed countries. Due to the collection and coverage
asymmetry between traffic flow data and traffic speed data, there arises an opportunity
to use the speed data to infer traffic flows. However, the possible solutions exclude using
autoregressive models since time-lagged flow is assumed to be unknown and needs to be
indirectly estimated. Therefore, this is a problem of indirect flow estimation. Here, we
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see the potential to use publicly available data to derive flow data from samples to larger
parts of networks.

With the help of the flow chart (Figure 2.5), we identify the research gaps when there
is no historical/ real-time flow data for the links we want to make predictions. We divide
the links into two sets: training links and test links. If traffic flow data is available for
both sets, then traffic forecasting can be used, where time-lagged traffic flow is used as
one of the predictors. Suppose past data for test links are unavailable. In that case, the
indirect traffic flow estimation approach using conventional learning is applicable, where
only exogenous predictors are used to learn the traffic flow mapping so that during the
model testing, we do not need time-lagged flow values as predictors. In the previous case,
if sufficient flow data for training links are unavailable, flow estimation is done using
transfer learning. Here, the pre-trained model is fine-tuned using limited data. Finally, if
insufficient flow data for training are unavailable, which means we only have predictors
but insufficient labels, then it is a case of insufficient data.

From the above discussion, few research gaps are evident. Firstly, unlike traffic
forecasting, deep learning models are not prevalent in dynamic indirect traffic state
estimation. This is true even though both approaches have inherent similarities among
input and target features. Apart from prediction, quantifying the uncertainty in flow
estimation is also vital. A model which outputs a range of predictions can help us to
judge its preciseness. Lastly, the transferability of the indirect state estimation models
using real data is still unexplored. Because of the above, we see an opportunity to address
the following SRQs:

SRQ(9): How to use transfer learning to address the sparsity of dynamic link flows at
the network level?

SRQ(10): What are the conditions for the successful transfer of pre-trained models?

The former research question is motivated to address data scarcity within a study
area or city. The latter research question addresses data scarcity across cities. It helps
to scale the flow of information from a few links to the whole network, provided the
characteristics of the test data (link characteristics, spatial-temporal conditions) are
similar to the training data.

2.7 Research Objectives

Based on the above review of the existing studies and identification of research gaps, the
ROs following from the above SRQs are listed below:

RO(1): Develop a systematic typology to scope the data landscape and classify the
non-conventional data according to openness. [SRQ(1), SRQ(2)]

RO(2): Investigate the applications of prominent non-conventional data sources in
transport modeling research. [SRQ(3), SRQ(4)]
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RO(3): Develop and evaluate a scalable method for improving the usability and quality
of publicly available data from emerging sources. [SRQ(5)]

RO(4): Identify and apply publicly available opportunistic data for novel use cases and
demonstrate their application. [SRQ(6)]

RO(5): Develop and evaluate data-efficient methods to tackle challenges due to insuffi-
cient conventional data for traffic prediction and calibration. [SRQ(7), SRQ(8),
SRQ(9), SRQ(10)]
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3.1 Introduction

In this chapter, we revisit the emerging transport data and classify them according to
their public availability or openness. The chapter is structured as follows: The following
section lists the chapter’s contributions, followed by a section introducing the study’s
methodology. The following section presents a data classification typology based on
openness attributes. This typology is applied to classify these data into appropriate
categories. The next section reviews data applications in transport modeling, followed
by a section presenting a Strengths, Weaknesses, Opportunities, and Threats (SWOT)
analysis to get an overview of trends by focusing on application and availability aspects
together.

3.2 Research contributions

The contributions of this chapter are listed as under, with the relevant RQs in parentheses:

• We compile the relevant attributes for data openness from the literature and define
a classification typology based on the data’s public availability. This typology is
applied to classify the prominent non-conventional data in transport modeling.
[SRQ(1),SRQ(2)]

• We also review the modeling and analysis applications of non-conventional data from
mobile phones, social media, Global Navigation Satellite System (GNSS), Bluetooth,
smart cards, Volunteered Geographic Information (VGI), and standardized datasets
such as General Transit Feed Specification (GTFS). We analyze the benefits and
future challenges viz-à-viz public availability. [SRQ(3), SRQ(4)]

• An extended version of the codes, based on the original implementation by
Narayanan and Antoniou (2022), to obtain data on scientific articles are shared on
GitHub1.

3.3 Methodology

We collected articles from the scientific database (SCOPUS2) by specifying a combination
of keywords representing domain area and focus area (Table 3.1). The search query is
formulated as DOMAIN WORD + AND + FOCUS WORD for articles in the English
language between 1990-2020.

The domain keywords are somewhat generic (and not just specific to transport modeling)
because we feel that transport modeling is a vast field and keywords should be more
inclusive. We process the fetched articles by removing duplicates. The journal keywords
(Table 3.1) are used to filter the items by checking if the respective journal’s title contains

1https://github.com/vishalmhjn/scopus caller
2The data was downloaded using the Scopus API between January 1 and 31, 2020 via http://

api.elsevier.com and http://www.scopus.com
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3.4 Openness typology

Table 3.1: Keywords for collecting scientific articles from SCOPUS

Domain
words

Focus words Journal words

transport,
travel,
transporta-
tion, transit,
mobility,
traffic, trip

open data, public data, big data, social me-
dia, crowd sensing, location-based social
media, Twitter, Foursquare, Google, op-
portunistic data, passively collected data,
cell phone, smartphone, mobile phone,
smart card, automatic fare collection,
AFC, Bluetooth, automatic vehicle loca-
tion, AVL, floating car, global positioning
system, GPS, traffic count, taxi, bike shar-
ing, ride sharing, car sharing, open street
maps, OSM, volunteered geographic infor-
mation, VGI

traffic, transportation,
intelligent transport sys-
tems, ITS, transport, ur-
ban planning, spatial,
transit, mobility, urban,
cities, land, land-use,
sensors, location, sus-
tainability, geography,
railway, smart, civil

one of these words. Since the journal keywords are relevant to the transportation field
and help reduce the number of articles. Even then, we expected many papers due to
the large number of domain and focus keyword combinations (e.g., transport AND open
data). Specifically, approx. Fourteen thousand articles were found to satisfy the keywords
and filtering criteria. Finally, we filter the articles for the prominent data/ sources,
namely, mobile phones, social media, Automatic Vehicle Location (AVL), Bluetooth,
GTFS, General Bikeshare Feed Specification (GBFS), Global Positioning System (GPS),
smart card and Volunteered Geographic Information (VGI) only, referred to as data
of interest. This was done by checking if the paper’s title includes the name of such
data. Even though this selection might miss some data, we feel that we can cover most
emerging data/ sources and thus ensure the representativeness of the data application
review. Finally, there were a few “wild card” articles that the author(s) came across
during analysis (through the bibliography of reviewed articles, social media, and previous
experience) and were included in the review, primarily due to their significance and if
they added additional information to the data-application context. Finally, this exercise
resulted in 315 articles. For brevity, we usually only include one or unique scientific
reference to an application-data pair since the purpose was to provide evidence that
certain data have been used for a specific use case.

3.4 Openness typology

The Open Knowledge Foundation3 defines open data as “any content information or
data that people are free to use, re-use and redistribute without any legal, technological
or social restriction.” They mention the key openness features as availability, access,

3http://opendefinition.org/
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reuse, redistribution, and universal participation. We use the above definition and the
concentric shell model by Backx (2003), further used by van Loenen and Grothe (2014), to
compile the most important attributes and check if the data are known, legally attainable,
accessible, affordable, usable, and distributable. These attributes are defined below:

Figure 3.1: Public availability/ openness attributes (Extending the concentric shell model by
Backx (2003), English translation by van Loenen and Grothe (2014), in the top
right corner).

• Known: Data are findable (van Loenen & Grothe, 2014), or at least their existence
can be confirmed with the help of common tools, such as Web search engines,
catalogs, or Freedom of Information requests. Highly restricted data (Government
or commercial secrets), undocumented data, or unfindable data are unknown and
thus are totally out of public reach.
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• Legally attainable: When the data are not restricted by way of statutory enact-
ments4, they can be classified as legally attainable. The governing legislation aims
to mitigate such risks if the data contain sensitive information, such as personal
data, defense, and trade secrets. Unless the related risks are mitigated, these kinds
of data (at least in raw form) cannot be legally obtained and are beyond the public
domain. Further, it is pointed out that physical/ digital access to legally attainable
data is not always guaranteed. The data owner could refuse to share the data due
to bureaucratic/ enforcement laxity, fear of criticism, competition, etc.

• Accessible: We use accessibility to refer to the physical aspect of attainability,
according to van Loenen and Grothe (2014). We include both the physical mode (via
post) for records in soft/ hard format and digital modes [Application Programming
Interface (API), bulk download facilities] of access for cloud or local computer
databases. Universally accessible data implies that the data are publicly accessible,
irrespective of the cost and usage restrictions, e.g., an API that is publicly accessible,
which may/ may not be priced.

• Affordable: This is akin to financial attainability and part of the second shell
of Backx’s model (van Loenen & Grothe, 2014). Data that are available free5

of charge (i.e., gratis) are universally affordable. The data provider bears the
cost6 from other revenue sources, such as the organization’s general annual budget
in case of open government data (Welle Donker & van Loenen, 2016). Despite
the ongoing emphasis on open data, the commercialization of proprietary data is
growing [OECD, 2015 as cited in OECD (2019)]. However, if the user costs of the
data remain small, it can also be affordable at large. This concept is similar to
public transport pricing, which is commonly not free but below operating costs to
improve equity. Commercial datasets are considered unaffordable in this research.

• Usable: Usability is a multi-faceted character that could refer to the ease of use,
quality of the data, and end-use restrictions. Ease of use increases with machine
readability and their compatibility with open-source tools (Braunschweig et al.,
2012). Structured datasets offer high usability, whereas processing unstructured
data (like textual data, PDFs, and scanned documents) is more cumbersome. Data
quality attributes such as data context (in terms of meta-data), completeness,
timeliness, and consistency affect the data usability depending on the use case.
Re-use of data implies data usage by someone other than the original user for a
different purpose (Pasquetto et al., 2017). Specific licenses such as CC-BY-NC
restrict the application of the datasets only for non-commercial purposes.

4Examples of such Statutory rules are the General Data Protection Regulation in the EU, the State
Secrecy Law in Japan, the Defense Secrets Act in the USA or the Trade Secrets Act in Germany.

5In this paper, “free” implies gratis or free-of-charge datasets, where users don’t need to pay any fees for
using the data. Another interpretation of “free” is “free as in the freedom of speech” or libre, which
gives the user freedom to modify, adapt, and even distribute the data (Suber, 2008).

6Data costs can correspond to different stages, such as production, curation, analytics, publication,
marketing, etc. Thus, the data owner or provider can decide to cover these costs in part or full, from
diverse revenue streams including a budget, licensing, etc.
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• Distributable: This refers to the right to re-publish or share the data in an original
or modified version with a third party, without any or minor restrictions7. This
implies that the data come with a suitable license that allows redistribution. The
extent of distribution freedom depends on the specific licenses, e.g., distribution
in the adapted or original format. Examples of open data conformant licenses are
Creative Commons (CC0, CC-BY-4.0, CC-BY-SA-4.0), Open Data Commons, and
Open Database License ODbL1.0. A review of licensing frameworks is given by
Mockus and Palmirani (2015).

The above typology is summarised in Figure 3.1. Open data should satisfy all the
above parameters, whereas public or publicly available data are not always usable or
redistributable.

3.5 Data classification

We propose a classification scheme (Table 3.2) based on whether the legally attainable
data discussed in the previous section (Figure 3.1) are universally affordable, accessible,
usable, and distributable. Legally attainable data could be either Public Data (PD) or
Non-Public Data (NPD) and are classified into four main categories: (i) Commercial/
Proprietary data (NPD-1), (ii) Inaccessible data (NPD-2), (iii) Gratis and accessible data
with restricted use (PD-1), and (iv) Open data (PD-2). As the commercial or inaccessible
data (NPD-1 and NPD-2) are not within public reach, they are non-public data. On the
other hand, gratis and accessible data (PD-1 and PD-2) are referred to as public data.

• Commercial data (NPD-1) are priced data mainly from private companies, such
as mobile phone data, social media data (e.g., premium API from Twitter8 and
Foursquare9), personal car AVL data. In some cases, Government data may also be
priced, e.g., premium GTFS10 data. There might be exceptions where the priced
data are shared for free, particularly with researchers or policymakers. Still, the
data are not affordable at large, i.e., universally. Data intermediaries also play
a crucial role by sourcing data from multiple providers and providing processed
derived or inferred information as a premium service (OECD, 2019).

• Inaccessible data (NPD-2) includes data owned by transport operators, such as
smart card data or detector-based AVL data. Some transport operators are willing
to share these data (on specific requests/ academic research). Still, they cannot be
assumed to be generally accessible as long as these data are not within reach of the
public. When such data providers share these data, they are commonly uploaded
as open data on their website or open data portal (PD-2).

7As per the www.opendefinition.org, requirements of attribution and share-alike conform with the
Open data definition, and thus do not count towards restricting usage or distribution of the data.

8https://developer.twitter.com/en/pricing
9https://developer.foursquare.com/places

10https://gtfs.de/en/services/
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3.5 Data classification

Table 3.2: Data Classification

Data
Type

Data Provider Openness attribute Data Category Examples

L
eg
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ly

at
ta
in
a
b
le

A
cc
es
si
b
le

A
ff
or
d
ab

le

U
sa
b
le

D
is
tr
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u
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b
le

Mobile
Phone
Network
Data
(MPND)

Telecom op-
erator/ Data
intermediaries
(SaaSa)

✓ ✓ - ✓b - NPD-1 OD matrices de-
rived by data in-
termediaries are of-
fered as a premium
service

Social Me-
dia

Social media
platforms

✓ ✓ ✓c ✓b ✓b NPD-1/PD-1 Premium access/
Free access

Smart
card

Transit operator ✓ - ✓c ✓b,d - NPD-2 Shared selectively
for research pur-
poses only.

Bluetooth Traffic operators ✓ -/ ✓ ✓ ✓b,d ✓b NPD-2/ PD Aggregated infor-
mation such as
flow, travel time are
shared

GNSS
-derived
AVL

Navigation ser-
vice providers,
OEMs, Commer-
cial fleets

✓ ✓ - ✓b - NPD-1 Vehicle level infor-
mation is seldom
shared publicly

✓ ✓ ✓c ✓d ✓b PD-1 Aggregated traffic
data as premium or
free service

GTFS Transit operator ✓ ✓ ✓c ✓d ✓b PD-2 Stop locations and
schedules, some-
times real-time
data too

GBFS Shared mobility
provider

✓ ✓ ✓ ✓d ✓ PD-2 Bike-share data

VGI Crowdsourced ✓ ✓ ✓ ✓d ✓ PD-2 OpenStreetMap
a Software as a Service b Depends on the terms and conditions/ license of data (re-) use and sharing.

c Could be offered as a free or a premium product/ service. d Data may or may not be usable
depending on the data format and end-user requirements.
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• Gratis and accessible data with restricted use (PD-1): Examples include free-of-
charge (gratis) data from private companies that come with specific licenses, such as
Creative Commons Non-Commercial (CC-BY NC). Examples are UBER Movement
data and social media data (gratis) such as Twitter API. In many cases, such as
Google Directions API, aggregate information derived from personal data is shared
in the public domain to mitigate privacy risks and maintain an advantage among
competitors.

• Open data (PD-2): This segment is subdivided into 3 data ownership types, namely
the private sector, public sector, or community, depending on who is responsible
for the data collection and provision (Figure 2.1).

– Open Government Data (OGD) refers to the open data produced and collected
by public organizations. Mobility or transport datasets are listed under a
separate category on most Open Data Portals (ODPs). Open government
data are thematically rich and cover a wide range of technical and non-
technical areas (Charalabidis et al., 2016). The EU’s ITS Directive11 aimed
for optimal use of the road, traffic, and travel data. Mobility is one of the
six themes targeted for high-quality datasets in the EU’s Open data directive
2019 (European Commission, 2020). However, despite the OGD’s progress in
recent years, much data shared by the government lacks usability and clear
guidelines/ licenses for the distribution of data (Mockus & Palmirani, 2015).

– Open Private Data (OPD) are still at an early stage. Private companies have
varied terms of conditions regarding data release and usage. Some companies
value data sharing (Welle Donker & van Loenen, 2016). For example, many
bike-share companies share real-time bike feeds using the open data standard
GBFS.

– Open Community Data (OCD) refers to crowdsourced open datasets/ databases
neither owned by the government nor the private sector, such as Open-
StreetMap. Research data, such as complete transport models, have been
made openly available by researchers (Ziemke et al., 2019). While the input
data do not necessarily have to be open, the post-processed scenario data can
be used by other users.

Not every dataset might fit perfectly into one category. Social media data, for example,
could be priced or gratis. Detector count data tend to be inaccessible (NPD-2), but in
some cases (e.g., the city of Paris), these data are open (PD-2). The above classification
typology is a fair attempt to segment data logically.

3.6 Review of data applications

Figure 3.2 shows the transport modeling applications of different data types and their
availability category, discussed below in more detail.

11https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32010L0040
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3.6.1 Mobile Phone Network Data (MPND)

Mobile Phone Network Data (MPND) can be event-driven or network-driven. Event-
driven MPND are generated when a mobile user actively interacts with the device,
such as making/ receiving a call or SMS (H. Huang et al., 2019). On the other hand,
network-driven mobile phone data are generated even passively and thus are much denser
compared to event-driven data (H. Huang et al., 2019).

Figure 3.2: Public availability and applications of the prominent datasets used in transport
modeling.

Event-driven data such as Call Detail Record (CDR) contain caller ID, timestamp,
latitude, longitude, duration of the call or other activity, and receiver’s ID (Rojas et
al., 2016). Earlier studies showed the feasibility of MPND for Origin-Destination (OD)
estimation using a mobile network simulator (Caceres et al., 2007). These data are a
convenient alternative to conventional methods (roadside interviews and household travel
surveys) for estimating OD matrices (Bonnel et al., 2018; Tolouei et al., 2017). Accurate
user trajectories can be obtained from network-driven data and applied for route choice
modeling (Schlaich, 2010). Travel mode can be detected from mobile phone data using
rule-based or machine learning models based on travel-time/ speed distribution (Rojas
et al., 2016; H. Wang et al., 2010). If MPND are collected over a longer duration, they
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can be a source for activity location analysis (Järv et al., 2014). Mobile phone data were
also used for accessibility modeling (Guo et al., 2019) and land-use detection (Furno
et al., 2017). A few studies have combined MPND with other datasets, such as GNSS
data for departure time choice (Bwambale et al., 2019), and Household Travel Surveys
for activity location analysis (C. Chen et al., 2014). Despite their large sample sizes,
MPND might not cover specific sections of the population that use mobile phones less
frequently, such as children and older people (Tolouei et al., 2017). Furthermore, MPND
are owned by telecommunication companies and are not publicly available due to privacy
and commercial reasons. The sociodemographic attributes are generally not available
in MPND. For many modeling tasks with MPND, more traditional observed data (e.g.,
traffic counts, travel surveys) are still required for validation and scaling the models to the
full population. Lastly, inferring trajectories from MPND, such as CDRs, is challenging
due to discontinuity issues and data noise.

3.6.2 Smart card data

Smart card data are suitable for OD matrix estimation, as the journey’s start and/ or
end is recorded when a passenger enters or exits a public transport station (Barry et
al., 2002). The large volume of OD pairs is also useful for route choice modeling using
other attributes such as waiting time, in-vehicle travel time, headway, or the potential
number of transfers, which can be directly or indirectly inferred from smart card data
(Jánoš́ıkova et al., 2014). The network-wide scale of smart card data is advantageous for
calibrating and validating the public transport assignment models (Tavassoli et al., 2017).
Smart card data could be useful for destination choice estimation, at least to identify
the alighting station (Trépanier et al., 2007). As smart card data lack information on
journey purpose, researchers need travel survey data and other geographical data to
infer the trip purpose (Bagchi & White, 2005). Although smart card data have clear
benefits, they are not a panacea for public transport modeling. Smart card data are
generally not universally accessible since public transport companies might be restricted
or unwilling to share the data due to privacy, commercial, or other reasons. Even if
the data are accessible, the data might not be fully representative of public transport
behavior, since some public transport users do not own or regularly use a smart card.
Inferring the OD trips is difficult if the smart card is not used at the alighting stop.
Sociodemographic attributes are absent in the smart card data. Smart card data are
generally used with GTFS data to associate mobility patterns with the public transport
network and schedules. Thus, smart card data depend on GTFS data to realize their full
potential in public transport planning and operation studies.

3.6.3 Global Navigation Satellite System (GNSS) Data

Global Navigation Satellite Systems, such as GPS, GLONASS, BeiDou, and Galileo, have
been explored to gather data from personal devices/ vehicles that complete or replace
household survey data. Research has shown that using GNSS data to confirm user diaries
leads to more accurate trip information, overcoming user biases and miscalculations

56



3.6 Review of data applications

(Kelly et al., 2013). These data can then give a clearer insight into the travelers’ behavior
(Grengs et al., 2008) and help decode the user choices regarding travel frequency (Stopher
et al., 2007), travel mode (Feng & Timmermans, 2013) and trip routes (Papinski et al.,
2009), as well as infer their trip purpose and estimate non-vehicle travel (Wolf et al., 2003).
Similar applications exist for taxis regarding trip patterns and congestion (Tang et al.,
2018) and selecting the optimal commercial vehicle fleet size (Yang et al., 2019). Other
taxi applications that use GNSS include analyzing route choice (Duan & Wei, 2014) and
land use classification (G. Pan et al., 2013). In addition, the spatiotemporal context in
the GPS data offers valuable information on transport network performance (Sandim et
al., 2016). GNSS data were also used to understand bicyclists’ route choices, considering
the surrounding environment and infrastructure (Broach et al., 2012). A limitation of the
GNSS data is the inaccuracy due to delays in signal acquisition (cold starts), data loss,
and errors stemming from obstacles, such as high-rise buildings. Besides, GNSS data
can be biased when it mostly stems from specific vehicle fleets (e.g. taxis, staff cars),
leading to results that could be misinterpreted when making inferences about general
traffic conditions and behavior.

3.6.4 Bluetooth data

The most popular application of Bluetooth data is travel time estimation. Bhaskar
and Chung (2013) have reviewed the technical aspects of the Bluetooth data collection.
Bluetooth data are a proxy for license plate recognition match for travel time estimation
(Hainen et al., 2011) because Bluetooth scanners can identify the vehicles based on the
device’s Media Access Control (MAC) address. Vehicle detection at multiple routes in the
network can help travel time estimation and trajectory extraction (Bhaskar et al., 2015)
and construct the Bluetooth origin-destination matrices (Barceló et al., 2010). Data from
Bluetooth detectors has been applied for trip behavior classification (Crawford et al.,
2018), route choice modeling (Hainen et al., 2011), and mode detection (Bathaee et al.,
2018). Bluetooth data are also used for modeling active modes of transport, i.e., bike
travel time and walking (Malinovskiy et al., 2012; Ryeng et al., 2016). Some case studies
have confirmed that travel time data from Bluetooth or WIFI sensors are very similar to
actual data (Ryeng et al., 2016). To collect Bluetooth data, scanning hardware needs to
be installed at different places in the network, which may be cost-intensive and requires
permissions from authorities and safeguarding privacy concerns. The trade-off between
location ambiguity and the Bluetooth antenna’s penetration rate (coverage) should be
considered when collecting and processing Bluetooth data (Araghi et al., 2015).

3.6.5 Social media data

Various social media data have been used to extract variables for travel behavior analysis:
trip purpose, destination choice, mode detection, and activity duration (Rashidi et al.,
2017). Social media data can provide insights into travel behavior at a disaggregated
level (at the level of an individual unit such as a user or Point of Interest (POI)) in
real-time. Twitter data are a potential candidate for estimating the trip purpose or
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activities (Chaniotakis et al., 2017). Combined with the point-of-interest data, they
can be used to forecast the next activity besides the current activity (Y. Cui et al.,
2018). Twitter and other social media data have been used to study different aspects of
longitudinal travel behavior, such as destination choice (Y. Chen et al., 2018; Llorca et
al., 2018; Zhang et al., 2017) and mode choice (Maghrebi et al., 2016). When combined
with census and land-use data, Twitter data can help estimate OD demand matrices
with adequate accuracy (Osorio-Arjona & Garćıa-Palomares, 2019). Geotagged Twitter,
Flickr, and Weibo data can provide contextual information for predicting passenger
flows (Ni et al., 2017) or a proxy for recreational/ leisure travel (Hamstead et al., 2018).
Social media data were successfully used to describe mobility patterns, miscellaneous
spatial-temporal analysis, sentiment analysis, traffic information extraction, and incident
detection, among others, at the aggregate or disaggregate level. A significant proportion
of Social media data, such as from Twitter, is not geotagged (Chaniotakis & Antoniou,
2015), which limits their application or requires extended data collection periods. Social
media data suffers from representativeness issues, e.g., Twitter data is biased towards
high-income groups and leisure activities (Chaniotakis et al., 2016; X. Wu et al., 2017).
Textual data from social media applications is unstructured, noisy, ambiguous, short,
and needs significant pre-processing (Grant-Muller et al., 2015). Social media data lacks
guaranteed long-term availability and suffers from reliability and usability issues due to
its private ownership and evolving privacy issues. If social media companies decide not
to share any data, the impact on transport modeling research could be substantial, e.g.,
TripAdvisor prohibits using their data for any data analysis and academic research12.
Free social media data usually come with restrictions, such as API call limits or the
non-availability of historical data. These issues could cause reluctance among cities or
policymakers to shift to social media data for transport modeling.

3.6.6 Volunteered geographic information

VGI have been used to estimate and map populations and jobs in a given area. Travel
demand models usually require representing the actual population, including home and job
locations in the study area. Traditionally, census data are used to represent the population.
Bast et al. (2015) developed an approach to estimate population numbers solely based
on OpenStreetMaps (OSM) data at an individual building resolution. Bakillah et al.
(2014) presented a framework that disaggregates aggregated population data down to
individual buildings using buildings and point-of-interest from OSM. Bienzeisler et al.
(2020) used a data fusion approach to estimate job locations based on company data and
building data from OSM. A similar use case to estimate traffic volumes and disruptions
instead of the population was described by Camargo et al. (2020). Another use case for
VGI is the classification of land use, which can be used to allocate jobs and households.
Arsanjani et al. (2013) used OSM data to classify land use for the city of Vienna. On
the supply side, transport models work with an abstract representation of the transport
infrastructure using network graphs. VGI providers such as OSM were initially designed

12https://developer-tripadvisor.com/content-api/request-api-access/
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to map roads and allow navigation with accurate road and public transport networks.
OSM has become a standard data source for networks in transport simulations, such as
SUMO or MATSim (Ziemke et al., 2019). Other transport-related applications of VGI
include accessibility calculations based on network and point-of-interest data (Lantseva
& Ivanov, 2016), traffic light information extraction (Rieck et al., 2015), environmental
exposure analysis (Kuehnel et al., 2019), and bike ridership analysis (Duran-Rodas et al.,
2019). VGI can be used in many applications and is available in most parts of the world.
However, the lack of strict quality control and sometimes lax mapping or representation
standards can lead to inconsistent data (Senaratne et al., 2017). Also, the level of detail
and completeness differs by area and largely depends on the active community. Therefore,
the quality may vary substantially in different parts of the world.

