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Abstract

Deterioration processes of various forms can adversely affect the intended performance of engineering
components and systems. Life-cycle management of deteriorating components/systems is a labori-
ous task, which is associated with multiple sources of uncertainty. In this context, various actions
are typically performed, such as inspections and maintenance, which may generally come at a large
cost. In an effort to facilitate and enhance maintenance planning, continuous information can be
harnessed via the adoption of online health monitoring systems. The synergy between monitoring
and model-driven or data-driven prognostic approaches enables online data-informed predictions of
the future condition of the deteriorating component/system. Decision policies for planning mainte-
nance operate on the basis of these predictions. The resulting framework is referred to as predictive
maintenance (PdM) planning. This thesis investigates PdM planning within two different contexts,
aiming to address distinct challenges that two connected scientific disciplines face.

1. An optimal Operation & Maintenance (O&M) decision making process can be facilitated by
Structural Health Monitoring (SHM) systems. To date, SHM systems are not extensively applied
on real-world, safety-critical structures and infrastructure systems. Actionable use cases illustrating
how SHM can provide optimal decision support for such systems are essential to a more widespread
adoption. Bayesian decision analysis provides the necessary theoretical basis for rigorously quan-
tifying a-priori the effect of SHM systems on expected life-cycle costs in terms of the Value of
Information (VoI) metric or the more specialized Value of SHM (VoSHM) metric. This thesis pro-
poses a framework for the quantification of the VoSHM, which is suited for application to a wide
range of vibration-based SHM use cases. Several original contributions introduce the framework,
discuss the underlying modeling assumptions, and investigate various computational aspects related
to stochastic sequential decision problems, Bayesian filtering, and time-variant structural reliability
analysis. The framework can be viewed as a decision support tool with which one can a-priori
assess the potential economic benefit associated with installing a vibration-based SHM system on a
deteriorating engineering system in a specific decision context.

2. In various engineering disciplines, e.g., in mechanical engineering, systems exist that are typi-
cally non-unique. For such systems, the application of online health monitoring is ever-increasing.
Continuous monitoring data from run-to-failure experiments of nominally identical deteriorating
components/systems are often available. The discipline of Prognostic Health Management (PHM)
has significantly benefited from such datasets, in that a multitude of prognostic solutions have been
developed that employ data-driven methods. These aim at predicting the Remaining Useful Life
(RUL) of deteriorating components/systems based on online input sensor data, rather than at an
explicit focus on the subsequent PdM planning effort. In this context, this thesis contributes by
proposing a metric for assessing and optimizing data-driven prognostic algorithms based on their
impact on downstream PdM decisions within a given decision setting. New light is shed on the role
of PdM policies in this context. PdM policies that are suggested in the literature are investigated
and some alternatives/improvements are proposed. The availability of run-to-failure monitoring
data further allows for evaluating PdM policies directly on a subset thereof. This relaxes the need
for defining a stochastic deterioration model a-priori.
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Zusammenfassung

Verschiedene Formen von Abnutzungs- und Alterungsprozessen können die Leistung technischer
Komponenten und Systeme beeinträchtigen. Das Lebenszyklusmanagement solcher Komponenten
und Systeme ist eine anspruchsvolle Aufgabe, die mit zahlreichen Unsicherheitsfaktoren verbunden
ist. In diesem Zusammenhang werden in der Regel verschiedene Maßnahmen wie zum Beispiel In-
spektionen und Wartungen durchgeführt, welche häufig mit hohen Kosten verbunden sind. Der Ein-
satz sogenannter Online-Zustandsmonitoringsysteme ermöglicht eine kontinuierliche Messung von
System- bzw. Komponentenzuständen. Diese Information kann eingesetzt werden um die Pla-
nung von Wartungs- und Inspektionsmaßnahmen effizienter zu gestalten. Die Synergie zwischen
Monitoring und modell- oder datengesteuerten Prognoseansätzen ermöglicht datengestützte Online-
Vorhersagen über den zukünftigen Zustand der Komponenten/Systeme. Auf Basis solcher Vorher-
sagen können Entscheidungsstrategien für die Planung von Wartungs- und Instandhaltungsmaßnah-
men formuliert werden. Dies wird als Predictive Maintenance (PdM) Planung bezeichnet. In der
vorliegenden Arbeit wird die Behandlung der PdM-Planung in zwei verschiedenen wissenschaftlichen
Disziplinen untersucht, in denen es jeweils unterschiedliche Herausforderungen zu bewältigen gilt.

1. Eine optimale Entscheidungsstrategie für Betrieb und Instandhaltung kann durch Structural
Health Monitoring (SHM) Systeme erleichtert werden. Bislang werden SHM-Systeme nicht in großem
Umfang auf reale, sicherheitskritische Strukturen und Infrastruktursysteme angewendet. Anwen-
dungsfälle, die zeigen, wie SHM eine optimale Entscheidungsunterstützung für solche Systeme bieten
kann, sind für eine breitere Akzeptanz der Methodik unerlässlich. Die Bayes’sche Entscheidungs-
analyse bietet die notwendige theoretische Grundlage, um die Auswirkungen von SHM-Systemen
auf die zu erwartenden Lebenszykluskosten im Sinne der Value of Information (VoI) Metrik oder
der spezielleren Value of SHM (VoSHM) Metrik a-priori zu quantifizieren. In dieser Arbeit wird
ein Rahmen für die Quantifizierung des VoSHM vorgeschlagen, der sich für die Anwendung auf eine
große Auswahl von vibrationsbasierten SHM-Anwendungsfällen eignet. In mehreren Erstpublikatio-
nen werden der konzeptionelle Rahmen definiert, die diesem zugrunde liegenden Modellierungsan-
nahmen diskutiert und verschiedene rechnerische Aspekte im Zusammenhang mit stochastischen
sequentiellen Entscheidungsproblemen, Bayes’scher Filterung und zeitvarianter Zuverlässigkeitsanal-
yse besprochen und untersucht. Der konzeptionelle Rahmen kann als ein Werkzeug zur Untersützung
von Entscheidungen betrachtet werden, mit dem man a-priori den potenziellen wirtschaftlichen
Nutzen bewerten kann, der mit der Installation eines vibrationsbasierten SHM-Systems an einem
abnutzenden und alternden technischen System in einem bestimmten Entscheidungskontext verbun-
den ist.

2. In diversen Ingenieursdisziplinen liegt der Fokus auf der Vorhersage des Versagensverhaltens
einer Vielzahl identischer Systeme. Für solche nicht einzigartigen Systeme existieren oft kon-
tinuierliche Monitoring-Daten aus sogenannten Run-to-Failure-Experimenten. Diese Daten werden
zunehmend zur Formulierung von Online-Zustandsmonitoring-Strategien herangezogen. Die Diszi-
plin des Prognostic Health Managements (PHM) hat von solchen Datensätzen erheblich profitiert,
da eine Vielzahl von Prognoselösungen entwickelt wurde, die datengesteuerte Methoden verwen-
den. Diese zielen auf die Vorhersage des Remaining Useful Life (RUL) der Komponenten/Systeme
auf der Grundlage von Online-Eingangs-Sensordaten ab, anstatt sich explizit auf die anschließende
PdM-Planung zu konzentrieren. In diesem Zusammenhang leistet die vorliegende Arbeit einen
Beitrag, indem sie eine Metrik zur Bewertung und Optimierung von datengesteuerten Prognoseal-
gorithmen auf der Grundlage ihrer Auswirkungen auf nachgelagerte PdM-Entscheidungen inner-
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halb eines bestimmten Entscheidungsrahmens vorschlägt. Die Rolle der PdM-Strategie wird in
diesem Zusammenhang neu beleuchtet. Die in der Literatur vorgeschlagenen PdM-Strategien wer-
den untersucht und einige Alternativen/Verbesserungen werden vorgeschlagen. Die Verfügbarkeit
von Run-to-Failure-Monitoring-Daten ermöglicht es außerdem, einen Teil des Datensatzes zu Vali-
dierungszwecken zurückzuhalten, anhand dessen die Performance verschiedener PdM-Maßnahmen
gemessen werden kann. Dadurch entfällt die Notwendigkeit, ein stochastisches Alterungs- bzw. Ab-
nutzungsmodell a-priori zu definieren.
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Chapter 1

Introduction

1.1 Motivation & context

In science and engineering, problems that require making decisions under uncertainty [99] are om-
nipresent. For tackling such problems, scientists and engineers often either rely on available in-
formation, or seek to gather new information, which can support their decisions. Management
of deteriorating engineering systems throughout their life-cycle forms a problem of decision mak-
ing under uncertainty. This is an elaborate task, which involves a sequence of decisions on logistics,
maintenance, repair or replacement actions that need to be assumed within a dynamic setting, under
uncertainties that are intrinsic to the problem at hand. This decision making task is often executed
in high-risk environments. Engineers and operators that are charged with this task are typically
aided by information related to the condition of the system that is obtained from data-gathering
actions, such as inspections or monitoring. This information can reduce the uncertainty and, thus,
enable enhanced decision making for operation and maintenance planning. However, there is always
a cost associated with extraction of more or richer information.

Advances in sensor and information technology have laid the groundwork for a paradigm shift with
regard to how information is collected and processed. Specifically, these advances have rendered the
continuous monitoring of a deteriorating engineering system’s health a viable option. In particular
for safety-critical civil, aerospace and mechanical structures and infrastructure systems, Structural
Health Monitoring (SHM) has been established as the enabling technology for continuous, long-
term monitoring [47]. SHM can be defined as a continuous, automated, online process for damage
assessment, whose ultimate purpose is to provide cradle-to-grave system state awareness [48]. The
specific tasks with which an SHM system is charged have been divided into a hierarchy of levels in
[158, 198]. The first three levels progress from damage detection to localization and quantification.
The last level in this hierarchy is damage prognosis, which defines the task of predicting the remaining
useful life (RUL) and safety of the system through simulation and past monitoring data [49]. In the
damage prognosis task lies the connection between the disciplines of SHM and that of Prognostics
and Health Management (PHM) [95, 209]. PHM primarily aims to deliver predictions of the RUL of
a deteriorating system by utilizing monitoring data (“prognostics”), with the end goal of supporting
decisions related to maintenance planning (“health management”). The PHM discipline centers on
the provision of support for decision making and more generally targets application to a broad
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1.1. Motivation & context

range of engineering systems, notably mechanical, aerospace, industrial, energy and transportation
engineering systems [105, 54, 74, 103]. One key difference between the two distinct disciplines is that
SHM targets application to unique systems (e.g., a bridge structure), whereas PHM typically targets
non-unique components/systems that belong to a homogeneous population of components/systems
of the same type (e.g., rolling bearings). Regardless of their application scope, the union between
online health monitoring and model-driven or data-driven prognostic approaches forms the basis for
maintenance planning supported by prognostic predictions. The resulting framework is referred to
as predictive maintenance [54, 67].

Through the definition of its fourth hierarchical level, it is implied that the eventual goal of SHM is
to provide decision support for life-cycle management of deteriorating systems. It might therefore
appear counter-intuitive that, until recently, not much research work focused on the role of SHM
for decision support [175, 184, 78, 88]. This, among other factors, has contributed to the fact that
adoption of SHM systems on real-world safety-critical structures and infrastructure systems falls
short of the mark, despite the maturity and successful developments in the SHM field [25]. There are
multiple challenges in making efficient use of acquired monitoring data for decision making. Damage
must typically be inferred from indirect and/or incomplete measurements, such as natural frequencies
in vibration-based SHM [48]. An intricacy stems from the fact that engineering systems are not only
subjected to a number of damaging processes and events, but also to confounding processes, such
as environmental and operational variability [142, 34, 170, 11], the effect of which might obscure
damage. Different processes act on different time scales and therefore inspection and maintenance
actions have a different degree of urgency. Safety-critical structures and infrastructure systems are
associated with high reliability and prohibitive failure consequences. This leads to a scarcity of
real monitoring data corresponding to the whole spectrum of damaged states, which impairs the
prognostic capabilities of many SHM techniques that rely on such data. Finally, target engineering
systems for SHM deployment are typically unique, it is therefore not straightforward how damage
state information from a single system can be transferred across a population of systems [20], which
would enable a more classical approach to statistical decision making. In order to move towards a
more widespread adoption of SHM, actionable use cases are needed. They should demonstrate how
SHM systems can provide optimal decision support in different contexts, thus generating economic
value.

Industrial engineering is likely the domain in which adoption of health monitoring, powered by PHM
frameworks, has recorded the most success to date [103, 105, 31, 209]. For several non-unique engi-
neering components and systems, real-world datasets containing monitoring data from run-to-failure
experiments have been made readily available for training and validation [127]. This constitutes a key
difference compared to SHM of unique safety-critical structures and infrastructure systems, where
such datasets are oftentimes nearly impossible to obtain in practice, and are instead predominantly
generated via physics simulations [61]. The availability of the above-mentioned datasets has created
a data-rich environment, from which the PHM community has greatly benefited.

Model-driven, and more recently data-driven prognostic solutions trained on available run-to-failure
monitoring data, lie at the core of PHM for engineering components/systems. These furnish –
inherently uncertain – on-line predictions of the remaining useful life of the deteriorating com-
ponent/system. There is a vast amount of recent literature on the development of data-driven
prognostic algorithms [105, 82]. However, less work has focused on the subsequent planning effort
[130, 54]. One fundamental question for the use of PHM in practice relates to the selection of the
most suited prognostic method and decision policy for optimally supporting decision making. Thus,
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ideally, the development, optimization and assessment of prognostic algorithms should be driven by
explicitly taking into account the nature of decisions that their outcome aims to support.

1.2 Scope of work

Several fronts need to be pushed further for reaching a synergy between health monitoring and
decision making. This thesis adopts a decision-oriented approach to addressing some of the above-
mentioned challenges that obstruct or complicate the real-world application of SHM and PHM.

One primary goal of this thesis is to deliver virtual use cases, elaborating on the decision support
capabilities of vibration-based SHM systems [48, 36]. To this end, the Bayesian decision analysis
framework is employed [149]. This framework allows for a rigorous quantification of the Value of
Information (VoI) from vibration-based SHM [175, 184, 89]. A VoI analysis quantifies the expected
improvement in decision making on the basis of exploitation of monitoring information for reducing
the uncertainty in the problem. A more specialized metric, the Value of SHM (VoSHM) [8, 88],
which also emerges from Bayesian decision analysis, is adopted in place of the VoI in parts of this
work. The VoSHM is quantified as the difference in expected improvement in decision making
between two different strategies for optimizing inspection and maintenance plans: one based solely
on intermittent visual inspections, which represents the current state-of-the-art for many systems,
and the other based on SHM in combination with inspections.

A VoI analysis and a VoSHM analysis are associated with large modeling and computational chal-
lenges [175, 6]. In this thesis, we strive to avoid the overly simplifying modeling assumptions that are
followed as a rule in the recent literature concerning the quantification of the VoI from SHM. A more
sophisticated modeling calls for efficient computational algorithms, which are essential to a compu-
tationally viable VoI/VoSHM analysis. Heuristics, which are simple and intuitive parametrized
decision rules [112, 17], yield a pragmatic approach for solving stochastic sequential decision prob-
lems. Efficient methods for performing a time-variant reliability analysis [120, 181] are discussed
and implemented throughout this work. With respect to the Bayesian analysis task, which forms
a computationally expensive element of a VoI/VoSHM analysis, in this thesis we employ on-line
Bayesian filtering algorithms [163, 92], which are selected and adapted following a rigorous compar-
ative assessment. The VoI and VoSHM analysis frameworks presented herein are decision support
tools for providing the answer to whether SHM can generate economic value when used within cer-
tain decision contexts. This thesis delivers a novel VoI/VoSHM analysis framework, which is shown
to be flexibly applied to different use cases, ranging from near-real time diagnostics to predictive
maintenance planning in cases of slowly evolving deterioration processes.

In the PHM literature, various metrics have been introduced for assessing and comparing the per-
formance of prognostic techniques [164, 128, 73, 105, 141]. They investigate from different angles
the predictive capabilities of prognostic algorithms. No metric has been designed to explicitly incor-
porate in its evaluation the predictive maintenance (PdM) decisions that are to be informed by the
outcome of a prognostic algorithm. Instead, some metrics only implicitly take into account the sub-
sequent PdM planning task, e.g., by penalizing more late predictions compared to early ones [164].
Decision-oriented performance metrics could have a large utility in supporting researchers, who are at
the forefront of prognostic algorithmic development, PHM practitioners, as well as decision-makers
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and operators. Availability of such metrics could also set the stage for a paradigm shift with regard
to optimizing the training process of prognostic algorithms (e.g., hyperparameter tuning) from a
prediction-based approach to a decision-based one. In this context, this thesis proposes a metric
for assessing and optimizing prognostic algorithms based on PdM decisions. The definition of this
metric is fairly general. However, it is defined in conjunction with a specific decision setting and a
corresponding PdM policy, which dictates the maintenance actions based on input RUL predictions
obtained from the prognostics [39, 130].

Throughout this work, we attempt to highlight the value of integrating decision making in the
scientific and practical development process of SHM and PHM towards transitioning these disciplines
from research to a more widespread adoption in practice.

1.3 Thesis organization and contributions

This dissertation is split into two parts. Part I (Chapters 1 to 3) does not contain original research
contributions, but instead provides the overarching scientific context. The current Chapter 1 con-
stitutes an introduction to the motivation, context and scope of the work conducted in this thesis.
Chapter 2 progressively introduces the theoretical, methodological and computational foundations
of this work. Chapter 3 summarizes the contributions of this thesis and provides an outlook for
future work.

Part II (Chapters 4 to 7) consists of the four original publications on which this dissertation is based.
Each publication is incorporated as a separate chapter, as follows:

• Publication 1 (original publication [89]; Chapter 4) focuses on the quantification of the Value
of Information (VoI) from vibration-based SHM by adapting the Bayesian decision analysis
framework. Bayesian model updating [168] forms a fundamental element of the presented VoI
analysis framework.

• Publication 2 (original publication [88]; Chapter 5) forms an extension of the work of publica-
tion 1. Specifically, a framework is developed for quantifying the expected gains that contin-
uous vibration-based SHM-aided maintenance planning can provide when compared against
intermittent inspection-based maintenance planning; the Value of SHM (VoSHM) metric is
introduced for formally computing this benefit.

• Publication 3 (original publication [90]; Chapter 6) rigorously investigates and adapts selected
sampling-based Bayesian filtering algorithms for pure recursive estimation of time-invariant
model parameters. The presented algorithms are challenged with the task of properly quanti-
fying the full posterior uncertainty of time-invariant deterioration model parameters. Bayesian
filtering constitutes an important element of the VoSHM framework of publication 2.

• Publication 4 (original publication [91]; Chapter 7) deviates from the model-driven setting of
the former publications, and instead focuses on data-driven predictive maintenance of non-
unique engineering systems, for which monitoring data from several run-to-failure experiments
are available. Specifically, this work proposes a decision-oriented metric for evaluating and
optimizing data-driven RUL prediction algorithms.
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Chapter 2

Decision Support with Health Monitoring

2.1 Maintenance planning - a problem of decision making under
uncertainty

Various real-world engineering tasks involve decisions on logistic, inspection, maintenance, repair
or replacement actions throughout a system’s life-cycle. Several engineering systems operate in
high-risk environments, hence such decisions often need to be made in view of the estimated risk
associated with various potential threats (e.g., deterioration, extreme events). Maintenance actions
typically come at a large cost. Thus, a main goal is to determine an optimized action plan that leads
to an optimal balance between the cost of these actions and the estimated risk. A maintenance plan
needs to determine the type of action as well as the time for performing this action. In this thesis,
the term maintenance planning is used to generally refer to the task of planning logistic, inspection,
maintenance, repair or replacement actions over the life-cycle of a component/system. Uncertainty
characterizing the state of the system, the effect of maintenance actions on the system, and the
information provided by data-gathering actions, such as inspections or monitoring, is ubiquitous in
maintenance planning problems. Therefore, maintenance planning forms a decision making under
uncertainty problem.

2.1.1 Predictive maintenance

Within a high-level classification, maintenance strategies can be classified into two main categories
[67], namely 1) corrective maintenance and 2) preventive maintenance. Following the former, main-
tenance actions are performed upon failure of the component/system (e.g., replace a rolling bearing
in a machine when it fails). On the contrary, a preventive maintenance strategy aims to inform main-
tenance actions before any failure occurrence. For certain components/systems, corrective mainte-
nance is acceptable (e.g., to change the light bulb when it fails). However, for components/systems
associated with high failure consequences, corrective maintenance is clearly a poor strategy, and
development of effective preventive maintenance strategies is imperative.

Preventive maintenance strategies can be distinguished into three different types, namely 1) periodi-
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2.1. Maintenance planning - a problem of decision making under uncertainty

Figure 2.1: Illustration of the different types of maintenance strategies, the performed actions and
the associated costs, for a safety-critical asset. It is herein assumed that predictive maintenance
relies on on-line monitoring information and prognostic models. The cost of monitoring and the cost
of prognostics are not included in the figure.

cally scheduled maintenance [12, 2], 2) condition-based maintenance [70, 81, 186, 3] and 3) predictive
maintenance [31, 53, 130]. Periodically scheduled maintenance is performed at predefined points in
time, which are fixed based on a regular time interval (e.g., replace a rolling bearing in a machine
every 2 years). Naturally, it is possible to miss failure events that occur between these regular
intervals. Condition-based maintenance (CBM) relies on data obtained from regular inspections
and/or monitoring, whereby maintenance is performed at the exact moment when the measured
current state, or a function thereof (e.g., some estimate of structural performance conditional on the
measured current state), reaches or exceeds an unacceptable threshold (e.g., replace a component
when the measured crack length exceeds 2mm). Predictive maintenance (PdM) instead employs
data from continuous monitoring and/or inspections to update model-driven (see Section 2.1.4) or
create data-driven prognostic models (see Section 2.2). These models are employed to perform pre-
dictions of different decision-relevant quantities, such as the time to failure or the probability of
failure of the component/system. Thereby, maintenance is decided based on the prognostic model
output (e.g., perform a repair action on the pier of a bridge structure when the predicted probability
of failure of the structure within the next year exceeds an unacceptable threshold). In literature,
the distinction between CBM and PdM may often be unclear, with the terms used interchangeably
[58]. Fig. 2.1 provides a high-level illustration of the different types of maintenance strategies and
the resulting costs, in particular for a system associated with high failure consequences. This thesis
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focuses on predictive maintenance, which is the linchpin of all presented contributions, in which
predictive maintenance is investigated in diverse decision contexts.

2.1.2 Cost-based criteria for predictive maintenance planning

In any decision making under uncertainty problem, such as the predictive maintenance planning
problem, the goal is to find the optimal actions (or sequence of actions) that maximize the expected
utility. In decision theory, utility provides the formal mathematical term that assesses the optimality
of different decision alternatives [111, 173]. A utility function is a mathematical function that
assigns a real number, the utility, to each possible outcome of a decision problem. The form of
this mathematical function is defined by the decision maker, and is supposed to reflect the decision
maker’s preferences. For most engineering applications, the utility function is typically replaced by
a cost function [57]. Cost can be equated to the negative utility.

The different predictive maintenance (PdM) policies investigated in this thesis are evaluated with
respect to the expected value of some cost-based criterion. The cost-based criteria that are most
often used in engineering applications are 1) the expected total life-cycle cost [57] and 2) the long-
run expected total cost per unit time (or the long-run expected maintenance cost per unit time) [190,
39]. This section introduces these criteria and aims to provide suggestions for the choice of the
appropriate one in function of certain application characteristics.

In decision analysis, every action has an associated cost. These are reflected in the initial definition
of a cost model by the analyst, which strongly influences the results of the decision analysis. For
instance, performing an inspection induces a cost c̃insp, a failure event induces a cost c̃f , etc. Different
cost components synthesize the total life-cycle cost [57]. For maintenance planning in safety-critical
components/systems (e.g., bridge structures or nuclear facilities), which are associated with high
failure consequences (e.g., loss of life), the total life-cycle cost Ctot is typically taken as the sum of
the total cost of inspections CI, the total maintenance/repair/replacement costs CM, and the risk of
failure (the expected cost of failures) RF over the life-cycle of a component/system:

Ctot = CI + CM +RF. (2.1)

For maintenance planning in non-safety-critical components/systems (e.g., a rolling bearing in ma-
chinery), the risk term may often be omitted from the total cost summation. Note that Eq. (2.1)
ignores other costs that are present, such as the initial cost of construction or the decommissioning
cost at the end of the structure’s lifetime. This is because these costs are typically not affected by
the maintenance strategy that is applied.

Calculating CI and CM throughout the life-cycle entails recording the time and the type of all actions
performed (see Section 2.1.5.2). The risk of failure RF is quantified via the solution of a time-variant
reliability problem (see Sections 2.1.5.2 and 2.1.8).