3.6.7 Standardised transport data

Public standards have been defined to simplify data exchange for some commonly used
data in the transportation field. A well-known de facto standard is the GTFS, which
represents the public transport supply and can be used to calculate public transport travel
times. GTFS has become a frequently used standard to model public transport supply
(Bienzeisler et al., 2020; Ziemke et al., 2019). GTFS data were also used to study public
transport accessibilities (Owen & Levinson, 2017). Unfortunately, GTFS data are not
available everywhere, mostly focusing on developed countries. While GTFS works well
for regular public transport with a fixed schedule, it cannot represent demand-responsive
transport types, such as mini-buses or ride-hailing. GTFS data are not always made
accessible to researchers by the service provider. Routing requests through Google Maps
can be used in such cases, though the number of free requests per day is limited. Similarly,
GBFS is an open standard to provide real-time information about the current status
of bike-sharing/ other micro-mobility systems and their availability. Thus, GBFS can
play a potential role in shared mobility data by bringing the fragmented information
from hundreds of bike-share and micro-mobility platforms under a common standard.
DATEX II13 is another example of a common language used for sharing road traffic data
(such as vehicle flow, roadworks, parking, and traffic measures) between traffic control,
management centers, and service providers in the EU. In some instances, these data
are also available to the public, such as a live feed for the parking situation in Norfolk
County, UK14, or for road traffic counters in Switzerland15. The Zephyr Foundation and
various stakeholders have introduced data standards used by the transport modeling
community. For example, the OMX16 open matrix format was developed in 2013 and
allows transport modelers to share and read different models’ matrices. More recently,
Zephyr promoted the General Modelling Network Specification (GMNS), an open format
for network data explicitly designed for transport models (Smith et al., 2020). The idea

13https://www.datex2.eu/
14https://www.data.gov.uk/dataset/b6e83001-fb1e-43e8-9ef1-a522b226160a/norfolk-county

-council-live-car-park-data
15https://www.opentransportdata.swiss/de/rt-road-traffic-counters/
16https://github.com/osPlanning/omx

59

https://www.datex2.eu/
https://www.data.gov.uk/dataset/b6e83001-fb1e-43e8-9ef1-a522b226160a/norfolk-county-council-live-car-park-data
https://www.data.gov.uk/dataset/b6e83001-fb1e-43e8-9ef1-a522b226160a/norfolk-county-council-live-car-park-data
https://www.opentransportdata.swiss/de/rt-road-traffic-counters/
https://github.com/osPlanning/omx


3 Data openness and scoping for transport analysis and modeling

is that models should share a common standard for input and output data. Similar to
the emergence of public transport datasets after the emergence of GTFS, this could lead
to more publicly available network models in the future.

3.7 SWOT analysis

We present the SWOT analysis (Table 3.3) for the data discussed in the above section.
SWOT helps us synthesize the discussion on the data by bringing together aspects that
influence the applications and data availability. Spatial-temporal and contextual (travel
mode, population sample) coverage, aggregation level, data frequency, and historical
data availability are factors that play a role in determining their application. These
factors are directly or indirectly determined by the data providers, who are responsible
for protecting the user’s privacy and propriety interests.

3.8 Summary

MPND have extensive spatial-temporal coverage, but these data are privately owned and
publicly unavailable. Social media data offer location data with contextual information,
which is unique but suffers from sample bias favoring the young and high-income pop-
ulation and leisure activities (Chaniotakis & Antoniou, 2015). Further evolving social
media platforms and privacy issues increase uncertainty in the availability of these data
in the future. Due to privacy or commercial interest issues concerning disaggregated
data from mobile phones, smart cards, and social media, data owners (private or public)
often reluctantly share these data or restrict and limit its availability. It is also crucial
for data providers to process raw data before sharing to mitigate any privacy concerns.
For example, mobile network data or AVL data need to be anonymized or aggregated so
that the individual users/ patterns cannot be identified. While such intermediate steps
are necessary, they commonly result in losing some information in the resulting data.
Open standards like GTFS have helped increase the usability and interoperability of

public transport data. Similarly, GBFS is a relatively new step towards sharing data
from new mobility forms, such as bike-sharing. Crowdsourced VGI bridges the gap of
missing spatial information by providing an alternate source of large datasets, but their
quality and depth depend on the involved community’s participation. Successes on the
open data front have been generated due to the collaboration of data consumers and
data providers. These developments have had a positive cascade effect by giving birth to
new tools and innovations based on these datasets.

This chapter provided a broad overview and conceptual understanding of the openness
and applications of non-conventional data in transport research and also marked the end
of Part I of this dissertation.
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4.1 Introduction

In this chapter, we identify the problematic cases and process the noise and anomalies
in the traffic acceleration data from drone videography. While high-frequency noise
can be addressed using available techniques, detecting anomalies is tricky since it is an
unsupervised task. The outlier detection method, which accounts for the local properties
of the data and could encompass variations among vehicle class, driving behavior, and
anomalies, would be helpful and a step toward extending the state-of-the-art. The 2D
tracking has been used in the Autonomous Vehicle (AV) motion planning-related literature
(Claussmann et al., 2020) and could reduce the errors in the drone videography dataset,
we aim to apply fast processing to trajectory data (derived from drone videography) to
remove errors, improving the quality of the data for traffic-oriented purposes. As a result,
to fully take advantage of such a detailed and massive dataset, it is necessary to find
appropriate techniques to detect the outliers (unrealistic transient peaks) and filter them
efficiently. We see an opportunity to propose an anomaly detection method to detect the
relevant anomalies, i.e., implausible accelerations. We present our methodology in the
next section, considering the large dataset, high variability in the driving attributes and
context, and minimum fine-tuning and speed.

The remainder of the chapter is structured as follows: the following section lists the
chapter contributions, followed by the methodology of the study, followed by a section on
data description and illustration of some of the problematic cases, followed by a section
on data analysis, followed by the results of this research, and finally, we summarize the
chapter.

4.2 Research Contributions

The contributions of this chapter are as follows:

• We provide a detailed analysis of the pNEUMA dataset and point out the errors in
acceleration and speed time series that need processing.

• We develop a scalable methodology to treat noise and unrealistic peak anomalies
in the trajectory data from drone videography using Extreme Gradient Boosting
(XGBoost) and smoothing filters. The XGBoost model with adaptive regularization
creates an anomaly mask for each trajectory. Our methodology reduces the burden
of manually fine-tuning the anomaly detection model when applying it to a large
dataset. [SRQ(5)]

• The codes developed for this proposed methodology are shared on GitHub1.

1https://github.com/vishalmhjn/pneuma treatment
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4.3 Methodology

Before removing errors, we analyze the occurrences of excess values of accelerations in
the trajectory data from drone videography. Spatially and temporally near vehicles
can highly correlate due to traffic flow or car-following behavior. Spatially apart but
temporally near vehicles can also show correlated errors due to global events such as
wind disturbance to the drone. However, such errors can also occur on account of image
processing or data processing. Spatially near but temporally far vehicles can show similar
anomalies if passing through the same street obstructed from drone view at different times
(Kim et al., 2023). However, if the trajectories of vehicles are spatially and temporally
apart, we expect little error correlation among them.

Our methodology for treating noise and anomalies is shown in Figure 4.1. We treat
vehicles one by one so that the noise and anomalies are identified flexibly depending on
the vehicle’s attributes.

Figure 4.1: Methodology flow chart. ©2023 IEEE.

Let us denote the raw speed data by sit for the ith vehicle at time t. We use the SG
filter to remove the noise in the speed time series from the raw data to obtain output vit.
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4 Treating noise and anomalies in drone videography data

We find that the output of the Savitzky-Golay (SG) filter will be biased because the filter
is applied to data containing anomalies. However, this is only an intermediate step, and
we will address this specific problem subsequently. Smoothed output (from the previous
step) is a better choice for evaluating acceleration from the speed time-series (Equation
4.1) than the raw data, as the gradient of noisy data could fluctuate and give even more
unrealistic values of the accelerations.

ait =


vit+δt−vit

δt , if t = 1
vit+δt−vit−δt

2δt , if 1 < t < n
vit−vit−δt

δt , if t = n

(4.1)

Where v is the smoothed speed output of the SG filter, δt is the granularity of the
data.

We aim to detect and process the unreasonable values of the acceleration for the
anomaly detection task. This is akin to peak detection in a time series, where the peaks
represent anomalous behavior. Our work also makes a similar assumption as in the
Eskin (2000), where the proportion of representative/ usual data is significantly larger
than the anomalous data. This assumption is verifiable by plotting the density plots
of data distribution and checking what portion of the data lies within the usual range.
Next, we fit a regularized machine learning model to reconstruct the acceleration time
series. Regularization is a popular method to analyze noisy data (Stickel, 2010). The
use of reconstruction error to classify anomalies is demonstrated in previous studies
(Japkowicz et al., 1995; Sakurada & Yairi, 2014) e.g., Sakurada and Yairi (2014) used
an autoencoder (a deep learning model) with a regularized objective function for this
task. Instead of a deep learning model, we select XGBoost model (T. Chen & Guestrin,
2016) for this purpose. XGBoost is based on the concept of Gradient Boosting Machines
(GBM), but with certain algorithmic and software enhancements. We select this model
because boosting models are generally considered “off-the-shelf classifiers” (Hastie et
al., 2001), and thus need lesser feature preprocessing and parameter tuning than other
machine learning models such as neural networks. Two basic tunable parameters for
a gradient boosting model are the number of iterations (or number of estimators) and
the size of each of the constituent trees (number of leaves in the tree) (Hastie et al.,
2001). Boosting trees are computationally feasible on even large datasets since small
trees are used as weak learners (depth of a tree varying between 4 to 8). In Boosting,
observations with high residuals generally receive ever-increasing influence with each
iteration (Hastie et al., 2001). Increasing the number of iterations and size of the tree
will result in over-fitting. Thus, it is important to stop training the model before it
starts to overfit the data. Another way to prevent over-fitting is by using a regularization
(similar to Ridge regression) to shrink the contribution of each tree. XGBoost (T. Chen
& Guestrin, 2016) uses the following regularized loss or objective function:

L(k) =
T∑
t=1

l
(
at, â

(k−1)
t + fk (xi)

)
+Ω(fk) (4.2)
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where, l is a differential convex loss function that measures the difference between the

target at and prediction â
(k−1)
t acceleration, each fk corresponds to an independent kth

tree with structure q and leaf weights w, T is the number of frames (input samples) in
the series, and

Ω(f) = γK +
1

2
λ∥w∥2, (4.3)

K is the number of leaves in the tree, γ is the parameter that penalizes large trees,
and λ is the regularization parameter that penalizes the high values of w. The use of
regularization controls the over-fitting so that the models are not sensitive to outliers.
We refer the reader to the paper by T. Chen and Guestrin (2016) for more details on the
XGBoost model.

Ideally, the model should mirror (or fit) the non-anomalous segments except the
anomalous segments because we want to preserve all the information in the raw data
except the anomalies. To achieve this, we provide the input features consisting of three
features: a) smoothed speed series, b) lateral accelerations, and c) acceleration from
(Equation 4.1). The target variable for the model is again the same acceleration as the
input feature since the aim of the model is to reconstruct the acceleration time series.
Therefore, the input features will tend to be correlated. We adopt L2 regularization
(Tikhonov’s regularization) to prevent over-fitting. The value of the regularization
parameter (λ) is adapted for each trajectory, as given by:

λi = b ·max(|ai|)n, (4.4)

b is a constant, max(a) is the maximum acceleration value observed for a specific
trajectory, and n is a positive real number. The rationale for using an adaptive λ is that
the vehicle trajectory data could be diverse from different drivers, vehicles, and contexts.
Thus, it makes more sense to define an outlier within the context of each trajectory.
Therefore, we hypothesize that a single value of λ does not provide this flexibility. λ is
directly proportional to the absolute maximum acceleration in the input data since we
want the regularization to be highly effective for the unreasonably high values of the
acceleration. High values of b and n cause high penalization of the anomalies, limiting the
acceleration values range. In this paper, we use different sets of parameter combinations
(b and n) to conduct the sensitivity of the regularization for anomaly detection. It is
also possible that different combinations of b and n lead to similar results for specific
maximum acceleration values.

We select a sufficiently large fixed value of the number of iterations (say M) and then
constrain the model with the L2 regularization term to prevent the model from fitting the
outliers. This is motivated by the fact that the regularization term can prevent the model
from fitting the extreme points by imposing a high cost. The output of the boosting
model is the reconstructed acceleration profile. The reconstructed series should almost
replicate the input series for a representative (part of) time series. The reconstructed
series will act as a mask to filter the anomalies for the problematic time series. Therefore,
the reconstructed series is called an “anomaly mask”. We define a tolerance level (τ) and
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check if the difference between the input series and reconstructed series exceeds that level
to label the anomalous sections (0: representative, 1: anomaly) (4.5). A smaller value of
τ will make the model more conservative, i.e., more data will be labeled as anomalous
and vice-versa.

labelit =

{
1, if |ait − âit| ≥ τ

0, otherwise
(4.5)

Where labelt is the anomaly label for the tth frame instance of a trajectory, and ât is
the reconstructed output. In our approach, the XGBoost model and the L2 regularization
replace the statistical measures (mean or median) and distance metric (number of
standard deviations) to do better than the existing methods without manually adapting
the parameters for each trajectory.

Further, if the simultaneous anomalies in the trajectory are detected within a gap of
f frames, we assign the complete sub-sequence as anomalous for subsequent correction.
This completes the anomaly detection or labeling task. If no anomalies are detected
in the previous step, processing for the current trajectory ends, and the next vehicle is
selected. Thus, only nominal smoothing via the SG filter is applied to remove the noise
in the absence of an anomaly. After the anomalies are labeled, we need to recalculate
the speed ignoring the anomalous accelerations, to obtain the refined or reconstructed
speeds. We use the constant acceleration model for speed estimation using (Equation
4.6). The constant acceleration model is reasonable given the high frame frequency in
the trajectory data. Thus acceleration is only considered constant during the one-time
step, e.g., 0.04 seconds for data recorded at 25 Hz. This step ensures that the speed and
acceleration data are internally consistent, inspired by Montanino and Punzo (2015).

v̂it = v̂it−1 + âit ·∆t (4.6)

We replace the speed values for the anomalous points or segments with the reconstructed
speed values based on the following:

vi,ot =

{
v̂it, if labelt = 1

sit, otherwise
(4.7)

The above speed time series is treated with the low-pass (Gaussian) filter to recover
“unbiased” smoothed speeds. Therefore, this speed series is final since the smoothing of
the raw data is done after removing anomalies. Finally, we compute the acceleration
values (Equation 4.1) using these speed values. We repeat this process for all the vehicles
in the sample. Due to low errors in the position of the tracked vehicle in the pNEUMA
dataset, we do not reconstruct or adjust the positions using the processed speed vector.
Due to this, we are prone to losing the internal consistency between position and speed
(Coifman & Li, 2017), and this is a subject of a future study. Finally, we analyze the
distribution of acceleration in the detected outliers and the rest of the data for all the
vehicles in the sample.
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Our method only relies on the feasible range of acceleration for validating the results.
It is relevant to point out that we do not conduct jerk value analysis, as done in previous
studies by Montanino and Punzo (2015); Punzo et al. (2011). This is partially mitigated
in the final step by applying the Gaussian filter on the speed series after removing
anomalies, eliminating the sharp edges in the acceleration profile.

4.4 Data collection

In October 2018, the pNEUMA experiment was conducted in Athens, Greece, aiming to
record traffic streams over an urban setting using a swarm of ten drones (Barmpounakis
& Geroliminis, 2020). The pNEUMA experiment aimed to revolutionize how drones as an
emerging technology could reshape our understanding of traffic congestion mechanisms.
Specifically, the scope was to understand better how congestion forms and propagates in
congested multi-modal urban environments through massive data from aerial footage,
emphasizing disturbances generated by interactions among different types of vehicles.
For the specific experiment, the morning peak (8:00 a.m. to 10:30 a.m.) was recorded for
each working day of the week. For improved safety and cooperation, the swarm would
take off from the two take-offs/ landing areas (H1 and H2 in Figure 4.2) at the start of the
experiment, and each drone would go to its area of responsibility. When all drones were
at their hovering point, the recording of the traffic stream would start simultaneously,
and when the battery ran low, they would return to the landing point. Considering that
drones could hover for up to 25 minutes, including take-off, routing, and landing times, it
was decided that each session would take place every 30 minutes for better coordination
and standardization of the experiment. This setup allows 15 to 20 minutes of continuous
monitoring of traffic. During the temporal blind spots, trajectories were not recorded
and were not related between sessions.

The analyzed study area includes low, medium, and high-volume arterials, around 100
busy intersections (signalized or not), more than 60 bus stops, and nearly half a million
trajectories. This massive dataset contains trajectories of every vehicle present in the
study area, calibrated in the WGS-84 system every 0.04 seconds, as this is the maximum
frequency allowed by the video’s frame rate. The average ground sampling distance is
calculated to be 16.5 cm/px. Except for the features that can be produced using the
position information (speed, acceleration, and distance traveled), each vehicle type is
available (car, taxi, motorcycle, bus, heavy and medium vehicle). We refer the reader to
Barmpounakis and Geroliminis (2020) for more details on the design of the experiment
and to Kim et al. (2023) for the recently released drone imagery. This dataset is also
shared with the research community2.

4.5 Data Analysis

For this paper, the dataset corresponding to all drones’ recordings from the last day of
the experiment (10:00 a.m. - 10:30 a.m.) is selected. These data contain trajectories of

2These data are downloadable from https://open-traffic.epfl.ch
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Figure 4.2: The study area of pNEUMA experiment. Source: (Barmpounakis & Geroliminis,
2020). ©2023 IEEE.

about 10,500 vehicles with a vehicle’s position, speed, and acceleration at 25 Hz. First,
we visualize the acceleration samples of all vehicles (Figure 4.3). For motorcycles, median
acceleration (0.62 m/s2) is slightly higher than the other vehicles. However, the range of
acceleration for motorcycles is the largest. To check the extreme values, we also visualize
the maximum acceleration and deceleration according to the vehicle type (Figure 4.3)
and find noticeable differences. The median maximum acceleration or deceleration of
motorcycles, taxis, and buses is greater than those of cars and medium vehicles. In
contrast, heavy vehicles show the lowest median values. This can be partially explained
by the different acceleration capabilities (motorcycles vs. heavy vehicles) and driving
behavior (taxis vs. private cars). Specifically, motorcycles, due to their limited width
and advanced maneuverability, when compared to other vehicles, make their tracking
more challenging (Barmpounakis et al., 2016).

In Figure 4.4, we illustrate the maximum accelerations of each vehicle at the location
they occur. Excessive accelerations (red areas of the heatmap) appear mainly in the
southeast (captured by drone numbers 1, 2, 3, and 4), whereas such instances are
uncommon in the north. These can be explained by the limitations of drone videography,
such as intersections due to bad lighting (shade, low contrast), roads on the edge of the
recorded video (due to video distortion), other tracking issues, and data post-processing.
While during the pNEUMA experiment, the videos were stabilized, the current work did
not test for evidence of residual camera motion. However, we did not see any evidence
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Figure 4.3: Distribution considering the (top) all accelerations of all vehicles, and (bottom)
maximum acceleration and deceleration for all vehicles before treatment. The
number of unique vehicles for each category is mentioned in parentheses. ©2023
IEEE.
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Figure 4.4: Heatmap showing location-wise maximum acceleration and maximum deceleration
for each vehicle. ©2023 IEEE.

suggesting the presence of such non-vehicular motion during the experiment, processing
of the videos, or data analysis efforts.

In the pretreated data, the speed-acceleration plot (Figure 4.5) shows four “flanks”
(two each for acceleration and deceleration). We discover these flanks are due to the noise
in the speed (and acceleration) vector. The slope of the flanks has a unit of frequency
(s−1) and is about constant, which points to the presence of two components of noise
with fixed frequencies in the dataset. On further investigation, we find that this periodic
noise is not present in the individual drone recordings but occurred while merging the
datasets e.g., drone 2 and drone 3. Thus, it is not related to the nature of the experiment
or the CV algorithm but to the specific dataset. We calculate the number of vehicles
for which the magnitude of acceleration and deceleration exceeds a cut-off limit (5 m/s2,
10 m/s2, 15 m/s2, 20 m/s2) over time. In Figure 4.6, we expect and see that excess
acceleration occurrence reduces with the increase in the cut-off limit. At a cut-off of
5m/s2, we see occurrences corresponding to the previously mentioned two components
of high-frequency noise. Further, these occurrences are also sinusoidal over about 90
seconds. At a cut-off of 10 m/s2, only one of the two high-frequency noises (about 1 Hz)
is noticeable, meaning that the amplitude of the other noise is lesser than 10 m/s2. Here
too, the sinusoidal nature of occurrences is even more noticeable at a period of about 90
seconds. This systematic periodicity points to green waves on the arterial roads covered
by drones 2 and 3, during which new traffic enters and leaves these arterial roads.

At the same time, this behavior excludes the effect of wind blows, which tend to be
random. No high-frequency and sinusoidal occurrences are noticeable at a cut-off of 15
m/s2 and 20 m/s2, which means that very high acceleration values, such as more than 20
m/s2, are scattered. Further spatial analysis reveals that noise and sinusoidal behavior

74



4.5 Data Analysis

(a) Pretreated data showing the presence of four flanks (for a sample of 1000 vehicles)

(b) Example with two noise components (N1 and N2)

Figure 4.5: Acceleration-speed plots. ©2023 IEEE.
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Figure 4.6: Occurrences (positive for longitudinal acceleration and negative for longitudinal
deceleration) exceeding the cut-off limit. ©2023 IEEE.

of anomalous instances is prevalent on drone recordings 1, 2, 3, and 4. This is shown
in Figure 4.7. The correlation between vehicle influx at high speeds (green wave) and
excessive acceleration is noticeable in the bottom part of the map. Accurate vehicle
tracking can be challenging for the object tracker during this sudden acceleration and
deceleration behavior, thus resulting in such periodicity of anomalous instances. For
terminology, we conclude that periodic excessive acceleration values are attributed to
noise, whereas random (transient) peaks are anomalies.

In Figure 4.8, the challenge of detecting the actual noise becomes even trickier due
to the inconsistency of its occurrence. For example, vehicle trajectory id 758 (Figure
4.8) does not need treatment; the same does not apply to vehicle id 1490, 493, or 146.
The longitudinal acceleration is noisy for the whole trajectory and shows unrealistic
values (around t= 40 s for vehicle 146). Additionally, for vehicle id 1780, it is seen that
from time t1= 0 s to t2= 150 s, the noise is negligible. In contrast, specific treatment is
necessary for the trajectory beyond t2= 150 s due to unrealistic longitudinal acceleration
values. In Figure 4.8, we labeled the data according to the drone and thus found
that noise is primarily contributed by drones 1, 2, 3, and 4. When we visualize the
longitudinal acceleration for these vehicles over a few seconds (Figure 4.9), we find
that noise is synchronized for vehicles 146, 493, and 1490, which complements previous
findings (Figure 4.6 and Figure 4.7) about temporal synchronization of noise and specific
locations/ drones contributing to the noise. Thus, to recover the desired data, periodic
noise and unrealistic transient values should be eliminated.
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Figure 4.7: Heatmap showing location-wise speeds and accelerations (exceeding 6 m/s2) at
frames 45 seconds apart to highlight the correlation between them and the period-
icity of excess accelerations at about 90 seconds. Similar findings were found for
deceleration. ©2023 IEEE.

Figure 4.8: Speed, longitudinal acceleration, and lateral acceleration plots of six vehicles showing
different characteristics. The number within vertical dashed lines indicates the id of
the drone which recorded the corresponding trajectory segment. ©2023 IEEE.
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Figure 4.9: Temporal synchronization of noise in the longitudinal acceleration of selected vehicles.
©2023 IEEE.

4.6 Results

The acceleration calculated from the second derivative of the position is noisy. It has
unreasonably high values, possibly due to accumulated errors, as seen by the incidence
of values up to ±100 m/s2 in Figure 4.10a. The histograms in Figure 4.10 are plotted
on the log scale so that heavy-tailed data are visualized easily. Such large values are
also expected given the spatial resolution and high sampling frequency (25 Hz). On
the other hand, the first derivative of the speed results in less extreme values, shown in
Figure 4.10b. This could be because the application of some smoothing filter preprocesses
the speed attribute in the pNEUMA data. Thus the processed speed series is a better
candidate for calculating acceleration, as noted by Bokare and Maurya (2017). Indeed
we find that the first derivative of the position with a moving average filter of a 1-second
window (25 frames) has a somewhat similar distribution as the speed attribute given
in the data. Therefore, we rely on the speed attribute for our model and take its first
derivative to calculate the acceleration further.

The acceleration values range up to ±75 m/s2, emphasizing further data processing.
We find that there is still high-frequency noise in the data, and it needs treatment. The
SG filter is best suited for this task, also evident in Figure 4.10b. The SG filter of the
polynomial order one is denoted by SG1 (same as the moving average filter) and performs
better than the polynomial of order two (SG2). The acceleration distribution is also
improved by substantially reducing its heavy-tailedness on the aggregate scale. In Figure
4.10b, the SG1 filter removes the high-frequency noise and recovers the noise-free signal.
Moreover, it also reduces the extreme values since each point is a weighted average of
its neighborhood. Despite this, the anomalies remain, and thus the need for anomaly
detection.

We use the XGBoost implementation (T. Chen & Guestrin, 2016) in Python for our
study. We set the number of iterations or estimators for the XGBoost model as 300 and
use different types of the regularization parameter, i.e., fixed or adaptive (Equation 4.4).
Figure 4.11 shows the effect of regularization. We find that L2-regularization prevents
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(a) Using position coordinates

(b) Using processed speed series

Figure 4.10: Savitzky-Golay filter to remove noise from acceleration series. The y-axis is plotted
on the log scale for better visualization of distribution tails. ©2023 IEEE.