The expected total life-cycle cost, E[Ctot], is an appropriate cost-based criterion for problems with a
bounded time horizon, which is equal to the intended lifetime of a structural component/system (e.g.,
a bridge structure with an intended lifetime of 100 years). This criterion is employed in Sections 4.5
and 5.3 of this thesis.
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In maintenance planning problems, replacement actions are commonly assumed to be perfect, bring-
ing the component/system back to its original condition. In renewal theory [187, 155, 148], this is
called the renewal assumption. A perfect replacement action defines a renewal event. A renewal
event at time t leads to the end of one life-cycle of the component. Thereupon, a new life-cycle of
the component initiates, and the component starts deteriorating anew. The stochastic deterioration
process initiating after a renewal event at time t is a probabilistic replica of the process starting at
time 0 [187]. The time interval between two successive replacements defines a renewal cycle. Renewal
cycles are assumed to be independent of each other. Under these assumptions, the (non-discounted)
long-run expected cost per unit time over an infinite time horizon, C∞, is typically employed as the
cost-based criterion for maintenance planning [190, 39]:

C∞ = lim
t→∞

Ctot(t)

t
. (2.2)

According to the renewal-reward theorem [187], computation of C∞ in Eq. (2.2) corresponds to
evaluating the ratio:

C∞ =
E[Ctot]

E[Tlc]
, (2.3)

where E[Ctot] is the expected total cost induced during one life-cycle and E[Tlc] is the expected
length of one life-cycle. This criterion is employed in Section 7.2.1 of this thesis.

The above renewal theory-based formulation is grounded on the assumption of an infinite time
horizon, which is not realistic for most engineering components/systems [136]. Renewal theory-
based formulations for finite time horizon have also been proposed [102, 136].

Discounting is an important concept that is implemented in life-cycle costing, especially when in-
vestment decisions are explored [57, 56]. It defines the process of converting a value received in
the future into an equivalent value received now, thus accounting for the influence of time on the
value of money. The costs at time t are typically multiplied with a discounting function γ(t). A
representative discounting function is:

γ(t) =
1

(1 + r)t
, (2.4)

where r is the annually compounded discount rate, typically chosen in the range of 2-5%. Discounting
may frequently be applied in decision problems with a finite or infinite time horizon [190, 56].

2.1.3 Optimization of predictive maintenance planning

In maintenance planning for engineering components/systems, decisions materialize in multiple di-
verse settings. Exemplary decision settings include, among others:

• Find the optimal time to perform a single replacement action that might be required over the
bounded life-cycle of a component/system (see Section 4.5).

• Optimize the time(s) to perform inspection actions, and optimize decision on replacement
action based on the inspection/monitoring information (see Section 5.3).

8



Chapter 2. Decision Support with Health Monitoring

• Find the optimal time for a logistic action (e.g., order a spare component for replacement),
and the optimal time for a replacement action (see Section 7.2.4).

• Choose the optimal inspection strategy, i.e., when to inspect, what to inspect for, how to
inspect, where to inspect [112, 17].

• Decide a-priori (i.e., before actual installation) whether or not to install an SHM system on a
target structure (see Chapters 4 and 5).

The life-cycle Tlc of a component/system is generally discretized in nT time steps at which decisions
on single or multiple actions can be made under sequential data [121, 8, 169, 124]. The full sequence
of decisions on actions over the entire life-cycle must be considered in order to assess their impact
on the life-cycle costs [18]. At all points in time, there is uncertainty characterizing the state
of the system, the effect of maintenance actions on the system and the information provided by
data-gathering actions, e.g., inspections and monitoring. This yields a stochastic sequential decision
problem [99], the solution to which can be cumbersome and calls for large computational efforts [124,
112, 174, 138, 8].

In the predictive maintenance planning problems addressed in this thesis, the goal is to find the
optimal sequence of actions a = {a1, . . . , anT } to perform at different points in time over the system’s
life-cycle, which minimize the expected total life-cycle cost, or the long-run expected cost per unit
time (see Section 2.1.2). Without loss of generality, the formulations presented in this section use
the expected total life-cycle cost as the cost-based criterion for PdM optimization. A solution to the
following optimization problem is targeted:

aopt = argmin
a

E[Ctot(a)]. (2.5)

Let us consider a simple hypothetical decision setting, where one has to decide at each time step
tk, k = 1, . . . , nT throughout a component’s life-cycle whether to repair (R) the component or do
nothing (DN), in view of continuous monitoring information (i.e., monitoring data are available
at each tk). The set of possible actions at time tk is arep,k = {R, DN}. The sequence of actions
throughout the life-cycle is a = {arep,1, . . . , arep,k}. Monitoring data obtained at each time step affect
the repair decision. In turn, repair decisions affect the state of the component, and consequently
also the decisions at future points in time. This simple example aims to demonstrate the complex
nature of stochastic sequential decision problems.

Numerous frameworks and algorithms have been applied for the solution of stochastic sequential
decision problems in the context of maintenance planning, including Markov decision processes
(MDPs) [72, 151, 138, 99], partially observable Markov decision processes (POMDPs) [99, 138, 121,
165, 8, 124, 9, 169], and (deep) reinforcement learning (RL) [6, 7, 153, 75, 104]. The framework that
is employed in this thesis for the solution to this problem entails the proposal of a set of decision
heuristics [112, 17, 18]. These are simple and intuitive parametrized decision rules that dictate
the action(s) to take at any time step, based on all the available information up to that point in
time. The aim is that developed heuristics should be comprehensible for engineers and operators.
Nowadays, algorithmic explainability and interpretability is a crucial topic [24, 157]. A significant
advantage associated with the heuristics-based framework for solving stochastic sequential decision
problems compared to other black-box frameworks lies in its ability to provide interpretable solutions
to the decision problem. However, as will be discussed shortly, heuristics provide only approximate
solutions to the decision problem, and the optimality thereof cannot be guaranteed. The desideratum
is that heuristics should lead to solutions that are reasonably close to the optimum.
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2.1.3.1 Heuristics-based optimization of predictive maintenance plans

To present the heuristics-based framework, the concepts of policies and strategies need to be intro-
duced first [83]. Essentially, a policy π is a set of rules that specify the actions to take at time t based
on all the information that is already available up to t, that is, past inspection and/or monitoring
data, as well as performed actions. For instance, a policy could provide the answer to the follow-
ing question: “Given sensor data up to time t, and given that no replacement has been previously
performed, should the component be replaced at t?” {yes,no}. The set of policies for all time steps
of the decision problem time horizon define a strategy S. A stationary strategy consists of policies
that remain the same at all times [83, 99]. Development of non-stationary strategies is only sensible
in decision problems with a bounded finite time horizon. All adopted strategies in this thesis are
stationary. A generic stationary policy for predictive maintenance planning is thus referred to as
the PdM policy in the remainder of this thesis.

Heuristics are functional forms of the policies. They are decision rules that are typically formulated
as functions of a set of heuristic parameters, contained within a vector w, that may be used to
parametrize a stationary strategy, as well as of inspection/monitoring data. Essentially, heuristics
take as input all the information available up to a point in time and dictate the type and time of
actions to perform. For instance, a heuristic for condition-based maintenance with vibration-based
structural health monitoring could be: “Repair the structure immediately at the point in time when
the identified first eigenfrequency f1 presents a decrease of p% compared to its value in the initial
undamaged state”. In this example, the heuristic is a function h of the single heuristic parameter p
and of the data, which in this case is the identified first eigenfrequency f1, i.e., h(p, f1). Examples
of heuristics for predictive maintenance include: “Repair the structure at t if the predicted failure
rate at time t + 1, conditional on all data from time 0 to t, exceeds a heuristic threshold hthres” or
“Replace the component when the estimated remaining useful life is smaller than a threshold value
tthres”.

With parametrized heuristics, the predictive maintenance planning optimization is no longer per-
formed in the space of actions a. Instead, the optimization is performed in two layers. To begin
with, a set of meaningful and actionable heuristics need to be defined. Engineering knowledge and
domain expertise can be incorporated in this task. Thus, the first optimization layer involves the
choice of the best heuristics among a devised set. Thereafter, if the heuristics are parametrized,
the optimal policy can be approximated by applying the chosen heuristics with optimal heuristic
parameter values. The latter emerge from the solution to the following optimization problem:

wopt = argmin
w

E[Ctot(w)]. (2.6)

It should be noted that the expression in Eq. (2.6) does not address both the optimization layers
mentioned above, but rather only focuses on the second layer. It directly assumes that parametrized
heuristics have been defined, and only addresses the optimization of the heuristic parameters.
Eq. (2.6) reflects what is done in most numerical investigations in this thesis, where depending
upon the problem at hand, heuristics are predefined based on engineering understanding, and no
formal optimization is performed in the space of heuristics, but rather in the space of the parameters
of the chosen heuristics.

Comparing Eqs. (2.5) and (2.6), it becomes clear that, with parametrized heuristics, the space of so-
lutions to the decision problem is drastically reduced from the action space to the heuristic parameter
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space. Heuristics thus provide simpler, viable solutions to stochastic sequential decision problems1,
as they seek to eliminate the sequential nature of the decision optimization problem. This, however,
requires the sensible definition of heuristics in the first place, as well as their parametrization, and
eventually comes at the expense of not finding the globally optimal solution. Still, in the context
of maintenance planning, heuristics have been found to provide reasonable solutions [131, 18]. Fur-
thermore, adaptive heuristic-based maintenance planning strategies have been developed and shown
to provide improved solutions to stochastic sequential decision problems [17].

It should be noted that heuristics can and typically do involve models of large complexity. For
instance, a heuristic that dictates that a repair action should be performed when the predicted
failure rate of a component at a future time exceeds a heuristic threshold requires the solution
to a time-variant reliability problem [181, 120], which is a complex task (see Section 2.1.8). Such
heuristics are used in this thesis. A heuristic could also involve the solution to a complex optimization
problem (e.g., see Section 7.2.3.3), or could even emerge from POMDP or deep RL solutions.

The heuristic parameter optimization problem defined in Eq. (2.6) belongs to the class of stochastic
optimization problems, which deal with noisy objective functions. Such problems are omnipresent
in science and engineering, and the development of stochastic optimization methods has attracted a
significant amount of research [96, 144]. In the numerical investigations in this thesis, the heuristic
parameter space for the optimization of Eq. (2.6) is small, and an approximate solution is found
through an exhaustive search among a large discrete set of values of the heuristic parameters. This
process does not address the stochastic nature of the objective function.

2.1.4 Model-based predictive maintenance planning

The model-based predictive maintenance (PdM) framework that will be introduced in this section
constitutes the classical approach to PdM planning. It requires the a-priori definition of a stochastic
deterioration model describing the evolution of deterioration over time, and its performance greatly
depends on the adopted model. Section 2.1.4.1 first discusses different types of stochastic deterio-
ration models, followed by Section 2.1.4.2, which addresses the model-based evaluation of a PdM
policy.

2.1.4.1 Stochastic deterioration modeling

One can distinguish two main classes of structural deterioration, namely (1) gradual deterioration
and (2) shock deterioration [159, 84]. Deterioration modeling is a rather complex task, with multiple
sources of uncertainty influencing the deterioration process [43, 160]. This thesis is concerned with
stochastic deterioration models that consider the state of deterioration as a continuous random
variable, while discrete state deterioration models are not addressed. For reference to the latter type
see, e.g., [160, Chapter 6].

1In the context of this thesis, heuristics are mainly introduced for the solution to a preposterior decision analysis
(see Section 2.1.5), which yields a stochastic sequential decision problem, and thus poses significant computational
challenges.
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With respect to the form of the mathematical equation describing the deterioration process, deteri-
oration models can be classified into two categories, empirical models or physics-based models.

1. Empirical deterioration models assume a specific, typically simple, mathematical form for the
equation describing the deterioration process, and do not (necessarily) rely on physics. Ap-
propriate choice of the model form and fitting of the model parameters is typically conditional
on the existence of experimental data. As described in [43], despite their simplicity, empirical
models are still flexible enough to model different kinds of deterioration mechanisms. [43]
further argues that, even though certain deterioration mechanisms might be captured by more
precise physics-based modeling, the benefit of employing physics-based models instead of sim-
ple empirical models for time-dependent reliability purposes is not clear. The following is
an example of an empirical model that is commonly employed for modeling the exponential
growth of battery deterioration [68]:

D(t) = C exp(−λt), (2.7)

where θ = [C, λ] is the vector of model parameters, and D(t) is the level of battery capacity
deterioration at time t for given θ. Development and application of empirical deterioration
models can be found in multiple literature sources [44, 125, 147, 118, 56, 43, 68, 140]. Empirical
deterioration models are adopted in numerical investigations in Sections 4.6.2, 5.4.2 and 6.3.2
of this thesis.

2. Physics-based deterioration models typically involve the use of mathematical equations and
physical laws to simulate the effect of different deterioration processes on structural, mechan-
ical, electronics components/systems, etc. Uncertain parameters appear in the equations of
physics-based models. For certain types of deterioration processes, well-established physics-
based models exist that form the state-of-the-art. For example, the Paris-Erdogan law describ-
ing the evolution of fatigue crack growth is one of the most commonly employed physics-based
deterioration models [139, 38] (see Eq. (6.7) in Section 6.3.1). Corrosion is another deteri-
oration process which is amenable to more detailed physics-based modeling [119]. There is
potentially vast utility in developing physics-based deterioration models [117]. However, in
practice, establishing such models poses a significant challenge. Structural deterioration pro-
cesses are highly complex, highly uncertain and strongly interacting with other processes, such
as environmental variability. Even once a model is developed, validating it is a notoriously dif-
ficult task. Furthermore, such models typically contain a relatively large number of uncertain
parameters, the estimation of which requires availability of a large amount of experimental
data, which are typically not available.

With respect to the way in which randomness is introduced in the mathematical equation describing
the deterioration process, empirical and physics-based deterioration models can be classified into
random variable models and stochastic process models [56].

1. Random variable deterioration models describe the temporal evolution of deterioration as a
function of time and one or more unknown time-invariant parameters, modeled as random
variables (RVs). For example, with reference to Eq. (2.7), variables C, λ are typically mod-
eled as RVs that follow a certain probability distribution. With this type of models, all the
uncertainty characterizing the deterioration process is contained within a vector θ ∈ IRd, with
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d being the total number of RVs. For fixed values of the RVs in θ, the temporal evolution of
deterioration is completely fixed. Therefore, as noted in [56, 190], RV models are more “static”
compared to other types of models, such as the stochastic process models that are introduced
in the next paragraph, as they cannot properly describe the temporal variability of the process.

2. Stochastic process deterioration models describe the temporal evolution of deterioration as a
stochastic process, which is a collection of random variables that evolve over time according to
a fixed set of rules [192]. Empirical and physics-based models can be combined with stochastic
processes, e.g., via modeling one or more of the uncertain parameters in the mathematical
equation as a stochastic process of time [13], or via the inclusion of additive Gaussian or
multiplicative lognormal stochastic process noise terms in the equation [179, 32]. Structural
deterioration processes are often modeled via continuous-time Markov processes [190]. The
most common stochastic process models of this type include the Wiener process [208] for
modeling non-monotonously increasing deterioration processes, the Gamma process [190] for
modeling strictly monotonic and gradual deterioration processes, and the compound Poisson
process [190, 160] for modeling shock deterioration processes (the compound Poisson process
is employed in Section 5.4.2).

2.1.4.2 Model-based evaluation of a predictive maintenance policy

Section 2.1.2 introduced the expected total life-cycle cost, E[Ctot], and the long-run expected cost
per unit time, C∞ = E[Ctot]

E[Tlc]
, on the basis of which a PdM policy is evaluated. Both quantities

require the estimation of expected values. Similar to Section 2.1.3, without loss of generality, the
presentations in the current section concentrate only on the evaluation of the expected total life-cycle
cost, E[Ctot].

Thus far, it has not been discussed with respect to which uncertain quantity this expectation is
taken. The model-based PdM framework is conditional on the a-priori availability of a stochastic
deterioration model. A random vector X is defined, which contains time-invariant uncertain dete-
rioration model(s) parameters θ, time-variant uncertain deterioration state(s), as well as uncertain
loads acting on the engineering component/system. Some random variables in X may therefore be
functions of time. The total cost Ctot now becomes a function of the random vector X and the set
of actions a, i.e., Ctot(X, a). Respectively, with heuristics, the total cost is denoted by Ctot(X,w).
In this case, the expectation in E[Ctot] is taken with respect to X. Monte Carlo (MC) simulation-
based methods are typically employed for evaluating this expectation (e.g., see Section 2.1.5.1). The
performance of the model-based PdM framework entirely depends on the prior knowledge on X.
This prior knowledge is typically embedded within the definition of a joint prior probability density
function (PDF) fX(x) for the random vector X. The terms prior knowledge and prior PDF set the
stage for introducing the Bayesian decision analysis framework [149, 15].

2.1.5 Bayesian decision analysis and value of information

Bayesian decision analysis is a model-based mathematical framework for the solution to decision
making under uncertainty problems, in which data of some sort becomes available and can be used
to reduce the uncertainty in the problem [149, 15]. It is based on the Bayesian interpretation
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2.1. Maintenance planning - a problem of decision making under uncertainty

of probability theory [62]. This section discusses Bayesian decision analysis within the context of
model-based predictive maintenance planning, which is introduced in Section 2.1.4.2.

Prior decision analysis

An initial assumption needs to be made for the probabilistic model of the uncertain quantities of
the problem at hand, which in the context of model-based predictive maintenance planning refers
to the random vector X that is introduced in Section 2.1.4.2. The a-priori assumption for the
probabilistic model of X reflects the subjective degree of belief of the analyst, based on all available
prior information and engineering expertise. For some types of deterioration (e.g., fatigue, corrosion),
prior knowledge on certain parameters in X is typically available. The a-priori assigned joint PDF
fX(x) is called the prior distribution.

A prior decision analysis seeks to find the optimal set of actions over the life-cycle aopt by solving
the following minimization problem:

aopt = argmin
a

EX [Ctot(X,a)], (2.8)

where EX is the expectation with respect to the prior PDF fX(x).

Posterior decision analysis

When data z of some sort becomes available, e.g., via visual inspections, non-destructive evaluations
(NDEs), or structural health monitoring (SHM) systems, it can be used to update the distribution of
X. This is done via Bayesian analysis, which is introduced in Section 2.1.6. The distribution of X
given z, denoted by fX|z(x|z), is called the posterior distribution. Once the posterior distribution
is obtained, a posterior decision analysis can be performed, which yields the set of actions that are
optimal conditional on the observed data:

aopt|z = argmin
a

EX|z[Ctot(X,a)]. (2.9)

Data provides information that reduces the uncertainty in X. This uncertainty reduction, which is
reflected in the shift from a prior to a posterior distribution, is expected to lead to enhanced decision
making compared to the prior case. Note that the expectation in Eq. (2.9) is taken with respect to
the posterior distribution fX|z(x|z). The task of obtaining this distribution often relies on Monte
Carlo simulation-based methods, which significantly increases the computational burden associated
with a posterior decision analysis.

The focus of this thesis is on PdM planning for components/systems that are continuously moni-
tored by SHM systems. Long-term monitoring leads to a sequence of noisy measurements z1:n =
{z1, . . . zn} obtained sequentially at different points in time {t1, . . . , tn}, of the decision making
problem. Therefore, in this thesis, z in most cases denotes the sequence of data z1:n. At t1 only
the monitoring outcome z1 is available for the decision a1, whereas the set z1:2 is available for the
decision a2 at t2, etc. The sequential nature of the monitoring data calls for a sequential Bayesian
analysis, with the goal of sequentially updating the distribution of X conditional on the sequence of
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measurements z1:n. Sequential Bayesian analysis is introduced in Section 2.1.7.1. In such cases, the
optimization of the decisions on actions must also be performed sequentially, following the sequence
of data z1:n. As discussed in Section 2.1.3, this sequential decision optimization calls for large com-
putational efforts. A simpler solution to this problem is enabled by the use of heuristics, through
which the decisions at each time step are readily identified.

Preposterior decision analysis

Data z of some sort only becomes available in the operational phase upon performing data-gathering
actions. For instance, monitoring data becomes available only after the actual installation and
operation of an SHM system, or visual inspection data only becomes available after performing an
inspection campaign. Nonetheless, one is often interested in investigating the potential economic
benefit that is associated with gathering data z for reducing the uncertainty in the problem, prior
to performing inspections, NDEs, or installing and operating SHM systems. Such investigations can
be performed within the framework of a preposterior decision analysis.

A preposterior decision analysis requires a dedicated model of the data-gathering technique that is
investigated 2. Such a model is required for generating probabilistic predictions of the data Z that
one expects to extract in practice with this technique, for sampled realizations of the random vector
X. Upper case Z denotes the random vector containing the yet unknown monitoring information,
while a realization of Z is denoted by lower case z. A preposterior analysis therefore relies on
simulated data. Generating Z|X, i.e., realizations of Z conditional on X, is performed with the
aid of a probabilistic model that describes the quality of the data provided by the data-gathering
technique. This probabilistic model is typically a likelihood function, e.g., a probability of detection
(POD) or a receiver operating characteristic (ROC) curve [59, 126, 19]. Alternatively, this data
generation may be facilitated by use of a digital twin [89, 150, 93, 201, 183, 199, 191, 189, 188], as
discussed in the following paragraph.

Fig. 2.2 schematically represents how an SHM system could provide decision support in a practical
setting when implemented on a bridge system. The figure separates between two distinct domains,
namely the physical domain, which consists of the actual structure being in operation and monitored
by the deployed SHM system, and the digital domain, which involves a finite element model that aims
to represent the real physical system as closely as possible. The connection between the two domains
may be established via a model updating process on the basis of the information obtained from the
SHM system (see Section 2.1.6). This is often referred to as the process of establishing a digital twin.
A preposterior decision analysis is performed before the actual installation of an SHM system, and
aims to represent the life-cycle deterioration and management process in a simulated environment.
This is illustrated in Fig. 2.3, which replaces the left-hand-side physical domain of Fig. 2.2 with a
digital domain, which simulates the life-cycle operation of the structure and the associated SHM
data by use of the digital twin. In this manner, the digital domain represented in the left-hand-side
of Fig. 2.3 synthetically generates realizations of Z|X. This process is implemented in the numerical
investigations of Sections 4.6.3 and 5.6.1 in this thesis.

The expected total life-cycle cost in a preposterior decision analysis is quantified by solving the
expectation with respect to both X and Z, i.e., EX,Z [Ctot(X,aopt|Z)]. Hence, for different real-

2This is also required in a posterior decision analysis in the definition of a likelihood function.
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Figure 2.2: High-level representation of the manner in which SHM can provide decision support
when implemented on a bridge system.
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Figure 2.3: Digital-twin-enabled preposterior decision analysis, whose goal is to investigate in a
simulated environment whether installing an SHM system on a bridge structure is cost-beneficial.
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izations of Z, the optimal actions as a function of Z, i.e., aopt|Z , need to be found. This requires
the solution to multiple posterior decision analysis problems (i.e., multiple solutions to the problem
of Eq. (2.9)). This renders the computation of the expected total life-cycle cost in a preposterior
analysis cumbersome and expensive. Heuristics can significantly simplify this computation.

Parametrized heuristics reduce the burden of having to find aopt|Z for multiple sampled realizations
of Z. Instead, the optimal actions are approximated by the heuristic as a function of the heuristic
parameters and Z. Optimizing heuristics in a preposterior decision analysis boils down to solving
the following optimization problem:

wprepost
opt = argmin

w
EX,Z [Ctot(X,Z,w)]. (2.10)

The problem can be further simplified by replacing the optimization of the heuristic parameters
in Eq. (2.10) by a choice based on expert assessment. For instance, an expert might assign a
value of 10−5 as the heuristic threshold on the probability of failure that triggers an inspection,
without further optimizing it (e.g., see Section 5.6.3.4). This resembles real practical settings, where
optimization is rarely performed.

The classical preposterior decision analysis [149] can further include an additional optimization
layer, e.g., it is often employed for optimizing inspections and/or SHM systems. Examples include
the optimization of inspection schedules or the design of monitoring systems [177, 18] (e.g., see
Section 4.6.6.3).

Value of Information

Solving both a prior and a preposterior decision analysis enables the quantification of the Value of
Information (VoI). This is done by taking the difference in expected total life-cycle costs between
the prior and the preposterior case:

V oI = EX [Ctot(X,aopt)]− EX,Z [Ctot(X,aopt|Z)]. (2.11)

With parametrized heuristics, the equation for the VoI is written as:

V oI = EX [Ctot(X,wpr
opt)]− EX,Z [Ctot(X,Z,wprepost

opt )]. (2.12)

The outcome of a VoI analysis depends on the assumed prior probabilistic model for X, as well as
on the assumed conditional probabilistic model Z|X of the data. A full VoI analysis is typically
associated with large modeling and computational challenges, as graphically summarized in Fig. 4.1.