79



4 Treating noise and anomalies in drone videography data

(a) (left) Fixed λ and (right) effect of increasing λ

(b) (left) Adaptive λ with b = 20, n = 2 and (right) anomaly decision boundary

Figure 4.11: Effect of regularization parameter λ. ©2023 IEEE.
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Figure 4.12: Sensitivity analysis of the parameters b and n. ©2023 IEEE.
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the reconstructed profile from achieving extreme values. A high λ squeezes the range of
the acceleration values, as the histogram for λ = 2000 is narrower than that for λ = 500.
After these preliminary trials, we use the adaptive λ (with b = 20 and n = 2), which
performs better than the fixed λ in constraining the range of reconstructed accelerations.
We analyze the characteristics of the anomaly decision boundary in Figure 4.11.

The decision boundary is correlated with the maximum acceleration simply due to
the formulation of the L2 regularization in Equation 4.4. The Lowess fit (Locally
Weighted Scatterplot Smoothing) shows a linear trend between (post-processed) maximum
acceleration and anomaly decision boundary at small values. At high values, the decision
boundary is asymptomatic at around 4 m/s2, but the range of values goes up to 7 m/s2.
Thus the anomaly detection threshold is not fixed and depends on the trained model.
We see this as an advantage of our approach compared to the fixed threshold, which does
not adjust to vehicle-specific kinematics.

The sensitivity analysis is done on the regularization parameters used in the boosting
model (b and n). We adopt b ∈ {1, 2, 4, 6, 8, 10, 15, 20, 30} and n ∈ {0.5, 1, 2, 3} for a
grid-based evaluation based on the combination of these parameters. We use the values
of other parameters: τ and f as 0.1 and 10, respectively. The results are shown in Figure
4.12. For low values (b = 1, n = 0.5), there is hardly any reduction in the anomalies
in the reconstructed trajectories. In contrast, for the high values (b = 30, n = 3), the
reconstructed trajectories are heavily biased due to false positives. It is also observed
that the proposed method is more sensitive to n and less sensitive to b. In between
(15 ≤ b ≤ 20, n = 2), the parameter values are found to be optimal for our task. These
findings also show that different combinations of b and n can lead to similar results for
specific maximum acceleration values.
After removing anomalies, we use the Gaussian filter for smoothing the data, i.e.,

the filter is applied to the original data without anomalies. We find that window sizes
between 12 and 25 frames provide an acceptable range of processed accelerations. Thus,
we do not recommend a single best value but a range of values for anomaly detection and
smoothing, which can provide a practical solution. This is obvious because our criteria
for acceptance are based on the range of final accelerations. However, it is an essential
conclusion since multiple optimal parameter combinations help approximately recover
the desired signal from the raw data.
We demonstrate the complete methodology in Figure 4.13, showing the de-noising,

anomaly detection and removal, retrieval of consistent speeds, and accelerations. Here
window sizes for both the SG and Gaussian filters are set as 25 frames. In the third
and fourth sub-figure in Figure 4.13 for each vehicle, applying a low-pass filter without
removing anomalies will result in biased profiles due to extreme values. We also show in
Figure 4.14 cases where the trajectories have either noise or anomalies or none of both.
In the case of vehicle id 493 and 505, reconstruction of speed and acceleration is skipped
since no anomaly is detected. This also shows our method treats data so as not to cause
significant over-smoothing when the data are without noise or anomalies. Thus the final
output in both cases is the result of the smoothing only. The post-processed maximum
acceleration and deceleration for all types of vehicles (Figure 4.15) are found to be within
the reasonable range because their values for most of the sample vehicles’ trajectories
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Figure 4.13: Individual steps in the treatment of noise and anomalies for three example vehicles.
©2023 IEEE.
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Figure 4.14: Treatment examples when trajectory has (top) only noise, (middle) neither noise
nor anomalies, and (bottom) only anomalies. ©2023 IEEE.
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are less than 4 m/s2. Still, for a few samples, values go up to 9 m/s2. Figure 4.15 should
be compared with Figure 4.3 to see the effect of noise and anomaly treatment.

Figure 4.15: Distribution of the maximum acceleration and deceleration for vehicles in the
dataset after treating anomalies and noise. The same sample is used here as in
Figure 4.3. ©2023 IEEE.

In acceleration-speed plots (Figure 4.16), we show the step-wise treatment process on
1000 vehicle trajectories with extreme acceleration values. The top row in Figure 4.16
shows unrealistically high acceleration values due to noise and anomalies. The output
after interim noise treatment using the SG filter (window size: 25 frames) is shown in
the panel’s second row (from the top). This is followed by the anomaly treatment in
the third row. The output after the final smoothing (after the removal of anomalies) by
Gaussian filter (window size: 25 frames) is shown in the bottom row of Figure 4.16. The
final data in the speed-acceleration plot shows that the range of accelerations is confined
within the reasonable range. Over-smoothing can distort the time-space diagram by
drastically changing the speed or distance traveled compared to the pretreated values.
To verify this, we relied on time-space diagrams of a sample of the vehicles. We did not
find significant differences between the distance traveled with pre-treatment and that
with post-treatment speeds.

It is also relevant to provide processing time statistics, which can depend on many
factors, such as the hardware specifications, parallelization of the algorithms, and the
number of samples in each trajectory. We used an HP desktop Machine with eight
physical cores (i7-11700F @ 2.50GHz) and 16 GB RAM. We run our method sequentially,
i.e., all vehicles are treated one by one. We use two cores for the XGBoost model via
the parameter n jobs. In our case, the computation mainly involves the calculation of
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4 Treating noise and anomalies in drone videography data

Figure 4.16: Step-wise treatment output and errors. ©2023 IEEE.
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numerical gradients, data frame, array operations, XGboost model training, and applying
low-pass filters. We record the run-time statistics per vehicle trajectory and find that the
run-time mean, median and standard deviation are 0.77 s, 0.59 s, and 1.02 s, respectively.

4.7 Summary

We discussed the challenges of emerging traffic data from drone videography. Validating
data quality is crucial before using it, and data processing is necessary to remove errors
and improve data quality. In this chapter, we demonstrated the application of noise
smoothing and anomaly detection models on the pNEUMA dataset. Techniques like
SG filter, XGBoost with adaptive regularization, and GF are used to remove noise and
anomalies, effectively identifying unrealistic transient peaks. The treated data is much
more suitable for subsequent applications in traffic research and can thus help accelerate
future research.

87





5 Explaining demand patterns during
special events using opportunistic data

Contents

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 Research contributions . . . . . . . . . . . . . . . . . . . . . . 90

5.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 Data collection and processing . . . . . . . . . . . . . . . . . 95

5.5 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

The content of this chapter has been presented in the following work:

Mahajan, V., Cantelmo, G., & Antoniou, C. (2021). Explaining demand patterns
during COVID-19 using opportunistic data: a case study of the city of Munich.
European Transport Research Review, 13(1), 26. doi:10.1186/s12544-021-00485-3

89



5 Explaining demand patterns during special events using opportunistic data

5.1 Introduction

The anticipation or announcement of movement restrictions due to COVID-19 caused
specific changes in people’s lifestyles, routines, and consumption patterns, such as panic
buying during the early pandemic or lockdown stage (Arafat et al., 2020), working from
home, or a decline in non-essential retail consumption (Nicola et al., 2020). With people
spending, on average, around 40% less, these new trends also risk generating an economic
slowdown that could last for a long time (Nicola et al., 2020). If significant, such changes
in behavior and attitudes can reveal a pattern exhibited through changes in the number,
types, and spatial-temporal extent of the activities. For example, crowding at some
locations or imbalanced use of transport facilities, like roads and transport modes, can
be observed. Planners must understand these behavioral changes and, more importantly,
the spatial-temporal patterns of the population’s activities for an effective response.
The scale and speed of these changes have left cities, transport operators, and research
communities with several unanswered questions on how to respond so that a basic service
level is efficiently maintained.

This chapter is structured as follows: the following section lists the research contri-
butions, followed by a section presenting the study’s methodology, followed by sections
concerning data collection and data analysis, and finally followed by the results section.

5.2 Research contributions

There is a lack of research on applying disaggregated POI data to analyze activity
and demand patterns during special events. Using a case study of COVID-19, we also
uncover insights into the effects of the pandemic on real-time demand patterns at the POI
level. These results provide for both theoretical understanding and practical applications
because the pandemic phenomenon was quite new at the time of the study and has not
been experienced at the same scale in the last 100 years. This chapter shows that publicly
available crowdsensed information could provide useful insights into the spatial-temporal
distribution of activities or demand during the pandemic. Subsequently, we propose a
model that breaks down POI demand patterns into a set of crucial spatial and other
attributes, which are assumed to explain the POI demand. [SRQ(6)]

The extended version of the codes (based on the implementation by m-wrzr and
riedmaph (2018) was developed to collect real-time popularity data. Due to data
restrictions, these codes are uploaded to the private repository on GitHub. The codes
can be shared for research purposes upon request.

5.3 Methodology

We use POI visitation data (response variable, denoted by P) and check their correlation
with the spatial and other attributes (explanatory variables) of the POI. Firstly, we
define a bounding box for the study area and identify the POIs within that area. For
these identified POIs, we collect the historical and live popularity data on different days
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to capture the before-lockdown and during-lockdown situations, respectively. Some of
the prominent spatial attributes that could affect customer visits at a POI are population
density (Rolph, 1932), parking facilities (van der Waerden et al., 1998), and public
transit stop (Rolph, 1932) nearby the POI. As we aim to capture the spatial variability
among the POIs, the selected spatial attributes should capture the local variation, e.g.,
the threshold distance for calculating the population around a POI should not be too
large. Because of this, a square bounding box of side 600 m (two times the assumed
neighborhood distance of 300 m) is used to calculate the population living within the
catchment of a POI.

Similarly, for the parking area, the catchment corresponds to a square bounding box of
side 50 m. Here the distance threshold is selected to characterize short walking distance
because parking far from the supermarket is discouraging for the customers (van der
Waerden et al., 1998). We adopt the same point for all POI types, but in doing so, we
ignore the effect of the POI type on the catchment distance, as it is treated uniformly
for all POIs. To compute the average distance between a POI and transit stops, we
identify the stops within a straight-line distance (“as the crow flies”) 400 m of a POI. This
selection of straight-line distance threshold could even result in walking distances greater
than 400 m in some cases because the actual route length may be longer depending on
the street network. Commonly transit agencies use a walking distance of 400 m as a
thumb rule for measuring neighborhood accessibility and transit accessibility, as reflected
in previous studies in accessibility research (Achuthan et al., 2010; Aultman-Hall et
al., 1997). However, it is relevant to point out that walking behavior is determined by
many factors such as trip purpose, built-up environment, mode type, and population
demographics (Daniels & Mulley, 2013; Islam et al., 2019), and thus a detailed sensitivity
analysis is beyond the scope of this paper. Average transit stop distance is the average
distance of a POI from all identified stops. Finally, weather-specific features such as
temperature and precipitation can also be relevant for studying demand (Horanont et al.,
2013).

Non-spatial attributes are the POI type (e.g., supermarket or chemist); the number of
reviews and ratings of a POI, e.g., the supermarket’s temporal demand pattern, could
differ from that of a fast-food outlet shown in (Capponi et al., 2019). Further, a POI with
a high positive rating could imply its high likeability or customer satisfaction. Similarly,
a large number of reviews by customers could be indicative of latent characteristics of a
POI. These features, such as rating and the number of posted reviews, are also used in
the demand trend modeling (Möhring et al., 2020; Timokhin et al., 2020). It is pertinent
to mention that other demographic factors, such as average income in the locality, could
also play an essential role in retail consumption (Rolph, 1932). However, this study did
not consider the same because such a dataset was unavailable.

5.3.1 Data sources

To demonstrate our methodology, we turn to popularity trend data that have been
used previously to predict venue popularity (Timokhin et al., 2020), calculate demand
expansion factors (MacKenzie & Cho, 2020), classify activities (Capponi et al., 2019),
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and investigate consumer behaviors (Möhring et al., 2020). These varied applications of
POI demand patterns from popularity trends suggest their potential in other unexplored
avenues, such as disruptive events. However, specific crowdsensed data, such as popularity
trends, provide only relative or normalized values of the demand for certain activities in
specific locations (Capponi et al., 2019). This is a limitation because it prevents one from
inferring the corresponding number of absolute check-ins for which the data is recorded,
and thus should be considered in analyzing and interpreting the results based on these
data.

First, the POI data is collected from OSM via Overpass-Turbo (Raifer, 2020). Google’s
Popular time graph data (Google, 2020b) is collected as a measure of the demand
patterns at all the identified POIs. A popular time graph shows the busyness (workload
or saturation) of a POI during the day, relative to the busiest time during the week
(Google, 2020b). Historical busyness is quantified on a relative scale of [0,100], where
100 indicates the busiest hour. This information is derived from the anonymized and
aggregated data from the POI visitor’s location history (Google, 2020b). As per Google,
if the number of such users (who have opted for the location service) visiting a POI
is insufficient, then the popular time graph and the place’s live visit data may not be
available (Google, 2020b). For a given POI, a Popular time graph is averaged over the
last few months (Google, 2020b), which could be referred to as “historical popular time”.
Live visit data shows the popularity in real-time, which in some cases could be greater
than 100 depending on its busyness or crowding relative to past trends. The popular time
data for a particular POI is publicly viewable on the Google Maps website (GoogleMaps,
2020). Due to the smartphone-based passive data collection, Popular time data could also
suffer from sample bias. As mentioned above, Popular time data is relative information
and cannot infer the number of visitors without extrinsic information. Based on the
above, we argue in this paper that live data could be an important indicator for measuring
changes in the demand as, for each POI, they provide a measure of the deviation between
the current and the average venue popularity.

Population data are obtained from the publicly available High-Resolution Population
Density Maps provided by Facebook (2020). Facebook used state-of-the-art Computer
vision techniques to process satellite imagery and generate this data. Population data
provide human population distribution at a 30-meter spatial resolution. Parking area
(size and locations) and transit stop locations are obtained from the OSM data [obtained
via Overpass (Raifer, 2020)] and GTFS (2020), respectively. Python library OSMNX
(Boeing, 2017) is used for processing and analyzing OSM data.

5.3.2 Modeling approach

The study examines the effect of the lockdown restrictions on the popularity of POIs.
This is a problem of the causal inference framework, where lockdown acts as a treatment
variable. With pre-treatment and post-treatment data, a preferred modeling approach
based on a causal inference framework could be adopted by controlling for the treatment
(lockdown) and confounding (day-of-the-week, POI type) variables. Herein we check
the significance of covariates in explaining the day-specific popularity before and during
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the lockdown. Möhring et al. (2020) and Timokhin et al. (2020) have also modeled
popularity as a dependent variable in regression formulation. The dependent variable
is the day-specific popularity of a POI, which is to be mapped to a set of explanatory
variables, represented analytically as follows:

Pi−d = f(pi, pai, sdi, ri, nri, typei, Ld, Dd, Td, P rd) + ϵi−d (5.1)

Where,

• Pi−d is the response variable in terms of popularity of ith POI on day d

• pi is population within the defined catchment of ith POI

• pai is the total parking area within the defined catchment of ith POI

• sdi is the average distance to the transit stops within the defined catchment of ith

POI

• ri is the rating of ith POI

• nri is total number of reviews of ith POI

• typei is the dummy variable of ith POI type namely, supermarkets, chemists and
fast-food

• Ld is the lockdown dummy variable, wherein during lockdown Ld = 1; for historical
data Ld = 0

• Dd is the dummy variable representing the day of the week e.g., Monday, Tuesday,
etc.

• Td and Prd are weather-specific covariates for temperature and precipitation,
respectively, on day d

• ϵi−d is the residual term

POI type (type), lockdown (L), and day (D) are categorical variables. They are used
as dummy variables after one-hot encoding, e.g., for a supermarket POI, supermarket =
1, whereas fast-food and chemist are assigned 0 values. Similarly, during the lockdown,
lockdown = 1; else lockdown = 0; and on a Monday, only monday = 1, while other
day-of-the-week dummy variables are equal to zero.

Linear regression models are simple and intuitive as they help understand the features’
average or global effects. However, these models depend heavily on the explicit analytical
formulation and thus could introduce model bias. To counter this, we use regularized
Gradient Boosting (GB) (T. Chen & Guestrin, 2016) for regression, inspired by previous
studies (Timokhin et al., 2020). GB, a machine learning technique, is based on training
weak learners in an additive manner. Unlike linear models, GB models do not need an
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analytical specification and are less sensitive to outliers. GB can work well with small
data while avoiding overfitting. Using regularized objective function in Equation 5.2
helps control overfitting. We refer to the regularized GB as Gradient Boosting Regression
(GBR) model in this paper.

L(t) =
n∑

i=1

l
(
yi, ŷ

(t−1)
i + ft (xi)

)
+Ω(ft) (5.2)

where xi denotes the i-th instance of the dataset of size n; ft is the current model
fit; l is the loss function which measures the difference between the target (yi) and the
prediction ŷi, at t-th iteration; Ω(f) is the regularization term to check over-fitting. The
details of the GBR are given in Friedman (2001) and T. Chen and Guestrin (2016).
The best GBR model is selected based on the lowest Mean Squared Error (Equation

5.3) on the training data (90% split), using 10-fold cross-validation. The main tunable
parameters for the GBR model are the number of estimators and the tree depth (XGBoost,
2020). To handle overfitting, we check the MSE on the test data (10%) to ensure that
training and test errors are close.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (5.3)

The interpretation of tree-based models, like the GBR model, is not straightforward
since single coefficients (as in linear regression models) for attributes are unavailable.
There are many tools for global interpretation, i.e., the average impact of the features on
the model output. Recently, work has been done on the local explanations of these models
to uncover the role of each feature for every model instance. The combined behavior of
these local explanations can also infer global behavior. In this regard, SHapley Additive
exPlanations (SHAP) is a recently developed Python tool for explaining a machine
learning model’s outputs using the game-theoretic approach (Lundberg et al., 2020).
TreeExplainer method from SHAP calculates classic Shapley values [a concept from the
game theory (Shapley, 1988)] and assigns importance or credit to the input features based
on their role in the particular model prediction (Lundberg & Lee, 2017). Similarly, local
interaction effects are captured based on the Shapley interaction index from game theory
by allocating the credit to a pair of features (Lundberg et al., 2020). A novel advantage of
TreeExplainer is that it can compute Shapley values for tree-based models in polynomial
time (Lundberg et al., 2020), which makes them highly efficient for practical applications.
For details on SHAP, we refer the reader to Lundberg et al. (2020); Lundberg and Lee
(2017).

We use Ordinary Least Squares (OLS) regression (linear regression), as a reference
model for checking the consistency in the interpretation of the global effect of the features
(Equation 5.4). It can be seen that, in addition to the main effects, we also include the
interaction effects of lockdown (Ld) with all the other variables. It is pointed out that
in the linear model, the coefficient (β8) of lockdown gives the effect of lockdown on the
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chemist POIs, conditional on the other covariates. Thus, the coefficient (β8) actually
represents interaction effect of lockdown-chemist. We do not include chemist dummy
explicitly in Equation 5.4, as it is highly negatively correlated with supermarket.

Pi−d = β0 + β1 · pi + β2 · pai + β3 · sdi + β4 · ri + β5 · nri + β6 · supermarketi+

β7 · fast−foodi + β8 · Ld + β9 ·Mondayd + β10 · Td + β11 · Prd+

β12 · Ld · pi + β13 · Ld · pai + β14 · Ld · sdi + β15 · Ld · ri + β16 · Ld · nri+
β17 · Ld · supermarketi + β18 · Ld · fast−foodi + β19 · Ld ·Mondayd+

β20 · Ld · Td + β21 · Ld · Prd + ϵi−d

(5.4)

We also use the Robust regression or Robust Linear Model (RLM) or M-Estimation
with Huber objective function (Huber, 1973). This objective function uses two different
formulations: least squares (in the center) and least absolute values (in the tails), basically
underweighting the high-influence observations or outliers in the dependent variable.
Finally, it is noteworthy to refer to a recently published study using the GBR and linear
regression for modeling and SHAP to explain building energy performance (Arjunan et
al., 2020) due to inherent similarity in our modeling approaches. We develop the above
models using Python libraries statsmodels (2020) and XGBoost (2020).

5.4 Data collection and processing

We select Munich (the Free State of Bavaria’s capital city in Germany) as the study
area. Even though many countries in the world are affected by COVID-19, the extent of
the impact depends on multiple factors, such as first COVID-19 incidence (Böhmer et
al., 2020), rate of spread, travel restrictions (Chinazzi et al., 2020), testing and contact
tracing and containment (Lorch et al., 2020), amongst many others. Therefore, the data
for before-during scenarios were collected based on the restriction or lockdown timeline.
In Germany, the need for social distancing was announced on 12.03.2020, followed by the
announcement of the temporary closure of schools on 14.03.2020 and the non-essential
travel ban on 18.03.2020 (Robert Koch Institute & Humboldt University of Berlin, 2020).
The Federal States took up state-specific measures depending on their needs, such as
imposing a full lockdown in Bavaria on 20.03.2020 (Robert Koch Institute & Humboldt
University of Berlin, 2020). Therefore, it can be concluded that the second and third
weeks of March were the transition period from pre-lockdown to the lockdown period.
We are also interested in exploring how the demand pattern at a POI evolves during
different stages of the lockdown (e.g., during the early lockdown in the third week of
March viz-à-viz during the late lockdown in the last week of April).

3283 POIs were initially identified in the bounding box around Munich [Latitude:
48.137585±0.1125, Longitude: 11.575444±0.175]. The POI attributes, namely location
(latitude and longitude), type, rating (on a scale of 1-5), and the number of reviews,
are collected. For these POIs, we use the Python library (m-wrzr & riedmaph, 2018)
to obtain hourly historical data (Table 5.1). The live data is collected bi-hourly, e.g.,
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Table 5.1: Popular time data collection

Date Cumulative
COVID-19 Casesa

Type of data (Period) Description

13-02-2020 - Historical average (0000-2400) Before lockdown
20.03.2020 878 Live (1200-1400) Start of lockdown
03.04.2020 3304 Live (1200-1400) Middle of lockdown
14.04.2020 4714 Live (0800-2000) Late lockdown
22.04.2020 5332 Live (0800-2000) Late lockdown
27.04.2020 5607 Live (0900-2100) Late lockdown

a StadtMuenchen (2020)

Table 5.2: Number of identified POIs with historical data and live data

POI type with historical data with live dataa

Supermarkets 262 137
Fast-food 170 8
Chemist 73 35

alive data availability varies per day

1200 H, 1400 H, 1600 H, etc. Not all of these POIs are found to have live popularity
information during the lockdown, possibly due to the temporary closure of such POIs
due to restrictions or insufficient users visiting such POIs. The availability of the live
data varies per hour-day. Therefore, POIs without live data during 1200-1800 hours are
dropped for the subsequent analysis and modeling. The analysis period of 1200-1800 is
chosen to represent the consistent working time for all the POIs, away from the opening
(around 0800-1000 H) and closing hours (1900-2000 H). Only POI types with at least five
samples are selected to ensure representativeness, which leaves a total of about 180 POIs
for three categories (Figure 5.1), namely supermarket, fast-food, and chemist (Table
5.2). The low number of POIs makes sense because several retail and leisure POIs, such
as restaurants, stores, and barber shops, were closed and severely affected due to the
lockdown restrictions, and that is why we suppose no popular time data were available
for such POIs.

5.5 Data analysis

The hourly trends of average historical popularity in three types of POIs, namely
supermarkets, chemists, and fast-foods, are shown in Figure 5.2. In the historical trend,
supermarkets show a prominent peak during the evening hours, coinciding with the
evening commute. Chemists also show a similar pattern. The trend is absent on Sundays,
as most supermarkets and chemists are closed on Sundays in Munich. The fast-food
category trend shows two prominent peaks during the weekdays, which can be attributed
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Figure 5.1: Spatial distribution of POIs with Live data. Fast-food POI’s symbol is enhanced
for better visibility. Basemap source: OpenStreetMaps.
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htbp

Figure 5.2: (Top) Historical average popular time trend and (bottom) live popular time trend
for the three POI types.

to busyness during lunch and late-evening hours. The demand trend on the weekend
shows a high demand from lunch to late-evening hours.

Figure 5.2 shows the average live trends on two days of the week during the lockdown,
22nd April 2020 (Wednesday) and 27th April 2020 (Monday). Compared to the average
historical popularity, the drop in the peak popularity and the general trend is evident.
Interestingly, the drop in the fast-food category is more significant and characterizes the
lockdown’s adverse effect on similar POIs. It can also be recognized that the shape of
the historical popularity trend differs on Monday and Wednesday for supermarkets and
chemists, indicating variations during the week. The trend of the afternoon (1400 H)
popularity on a few selected weekdays also shows the effect of lockdown on the three
POI categories (Figure 5.3). Again, supermarkets and chemists show similar trends with
average historical popularity at around 40-50 % of maximum popularity, but markedly
increasing on 20th March, i.e., the day lockdown was announced. This increase (57 % for
supermarkets and 10 % for chemists) could result from panic buying for groceries and
health retail because of the uncertainty in the early days of the lockdown and pandemic.
During the later lockdown period in April, a gradual recovery of the popularity of the
supermarkets and the chemists’ POIs is observed. The fast-food category trend is distinct
by a fall in its popularity, which did not wholly recover in April, although it shows small
signs of recovery. It can also be seen that there is no panic buying in the fast-food
category on the day of the lockdown announcement, unlike the other two types of POIs.

The summary of the explanatory variables is given in Table 5.3. The parking area
locations in OSM correspond to different parking types, such as surface, multi-level, and
underground parking. The composition of the parking areas in our sample is surface
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5.5 Data analysis

Figure 5.3: Live popular time trend at 1400 H on different days during the lockdown.

99



5 Explaining demand patterns during special events using opportunistic data

Table 5.3: Summary of the explanatory variables

Statistic Population
(<300 m)

Parking area
m2 (<50 m)

Transit
stops (<400
m)

Avg. Stop
distance (m)

Rating
(1-5)

Reviews

minimum 195 0 1 105.2 2.5 8
mean 2614 414.3 8 324.8 3.9 371
maximum 4340 4503.7 28 794.0 4.9 4742
σ 727 850.1 5 87.4 0.3 551

(70%), underground (3%), multi-story (1%), and missing label (26%). We use the
historical data and live data (on 22.04.2020 and 27.04.2020) for modeling pre-lockdown
and during-lockdown scenarios, respectively (Table 5.1). The response variable in the
regression models is the average of the popularity at two-hour intervals over the period
of 1200-1800 H, as follows:

Pi−d = (P 1200
i−d + P 1400

i−d + P 1600
i−d + P 1800

i−d )/4 (5.5)

where, P t
i−d is the popularity at time t. The features such as rating and the number of

reviews change with time as new users rate and review a specific POI. In our case, the
change is marginal, i.e., the mean percentage change in rating and reviews during the
analysis period is 0.2% and 0.0%, respectively. We do not control the weather-specific
covariates due to the panel’s limited dimension (two days of live data). The weather for
these two days was similar as characterized by sunny or partial cloudy (Time and Date,
2020), which makes it reasonable to not control for weather-specific covariates. With
sufficient panel data, we recommend controlling for weather covariates for precise model
estimation.