The VoI provides a formal Bayesian decision theory-based metric for quantifying a-priori the effect
of data-gathering techniques on life-cycle costs. It can be utilized as a tool to support decisions
on whether or not to invest in a specific data-gathering technique for obtaining information that
reduces the uncertainty in the system. The VoI can alternately be used as a metric for choosing
what to observe with a fixed data-gathering technique (e.g., which component in a system should be
inspected), for optimal allocation of resources, or for providing a ranking among various candidate
data-gathering techniques.

Computation of the VoI does not include the total life-cycle cost of the data-gathering process itself
(e.g., cost of installation, maintenance or repair of an SHM system). Hence for decision making,
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2.1. Maintenance planning - a problem of decision making under uncertainty

one should subtract the cost associated with implementing a specific data-gathering technique from
the VoI. The resulting quantity is the net VoI. Investing in a data-gathering technique is worthwhile
only when its VoI is larger than its cost, i.e., only when the net VoI is positive.

Under the premise of finding the optimal solutions to the prior and the preposterior decision analysis,
the VoI cannot be negative. However, in many practical situations this may not hold true [195, 146].

VoI analysis has found application in many different domains, e.g., in environmental health risk
assessment [202], medical decision making [1], informatics [101], ecology [21], among others. The
next paragraph focuses on reviewing works related to the VoI within different contexts related to
civil, infrastructure and mechanical engineering systems.

The VoI has been used in the context of planning inspections and maintenance for deteriorating
structural systems in [176, 37, 193, 109, 213, 100, 212]. Multiple papers have appeared within
the last decade that investigate quantification of the value of the information provided by SHM
systems to support single or sequential decisions throughout the structural life-cycle [145, 106,
89, 133, 132, 110, 26, 185, 184, 79, 175, 65, 66, 206, 205, 98, 194, 211, 195, 94, 80, 129, 204].
Few authors have investigated the VoI within the context of partially observable Markov decision
processes (POMDPs) [8, 169, 121, 171]. The VoI has further been used as a heuristic metric for
optimizing decisions on future inspections in the context of sequential decision making problems [76,
77, 50]. Optimal sensor placement is another important area of application of the VoI, wherein it
acts as the objective function for the optimization problem [22, 23, 71, 114, 115, 113, 42]. Efficient
techniques for evaluation of the VoI have also been investigated [174, 203, 180].

Value of (Partial) Perfect Information

A VoI analysis typically requires detailed domain-specific modeling and entails large computational
challenges, which might often be difficult to justify in real-world projects. A quantity which can
be computed with much less effort, and which provides an upper limit to the VoI, is the so-called
value of perfect information (VoPI) [149, 173]. This relates to the hypothetical scenario of a perfect
data-gathering process that provides full deterministic knowledge of the random vector X. The
VoPI quantifies the maximum value that information from any data-gathering technique can bring
in supporting decisions within a certain decision setting, i.e., it provides a first estimate on the
maximum investment that should be made. Thus, it is always sensible to perform a VoPI analysis
prior to a VoI analysis, as the former may provide results that might render the latter redundant
(e.g., if one finds that the VoPI for a certain decision setting is anyway too small).

The VoPI assumes elimination of all the uncertainty in vector X, which however is never practically
feasible. Uncertainties are classified into two categories, aleatory and epistemic [97, 46]. Aleatory
uncertainty is due to inherent randomness related to a physical process (e.g., the annual extreme
wind load acting on the structure), and is irreducible. Epistemic uncertainty is due to incomplete
knowledge, and is considered reducible, e.g., by gathering additional data. Thus, only the epistemic
uncertainty in X can be reduced. The value of partial perfect information (VPPI) is a metric that is
similar to the VoPI, with the difference that it corresponds to the hypothetical scenario where only
the epistemic uncertainty in X is completely eliminated by a data-gathering process. The VPPI
metric assumes a smaller value than the VoPI, however it provides a practicable upper limit to the
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VoI. In Section 4.5.5, the VPPI metric is introduced in the context of vibration-based structural
health monitoring of a bridge structure, and is numerically investigated in Section 4.6.6.

Value of structural health monitoring

The VoI metric compares the resulting expected total life-cycle cost computed with a prior decision
analysis, where neither inspection nor monitoring data are assumed available, with the one resulting
from a preposterior decision analysis, where data from a specific data-gathering process are as-
sumed available. However, following the maintenance planning dictated by a prior decision analysis
throughout the whole life-cycle is unreasonable when managing engineering components/systems,
especially in the case of safety-critical systems. For such systems, some data-gathering scheme is
always implemented, with information collected at different points in time throughout the life-cycle.
Therefore, the more appropriate question to answer when managing such systems is which data-
gathering technique is most beneficial to invest in. For instance, a relevant question that a bridge
operator may try to address is: "Should I manage the bridge based on data obtained from visual
inspections or is it worth investing in installing and operating an SHM system?". Such questions
can be answered through the solution to two (or more) preposterior decision analysis problems.

Let the quantity of interest be the difference in expected total life-cycle costs between two considered
cases: 1) perform predictive maintenance planning based on data from intermittent visual inspections
and/or NDEs and 2) perform predictive maintenance planning based on continuous long-term data
from an SHM system and additional visual inspection data. The data obtained from intermittent
visual inspections and/or NDEs is denoted by Z insp, whereas the data obtained from an SHM system
is denoted by ZSHM. In this setting, a metric called the value of structural health monitoring
(VoSHM) is introduced:

V oSHM = EX,Zinsp
[Ctot(X,aopt|Zinsp

)]− EX,ZSHM,Zinsp
[Ctot(X,aopt|ZSHM,Zinsp

)]. (2.13)

With parametrized heuristics, the expression for the VoSHM metric becomes:

V oSHM = EX,Zinsp
[Ctot(X,Z insp,w

prepost
opt,insp)]− EX,ZSHM,Zinsp

[Ctot(X,ZSHM,Z insp,w
prepost
opt,SHM)].

(2.14)
This metric has been recently introduced in [8, 88]. It is numerically investigated in Section 5.6 of
this thesis.

2.1.5.1 Monte Carlo simulation for evaluating the value of information

Quantifying the VoI, or a more specialized metric such as the VoSHM, requires evaluating expected
values. In this section, a Monte Carlo simulation (MCS) approach [156] is presented for the heuristics-
based evaluation of the VoI, based on [89, 180]. Initially, Eq. (2.12) is rearranged as:

V oI = EX [Ctot(X,wpr
opt)]− EX,Z [Ctot(X,Z,wprepost

opt )]

= EX

{
Ctot(X,wpr

opt)− EZ|X [Ctot(X,Z,wprepost
opt )]

}
.

(2.15)
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The VoI in Eq. (2.15) can be approximated with MCS:

V oI ≈ 1

nMCS

nMCS∑

i=1





1

nz

nz∑

j=1

[
Ctot(x

(i),wpr
opt)− Ctot(x

(i), z(i,j),wprepost
opt )

]


 , (2.16)

where x(i) are sampled realizations of X drawn from the probability distribution fX(x), and z(i,j)

are samples drawn from the probabilistic model fZ|X(·|x(i)). Typically, nz = 1, i.e, for each sample
x(i), a single conditional sample of the data z(i) is generated. With nz = 1, the MCS approximation
of the VoI simplifies to:

V oI ≈ 1

nMCS

nMCS∑

i=1

{
Ctot(x

(i),wpr
opt)− Ctot(x

(i), z(i),wprepost
opt )

}
. (2.17)

In cases when the risk of failure is included in the total life-cycle cost calculation, the variance of
Ctot(X,wpr

opt) and Ctot(X,Z,wprepost
opt ) is typically rather large [180]. This is because the risk of

failure is obtained as the product of the cost of a failure event (usually a rather large value for safety-
critical components/systems) and the probability of failure (often a rather small value, especially
for safety critical components/systems). Therefore, also the MCS estimate of the VoI in Eq. (2.17)
is subject to fairly large uncertainty, even when evaluated with a relatively large ns.

[180] presents a conditional Monte Carlo-based variance reduction technique [156] for estimating
the VoI. This algorithm can be very effective for reliability applications wherein the probability of
failure can be efficiently evaluated conditional on a subset of X, as discussed in Section 2.1.8.2. This
approach is employed in the VoI and VoSHM analyses in Chapters 4 and 5 in this thesis.

2.1.5.2 Cost breakdown

This section aims to break down the computation of the total cost Ctot(x
(i), z(i),wprepost

opt ) of Eq. (2.17).
It is computed via the following summation:

Ctot(x
(i), z(i),wprepost

opt ) = CI(x
(i), z(i),wprepost

opt ) + CM(x(i), z(i),wprepost
opt ) +RF(x

(i), z(i),wprepost
opt )

(2.18)
Following any PdM policy, different inspection and repair actions will be performed throughout
the life-cycle of a component/system. Calculating the total cost of inspection and maintenance
actions simply requires recording the times of performed inspections in a vector t

(i)
insp and the times

of performed maintenance actions in a vector t(i)maint. The total discounted cost of inspections is then
computed as:

CI(x
(i), z(i),wprepost

opt ) =

ninsp∑

j=1

γ
(
t
(j)
insp

)
c̃insp, (2.19)

and the total discounted cost of maintenance:

CM(x(i), z(i),wprepost
opt ) =

nmaint∑

j=1

γ
(
t
(j)
maint

)
c̃maint, (2.20)

where c̃insp and c̃maint are the costs of an individual inspection and maintenance/repair/replacement
action respectively, and γ(t) is the discounting function defined in Eq. (2.4).
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Figure 2.4: Influence diagram corresponding to the estimation of the risk of failure RF.

The risk of failure over the bounded lifetime T is computed as:

RF(x
(i), z(i),wprepost

opt ) =
T∑

j=1

γ(tj)c̃F

{
Pr[F (tj)|x(i)]− Pr[F (tj−1)|x(i)]

}
, (2.21)

where c̃F is the cost of a failure event, and Pr[F (tj)|x(i)] is the probability of failure of the structure
up to time tj , conditional on a sampled value x(i) of the random vector X. As presented shortly in
Section 2.1.8.2, under certain assumptions, this conditional probability of failure can be computed
efficiently. Note that z(i) does not appear on the right-hand side of Eq. (2.21). This is because for
fixed x(i), the data z(i) influence the risk of failure only through the maintenance/repair/replacement
action aM,i as demonstrated in the influence diagram (ID) of Fig. 2.4. IDs are decision-oriented
extensions of Bayesian networks (BNs). An BN is a probabilistic graphical model for representing
conditional variable dependencies in a directed acyclic graph [83]. An ID adds square decision and
oval utility nodes to the BN to model decision making under uncertainty [83].

2.1.6 Bayesian analysis

Bayesian analysis is the essential probabilistic component underlying the Bayesian decision anal-
ysis framework. It is a statistical inference method that utilizes Bayes’ theorem to update prior
belief/knowledge on uncertain quantities based on observed data [62]. Prior belief/knowledge is
incorporated in the subjective definition of a probabilistic model, the so-called prior distribution.
When data of some sort becomes available, the prior probability distribution is updated using Bayes’
theorem. The updated distribution is called the posterior distribution, which incorporates both the
prior belief/knowledge and the data.

The uncertain quantities that one aims to infer are random variables contained in a vector X ∈ Rd.
A realization of X is denoted by the lower case x. Z denotes noisy data that can generally be
direct (observe X) or indirect (observe f(X) where f(·) is some arbitrary function) and complete
(observe all the elements of X) or incomplete (observe a proper subset of X) observations of X.
A realization of the noisy data is denoted by z. The updating of the prior belief about X based
on data z is reflected in the posterior distribution, which takes the form of the conditional PDF
fX|Z(x|z) that is found via application of Bayes’ rule:

fX|Z(x|z) =
L(x; z)fX(x)

fZ(z)
. (2.22)
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fX(x) is the prior PDF of the random variables contained in X. The likelihood function L(x; z) :=
fZ|X(z|x) provides the link between the data and the uncertain quantities that we aim to infer.
The value that the likelihood function assumes for a given x corresponds to how likely x is to have
generated the observed data z. The denominator in Eq. (2.22) is called the model evidence (also
known as the marginal likelihood), and is found by solving the following integral:

fZ(z) =

∫
L(x; z)fX(x)dx. (2.23)

The model evidence represents the probability of observing the data, marginalized over all possible
values of the uncertain parameters, and provides a measure of how well a particular model (likelihood
and prior) explains the data. It is frequently used in Bayesian model selection [62], which refers to
the task of comparing different models, and selecting the one that entails the largest model evidence.

Getting an exact closed-form solution for the posterior distribution is rarely the case (e.g., when
using conjugate priors [62]). In the general case, to compute the posterior distribution, one typically
needs to resort to approximation techniques, numerical integration or sampling-based methods [62].
Among others, common solution approaches include Laplace approximations [62], Markov chain
Monte Carlo (MCMC) methods [63], importance sampling [156] and variational Bayesian inference
[55] techniques.

Following the computation of the full posterior distribution, the expected value of an arbitrary func-
tion g(X) (e.g., the total life-cycle cost Ctot(X)) can be computed over the posterior distribution:

E[g(X)|z] =
∫

g(x)fX|Z(x|z)dx. (2.24)

Summary statistics for the posterior distribution can also be derived. The most relevant ones for
the remainder of this thesis are the posterior mean (PM) estimate xPM =

∫
x fX|Z(x|z)dx, the

maximum a posteriori (MAP) estimate xMAP = argmax
x

fX|Z(x | z), and credible intervals (CIs)

[152].

2.1.7 Bayesian analysis of monitored deterioration processes

This thesis is concerned with cases in which X contains uncertain quantities related to a deterioration
process affecting a component/system, as discussed in Section 2.1.4.1.

In the case of random variable deterioration models, X only consists of the time-invariant uncertain
parameters, which completely describe the uncertainty in the deterioration model. These are con-
tained in the vector θ. E.g., considering Eq. (2.7), X = θ = [C, λ]. The task of inferring θ based
on observed data z, i.e., the task of obtaining the posterior distribution fΘ|Z(θ|z), is referred to as
Bayesian parameter estimation. Particularly of interest for this thesis is the case when indirect noisy
observations z are implicitly connected to the deterioration through the output of a computational
model G, which is parametrized by θ; the task of inferring θ in this context is referred to as Bayesian
model updating [168, 14]. In this case, the likelihood function is typically formulated by assuming
a probabilistic model for the discrepancy η = z − G(θ) ∼ fH(η) between the noisy data z and the
computational model-predicted output G(θ). Bayesian model updating is employed in the context
of vibration-based SHM in Section 4.3 of this thesis.
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Long-term continuous monitoring of deterioration processes, which forms the main focus of this
thesis, delivers a set of noisy data z1:n = {z1, . . . zn} in a sequential manner at different points
in time {t1, . . . tn} throughout the life-cycle of a component/system. This allows for updating the
knowledge about X at any fixed time step tN using the sequence of data z1:N . In this case, Bayesian
analysis is performed via Bayes’ rule as:

fX|Z(x|z1:N ) =
L(x; z1:N )fX(x)

fZ(z1:N )
. (2.25)

With the assumption of independence for the data in z1:N given x, the likelihood function can be
expressed as the product of the individual likelihoods as:

L(x; z1:N ) =

N∏

n=1

L(x; zn). (2.26)

Use of Eq. (2.25) corresponds to the off-line framework for performing Bayesian analysis in settings
in which the data arrives in a sequential manner [92, 90]. The off-line framework is often referred
to as batch estimation in the literature [163]. With the off-line framework, updating the knowledge
on X in view of new data in the sequence z1:n requires solving the problem in Eq. (2.25) anew
every time. Thus, when inference of the sequence of posterior distributions {fX|Z(x|z1:n)}n≥1 is
of interest, as is typically the case in PdM planning problems, which this thesis addresses, the off-
line framework can quickly become inefficient and computationally prohibitive. For the latter task,
the on-line framework is typically employed, which entails performing recursive Bayesian analysis
with a set of algorithms called Bayesian filters to sequentially update the distribution of X [163].
The on-line Bayesian framework is particularly suited for the case when the temporal evolution of
a monitored deterioration process is modeled as a Markovian stochastic process and is subject to
stochastic process noise.

2.1.7.1 Bayesian filtering for deterioration state estimation

For a comprehensive, rigorous review on Bayesian filtering, the interested reader is referred to [163].

A Markovian discrete-time state-space model of the monitored deterioration process must be defined,
rendering the problem suitable for application of Bayesian filters. This is given in a general form as:

xk = dk(xk−1) + ωk−1

zk = hk(xk) + ηk,
(2.27)

for k = 1, . . . T , where:

• xk ∈ Rn is the deterioration state(s) of the system at time step k,
• zk ∈ Rm is the noisy measurement(s) at time step k,
• dk(·) is the dynamic process equation describing the evolution of deterioration,
• hk(·) is the measurement equation,
• ωk is a process noise vector (often assumed in an additive Gaussian form),
• ηk is a measurement noise vector (often assumed in an additive Gaussian form).
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2.1. Maintenance planning - a problem of decision making under uncertainty

The model is assumed to be Markovian. This means that, given xk−1, the state xk is assumed
independent of anything that has happened before the time step k−1. Naturally, this is an assump-
tion, which might not always be realistic when modeling deterioration processes. Yet, state-space
augmentation can be applied to render any deterioration model Markovian. The second assumption
attached to the Markovian property is that, given the current state xk, the current measurement zk

is conditionally independent of previous measurements and states.

Both dk(·) and hk(·) can be linear or nonlinear equations. The process and measurement noise
vectors ωk,ηk are introduced in Eq. (2.27) as additive Gaussian terms; however this modeling choice
is not strictly required. For instance, multiplicative lognormal terms may be introduced instead (see
Eq. (6.3)) [32]. In terms of probability densities, the state-space model of Eq. (2.27) provides the
transition density f(xk|xk−1) through the process equation, and the likelihood function f(zk|xk)
through the measurement equation.

The goal of Bayesian filtering is to compute the distribution of the state xk at time step k given the
sequence of data z1:k, i.e., the distribution f(xk|z1:k). This is known as the filtering distribution,
which can be determined recursively following a two-step process, starting from the prior distribution
f(x0):

• Step 1: Prediction. The predictive distribution of the state xk at time step k is computed
according to the Chapman-Kolmogorov equation [154]:

f(xk|z1:k−1) =

∫
f(xk|xk−1)f(xk−1|z1:k−1)dxk−1. (2.28)

• Step 2: Update. Given the new measurement zk at time step k, the filtering distribution of
the state xk is computed using Bayes’ rule:

f(xk|z1:k) =
f(zk|xk)f(xk|z1:k−1)

f(zk|z1:k−1)
. (2.29)

This two-step process employs the posterior distribution f(xk−1|z1:k−1) computed at the previous
time step k−1 as the prior distribution for the prediction step at time step k. The term f(zk|z1:k−1)
in the denominator of Eq. (2.29) is the model evidence in the recursive Bayesian setting. It can be
interpreted as the probability of observing zk given the prior distribution f(xk|z1:k−1).

When the dynamic process equation and the measurement equation are linear Gaussian, the closed-
form solution to the Bayesian filtering equations is provided by the classical Kalman filter (KF) [87].
Deterioration models are commonly nonlinear models and contain non-Gaussian random variables,
therefore use of the classical Kalman filter is not appropriate. Nonlinear variants of the KF exist,
such as the extended Kalman filter (EKF) and the unscented Kalman filter (UKF). For a detailed
discussion of these, the reader is referred to [163, Chapter 5]. For nonlinear and non-Gaussian
problems, one typically needs to resort to sampling-based methods, such as the particle filter (PF)
[40, 41] or the ensemble Kalman filter (EnKF) [45].
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An example of a state-space model for fatigue deterioration

Fatigue crack growth under increasing stress cycles follows the first-order differential Eq. (2.30),
known as Paris-Erdogan law [38, 179]:

da (n)

dn
= C

[
∆S
√

πa (n)
]m

, (2.30)

where a is the crack length, n is the number of stress cycles, ∆S is the stress range per cycle
when assuming constant stress amplitudes, C and m represent empirical model parameters. This
model contains three time-invariant model parameters in θ = [C,m,∆S]. The goal is to cast this
model into a Markovian discrete-time state-space representation. Solving the first-order differential
Eq. (2.30) leads to a recursive dynamic process equation for the crack length state at time step k as:

ak =
[(

1− m

2

)
C∆Smπm/2∆n+ a

(1−m/2)
k−1

](1−m/2)−1

, k = 1, . . . , T, (2.31)

where ∆n is the number of stress cycles during one time step. A process noise may additionally
be included in the dynamic process equation to describe additional uncertainty, such as model
uncertainty, or uncertainty related to the effect of other processes, such as environmental variability,
on the deterioration process. For the illustration in this section, an additive zero-mean Gaussian
noise term ωk is included:

ak =
[(

1− m

2

)
C∆Smπm/2∆n+ a

(1−m/2)
k−1

](1−m/2)−1

+ ωk. (2.32)

An underlying assumption is that the process noise ωk is constant within each time interval, while
the process noises of different time intervals are independent from each other.

Assuming that the measurements are direct noisy observations of the crack length ak, and including
an additive zero-mean Gaussian noise term ηk, the observation equation is:

zk = ak + ηk. (2.33)

The measurements at different time steps are also assumed to be independent from each other. This
measurement equation corresponds to the following likelihood function:

L(ak; zk) = f(zk|ak) =
1

σ
√
2π

exp

(
−1

2

(
zk − ak

σ

)2
)
. (2.34)

The resulting Markovian discrete-time state-space model can be expressed in the form of Eq. (2.27):

ak = dk(ak−1) + ωk−1

zk = hk(ak) + ηk.
(2.35)

In this formulation, it is assumed that the time-invariant parameters in θ are known deterministic
quantities. Thus, the recursive Bayesian analysis task relates to the sequential updating of the
deterioration state ak; this task is referred to as state estimation [163].

Structural deterioration processes are often modeled as Wiener processes, Gamma processes or
Poisson processes [190]. This modeling choice allows for a Markovian discrete-time state-space
representation of deterioration, which in turn allows for the application of Bayesian filtering [166,
208].
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2.1.7.2 Bayesian filtering for joint deterioration state-parameter estimation

The description in Section 2.1.7.1 assumes that the time-invariant parameters θ of the deterioration
model are known quantities. However, this is usually not the case. In the case of structural deterio-
ration processes, θ contains uncertain model parameters that also need to be estimated along with
the estimate of the state; this task is referred to as joint state-parameter estimation. An approach
for the solution to this problem entails augmenting the state space. In this case, the Markovian
discrete-time state-space representation can be written as:

θk = θk−1

xk = dk(xk−1,θk−1) + ωk−1

zk = hk(xk,θk) + ηk,

(2.36)

where the artificial dynamic process equation for θ simply reflects that the time-invariant parameters
are constant. State space augmentation involves redefining the state as x̃k = (xk,θk). With
the augmented state-space, the Markovian discrete-time state-space model can be expressed in the
general form of Eq. (2.27):

x̃k = dk(x̃k−1) + ω̃k−1

zk = hk(x̃k) + ηk,
(2.37)

and the joint state-parameter estimation task is cast into a state estimation task (Section 2.1.7.1).
This approach is employed in Section 5.4.2.1 of this thesis, where Bayesian filtering is employed for
joint state-parameter estimation of a combined gradual and shock deterioration process, which is
continuously monitored by a vibration-based SHM system.

There are several issues associated with the state-augmentation approach. The fact that the time-
invariant parameters are not subject to any process noise causes solutions based on the Kalman filter
to diverge, and gives rise to sample impoverishment issues in sampling-based Bayesian filters (see
Fig. 6.1), such as the particle filter [163]. The Bayesian filtering community has proposed various
methods for resolving these issues, e.g., [122, 172, 64, 5, 29, 27].

2.1.7.3 Bayesian filtering for deterioration parameter estimation

In the case of random variable deterioration models, all the uncertainty about the deterioration
process is contained in the vector of time-invariant deterioration model parameters θ. Bayesian
filtering can also be applied for pure recursive Bayesian estimation of time-invariant parameters,
for which the noise in the dynamic process equation is formally zero. To this end, the Bayesian
parameter estimation problem is cast into a Markovian discrete-time state-space representation:

θk = θk−1

zk = hk(θk) + ηk.
(2.38)

The fact that the artificial dynamic process equation for the time-invariant parameters is not subject
to any process noise only amplifies the issues of divergence of KF solutions and sample impover-
ishment of sampling-based filters mentioned above [30, 123]. The contribution in Chapter 6 of this
thesis focuses on the sample impoverishment issue encountered when using particle filters in the
context of Bayesian parameter estimation, and investigates methods for alleviating it.
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2.1.8 Reliability analysis of deteriorating systems

Structural reliability analysis [38, 120] forms an integral part of model-based predictive maintenance
planning for deteriorating components/systems. Specifically, it forms the basis for estimating the risk
of failure. As discussed in Section 2.1.2, the risk of failure enters the total life-cycle cost summation,
which is the cost-based criterion used for PdM planning in safety-critical components/systems.
Such systems are typically unique (e.g., a bridge structure) and are associated with high reliability,
i.e., they are not supposed to fail, as failure is associated with adverse consequences. Thus, a
structural reliability analysis is indispensable for computing the probability of component/system
failure, which, multiplied with the cost of failure, delivers an estimate of the risk of failure (e.g.,
see Eq. (2.21)). The outcome of a structural reliability analysis also forms the basis for devised
heuristics that are employed for the solution to stochastic sequential decision problems for PdM
planning [112, 17, 88], e.g., see Section 5.3.1. The current section focuses on time-variant reliability
analysis of deteriorating systems; for a comprehensive description of this task, the reader is referred
to [120, 181].

2.1.8.1 Time-variant reliability analysis

This thesis focuses on cases when failure of the component/system may occur due to the adverse
effects of deterioration. Therefore, assessing the reliability requires stochastic models of the deterio-
ration process(es) acting on the component/system. As the deterioration process evolves over time,
estimating the time-varying reliability of a deteriorating component/system requires a time-variant
reliability analysis [120].

In general, a limit state function g(X, t) can be introduced that models the component/system,
where X is the vector of input random variables. In its simplest form, a failure event of a compo-
nent/system at time t can be expressed in terms of its capacity R(t) and demand S(t). Both R(t)
and S(t) are random variables, and X = [R(t), S(t)] 3. The capacity R(t) decreases over time due
to the effects of deterioration, and can only increase after a maintenance/repair/replacement action
is performed on the component/system. A failure event is defined at time t when the demand S(t)
exceeds the capacity R(t), hence the limit state function at time t is defined as g(X, t) = R(t)−S(t).
The time to failure TF is an important random variable that expresses the elapsed time from the
beginning of the operation of the component/system to the occurrence of the first failure event:

TF = argmin
t

g(X, t) ≤ 0. (2.39)

For systems associated with high reliability, the focus is typically not on direct estimation of TF , as
such systems are not supposed to fail throughout their intended lifetime, but rather on estimating
the accumulated probability of a failure event F (t) up to time t. This is connected to TF via the
cumulative distribution function (CDF) of TF :

Pr[F (t)] = Pr(TF ≤ t) = FTF
(t). (2.40)

The probability density function (PDF) of TF is denoted by fTF
(t). The hazard function h(t) is

defined as:
h(t) =

fTF
(t)

1− FTF
(t)

, (2.41)

3Please note that the vector X defined here is different to the vector X used in previous sections of this thesis.
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and it expresses the failure rate of the structure conditional on the fact that it has survived up
to time t. Imposing thresholds on the hazard function is a commonly used heuristic for informing
inspections and repairs (see Section 5.3.1).

Time is discretized in intervals k = 1, . . . T , where the k-th interval corresponds to t ∈ (tk−1, tk].
The choice of the discretization scheme is problem-dependent. For bridge structures, e.g., a choice
of yearly intervals may be reasonable. The interval failure event F ∗

k is defined as the event of failure
in the interval (tk−1, tk] ignoring previous failures [181]. In the discretized setting, the event of a
failure up to time tk is denoted by Fk, and can be approximated by the union of the interval failure
events as:

Fk = F ∗
1 ∪ F ∗

2 ∪ ...F ∗
k . (2.42)

The accumulated probability of a failure event up to time tk can correspondingly be computed as:

Pr(Fk) = Pr(F ∗
1 ∪ F ∗

2 ∪ ...F ∗
k ). (2.43)

2.1.8.2 Structures with independent capacity and demand

Chapters 4 and 5 of this thesis address a common class of structural problems, wherein the random
vector X can be decomposed into two separate sub-vectors XR and XS , containing uncertain
quantities related to the capacity and the demand, respectively. Naturally, this is an assumption
that may often not be justified. The simplest case emerges when the demand can be described
by a scalar random variable S(t) (e.g., maximum yearly wind load). The capacity can then be
written as a function of the vector XR, i.e., R(XR, t), resulting in the limit state function g(X, t) =
R(XR, t)− S(t).

In simplified cases when the demand within an interval can be described by a scalar random variable
Smax,k = maxS(t)

t∈(tk−1,tk]

, the computation of Pr(F ∗
k ) can be approximated as:

Pr(F ∗
k ) ≈ Pr[R(XR, tk) ≤ Smax,k], (2.44)

which requires solving a time-invariant reliability analysis. Thus, the time-variant reliability problem
can be replaced by a series of time-invariant reliability problems [181].

An efficient solution of the time-variant reliability analysis problem is facilitated in cases when a
deterministic function R(xR, tk) can be constructed. R(xR, tk) is a function that determines the
reduced capacity for a fixed realization of xR, i.e., a realization of the uncertain quantities related
to the capacity, and for a given time tk. The conditional interval probability of failure can then be
computed as:

Pr(F ∗
k |XR = xR) = Pr(Smax > R(xR, tk)) = 1− FSmax(R(xR, tk)), (2.45)

where Smax is the random variable denoting the maximum load in the k-th time interval, and FSmax

denotes its CDF. For instance, Smax may follow a Gumbel distribution modeling the maximum
annual load.
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The conditional accumulated probability of a failure event up to time tk can be computed via the
probabilities of the conditional interval failure events as:

Pr(Fk|XR = xR) = 1−
k∏

m=1

[1− Pr(F ∗
m | XR = xR)] . (2.46)

The unconditional accumulated probability of a failure event up to time tk is then computed by use
of the total probability theorem:

Pr(Fk) =

∫
Pr(Fk|XR = xR)fXR

(xR)dxR (2.47)

The hazard function at time tk can be computed as:

hk =
Pr(Fk)− Pr(Fk−1)

1− Pr(Fk−1)
(2.48)

As outlined in Section 2.1.6, data from continuous monitoring and/or inspections can be used to
update the knowledge on the random vector XR. Upon updating the knowledge on XR via Bayesian
analysis, the time-variant reliability estimates may also be updated, in a process referred to as
reliability updating [178]. For instance, the filtering distribution f(xR|z1:k) can replace the prior
distribution fXR

(xR) in Eq. (2.47). This leads to the filtered estimate of the accumulated probability
of a failure event up to time tk, conditional on the whole sequence of monitoring data z1:k:

Pr(Fk|z1:k) =

∫
Pr(Fk|XR = xR)f(xR|z1:k)dxR. (2.49)

As an alternative, e.g., an l-step-ahead prediction for the accumulated probability of a failure event
up to time tk+l may be obtained:

Pr(Fk+l|z1:k) =

∫
Pr(Fk+l|XR = xR)f(xR|z1:k)dxR. (2.50)

More generally, the accumulated probability of a failure event Pr[F (t)|z1:k] up to any point in time
t ≥ tk, conditional on the data z1:k, can be computed. This leads to an approximation of the full
time-dependent function, which corresponds to the CDF FTF |z1:k

(t) of the conditional distribution
of the time to failure TF given all the information up to tk.

It should be noted that, although in this section Eq. (2.50) is introduced in particular for the case
of structures with independent capacity and demand, the time-dependent function Pr[F (t)|z1:k],
respectively the CDF FTF |z1:k

(t), can typically be computed within the context of any given problem
in which the system performance can be described in relation to a limit state function.

Preposterior decision analysis and VoI/VoSHM analyses require solving multiple time-variant reli-
ability and reliability updating problems. To render VoI/VoSHM analyses computationally viable,
simplified modeling choices for the time-variant reliability analysis problem may be adopted, in
conjunction with efficient methods for its solution [175, 88].

As discussed in Section 2.1.5.1, in cases of structural systems associated with high reliability, the
basic Monte Carlo estimate of the VoI is inefficient. [180] presents a conditional Monte Carlo-based
approach that can increase the computational efficiency and reduce the variance of a VoI analysis
for systems with independent capacity and demand, wherein X can be split into XR and XS . It is
based on the premise that an efficient evaluation of Pr(Fk|XR = xR) is possible. This approach is
employed in the VoI and VoSHM analyses in Chapters 4 and 5 in this thesis.
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2.1.9 Model-based remaining useful life estimation of deteriorating systems

In various engineering disciplines, systems often consist of non-unique components, which fail and
are replaced upon failure, or are timely replaced before failure. On-line monitoring strategies from
deployed sensors are common for such systems. In such context, the main effort focuses on esti-
mating the remaining useful life (RUL) of a component/system utilizing monitoring data. RUL
estimation is a primary goal of the discipline of Prognostics and Health Management (PHM) [95].
This section provides a concise description of model-based prognostics, which aim to deliver RUL
predictions on the basis of an available deterioration model and on-line health monitoring data. In
this section we further draw a connection between the tasks of estimating the time-variant reliability
(Section 2.1.8.1), which falls within the scope of the structural reliability analysis community, and
estimating the RUL of a component/system, which is the main focus of the PHM community. The
two tasks appear to be disconnected in most of the literature.

The RUL at a given point in time t is defined as:

RUL = TF − t, (2.51)

where TF is the time to failure. The RUL corresponds to the remaining time until a compo-
nent/system becomes dysfunctional or fails. The RUL is not strictly expressed in time units, but
may instead be expressed in, e.g., load cycles to failure.

In the context of an on-line health monitoring strategy, prognostics define the process of estimating
the RUL at each time step tk on the basis of all available monitoring data up to tk. The estimated
distribution of the uncertain time to failure is updated conditional on the sequence of monitoring
data z1:k. The CDF of this conditional distribution is denoted by FTF |z1:k

(t). Let TF,k be the
random variable that corresponds to this distribution. The following equation summarizes the RUL
estimation task in a discrete setting:

RULk = TF,k − tk. (2.52)

The estimated RUL at tk conditional on z1:k, denoted by RULk, is therefore a random variable.
The following equation connects the PDFs of RULk and TF,k:

fTF,k
(t) = fRULk

(t− tk), (2.53)

with the PDF fTF,k
(t) being bounded from below at tk. The same equation connects the CDFs of

RULk and TF,k.

At this point, it should be noted that the CDF of the conditional distribution of the time to failure
FTF |z1:k

(t) has already been introduced in the context of time-variant reliability analysis in the end
of Section 2.1.8. Here lies the connection between the tasks of RUL estimation and time-variant
reliability analysis. Specifically, based on Eq. (2.53), it becomes clear that the CDF of RULk can be
derived from the CDF of FTF |z1:k

(t), which can typically be obtained from a time-variant reliability
analysis [28].

Model-based prognostics are established upon availability of a model that describes the evolution
of an uncertain deterioration process and allows for making uncertain predictions of the the dete-
rioration state in future points in time (see Section 2.1.4.1). Failure, or exceedance of the RUL,
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Figure 2.5: Representation of the model-based prognostics process. The black circles correspond to
monitoring measurements zk of the deterioration state xk, obtained sequentially at different points
in time. The black full line plots the mean smoothed estimates E[xi|z1:k], i ≤ k of the deterioration
state. The orange full line corresponds to the mean of the predictive distribution E[xk+l|z1:k] of the
deterioration state. The orange dashed lines represent the 99% credible intervals of the predictive
distribution of the deterioration state. The red vertical line defines the critical failure threshold.
The PDF fTF,k

(t) of the conditional distribution of the estimated time to failure is also plotted.

occurs at the point in time when the deterioration state exceeds some critical threshold, which de-
fines transition to the failure domain. The graph in Fig. 2.5 illustrates the model-based prognostics
process. Naturally, multiple sources of uncertainty enter this process, owing among other factors, to
inherent uncertainties of the degradation process, noisy monitoring data, operational/environmental
conditions, modeling errors, prediction method uncertainty [162]. Model-based prognostics typically
rely on Bayesian filtering algorithms (see Section 2.1.7) for obtaining posterior estimates such as
E[xk|z1:k] and E[xk+l|z1:k] [210, 86], which are shown in Fig. 2.5.

RUL estimation forms the basis for subsequent RUL-driven decision making for predictive main-
tenance. PdM policies that receive as input RUL estimates and determine maintenance actions
throughout the life-cycle of components are followed as a rule in the literature state of the art [39,
196, 200, 35]. Such PdM policies are investigated in the contribution found in Chapter 7 in this
thesis, with the difference that therein the prognostics process is performed in a data-driven fash-
ion. The data-driven PdM planning framework, enabled by data-driven prognostics and monitoring
datasets from run-to-failure experiments, is introduced in the following Section 2.2.
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2.2 Data-driven predictive maintenance planning

To date, SHM system deployments are available on a rather limited number of real-world, safety-
critical engineering systems, with most SHM deployments predominantly serving research purposes
[33, 4]. An increasing trend of such deployments for real-world practical tasks is, however, ob-
served. In an attempt to make monitoring data publicly available, the SHM research community
has delivered various datasets from real-world monitoring of safety-critical civil and infrastructure
engineering systems [143, 52, 116, 197, 51, 134]. As such systems are typically associated with high
reliability, even in the presence of SHM, such datasets rarely contain, if at all, monitoring data
corresponding to damaged states. This poses a significant challenge to the application of data-
driven pattern recognition methods [48]. For monitoring data corresponding to damaged states, the
SHM community heavily relies on synthetic generation based on simulations [61]. Various numerical
benchmark structural models have been introduced for simulation-based performance evaluation of
model-driven and data-driven SHM techniques [85, 182, 197].

An additional intricacy associated with monitoring of safety-critical civil and infrastructure engineer-
ing systems arises from the fact that such systems are typically unique. Thus, even if availability of
monitoring data from damaged states allows for extracting useful insights related to a specific moni-
tored structure, the transfer of these insights to other structures is not straightforward. Researchers
from the SHM community have recently introduced the population-based SHM framework [20, 69,
60], which aims to tackle this transferability issue, primarily based on transfer learning principles
[135].

The above discussion points to the fact that, for safety-critical civil and infrastructure engineering
systems, it is mostly not clear hitherto how acquired monitoring data can pave the way for the
establishment of a data-driven predictive maintenance (PdM) planning framework. Instead, the
state of the art in PdM planning for such systems heavily relies on the model-based framework,
which is introduced in Section 2.1.4.

For certain non-unique engineering components/systems (e.g., in industrial engineering), monitoring
data from several run-to-failure experiments are available. Such datasets typically contain multi-
variate time series sensor data obtained from physical or simulated run-to-failure experiments on
deteriorating components/systems. This means that data that cover the whole spectrum of damaged
states up to failure are available. For instance, such datasets exist for bearings, batteries, turbofan
engines, CFRP composites, capacitors or milling machines. Several of these datasets are made pub-
licly available by the NASA Prognostics Center of Excellence [127]. There is a vast amount of recent
literature on the development of prognostic solutions, which rely on such data to employ data-driven
methods, such as artificial intelligence (AI) approaches enabled by machine learning (ML) predictive
tools [105, 167, 82]. One of the biggest advantages of data-driven approaches compared to model-
driven ones is that the former are exempted from the task of a-priori defining a physics-based or
empirical model to describe the deterioration pattern. Instead, data-driven methods aim to learn
this pattern based on the training data.

One significant advantage associated with such non-unique components/systems relates to the fact
that individual components/systems can be considered as part of a population of nominally identical
components/systems. This constitutes a key difference compared to other systems, such as civil and
infrastructure engineering systems, where such an assumption is strictly invalid.
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The availability of monitoring run-to-failure datasets and data-driven prognostic approaches has
paved the way for establishment of the data-driven PdM paradigm [53, 130, 207, 104]. Within
this paradigm, evaluation of the available run-to-failure monitoring data not only forms part of the
prognostic algorithm training process, but can be further extended to a data-driven estimation of the
expected cost-based criterion, on the basis of which PdM policies are evaluated. This is discussed
in Section 2.2.2.

2.2.1 Data-driven prognostic modeling

This section provides a concise description of data-driven prognostic modeling, subsequently focusing
on the task of data-driven estimation of the RUL of engineering components/systems.

From a purely data-driven point of view, prognostic models are trained based on available train-
ing data to perform either regression or classification tasks [16, 126], as graphically depicted in
Fig. 2.6. Regardless of the pursued task, data-driven prognostic models can generally be considered
as functions that map a set of input quantities z ∈ Rnz , which represent the available monitor-
ing measurements of system response, to a set of output quantities of interest y ∈ Rny , such that
F : z → y. This mapping can be expressed by the following mathematical model:

y = FH (z,p) , (2.54)

where p denotes a set of model-specific parameters, which can be estimated from the training data
and are used to properly configure the structure of the underlying model, and H is the vector of
model hyperparameters. The latter are external to the model and their values control the learning
process. When using regression models for prognosis, as shown in Fig. 2.6a, the output is predicted as
a continuous variable. On the other hand, the output is slightly different in the case of classification
modeling. Concretely, prognostic classifiers predict the class in which the output belongs. This
requires an additional preprocessing step of labeling the training data such that they belong in
certain classes of interest. For instance, Fig. 2.6b shows the output of a binary classifier, which
differentiates between two classes of deterioration, one corresponding to a safe domain (green dots),
and one corresponding to an unsafe domain (red dots).
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Figure 2.6: Representation of the output from data-driven prognostic models performing regression
or classification tasks.

In either case, the training of data-driven models aims at minimizing an error metric using an
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available set of input and output data points, denoted by ZN = [z1, z2, . . . , zN ] and Y N =
[y1, y2, . . . , yN ], respectively. This metric, which is dependent on the parameters p and is herein
denoted by Qp,i for each pair of input-output data (zi,yi) for i = 1, 2, . . . , N , is selected according
to the type of the model and is described for each data point as follows:

Qp,i

(
yi,FH (zi,p)

)
=

{(
yi −FH

(
zi,p

))2 Regression,

L0/1

(
yi,FH

(
zi,p

))
Classification,

(2.55)

where L0/1 denotes the 0-1 loss function. Different possibilities exist in terms of the cost function
to be minimized, as a function of the error metrics defined in Eq. (2.55). These include the Mean
Squared Error (MSE) and the Mean Absolute Error (MAE) for regression, or the binary cross entropy
and the categorical cross entropy loss for classification [126].

In contrast to the model parameters p, whose values are calculated at the training phase, the
selection of hyperparameters H for each type of model is often carried out through an optimization
step that minimizes some function G(Qp,i) of the error metric Qp,i, when evaluated on a set of test
or validation data points. This process is concisely defined as:

H∗ = argmin
H

G (Qp) , (2.56)

where H∗ denotes the optimal hyperparameter configuration that corresponds to the minimum
prediction error. The error function to be minimized at this step follows the same logic as the one
involved in the training process, with the difference that the evaluation in Eq. (2.56) is based on data
points that are not seen during the training process. Please note that cross-validation is another
approach for determining H∗ [126], which is a process performed at the training phase.

2.2.1.1 Data-driven remaining useful life estimation of deteriorating systems

In the context of PHM, data-driven prognostic algorithms are frequently trained on the basis of
available datasets containing sensor information from run-to-failure experiments of deteriorating
components/systems. These trained algorithms aim to provide on-line estimates of the RUL in view
of on-line monitoring data. Thus, the prognostic output y is typically either directly the RUL,
or some health indicator based on which the RUL is inferred. Data-driven prognostic algorithms
are predominantly black-box models, which do not rely on any prior knowledge related to the
physical nature of the deterioration mechanism. Instead, the black box model is designed to learn
the deterioration pattern explicitly from input monitoring data. This process is inherently different
from the model-driven RUL estimation process, which relies on the a-priori definition of a stochastic
deterioration model, as discussed in Section 2.1.9.

Data-driven prognostic algorithms rely on a series of operations, concisely summarized below:

• Acquisition of monitoring data through deployed sensors.

• Preprocessing — this step notably entails data normalization, denoising, or labeling.

• Feature selection — the goal in this step is to extract important damage-sensitive features from
the – often high-dimensional – monitoring data, in a process relying on domain knowledge and
signal processing or machine learning techniques.
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Naturally, the performance of data-driven prognostic algorithms heavily depends on the quantity
and quality of the available training data.

The RUL estimation process is subject to various sources of uncertainty, such as model uncertainty,
measurement uncertainty, unknown future loading conditions [161, 82]. It is thus imperative to
incorporate uncertainty in the prognostic output y obtained from data-driven models, especially
when this output forms the basis for the subsequent PdM planning task [54]. However, with several
data-driven prognostic algorithms, such as deep learning algorithms on which the recent literature
heavily relies [107, 108], the uncertainty quantification task, as well as downstream tasks such as
uncertainty propagation, is not as straightforward (if at all) as with model-driven approaches [53].

The contribution in Chapter 7 of this thesis concentrates on this topic. In particular, it investigates
data-driven prognostic models, whose classification or regression prognostic output is directly used
as input to PdM policies for determining maintenance actions. The PdM policies by definition
rely on the availability of probabilistic output from prognostics. Certain policies rely on selected
probabilities, e.g., the probability of the output y reaching a limit point ȳ, while others rely on the full
probability density of the uncertain output y. As previously discussed in Section 2.1.9, RUL-based
PdM policies have been proposed in the literature, e.g., [39, 196, 130, 200, 35]. Some of these policies
are investigated in some detail in Chapter 7, which further proposes some alternatives/improvements.

2.2.2 Data-driven evaluation of a predictive maintenance policy

Section 2.1.4.2 discussed the evaluation of a PdM policy for the case when a stochastic deteri-
oration model is available. This evaluation is typically performed with Monte Carlo simulation
(MCS), whereby multiple “what-if” life-cycle realizations of the deterioration process are sampled
from the available deterioration model, in conjunction with the corresponding synthetically gener-
ated monitoring measurements. A purely data-driven scheme instead does not employ a stochastic
deterioration model, or a model for generating monitoring measurements. Hence a MCS-based eval-
uation of a PdM policy is not possible. However, the available run-to-failure monitoring datasets can
straightforwardly be considered as joint true realizations of the deterioration process and the corre-
sponding monitoring data. Therefore, in a data-driven scheme, any PdM policy can be evaluated
based on a subset of the available run-to-failure dataset, as explained in the next paragraph.

Let us assume that the long-run expected maintenance cost per unit time is the quantity of interest
for evaluating a PdM policy, as is often the case for non-safety-critical components/systems. The
expected values in Eq. (2.3) can be evaluated based on a subset of the available run-to-failure
monitoring dataset. Concretely, the dataset is split into a training and an evaluation subset, with
the former used for the training of a data-driven prognostic algorithm, as described in the previous
Section 2.2.1, and the latter used for the evaluation of a PdM policy. Specifically, a PdM policy is
applied on neval independent components of the evaluation dataset, and the cost of the informed
maintenance action(s), as well as the length of each component life-cycle, are evaluated. The data-
driven evaluation of the PdM policy is then performed as:

E[CM]

E[Tlc]
≈
∑neval

i=1 C
(i)
M∑neval

i=1 T
(i)
lc

, (2.57)

where C
(i)
M and T

(i)
lc are the cost of maintenance and the length of the first life-cycle of the i-
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th component of the evaluation dataset, respectively. Naturally, the quality of the estimator of
Eq. (2.57) depends on the number neval of available datasets in the evaluation subset. If this number
is small, the estimator in Eq. (2.57) is subject to rather large variability. This is investigated in
detail in Chapter 7 of this thesis.

Investigations of this end-to-end data-driven PdM framework [130], i.e., from data-driven RUL
prognostics to data-driven evaluation of a PdM policy, are found in the contribution in Chapter 7
of this thesis.
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Chapter 3

Summary & Outlook

3.1 Summary

In Chapter 4, we adapt the Bayesian decision analysis framework for quantifying the value of infor-
mation (VoI) from structural health monitoring (SHM). Specifically, we investigate the quantification
of the VoI yielded via adoption of long-term vibration-based SHM for supporting decisions. An in-
fluence diagram is introduced, which concisely summarizes the modeling efforts required for a full
VoI from SHM analysis and reflects the associated computational challenges. Drawing from this
influence diagram, and avoiding common overly simplified assumptions, this contribution presents –
for the first time in literature – a VoI analysis on the full SHM chain, from sensor data acquisition
and processing via operational modal analysis schemes, to Bayesian model updating for estimating
parameters of structural deterioration models. A time-variant structural reliability analysis forms
the basis for estimating the risk of failure throughout the life-cycle on account of gradual deteriora-
tion processes. The investigated decision setting relates to predictive maintenance (PdM) planning
of repair actions. The PdM plan is optimized via the adoption of heuristic decision rules. A numer-
ical benchmark structural model of a bridge system serves as the basis for numerical investigations,
which showcase that the presented VoI from SHM analysis can quantitatively assess the optimality
of an SHM system in certain decision contexts.

In Chapter 5, we focus on quantifying the potential economic benefit that vibration-based structural
health monitoring (SHM) can generate by enhancing maintenance planning, compared against the
currently dominant approach, which is based on information from intermittent inspections. To this
end, a formal metric deriving from Bayesian decision analysis is introduced, namely the Value of
SHM (VoSHM) metric. The VoSHM is quantified by the difference in expected total life-cycle costs
with and without the SHM. This contribution presents a rigorous, comprehensive VoSHM analysis
framework, which is shown to be applicable to a wide range of vibration-based SHM use cases across
different time scales. We present in detail the various computational aspects of a – computationally
intensive – VoSHM analysis, and we concurrently introduce efficient methods for performing the
computations. These include heuristics for the solution to stochastic sequential decision problems
and Bayesian filtering for joint deterioration state-parameter estimation. In contrast to Chapter 4
and to most of the literature, where just individual decisions are considered, the framework of Chap-
ter 5 includes the full sequence of inspection and maintenance decisions throughout the structural
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life-cycle. Various decision settings are numerically investigated with the aid of a numerical bench-
mark model of a bridge system, which range from predictive maintenance planning in the light of
gradual deterioration processes and environmental variability, to near-real time decision support fol-
lowing extreme event occurrences. Results motivate the large potential economic benefit associated
with investing in SHM systems to support maintenance planning in specific decision settings.