5.6 Results

Using cross-validation, we identify the best parameters for the GBR model (number of
estimators: 20, maximum tree depth: 4). With these parameters, the model achieves an
R2 of 0.63. The Mean Squared Errors (MSEs) obtained on the training (7.4) and test
data (9.6) are close, which implies no over-fitting. In the SHAP summary plot (Figure
5.4), the feature impact on the output of the GBR model is shown with the distribution
of SHAP values. In these plots, each point corresponds to one POI instance in the dataset
and the corresponding SHAP values of the features. The color represents the feature
value (blue for low value and pink for high value). The features in these sub-plots are
ordered by the sum of the SHAP values’ magnitude over the training dataset. If high
SHAP values are observed for corresponding high values of the feature, it means an
increase in that particular feature results in an increase in popularity and vice-versa. If
SHAP values for a feature are concentrated near 0, that particular feature does not play
much importance in predicting its popularity.
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Figure 5.4: Feature impact based on SHAP values for the 15 largest main and interaction effects.
(Lundberg et al., 2020)
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Figure 5.5: SHAP dependence plot based on local explanations for the spatial features’ interac-
tion with the lockdown.

The main effects of lockdown, monday, and fast-food are clear due to distinct distribution
SHAP values for low and high feature values. The lockdown feature is found to be
correlated with the drop in popularity. The popularity on Monday is found to be higher
than that on Wednesday. It is interesting to note that the POI type plays an important
role, especially for fast foods. The fast-food attribute is found to be correlated with low
SHAP values (i.e., fast-food =1), which pushes the popularity to the lower side. The
impact of the population and the number of reviews (rating n x ) is not clearly correlated
with the popularity value, as evident by overlapping pink and blue points. The low values
of the parking area feature show low SHAP values, whereas high parking area is associated
with high SHAP values (albeit with some overlap); i.e., it pushes the POI popularity
to the higher side. Similarly, the type of POI, namely chemist, is correlated with the
decrease in popularity, as evident from negative SHAP values. Hence, the features viz.
lockdown, day-of-the-week, POI-type, and parking area show a clear correlation with
popularity.

Figure 5.4 also shows the interaction effects, where the superscript * indicates which
feature is represented by the color bar. The interaction effects of lockdown and fast-food
features also show clear effects, implying the adverse effect of lockdown on the fast-food
POIs in terms of popularity, also seen in Figure 5.2. Spatial factors, population, and avg.
stop distance are found to have mixed effects (overlap of pink and blue points), and thus
their global effects on popularity are not clear in Figure 5.4. However, the interaction
effect of lockdown - avg. stop distance (see feature avg. stop distance∗- lockdown) shows
high SHAP values for some longer stop distances, and vice-versa. This effectively means
that POIs close to the transit stops had lower popularity than those farther from a
stop during a lockdown. This is even clearer in the local explanation plot in Figure 5.5,
wherein the interaction effects of lockdown - avg. stop distance are inverted during the
lockdown.

The fit of the OLS and RLM models is not as good as that of the GBR model, as
evidenced by lower Adjusted R2 values (Table 5.4), which also justifies the use of the
GBR model as it introduces less bias as compared to the linear models. Nevertheless,

102



5.6 Results

Table 5.4: Results of Linear Regression

Dependent variable: Pi−d

1:OLS 2: RLM

Intercept 48.74*** 53.37∗∗∗

(6.93) (7.04)
fast-food -2.56 -3.57

(3.75) (3.81)
lockdown 3.66 -3.50

(9.82) (9.98)
lockdown:fast-food -19.47∗∗∗ -16.73∗∗∗

(5.31) (5.39)
lockdown:monday -16.45∗∗∗ -16.24∗∗∗

(1.52) (1.55)
lockdown:average stop distance/1000 19.49∗∗ 20.19∗∗

(8.93) (9.07)
lockdown:number of reviews/1000 0.13 -0.97

(1.88) (1.91)
lockdown:parking area/1000 0.18 0.13

(0.95) (0.96)
lockdown:population/1000 -1.93∗ -1.93∗

(1.10) (1.12)
lockdown:rating -1.68 -0.10

(2.26) (2.30)
lockdown:supermarket 4.53∗∗ 4.84∗∗

(2.02) (2.05)
Monday 11.20∗∗∗ 11.29∗∗∗

(1.08) (1.09)
average stop distance/1000 -10.52∗ -11.40∗

(6.32) (6.42)
number of reviews/1000 -1.52 -1.41

(1.33) (1.35)
parking area/1000 0.67 0.64

(0.67) (0.68)
population/1000 1.18 1.20

(0.78) (0.79)
rating -0.40 -1.41

(1.60) (1.62)
supermarket -1.96 -2.12

(1.43) (1.45)
Observations 718 718
R2 0.34
Adjusted R2 0.32
Residual Std. Error 10.18 3.21
F Statistic 21.20∗∗∗

*p<0.1; **p<0.05; ***p<0.01
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the results of the OLS model (the sign and magnitude of the coefficients) show that the
average behavior of the features is consistent with that of the GBR models. The intercept
term is significant in the OLS and RLM models, with a value close to 50. The main
effect of lockdown is not found to be significant, unlike in Figure 5.4. In the linear model
(Equation 5.4), it represents the interaction of lockdown-chemist. The main effects of only
monday and average stop distance are found to be significant. The positive coefficient
of monday shows that the average historical popularity of POIs on Monday is more
than that on a Wednesday due to variations in the daily demand patterns (Figure 5.2).
The negative coefficient of the average stop distance implies that popularity decreases
with increased distance to a transit stop. The lockdown has significant interactions with
other features. The popularity during lockdown depends on the type of POI, as the
interaction of fast-food type POI has a greater negative coefficient than the other two
types of POIs, whereas the popularity of the supermarkets is marginally greater than
the chemist type POIs. During the lockdown, Monday’s popularity is lower than on
Wednesday, which provides evidence of the daily temporal variations in popularity during
the lockdown. Interestingly, popularity is positively correlated with the lockdown - avg.
stop distance interaction. A possible explanation is a drop in transit ridership during the
lockdown, as shown in Figure 2.4. Specifically, passenger ridership dropped by around
70% during April 2020 in Munich [Münchner Verkehrsgesellschaft mbH (MVG) (2021)],
and thus POIs closed to transit stops observed a greater reduction in popularity than
others located far from the transit stops. The lockdown-population interaction also has
a negative coefficient, albeit with a weak significance. One thing to note is that in the
linear models, the main and interaction coefficients of parking area are not found to be
significantly correlated.

5.7 Summary

We analyzed the demand patterns at POIs in Munich during special events, such as
the COVID-19 lockdown, using publicly available crowdsensed data. Demand patterns
uncovered in this study match the expectations of viz-à-viz restrictions during the COVID-
19 lockdown in Munich. We explained the effect of features in the GBR regression model
using SHAP. The behavior of coefficients is consistent with previous studies to some
extent, wherein transit stop connectivity is associated with the demand at retail locations
(Rolph, 1932; van der Waerden et al., 1998). Significance of POI type (fast-food) during
COVID-19 confirms the dominance of POI type in explaining the lockdown impact,
possibly as the lockdown was directed to reduce non-essential retail consumption and
crowding. POI types are significant in explaining the dip in the POI’s popularity, as
POI-type captures latent consumer behavior.

This marks the end of Part II of this dissertation. In the next Part III, we focus
on developing efficient methods to address the data insufficiency challenges in traffic
prediction and calibration.
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Part III

Efficient methods to
tackle data scarcity
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6.1 Introduction

In this chapter, we propose an efficient methodology using conventional data for cali-
brating large-scale traffic simulations. We address the challenges in Origin-Destination
(OD) estimation in a unified methodology with simple heuristics, ensemble techniques,
and Bayesian optimization. In this pursuit, we apply simple yet effective heuristics
and ensemble techniques (borrowed from the machine learning field) to demand (OD
estimation) and supply calibration. Using multiple experiments, we show that ensembling
effectively reduces the variance in the final demand estimates. Further, the averaged
estimates are much closer to the true or desired estimates and, thus, use the results of
multiple local optimizers to land closer to the desired solution. In addition, we propose
automatic tuning of Simultaneous Perturbation Stochastic Approximation (SPSA), a
gradient approximation algorithm, and thus reduce the manual effort and time spent in
doing so hitherto.

The remainder of the chapter is structured as follows: in the following section, we list
the contributions of this chapter, followed by an introduction to indirect OD estimation
and supply calibration, followed by the methodology of our study, followed by details
on experimental design and calibration platform description, followed by a section on
results. Finally, we summarize the findings of this chapter.

6.2 Research contributions

In this work, we address the challenges in OD estimation in a unified methodology with
simple heuristics, ensemble techniques, and Bayesian optimization. Our contributions
are summarized as follows:

• We develop a methodology to fine-tune the calibration algorithm parameters auto-
matically. Substantial research shows that these hyperparameters play a crucial role,
but they are usually determined manually, which is time-consuming and unreliable.
To the author’s knowledge, no methodology exists to estimate them automatically.
Our method helps to push the calibration process towards an automated approach.
[SRQ(7)]

• We find that applying Bagging and Stochastic Parameter Averaging (SPA) tech-
niques can improve the robustness of the results. This is important since, typically,
solutions obtained by local search calibration algorithms have high variance, and
these ensemble techniques can help to reduce such variance in the estimates.[SRQ(8)]

• We also provide two additional contributions, which from a methodological stand-
point, are minor, but have substantial impacts on the calibration output in practice.
First, we develop a one-shot heuristic system that reduces intrinsic bias, reducing
computational time. Second, we apply a Bayesian optimization framework that
effectively estimates the supply parameters.
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6.3 Indirect OD estimation

• The above approaches are developed using open-source tools and software and
made available1 to advance the research in traffic simulation calibration.

6.3 Indirect OD estimation

6.3.1 Problem formulation

The offline calibration problem can be formulated using the notation in Table 6.1, inspired
by Antoniou et al. (2015). Indirect Dynamic Origin-destination Demand Estimation
(DODE) is a specific case of transport demand calibration where values of time-dependent
OD matrices are the demand calibration parameters. This can be formulated as follows:

minimize
X,Y

L (Mo,M s,X,Y ,Xa,Y a) (6.1)

which can be operationalized as follows:

minimize
X,Y

T∑
t=1

[w1Z1 (M
o
t ,M

s
t ) +w2Z2 (Xt,X

a
t ) +w3Z3 (Y t,Y

a
t )] (6.2)

subject to:
M s

t = f (X1, . . . ,Xt;Y 1, . . . ,Y t;G) (6.3)

lx ≤X ≤ ux ly ≤ Y ≤ uy (6.4)

and Z measures the discrepancy between the two quantities and is called Goodness of
Fit (GOF) function or distance metric. In the case of measurements, the two quantities
are the simulated and observed measurements, whereas, in the case of parameters, they
are the parameter’s current value and the parameter’s prior value. Equation 6.2 is a
type of multi-objective optimization, and w1, w2, and w3 are the assigned weights for
these objectives. Equation 6.3 captures the dependence between simulated outputs and
the input parameters, which is directly obtained from the Dynamic Traffic Assignment
(DTA) traffic simulator.

Z2 contributes to the discrepancy of the current estimates from the initial or historical
demand estimates, so the optimization algorithm is penalized for exploring far from the
initial OD demand values. Furthermore, if the initial values are biased, dependence
on initial values in the objective function can prevent the optimization algorithm from
reaching the desired optimum. In other words, a misleading specification of OD prior will
restrict the algorithm from recovering the desired values. The same is true for prior values
of supply parameters. Thus, when prior parameters are heavily biased or unreliable, Z2

and Z3 should be set to a small value. But still, the prior demand matrix has certain
structural information, such as the relative magnitude of the demand flows among the
zones. Prior information about parameters needs to be provided to narrow down the
possible solutions.

1https://github.com/vishalmhjn/actrys
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6 Ensembling and heuristics for efficient traffic simulation calibration

Table 6.1: Symbols used in the chapter

Symbol Description

T Number of time intervals
∆T Duration of each time interval
X Time-dependent demand parameters, e.g., time-dependent OD flows in our

case, X = {Xt}∀t ∈ T . In this work, we use the terms dynamic OD matrix
and demand parameters interchangeably since they are identical.

Xa A priori or initial or given time-dependent parameter values, Xa = {Xa
t }

p Number of OD pairs
Y Selected supply parameters
Y a A priori or initial of selected supply parameters
q Number of supply parameters
G Road network and other fixed supply parameters, G = {G}
f Traffic simulation model
Mo Observed time-dependent sensor measurements, Mo = {Mo

t }, e.g., Mo
t =

{Co
t , V

o
t } for count C and speed V measurements

M s Simulated time-dependent measurements, M s = {M s
t }, e.g., M s

t = {Cs
t , V

s
t }

for count C and speed V measurements
m Number of link measurements
Z1, Z2, Z3 Goodness of fit function between simulated and observed measurements, simu-

lated and prior OD estimates, simulated and prior supply parameters, respec-
tively

w1,w2,w3 Decision weights for error functions Z1, Z2, Z3, respectively in the multi-
objective optimization

L Weighted overall objective function
Bx Bias factor for OD matrices X
Rx Randomness factor for OD matrices X
u Acquisition function for Bayesian optimization
A OD flow-Link counts assignment matrix
W Weight-matrix for W-SPSA, W = J(A), where J is a non-linear function
wcut−off threshold value below which the correlation is set as zero
wround−off boolean variable, if True, then the non-zero correlation between the parameter

and the sensor is set to 1
a, c SPSA gain coefficients
A, γ, δ other SPSA parameters
K, S, B, E Number of iterations for W-SPSA, sequential calibration, Bayesian optimization,

and ensembles, respectively
τ Error level, which is acceptable and hence defines successful convergence
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6.3 Indirect OD estimation

Since calibration is a constrained optimization problem (Equation 6.4), we must specify
the domain of the decision variables, i.e., values in the OD matrices. The equation 6.4
specifies the domain of the demand and supply parameters; if the domain for the demand
variables is wide, the local search algorithm has more flexibility to find solutions, leading
to a higher variance in the results. On the other hand, narrow domain specification
restricts the search space. These constraints help provide additional information to the
optimization algorithm regarding the search space of parameters.

6.3.2 Stochastic search and approximation using SPSA

6.3.2.1 Stochastic Approximation

Equation 6.2 is a form of an iterative optimization problem where the analytical form of
the objective function is unknown. To handle this, we move to Stochastic Approximation
(SA), which is a family of iterative stochastic optimization algorithms used for the
minimization of objective functions without an analytical form. Such objective functions
can only be estimated from noisy observations or noisy function evaluations, such as in
black box systems. In black box systems, only inputs and outputs can be viewed but not
the inner mechanism of the system (Bunge, 1963). A general form of SA is:

θ̂k+1 = θ̂k − akĝk(θ̂k) (6.5)

where θ̂k is the decision vector for the kth iteration and ĝk(θ̂k) is the estimate of
gradient at θ̂k. ak is the step size or gain sequence. There are different approaches to
estimating the gradient of the objective function from limited observations or function
evaluations. The näıve gradient estimation can be done using finite differences; the
gradient is estimated by perturbing the parameters in the decision vector sequentially,
i.e., one at a time, evaluating the objective function twice as many times as there are
the number of parameters, and estimating the gradient. Sequential perturbation of the
elements of decision vector and function evaluation at those points has a high time
complexity due to the large number of parameters and long run-time of large-scale traffic
simulators.

6.3.2.2 Simultaneous Perturbation Stochastic Approximation (SPSA)

SPSA, by Spall (1998a, 1998b), is a gradient approximation-based optimization algorithm
for stochastic optimization. In SPSA, the gradient is approximated by perturbing all the
parameters simultaneously. This leads to only two function evaluations of the objective
function per gradient evaluation. SPSA reduces the computation time by order of p,
where p is the number of dimensions or, in our case, the number of OD parameters. Due
to this advantage, SPSA is favored for simulation-based OD estimation since function
evaluation is expensive and the number of OD parameters is large (of the order of
thousands). The gradient vector in SPSA is approximated as follows:
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6 Ensembling and heuristics for efficient traffic simulation calibration

ĝk

(
θ̂k

)
=

L
(
θ̂k + ck∆k

)
− L

(
θ̂k − ck∆k

)
2ck∆k

=
L
(
θ̂+k

)
− L

(
θ̂−k

)
2ck∆k

(6.6)

where θ̂+k = θ̂k+ck∆k, and θ̂−k = θ̂k−ck∆k. Gain sequences are given by ck = c/(k+1)γ

and ak = a/(A+ k + 1)α, where c, γ, a, α and A are the SPSA parameters. c and a can
be scaled relative to the magnitude of the θ. The magnitude of gain sequences reduces
with k. ∆k is a random perturbation vector sampled from the Bernoulli distribution with
values of +1 and −1 with equal probabilities.

6.3.2.3 Weighted - SPSA (W-SPSA)

SPSA does not account for domain information and parameter correlations while propa-
gating gradients from objective function to parameters. Thus, various extensions of SPSA
for DODE are proposed in the literature, as discussed in Section 2.5.3. Of the proposed
extensions, the W-SPSA exploits the simulator knowledge to map the correlations of the
gradients with the parameters. W-SPSA (Antoniou et al., 2015; Lu et al., 2015) uses a
weight matrix to account for the correlation of the errors in MOP with the parameters
(OD flows) during gradient approximation. This enables the use of information from the
traffic simulator to discard the gradient signal from uncorrelated measurements. W-SPSA
can also be seen as splitting the original problem into multiple smaller SPSA problems
(Antoniou et al., 2015). To show how W-SPSA works, we re-write the loss function
(Equation 6.2) by omitting the constants (observed measurements and prior values of the
parameters), using θ to denote the demand and supply parameters, and setting w2 = w3,
Z2 = Z3, and P = p+ q for the sake of verbosity:

L(θ) =
T∑
t=1

[w1Z1 (f(θ)) +w2Z2 (θ)] (6.7)

Now, the additive elements of L can be arranged in a (m+ P )T array Z:

Z =
[
w1z1,1(θ) . . . w1z1,mT (θ) w2z2,mT+1(θ) . . . w2z2,(m+P )T (θ)

]
(6.8)

Where z corresponds to the element-wise error function for each parameter or mea-
surement. The gradient estimation in W-SPSA makes use of the correlation between
parameters and measurements based on the following (PT × (m + P )T ) dimensional
matrix :

W =



w1,1 w1,2 . . . w1,m . . . w1,mT . . . w1,(m+P )T

w2,1 w2,2 . . . w2,m . . . w2,mT . . . w2,(m+P )T
...

...
...

...
...

wP,1 wP,2 . . . wP,m . . . wP,mT . . . wP,(m+P )T
...

...
...

...
...

wPT,1 wPT,2 . . . wPT,m . . . wPT,mT . . . wPT,(m+P )T
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where wi,j is the correlation of ith parameter with jth measurement or parameter. Note
that these weights wi,j are different from the weights of multi-objective optimization (as
in the Equation 6.2), which are denoted by bold symbol w. The gradient calculation
steps for the ith parameter can be written as follows:

ĝki

(
θ̂k

)
=

∑(m+P )T
j=1 wij

[
Z+
j −Z

−
j

]
2ck∆ki

=
1

2ck∆ki
W⊤

i

[
Z+ −Z−]

(6.9)

where W i is the ith row of the weight matrix, and

Z+ =
[
w1z1,1(θ

+) . . . w1zmT (θ
+) w2zmT+1(θ

+) . . . w2z(m+P )T (θ
+)

]
(6.10)

Z− =
[
w1z1,1(θ

−) . . . w1zmT (θ
−) w2zmT+1(θ

−) . . . w2z(m+P )T (θ
−)

]
(6.11)

It can be seen that the gradient for each parameter is computed differently (Equation
6.9) in W-SPSA instead of a single gradient value for all parameters as in the case of
SPSA (Equation 6.6). The gradient matrix for all the parameters can be written as
follows:

Ĝk =
1

2
W⊤ [

Z+ −Z−]
⊘ ck∆k (6.12)

where ⊘ is the operator for the element-wise division of matrices, for further details
on W-SPSA, we refer the reader to Antoniou et al. (2015); Lu et al. (2015). Finally,
momentum can be used with W-SPSA to obtain the running average of the gradients
across iterations for efficient convergence. Thus, the update step (Equation 6.5) can be
replaced with the following:

vk+1 = βvk − akĝk

θk+1 = θk + vk+1
(6.13)

Where β is the momentum factor with a value between 0 and 1.

6.4 Methodology

6.4.1 Overview

The complete methodological framework for off-line calibration is summarized in Figure
6.1. The figure shows the application of the bias-correction heuristic on the initialized
parameters. This is followed by automatic SPSA parameter tuning and, finally, ensembling
of W-SPSA with sequential demand calibration and supply calibration (only in case of
real data scenario). The following sub-sections provide the details on these aspects.
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Figure 6.1: Proposed demand-supply offline calibration framework

114



6.4 Methodology

Algorithm 1 W-SPSA, source: Antoniou et al. (2015); Lu et al. (2015)

Require: SPSA gain coefficients {a, c} and other parameters {γ, α, A}, number of
iterations K or error tolerance τ , Initial parameter θ0

Ensure: θ†

1: L0 ← L (θ0)
2: for k ← 1, 2, . . . , K do
3: ak ← a/(k +A)α

4: ck ← c/(k)δ

5: W ← Wk

6: Ĝk ← 1
2ck

W⊤ [
Z+ −Z−]

⊘∆k

7: θk+1 ← θk - akĜk(θk)
8: Lk ←

∑T
t=1 [w1Z1 (f(θk+1)) +w2Z2 (θk+1)]

9: if Lk ≤ Lk−1 then
10: θ† ← θk
11: end if
12: if Lk < τ then break
13: end if
14: end for

6.4.2 Sequential calibration

Equation 6.2 implies simultaneous calibration of demand and supply parameters since
both sets of parameters are optimized simultaneously in a single objective function. Even
though simultaneous calibration of demand and supply parameters provides efficient
estimates (Toledo et al., 2014) (since at every iteration, both sets of parameters are
consistent), it comes with additional computational complexity and more degrees of
freedom. On the contrary, in sequential calibration, demand, and supply parameters are
calibrated sequentially. It means the demand parameters are initially calibrated while
keeping supply parameters fixed, followed by calibrating supply parameters while keeping
the demand parameters fixed. Although this helps to reduce the complexity, this could
be time-consuming since the process is repeated till estimates of both sets of parameters
are consistent. Therefore, in sequential calibration, Equation 6.2 can be decomposed into
two parts: demand (Line 2 in Algorithm 2) and supply (Line 4) calibration.

Sequential calibration provides the advantages of computational simplification of a
large optimization problem into two smaller problems. Also, optimization can be flexibly
adapted for the demand and supply parameters. This is important because demand
and supply have distinct properties, such as a number of parameters, their range of
possible values, and parameter sensitivity (Ciuffo et al., 2014) toward simulation outputs.
This reason motivates the selection of suitable optimization techniques for each class
of parameters. For instance, optimization algorithms scalable to high dimensions, such
as SPSA, make sense for demand parameters that are large in number. On the other
hand, if the number of supply parameters to be tuned is fewer, other state-of-the-art
optimization techniques, such as Bayesian optimization, can be applied.

115



6 Ensembling and heuristics for efficient traffic simulation calibration

Algorithm 2 Sequential demand and supply calibration

Require: weights for sensor counts and prior OD matrices w1 and w2, prior parameters
Xa and Y a, number of sequential iterations S

Ensure: X, Y
1: for s ← 1, 2, . . . , S do
2: X†

s ← minimize
X

∑T
t=1 [w1Z1 (M

o
t ,M

s
t ) +w2Z2 (Xt, X

a
t )] ▷ Demand calibration

3: Xt ← X†
s

4: Y †
s ← minimize

Y

∑T
t=1 [w1Z1 (M

o
t ,M

s
t ) +w3Z3 (Yt, Y

a
t )] ▷ Supply calibration

5: Yt ← Y †
s

6: end for

6.4.3 Bias-variance decomposition

DODE can be seen as determining the optimal demand and supply parameters based
on the given initial conditions (starting parameters) and the search process. Due to the
estimation process, there will be an error between the estimated demand (or supply)
parameters and optimal demand parameters. Now, we define:

• Let h(x) represent the (family of) estimators to be learned from sequential mini-
mization in Algorithm 2, where x = {X,Y } are the possible solutions.

• Let h∗(x) be the best estimator, i.e., which provides the best values of parameters.

• U represents the stochasticity of the search process, which affects the outcome.
This stochasticity can arise due to the characteristics of the optimization algorithm
and black box simulator.

• Then, bias is the error between the average estimator (averaged over U) and the
best estimator h∗(x)

• Randomness due to U will give rise to variance of a single estimator h(x)

• Finally, we have the noise or irreducible error, which is the difference between the
unobserved true estimator H and the best estimator h∗(x)

Using the Bias-Variance decomposition, the error can be written as:

expected error = (bias)2 + variance + noise (6.14)

where

( bias )2 =

∫
{EU [h(x;U)]− h∗(x))}2 p(x)dx

variance =

∫
EU

[
{h(x;U)− EU [h(x;U)]}2

]
p(x)dx

noise =

∫
{h∗(x)−H}2p(x,H)dxdH
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Initial values or the given parameter values can be seen as belonging to the sub-optimal
estimator that needs improvement. Thus, DODE aims to correct initial parameter values
to recover the “true” or desired values. If X∗ is the best estimate (corresponding to
h∗(x)) and Xa is the initial/ current or given estimate, then:

Xa = X∗((1−Bx) +Rxϵ) (6.15)

where Bx and Rx & ϵ control the systematic bias and randomness in each parameter
value, respectively. Here Rx is the contribution due to the estimator variance and noise.
Thus, the selected estimator should be the one that leads to minimum error. In the
following subsection, we provide a step-wise approach to addressing the bias and variance
of the estimators:

6.4.4 One-shot bias correction heuristic

As the true estimatorH is unknown, it is impossible to compute the expected error. There-
fore, this sub-section introduces an alternative approach for bias correction (Algorithm
3) applicable when the count data from links is available. The functional relationship
between the OD flows and sensor counts can be then represented using the following
equation (ignoring measurement errors):

C = A⊤X (6.16)

where, C is the (mT × 1) dimensional column matrix for the sensor counts, X is
the (pT × 1) dimensional OD demand demand column matrix, and A is the (pT ×mT )
dimensional assignment matrix of demand onto the sensors. In uncongested networks,
link flows depend linearly on the demand because the link costs or assignment matrix
in uncongested networks do not depend on the demand. Now we can write the above
equation for both the simulation and real scenarios:

Co = Ar
⊤Xr Cs = As

⊤Xs (6.17)

Under the assumptions of the uncongested network and similar demand-link assignment
in real-world and simulation, combining the above two equations gives us the following:

Xr = BXs (6.18)

Where B is the factor based on the sensor counts in simulation and measurements.
Under assumptions of an uncongested network, we only use a single simulation run to
upscale or downscale the OD demand matrix for a given time interval. Therefore, it is
called a “one-shot”. We approximate B in two ways, as shown in Algorithm 3. In the
first case, we simulate the initial demand Xa and calculate the ratio of the cumulative
simulated counts with the cumulative measured counts (Line 5 in Algorithm 3) where,
Cs
t,m and Co

t,m are the simulated counts and observed counts during period t for the mth
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sensor, respectively, and Nc is the number of sensors in the network. This scalar value is
termed the Näıve bias factor, which is used to upscale or downscale the initial values and
estimate the intermediate “bias-corrected” OD matrix {X̂t}.