Chapter 6 focuses on the use of sampling-based Bayesian filtering algorithms in the context of de-
terioration model parameter estimation, which is an indispensable task in predictive maintenance
planning. On-line (recursive) estimation of time-invariant parameters poses a computational chal-
lenge for on-line sampling-based Bayesian filters, which are confronted with sample degeneracy and
impoverishment issues. These issues hinder the use of on-line Bayesian filters in problems where
quantification of the full posterior parameter uncertainty is of interest, creating the need for tailored
solutions. Off-line (batch) algorithms are – in principle – better suited for the uncertainty quantifi-
cation task, yet they are computationally prohibitive in sequential settings. In Chapter 6, we present
in full algorithmic detail adapted on-line and off-line (batch) Bayesian filters. These are the on-line
particle filter with Gaussian mixture resampling (PFGM), the on-line iterated batch importance
sampling filter (IBIS), which performs off-line Markov chain Monte Carlo (MCMC) move steps, and
the off-line MCMC-based sequential Monte Carlo (SMC) filter. A comparative assessment is per-
formed with the aid of two numerical examples of different nature and complexity. The accuracy of
posterior estimates and the computational cost form the criteria for this assessment. Several con-
clusions are drawn, most notably that the presented on-line PFGM filter proves competitive with
off-line, computationally expensive filters.

Finally, in Chapter 7, we propose a novel decision-oriented metric for assessing data-driven prognostic
algorithms. The novelty of the proposed metric compared to other metrics from the literature is
that it assesses algorithms on the basis of downstream predictive maintenance (PdM) decisions that
are to be triggered by their outcome, i.e., the predictions of the remaining useful life (RUL). It is
thus defined in conjunction with a specific decision setting and a corresponding PdM policy, which
dictates the maintenance actions based on input RUL predictions. The work in Chapter 7 focuses
specifically on two common decision settings pertinent to industrial assets, for which we employ
and improve some relevant PdM policies of varying complexity from the literature. The metric
further serves as the basis for a decision-oriented optimization of data-driven prognostic algorithms.
The availability of run-to-failure monitoring datasets is essential to a data-driven evaluation of the
metric, freeing the analyst altogether from the need of a-priori defining a stochastic model describing
the deterioration process. A limited amount of such data, however, may pose a bottleneck for this
evaluation, as it leads to an estimate with non-negligible variability. We rigorously investigate the
metric with the aid of two numerical examples, one theoretical virtual case study and one benchmark
case study related to degrading turbofan engines. These provide valuable insights on the proposed
decision-oriented performance assessment and optimization of prognostic algorithms.

3.2 Outlook

The VoI/VoSHM analysis presented in this thesis constitutes a rigorous framework for a-priori
quantifying the expected economic gains associated with the adoption of SHM on deteriorating
systems. There are few additional aspects that future work may incorporate into the presented
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framework towards enhancing its degree of realism. In a real SHM setting, the Bayesian model
updating process is subject to an unknown model error, which often constitutes the most significant
source of uncertainty in the process. Model errors are not considered in this work. Such errors
can be incorporated in the framework, e.g., by deliberately introducing a model discrepancy. This
entails utilizing different models for the tasks of generating the monitoring data and performing the
Bayesian updating. A hierarchical Bayesian model updating approach [14] can then be employed in
the framework, which has been shown to appropriately account for model errors. Moreover, SHM
systems are themselves subject to deterioration, which may inhibit their uninterrupted functionality.
This is an issue that could potentially lead to a non-negligible reduction of the VoI/VoSHM. In
this context, probabilistic models describing the SHM system performance deterioration as well as
associated maintenance actions may additionally be incorporated in the framework. Furthermore,
the costs assigned to different actions and events are in principle uncertain variables. The values
of these costs significantly affect the VoI/VoSHM analysis results. Thus, the rigorous, and ideally
standardized, definition of cost models is an important area of future research in the direction of
more precisely quantifying the VoI/VoSHM.

Utilization of the VoSHM framework for optimizing monitoring systems seems straightforward. For
instance, the VoSHM metric can serve as the decision-theoretic objective function for sensor place-
ment optimization studies. For this problem, information-theoretic objective functions are typically
adopted [137].

In this work, we employ heuristic decision policies, which rely on time-variant reliability or remaining
useful life estimates, for predictive maintenance planning. The heuristics-based approach allows for
interpretable, yet sub-optimal, solutions to the stochastic sequential decision problem. One can
certainly not overlook the unprecedented potential that deep reinforcement learning (RL) offers for
finding optimal solutions to such problems. Casting the predictive maintenance planning problem
into a deep RL problem is certainly a promising research direction, with existing studies already
revealing its large potential [6, 104].

This thesis discusses various limitations of purely model-based and data-driven prognostic ap-
proaches for supporting predictive maintenance planning tasks, and demonstrates that the develop-
ment of hybrid frameworks [10] is a promising avenue towards reaching an optimal synergy between
these two approaches. As motivated by the proposal of a novel decision-oriented metric in Chapter 7
of this dissertation, to bring the most added value, the development and implementation of any novel
hybrid prognostic framework ideally has to be targeted towards its role in decision support.

The scarcity of real-world run-to-failure monitoring datasets poses a major bottleneck to the de-
velopment of purely data-driven prognostic approaches and to the application of the data-driven
predictive maintenance paradigm. To alleviate this issue, the scientific community and practitioners
must work closely together towards fostering a data-sharing approach. An open-data approach can
generally prove vastly beneficial to future scientific and practical developments in the fields of SHM
and PHM. The Prognostics Data Repository [127] is an excellent example of such an approach.

Finally, in the experience of the author, researchers may often have different perspectives depending
on whether they come from the SHM community, the PHM community, or the risk/reliability analysis
and decision-making community. This thesis endeavors to bring some of these perspectives together.
It is the author’s belief that similar collaborative efforts are key to reaching a reliable synergy
between health monitoring and decision making.
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Abstract

Quantifying the value of the information extracted from a structural health monitoring (SHM) sys-
tem is an important step towards convincing decision makers to implement these systems. We
quantify this value by adaptation of the Bayesian decision analysis framework. In contrast to pre-
vious works, we model in detail the entire process of data generation to processing, model updating
and reliability calculation, and investigate it on a deteriorating bridge system. The framework
assumes that dynamic response data are obtained in a sequential fashion from deployed accelerom-
eters, subsequently processed by an output-only operational modal analysis scheme for identifying
the system’s modal characteristics. We employ a classical Bayesian model updating methodology to
sequentially learn the deterioration and estimate the structural damage evolution over time. This
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leads to sequential updating of the structural reliability, which constitutes the basis for a prepos-
terior Bayesian decision analysis. Alternative actions are defined and a heuristic-based approach
is employed for the life-cycle optimization. By solving the preposterior Bayesian decision analysis,
one is able to quantify the benefit of the availability of long-term SHM vibrational data. Numerical
investigations show that this framework can provide quantitative measures on the optimality of an
SHM system in a specific decision context.

4.1 Introduction

The advancements in the development of reliable and low-cost sensors, capable of measuring different
structural response quantities (e.g. accelerations, displacements, strains, temperatures, loads, etc.)
have led to vast scientific and practical developments in the field of Structural Health Monitoring
(SHM) over the last four decades [10]. Techniques for processing the raw measurement data and ob-
taining indicators of structural “health” have been made readily available [20]. However, despite the
advancements in the field, SHM still remains predominantly applied within the research community
[11] and has not yet translated to extensive application on real-world structures and infrastructure
systems. One main reason for this is that the effect and the potential benefit from the use of SHM
systems can only be appraised on the basis of the decisions that are triggered by monitoring data.
Key open-ended questions include [35]: How can information obtained from an SHM system provide
optimal decision support? What is the Value of Information (VoI) from SHM systems? How can it
be maximized?

Preposterior Bayesian decision analysis can be employed as a formal framework for quantifying
the VoI [29], which adequately incorporates the uncertainties related to the structural performance
and the associated costs, the monitoring measurements, etc. A VoI analysis provides the necessary
mathematical framework for quantifying the benefit of an SHM system prior to its installation. In the
civil and infrastructure engineering context, the computation of the VoI has been considered mainly
related to optimal inspection planning for deteriorating structural systems [36, 21, 41]. Recent
works [27, 46, 34, 39, 19, 1, 45, 14] use the VoI concept in an attempt to quantify the value of SHM
on idealized structural systems within a Bayesian framework. All works to date, however, adopt
rather simplified assumptions regarding the type of information offered by the SHM system. They
thus largely rely on hypothetical likelihood functions or observation models, which render these
demonstrations, although insightful, not easily transferable to realistic applications. A first attempt
towards modeling the entire SHM process and the monitoring information has been made by the
authors in [17], which is formalized and extended herein.

Installation of a continuous monitoring system on a structure allows for continuous measurement
of the dynamic response of the structure (e.g., accelerations, strain). In an in-operation regime, a
precise measurement of the acting loads, which are usually distributed along a system (e.g., wind,
traffic), is a challenging task. Output-only operational modal analysis (OMA) [26, 3] techniques
have been developed to alleviate the burden of the absence of acting load measurements. Using an
OMA procedure one can identify the system eigenfrequencies and mode shapes of typical structures
excited by unmeasured ambient (broadband) loads. This is beneficial, since the operation of the
structure is not obstructed, as it would be in the case of forced vibration testing.
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Further to data acquisition and system identification, model updating forms a popular subsequent
step toward modeling the system performance on the basis of the monitoring information. This
process is also referred to as the process of establishing a digital twin via model updating [43].
Bayesian model updating (BMU) using identified modal data has proved successful in identifying
damage on a global or local level within a structure [40, 25, 4, 33, 44, 6]. These methods hold
significant promise for application with actual full-scale structures [23, 5, 2]. The vast majority of
studies are focused on investigating how the BMU framework performs in detecting, localizing and
quantifying different types of artificially created damage given some fixed set of modal data. A
few recent studies are concerned with BMU using vibrational data obtained in a continuous fashion
from SHM systems [6, 31, 15]. However, no studies are available that systematically quantify the
benefit of BMU using continuous SHM data towards driving optimal informed maintenance decision
making.

This work embeds a sequential implementation of the BMU framework within a preposterior Bayesian
decision analysis, to quantify the VoI from long-term vibrational data obtained from an SHM system.
We employ a numerical benchmark for continuous monitoring under operational variability [38] to
test and demonstrate the approach. The numerical benchmark serves as a tool to create continuous
reference monitoring data from a two-span bridge system subject to different types of deterioration
(scour, corrosion) at specific hotspots over its lifespan. The benchmark is used as a simulator for
extracting dynamic response data, i.e. simulated measurements (accelerations), corresponding to a
typical deployment of accelerometers on the structure. Acceleration measurements are provided as
input to an output-only OMA algorithm, which identifies the system’s modal characteristics. We
implement Bayesian model and structural reliability updating methods in a sequential setting for
incorporating the continuous OMA-identified modal data within a decision making framework. This
proposed procedure follows the roadmap to quantifying the benefit of SHM presented in [35]. We
employ a simple heuristic-based approach for the solution of the life-cycle optimization problem in
the preposterior Bayesian decision analysis. The resulting optimal expected total life-cycle costs are
computed in the preposterior case, and compared against the optimal expected total life-cycle costs
obtained in the case of only prior knowledge, thus enabling the quantification of the VoI of SHM.

4.2 VoI from SHM analysis

The monitoring of a structural system through deployment of an appropriately designed SHM system
is a viable means to support decision making related to infrastructure maintenance actions. But is
gathering this information worth it? Preposterior Bayesian decision analysis provides the necessary
formal mathematical framework for quantifying the VoI of an SHM system. A concise representation
of a such an analysis with the use of an influence diagram (ID) has been introduced in [35]. An
adaptation of this ID for the purposes of the VoI analysis that we propose and apply on a simulated
SHM benchmark study in this paper is offered in Fig. 4.1. In the next paragraph, we lay out a brief
introduction of this ID. For more in-depth explanations, the reader is referred to [35].

Influence diagrams build upon Bayesian networks (BN), which offer a concise graphical tool to
model Bayesian probabilistic inference problems, and extend these through the addition of decision
and utility nodes to model decision making under uncertainty [16]. In the ID of Fig. 4.1, green
oval nodes model uncertain parameters and models/processes related to the structural system, the
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Figure 4.1: Influence diagram of the SHM process for a preposterior Bayesian decision analysis to
quantify the VoI.

orange square node models the decision on the SHM system, while the orange oval node models the
monitoring data that is extracted via use of a specific SHM system. This data can be used to learn
the structural condition via Bayesian updating to then inform the decision on maintenance/repair
actions (red square node). Finally, the grey diamond-shaped nodes represent the different costs that
enter into the process. The decision to deploy an SHM system is associated with a corresponding
SHM cost, the decision to perform a repair action induces a repair cost, and the risk (the expected
cost of failures) can be quantified via the outcome of a structural reliability analysis. Causality is
important for the direction of the links among the nodes of this ID. For example, the ‘Structural
condition’ node points to the ‘Structural performance’ node, as one would expect, but also points to
the ‘SHM Data’ node, which might not appear intuitive. However, the SHM measurement that one
obtains causally depends on the actual condition of the monitored structure. Note, however, that the
flow of information can go against the direction of the link; this is quantified via Bayesian analysis.
The link to the ‘Actions’ node with the box [t+1] describes the flow of information and shows
that this ID represents a decision process over the lifetime of the structure. Not explicitly shown
here are the beginning and the end of the ID. The ID begins with the year when the installation
of the SHM system is considered; it ends with the structural performance in the last year of the
anticipated service life. The blue text bubbles introduce the different computational methods that
are incorporated in the different parts of the process. The large number of these bubbles highlights
the modeling and computational challenges associated with a full VoI analysis.

In this paper, for the first time in existing literature, we avoid overly simplifying assumptions in some
parts of the modeling of the preposterior Bayesian decision analysis for quantifying the VoI from
SHM, but we still model other parts of the process in a simplistic way. The main contribution lies in
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the modeling of the SHM data. As can be seen in Fig. 4.1, we employ continuous SHM information
over the lifetime of a deteriorating structural system in the form of acceleration time series, which are
subsequently processed by an OMA procedure that identifies the modal eigenfrequencies and mode
shapes. These SHM modal data are then used within a BMU procedure to sequentially identify the
structural condition (see Section 4.3). The way in which the SHM data sets are sampled within a
preposterior Bayesian decision analysis with the use of the benchmark structural model is described
in detail in Section 4.6.3. We treat the modeling of the structural performance node of the ID, as well
as the incorporation of the monitoring information within a reliability updating, in a realistic and
computationally efficient approach (see Section 4.4). To provide a computationally viable solution to
the VoI analysis, we adopt a rather simplified modeling of the action decision node, and we perform
the life cycle optimization with the use of heuristics (see Section 4.5).

The solution of the preposterior Bayesian decision analysis leads to monitoring-informed optimization
of the repair action, which in turn leads to the computation of the optimal expected total life-cycle
cost in the case of having an SHM system installed. If the adopted SHM strategy is to implement
no SHM system, then life-cycle optimization is conducted on the basis of prior information only. By
comparing the optimal expected total life-cycle costs in the prior and preposterior cases, the VoI is
implicitly quantified as the difference between the two.

4.3 Bayesian model updating

In this section, the Bayesian model updating framework with the use of OMA-identified modal data is
presented. The Bayesian formulation presented here corresponds to the state-of-the-art formulation
[33, 44, 5].

4.3.1 Bayesian formulation

We consider deterioration that leads to local stiffness reductions. The random variables (RVs)
describing the uncertainty within the employed deterioration models are θ ∈ IRd, with d being
the total number of RVs. The goal of the Bayesian inverse problem is to infer the deterioration
model parameters θ given noisy OMA-identified modal data. These are the modal eigenvalues
λ̃m = (2πf̃m)2, where f̃m are the modal eigenfrequencies, and/or mode shape vector components
Φ̃m ∈ IRNs at the Ns degrees of freedom (DOF) that correspond to the sensor locations, where
m = 1, ..., Nm is the number of identified modes. Modal eigenvalues can be identified quite accurately,
but an accurate identification of the mode shape displacements requires the deployment of a relatively
large number of sensors. Conditional on a fairly good representation of the mode shape vector,
one can then derive other modal characteristics, such as the mode shape curvatures K̃m ∈ IRNs ,
which are shown to be more sensitive to local damage [24]. If only the eigenvalue data is available,
damage can be detected on a global level, while damage localization requires the existence of spatial
information, in the form of mode shape (or mode shape curvature) data.

Consider a linear finite element (FE) model, which is parameterized through the parameters θ
of the deterioration models. The goal of the Bayesian probabilistic framework is to estimate the
parameters θ, and their uncertainty, such that the FE model predicted modal eigenvalues λm(θ)
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and mode shapes Φm(θ), or mode shape curvatures Km(θ), best match the corresponding SHM
modal data.

Using Bayes’ theorem, the posterior probability density function πpos of the deterioration model
parameters θ given an identified modal data set [λ̃, Φ̃] is computed via Eq. (4.1); it is proportional
to the likelihood function L(θ; λ̃, Φ̃) multiplied with the prior PDF of the model parameters πpr(θ).
The proportionality constant is the so-called model evidence cE and requires the solution of a d-
dimensional integral, shown in Eq. (4.2).

πpos(θ | λ̃, Φ̃) ∝ L(θ; λ̃, Φ̃)πpr(θ) (4.1)

cE =

∫

Ωθ

L(θ; λ̃, Φ̃)πpr(θ)dθ (4.2)

The model updating procedure contains significant uncertainties, which should be taken into ac-
count within the Bayesian framework. According to [33], these are classified into i) measurement
uncertainty, including random measurement noise and variance or bias errors induced in the OMA
procedure [30] (see Fig. 4.4), and ii) model uncertainty. In [6] the existence of inherent variability
emerging from changing environmental conditions is highlighted. The combination of all the above
uncertainties is called the total prediction error in literature [33, 6]. In order to construct the likeli-
hood function, the eigenvalue and mode shape (similarly for mode shape curvature) prediction errors
for a specific mode m are defined as in Eqs. (4.3) and (4.4).

ηλm = λ̃m − λm(θ) ∈ IR (4.3)

ηΦm
= γmΦ̃m −Φm(θ) ∈ IRNs , (4.4)

where γm is a normalization constant, which is computed as in Eq. (4.5). Γ is a binary matrix for
selecting the FE degrees of freedom that correspond to the sensor locations.

γm =
Φ̃

⊺
mΓΦm∥∥∥Φ̃m

∥∥∥
2 (4.5)

The probabilistic model of the eigenvalue prediction error is a zero-mean Gaussian random variable
with standard deviation assumed to be proportional to the measured eigenvalues:

ηλm ∼ N
(
0, c2λmλ̃2

m

)
(4.6)

All the Ns mode shape prediction error components in the vector ηΦm
are assigned a zero-mean

Gaussian random variable with the same standard deviation, assumed proportional to the L2-norm
of the measured mode shape vector. A multivariate Gaussian distribution is used to model this
error. Eq. (4.7) implies that the errors for the different degrees of freedom are uncorrelated, which
is a common assumption, but may be unrealistic [32].

ηΦm
∼ N (0,ΣΦm)

ΣΦm = diag
(
c2Φm

∥∥∥γmΦ̃m

∥∥∥
2
) (4.7)

The factors cλm and cΦm can be regarded as assigned coefficients of variation, and their chosen
values reflect the total prediction error. In practical applications, usually very little (if anything) is
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known about the structure or the magnitude of the total prediction error. At the same time, even
if the assumption of an uncorrelated zero mean Gaussian model for the errors has computational
advantages and can be justified by the maximum entropy principle, the choice of the magnitude of
the factors cλm and cΦm clearly affects the results of the Bayesian updating procedure. It appears
that most published works do not properly justify this particular choice of the magnitude of the error.
Alternatively, these factors can be added as hyper-parameters with an assumed prior distribution
and, thus, be included in the Bayesian parameter estimation [6].

Assuming statistical independence among the Nm identified modes, the likelihood function for a given
modal data set can be written as in Eq. (4.8). N(.) denotes the value of the normal probability
density function at a specified location.

L
(
θ; λ̃, Φ̃

)
=

Nm∏

m=1

N
(
ηλm ; 0, c

2
λmλ̃2

m

)
N(ηΦm

;0,ΣΦm) (4.8)

The benefit of SHM is that the sensors can provide data in a continuous fashion, therefore resulting
in an abundance of measurements received almost continuously. Assuming independence among Nt

modal data sets obtained at different time instances, the likelihood can be expressed as:

L
(
θ; λ̃1...λ̃Nt , Φ̃1...Φ̃Nt

)
=

Nt∏

t=1

Nm∏

m=1

N
(
λ̃tm − λtm(θ); 0, c

2
λmλ̃2

tm

)
N
(
γtmΦ̃tm −Φtm(θ);0,ΣΦtm

)

(4.9)
where the index tm indicates the modal data of mode m identified at time instance t. The formulation
in Eq. (4.9) allows for sequential implementation of the Bayesian updating process. At any time step
ti when new data becomes available, the distribution of the parameters given all the data up to time
ti, πpos(θ | λ̃1:i, Φ̃1:i) or the one step ahead predictive distributions for time ti+1 can be obtained.
The inclusion of data in a continuous fashion can increase the level of accuracy of the Bayesian
model updating procedure. However, one should be aware that the assumption of independence in
Eq. (4.9) typically does not hold. This could be addressed by a hierarchical modeling of θ [6].

4.3.2 Solution methods

The solution of the Bayesian updating problem in the general case involves the solution of the d-
dimensional integral for the computation of the model evidence. Analytic solutions to this integral
are available only in special cases, otherwise numerical integration or sampling methods are deployed.
The two solution methods that we employ within this work are the Laplace asymptotic approximation
and an adaptive Markov Chain Monte Carlo (MCMC) algorithm.

4.3.2.1 Laplace approximation

A detailed presentation of this method can be found in [4, 25]. The main idea is that for globally
identifiable cases [4], and for a sufficiently large number of experimental data, the posterior distri-
bution can be approximated by a multivariate Gaussian distribution N(µ,Σ). The mean vector µ
is set equal to the most probable value, or maximum aposteriori (MAP) estimate, of the parameter
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vector, which is obtained by minimizing the negative logposterior:

µ = θMAP = argmin
θ

(− lnπpos(θ | λ̃, Φ̃)) = argmin
θ

(− lnL(θ; λ̃, Φ̃)− lnπpr(θ)) (4.10)

and the covariance matrix Σ is equal to the inverse of the Hessian of the log-posterior evaluated
at the MAP estimate. When new data becomes available, the new posterior distribution has to
be approximated. The MAP estimate of the previous time step is used as the initial point for the
optimization at the current time step, to facilitate a faster convergence of the optimization algorithm.

4.3.2.2 MCMC sampling

For more accurate estimates of the posterior distributions than the one obtained by using the Laplace
approximation, one can resort to MCMC sampling methods. Among the multiple available MCMC
algorithms, here we employ the adaptive MCMC algorithm from [13], in which the adaptation is
performed on the covariance matrix of the proposal PDF. Whenever new data becomes available,
the MCMC algorithm has to be rerun to obtain the new posterior distribution. The posterior mean
of the parameters estimated via MCMC at the previous time step is used as seed of the new Markov
chain, which allows the chain to converge faster.

4.4 Structural reliability of a deteriorating structural system and
its updating

Estimation of the structural reliability, and the use of vibrational data to update this, is instrumental
for the framework that we are presenting here. A detailed review of the ideas presented in this section
can be found in [22, 37].

4.4.1 Structural reliability analysis of a deteriorating structural system

In its simplest form, a failure event at time t can be described in terms of a structural system capacity
R(t) and a demand S(t). Both R and S are random variables. With D(θ, t) we define a parametric
stochastic deterioration model. Herein we assume that the structural capacity R(t) can be separated
from the demand S(t), and that the capacity is deterministic and known for a given deterioration
D(θ, t), hence we write R (D(θ, t)). More details on how this deterministic curve can be obtained
for specific cases are given in Section 4.6, which contains the numerical examples. Therefore, at a
time t the structural capacity includes the effect of the deterioration process. The uncertain demand
acting on the structure is here modeled by the distribution of the maximum load in a one-year time
interval. The cumulative distribution function (CDF) of this distribution is denoted Fsmax . Such a
modeling choice simplifies the estimation of the structural reliability, as will be made clear in what
follows, which is vital within a computationally expensive VoI analysis framework.