Algorithm 3 Bias correction heuristic

Require: Initial OD parameters Xa, Other parameters including supply parameters Y ,
Road network and other fixed supply parameters G, Observed sensor counts Co

Ensure: X̂a

1: M s
t ← f (Xa

t ;Y ;G)
2: Cs

t , S
s
t ←M s

t

3: if method=Näıve then
4: for t← 1, 2, . . . , T do

5: B̂x
t ←

∑
m∈Nc

Cs
t,m∑

m∈Nc

Co
t,m

6: X̂a
t ←

Xa
t

B̂x
t

7: end for
8: end if
9: if method=weighted then

10: B̂x ← Cs ⊘ Co ·W⊤

11: X̂a ← Xa ⊘ B̂
x

12: end if

The above factor has limitations as it assumes that demand for the current interval
only influences the link incidence of the same interval and ignores the correlation of count
sensors with the demand. However, in practice, this is not true. To address this, we
can also use the simulator knowledge, i.e., the assignment matrix, to obtain an accurate
Bias factor. The idea is to estimate the bias factor for the demand flows based on the
count sensors that fall along the routes or paths during specific periods for the given
demand flows. Thus, the contribution of the uncorrelated count sensors and periods can
be omitted. We use the weight matrix (same as the weight matrix in W-SPSA) in Line
10 of Algorithm 3.

Due to the simplicity of the above heuristic, there is no guarantee that X̂a
t will lead

to a better fit of sensor counts. The proposed method can be applied to the demand
corresponding to the off-peak hours before calibrating the demand for the peak hours due
to the possibility of congestion. If most of the network during peak hours is uncongested,
then the above relationship can be expected to approximate the upscaling or downscaling
factor. Therefore, the accuracy of the correction depends on the actual state of the
network and how the congestion affects the demand-link assignment within the calibration
intervals. Nevertheless, this step is only an intermediate step and provides a principle for
initial adjustment in the given estimates. Further fine-tuning is performed by calibration
algorithms, which are discussed in the following sections.

Using initial demand i.e., Xa for domain specification can be ineffective since initial
values are disturbed due to bias and noise, as shown in Equation 6.15. Instead, we use X̂a
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for specifying the domain since they have been partially adjusted for the bias. Further,
we specify a domain flexibly depending on each of the values of the parameter, using
the X̂alx ≤ X ≤ X̂aux, where, lx and ux are the multiplicative factors for specifying the
lower bound and upper bound on the parameters. Thus, at least two parameters (lx and
ux) are needed to specify the domain for the complete set of demand parameters. By
using the X̂a, we take into account the (corrected) prior knowledge about the magnitude
of the parameters. The domain specification leads to a fan-shaped domain specification,
where the domain is narrow for the smaller values of the parameters, and vice-versa.

6.4.5 Automatic tuning of SPSA parameters using analytical model

We use an analytical assignment method approximated from the initial simulation run
to automatically fine-tune the calibration or optimization algorithm’s (such as SPSA)
parameters. In this way, we avoid iterating over the computationally expensive simulation-
based dynamic assignment. Thus we call it a “simulator out of the loop,” i.e., the
calibration algorithm does not use DTA or simulation assignment but uses an alternate
analytical assignment method. Therefore, we do away with the need to fine-tune the
algorithm’s parameters with the simulator in the loop, thus reducing the computational
burden and saving time. After tuning the calibration algorithm’s parameters, we run
the calibration with the simulator and similarly call it a “simulator in the loop,” i.e.,
The calibration algorithm involves iteration or looping over the DTA simulator for traffic
assignment.

To develop the analytical model, we only use an initial simulation-based assignment to
derive the assignment matrix. An assignment matrix is endogenous to the simulator based
on the time-dependent OD flows and route choice model and is derived from the incidence
of the OD flows on the edges with count sensors. The functional relationship between
the OD flows and link counts can be then represented using the following equation:

Ĉs = A⊤X̂ (6.19)

where, Ĉ are the sensor counts from the analytical assignment, A is the assignment
matrix derived from the simulator. We use Equation 6.19, as an approximation of the
simulator to fine-tune the algorithm’s parameters. This analytical assignment is way
faster than running the simulator. This equation can also be seen as a meta-model of
the simulation model. This method does not use the sensor or link speeds, since the
complex relationship between the link speeds and OD flows is non-linear and cannot be
analytically approximated using just the assignment matrix. Thus, to use this approach,
sensor counts must be used as MOP in the GOF function. The parameter (ϕ) tuning can
be formulated as an optimization problem (Equation 6.20), keeping demand and supply
parameters fixed, where, Ĉs is given by equation 6.19.

ϕ† ← minimize
ϕ

[
minimize

X̂t

T∑
t=1

[
w1Z1

(
Co
t , Ĉ

s
t

)
+w2Z2

(
X̂t, X̂

a
t

)]]
(6.20)
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Overall, the automatic parameters tuning module can be viewed as a hierarchical
optimization framework consisting of the following:

1. First-level or inner optimization using calibration algorithm with an analytical model
to calibrate the pseudo demand parameters (X̂t) with a given set of parameters.
This is shown by the inner part of the Equation 6.20. We cannot ensure the
consistency between the demand and assignment matrix during optimization by
using the analytical model (Equation 6.19) instead of the simulator. This is because
when there is a change in the demand parameters (X̂), the assignment matrix
(A) is considered fixed during the inner minimization in Equation 6.20. Thus, the
calibrated demand parameters here are referred to as pseudo-demand parameters
(X̂t) for the algorithm’s parameter tuning. Still, they help decide the appropriate
gain coefficient values for optimization based on the magnitude of the parameters.

2. Second-level or outer optimization with Bayesian learning to fine-tune the algo-
rithm’s parameters (ak, ck) based on the first-level optimization. The reason for
using Bayesian optimization is that it is a powerful optimization technique when
the objective function is not observed, function evaluations are expensive, and the
number of parameters is limited. In this case, the objective function is shown by
the outside part of the Equation 6.20. A simple Bayesian optimization algorithm
adapted from (Brochu et al., 2010) is presented in Algorithm 4. Bayesian opti-
mization uses an acquisition function u to sample the next data point, deciding
between exploration and exploitation (Brochu et al., 2010). By specifying a smooth
prior belief, such as the Gaussian Process (GP), we can calculate the posterior
distribution of the GP by sampling the new data points iteratively. The posterior
distribution is the surrogate model of our unobserved objective function (Equation
6.20). The acquisition function samples the points by evaluating the expected value
of a surrogate function and selecting the point that maximizes it. We refer the
reader to the tutorial on Bayesian Optimization for further details (Brochu et al.,
2010).

Algorithm 4 Bayesian optimization adapted from Brochu et al. (2010)

1: for b← 1, 2, . . . , B do
2: Let x represent the gain coefficients {a, c}, then find xb by optimizing the acquisi-

tion function over the GP: xb = argmax
x

u(x|D1:b−1)

3: Sample the objective function: yb = z(xb)
4: Augment the data D1:b = {D1:b−1, (xb, yb)}
5: end for

Subsequently, the sequential optimization of demand (and supply) parameters (Algo-
rithm 2) is done using the optimal calibration algorithm’s parameters obtained by the
above hierarchical optimization module.
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6.4.6 Ensembling for variance reduction

Due to the under-determined nature of OD estimation, there can be multiple solutions
for a given optimization formulation (Line 2 in Algorithm 2) and local-search algorithms,
such as SPSA, can result in the distinct local minima resulting in parameters with
considerable variance. Due to variance in the spatiotemporal demand patterns, variance
in sampling distribution or measurement errors, and simulation behavior stochasticity,
some of these solutions can be hypothesized as a manifestation of the desired or “true”
solution. Parameter averaging, such as in the bagging technique and Stochastic Weight
Averaging (SWA), can help to cancel out some of the variance in the individual solution
so that the averaged solution is closer to the desired solution.

Algorithm 5 W-SPSA with Bagging

Require: Bias-corrected dynamic OD matrices X̂a
t , number of bagging ensembles E,

exploration parameter σ2

Ensure: X† ▷ Averaged or “bagged” estimate
1: for e ← 1, 2, . . . , E in parallel do ▷ Bagging cycles
2: ϵ ← N (0, σ2)
3: X̂a ← X̂a + ϵ
4: X†

e ← minimize
X

∑T
t=1

[
w1Z1 (M

o
t ,M

s
t ) +w2Z2

(
Xt, X̂

a
t

)]
▷ Demand calibration

using W-SPSA
5: end for
6: X† ← 1

E

∑
X†

e

6.4.6.1 Bagging (ensembling with cold restart)

Here we run multiple estimators, such as W-SPSA (in parallel or serial order), and record
the final estimates of each run or cycle. Since SPSA is stochastic due to the nature of its
search process (see Equation 6.6, where ∆k is a random vector). Thus, different runs of
SPSA with different seeds can lead to different local optima, even if SPSA parameters are
kept the same. In all the cycles, the same initial estimate is used, which is why this can
be referred to as “cold restart” (Algorithm 5), since knowledge from the previous cycle is
not used to influence the current cycle. However, we add a small exploratory noise in the
initial OD vector to promote the optimization algorithm to find new solutions. With the
cold restart, the algorithm has more freedom to explore other possible solutions that are
scattered around the desired solution. The final “bagged” estimate is the simple average
of all the final estimates from all the W-SPSA cycles. Further, specifically in bagging,
individual models can be trained in parallel, thus offsetting the time cost of multiple
optimization cycles. For further details on bagging, we refer the reader to Breiman (1996);
Dietterich (2000).
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6.4.6.2 Stochastic parameter averaging (ensembling with warm restart)

We propose ensembling with warm restart and refer to this approach as SPA (Stochastic
Parameter Averaging), inspired by SWA (Izmailov et al., 2018), snapshot ensembling
(G. Huang et al., 2017), and Stochastic Gradient Descent (SGD) with warm restarts
(Loshchilov & Hutter, 2016), for W-SPSA. We use the term “parameter” instead of weight
since the former term is more common in traffic calibration literature. In SPA, the gain
coefficients are reset after fixed iterations or when the objective function fitness is not
changing much. The next optimization cycle uses the iterate from the previous cycle
as the initial parameters (Algorithm 6); hence, it is referred to as “warm restart”. The
resetting of SPSA gain coefficients resembles the cyclic learning rate. The idea is after
initial convergence around a probable solution, W-SPSA is further pushed to explore the
other solutions for improvement, but in the vicinity of the estimate from the previous
cycle. Finally, we take the simple average of cycle estimates to obtain the final “SPA”
estimate.

Algorithm 6 W-SPSA with Stochastic Parameter Averaging [based on SWA (Izmailov
et al., 2018)]

Require: bias corrected dynamic OD matrices X̂t, number of SPA cycles E
Ensure: XSPA {Averaged SPA estimate}
1: for e ← 1, 2, . . . , E do

2: X†
e ← minimize

X

∑T
t=1

[
w1Z1 (M

o
t ,M

s
t ) +w2Z2

(
Xt, X̂

a
t

)]
3: XSPA = (e−1)·XSPA+X†

e

e

4: X̂a = X†
e

5: end for
6: X† ← 1

E

∑
X†

e

6.4.7 Calibration of supply parameters

We use Bayesian optimization (Algorithm 4) for calibrating the selected supply parameters
(Line 4 in Algorithm 2). Different data sources, such as point-based, edge-based, and
network-based, can be used to calibrate the parameters. The type of supply parameters
can vary based on the specific simulator. However, Bayesian optimization is a kind of
black-box optimization and thus accesses only the inputs (parameters) and outputs of
the objective function. Therefore, supply parameters to be calibrated are selected based
on their sensitivity to the output data or corresponding MOPs. If certain parameters are
not very sensitive to the outputs, it is not possible to calibrate them with the given data.
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6.5 Experiment design and set-up

6.5.1 Overview

In this research, the demand parameters are the time-dependent OD matrices. Supply
parameters control the traffic propagation and route choice behavior. The details of
scenarios with different simulation and data combinations for varying levels of simulation
complexity and data are as follows:

1. Scenario 1: Analytical assignment with synthetic sensor counts: A randomly
generated demand-link assignment matrix is used for mapping OD flows (randomly
sampled using a distribution function) to sensor counts using Equation 6.19. In the
case of synthetic experiments, where true OD parameters are generated/ known,
the algorithm is also validated by the error between the calibrated OD parameters
and true OD parameters. The method’s performance is evaluated on the fitness
of sensor counts and OD matrices. This scenario focuses on obtaining accurate
demand estimates (Line 2 of Algorithm 2), which is why supply parameters are
considered fixed. Hence, this scenario is just restricted to demand calibration.

2. Scenario 2: SUMO and Munich network with synthetic sensor counts data: Given
OD flows (Moeckel et al., 2020) are simulated and corresponding sensor counts are
recorded as desired counts. In this case, supply parameters are kept constant and
thus not part of the calibration. The method’s performance is evaluated on the
fitness to measurements (counts, speeds) and OD matrices.

3. Scenario 3: SUMO and Munich network with real-world sensor counts: Given
OD flows (Moeckel et al., 2020) are used with sensor counts from real-world data
sources (BAST: Bundesanstalt für Straßenwesen, 2023). We use the best-performing
approaches in the above scenarios and apply them here. In this case, true OD
matrices are unknown, and the algorithm’s performance is only evaluated on sensor
count fitness. To achieve the best fitness, we calibrate the demand and the supply
parameters sequentially (Algorithm 2).

6.5.2 Initialization

A “true” OD is sampled from an underlying distribution for the experiments with
synthetic data. Based on the empirical findings, we select a right-skewed distribution
for sampling the OD demand, so a few OD pairs have many trips mirroring large and
dominating zones (such as external zones) within the study area. On the other hand,
most zones have a relatively smaller number of trips. The sampled demand matrix (in
case of synthetic experiments) or initial OD demand matrix (in case of real scenarios) is
given as input to a traffic simulator (Algorithm 7), and corresponding simulation outputs
(link counts and link speeds) are recorded.

Subsequently, bias and randomness, proportional to the OD parameter’s magnitude,
are added to the true demand values according to Equation 6.15. In this way, a “true”
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Algorithm 7 Initialization

Require: Initial OD parameters Xt (real case) or distribution DX (synthetic case),
Other parameters including supply parameters Y , Road network and other fixed
supply parameters G, Observed sensor measurements Mo

t (real case)
Ensure: Xa, C

o
t , S

o
t

1: if scenario = synthetic then ▷ Synthetic data scenario
2: X∗

t ∼ DX ▷ Generate true OD matrix parameters
3: M s

t ← f (X∗
t ;Y ;G) ▷ Generate true sensor measurements

4: Xa ← X∗((1−Bx) +Rxϵ) ▷ Perturb original parameters
5: Co

t , S
o
t ←M s

t ▷ Assign observed measurements
6: else ▷ Real data scenario
7: Xa ← Xt ▷ Assign seed matrix
8: Co

t , S
o
t ←Mo

t

9: end if

or desired OD matrix is corrupted or disturbed by adding artificial bias and noise. This
disturbed OD matrix is used as the initial or given OD matrix (Xa), similar to practical
situations where the actual or “true” OD matrix is unknown. However, instead, an
error-prone prior estimate is available. Due to errors in the prior demand matrix, we do
not use it in the calibration objective function, i.e., we set w2=0 and w3=0 in all the
above scenarios (Algorithm 2). Thus, optimization is guided by the fitness of count or
speed measurements (w1=1), but the search is restricted within the domain or structure
specified using bias-corrected prior estimates.

6.5.3 Gradient and performance evaluation

We use primarily Weighted Average Percentage Error (WAPE) (Equation 6.21) as our
evaluation criteria for OD fitness and count fitness:

WAPE =

∑
(|x− x̂|)∑

x
(6.21)

where x and x̂ are actual and predicted values. WAPE weights the percentage errors
based on their magnitude since the scale of the parameters can vary across a wide range.
WAPE, also called MAD/ mean ratio, is a preferred alternative over MAPE (Kolassa
& Schütz, 2007). This is crucial since the costs of inaccurate estimation of large OD
demand flows can be more adverse and thus need to be minimized. Apart from WAPE,
we use Root Mean Squared Error (RMSE) for performance evaluation.

In W-SPSA gradient calculation steps, we scale the estimators (z1 and z2) relative to
each other using the following method (He et al., 2021):

z̃2 = z2 ·
max{z1}
max{z2}

= z2 · η2 (6.22)
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where η2 is the scaling factor. Alternatively, the measurements or parameters can be
normalized or standardized before evaluating the estimator. Similar scaling is used for
speed measurements if included in the objective function.

6.5.4 Experiments

We conduct the grid-based evaluation of the effect of the parameters Bx and Nx on
the effectiveness of our proposed approach. Since we expect ensembling to be beneficial
when the individual estimates are in the neighborhood of each other, by averaging some
of the variance can be canceled, and the mean of the estimates is closer to optimal
values, as compared to the individual estimates. We hypothesize that with the increase
in the magnitude of bias and noise in the initial OD values (Xa), the resulting calibrated
estimates can be far from each other, leading to reduced effectiveness of the ensembling.
This grid-based evaluation helps to define the value of Nx for Scenarios 2 and 3. We
also add randomness to the sensor count measurements and check the impact on the
calibrated estimates. The noise is added to mimic random data errors according to
Ĉo = Co(1 + Rcϵ). We incrementally add the proposed methodological components
to the baseline W-SPSA method and evaluate the improvement. The possibilities are
enumerated as follows:

1. W: Baseline, using only W-SPSA and manual specification of SPSA parameters.

2. BC: Bias Correction heuristic

3. A-W: W-SPSA with Automatic SPSA’s parameter tuning.

4. W-B: W-SPSA with Bagging.

5. W-SPA: W-SPSA with SPA.

6. A-W-B: W-SPSA with Automatic SPSA tuning, followed by Bagging.

7. BC-A-W: Bias correction heuristic, followed by W-SPSA with Automatic SPSA
tuning.

8. BC-A-W-B: Bias correction heuristic, followed by Automatic SPSA tuning for
W-SPSA, with bagging

6.5.5 Computation burden

The computation requirement for convergence of the algorithm depends on many factors.
We quantify the computation requirement of our approach in terms of the number of
objective function evaluations or traffic assignment instances. Depending on the type of
scenario, the type of traffic assignment (analytically or simulation-based) and its time
burden can be different. If all the methods are used, then the minimum number of times
function evaluation is done can be expressed as 1 + S((3 · E ·K) +B). This is because
we need one evaluation of BC and three evaluations for each W-SPSA (ignoring gradient
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and simulation replications). We used a desktop PC (8 i7-11700F @ 2.50GHz physical
cores and 50 GB RAM) and a workstation (36 Intel Xeon @ 2.60 GHz physical cores and
156 GB RAM). A single analytical traffic assignment requires less than 5 seconds due
to its simplicity, whereas a single simulation-based traffic assignment takes around 31
minutes.

6.5.6 Calibration platform description

Figure 6.2: Calibration platform and SUMO simulator coupling in Python

We developed a Python-based platform for the sequential calibration of the demand and
supply parameters of the large-scale mesoscopic traffic simulation in Simulation of Urban
Mobility (SUMO) (Lopez et al., 2018). Figure 6.2 shows a schematic representation of the
platform. Given the simulation inputs (network, traffic analysis zones, detector locations)
and parameters’ priors, the platform calibrates the demand according to the proposed
methodology. Other parameters that are fixed are, therefore, not part of calibration
or outside of the scope of calibration. An initial OD matrix is used to generate trips
between edges in different Traffic Analysis Zones (TAZs). The routing algorithm in
SUMO assigns routes to these trips. We select a few supply parameters that influence
traffic flow, junction delays, and route choice behavior. These parameters are defined
below:

1. Automatic or online routing is used for the traffic assignment. According to SUMO
(2023a), this routing approach works by giving some or all vehicles the capability to
re-compute their route periodically based on the traffic conditions in the network.
This kind of routing is also called a “flexible one-shot assignment” (Castiglione et
al., 2014). The parameters influencing the routing of vehicles are:

a) re-routing probability : The probability for a vehicle to have a routing device.
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Table 6.2: Enumeration of calibration parameters

Simulator → Analytical Black box
Data → 1. Synthetic 2. Synthetic 3. Real

Network parameters
Number of OD pairs 2500 5256 5256
Number of intervals 3 5 5
Duration of interval
(hours)

1 1 1

Number of count sensors 500 1166 450
SPSA parameters

γ 0.01 0.101 0.101
α 0.7 0.602 0.602
Range for c (0.01, 10) (0.01, 1) (0.01, 1)
Range for a (1x10−6, 1x10−3) (1x10−5, 1x10−3) (1x10−7, 1x10−2)
Maximum number of
SPSA iterations

100 50 50

W-SPSA weight parameters
Weight binary rounding True True True
Weight cut-off 0.01 0.01 0.01

Other parameters
S upto 5
B upto 100
E upto 20

b) re-routing period : The period with which the vehicle shall be rerouted.

c) re-routing adaptation steps: The number of adaptation steps for averaging.

2. To influence the routing decision, the travel time of different types of edges can be
scaled depending on their priority, using the parameter edge priority factor (SUMO,
2023c). Consequently, low-priority edges will receive a penalty and have increased
travel times, whereas high-priority edges receive little or no penalty.

3. The parameters which affect other delays (SUMO, 2023b) are:

a) tls travel-time penalty : This is a headway penalty to reduce the maximum
flow across a signalized intersection.

b) meso minor penalty : This is a fixed time penalty when passing a prioritized
link.

We implement the W-SPSA by extending the Python SPSA implementation by Mayer
(2017). All inputs pertaining to the network specification, count detectors, demand
zones, SPSA parameters, etc, for three scenarios, are shown in Table 6.2. Values of
SPSA parameters γ and α are fixed based on initial sensitivity analysis. We select SPSA
gain coefficient a and perturbation c parameter for the automatic tuning module and
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thus ϕ = {a, c}. Their search space is specified in Table 6.2. The complete platform is
implemented using Python and is available on GitHub (see footnote in section 6.2).

6.6 Results

6.6.1 Automatic SPSA parameter Tuning

Figure 6.3: Automatic tuning of SPSA gain coefficients using Bayesian optimization for (left)
scenario 1: synthetic simulator and (right) scenario 3: SUMO with real data

As discussed in Section 6.4.5, the automatic tuning procedure is solved as a hierarchical
optimization process. The first step deploys W-SPSA to calibrate the pseudo demand
parameters, while the second step uses Bayesian learning to fine-tune the SPSA parameters
(ak, ck). For the Bayesian learning model, we use Matérn kernel as the Gaussian prior,
and Upper Confidence Bound (UCB) as the acquisition function (Brochu et al., 2010).
In all scenarios, we specified the parameter space for c as (1e-2, 1e1). The space for a
is set to (1e-6, 1e0) for scenario 1, whereas it is set to (1e-7, 1e1) for scenarios 2 and 3.
The points are randomly sampled on the logarithmic scale for initial probing, followed
by Bayesian optimization. The number of iterations for initial probing/ exploration and
number of iterations for Bayesian optimization was set to {50, 100} for scenario 1, and
{100, 200} for scenarios 2 and 3. In Figure 6.3, we show the results of automatic SPSA
parameter tuning for scenario 1 and scenario 3. The WAPE is lower for scenario 1 (scale
of the color bar in Figure 6.3), compared to scenario 3 since the former involves synthetic
data and the analytical simulator has a simpler loss surface without stochasticity. The
approximated assignment matrix, in this case, is the same as the true assignment matrix,
which is static. In scenario 1, we see that the points are initially probed randomly over
the specified space of parameters during exploration, followed by a focused search based
on the acquisition function. For scenario 1, we find that values of c and a in the ranges
of (1e-2, 1e0) and (1e-6, 1e-4) are effective.
For scenario 3, the loss region is noisy due to errors from real data and analytical

approximation of the assignment matrix in place of the actual simulator. This is why
parameter combinations do not have a clear boundary of lower error and errors are also
high. This stochasticity can be addressed by increasing the number of output averaging
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and SPSA replications at the cost of additional computation. Still, a fuzzy pattern is
evident for c and a in the range of (1e0, 1e1) and (1e-5, 1e-4), where lower errors are
predominant. Thus, we conclude that automatic tuning of the SPSA parameters using
an analytical approximation of the simulator is practical. With these insights, scenarios
2 and 3 are instrumented with the above settings of the automatic tuning module.

6.6.2 Scenario 1: Synthetic data with analytical assignment

We show the results of the grid-based evaluation for bagging effectiveness in Figure 6.4.
At lower levels of randomness (Rx in 30-40%), initial error in demand (Xa) and sensor
counts (M c) are about the same. At higher levels of Rx, the initial error in Xa (OD
parameters) increases. During the initial increase in Rx for Rx < 30%, there is a rapid
increase in the error for higher values of Bx, whereas the error increase is gradual for
smaller values of Bx. The gradual error increase continues for higher values of Rx in
the case of lower Bx, but the error is stable for higher Bx. For the sensor counts, the
initial error stabilizes or even drops with an increase in Rx. This is because counts are
the weighted sum of the demand flows between respective OD zones. Thus, additional
randomness in the OD flows is canceled due to weighted summation. There is no strong
correlation between the initial error in OD demand flows and corresponding counts in
this range. Secondly, an increase in randomness cancels out the initial bias in some of
the parameters and thus results in a small drop in the initial count WAPE.

We notice that W-SPSA can minimize the objective function in all cases of bias
and randomness. This is because the sensor counts are used as MOP in the objective
function, and it is evident that the final count error is lower than the initial count error.
Further, the total error computed by equally weighing the error in sensor counts and OD
parameters is also lower. For low values of randomness (Rx), the error is dominated by
the factor Bx. Results indicate that the algorithm can correct even high bias values in
OD parameters if Rx is small. This is why the initial and final total error gap is highest
for low values of Rx.