We discretize time in intervals j = 1, .., T , where the j-th interval represents t ∈ (tj−1, tj ]. For the
type of problems that we are considering, the time-variant reliability problem can be replaced by
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a series of time-invariant reliability problems [37]. F ∗
j is defined as the event of failure in interval

(tj−1, tj ]. For a given value of the deterioration model parameters θ and time tj , the capacity
R (D(θ, tj)) is fixed, and the conditional interval probability of failure is defined as:

Pr(F ∗
j | θ, tj) = 1− Fsmax (R (D(θ, tj))) (4.11)

We define Pr[F (ti)] = Pr(F ∗
1 ∪ F ∗

2 ∪ ...F ∗
i ) as the accumulated probability of failure up to time ti.

One can compute Pr[F (ti)] through the conditional interval probabilities Pr(F ∗
j |R(θ, tj)) as:

Pr[F (ti) | θ] = 1−
i∏

j=1

[1− Pr(F ∗
j | θ, tj)] (4.12)

Following the total probability theorem, the unconditional accumulated probability of failure is:

Pr[F (ti)] =

∫

Ωθ

Pr[F (ti) | θ]πpr(θ)dθ (4.13)

The solution to the above integral is approximated using Monte Carlo simulation (MCS). We draw
samples from the prior distribution πpr(θ) of the uncertain deterioration model parameters and the
integral in Eq. (4.13) is approximated by:

Pr[F (ti)] ≈
1

nMCS

nMCS∑

k=1

Pr[F (ti) | θ(k)] (4.14)

Having computed the probabilities Pr[F (ti)], one can compute the hazard function h(ti) for the
different time intervals ti, which expresses the failure rate of the structure conditional on survival
up to time ti−1:

h(ti) =
Pr[F (ti)]− Pr[F (ti−1)]

1− Pr[F (ti−1)]
(4.15)

4.4.2 Structural reliability updating using SHM modal data

The goal of SHM is to identify structural damage. Monitoring data can be employed in order to
identify the parameters θ of the deterioration models and obtain their posterior distribution, as
shown in Section 4.3. Consequently this leads to the updating of the accumulated probability of
failure at time ti, which can now be conditioned on data Z1:i−1 obtained up to time ti−1.

Pr[F (ti) | Z1:i−1] = Pr(F ∗
1 ∪ F ∗

2 ∪ ...F ∗
i | Z1:i−1) (4.16)

The accumulated probability of failure up to time ti conditional on modal data obtained up to time
ti−1 is:

Pr[F (ti) | Z1:i−1] =

∫

Ωθ

Pr[F (ti) | θ]πpos(θ|λ̃1:i−1, Φ̃1:i−1)dθ (4.17)

In Eq. (4.17), one needs to integrate over the posterior distribution of the parameters θ. As described
in Section 4.3.2, two different methods for obtaining samples from this posterior distribution at each
time step are implemented. In the case that an adaptive MCMC algorithm is used, at every step
of the sequential updating we obtain the desired posterior distribution of the parameters in the
form of correlated MCMC samples. In the case that the posterior distributions are approximated by
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multivariate Gaussian distributions using the Laplace approximation, independent posterior samples
can be drawn from this approximate posterior density. Using npos samples θ(k) from either MCMC
or the asymptotic approximation, the integral in Eq. (4.17) can be approximated:

Pr[F (ti) | Z1:i−1] ≈
1

npos

npos∑

k=1

Pr[F (ti) | θ(k)] (4.18)

The hazard function conditional on the monitoring data can then be obtained as:

h(ti | Z1:i−1) =
Pr[F (ti) | Z1:i−1]− Pr[F (ti−1) | Z1:i−1]

1− Pr[F (ti−1) | Z1:i−1]
(4.19)

4.5 Life-cycle cost with SHM

4.5.1 Life-cycle optimization based on heuristics

The VoI is the difference in life-cycle cost between the cases with and without SHM system. To
calculate the life-cycle cost we optimize the maintenance strategy. A strategy S is a set of policies
that determine which action to take at any time step ti, conditional on all the information at hand
up to that time [16, 8]. One may define policies based on simple decision rules, also called heuristics,
which may emerge from basic engineering understanding.

A detailed presentation of the use of heuristics in optimal inspection and maintenance planning
can be found in [21, 8]. With the use of heuristics, the space of solutions to the decision problem is
drastically reduced, but the problem is solved only approximately. Here, we utilize a simple heuristic
for maintenance decisions. The simple heuristic chosen in this work is the following: Perform a repair
action whenever the estimate of the hazard function (the conditional failure rate) is larger than a
predefined threshold hthres. The use of the hazard function as a decision criteria for condition
assessment and maintenance planning is a popular choice in literature [9]. The parameter w = hthres
describing the heuristic is a parameter of the strategy S. For simplicity, we assume herein that
performing a repair action results in replacing the damaged components and bringing them back
to the initial state, and that no failure will occur once a repair action has been performed. In this
way, after a repair action, the computation of the total life cycle cost stops. This modeling choice is
simplifying, but does allow for a viable computation of the VoI herein.

The total life-cycle cost Ctot is here taken as the total cost of maintenance and the risk of failure
costs over the lifetime of the structure. The initial cost is not included in Ctot, because it is the
same with or without SHM, therefore it cancels out when calculating the VoI.

With the use of heuristics, solving the decision problem boils down to finding the optimal value
of the heuristic parameter w which minimizes the expected total cost, i.e., to the solution of the
optimization problem:

w∗ = argmin
w

E[Ctot | w] (4.20)
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4.5.2 Computation of the expected total life-cycle cost in the prior case

In the prior case, where only the prior deterioration model is available, the expectation in Eq. (4.20)
is with respect to the system state, i.e. the deterioration model parameters θ. The total cost of
maintenance and risk is the sum of the repair costs and the risk of failure costs over the lifetime of
the bridge, Ctot(w,θ) = CR(w) + CF(w,θ), therefore the expected total life-cycle cost for a given
heuristic parameter w is:

Eθ[Ctot | w] = Eθ[CR(w) | w] + Eθ[CF(w,θ) | w] (4.21)

The first part of the right hand side of Eq. (4.21) can be computed in the following way. We
draw samples θ(k), k = 1, .., nMCS, from the prior distribution πpr(θ) and use them to compute the
accumulated probability of failure via Eq. (4.14), and subsequently compute the hazard function
with Eq. (4.15). When the hazard function exceeds the threshold, i.e. when h(ti) ≥ w, then we
define trepair(w) = ti−1 as the time that the repair takes place. The time of repair is thus a function
of our chosen heuristic. Hence the expected total cost of repair over the lifetime is given as:

Eθ[CR(w) | w] = ĉRγ(trepair(w)) (4.22)

where ĉR is the fixed cost of the repair, and γ(t) = 1
(1+r)t is the discounting function, r being the

annually compounded discount rate.

The risk of failure over the lifetime can be computed via MCS, using the samples θ(k), k = 1, .., nMCS,
that were drawn from the prior distribution πpr(θ), with the following formula:

Eθ[CF(w,θ) | w] ≈
1

nMCS

nMCS∑

k=1

CF(w,θ
(k)) (4.23)

where:

CF(w,θ
(k)) =

trepair(w)∑

i=1

ĉFγ(ti){Pr[F (ti) | θ(k)]− Pr[F (ti−1) | θ(k)]} (4.24)

and ĉF is the fixed cost of the failure event.

Following the solution of the optimization problem in Eq. (4.20), the expected total life-cycle cost
associated with the optimal decision in the prior case without any monitoring data is Eθ[Ctot | w∗

0].

4.5.3 Computation of the expected total life-cycle cost in the preposterior case

The goal of a preposterior analysis is to act as a decision tool on whether collecting SHM data
is beneficial, and to quantify and optimize the VoI of an SHM system, prior to its installation.
Therefore this type of analysis is performed before any actual SHM data are obtained. Instead, the
SHM monitoring data histories must be sampled over the lifetime from the prior distribution of the
uncertain deterioration model parameters θ, as will be explained shortly. A sampled monitoring data
history vector Z = [Z1, ...,ZnT ] contains the OMA identified modal data at fixed time instances
over the structure lifetime.
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In a preposterior analysis, the expectation in Eq. (4.20) is operating over both the system state θ
and on the monitoring outcomes Z.

Eθ,Z [Ctot | w] =
∫

Ωθ

∫

ΩZ

Ctot(w,θ, z)fΘ,Z(θ, z)dzdθ (4.25)

The total cost of maintenance and risk is again the sum of the repair cost and the risk of failure
cost over the lifetime of the structure, which now both depend also on the monitoring outcomes Z,
Ctot(w,θ,Z) = CR(w,Z) + CF(w,θ,Z).

The integral in Eq. (4.25) is computed with crude MCS. We draw samples from the uncertain
deterioration model parameters θ, which correspond to a deterioration history over the lifetime, as
given by the deterioration model equation D(θ, t). For each of these histories, we generate noisy
acceleration measurements every year, feed them into the stochastic subspace identification (SSI)
algorithm [26], and obtain one vector of monitoring modal data Z (one identified modal data set
per year). In this way we are jointly sampling the system state space and monitoring data space,
and Eq. (4.25) is approximated as:

Eθ,Z [Ctot | w] =
1

nMCS

nMCS∑

k=1

[CR(w, z
(k)) + CF(w,θ

(k), z(k))] (4.26)

For each of the sampled system states and corresponding monitoring data, we compute the updated
hazard rate as given by Eq. (4.19), and when h(ti | z(k)

1:i−1) ≥ w, then trepair(w, z
(k)) = ti−1.

The cost of repair is:
CR(w, z

(k)) = ĉRγ(trepair(w, z
(k))) (4.27)

The risk of failure is:

CF(w,θ
(k), z(k)) =

trepair(w,z(k))∑

i=1

ĉFγ(ti){Pr[F (ti) | θ(k)]− Pr[F (ti−1) | θ(k)]} (4.28)

Comparing Eqs. (4.24) and (4.28) it is evident that adoption of the same samples of θ in both prior
and preposterior analysis, leads to an identical estimate of the risk of failure for the two analyses up
to the time of the repair. The only difference between prior and preposterior case is the resulting
trepair(w, z

(k)).

Solving Eq. (4.20), we obtain the optimal expected total life-cycle cost given the monitoring data,
Eθ,Z [Ctot | w∗

mon].

4.5.4 Summary of the proposed methodology to calculate the VoI

The proposed procedure for the VoI analysis consists of the following steps:

1. Choose a prior stochastic deterioration model describing the structural condition over the
lifetime of the structure. Define a decision analysis time discretization, maintenance/repair
actions, costs of actions and cost of failure event. Choose a heuristic parameter w (threshold
on hazard rate) for a heuristic-based solution of the decision problem.
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2. Draw Monte Carlo samples θ of the stochastic deterioration model parameters.

3. Perform a prior decision analysis:

• Use the prior θ samples to estimate the lifetime accumulated probability of failure Pr[F (ti)]
and the corresponding hazard rate h(ti).

• Solve the LCC optimization problem to obtain the optimal value of the heuristic param-
eter w∗

0 and the corresponding optimal trepair. Obtain the optimal expected LCC in the
prior case: Eθ[Ctot(θ, w) | w∗

0].

4. Perform a preposterior decision analysis:

• For each individual prior sample θ realization and given value of the heuristic parameter
w do the following:

(a) Sample the corresponding noisy acceleration time series data for every year over the
lifetime of the structure. Feed the accelerations into the SSI algorithm to identify
the structure’s modal data vectors Z.

(b) Perform a posterior Bayesian analysis: BMU to sequentially learn the posterior dis-
tributions of θ and subsequently obtain an updated estimate of the accumulated
probability of failure Pr[F (ti) | Z1:i−1] and the hazard rate h(ti | Z1:i−1).

(c) Find the time to perform the repair action for this specific deterioration and moni-
toring data realization, conditional on a value of the heuristic parameter w.

• Solve the LCC optimization problem to obtain the optimal value of the heuristic parame-
ter w∗

mon which minimizes the expected LCC in the preposterior case Eθ,Z [Ctot(θ,Z, w) |
w∗
mon].

5. Compute the VoI.

V oI = Eθ[Ctot(θ, w) | w∗
0]− Eθ,Z [Ctot(θ,Z, w) | w∗

mon] (4.29)

4.5.5 Value of Partial Perfect Information

The case of partial perfect information is related to a hypothetical situation, in which the SHM
system provides perfect information on the condition of the structure. This means that there is
no uncertainty on the parameters θ of the deterioration model, and the optimal decision is found
conditional on this perfect knowledge of θ. Because the SHM system is not able to provide any
information about the load acting on the structure, which here is modeled by an uncertain Gumbel
random variable, therefore one uses the term “partial”.

Estimation of the value of partial perfect information is given by:

V PPI = min
w

Eθ[Ctot(θ, w)]− Eθ{min
w

[Ctot(θ, w) | θ]} (4.30)

min
w

Eθ[Ctot(θ, w)] is the optimal expected total life-cycle cost in the prior case, exactly as presented
in Section 4.5.2. To evaluate Eθ{min

w
[Ctot(θ, w) | θ]}, first the optimal heuristic is found for a given

value of θ, then the expected value of the total life-cycle costs associated with these optimal decisions
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Figure 4.2: Benchmark model

is computed. This quantity corresponds to the value of information that one would obtain in the
case of perfect monitoring and perfect decision making with the chosen heuristic.

The VPPI provides an upper limit on the value that the VoI can obtain. Since it can be computed
much easier than the VoI, the VPPI can provide a first estimate on the maximum investment that
should be made for SHM systems. Therefore, we motivate the idea that a VPPI computation should
always be performed first.

4.6 Numerical investigations

4.6.1 Numerical benchmark: Continuously monitored bridge system subject to
deterioration

We consider the two-span bridge model of Fig. 4.2, with its reference behavior [38] simulated by a
FE model of isoparametric plane stress quadrilateral elements. This benchmark structure has been
developed as part of the TU1402 COST Action and serves for verification of analysis methods and
tools for SHM. 200 elements are employed to mesh the x direction, and 6 elements are assumed per
height (y direction). The beam dimensions form configurable parameters of the benchmark and are
set as: height h = 0.6m, width w = 0.1m, while the lengths are L1 = 12m for the first span and L2 =
13m for the second span. A linear elastic material with Young’s modulus E = 30GPa, Poisson ratio
ν = 0.2, and material density ρ = 2000 kg/m3 is assigned. Elastic boundaries in both directions are
assumed for all three support points, in the form of translational springs with Kx = 108 N/m and
Ky = 107 N/m.

It is assumed that the simulated two-span bridge is continuously monitored using a set of sensors
measuring vertical acceleration, whose locations correspond to predefined FE nodes. A distributed
Gaussian white noise excitation F (x) is used as the load acting on the bridge, to simulate the
unknown ambient excitation. A dynamic time history analysis of the model, for a given realization
of the load, results in the measured vertical acceleration signals at the assigned sensor locations.

4.6.2 Deterioration modeling

A prior model describing structural deterioration is a prerequisite for a VoI analysis. A detailed
presentation of probabilistic deterioration models for life-cycle performance assessment of structures
can be found in [9, 12, 7]. For time-dependent reliability assessment purposes, the use of simple
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empirical models, which are still flexible enough to model different kinds of deterioration mechanisms,
can be adopted [9]. Within this work, we model structural deterioration with a simple rate equation
of the form [9]:

D(t) = AtB (4.31)

where D(t) is the unit-less deterioration parameter (loss of stiffness) entering in the assumed damage
model, and A,B are random variables driving the uncertainty in this model. Parameter A models
the deterioration rate, while parameter B is related to the nonlinearity effect in terms of a power
law in time. We consider herein the following two case studies related to structural deterioration of
the bridge structure.

4.6.2.1 Bridge system subject to scour

We assume that the middle elastic support (pier) of the bridge structure is subjected to gradual
deterioration, simulating the case of scour [28]. Damage is introduced as a progressive reduction of
the stiffness in y-direction of the spring K

(2)
y at the middle elastic support of the bridge (Fig. 4.2).

The evolution of the stiffness reduction of the vertical spring support over the lifespan of the bridge
is described by employing the damage model of Eq. (4.32), where K

(2)
y,0 is the initial undamaged

value, and D(t) is the stiffness reduction described by Eq. (4.31). We consider a lifespan of T=50
years for the structure. The uncertain parameters of the deterioration model are summarized in
Tab. 4.1. The mean and coefficient of variation of the parameters A and B are chosen to reflect a
significant a-priori uncertainty. They result in a 10% probability that D(t = 50) > 9 at the end of
the lifespan.

K(2)
y (t) =

K
(2)
y,0

(1 +D(t))
=

K
(2)
y,0

(1 +AtB)
(4.32)

Table 4.1: Parameters of the stochastic deterioration model for scour.

Parameter Distribution Mean CV
A Lognormal 7.955×10-4 0.5
B Normal 2.0 0.15

4.6.2.2 Bridge system subject to corrosion deterioration

As a second separate case study, we assume that the bridge structure is subjected to gradual de-
terioration from corrosion in the middle of both midspans (elements in black in Fig. 4.2). At both
locations, damage is introduced as a progressive reduction of the stiffness at the bottom 2 elements of
the FE mesh. For the deterioration hotspots at the left and right midspans, the evolution of the ele-
ments’ stiffness reduction over the lifespan of the bridge is described by employing the damage model
of (Eq. (4.33)). E(0) is the initial undamaged value of the Young’s modulus, and D1(t), D2(t) are the
deterioration models (reduction of stiffness) employed for each location, as described by Eq. (4.31).
The random variables of the deterioration models are summarized in Tab. 4.2. According to [9],
for this simple empirical deterioration model, a value of B=0.5 corresponds to diffusion-controlled
damage processes. Therefore the mean values of B1 and B2 have been chosen equal to 0.5. The
mean and coefficient of variation of the four uncertain parameters are chosen so that they result in
a 1% probability that D(t = 50) >9 at the end of the lifespan.
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Figure 4.3: Process for generating the SHM data

Ej(t) =
E(0)

(1 +Dj(t))
=

E(0)

(1 +AjtBj )
, j = 1, 2 (4.33)

Table 4.2: Parameters of the stochastic deterioration model for corrosion.

Parameters Distribution Mean CV
A1, A2 Lognormal 0.506 0.4
B1, B2 Normal 0.5 0.15

4.6.3 Synthetic monitoring data creation

For the purpose of the VoI analysis, for every deterioration time instance at which one wants to
simulate a monitoring data set obtained from the deployed SHM system, the corresponding stiffness
reduction is implemented in the FE benchmark model, a dynamic time history analysis is run and
the “true” vertical acceleration signals ẍ at the sensor locations (FE nodes) are obtained. This noise-
free acceleration time series data set is then contaminated with Gaussian white noise of 2% root
mean square noise-to-signal ratio, simulating a sensor measurement error. Subsequently, the noisy
accelerations ˜̈x are fed into an output-only operational modal analysis (OMA) scheme. Specifically,
the SSI algorithm is used to identify a set of the lower eigenvalues (squares of natural frequencies)
and mode shapes [26].

The data creation process is summarized in Fig. 4.3. First, we draw samples of the deterioration
parameters, defining the evolution of sample deterioration curves. For each of these deterioration
curves we then create one monitoring history, i.e., we generate one set of OMA-identified modal data
every year over the fifty years of the lifetime. Here, the influence of environmental (temperature,
humidity) and operation (non stationary effects due to traffic) variability on the structural properties
are not accounted for. We generate one data set for each year that the bridge is in service. Using this
data, we then employ the sequential Bayesian deterioration model updating framework of Section 4.3.

4.6.4 Continuous Bayesian model updating

We demonstrate how the Bayesian framework performs in learning the parameters of the deteriora-
tion model on the basis of availability of the SHM modal data. In this work, the model predicting
the eigenvalues and mode shapes for the Bayesian updating process is the same FE model as the
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one described in Section 4.6.3 for the creation of the noise-contaminated synthetic data. Despite
addition of artificial noise, adoption of the same model constitutes a so-called inverse crime [42].
However, this is a built-in feature of preposterior analysis.

Even in absence of model error and environmental/ambient effects, as assumed in this work, there
remains measurement uncertainty, caused by the added random sensor measurement noise and by
the variance or bias errors induced in the SSI procedure [30]. Fig. 4.4 demonstrates this measure-
ment uncertainty. It shows the discrepancy between the “true” eigenfrequencies of the deteriorating
structure over time, obtained via a modal analysis with the FE model, and the SSI-identified eigen-
frequencies. The presence of noise is evident for all the displayed eigenfrequencies, while for the
higher modes a clear bias in the estimation is present.
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Figure 4.4: Demonstration of the measurement uncertainty. Identified eigenfrequencies (in red)
against “true” underlying eigenfrequencies (in black) obtained from a realization of the structural
deterioration following the second case study presented in Section 4.6.4.2.

We note that the noise shown in Fig. 4.4 depends on the amount of data considered in the analysis.
Here, we make the simplifying assumption of considering one data point per year. Naturally, this
is here a simplification for the purpose of our exploration. A continuous monitoring system (as is
typically the requirement for SHM), can deliver more dense data and reduce the measurement noise
(not the bias though), in the limit to a value of zero. The reason why we nevertheless choose to
consider only a single data point per year is that, in this example which ignores other sources of
uncertainty (such as environmental and operational variability), we wish to mimic the practical SHM
setting, where the effects of noise cannot be eliminated. In a real SHM setting, the Bayesian analysis
is subject to an unknown model error. As a result, the noise does not go to zero with increasing
amounts of data [40, 6]. However, this is not reflected in preposterior analysis, which requires the use
of the same model for generating the data and conducting the Bayesian analysis. As an alternative
to using only a limited amount of data, one could also investigate the use of hierarchical models [6].
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Figure 4.5: Bridge system subject to scour damage

However, the associated computational cost would be significantly larger.

The sequential Bayesian analysis framework requires a substantial number of evaluations of the
likelihood function, implying multiple forward runs of the FE model. Within a VoI framework,
Bayesian analysis must be performed numerous times. For this reason a VoI analysis can quickly
become intractable. To enable the VoI analysis, we employ simple surrogate models to replace the
structural FE model, which are described in the following two subsections.

4.6.4.1 Bridge system subject to scour deterioration - Global damage identification

In this assumed damage scenario we are interested in identifying damage in a global scale, for which
use of the OMA-identified eigenvalue data alone may be sufficient. The benefit is that eigenvalue
data can be successfully identified from an OMA procedure, even when only a rather small number
of accelerometers are employed on the structure. The sensor placement that we assume here is the
one corresponding to Fig. 4.5, with twelve employed sensors. This configuration is selected on the
basis of engineering judgment, when seeking to identify the type of damage (local stiffness reduction)
considered herein. Using the SSI algorithm, we identify the lower Nm = 6 modes, which we then
use for the updating.

We employ a surrogate model to replace the structural FE model for facilitating the Bayesian
updating procedure. To this end, we create a fine uniform grid of values for D(t); for each of these,
we execute a modal analysis using the FE model and store the output eigenvalues. Eventually, we
replace the modal analysis run of the structural FE model with a simple nearest neighbor lookup in
the precomputed database.

For illustrating the data sampling and updating process, we assume a scenario where the underlying
“true” deterioration model corresponds to parameters values A∗=9.85×10-4 and B∗ = 2.28. The
“true” deterioration curve can be seen in black in all the subfigures of Fig. 4.7.

Fig. 4.6 demonstrates how the distribution of the deterioration model parameters is updated by
comparing the prior PDF of A and B with the posterior PDF of A and B at year 25 and year 50.
For this analysis, both factors cλm and cΦm are assumed equal to 0.02, i.e. we assume that the
total prediction error causes up to two percent deviation on the nominal model predicted values.
5000 MCMC samples are used for the Bayesian analysis at each time step. The posterior PDFs are
given via a kernel density estimation using the 5000 posterior MCMC samples of the parameters.
It is observed that using one SHM data set per year, the uncertainty in the deterioration model
parameters gradually decreases, the PDFs become narrower and peak around the underlying “true”
values for which the data was created.
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Figure 4.6: Prior PDF and posterior PDF at years 25 and 50 for deterioration model parameters
(cλm = cΦm = 0.02)

Fig. 4.7 contains the following: The mean estimated deterioration model together with its 90%
credible interval in the prior case, obtained via a MCS from the prior distribution of the uncertain
parameters, is plotted in the left panel in green. In red we plot the posterior predictive mean models
together with their 90% credible intervals, which are estimated with posterior MCMC samples using
monitoring data up to the three different time instances. For example in the second column, we use
the monitoring data of the first ten years to obtain the posterior distribution πpos(θ | λ̃1:10, Φ̃1:10),
and then we use the posterior MCMC samples to predict the evolution of the deterioration model
over the structural lifetime. We observe that already the data obtained during the first few years
of the deterioration process (up to year 10) help in shifting the mean posterior model towards the
underlying “true” deterioration curve, however the posterior uncertainty in the estimation is still
relatively large. The posterior uncertainty is reduced significantly as more SHM modal data become
gradually available (year 25, year 50).

4.6.4.2 Bridge system subject to corrosion deterioration - Damage detection and lo-
calization

In the assumed scenario with two potential corrosion damage locations, the employed Bayesian model
updating framework should be able to both detect and localize damage. Therefore both eigenvalue
as well as mode shape displacement data should become available. As discussed in Section 4.3, a
relatively large number of sensors is required for an accurate measurement and representation of
the mode shape displacements. The sensor placement that we assume here is the one corresponding
to Fig. 4.8, with 24 equally distributed accelerometers. By using a finite difference scheme, we can
also obtain the mode shape curvatures, which are used instead of the mode shapes in the likelihood
function, which seems to enhance the localization capabilities of the framework. Also in this case
we identify the lower Nm=6 modes.
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Figure 4.7: Sequential Bayesian learning of the scour deterioration model. The true model corre-
sponds to a single randomly generated realization of the deterioration process.
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Figure 4.8: Bridge system subject to corrosion damage in two locations

For defining a surrogate model, we create a two-dimensional grid of values for D1(t), D2(t), and
for each of the grid points we run a modal analysis with the FE model, and we store the output
eigenvalues and mode shape vectors. Eventually we employ the following surrogates: For each of the
eigenvalues, we fit a two-dimensional polynomial regression response surface model. For the mode
shape displacement vector data, we replace the run of the structural FE model with a simple nearest
neighbor lookup in the precomputed two-dimensional database.

For illustration purposes, we draw one sample θ∗, which corresponds to the underlying “true” de-
terioration parameter values A∗

1 = 0.65, B∗
1 = 0.55, A∗

2 = 0.42 and B∗
2 = 0.48 (“true” deterioration

curves can be seen in black in all the subfigures of Fig. 4.12).

Figs. 4.9 to 4.11 demonstrate how the distribution of the deterioration models’ parameters is updated,
by comparing the prior PDFs with the posterior PDFs at three different time instances. Both factors
cλm and cΦm in the likelihood function are assumed equal to 0.02. In Fig. 4.12, we compare the
underlying “true” deterioration model with the deterioration model estimated using MCS in the
prior case, and with the ones estimated with 5000 posterior MCMC samples at three different time
instances.
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Figure 4.9: Prior PDF and posterior PDF at year 10 for deterioration models parameters (cλm =
cΦm = 0.02)
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Figure 4.10: Prior PDF and posterior PDF at year 25 for deterioration models parameters (cλm =
cΦm = 0.02)
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Figure 4.11: Prior PDF and posterior PDF at year 50 for deterioration models parameters (cλm =
cΦm = 0.02)

Section 4.3 discusses the fact that quite often the choice of the magnitude of factors cλm and cΦm

for constructing the likelihood function can be arbitrary, since usually very little is known about the
magnitude of the total prediction error. Fig. 4.13 attempts to demonstrate how crucial this choice
can be for the results of the Bayesian updating, by performing it additionally for cλm = cΦm = 0.05.
Comparing Fig. 4.13 to Fig. 4.11 (both at year 50), it can be clearly observed that the posterior
distribution of the deterioration model parameters that one learns is significantly affected by the
choice of these factors.

As discussed in Section 4.6.4, we employ one set of sampled OMA-identified modal data per year and
use these to update the deterioration model. However, an SHM system can provide an abundance
of measurement points (which produce corresponding modal estimates) in a continuous fashion. To
investigate the effect of this choice, in Fig. 4.14 we plot the results of the posterior distribution of the
deterioration model parameters at the final estimation time (year 50), in a case where we employ 50
OMA-identified modal estimates per each year (2500 modal estimates in total). Upon comparison
of Fig. 4.14 and Fig. 4.11, it becomes evident that adoption of more sets of modal data leads in
reduced uncertainty in the posterior estimate, although the posterior distributions seem to not be
centered around the underlying “true” value of the parameters, which is possibly the result of a bias
in the estimation of higher eigenfrequencies.

4.6.5 Time-dependent structural reliability and its updating using monitoring
data

The uncertain demand acting on the structure is modeled by the maximum load in a one-year
time interval with a Gumbel distribution (left panel of Fig. 4.15). The parameters of the Gumbel
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Figure 4.12: Sequential Bayesian learning of the two corrosion deterioration models. The true model
corresponds to a single randomly generated realization of the deterioration process.
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Figure 4.13: Prior PDF and posterior PDF at year 50 for deterioration models parameters (cλm =
cΦm = 0.05)
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Figure 4.14: Prior PDF and posterior PDF at year 50 for deterioration models parameters (cλm =
cΦm = 0.02) in the case when 50 OMA-identified modal data per year are used (2500 modal estimates
from the different years are employed for the updating at year 50)

distribution are chosen such that the probability of failure in the initial undamaged state is equal
to 10−6 and the coefficient of variation of the random load is 20%.

4.6.5.1 Bridge system subject to scour deterioration

The deterministic capacity curve R(D(θ, t)) of the damaged structure for any realization of the
scour deterioration D(θ, t) can be seen in the middle panel of Fig. 4.15. To determine this curve, we
consider that when scour damage occurs in the middle support, the critical quantity that increases
is the normal stress at the middle of the second, slightly longer, midspan. We create a fine one-
dimensional grid of possible values as input for D(θ, t), for each of those we run a static analysis of
our model, and we evaluate the loss of load bearing capacity of the structure relative to the initial
undamaged state.

In the right panel of Fig. 4.15 we plot the time-dependent accumulated probability of failure and the
hazard function in the prior case, together with the 95% credible intervals, estimated using 104 prior
samples. Because of the skewness of the assumed prior deterioration model, the mean estimated
curves are not contained within the 95% credible intervals.

4.6.5.2 Bridge system subject to corrosion deterioration

When damage (stiffness reduction) occurs in the elements at the bottom of each midspan, the
quantity that increases critically are the normal stresses at the top of each midspan. We create a
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Figure 4.15: left: CDF of the Gumbel distribution for the load with location an = 0.0509, scale
bn = 0.297. middle: Structural capacity in function of scour deterioration, right: Time-dependent
structural reliability curves estimated with the prior model in the scour deterioration case.

two-dimensional grid of possible values of the two corrosion deteriorations D1 and D2. For each of
those possible combinations, we run a static analysis with our model, and we evaluate the loss of
load bearing capacity of the bridge structure relative to the undamaged state. Eventually we fit a
two-dimensional polynomial regression response surface curve that describes R(D(θ, t)); it can be
seen in the left panel of Fig. 4.16.

As presented in Section 4.4.2, learning the parameters of the deterioration models, and the reduc-
tion of the uncertainty in their estimation through the sequential acquisition of SHM modal data,
affects the estimation of the time-dependent structural reliability. In Fig. 4.16, we plot in green the
accumulated probability of failure and the hazard rate of the bridge structure in the case of using
the prior deterioration model, and we compare it with the red plots of the accumulated probability
of failure and the hazard rate conditional on the continuous monitoring data (1 data set per year),
which correspond to the underlying “true” deterioration models described by A∗

1 = 0.65, B∗
1 = 0.55,

A∗
2 = 0.42 and B∗

2 = 0.48. The prior estimates are obtained with 5000 Monte Carlo samples follow-
ing Eqs. (4.14) and (4.15). The posterior estimates are obtained via Eqs. (4.18) and (4.19) using
5000 MCMC samples at each time step. The 95% credible intervals are computed using the Monte
Carlo prior samples in the prior case, and the MCMC posterior samples in the posterior case. It is
observed that the uncertainty in the estimation of the structural reliability is reduced in the posterior
case. This reduction of the uncertainty and the updated estimate of the structural reliability form
the basis for the VoI analysis.
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Figure 4.16: left: Polynomial regression response surface for structural capacity in function of
corrosion deterioration, right: time dependent structural reliability curves in the prior/posterior
corrosion case.
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4.6.6 VoI analysis

The VoI is computed with Eq. (4.29) following the Bayesian preposterior decision analysis framework
presented in Section 4.5. The expected total life-cycle costs, Eθ[Ctot | w] in the prior case and
Eθ,Z [Ctot|w] in the preposterior case, are both computed with MCS. In the preposterior case, as
already explained in Section 4.5.3, the system state space θ and the monitoring data space Z are
jointly sampled. For each full history of modal data, one sequential Bayesian posterior analysis
has to be performed, which is a costly procedure by itself. It is clear that such an analysis can
be very computationally expensive, therefore some considerations on the available computational
budget, and how to distribute it, have to be made in advance. The computational cost of the VoI
analysis is approximately proportional to the number of MCS samples used in the expected life-cycle
cost computation and the necessary corresponding synthetic monitoring data creation, and by the
computational cost of the employed method for performing the sequential Bayesian updating.

For our investigation we assume ĉF = 107e, and for the repair cost ĉR we investigate different ratios
ĉR
ĉF

= [10−1, 10−2, 10−3], and for each of those we calculate the VoI. The discount rate is taken as
r = 2%.

The solution to the stochastic life-cycle optimization problem of Eq. (4.20) is performed through an
exhaustive search among a large discrete set of values of the heuristic parameter (the threshold at
which a repair is performed).

4.6.6.1 VoI results for bridge system subject to scour deterioration

For this example, we draw 1000 samples of θ, which are used in both prior and preposterior analysis.
In the preposterior case, for each θ sample we create one continuous set of identified modal data
Z1:50. For the 1000 different sequential Bayesian analyses that have to be performed, we employ the
adaptive MCMC algorithm. For the estimation of the different posterior accumulated probabilities
of failure in Eq. (4.18), 2000 posterior MCMC samples are used.

Tabs. 4.3a and 4.3b summarize the results of the life cycle optimization, documenting the optimal
value of the heuristic parameter w∗, and the optimal expected total life cycle costs that correspond
to w∗. Table 4.3a documents also the optimal time for a repair action in the prior case. This is not
documented in Tab. 4.3b, since in the preposterior case there is not one single optimal trepair value,
but trepair varies for each sample θ and the corresponding monitoring history.

Tab. 4.3c documents the resulting VoI values that we obtain with the 1000 samples via Eq. (4.29)
for the three different cost ratios, while Tab. 4.3d reports the VPPI values obtained via Eq. (4.30),
related to the hypothetical case when we learn perfectly the condition of the structure from the
SHM system. We also include the coefficient of variation (CV) of the mean VoI, VPPI estimates,
which quantifies the uncertainty in the estimates obtained via MCS. In cost ratio cases for which
the optimal action in the prior case is not to perform any repair, the VoI estimate has a quite large
variability. This is because the samples in the preposterior analysis that lead to a different optimal
trepair than in the prior case are only a few, which is an indication that a larger number of Monte
Carlo samples or more efficient sampling techniques (e.g., importance sampling) should be used to
reduce the variance. It is important to take into account that Eq. (4.30) for computing the VPPI
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Table 4.3: Results of preposterior Bayesian decision analysis for the scour example

(a) Life-cycle optimization in the prior case.
ĉR
ĉF

w∗
0 E[Ctot|w∗

0 ] trepair

10−1 ≥ 2× 10−3 45395 no repair
10−2 ≥ 2× 10−3 45395 no repair
10−3 2×10−5 5924 year 31

(b) Life-cycle optimization in the preposterior case.
ĉR
ĉF

w∗
mon E[Ctot|w∗

mon]

10−1 2.1×10−2 12552
10−2 1.2×10−3 3125
10−3 9.9×10−5 1109

(c) Value of information (VoI)
ĉR
ĉF

VoI (CV)

10−1 32843 (0.34)
10−2 42270 (0.30)
10−3 4815 (0.02)

(d) Value of partial perfect information (VPPI)
ĉR
ĉF

VPPI (CV)

10−1 35013 (0.23)
10−2 42717 (0.21)
10−3 4918 (0.02)

can easily be solved even for a very large number of MC samples, which would reduce the variability
of the estimate shown here.

For all the cost ratio cases, the VoI is positive, which indicates a potential benefit of installing
an SHM system on the deteriorating bridge structure. It is interesting to compare the obtained
VoI values to the VPPI values. We observe that in this example the VoI from SHM extracted via
Bayesian model updating is close to optimal, as it is very close to the VPPI value. This indicates
that the choice of using only a single data point each year does not lead to a relevant reduction of
the information content in the monitoring data. Clearly, in this case the monitoring system is able
to identify damage with little uncertainty and can be used effectively for decision making.

4.6.6.2 VoI results for bridge system subject to corrosion deterioration

For this second example, we draw 2000 samples of θ, which are used in both prior and preposterior
analysis. In the preposterior case, for each θ sample we create one continuous set of identified
modal data Z1:50. For the 2000 different sequential Bayesian analyses that have to be performed,
we employ the Laplace approximation method of Section 4.3.2.1 for the solution, which introduces
an approximation error in the posterior solution, especially in the initial years, when the data set
is not so large, yet is computationally much faster than an MCMC solution. For the estimation of
the posterior accumulated probability of failure in Eq. (4.18)), 10000 samples are drawn from the
approximate multivariate Gaussian posterior distribution.

The computed VoI and VPPI estimates can be seen in Tab. 4.4. We observe that the VoI is 0 in the
case when the costs have a ratio ĉR

ĉF
= 10−1, which means that one does not get any benefit from

the data obtained from the SHM system. This is related to the fact that, for this cost ratio, the
optimal decision is to not perform a repair action in the lifespan of the bridge, in both the prior and
all the preposterior samples, since at all time steps the cost of a repair is much larger than the the
risk of failure cost. For the cost ratio ĉR

ĉF
= 10−2, we observe that the VoI from SHM extracted via

Bayesian model updating is not optimal, as it does not provide the full VPPI value, but 51% of this
value, while for the cost ratio ĉR

ĉF
= 10−3 it only provides around 22% of the VPPI value.

We note that the VoI depends on the assumed prior uncertainty of the deterioration model, and
how this propagates in time, among other factors. For the purpose of the numerical investigations
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Table 4.4: Results of preposterior Bayesian decision analysis for the corrosion example

(a) Life-cycle optimization in the prior case.
ĉR
ĉF

w∗
0 E[Ctot|w∗

0 ] trepair

10−1 ≥ 2.8× 10−4 26792 no repair
10−2 ≥ 2.8× 10−4 26792 no repair
10−3 2× 10−5 9308 year 8

(b) Life-cycle optimization in the preposterior case.
ĉR
ĉF

w∗
mon E[Ctot|w∗

mon]

10−1 ≥ 9× 10−3 26792
10−2 7.5× 10−4 25334
10−3 1.83× 10−5 9200

(c) Value of information (VoI)
ĉR
ĉF

VoI (CV)

10−1 0
10−2 1458 (0.42)
10−3 108 (0.08)

(d) Value of partial perfect information (VPPI)
ĉR
ĉF

VPPI (CV)

10−1 132 (0.30)
10−2 2871 (0.22)
10−3 497 (0.05)

that are conducted in this paper, we chose prior models which reflect sufficiently large uncertainty
apriori. In practice, it is expected that the analyst has a prior model of the uncertainty and will
use this to perform a VoI analysis. Without a prior model of this uncertainty, it is not possible to
quantify the value of SHM a-priori.

4.6.6.3 VoI results - Sensor placement study

The purpose of this section is to demonstrate that the presented VoI analysis can be employed as
a formal decision analysis tool for performing various parametric studies related to different choices
in designing the SHM system and performing the Bayesian model updating procedure.

One critical choice when designing an SHM system is the number and position of the sensors to be
employed on the structure. One could employ the proposed VoI analysis to perform optimal sensor
placement studies for a deteriorating structural system. Each sensor arrangement choice will result
in a VoI value, and the choice which leads to the highest VoI would be the preferred one.

Herein we demonstrate this with the use of the second example of the bridge system subject to
corrosion deterioration at two locations. For the decision problem, we now fix the cost of failure
to ĉF = 107e and the cost of repair to ĉR = 3.5 × 104e. We consider the following two different
arrangements of the sensors: i) 24 uniformly distributed accelerometers along the structure, ii) 12
uniformly distributed accelerometers along the structure. In both cases the VoI analysis is performed
by drawing 1000 samples of θ.

It becomes evident that in the case that the structure is subjected to deterioration at two different
damage locations, the number of sensors and consequently the quality of the mode shape displace-
ment or curvature information that one obtains clearly affects the BMU results and therefore leads to
a notable difference in the heuristic-based life-cycle optimization and the VoI result that we obtain.
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Table 4.5: Parametric study for the effect of the number of sensors on VoI result

(a) Life-cycle optimization in the prior case.

w∗
0 t∗repair

6.1× 10−5 21

(b) Life-cycle optimization in the preposterior case.

sensors w∗
mon

24 1× 10−4

12 3.2× 10−4

(c) Effect of number of sensors on the VoI

VPPI (CV) sensors VoI (CV) VoI
VPPI

7681 (2.6%) 24 4614 (5.3%) 60%
12 2711 (15%) 35%

4.7 Concluding remarks

This paper investigates the quantification of the VoI yielded via adoption of SHM systems acting in
long-term prognostic mode for cases of deterioration. It focuses on demonstrating, for the first time,
a VoI analysis on the full SHM chain, from data acquisition to utilization of a structural model for
the purpose of the updating and reliability calculation. A preposterior Bayesian decision analysis
for quantifying the VoI, specifically tailored for application on an employed numerical benchmark
structural model, is presented. Two different structural damage case studies are investigated, for
which a simple stochastic deterioration model with prior parameter uncertainties is assumed to be
available. The modeling of the acquired SHM data is done in a realistic way, following a state-of-
the-art operational modal analysis procedure. The data is used within a Bayesian model updating
framework, implemented in a sequential setting, to continuously update the uncertain structural
condition, which subsequently leads to the updating of the estimate of the structural reliability. A
heuristic-based solution to the simplified decision problem is provided for finding the optimal time
to perform a single repair action, which might be needed during the lifetime of the structure. We
discuss specific computational aspects of a VoI calculation. The VoI analysis requires the integration
over the monitoring data, which are here modeled in a realistic way, adding an extra computationally
expensive layer in the analysis. In addition to the VoI solution, an upper limit to the VoI through
the value of partial perfect information is also provided, related to hypothetical situations of perfect
knowledge on the system condition.

It should be noted that the resulting VoI estimates are affected by the fact that only a single repair
action case is explored. In the present exemplary analysis, we do not take into account nonlinearities
of the underlying system, dependence on varying ambient/environmental effects (e.g dependence on
temperature), or modeling errors. To partly account for these effects, as well as unknown errors in
the structural model, we consider only a limited number of data points from the SHM. However,
further investigations are necessary into how these types of uncertainties can be addressed within a
VoI analysis.
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Abstract

The difficulty in quantifying the benefit of Structural Health Monitoring (SHM) for decision support
is one of the bottlenecks to an extensive adoption of SHM on real-world structures. In this paper,
we present a framework for such a quantification of the value of vibration-based SHM, which can
be flexibly applied to different use cases. These cover SHM-based decisions at different time scales,
from near-real time diagnostics to the prognosis of slowly evolving deterioration processes over the
lifetime of a structure. The framework includes an advanced model of the SHM system. It employs
a Bayesian filter for the tasks of sequential joint deterioration state-parameter estimation and struc-
tural reliability updating, using continuously identified modal and intermittent visual inspection
data. It also includes a realistic model of the inspection and maintenance decisions throughout the
structural life-cycle. On this basis, the Value of SHM is quantified by the difference in expected total
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life-cycle costs with and without the SHM. We investigate the framework through application on a
numerical model of a two-span bridge system, subjected to gradual and shock deterioration, as well
as to changing environmental conditions, over its lifetime. The results show that this framework
can be used as an a-priori decision support tool to inform the decision on whether or not to install
a vibration-based SHM system on a structure, for a wide range of SHM use cases.

5.1 Introduction

Operation and maintenance (O&M) of structures and infrastructures addresses various potential
threats (e.g., gradual deterioration, extreme events) that can adversely affect the intended per-
formance of these systems. This creates the need for inspection, maintenance and repair actions
throughout a system’s life-cycle, which come at a large cost [51, 37]. In the current approach to
O&M, visual inspection still remains the primary, and oftentimes sole, source of information on the
condition of a structure over its life-cycle.

Structural Health Monitoring (SHM) is defined as a continuous, automated, on-line process for
damage assessment, whose ultimate goal is to provide cradle-to-grave system state awareness [13].
Continuous vibration-based SHM systems offer a great potential for facilitating and enhancing the
O&M decision making process. Despite comprehensive scientific and practical developments in the
field of SHM [12], adoption of SHM systems on real-world structures and infrastructure systems falls
short of the mark [9], due to a number of challenges. These include the fact that damage-sensitive
features can be very sensitive to changes in environmental and operational conditions (EOCs) [41,
35]. Furthermore, since there exist only a limited number of deployments of such systems on real-
world structures, and since data from damage states are rarely available, it is often not clear how to
make efficient use of acquired monitoring data for statistical decision making in a supervised learning
mode. Besides, it is difficult to convince owners and operators of the potential economic benefit of
installing SHM systems [67].

A clear need exists for offering actionable use cases, elaborating on the manner in which SHM systems
can lead to enhanced management of structural deterioration, and how these can eventually inform
optimal maintenance decisions over the structural life-cycle. A wide range of diverse SHM systems
is continuously being developed and made available for application on a wide range of structures for
performing various damage detection tasks. In designing a case-specific SHM system, one should
start by defining the specific target structure and the associated damages that one pursues to detect
with this system [12].

Bayesian decision analysis [46] offers a formal mathematical framework which enables investigating
a-priori, i.e., prior to the installation of the SHM system, how monitoring data from a specific
SHM system can inform inspection, maintenance or repair actions over the life-cycle of a structure
subjected to a certain type of damage. Bayesian decision analysis further enables quantification of
the effect of SHM systems on structural life-cycle costs through the Value of Information (VoI) [42,
54, 61, 18, 64, 38, 25].

The current paper presents a Bayesian decision analysis framework for the quantification of the value
of continuous vibration-based SHM, which is applicable across different time scales. In contrast to
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most works to date, which utilize simple idealized models of the information obtained from monitor-
ing, we employ a realistic model of a vibration-based SHM system, considering modal data that is
continuously identified via operational modal analysis (OMA) schemes. Our analysis also includes
the effect of environmental variability on the identified modal data, a key issue in vibration-based
SHM. Finally, the framework includes the full sequence of inspection and maintenance decisions
throughout the structural life-cycle rather than just individual decisions, as in most of the litera-
ture.

The paper is organized as follows. Section 5.2 offers a fundamental classification of SHM use cases in
terms of the associated time scales for decision making. Section 5.3 presents the proposed Bayesian
decision analysis framework and the associated Value of SHM (VoSHM) metric. Section 5.4 in-
troduces an environmental variability model and a structural deterioration model, and discusses
sequential Bayesian learning of these models using continuous SHM data and inspection data. Sec-
tion 5.5 contains an algorithmic summary of the presented framework for quantifying the VoSHM.
Section 5.6 demonstrates application of this framework on different SHM use cases with the aid of
a numerical model of a deteriorating two-span bridge system. Finally, Section 5.7 discusses and
concludes this work.

5.2 SHM use cases across different time scales

In this section, we discuss various SHM use cases in relation to the different time scales at which
they support decision making for infrastructure (Fig. 5.1), with a particular focus on application of
SHM systems on civil structures. The main challenges associated with an efficient use of the data
provided by an SHM system for decision support at each time scale are laid out.

5.2.1 Real-time or near real-time diagnostics (seconds to hours)

At this time scale, fast, almost on-line, detection of flaws or abnormalities is sought. When discussing
a scale of seconds, one typically refers to real-time tracking and diagnostic tasks. This is particularly
relevant in the context of control, where a possible failure of the control system (e.g., active vibration
control) should be computed almost instantly. Near real-time tasks relax the requirements on the
speed of reaction but still call for accelerated diagnosis, typically linked to emergency operations
(e.g., smart tagging of buildings after an earthquake, powering down a wind turbine after a lightning
strike, promptly deciding on whether to close down a bridge after a flood occurrence [43]). SHM
can be valuable in informing near real-time decisions for avoiding catastrophic failures (e.g., bridge
support or wind turbine blade failure), or avoiding unnecessary closures and down-time after the
occurrence of an extreme event (e.g., rapid seismic loss assessment of structures using near real-time
data [62]). Quantifying the VoSHM over the system lifetime requires a model of the occurrence of
extreme events (shocks) [48, 21] that induce these abrupt failures (e.g., wind, flood, earthquake).
A main challenge at this time scale stems from the real-time nature of required diagnostics, which
implies fast computation, as well as from the masking influence of varying EOCs on the detection
capabilities. Moreover, derivation of robust data-driven diagnostics in a fully unsupervised and
automated manner is an intricate task. It is difficult to achieve higher-end SHM tasks beyond
damage detection, such as damage localization or quantification, in a purely “on-line” data-driven
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Figure 5.1: SHM use case-dependent time scales for decision making

fashion, without use of a dedicated model.