The box plots in the middle column (Figure 6.4) show the WAPE of each individual
estimate. The fitness of bagged OD estimates is consistently lower than the individual
estimates in all cases, which supports the effectiveness of the bagging. However, the
calibrated estimates are only better than the desired estimates for smaller values of Rx

(0-20%) in all the ranges of Bx. This observation implies that the algorithm can only move
closer to the desired ODs X∗ for lower values of the Rx. This is because, firstly, increased
randomness in the initial estimates will deteriorate the structure of the initial demand
specification and the quality of the domain specification of the demand parameters. At
high randomness values, the initial point and domain misguide the calibration algorithm
to a local optimum which is even far from the starting point resulting in higher error.
Secondly, high Rx does not translate to a higher error in sensor counts due to the
cancellation of the random errors. Thus, gradients relying on the sensor counts cannot
effectively guide the search. The conclusion is that desired OD parameters are only
recoverable when Rx is small since, at higher values, the essential structure of the X∗ in
Xa starts to disappear. However, the Bagging approach effectively improves the weighted
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Figure 6.4: Scenario 1: Error at varying levels of Bx and Rx, for a Synthetic scenario with 50
OD zones. The Final error includes equally weighted sensor counts and OD demand
estimates.
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fitness of both the demand and count parameters. Based on these findings, in the black
box simulation experiments i.e., scenario 2 and scenario 3, we set the randomness values
as Rx=20%. This randomness value is similar to those used in the existing literature
(Antoniou et al., 2016).

In Figure 6.5, we show the OD fitness error contours for single W-SPSA, SPA, and
bagged estimates. Due to high dimensional optimization, fitness error is influenced by
thousands of demand parameters. The plot shows the conditional error (because it
depends on multiple parameters) region with the values of the pair of zones on X and
Y-axes. The columns in this figure correspond to two levels of Rx 30% and 90%, both
at Bx=0.6. Fitness error increases with the increase in Rx. The single estimates are
scattered in the region. However, the averaged estimates from SPA and bagging lie with
the region of lower errors than the single W-SPSA estimates. Thus, bagging and SPA
help reduce the variance from single W-SPSA estimates.
We compare the performance of bagging and Stochastic Parameter Averaging (SPA)

in Figure 6.6, where Bx=0.6 and Rx=30%. Here we report bagged estimates from 20
W-SPSA runs, each for 100 iterations. Further, we also show the results of multiple SPA
runs, each running for 2000 iterations. It is pointed out that function evaluations in
bagging (with 20 different W-SPSA cold restarts, each running for 100 iterations) are
equivalent to those in a single SPA run of 2000 iterations with warm restarts. Thus,
the comparison between them is fair. The final count WAPE for individual W-SPSA
estimates (Column 1 in Figure 6.6) stops to reduce at 0.05 after a few iterations. On the
other hand, count fitness WAPE for SPA continues to reduce up to a value of more than
0.025. In the SPA loss curve, we see that each warm restart of the cyclic learning rate
pushes the loss curve down faster than before the restart of the learning rate. Individual
estimates achieve an OD fitness WAPE of 0.70, whereas individual SPA achieves a WAPE
of about 0.55. We find that averaging helps improve the final W-SPSA solution, compared
to the single solutions from each. Both bagging and SPA provide better OD estimates
than the individual estimate from each W-SPSA run. However, the averaged estimates
from bagging show superior performance with a WAPE of 0.38 compared to the averaged
SPA estimates with a WAPE of 0.49. This implies that even though individual SPA
estimates are more effective in fitting the counts and ODs than individual W-SPSA
estimates, the averaged estimates of bagging are better than those of SPA. This could be
because SPA prioritizes exploration around the initial local optima. If the initial local
optima is not good enough, SPA does not explore sufficiently, and SPA averaging fails to
reduce the variance. In the case of bagging, each estimate is obtained from exploration
in a broader region. Thus, averaging the estimates has a superior result. The results
of averaged estimates from bagging are not too sensitive to the momentum parameter
β, as compared to those from the SPA. In bagging, five individual estimates reduce a
significant part of the OD fitness error, whereas, for SPA, the error reduction is gradual.
This implies that a small number of cold restarts as in bagging can give major benefits.
Due to these reasons, we only used bagging or ensembling with cold restarts for the
following experimentation.
We compare the performance of different components of our methodology for OD

parameter fitness and sensor count fitness in Figure 6.7. In this case, we set Bx = 0.8,
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6 Ensembling and heuristics for efficient traffic simulation calibration

Figure 6.5: Scenario 1: Contour plots showing the parameter values for selected pair of the
zones with Bx=0.6, at different values of the Rx. It can be seen that bagged ( )
or SPA (×) estimates lie in the lower error region as compared to the single SPSA
iterate ( ). The right column is the zoomed-in version of the plots in the left column.
The plot shows the conditional error region with the selected two OD zone pairs on
X and Y-axes
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6.6 Results

Figure 6.6: Scenario 1: OD and count fitness curves for bagging and stochastic parameter
averaging with Bx=0.6 and Rx=30%.
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Figure 6.7: Scenario 1: OD and count fitness (RMSE and WAPE) sensitivity with the change in
the randomness parameter, with different approaches using an analytical simulator
(Bx=0.8)

test the performance for values of Nx ranging from 10% to 200%, and show WAPE and
RMSE. The approaches compared are Bias correction (BC) using naive method, BC
with weighted method, BC with W-SPSA, W-SPSA with bagging, and BC with W-SPSA
and bagging. Although a high randomness factor leads to higher corresponding errors,
the problem becomes more challenging since the structure of the desired estimate is not
identifiable from the initial matrix.

We find that the performance of the approaches depends on the Rx. All approaches
with bias correction perform equally well at low randomness values. This is an interesting
finding since it implies a simple and computationally inexpensive heuristic can achieve
similar or better error performance as the W-SPSA optimization process for small
randomness in the initial OD matrix. At Rx > 40%, bagging performs better than the
other approaches, specifically as seen from W-SPSA with bagging. This implies that for
OD fitness, the bias-correction heuristic dominates at small randomness, whereas bagging
dominates at high randomness. For high randomness, initial estimates are unreliable;
thus, averaging multiple estimates helps provide better results. In the case of WAPE,
OD fitness of BC with W-SPSA without bagging shows higher errors than just using BC.
Intuitively, the SPSA model works better when the objective function has a clear descent
direction. This is often the case when the objective function has a lower/ higher demand
with respect to the true demand (Cantelmo et al., 2015). However, as the BC heuristic
removes bias related to, e.g., overestimation or underestimation, the performance of
W-SPSA may be affected.

Looking at the fitness for sensor counts, we find that W-SPSA outperforms simple
heuristics in matching the sensor counts regarding both WAPE and RMSE. This is
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understandable since BC heuristics only adjust the OD parameters without ensuring
consistency with the true sensor counts. Simple heuristics work equally well if the
randomness in initial estimates is small (20% < Rx < 30%), meaning that initial
estimates sufficiently capture the structure of the true estimates. The normalized total
fitness shows that W-SPSA and bagging approaches achieve lower errors than the BC
heuristics even in high randomness. Thus approaches using W-SPSA and bagging are best
when ensuring the overall fitness of the counts and OD demand parameters. To speed
up the convergence, BC can be used to adjust the initial values of the OD parameters,
followed by W-SPSA with bagging to ensure consistency with the MOPs, such as counts.

6.6.3 Scenario 2: Munich scenario with SUMO simulator and synthetic data

We show the results of the calibration for the Munich scenario using the SUMO platform
with synthetic counts and speeds in Table 6.3. The first set of results corresponds to
Bx = 0.6 and a relatively smaller factor for randomness (Rx = 20%) and uses only sensor
counts or both sensor counts and link speeds in the objective function. We also add
artificial randomness to the sensor counts to mirror data errors. We perform an ablation
study by using one or more of the components of our methodology, namely W-SPSA (W),
Bias Correction (BC), Automatic SPSA Tuning (A), and Bagging (B). The initial WAPE
errors in count, speed, and OD are 0.42, 0.03, and 0.45, respectively. Similarly, the initial
RMSE errors in count, speed, and OD are 288, 1.71, and 10.80, respectively. We define
baseline as the scenario using sensor counts as MOP, with only W-SPSA, where count
fitness WAPE is 0.14. The corresponding final speed and OD WAPE are 0.02 and 0.72,
respectively. In this case, although counts and speeds fit better, the estimated OD is
worse than the initial OD values. This is because in the objective function minimization,
W-SPSA can converge to fit better to counts, but it lands in undesired local optima for
the OD estimates, which is still away from the desired optima. Thus, individual estimates
from W-SPSA have worse OD fitness due to induced randomness in the parameters
during the optimization path. When using only BC, the OD fitness, count fitness, and
speed WAPE are 0.28, 0.10, and 0.02, respectively. When using W-SPSA with bagging
(A-W-B), we obtain OD fitness of 0.42, whereas count and speed fitness are 0.10 and
0.02. Thus, we find that bagging helps to provide improved count and OD estimates
over initial values as well as Baseline scenarios. In this case, we find speed and count
fitness comparable to the BC approach. Using BC-A-W provides better results than the
baseline in terms of improvement over count and OD fitness, but still, the estimated ODs
are worse than the initial estimates in terms of WMAPE and RMSE. Adding Bagging
helps to address this variance in the estimated OD parameters since the approaches
A-W-B and BC-A-W-B have superior OD fitness than the baseline scenario. Only the
latter approach outperforms the BC approach in terms of count fitness. This means
that at small levels of randomness in the initial estimates, a simple heuristic such as BC
can provide equal or better OD estimates than other approaches. However, we cannot
simultaneously minimize fitness with respect to MOPs. This is why the combination of
BC, W-SPSA, and Bagging helps to obtain the estimates while ensuring optimal fitness
with respect to counts and speeds. For the given scenario, speed errors are low in all the
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cases and are not sensitive to the count errors/ approach used. This is possible because
most of the network is uncongested. Therefore, they add little value to the calibration
process.
When we add randomness to the sensor counts, we expect a reduction in fitness

to the OD counts since the signal-to-noise ratio of the gradients from MOPs reduces.
Therefore, for different sensor noise levels, we see a gradual reduction of OD fitness.
Thus, the quality of sensor counts has important implications for the fitness of the OD
parameters. Another finding is that in our experiments, using speeds in MOPs leads to
higher errors in estimates as compared to using only counts in the MOPs. Since speed
error is already low, they do not provide additional signals to the calibration process.
W-SPSA essentially decomposes the original problem into multiple smaller sub-SPSA
problems. By inclusion of speeds in the objective function, the number of MOPs increases,
and due to the non-linear dependence between speeds and OD flows, the complexity of
sub-SPSA problems also increases, leading to a drop in the accuracy of the estimates.
However, speeds can provide additional context for better convergence in cases where
the network is significantly congested. We suppose that the trade-off between additional
context from speed data and complexity depends on the level and spread of congestion/
spill-back in the network and could be a matter of future research.
Then we set the OD randomness value to a high value (Nx = 200%) to simulate

situations where the initial demand estimates are of poor quality and, thus, the essential
structure of the demand is lost. In the existing literature, such extreme scenarios are
not considered and tested in OD estimation. We observe the adverse effect of using the
BC approach in these situations. This is because the BC approach is unreliable when
the initial estimates have high random errors; thus, the bias correction is ineffective.
Therefore in these cases, A-W-B gives the best fitness for OD parameters. Using BC-A-
W-B provides the best count fitness in this case as well. However, the final estimates are
still far from the desired values. When the initial estimates have high errors, there is
little hope of recovering the desired estimates using the local search since the proposed
methods will tend to converge to the local optima but far from the desired optima.

The effects of bagging on the calibrated OD estimates are shown in Figure 6.8. The two
plots on top and bottom correspond to initial estimates with a good initial estimate (low
randomness Rx=20%) and poor initial estimates (high randomness Rx=200%). Bagging
can benefit both cases, as the OD fitness improves with the number of estimates used
for averaging. We can see that averaging four individual estimates leads to most of the
improvement in OD fitness. However, the final OD fitness errors are much lower than
initial estimates with low random errors. The calibrated estimates in the case of bagging
have lower variance, especially in case of low randomness, and is evident by calibrated
estimates closer to the 45◦ line. Another interesting thing to note in Figure 6.8 is that
even though OD parameters have a lot of scatter, counts have limited scatter. This
implies that the variance in the OD parameters does not proportionally translate into
variance in link counts since counts are the weighted sum of the OD flows. Thus, even if
the ODs have significant random errors in case of poor estimates, the sensor counts will
not have proportionately larger errors. Thus the optimization algorithm will struggle to
converge to a locally optimal solution using only counts as MOP, which is undesirable. In
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6 Ensembling and heuristics for efficient traffic simulation calibration

case of poor estimates, the domain specification (lx, ux) also needs to be broad enough to
include the desired solutions, which will further increase the complexity of the calibration
and the possibility of undesirable solutions. Thus, the quality of good initial estimates
from auxiliary sources cannot be overstated in the case of OD estimation.

Figure 6.8: Scenario 2: Effects of bagging with initial estimates with (top) small randomness
(Rx = 20%) and (bottom) high randomness (Rx = 200%)

6.6.4 Scenario 3: Munich scenario with SUMO and real-world data

This scenario requires a minimum of 400 function evaluations (S = 2, E = 5, K = 10,
B = 50) or 5-6 days (reduced to 2-3 days if using parallelized W-SPSA and Bagging)
to converge. However, these estimates can vary depending on the preciseness of the
initial demand and supply parameters. Regressing the error with the supply parameters
(R2=0.90) shows that only priority factor, meso-minor penalty, rerouting adaptation,
and tls travel-time penalty are significant. We also visually inspect the error surface.
Figure 6.9 shows the error surface with supply parameters. A meso-minor penalty of
less than 10 gives optimal results. The optimal tls travel-time penalty is close to 1,
and rerouting adaptation is less than 5. The optimal priority factor lies between 0.35
to 0.60, and rerouting probability lies between 0.40 to 0.50; however, lower values of
the rerouting probability, such as close to 0.10 are also feasible, conditional on other
parameters. Based on the results, we select values of flow penalty, travel-time penalty,
and minor junction penalty are 0.57, 0.00, and 0.00, respectively. Rerouting probability,
period, and adaptation interval are 0.10, 80, and 1, respectively. We see that multiple
values of the combination of supply parameters give the desired or good fitness of the
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sensor counts. This points to the fact that additional MOPs from other data sources,
such as inter-zone travel times, queue lengths, trajectory data, and travel speeds, should
be considered for the further calibration of these parameters.

Figure 6.9: Scenario 3: Error surface with the supply parameters

Figure 6.10 shows the plot of simulated and observed link sensor counts during 0700-
1000 at different stages of sequential demand and supply calibration. Before demand
calibration, the scatter plot is not centered around a 45-degree line for the counts on
other link types (trunk and primary links), which implies room for improvement. WAPE
for other links ranges between 1.49 and 1.74. After demand calibration, WAPE for
federal (motorway links) is in the range of 0.24-0.40 during 0700-1000 hours. WAPE
for other links (trunk and primary links) is in the 0.51-0.53 for the same time interval.
Overall, WAPE varies between 0.39 and 0.47, which is lower than the corresponding
WAPE before calibration. Simulated counts for federal links during 0800-1000 hours
are lower than the corresponding observed counts. After supply calibration, WAPE for
federal (motorway) links ranges from 0.19-0.25 for 0700-1000 hours. WAPE for other
links (trunk and primary links) ranges from 0.40-0.48 for the same time interval. The
overall WAPE varies between 0.32-0.37. Calibration of supply parameters substantially
reduces the overall error. The improved match for the federal links during the 0800-1000
is also evident.

We also show the hourly link volumes (Figure 6.11) on the network for the 0800-0900
hour, highlighting the comparison between the uncalibrated and final calibrated models.
The difference between the distribution of the flows between the two cases is evident. In
the uncalibrated model, there is lesser traffic on the links corresponding to the outer
Autobahn ring road (German translation: Äußerer Ring), as well as the middle ring road
(Mittlerer Ring), whereas the share of traffic on inner city links is higher. This points to
lower impedance on inner roads, so a major share of the traffic selects the routes through
these links for their trips. On the contrary, in the calibrated model, traffic distribution
is consistent with the observed counts, with a major chunk of trips routed through the
outer ring, middle ring roads, and major radial roads. In Figure 6.12, we compare the
uncalibrated, calibrated, and observed link speeds in the network. The changes in the
speeds between uncalibrated and calibrated models show that certain links (in red) in
the former model were congested but not in the latter. Further, we see a reasonable
match of link speeds between the observed data and the calibrated model.
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6 Ensembling and heuristics for efficient traffic simulation calibration

Figure 6.10: Scenario 3: Fitness of link sensor counts before demand calibration (top), after
demand calibration (middle), and followed by supply calibration (bottom). Data
corresponding to federal links (motorways) and other links (trunk, primary, and
secondary links) are highlighted in red and blue, respectively. The Centre line is
45◦, or the Y=X line and the lower and upper dotted lines are at Y=X/2 and
Y=2X, respectively.
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Figure 6.11: Scenario 3: Simulated link volumes during 0800-0900 hours (left) before calibration
and (right) after calibration.

Figure 6.12: Scenario 3: Simulated link speeds during 0800-0900 hours (left) before calibration,
(middle) after calibration, and (right) observed data (source: TomTom).
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6.7 Summary

The calibration of large-scale traffic simulation models is daunting due to high dimensional
objective function, under-determined system, computational burden, and manual effort
for parameter tuning. We proposed and tested different approaches to address these
challenges. We find that BC-A-W-B provides the best fit of counts in both low and
high-noise scenarios with simulation-based assignments. In low-noise scenarios, BC
works well to fit ODs and counts (second to BC-A-W-B), but in high-noise scenarios, an
approach with bagging provides a better fit. If the information from speed data does not
conflict with that from count data, then using them does not lead to additional benefits
or even a reduction in accuracy. Further, in high randomness scenarios, count data is
insufficient for reliable OD estimation.
Practically, the advantage of bagging is that it can be in parallel, and thus, with

parallel compute nodes, it does not cause substantial time overhead. Our approach can
help modelers to calibrate their simulation models with little manual effort. By releasing
the codes, we also make a practical contribution to OD estimation; there is a large gap
between literature and open-source tools.
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7.1 Introduction

We aim to address the scarcity of network-wide dynamic traffic flows/ volumes data
using exogenous information from publicly available data. We tackle this challenge using
indirect traffic estimation and transfer learning. We aim to model relevant geometric,
temporal, and contextual features and prevalent speed data from floating cars to forecast
traffic flows reasonably. Further, we want to check if transfer learning helps obtain
accurate flow predictions in case of data insufficiency.

The rest of the chapter is structured as follows: the next section lists the research
contributions, the following section describes the methodology of the study describing
the data processing and prediction methodology, and the following section presents the
data collection, followed by data analysis, the next section presents the results of the
study, followed by chapter summary.

7.2 Research contributions

Our contributions are as follows:

• We download and curate traffic data for the cities of Paris and Madrid from
heterogeneous and publicly available sources. We fuse the collected data for
training models to predict traffic flows. Using these data, we also analyze traffic
fundamental diagrams and macroscopic fundamental diagrams for in-depth analysis
of different link categories. These data are shared with the community for further
research.

• We use machine learning (including deep learning) for indirect flow estimation
and explore the effect of link types on prediction error, feature combinations, the
temporal distribution of errors, and models’ uncertainties. We also conduct a
systematic sensitivity analysis for different input feature sequences and output flow
sequence lengths to identify the best input-output length configuration. [SRQ(9)]

• We transfer the model to a new location and identify the best transfer learning con-
figuration. We also show what proportions of the data transfer learning outperform
training a machine learning model from scratch. [SRQ(10)]

• Data collected and processed in this study are shared via the link provided on the
GitHub1 repository.

1https://github.com/vishalmhjn/indirect-traffic-flows
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7.3 Methodology

Figure 7.1: Methodological flow showing data collection, analysis, and modeling.

The overall methodology of the study is shown in Figure 7.1. As mentioned above,
We rely on the publicly available data in this study. Our research needs traffic flow
counts and speed data to train and validate our models for the exact links. We identify
prospective study areas based on availability and retrieve the data to achieve this. Since
it is expected that the traffic count and speed data are in different formats, we fuse these
datasets. Samples of links’ speed and traffic counts are matched according to the link/
location in data fusion.
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We plot the Macroscopic Fundamental Diagram (MFD) (Daganzo & Geroliminis,
2008) or Network Fundamental Diagram (NFD) (Mahmassani et al., 2013) and traffic
fundamental diagrams to understand the traffic state dynamics. We use the weighted
average formulation by Geroliminis and Daganzo (2008) to represent the MFD mentioned
below:

qwt =
Σiqitli
Σili

(7.1) owt =
Σioitli
Σili

(7.2) swt =
Σisitli
Σili

(7.3)

where, qw, ow, and sw are average lane-flow, occupancy and speed, respectively, li is link
length, qit, oit, and sit are flow, occupancy and speed for the ith link at time t. Separate
MFD is estimated for each link-type category. Factors such as spatial distribution of the
congestion and location of detectors can affect the shape, scatter, and the existence of a
well-defined MFD (Geroliminis & Sun, 2011).

Further, this paper aims to develop a model that predicts traffic flow in transport
networks exclusively from given link speeds and other relevant time and contextual
covariates. Thus, we adopt a formulation for indirect traffic estimation and assume the
unavailability of time-lagged flow data as a predictor. Inspired by Mallick et al. (2021),
we borrow and adapt their problem formulation for our case. Given, a set S of d links, the
traffic flow at time step t for a dth link is Y d

t ∈ R1. For the dth link, given static predictors
W d ∈ RE , where E is the number of such predictors (length, number of lanes, road width,
type, speed limit) and H historical observations of dynamic exogenous predictors (speed,
time, speed deviation) Xd =

(
Xd

t1 , X
d
t2 , . . . , X

d
tH

)
∈ RH×F , H historical observations

of the traffic flow Y d =
(
Y d
t1 , Y

d
t2 , . . . , Y

d
tH

)
∈ RH , P current observations of the same

predictors Xd =
(
Xd

t1 , X
d
t2 , . . . , X

d
tP

)
∈ RP×F , where F is the number of such predictors

and H >> P , we want to forecast the traffic flow of the next Q time steps, Ŷ d =(
Ŷ d

tP+1 , Ŷ
d
tP+2 , . . . , Ŷ

d
tP+Q

)
∈ RQ. Thereafter, Let S ′ be the set of j links for which

we do not have the historical time series data. Given static predictors W j′ ∈ RE , and P

observations of the current exogenous predictors for jth link Xj′ =
(
Xj′

t1
, Xj′

t2
, . . . , Xj′

tP

)
∈

RP×F , the goal is to develop a model that can forecast the traffic flow of the next Q time

steps for all the links in S ′, Ŷ j′ =
(
Ŷ j′

tP+1 , Ŷ
j′
tP+2 , . . . , Ŷ

j′
tP+0

)
∈ RQ×F .

7.3.1 LSTM model

Our task can be formulated as supervised machine learning because the model learns the
mapping from features to the given targets. We select LSTM networks as our primary
model. LSTM is appropriate for modeling time-series data such as traffic flow or speed,
where correlations between time intervals have a long lag. As discussed above, other
techniques (such as GNN or CNN) could introduce network dependencies. Still, LSTM
is a popular sequential deep learning model. Recent studies have used LSTMs (Li et al.,
2021; Mallick et al., 2021) and indicate that they are still a competitive model choice. In
studies (Abdelraouf et al., 2022; Mallick et al., 2021) using GNN for short-term traffic
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forecasting, we observed that even though graph-based models (DCRNN) give the best
performance, LSTM’s performance is still competitive.

LSTM is considered a more advanced version of the standard vanilla RNN. Traditional
RNNs can model a sequence of events by propagating information through time. RNNs
achieve this by using the output from the previous time interval as an input to predict
the system’s state in the current time interval. In equations:

ht = tanh (Wihxt + bih +Whhht−1 + bhh) (7.4)

Where ht is the hidden state at time interval t, concerning the other variables, xt
represents the input vectors - i.e., input data at the current time interval - while
Wih,Whh, bih, and bhh are model specific parameter matrices and vectors that dictate
how each element of the input data (or the hidden state) contributes to the prediction. In
Equation 7.4, we show a tanh activation function as this is the most common one in the
case of RNNs, but other activation functions can also be used instead. The critical aspect
of an RNN is, therefore, that the hidden state works similarly to the lagged variable in
an autoregressive model, meaning that the predictions at the current time interval ht
depend on the hidden state at the previous time interval ht−1.

Although a successful architecture, RNNs suffer from vanishing/ exploding gradients
and short-term memory problems. Furthermore, because of their simple structure, RNNs
cannot memorize long data sequences and begin to forget previous inputs. As stated,
the hidden state ht−1 carries much information about the previous time interval, but
RNNs cannot capture correlations with very long time lags. To alleviate the issues above,
LSTM introduces the cell state ct in addition to the existing hidden state of RNNs.
LSTM consists of a memory cell that controls the flow of information by using input,
forget, and output gate layers that discard non-essential information and memorize only
essential information. This complex architecture updates the cell state ct and selects
which information should be preserved and lost. Therefore, LSTM is a deep learning
architecture that uses the cell state ct next to the already mentioned hidden state ht to
provide the model with longer memory over past events. The operations in the LSTM
model (Hochreiter, 1991; Paszke et al., 2019) can be represented by the following set of
equations:

it = σ (Wiixt + bii +Whiht−1 + bhi)
ft = σ (Wifxt + bif +Whfht−1 + bhf )
gt = tanh (Wigxt + big +Whght−1 + bhg)
ot = σ (Wioxt + bio +Whoht−1 + bho)
ct = ft ⊙ ct−1 + it ⊙ gt
ht = ot ⊙ tanh (ct)

(7.5)

Where ht: hidden state of layer, ct: cell state, xt: input, all at time t; ht−1: hidden
state of the layer at time t − 1; and it, ft, gt, ot are the input, forget, cell, and output
gates, respectively. σ is the sigmoid function, and ⊙ is the Hadamard product. Equations
are sourced from Torch Contributors (2019).
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7 Tackling sparsity of network traffic flows

Figure 7.2: Architecture of the deep learning model using embedding and LSTM layers

7.3.2 Model architecture

The input data for the LSTMmodel can be static or dynamic and continuous or categorical,
leading to four different input types (Figure 7.2): static categorical inputs (links type with
N classes), dynamic categorical inputs (an hour with H classes, a day with D classes, the
month with M classes), continuous static inputs (link length, number of lanes, maximum
speed), continuous dynamic inputs (hourly speed). In our model (Figure 7.2), we use
embedding layers to process the categorical features. Embedding layers use a fixed-length
continuous vector to represent a categorical feature. The embeddings are learned during
model training, and similar feature categories will have closer representations in the
embedding space. To reduce the need to learn the multiple embeddings for dynamic
categorical features such as hour, weekday, and month, we convert the dynamic categorical
features to static features by taking their average value over the lookback length. This
gives us single values of these features for each training sample, irrespective of the
lookback length. The single value provides the time context for the day, weekday, and
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month. The size of the feature’s embedding layer (S) is a minimum of s and half the
number of unique values of a feature, where s is a hyperparameter. This step reduces
the number of feature embeddings to be learned and, thus, reduces the complexity of the
model. The dynamic features are provided for a certain past/ lookback length, so the
static embeddings and features are expanded along the time dimension. The concatenate
layer combines then continuous and embedding outputs to form a single time-dependent
input for the next LSTM layers. This input is passed through a stacked n LSTM layer(s)
sequence. LSTM layer(s) compute the function in Equation 7.5 at each time step or
hidden state to produce the output equal to the latent dimension of hidden state.

Dropout is applied to the output of the final LSTM layer to randomly switch off
neurons with a probability p. Dropout is a regularization technique to reduce overfitting
(Srivastava et al., 2014) and helps to improve the model’s robustness. Dropout can also
be used to understand the model’s uncertainty (Gal & Ghahramani, 2016). Later during
the model testing, we used dropout to obtain the uncertainty estimates by running the
model several times (e.g., ten times) and obtaining the confidence intervals for the model
predictions. The output of the dropout layer is fed to the stacked m fully connected or
dense layer(s) to give a single output or a sequential output (in the case of multi-step
forecasting), as shown in Figure 7.2.

7.3.3 Feature sets

We construct three sets of features to observe the model performance differences, as
shown in Figure 7.2. The first set of features for the primary model is only the exogenous
features, which can be either static or dynamic. This set of features is the main focus
of this paper. These features exclude flow and occupancy data from the detectors and
thus only use easily available data. In the second set, we add time-lagged occupancy
(o) data from detectors to the exogenous set (exogenous covariates, o). In the third set,
we further add time-lagged flow (q) to the second set resulting in (exogenous covariates,
o, q). When using the third feature, our model follows autoregressive formulation. We
hypothesize that model performance will improve by including o and q into the feature
set since the model has direct and endogenous information to predict the flow. However,
this information cannot be used when the objective is to predict traffic volumes on
links not equipped with sensors. Before training, features in source and target data are
standardized (removing the mean and scaling to unit variance) independently.

7.3.4 Model evaluation

We use the XGBoost regression model as the benchmark model due to its lesser com-
putation burden as compared to deep learning models. XGBoost has shown superior
performance on tabular datasets in research and practice (Shwartz-Ziv & Armon, 2021).
Therefore, we use XGBoost with non-sequential inputs. This means we only provide the
input data for the current time step but not the past intervals while predicting one step
in the future. The XGBoost model (T. Chen & Guestrin, 2016) is based on the GBM
concept. In boosting, observations with high residuals generally receive ever-increasing
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7 Tackling sparsity of network traffic flows

influence with each iteration (Hastie et al., 2001). Boosting models are generally consid-
ered “off-the-shelf classifiers” (Hastie et al., 2001) and need less feature preprocessing
and parameter tuning than deep learning models such as neural networks.

The dataset corresponding to all links is split into a train set (85%) and a test set (15%).
We use group-based splitting (using detector ID) of the data, which means that data
from each detector or link can be into either a train set or test set to avoid overestimating
the model performance due to temporal correlations within the data from one detector.
This also mirrors the scenario of data availability for partial links in the network. The
hyperparameters of the LSTM model used in this paper are the size of the embedding
layers, learning rate, batch size, maximum epochs, number of LSTM layers (n), size of
the LSTM hidden state, dropout rate (p), and weight decay or L-2 type regularization of
weights (w), and number (m) and size of the dense layers. The primary hyperparameters
of the boosting model are the number of iterations and the size of each constituent tree
(number of leaves in the tree) (Hastie et al., 2001). The model training is stopped when
the validation error does not improve for twenty iterations. This is also known as early
stopping. We use Bayesian optimization (Nogueira, 2014) to tune the hyperparameters
of the XGBoost and LSTM models. During tuning, the Monte Carlo cross-validation
(MCCV) error is used. In MCCV, the model is trained by randomly splitting the training
data into training (85%) and validation data (15%) for ten runs. The average error on
the validation data is used to select the best hyperparameters.

The choice of forecasting metric is crucial and varies from task to task. In our case, we
have a time series corresponding to each detector. The target variable (flow) scale can
vary between links in different categories. Thus, we use percentage error metric (Rink,
2021). Mean Absolute Percentage Error (MAPE) is one of the popular percentage error
metrics. However, we do not use MAPE because it has no upper bound and can be
problematic when the actual values are close to zero. Instead, we select Symmetric Mean
Absolute Percentage Error (SMAPE), shown in Equation 7.6, as the model training and
evaluation criterion due to the time-series nature of the input data.

SMAPEd =
1

n

N∑
i=1

|xi − x̂i|
(|xi|+ |x̂i|)/2

(7.6)

Where SMAPEd is the SMAPE for the dth link, x̂i is the predicted value, and xi is the
observed value. In contrast to MAPE, SMAPE has both a lower and upper bound. It
is noted that the data within each detector is correlated. Thus we use mean error over
detectors instead of the sample means to prevent the dominance of detectors with large
samples. In other words, we first estimate the error for each detector and then estimate
the mean error over all the detectors for reporting the model performance. One of the
drawbacks of SMAPE is that it does not treat large positive and negative errors equally
and thus is not “symmetric” as its name suggests (Goodwin & Lawton, 1999). No single
metric is sufficient for forecasting, so we also use RMSE for model evaluation. However,
RMSE is only used when the target scale is similar, so the evaluation is fair, e.g., when
the data for a single link type is used. We use the Python frameworks XGBoost (T. Chen
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& Guestrin, 2016) and Pytorch (Paszke et al., 2019) for developing the XGBoost and the
LSTM model, respectively.

7.3.5 Model transferability

We select the best-trained model on the source data and check its generalizability if the
model can be applied to study areas without or insufficient traffic flow data. This is done
using transfer learning. We collect and prepare the source data (DS , TS) and target data
(DT , TT ) with same set of features (XS = XT ) and same type of labels (YS = YT ). Still,
there is no guarantee that the feature’s marginal distributions (PS(X) ̸= PT (X)) and
the label conditional probability distributions (P (YS | XS) ̸= P (YT | XT )) are similar
among the source data and target data. For instance, link attributes and traffic flow
patterns can vary between locations. Thus, this is a case of transductive transfer learning
(S. J. Pan & Yang, 2010), or domain adaptation (Redko et al., 2019). We use model-based
transfer where a pre-trained model is used. This means that the weights of parameters
in the pre-trained model are used as priors or initial values for the target task. Further,
the model can be used for the target task without any changes or further retraining or
fine-tuning on the sample of target data. We devise a systematic method to transfer the
trained model as listed below and check model performances to find the best transfer
learning scenario.

1. Baseline model without transfer learning. Here, the model has the same architecture
as the source task, but randomly initialized parameters are used. This model is
trained and tested on the target data only; thus, it has no knowledge transfer from
the source task.

2. Transferring the model pre-trained for source task without retraining on the target
data. Model architecture is also not changed.

3. Transferring the model trained for the source task by fine-tuning one or more Fully
Connected (FC) layers, LSTM layers, and embedding layers, but the rest of the
model is frozen. For instance, LSTM layers with parameters from the source task
are fine-tuned on target data. In contrast, the parameters of the rest of the layers
remain fixed. Model architecture remains the same as in the source task.

For the target domain, we test our model under different proportions of training data,
simulating the scenarios of limited training data availability. For evaluating the model
transferability, we use twenty runs of MCCV. First, target data is divided into training
and test sets. In each MCCV run, target training set detectors are further divided into
the training and validation set according to the training proportion, e.g., if the training
proportion is 0.65, then 65% of detectors (excluding detectors corresponding to test
links) are assigned for re-training the pre-trained model, and rest are used for the model
validation (e.g., early stopping). After model training, a test set is used to evaluate all
the models from all the runs. Thus, our approach can capture the sampling variability
during model transfer.
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7 Tackling sparsity of network traffic flows

Figure 7.3: Full Road network within the ring road of Paris (left) i.e., the source domain, and
Madrid (right) i.e., target domain. Maps created using Python library OSMnx
(Boeing, 2017)

.

7.4 Data collection

We use Paris (region within Paris’ ring road or Boulevard Peripherique) as our primary
study area or source domain/ city (Figure 7.3), as the Paris open data portal (Open
Data Paris, 2020) provides historical traffic flow/volume and occupancy data. For this
study, we assume we have a sufficient source dataset for training and testing our model.
We train our original model using these data.

Traffic flow data (dependent variable) are collected from the traffic sensors (loop
detectors) installed on the road. The data for the full year of 2019 was retrieved. We use
these data to train our machine and deep learning models. The raw dataset from the
portal is at the aggregation interval of one hour, and it defines the predictive resolution
of our models. Our models cannot predict for a horizon of less than one hour.

We use link speed data from the Uber Movement portal for the same study area and
period. Uber, a Transportation Network Company (TNC), provides aggregated speeds
by road segments at hourly granularity (Uber Movement, 2020b). The speed values are
derived from average speed readings from on-trip ride-hailing vehicles associated with
the Uber (Uber Movement, 2020b). The raw data in GPS pings are ingested in real-time
every four seconds. Uber performs map matching based on a Hidden Markov chain Model
(HMM) to assign the GPS pings to a road segment. These map-matched data are used
to calculate traversal speed per segment (Uber Movement, 2020b). Speed is given by
dividing the length of the road by the time a vehicle takes to traverse it. Uber does not
publish speed if the number of traversals is below a minimum threshold to safeguard
privacy. Finally, the speed traversals are aggregated into time windows during a time
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interval. We retrieved the data from Uber Movement (2020a). In the retrieved data, each
road segment has a mean speed and a speed deviation at hourly granularity in 2019.

We use Madrid as the secondary study area or target domain/ city for investigating
transfer learning performance. Open Data Madrid provides historical data from flow,
occupancy, and speed (only for inter-city roads) at an aggregation interval of 15 minutes
(Open Data Madrid, 2022). The data are aggregated at intervals of one hour so that the
attributes are consistent with the model trained using Paris data. Link speeds for Madrid
are also available from Uber Movement (one-hour intervals). For Madrid, therefore, we
have link speed data from two sources, and we can compare these two sources to check
the plausibility of the FCD data (from Uber Movement).

To match the flow and speed data, we use Shared Streets, a standard for streets,
i.e., roads are assigned a unique identifier for referencing. Sharedstreets (2018) also
provides a tool to match the geographic objects (in the form of points and edges) using
a probabilistic HMM map matching (Sharedstreets, 2017). Since the flow and speed
datasets are geo-referenced, we utilize this tool to map traffic flow and speed data to
a common Shared Streets standard and then merge them. We also retrieve the road’s
static features from the OSM. These features include length, type, number of lanes, and
speed limit. During data fusion, we dropped the roads/ links if static features (number
of lanes or speed limit) were missing.

In the OSM data, highway segments are classified into motorway, trunk, primary,
secondary and tertiary, unclassified and residential, according to their importance in
the road network. Further, the segment or link types such as motorway link, trunk link,
primary link and secondary link refer to the slip roads/ramps and physically separated
at-grade turning lanes in the OSM data. For definitions of these links, we refer the
reader to OSM documentation (OpenStreetMap, 2021, 2022). Finally, we do not consider
the effects of dynamic traffic management on features (such as dynamic speed limits)
derived from OSM data because such data are unavailable. The flow-speed-OSM matched
data consist of a time series for each of the road segments with static (geometric and
contextual) and dynamic (speed and flow) features (Figure 7.1).

7.5 Data analysis

We show the trends of the mean flow, speed, and occupancy for different link types
during the day in Figure 7.4 (top row). Trunk-type links show the highest average flows.
Figure 7.4 (middle and bottom row) also shows the average traffic states or MFD (flow,
occupancy, speed) for all links within the source city. Each point in the plot corresponds
to a time interval of one hour. In this figure, we have not adjusted or filtered the data to
account for the homogeneity of the congestion since it is not the focus of this study. Still,
the existence of MFD is evident, albeit some link types show more scatter than others;
for instance, the trunk type links show well-defined MFD over a wide range of speed
values and occupancy (Figure 7.4). This is a crucial element for our experiment, as we
focus only on temporal aspects and do not explicitly consider network characteristics
(for example, through a GNN). MFD for other link types (residential-type links) shows
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7 Tackling sparsity of network traffic flows

Figure 7.4: Average trends (top) of the speed, flow, and occupancy for the links from source
city, MFD shows average flow, occupancy, and speed for (middle) all links from
source (Paris) city. MFD (bottom) for links from source and target (Madrid) cities
for trunk and motorway links, respectively.
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more scatter and is mostly confined over a narrow range of speed values. We suppose
this is typical for urban roads with speed limits on the lower side (50 km/h or 30 km/h).
Further, the scatter is prominent in all link types during high average occupancy or low
average speeds. This could be due to heterogeneity in the congestion patterns leading to
the loss of well-defined MFD.

Data for time instances, when any of the link’s dynamic (flow or speed data) features
were missing were also dropped. Low-importance roads have more missing speed data
values. The remaining Paris data has median completeness of 68%, 63%, and 96% over a
full year (8670 hours) for primary, secondary, and trunk links (Table 7.1), respectively.
For Madrid, the median data completeness is 81% (motorway-type links). Due to the
generally high rate of data completeness for these link types, we have enough samples
(Table 7.1) for training and testing our models. Otherwise, as a pre-processing step, data
imputation can be needed if data completeness is low (X. Chen et al., 2022).

Table 7.1: Descriptive statistics of the features in the pre-filtered Paris and Madrid data

Max.
speed
(km/h)

Length (m) Lanes
(no.)

Hourly speed
(km/h)

Speed SD
(km/h)

Hourly flow
(vehicles/h)

Pre-filtered Paris data
Link type: Primary; detectors: 809; samples: 4.28x106

Min 30.00 10.05 1.00 0.39 0.07 0.00
Mean 48.85 187.94 2.77 29.89 10.27 654.19
Median 50.00 133.97 3.00 29.62 9.81 540.00
Max 60.00 933.01 5.00 126.36 70.99 11152.00
SD 4.33 153.59 1.05 10.24 3.84 502.94

Link type: Secondary; detectors: 363; samples: 1.88x106

Min 30.00 13.37 1.00 0.47 0.06 0.00
Mean 46.42 143.42 2.50 27.57 9.71 450.58
Median 50.00 108.87 2.00 27.71 9.32 364.00
Max 50.00 607.46 5.00 107.36 63.44 6152.00
SD 7.28 108.49 0.89 8.25 3.64 342.72

Link type: Trunk; detectors: 122; samples: 9.60x105

Min 50.00 97.20 2.00 0.83 0.11 0.00
Mean 69.80 609.13 3.77 58.13 10.28 4149.65
Median 70.00 581.63 4.00 65.17 9.38 4378.00
Max 70.00 1362.56 5.00 92.38 62.97 9021.00
SD 1.90 243.62 0.58 16.86 3.56 1865.58

Pre-filtered Madrid data
Motorway; detectors: 129; samples: 7.27x105

Min 50.00 27.06 3.00 3.06 0.27 0.00
Mean 81.84 843.82 3.41 75.02 11.04 2299.09
Median 90.00 558.58 3.00 78.89 9.67 2117.75
Max 100.00 4658.27 5.00 141.77 67.55 8632.00
SD 12.42 925.01 0.62 15.56 5.77 1561.87
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7.5 Data analysis

We provide the descriptive statistics for the selected links in Table 7.1. For the source
city, flow data from primary, secondary, and trunk link types constitute 90% of the
dataset, with about 8.2 million samples for 1290 unique links. Source data for Paris
consists of data of 809, 363, and 122 links for primary, secondary, and trunk links,
respectively. Primary and secondary links show similar speed characteristics with a
mean speed of around 27-30 Km/h, whereas trunk links have a mean speed of 58 Km/h.
Both primary and secondary links are shorter than the trunk links and have, on average
fewer lanes. The mean hourly flow on primary and secondary links is about 650 and 450
vehicles/hour, respectively, whereas trunk links have a significantly higher mean flow of
4150 vehicles/hour. In Table 7.1, it can be seen that the scale, as seen from the mean
and standard deviation (SD), of the flow values, are different for the primary, secondary,
and trunk link types. Also, flow variance in primary (503 vehicles/hour) and secondary
(342 vehicles/hour) links is lower than that of trunk links (1865 vehicles/hour). This is
why we do not report RMSE when all links are considered in the training data because
RMSE is a scale-dependent metric.
In the traffic fundamental diagram in Figure 7.5, it is evident that primary and

secondary type links have more scatter than others. For instance, the trunk links display
the evolving relationship between the flow and speed over a wide range of values at
different times. From midnight to early morning, traffic remains largely in a free-flow
regime. We see the typical fundamental diagram from the morning to the evening hours,
wherein links are either in free-flow, transitions, or congestion regimes. This finding is
essential for exogenous flow modeling because speed is clearly correlated with the flow
for the trunk-type links in the dataset. On the other hand, the same is not valid for the
primary and secondary type links as their speed-flow plot is only confined within a limited
range. One of the possible explanations is the existence of speed limits on the lower side
(50 km/h or 30 km/h) which prevents the manifestation of the fundamental diagram
over a wide range of values. Some scattering is also because plots are not controlled for
variables such as speed limit and lanes.

For the target data, we have data from 129 motorway links. Figure 7.6 shows the
fundamental diagram for these links. The mean speed on these links is higher (75 Km/h),
and the mean flow is lower (2300 vehicles/hour) than those on the trunk links in source
data. This shows that features in source and target data have different distributions.
However, their standard deviation of flow (1561 vs. 1865 vehicles/hour) and speed (15.5
vs. 16.8 Km/h) are similar. Although trunk and motorway link features have different
distributions, their ranges overlap significantly (Figure 7.7). This makes us confident
that a model trained using source trunk links is a better candidate for transfer than
using a model trained with all link types.

While comparing the speed data from detectors and FCD sources for Madrid, we find
that the data are not uniformly consistent across the traffic states, as shown in Figure
7.8. The mean error is high in regions of low data density (low speeds, very low flows,
and high occupancy). This shows that FCD data is not reliable in these ranges. For
flow values greater than 400 vehicles per hour, the mean percentage error stays within
-10% to 5%. Speed data from UBER movement is more trustworthy in the flow higher
than 400 vehicles per hour. The high percentage error occurs for low values of the speed,
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Figure 7.6: Traffic fundamental diagram for motorway links from target city (Madrid).

i.e., less than 50 Kmph, and for higher values of link occupancy, i.e., greater than 30%.
Aggregated data in low-speed regimes from conventional detectors are found to be noisy
(Coifman, 2014). We conclude that link speed data from the UBER movement dataset is
consistent with the detector-measured speeds for high flows and low occupancy or higher
speeds.

Based on the above analysis, we conclude that it makes sense to develop two types
of models from source data based on the link types in the input data. The first model
type considers datasets from all three source link types for training. The second model
only uses data from source trunk-type links. Contrasting between the two models helps
us confirm our belief regarding the adverse effects of the scattering in the fundamental
diagram, distinct feature statistics, and speed data errors on the flow prediction model’s
performance.

7.6 Results

7.6.1 Indirect estimation performance

The list of hyperparameters and their range of possible values for search is shown in
Table 7.2. The best parameters for the XGboost and LSTM models are also shown in
Table 7.2 and are based on the best SMAPE on the validation dataset. When the input
data contains all links (primary, secondary, and trunk), both models fail to achieve good
SMAPE on the test data and are under-fitting (Table 7.3). SMAPE of XGBoost and
LSTM models are 51.76% and 40.17%, respectively. This finding was expected due to
the lack of structure in the fundamental diagram for primary and secondary links and
thus, a weak correlation between speed and flow. Still, the LSTM model fits better than
the XGBoost. For the input data with only trunk type links, the LSTM model again
performs better than the XGBoost model in terms of both SMAPE and RMSE on test
data (Table 7.3). The LSTM model outperforms the XGBoost model in test SMAPE and
RMSE by approximately 21% and 13%, respectively. SMAPE and RMSE of the LSTM
model on the test data are comparable to those on the training data, showing that the
LSTM model can better generalize on the unseen data. Test SMAPE of the XGBoost
model is much higher than on the training set, indicating an overfitting problem. Lastly,
the confidence intervals of the LSTM model (Table 7.3) are narrower than the confidence
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Figure 7.8: Speed error between stationary detector data and FCD data.

intervals of the XGBoost model’s error, indicating that the LSTM model has a lower
variance.

We also show the effect of the lookback length and prediction horizon on the performance
of the LSTM model in Figure 7.9. In Figure 7.9 and Table 7.4, model performance
degrades with the increase in the prediction horizon. This degradation is expected since it
becomes challenging to predict accurately with increasing prediction horizons. The model
shows good performance with a prediction horizon shorter than three hours. However,
the error increases rapidly when the prediction horizon is over six hours, as shown in
Table 7.4. On the other hand, an increase in lookback length does not show a major
change in the model performance, but the lookback length of six steps shows the best
performance in our experimental setting (Table 7.4).

Figure 7.9: Cross-validation error and test error for different performance metrics, lookback
length, and prediction step.
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Table 7.2: Parameter ranges for tuning hyperparameters of machine learning models using Monte
Carlo cross-validation (MCCV)

Model Parameter Search range Best value

XGBoost

Learning rate (1e-4, 0.9) 0.4
Maximum depth of tree {2,3,4,5,6} 5
Column sub-sampling [0, 1] 1
Sub-sampling [0, 1] 0.6
Iterations up to 4000 variesa

LSTM

Learning rate (1e-6, 1e-1) 1.8e-4
Batch size {1024,2048,4096,8192} 2048
Weight decay (1e-7, 1e-4) 1e-5
maximum size of embedding 5,10,15 10
Dropout rate (0, 1) 0.5
Number of LSTM layers {1,2,3,4} 3
Size of LSTM hidden state {40,50,100,200} 50
Number of dense layers {1,2,3} 2
Size of penultimate hidden layer {30,50,100,200} 50
Size of last hidden layer {5,10,20,40} {5,10}b
Epochs up to 4000 variesa

aearly stopping based bbased on output size

Table 7.3: Model performance on different metrics.

Model Link types Loss criteria Performance
metric

Training data Test data

XGBoost
all

SMAPE (%)
SMAPE (%) 45.15 ±2.02 51.76 ±5.28

trunk
SMAPE (%) 14.04 ±1.39 21.65 ±2.93
RMSE 725 ±88 862 ±157

LSTM

all
SMAPE (%)

SMAPE (%) 40.75 ±0.51 40.17 ±0.90

trunk
SMAPE (%) 14.05 ±0.47 16.89 ±0.31
RMSE 634 ±19 743 ±14

Note: RMSE is not reported for link types “all” since the scale of the target variable largely varies across
the primary, secondary, and trunk link types.
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Table 7.4: Effect of lookback length and prediction horizon on test data. The best test perfor-
mance is shown in bold.

Model - Input features Lookback
length
(hour)

Prediction
horizon
(hour)

SMAPE (%) RMSE (vehi-
cles/hour)

LSTM - (exogenous)

6 1 16.89 ±0.31 743 ±14
6 3 20.20 ±1.06 919 ±42
6 6 27.18 ±0.60 1247 ±20
6 9 77.80 ±16.45 2602 ±317
3 1 17.30 ±0.47 751 ±24
6 1 16.89 ±0.31 743 ±14
9 1 18.00 ±1.38 815 ±73
12 1 17.11 ±1.08 777 ±56

LSTM - (exogenous, o) 6 1 9.95 ±2.01 466 ±92
LSTM - (exogenous, o, q) 6 1 6.47 ± 0.97 321 ±37

Note: o: occupancy, q: time-lagged flow.

In Table 7.4, we compare the model’s performance (with lookback length and prediction
horizon of six steps and one step, respectively) with the different feature compositions.
We show the effect of step-wise addition of features from the loop detectors, namely,
the occupancy (o) and flow (q), to the exogenous set of features (link attributes, speed
attributes). We find that the model SMAPE reduces by approx. 41% when we add o to
the input features. When we use the past value(s) of q as an input feature, the model
formulation resembles autoregressive forecasting with exogenous inputs. In this setting,
SMAPE reduces by more than 61% over the baseline indirect estimation model. This
improvement is expected because past target variables provide direct information about
the scale or range for future predictions due to the autocorrelation among the target
variables. Thus, the autoregressive forecasting setting provides more accurate predictions
than the purely exogenous or indirect estimation setting, indicating that the latter is
more challenging.

In Figure 7.10, we show specimens of the model predictions for different detectors.
There are a few noticeable things. First, the model can capture the flow periodicity, i.e.,
the ascent and descent of the flow trend during the day. This signifies good predictions
when the flow transitions from off-peak to peak flow and vice-versa. The model performs
well for detectors 5380 and 5299, as the predicted peak flow is closer to the true (actual
or measured) value. The model performs reasonably well with a SMAPE of less than
17% on the test data, considering exclusive exogenous input features. In a few instances,
the model struggles to capture peak and off-peak flow (e.g., crests for detector 5169
and troughs for detector 5273), where the model either over-predicts or under-predicts
the flow compared to the actual value. The dropout during the model testing provides
insights into the prediction uncertainty. For this, we show the 95% confidence interval of
the model predictions. The uncertainty is higher near the peak flows, as seen from the
wider prediction intervals at the peaks. During off-peak hours, the predictions have low

162



7.6 Results

F
ig
u
re

7
.1
0
:
E
x
am

p
le
s
sh
ow

in
g
fl
ow

p
re
d
ic
ti
o
n
s
fo
r
d
et
ec
to
rs

in
te
st

d
a
ta

fr
o
m

P
a
ri
s.

163



7 Tackling sparsity of network traffic flows

variance. The uncertainty estimates are as important as the predictions since they help
to understand how much the model predictions can be trusted.

We also show the distribution of the errors, namely, SMAPE and RMSE, across time
of the day, weekday, and month to identify any error correlations. In Figure 7.11, it
is seen that the mean SMAPE for night and morning hours (during 2100-0900 hours)
is higher than during the rest of the day. On the other hand, the RMSE during the
corresponding hours is lower than the rest of the day. One of the plausible explanations
is the small magnitude of the flows during the off-peak hours, which pushes the SMAPE
to higher values. Finally, the SMAPE and RMSE are almost constant across different
weekdays. For August, errors are slightly higher than in the rest of the months, possibly
due to distinct traffic patterns during the vacation period in Paris.

Figure 7.11: Trend of SMAPE and RMSE with the time of day, weekday, and month.

7.6.2 Model transferability

In Table 7.5, we show the model performances on test data using high (0.65) and low
(0.10) proportions of training data for the target domain. When using 65% of the target
data for training, the baseline model with randomly initialized parameters achieves a
SMAPE of 22.24%. A pre-trained model without fine-tuning the target data does not lead
to accurate predictions, as evidenced by its higher SMAPE. However, selective fine-tuning
of the pre-trained model on the target data helps achieve even better results than the
new model. Out of the different combinations of unfrozen layers in the pre-trained model,
the model with all the unfrozen layers achieves the best SMAPE of 20.5%, which is a
marginal improvement of 8% over the baseline model. A model with only LSTM layers as
unfrozen layers also performs well with a SMAPE of 21.49%. Thus, fine-tuning the LSTM
layer is essential when transferring knowledge from the source to the target domain. This
is due to the difference in temporal patterns between the target and the source city. Thus,
the model relearns the new patterns from the target dataset.
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Table 7.5: Performance comparison between training new model and fine-tuning pre-trained
model with the change in the proportion of training data.

LSTM
Model-type

Weight ini-
tialization

Proportion of
target data
for training

Unfrozen/fine-
tuned layers

Test SMAPE
(%)

improvement
over baseline
(%)

Baseline random

0.65

all 22.24 ±1.96 -

Transfer pre-trained

None 65.82 ±2.74 -195
FC3 46.54 ±0.39 -109
FC2-3 46.55 ±0.34 -109
FC1-3 45.87 ±0.29 -106
LSTM, FC 21.24 ±0.99 4
LSTM 21.49 ±0.90 3
E 22.75 ±0.73 -2
E, LSTM, FC 20.50 ±1.10 8

Baseline random

0.10

all 55.30 ±16.06 -

Transfer pre-trained

None 65.82 ±2.74 -19
FC3 47.15 ±1.30 15
FC2-3 47.29 ±1.00 15
FC1-3 47.60 ±1.00 14
LSTM, FC 29.07 ±1.70 47
LSTM 27.41 ±1.68 50
E 29.14 ±1.61 47
E, LSTM, FC 30.92 ±1.89 44

Note: FC: fully connected layer, E: Embedding layer.

The benefits of transfer learning are prominent in low data availability scenarios. When
using 10% of the target data for training, the new model has a high bias and variance,
as seen from its higher SMAPE and 95% confidence interval. The pre-trained model
(with a fine-tuned LSTM layer) can achieve a SMAPE of 27.4% even in the case of data
insufficiency.

In Figure 7.12, we show the performance differences between the baseline or new model
and fine-tuned pre-trained model with the different proportions (from 0.04 to 0.96 at a
spacing of 0.04) of the target data used for fine-tuning. We fine-tune only the LSTM
layer since it is crucial for successful transfer learning. We find that with sufficient
training data, i.e. when more than 40% of the target domain data is used for re-training,
both models perform equally well with the test SMAPE of around 20%. When the
proportion of training data falls below 40%, we notice two trends. First, the variance of
the performance of the baseline model increases considerably. This is due to the high
variance in sampling training datasets at low proportions since smaller training datasets
do not capture complete distribution over the target domain. In contrast, the variance
of the fine-tuned model is low and about consistent, which points to the advantage of
transfer learning over the baseline model.
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7 Tackling sparsity of network traffic flows

Figure 7.12: Comparison between training new model and fine-tuning pre-trained model with
the change in the proportion of training data

Second, when the proportion of training data is very low such as less than 20% (Figure
7.12), the baseline model’s bias also increases, and it performs poorly compared to
the pre-trained model. This is due to the model’s over-fitting of the small training
data distribution, which is very different from the test data distribution. In contrast,
the performance of the fine-tuned pre-trained model is stable. Thus, we conclude that
transfer learning performs equally well when the data is sufficient. More importantly,
transfer learning outperforms the baseline model when the data for the target domain is
insufficient since source knowledge helps overcome the lack of data in the target domain.

Figure 7.13 shows example predictions on test target data from the new and pre-trained
models at different training data proportions. When using less than 10% of the training
data, the pre-trained model’s predictions are more accurate and consistent than the
new model’s predictions. In these examples, when using insufficient training data, high
bias and high variance in the predictions by the new model are evident. An increase in
training data helps the model to make accurate predictions. However, the pre-trained
model can make accurate predictions using even a small amount of data.

7.7 Summary

This chapter was motivated by the sparsity of traffic flow data and the need to infer it
from other readily available data. We collected the publicly available traffic data for Paris
and Madrid from heterogeneous sources to form a year-long longitudinal traffic dataset.
Using data from Paris, we trained an LSTM model, which performs well when the
fundamental diagram is well-formed, like trunk-type links. The LSTM model outperforms
the XGBoost model in exogenous flow prediction with a test SMAPE of about 17% for
the source trunk links. The trunk type links belong to high-speed category links, and
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7 Tackling sparsity of network traffic flows

thus our results somewhat address the limitation of previous work by Neumann et al.
(2013), where the model predictions for high-speed links were found to be less accurate. It
is fundamental not only to predict these values but, even more notably, to estimate how
precise these predictions are. The proposed deep learning architecture also answers this
question using a dropout mechanism. We also show that pre-trained models outperform
the new model using transfer learning when the data for the target task is insufficient.
The pre-trained model needs less data to predict link flows for the target city accurately.
Thus transfer learning and indirect flow estimation can help to tackle the traffic flow
data scarcity in transport modeling and traffic management applications.
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8 Research findings and future work

8.1 Summary of main research findings and implications

In this dissertation started with three primary questions aimed at addressing data
insufficiency in transport research. To answer those research questions, this dissertation
provides a unified account of the five studies in three parts. Part I provided an introduction
and conceptual framework for identifying and classifying the data based on their openness.
In Part II, we focused on improving the data quality from emerging sources and applying
them for opportunistic applications. Part III of this dissertation focused on developing
data-efficient methods, such as efficient calibration, indirect flow estimation, and transfer
learning, on bridging the gap between conventional and non-conventional data. Overall,
we analyzed traffic and mobility data from diverse traditional, non-conventional, and
emerging sources such as stationary traffic detectors, floating car data, trajectory data
from drone videography, and mobile crowdsensing. These data were applied to solve
extant challenges due to the lack of data in the context of transport data mining and
modeling, such as analysis of POI demand patterns during interventions, treatment of
noise and anomalies in emerging data, prediction of network-scale flows using transfer
learning, and automated calibration of large-scale traffic simulations.

We revisit the PRQs formulated in Chapter 1 and provide a discussion on how the
goals of this dissertation to address data insufficiency in transport analysis and
modeling were achieved by answering these questions:

8.1.1 Systematic understanding of transport data openness

Before using data for modeling, it is important to understand which kinds of data are
relatively easier to access. Motivated by PRQ(1), we develop the conceptual framework
(Chapter 3) for classifying transport data by examining whether data are attainable,
affordable, accessible, usable, and redistributable. Simultaneously, we also showed how
non-conventional open and not-so-open data are used in transport modeling applications.
Most data types are applied for either supply-side (e.g., GTFS) or demand-side modeling
(e.g., social media data). However, no single data excel in all the applications, and thus,
data complementarity is vital in transport research. Therefore, modelers and authorities
must plan and invest in developing or acquiring complementary data sources.

We find that Mobile phone data, social media data, and even smart card data collected
by public and private organizations come with challenges, including proprietary ownership
and privacy risks. These data can become publicly available with restricted or free-
use licensing if concerns regarding commercial competition, privacy protection, and
revenue loss are allayed. For instance, this could be overcome if private companies,
communities, and the government defined and followed a common objective and shared
data cooperatively based on reciprocity. This was partially demonstrated over the last
fifteen years as the OGD and open standards matured. The transition towards OGD can
help bridge the data availability gap by pushing the PSI or government data from being
inaccessible to publicly available. A lesson can be learned from the few road or public
transport authorities who have publicly made the aggregate traffic or passenger data
available in their cities. Therefore, this chapter provides a conceptual direction that can
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help cities and modelers understand and prioritize data openness and thus help address
data insufficiency, and thus provides the answer to PRQ(1).

8.1.2 Creating value from emerging data

PRQ(2) and PRQ(3) are focused on getting more out of non-conventional data by
different means. Emerging traffic data collection methods have their benefits and
challenges. Before using these data, data quality needs to be validated so that the efficacy
of data is established. Data processing for error removal or minimizing implausible
values is essential to improve data quality. In response to PRQ(2), Chapter 4 shows the
development and application of the data processing framework on the pNEUMA dataset
from the aerial footage. We used SG filter, XGBoost with adaptive regularization, and
GF to remove the noise and anomalies. We show that our approach can accurately detect
anomalies in the form of unrealistic transient peaks in the data. Adaptive regularization
adjusts itself based on the maximum acceleration value and simplifies anomaly detection
to fewer tunable parameters. Using an off-the-shelf model such as XGBoost reduces
the number and effort of tuning the model. When processing vehicle trajectories, a
balance should be maintained between filtering the data and retaining naturalistic driving
behavior. Our approach is adaptable to other trajectory or sequence datasets corrupted
by noise and anomalies. However, for successful transfer, anomalies in new data should
be similar to those in the pNEUMA data, i.e., a few unrealistic transient acceleration
peaks. The treated data is much more suitable for microscopic traffic analysis, such as
road safety analysis using surrogate measures or driving behavior modeling (car-following
or lane-changing), and can thus help accelerate future research.

Further, novel avenues for applying these data must be identified where existing data
or practices are not suitable or insufficient. Chapter 5 answers PRQ(3) by showing that
POI check-ins are a potential source of information during dynamic events like COVID-19.
While doing so, we also show how machine learning methods can help model and better
understand the data compared to traditional methods. We find that POI-level data
and features help to understand the underlying interactions of spatial and non-spatial
features in detail and identify the spatial variability (if any) and the influencing factors
thereof. Demand patterns aligned with the restrictions implemented during the lockdown.
The impact of features on POI demand was explained using the GBR regression model
and SHAP. The significance of certain factors, such as POI type (fast-food), confirmed
the influence of lockdown measures on non-essential retail consumption. The study
also highlighted the vulnerability of businesses near transit hubs during the lockdown,
suggesting the need for further investigation and mitigation measures.

These findings are also interesting to the transport planners and operators as they
provide insights into the effect of transport variables such as parking area and transit-stop
distance on the POI popularity. We provide empirical evidence of the disproportionate
impact of the lockdown restrictions on the POIs in Munich, depending on their distance
from a transit stop. Businesses near or in the transit hubs are more vulnerable to
these disruptions due to reduced commuters and potential customers, possibly due
to reduced travel (home office) or changed travel behavior (customers avoiding public
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transport). These insights point to the lack of resilience of transit-near POIs due to
excessive dependence on commuting customers. Policymakers can look into or even adapt
the transit-oriented development principles to diversify the customers of near-transit
POIs.

8.1.3 Data efficient methods

PRQ(4) stresses using advanced models to learn more from conventional data. Towards
this end, In Chapter 6, we presented an end-to-end sequential demand and supply
calibration approach. Our approach has components automating certain aspects, such
as SPSA and tuning of supply parameters to save manual effort. We also tackled bias
and variance in the initial estimates by proposing methods for each. We proposed a bias
correction heuristic to correct the initial bias and thus reduce the burden on the following
optimization algorithm, i.e., W-SPSA. However, W-SPSA will stop improving the errors
after most of the overall bias has been corrected, i.e., beyond the limit where noise starts
to dominate. This happens due to the cancellation of the random gradients dominated by
the noise. We applied ensembling with bagging and SPA to address the variance in the
calibration estimates due to stochasticity in the optimization and simulation. Bagging
helps to cancel the variance among the individual estimates, scattered near the desired
estimate and thus brings us closer to the desired estimate. Due to the algorithm-agnostic
nature of the proposed enhancements, such as automated tuning and ensembling, our
approach is not just restricted to the SPSA class of algorithms.

Further, In Chapter 7, we presented the indirect traffic state estimation model (for
predicting flow) using open data and transfer learning. The proposed model uses only
exogenous features as input for the prediction. The objective of the proposed framework
is to predict traffic counts on links that are not equipped with a traffic sensor. The
transferred model can help when the data is insufficient to develop models from scratch.
The LSTM model only fits well for trunk-type links, whereas models did not perform
well for primary and secondary-type links. We conclude that the manifestation of a
traffic fundamental diagram and reliable FCD data over a wide range of speed and flow
is essential for indirect dynamic flow estimation from speed. If a fundamental diagram is
not well-formed, models struggle to learn link speed and flow mapping.

Our experiments conclude that the indirect traffic flow estimation task has two com-
ponents: a) transferable and b) non-transferable patterns. Training a new model on
minimal target data will lead to high bias and variance in prediction. Thus, transfer
learning can help to bridge this gap. Distributions of source and target data are prone to
be distinct across different cities. Thus, applying a pre-trained model without fine-tuning
target data does not give accurate results. The pre-trained model contains insights from
the source domain, thus eliminating the need for a model to re-learn the transferable
patterns. Some data is still required to learn the nontransferable patterns. Nevertheless,
the overall data requirements are lesser than the scenario without transfer learning, and
the pre-trained model outperforms the newly trained model when data is scarce. The
practical implications of our research are that the exogenous flow prediction can help
fill the flow data unavailability for traffic management or transport model validation.
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Further, open data and transfer learning can help address this challenge by reducing
data acquisition costs. Flow predictions with uncertainty estimates can help lessen the
practitioners’ hesitancy to apply these models. The proposed approach can help overcome
the challenges researchers and practitioners face in traffic management and transportation
modeling due to data scarcity.

8.2 Limitations and recommendations for future work

8.2.1 Limitations

It is important to acknowledge the limitations of this study. By acknowledging the
following limitations, we can pave the way for future research to overcome them and
enhance our understanding of the subject matter.

The first set of limitations relates to the scope and focus of the studies done in this
dissertation:

1. The conceptual framework in Chapter 3 does not cover all data applications in
detail but is intended to present a broad overview of the most prominent transport
data. The public availability landscape of specific datasets could vary depending on
the location, policy ecosystem, and technology penetration. Therefore, a location-
specific analysis or case studies for selected cities could be avenues for future
research.

2. In Chapter 4, we only address the anomalies of the unrealistic-peak character but
not the anomalies of other characters, which may also be present in the dataset.

3. Demonstration of the calibration approach in Chapter 6 is limited to mesoscopic
simulation and few supply parameters.

The second set of limitations comes from the data used in this work.

1. In Chapter 4, the absence of ground truth labels prevents us from verifying the
driving behavior or causes behind the detected anomalies in the acceleration.

2. In Chapter 5, relative popularity or demand from the popular times’ data fails to
capture the population’s effect on the POIs. Adding more features, like land-use
type (residential vs. workplace), could improve the results, mainly because during
COVID-19, generally, work from home was recommended. We also found that live
popularity is unavailable for most POIs during the lockdown, limiting the data for
modeling and adding to sampling bias. Sensitivity analysis on the effect of sampling
variation and feature threshold could be an interesting topic for the future. We do
not account for the marketing strategies which influence consumers.

3. The distribution of crowdsensed data are expected to differ among cities due to
different city-specific factors. The role of the spatial factors might vary depending
on city-specific factors like the impact of events or interventions on mobility. Thus,
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the behavior of factors influencing the demand patterns uncovered in our study
might not be directly transferable to other cities.

4. POI busyness can be influenced by marketing decisions which could itself be
motivated by complex factors such as weather, time, day, and month. Thus to
some extent, the overall effects can be captured by collecting time-series data and
controlling for an hour, month, and day. However, at an individual POI level,
marketing-specific data could be hard to collect as the marketing strategies could
be diverse and highly dynamic even across similar POI types.

5. In Chapter 7, data issues such as data inaccuracy due to noise and anomalies,
non-perfect data matching, information loss due to aggregation, and heterogeneity
of data sources can lead to distortion of the same information from different sources.
For instance, unreliable FCD speed data in specific ranges of traffic variables will
degrade the model performance. This directly affects the quality of the training data
and decreases the signal-to-noise ratio, thus making it challenging for the model to
learn the underlying correlations. Further, the static features, such as maximum
speed and the number of lanes, ignore the effect of dynamic traffic management
(such as dynamic speed limits or lane closures) in the recorded flow values.

The third set of limitations is related to the methodological approach used for error
treatment, indirect estimation, and calibration.

1. In Chapter 4, machine learning model training can be ineffective in extremely short
trajectories due to a lack of data. Although XGBoost is less data-hungry when
compared to deep neural networks, XGBoost’s performance to detect anomalies
can still be affected when data is scarce.

2. The performance of our calibration framework in Chapter 6 is limited by the quality
of the initial estimate. If the initial estimate has very high randomness, then the
specified constraints on the demand will not be precise and could be far from
the plausible estimates. Our proposed OD estimation framework can be further
augmented with any auxiliary OD demand data sources in the objective function
to counter this.

3. Methodological components such as BC in Chapter 6 are specific to traffic count
data, and thus they cannot be applied when such data are unavailable for calibration.
Future work can be done to apply Probe Vehicle data (Antoniou et al., 2004) or
Speed data for initial bias adjustment.

4. In Chapter 7, we tackled temporal correlations using LSTM-based architecture,
which does not explicitly capture spatial or topological correlations.

8.2.2 Future work

We provide recommendations that can guide future works in mitigating these limitations
and further advancing the field. The directions for future research, including those which
could help to address the above limitations, are discussed below:
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1. Future works could be done to adjust the trajectory positions from drone videogra-
phy as per the treated speed to ensure internal consistency (Montanino & Punzo,
2015; Punzo et al., 2011) (between position and speed) and platoon consistency
(with leader vehicle and follower vehicle).

2. There exists a range of parameters for anomaly detection and smoothing, which
provide acceptable results. This indicates that any subsequent analysis (traffic
emissions, crash safety analysis) using trajectory data will also be sensitive to these
parameters. Thus, the researchers should estimate confidence intervals to quantify
their results’ uncertainty.

3. Another crucial future work is decomposing the processed speed and acceleration
vectors into longitudinal and lateral components relative to the street’s orientation
for analyzing lateral driving maneuvers.

4. The use of publicly available data sources for demand pattern analysis increases the
transferability of the methods in Chapter 5 to other study areas, which could be
the subject of future works. Popularity data used in this work can also be tested
and applied to analyze other interventions that could lead to changes in travel or
mobility patterns, such as short-term free-fare transit policies.

5. A time-series crowd-sensed data over a longer duration is suitable for causal inference
to conduct the policy impact evaluation of lockdowns or other interventions.

6. Further research should be done on POI busyness data to infer latent features such
as consumer preferences and socializing behavior during disruptive events.

7. During such interventions or disruptive events, popularity patterns should be
correlated with other exogenous factors such as public transport, land use, and
demographic attributes to check their influence on crowding behavior. Researchers
could use crowd-sensed information to analyze if the POI visitation trend has
changed and returned to normal levels, thus indicating the system’s resilience.

8. Ensembling techniques such as bagging and SPA have proven effective in machine
learning and thus should be explored for other simulation-based optimization
problems. For instance, ensemble methods should also be explored for application
to calibrate parameters, even in car-following or lane-changing models.

9. Future works can also experiment with the ensembling aspects, such as different
types of gain coefficient restart techniques and intermediate estimates during each
cycle.

10. Stochastic simulations involving high-dimensional inputs do not guarantee a unique
calibration parameter set. The possibility of a multiple-parameter set arises from the
unobservable/ indeterminate system, wherein many solutions for given conditions
are possible. However, some of these parameters can be practically reasonable in
real-world scenarios due to the stochasticity of the real system. Thus, having a
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single set of parameters is insufficient. Here, multiple estimates during ensembling
cycles can also be used to quantify the uncertainty in parameters.

11. The location of sensors can influence the quality of the estimated ODs. This
is related to the coverage or network observability the sensors provide. In our
calibration experiments using synthetic or analytical simulators, we used multiple
random variations of detector configurations for each run and thus help to tackle
the variance due to such sensor location settings. For the experiments with SUMO
simulators, doing this is computationally expensive, and we consider investigation
of this aspect a matter of future work.

12. The calibration framework can be tested and applied for online calibration at
shorter periods (5 minutes or 15 minutes) where the fluctuations in the demand
and traffic flow are prominent and challenging to handle.

13. Using additional data sources for MOPs will help reap other benefits, especially
in the case of real scenarios where true or global parameters are unknown. In
these cases, W-SPSA may need to be adapted according to the data source to reap
benefits. For instance, the weight matrix based on the link assignment matrix may
not be the best choice for non-linear variables such as speed and thus need further
enhancements.

14. We used a mesoscopic simulation model to ease the computation burden, and thus
future studies should consider applying our methods to microscopic simulations.
Using microscopic simulations will also expand the scope of calibrating supply
parameters.

15. There is still scope for further research using state-of-the-art deep learning models
for indirect estimation. For instance, GNNs (Jiang & Luo, 2021; Lin et al., 2018) or
Temporal Fusion Transformer (Beitner, 2020; Lim et al., 2021) are more specialized
to learn network or topological data and temporal sequences, respectively. Therefore,
they can further help to reduce the forecasting error.

16. For future research in indirect flow estimation, we see potential in integrating the
model and predicted forecasts for improving transport demand model calibration.
Specifically, the link flows provided by the flow prediction model can increase the
transport network observability; thus, their impacts on the calibrated demand
estimates could be analyzed.

17. Future works should explore other data sources, such as real-time traffic updates,
and extract the relevant features to augment the training data. Using the enriched
data, it can be possible to apply transfer learning for long-term flow estimation like
daily traffic flow estimation (D. Ma et al., 2021) or Annual Average Daily Traffic
(AADT) flows.
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18. Special events, planned or unplanned, lead to changes in the traffic patterns (Polson
& Sokolov, 2017) and thus can be added as an additional feature to improve the
model performance.

19. Another challenging work is investigating additional features, especially for the
primary and secondary type links, to address their scatter in their fundamental
diagram. Other features that help address the scatter can help obtain accurate
predictions, especially for lower-category link types (primary and secondary). Ad-
ditional features could help explain variance in the fundamental diagram and thus
provide an improved signal to train the model.
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Gadziński, J. (2018). Perspectives of the use of smartphones in travel behaviour studies:
Findings from a literature review and a pilot study. Transportation Research Part
C: Emerging Technologies, 88 (July 2017), 74–86. doi: 10.1016/j.trc.2018.01.011

Gal, Y., & Ghahramani, Z. (2016). Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. Retrieved from http://proceedings.mlr

.press/v48/gal16.pdf

Geroliminis, N., & Daganzo, C. F. (2008). Existence of urban-scale macroscopic
fundamental diagrams: Some experimental findings. Transportation Research Part
B: Methodological , 42 (9), 759-770. doi: 10.1016/j.trb.2008.02.002

Geroliminis, N., & Sun, J. (2011). Properties of a well-defined macroscopic fundamental
diagram for urban traffic. Transportation Research Part B: Methodological , 45 (3),
605-617. doi: 10.1016/j.trb.2010.11.004

Geurs, K. T., & van Wee, B. (2004). Accessibility evaluation of land-use and transport
strategies: review and research directions. Journal of Transport Geography , 12 (2),
127 - 140. doi: 10.1016/j.jtrangeo.2003.10.005
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Möhring, M., Keller, B., Schmidt, R., & Dacko, S. (2020). Google Popular Times:
towards a better understanding of tourist customer patronage behavior. Tourism
Review , ahead-of-print(ahead-of-print). doi: 10.1108/TR-10-2018-0152

196

https://www.merriam-webster.com/dictionary/data
https://www.merriam-webster.com/dictionary/data


BIBLIOGRAPHY

Münchner Verkehrsgesellschaft mbH (MVG). (2021). Together against corona: Passenger
traffic. Retrieved from https://www.mvg.de/services/aktuelles/coronavirus

.html (Accessed on 15.01.2021)
Narayanan, S., & Antoniou, C. (2022). Electric cargo cycles - a comprehensive review.

Transport Policy , 116 , 278-303. doi: 10.1016/j.tranpol.2021.12.011
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datos.madrid.es/portal. (Accessed on 05.04.2022)

Open Data Paris. (2020). Comptage routier - données trafic issues des capteurs per-
manents. https://opendata.paris.fr/explore/dataset/comptages-routiers
-permanents. (Accessed on 05.04.2022)

OpenStreetMap. (2021). Highway link. https://wiki.openstreetmap.org/wiki/

Highway link/. (Accessed on 05.04.2022)
OpenStreetMap. (2022). Highway link. https://wiki.openstreetmap.org/wiki/Key:

highway/. (Accessed on 05.04.2022)
OpenStreetMap Contributors. (2018, jul). OpenStreetMap. Retrieved from http://

www.openstreetmap.org (Accessed on 05.04.2022)

197

https://www.mvg.de/services/aktuelles/coronavirus.html
https://www.mvg.de/services/aktuelles/coronavirus.html
https://github.com/fmfn/BayesianOptimization
https://github.com/fmfn/BayesianOptimization
https://github.com/NABSA/gbfs
https://www.opengovpartnership.org/
https://www.opengovpartnership.org/
https://datos.madrid.es/portal
https://datos.madrid.es/portal
https://opendata.paris.fr/explore/dataset/comptages-routiers-permanents
https://opendata.paris.fr/explore/dataset/comptages-routiers-permanents
https://wiki.openstreetmap.org/wiki/Highway_link/
https://wiki.openstreetmap.org/wiki/Highway_link/
https://wiki.openstreetmap.org/wiki/Key:highway/
https://wiki.openstreetmap.org/wiki/Key:highway/
http://www.openstreetmap.org
http://www.openstreetmap.org


BIBLIOGRAPHY

Osorio, C. (2019). Dynamic origin-destination matrix calibration for large-scale network
simulators. Transportation Research Part C: Emerging Technologies, 98 , 186-206.
doi: 10.1016/j.trc.2018.09.023
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Pelletier, M. P., Trépanier, M., & Morency, C. (2011). Smart card data use in public tran-
sit: A literature review. Transportation Research Part C: Emerging Technologies,
19 (4), 557–568. doi: 10.1016/j.trc.2010.12.003

Pham, H. Q., Camey, M., Pham, K. D., Pham, K. V., & Rilett, L. R. (2020). Review of
unmanned aerial vehicles (uavs) operation and data collection for driving behavior
analysis. In C. Ha-Minh, D. V. Dao, F. Benboudjema, S. Derrible, D. V. K. Huynh,
& A. M. Tang (Eds.), CIGOS 2019, Innovation for Sustainable Infrastructure (pp.
1111–1116). Singapore: Springer Singapore.

Polson, N. G., & Sokolov, V. O. (2017). Deep learning for short-term traffic flow
prediction. Transportation Research Part C: Emerging Technologies, 79 , 1-17. doi:
10.1016/j.trc.2017.02.024

Polyak, B. T., & Juditsky, A. B. (1992). Acceleration of stochastic approximation by
averaging. SIAM Journal on Control and Optimization, 30 (4), 838-855. Retrieved
from 10.1137/0330046 doi: 10.1137/0330046

Prakash, A. A., Seshadri, R., Antoniou, C., Pereira, F. C., & Ben-Akiva, M. E. (2017).
Reducing the dimension of online calibration in dynamic traffic assignment systems.
Transportation Research Record , 2667 (1), 96-107. doi: 10.3141/2667-10

198

10.1137/0330046


BIBLIOGRAPHY
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