5.2.2 Fast-evolving deterioration processes (days to months)

Here, the objective lies in identifying structural deterioration processes with a rather fast rate of
evolution, or capturing sudden damage increments caused by shock deterioration, which could en-
danger capacity, availability or serviceability. At this time scale, application of SHM should assist
in avoiding failure and ensuring the desired safety and performance levels. Examples of damage
types induced by effects at this time scale could be, e.g., a shaft failure on a train bogie after crack
initiation, concrete bridge failure due to a fast evolving Akali-silica reaction (ASR) process [20],
or freeze-thaw related damages [47]. Quantification of the VoSHM in such cases requires models
for simulating such accelerated or shock deterioration processes [48, 21]. Furthermore, models are
needed for the estimation of the structural reliability [33], which can be used as a metric to evaluate
structural performance. Accounting for EOC variability can pose a significant challenge at this time
scale as well.

5.2.3 Slow-evolving deterioration processes (years/life)

Over larger time spans, SHM can be used to support decisions on corrective, preventive or predic-
tive maintenance associated with slowly-evolving gradual deterioration processes, such as fatigue or
corrosion. Models for simulating such deterioration processes over the life-cycle [48, 21], as well as
models for estimating the structural reliability and its updating using Bayesian methods [57], are
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indispensable for a VoSHM analysis. At this time scale, main challenges include EOC variability,
loads which are typically increasing over time (e.g. heavier trucks), abrupt changes in the assumed
deterioration model (e.g., due to shock events).

5.2.4 Summary

The operation of real structural systems typically involves a combination of the above-mentioned
potential threats. A successful management strategy should prescribe a plan for addressing these
threats throughout the structural life-cycle. The main goal of this paper is to show that adoption of
the proposed Bayesian decision analysis framework can lead to a comprehensive tool for performing
quantitative VoSHM studies across these diverse time scales. Eventually, this framework can act
as an a-priori decision support tool for the crucial decision on whether adoption of a specific SHM
system can be cost-beneficial.

5.3 Bayesian decision analysis framework for the quantification of
the VoSHM

In a decision analysis, the goal is to find the optimal set of actions which maximize the expected
utility. For most engineering applications, utility can be equated with the negative total life-cycle
costs [58]. Therefore, the problem translates to finding the optimal set of actions over the structural
lifetime, that minimize the expected total life-cycle costs.

The total life-cycle costs Ctot(X,a) are defined as a function of a random vector X, containing the
parameters of the stochastic deterioration model and the structural response quantities, as well as
a set of actions a that are performed on the system at different points in time over its life-cycle,
such as inspection, repair or maintenance. Different cost components synthesize the overall costs
Ctot(X,a) [15]. Because the initial cost of construction and the decommissioning cost at the end of
the structure’s lifetime are not affected by the SHM, they can be ignored for the VoSHM analysis.
Therefore, Ctot(X,a) is the sum of the inspection costs CI, the maintenance costs CM, and the risk
(the expected cost of failures) RF over the lifetime of the structure:

Ctot(X,a) = CI(X,a) + CM(X,a) +RF(X,a) (5.1)

The goal is to find at any decision time step t the optimal set of inspection, repair and maintenance
actions at that lead to a balance between the discounted cost of these actions and the failure risk
[56, 39]. The risk of a failure event F (t) at time step t, can be quantified via the outcome of a
structural reliability analysis [57, 33].

A prior decision analysis is performed, where one only has access to prior information on the random
vector X. In a prior decision analysis, the optimal set of actions over the structural life-cycle is
found as

aopt = argmin
a

EX [Ctot(X,a)], (5.2)

where EX is the expectation with respect to the prior distribution fX(x).
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The benefit of monitoring is that it can provide information that reduces the uncertainty on the
deterioration state and model parameters, thus enabling monitoring-informed risk estimation, which
ultimately leads to better decisions. Once monitoring data z becomes available, one can perform
a posterior decision analysis, in order to find the set of actions that are optimal conditional on the
monitoring data. This requires solving the following optimization problem:

aopt|z = argmin
a

EX|z[Ctot(X,a)], (5.3)

where the expectation EX|z operates over the distribution of X conditional on z. Therefore, prior
to solving the optimization problem of Eq. (5.3), one has to perform Bayesian analysis [17, 50] to
estimate the posterior distribution fX|z(x | z), which is presented in Section 5.4.

The monitoring data z becomes available only after installation of an SHM system. However,
typically one is interested in investigating the potential benefit of the deployment of a specific SHM
system prior to its installation. In that case, a dedicated model of the SHM system must be employed
to allow for probabilistic predictions of the monitoring information Z that one expects to extract
with monitoring, for given sampled realizations of the random vector X. Upper case Z therefore
denotes the yet unknown monitoring information, while a realization of Z is denoted by lower case
z. The value-of-information analysis is conducted prior to observing any actual monitoring data z,
relying instead on simulated data. Hence this is known as a preposterior analysis [46]. The expected
total life-cycle cost in such a preposterior decision analysis is written as

EX,Z [Ctot(X,aopt|z)], (5.4)

where one can observe that the expectation EX,Z jointly operates over X and Z. Using a sampling-
based approach, for a realization of the structural system’s uncertain parameters and response
state space, i.e., for a given X, one has to employ a model of the investigated SHM system to
probabilistically predict the monitoring data z (observations) that the SHM system will provide
over the life-cycle. With such a model, one can sample one (or more) realizations of z. Any type
of information that can be extracted from the SHM system and that can be used as a damage
sensitive feature can be considered as a sampled z realization (see Section 5.6.1). For each sampled
z realization, one subsequently needs to perform a posterior decision analysis, as in Eq. (5.3), to find
the posterior optimal set of actions aopt|z. This analysis has to be performed multiple times, for a
sufficiently large set of samples of X,Z. The Value of Information (VoI) is quantified by taking the
difference between the expected total life-cycle cost in the prior decision analysis and the expected
total life-cycle cost in the preposterior decision analysis, as follows:

V oI = EX [Ctot(X,aopt)]− EX,Z [Ctot(X,aopt|z)] (5.5)

A VoI analysis offers a formal framework for quantifying the effect of SHM systems on structural life-
cycle costs [42, 54, 55]. However, quantifying the VoI in this way is not very informative for system
owners and operators, as it assumes that in the reference case neither inspection nor monitoring
data will be available. It is seldom the case that no inspection or monitoring takes place throughout
the whole life-cycle of a structure. Typically, intermittent visual inspection schemes are adopted by
operators, with targeted non-destructive evaluations also complementing inspection when needed [9].
Therefore, to demonstrate the potential benefit of deploying continuous SHM systems on structures,
as compared against the typical case of intermittent visual inspections, a more specialized metric,
the Value of Structural Health Monitoring (VoSHM)[3], can be introduced:

V oSHM = EX,Zinsp
[Ctot(X,aopt|zinsp

)]− EX,Zinsp,ZSHM
[Ctot(X,aopt|zinsp,zSHM

)] (5.6)
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Figure 5.2: Decision tree illustrating a preposterior decision analysis for a deteriorating structure,
which is continuously monitored from an SHM system, which can additionally be inspected and
repaired.

The formulation of Eq. (5.6) implies that the quantification of the VoSHM emerges from the solution
of two different preposterior decision analyses. In Eq. (5.6), we no longer use the generic variable
Z to denote observations at large, but instead enforce a distinction between the data obtained
from the continuous SHM system, denoted as ZSHM, and the data obtained via intermittent visual
inspections, denoted as Z insp. Similarly to the requirement of a model of the monitoring system to
probabilistically predict ZSHM, one further needs a model that enables probabilistic predictions of the
inspection data Z insp. In EX,Zinsp

[Ctot(X,aopt|zinsp
)] the total expected life-cycle cost is computed

for the case when only inspection data is available. In EX,Zinsp,ZSHM
[Ctot(X,aopt|zinsp,zSHM

)], the
total expected life-cycle cost is computed for the case of continuous monitoring data, enriched
by additional inspection information. The latter problem is illustrated by the decision tree in
Fig. 5.2. The defined VoSHM metric assumes that an SHM system will be used in conjunction with
some additional inspection policy (which will be informed by the SHM outcome), as -in a practical
setting- operators would not allocate sufficient trust on a completely autonomous and unsupervised
monitoring system, thus entirely replacing inspections.

5.3.1 Solution of the sequential decision problem via adoption of heuristics

A key challenge of a preposterior decision analysis is the identification of the optimal set of actions
conditional on data aopt|z. The optimization of inspection and maintenance plans forms a stochastic
sequential decision problem [30, 28], the solution of which requires large computational efforts [54,
34]. Numerous algorithms are available for the solution of this problem, e.g., via proposal of a set of
simple decision heuristics [30, 7], through partially observable Markov decision processes (POMDPs)
[3, 34], or through deep reinforcement learning [2].

The concepts of policies and strategies have been introduced for the solution of sequential decision
problems [19, 7]. A policy at time t is a set of rules which prescribes the decisions to be made at
time t, based on all the structural state information available up to that time, i.e., past inspection
and monitoring data Z and performed actions. Here, a policy at time t answers the following two
questions: 1) ‘Inspect the structure?’, 2) ‘Repair the structure?’. A strategy S is the set of policies
for all time steps t of the decision time horizon, which typically reflects the intended lifetime of the
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structure. If a strategy consists of policies which are the same at all times t, then the strategy is
called stationary.

Heuristics, which are simple and intuitive rules that are easily understood by engineers and opera-
tors, can be used to parametrize a stationary strategy [30, 7]. The three heuristics applied herein
are described below. These are based on the premise that structural performance at any time t
conditional on inspection and monitoring results can be assessed via the structural reliability esti-
mate. With Bayesian methods, past inspection and monitoring information can be used to update
the structural reliability estimate [57].

1. Reliability threshold for inspections pIth. An inspection is performed at any time step before
the updated estimate of the structural reliability exceeds pIth.

2. Fixed-interval periodic inspections ∆tI. Periodic inspections are performed every ∆tI years.

3. Reliability threshold for repair pRth. A repair is performed at any time step before the updated
estimate of the structural reliability exceeds pRth.

We define the heuristic parameter vector w = [pIth,∆tI, p
R
th]. A strategy parametrized by the heuristic

parameter vector w is denoted Sw. With the use of heuristics, the optimal set of actions condi-
tional on data z, aopt|z, is approximated by the applied optimal heuristic parameter values, which
drastically reduces the space of solutions to the decision problem. In this way, the solution of the
sequential decision problem boils down to finding the optimal set of heuristic parameter values w∗

for which the strategy Sw∗ is optimal, i.e., leads to the minimum expected total life-cycle costs.

Sw∗ = argmin
w

E [Ctot (X,Z,w)] (5.7)

With the use of heuristics, Eq. (5.6) can be reformulated as follows:

V oSHM = EX,Zinsp
[Ctot (X,Z insp,w

∗
1)]− EX,Zinsp,ZSHM

[Ctot (X,Z insp,ZSHM,w∗
2)] (5.8)

Eq. (5.8) indicates that the optimal heuristic parameter vectors w∗
1 and w∗

2 emerging from the
solution of the two different preposterior decision analyses will differ. Obtaining w∗

2 would typically
require much larger computational effort than determining w∗

1.

The problem can be further simplified by replacing the optimization of the heuristic parameters in
Eq. (5.7) by a choice based on expert assessment, which better reflects what is typically done in
practice, where optimization is rarely performed.

A Monte Carlo approach can be used to estimate the expected total life-cycle cost for given heuristic
strategies for both terms in Eq. (5.8). The Monte Carlo approximation of the V oSHM is

V oSHM ≈ 1

nMCS

nMCS∑

i=1

[
Ctot

(
x(i), z

(i)
insp,w

∗
1

)
− Ctot

(
x(i), z

(i)
insp, z

(i)
SHM,w∗

2

)]
(5.9)

wherein x(i) are random samples drawn from the prior distribution fX(x), z(i)
insp are samples from

the inspection likelihood function fZinsp|X(·|x(i)) and z
(i)
SHM are sampled data from the model of the

SHM system.
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5.3.1.1 Cost breakdown

For a given heuristic strategy, i.e., for a given w, and for given inspection z
(i)
insp and monitoring

outcomes z
(i)
SHM, the inspection and repair actions over the structural life-cycle are fixed, and the

costs are computed as follows:

CI

(
x(i), z

(i)
insp, z

(i)
SHM,w

)
=

ninsp∑

j=1

γ
(
t
(j)
insp

)
c̃I (5.10)

CR

(
x(i), z

(i)
insp, z

(i)
SHM,w

)
=

nrep∑

j=1

γ
(
t(j)rep

)
c̃R, (5.11)

where c̃I, c̃R are the costs of an individual inspection and repair respectively, and γ(t) = 1
(1+r)t is

the discounting function, with r denoting the annually compounded discount rate.

The failure risk RF is defined as

RF

(
x(i), z

(i)
insp, z

(i)
SHM,w

)
=

T∑

j=1

γ(tj)c̃F

{
Pr[F (tj)|x(i)]− Pr[F (tj−1)|x(i)]

}
, (5.12)

where c̃F is the cost of a failure event, and Pr[F (tj)|x(i)] is the conditional probability of failure
of the structure up to time tj , conditional on a sampled value x(i) of the random vector X. Its
computation forms a structural reliability problem, which is laid out in Section 5.4.3.

5.3.2 Summary of the framework for quantifying the value of vibration-based
SHM

Section 5.3 presents the Bayesian decision analysis framework in a general way, and then specifically
introduces the VoSHM metric in Eq. (5.6), which forms the basis for the presented framework for
the quantification of the value of vibration-based SHM.

Eq. (5.6) reveals that in order to perform a VoSHM analysis, one needs to specify different models
and computational approaches. A probabilistic model of the random vector X needs to be defined,
which in this paper is detailed in Section 5.4, where it is exemplified for a specific environmental
variability model and deterioration model. A case-specific model of the vibration-based SHM system
must be defined to allow for probabilistic predictions of the SHM outcomes ZSHM (see Fig. 5.5),
which can be made specific only in accordance with the case study at hand, while, lastly, a specific
inspection model is required for sampling inspection outcomes Z insp (see Eq. (5.25)). One further
needs to define the stochastic sequential decision-making problem for the optimization of inspection
and maintenance plans and choose the corresponding computational method for its solution. The
solution to the latter problem using heuristics has been introduced in Section 5.3.1. Section 5.5
summarizes the algorithm for evaluation of Eq. (5.6), i.e., it provides the computational specifics of
the framework.
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5.4 Environmental variability modeling, deterioration modeling and
Bayesian analysis

5.4.1 Environmental variability model

The premise of vibration-based SHM methods is that damage induces changes in the structural sys-
tem’s modal characteristics, e.g., the system’s natural frequencies and mode shapes [13]. Thereby
it must be considered that varying environmental and operational conditions also affect the sys-
tem’s modal characteristics. Temperature affects the stiffness (the effective Young’s modulus) of
civil structures [41, 35, 31]. The resulting changes in the system’s modal characteristics owing to
temperature variability can often be more prominent than the changes due to significant damage.
Related to the effect of the temperature variability on the VoSHM, the authors have shown in [22]
that not properly accounting for the environmental variability present in the SHM data can have a
detrimental effect on the maintenance decisions triggered by the SHM system. Accounting for the
effects of temperature variability is therefore of utmost importance within a vibration-based damage
identification framework, and various ways to do that have been suggested in literature [35, 14, 53].

The dependence of the system’s identified natural frequencies on temperature may often be nonlinear
[35], especially in environments where the structure can experience below-freezing temperatures,
and this nonlinearity has to be taken into account in the modeling. The following model for the
Young’s modulus as a function of temperature is employed, which was previously used to capture
the dependence present in real data obtained from a bridge structure [4].

E(Tt) = θ(Tt) · E0 (5.13)

θ(Tt) = Q+H · Tt + U ·
(
1− erf

(
Tt − Y

τ

))
(5.14)

E0 is the nominal value for the Young’s modulus at a reference temperature of 20◦C. The effective
Young’s modulus at a time instance t, for a given temperature Tt, is given by Eq. (5.13). The
structural parameter θ is introduced as a modification factor for the effective Young’s modulus at
a given temperature Tt. θ(Tt) is a stochastic function of temperature, shown in Eq. (5.14), which
is described by a parameter vector [Q,H,U, Y, τ ] of independent random variables, each following
an assigned prior probability distribution. Q models the intercept of the linear trend in the above-
freezing temperature range, while H models the slope of the linear trends observed in both above
and below-freezing temperatures, after the nonlinear transition around temperature Y . τ models
the transition range, while U defines the size of increase in the Young’s modulus at the end of the
transition to the below-freezing temperature range.

5.4.1.1 Bayesian learning of the environmental variability model

Let us consider a case when an SHM system is installed on a civil structure from the beginning of its
operation. Typically, vibration-based SHM systems rely on the deployment of acceleration sensors,
which can provide continuous dynamic response measurements in the form of acceleration time series,
for unknown ambient excitation. These can be subsequently processed by output-only operational
modal analysis (OMA) schemes, e.g., the stochastic subspace identification (SSI) algorithm [40],
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5.4. Environmental variability modeling, deterioration modeling and Bayesian analysis

for identifying the system’s modal characteristics. Temperature sensors can further be easily and
inexpensively deployed on a structure, which can provide ambient temperature measurements. With
the assumption that the structure will be in a healthy state and that no damage will be present at
the beginning of its service life, one can make use of modal data identified at different temperatures
in the first few months of operation (half a year to one year will usually be needed to get ‘extreme’
temperatures at both ends of the scale), in order to learn the underlying dependence of the Young’s
modulus on temperature (E − T ) via Bayesian analysis.

The data obtained from such an SHM system, comprising acceleration and temperature sensors, can
be summarized as different sets {λ̃tm , T̃t;m = 1, .., Nm} of vectors of the Nm lower system eigenvalues
λ̃tm identified via an OMA procedure at time t for a temperature T̃t. The modal eigenvalues are
λ̃tm = (2πf̃tm)

2, where f̃tm are the modal eigenfrequencies.

Consider a linear finite element (FE) model G of the structural system, parametrized via Eq. (5.13),
which is used to predict the modal eigenvalues for different input values of the effective Young’s mod-
ulus. The goal of the Bayesian inverse problem is to estimate the parameters [Q,H,U, Y, τ ] of the
stochastic model of Eq. (5.14), and their uncertainty, such that the FE model predicted modal eigen-
values

{
λG
tm

(
E = θ(T̃t) · E0

)
,m = 1, .., Nm

}
best match the corresponding OMA-identified modal

eigenvalues. The joint posterior probability distribution of the updating parameters is obtained via
Bayesian analysis.

The likelihood function can be formulated by assuming a probabilistic model for the discrepancy be-
tween the OMA-identified and the FE model predicted modal eigenvalues. The commonly assumed
probabilistic model for this discrepancy is a zero-mean Gaussian random variable with standard de-
viation proportional to the identified eigenvalues. Assuming statistical independence among the Nm

identified modes and among the Nt identified modal data sets obtained at different time instances,
the likelihood function can be written

L
(
λ̃tm , T̃t;Q,H,U, Y, τ

)
=

Nt∏

t=1

Nm∏

m=1

N
(
λ̃tm − λG

tm

(
E = θ(T̃t) · E0

)
; 0, c2λmλ̃2

tm

)
, (5.15)

where N( . ; 0, σ2) denotes the value of the normal probability density function with mean zero and
variance σ2 at a specified location. The factor cλm can be regarded as an assigned coefficient of
variation, and its chosen value reflects the total prediction error [52], accounting for measurement
and model uncertainty. For the numerical investigations of Section 5.6, cλm=0.02 [52, 25]. One
should be aware that the assumption of independence in Eq. (5.15) typically does not hold. This
could be addressed by a hierarchical modeling of the vector [Q,H,U, Y, τ ] [5].

Once a certain number of Nt OMA-identified eigenvalue sets, identified at different temperatures in
the initial undamaged state, becomes available, Bayesian analysis can be performed to estimate the
posterior distribution of the environmental variability model parameters. One can then input the
estimated posterior mean parameter values (denoted by µ

′′) in Eq. (5.14) and obtain a monitoring-
informed estimate of the modification factor θ

′′ as a function of temperature

θ
′′
(Tt) = µ

′′
Q + µ

′′
H · Tt + µ

′′
U ·
(
1− erf

(
Tt − µ

′′
Y

µ′′
τ

))
(5.16)

Within subsequent damage identification studies, an effective Young’s modulus of E(T̃t) = θ
′′
(T̃t)·E0

is used for a measured temperature T̃t.
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5.4.2 Deterioration model

Bayesian decision analysis relies on stochastic deterioration models for sampling many different
potential “what-if” scenarios of the damage evolution over the life-cycle of a structure. Furthermore,
a VoSHM analysis requires a model of the SHM system, which can provide probabilistic predictions of
the life-cycle monitoring data for the different deterioration and temperature samples (see Fig. 5.5),
as well as a model describing the uncertain outcome of visual inspections.

Structural deterioration can be classified in two main categories, 1) gradual deterioration (e.g.,
due to fatigue, corrosion, crack growth) and 2) shock deterioration (e.g. sudden damages due to
extreme events such as earthquakes, floods, etc.), as described in Section 5.2. Herein, we employ
an empirical deterioration model, which is a superposition of a gradual deterioration process and
a shock deterioration process. The deterioration state at global time t (from the beginning of the
structural lifetime) is described by the following equation:

X(t) = AtB exp (ω(t)) +

N(t)∑

i=1

Di (5.17)

The first part of Eq. (5.17) is a simple rate equation, which models the gradual deterioration process
[11]. Random variable A models the deterioration rate, random variable B models the nonlinearity
effect in terms of a power law in time, and ω(t) models a Gaussian stochastic process noise. The
second part of Eq. (5.17) describes a homogeneous compound Poisson process (CPP) [63, 49], and
is used to model deterioration due to sporadic shocks, which is typical of, e.g., earthquakes, floods.
CPP models incorporate two types of randomness: i) random times of arrival of sporadic shock
occurrences and ii) random damage increase due to an occurring shock. A CPP is a continuous-time
stochastic process {V (t), t ≥ 0} of the form V (t) =

∑N(t)
i=1 Di, where:

1. the number of jumps {N(t), t ≥ 0} is a Poisson process with rate λ,

2. the jumps {Di, i = 1, .., N(t)} are independent and identically distributed random variables
following a specified probability distribution,

3. the process {N(t), t ≥ 0} and the damage increments {Di, i = 1, .., N(t)} are independent.

The model of Eq. (5.17) assumes that the gradual and shock deterioration processes are independent
of each other. Furthermore, it is assumed that the shock deterioration magnitude is independent of
the state of the system at the time of the shock event. Ten random realizations of this model are
shown in Fig. 5.3.

The empirical deterioration model presented above is fairly general and flexible enough to capture
a number of the challenges related to performing a VoSHM analysis at different time scales, as
described in Section 5.2. The flexibility of this model is demonstrated in the numerical investigations
for different SHM use cases presented in Section 5.6.
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Figure 5.3: Random sampling from deterioration model of Eq. (5.17) using the parameters of Tab. 5.1

5.4.2.1 Sequential Bayesian estimation of deterioration state and parameters

The goal is to establish a model that uses the OMA-identified system eigenvalue data, obtained
at different points in time and at different temperatures, to jointly update the distribution of the
structural deterioration state X(t) and the time-invariant gradual deterioration model parameters
A,B of the model in Eq. (5.17). A discrete-time state-space model is defined, suitable for application
of Bayesian filters for monitoring the deterioration. The state space is augmented to include the
time-invariant random variables A and B in the estimation.

X̃ =



X(t)
A
B


 (5.18)

The continuous model of Eq. (5.17) is reformulated into a recursive process equation using a central
finite difference scheme.

Xk = Xk−1 +Ak−1Bk−1

(
tk−1 + tk

2

)Bk−1−1

∆t · exp(ωk) + ∆Dk, (5.19)

where k corresponds to the discrete time instance tk. Time is discretized in yearly intervals k =
1, ..., T , where the k-th interval represents t ∈ (tk−1, tk]. ∆Dk is the distribution of the CPP jump
increments within a time interval ∆t, given by the following cumulative distribution function (CDF)

F∆Dk
(d) = exp(−λ∆t) +

∞∑

i=1

(λ∆t)i

i!
exp(−λ∆t) · F∑i

j=1 Dj
(d), (5.20)

where F∑i
j=1 Dj

(d) is the CDF of the i-fold convolution of the distribution of D with itself.

A CPP realization can occur at any point in time tcpp. For certain decision cases, one can introduce
new decision time intervals in order to incorporate decision making at time tcpp, when an extreme
event occurs. In such cases, the total number of intervals nint is no longer equal to T , i.e, k =
1, ..., nint.

For the time-invariant deterioration model parameters the process equation is as follows:

[Ak, Bk]
⊺ = [Ak−1, Bk−1]

⊺ (5.21)
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The measurement equation that links the OMA-identified modal eigenvalues with the unknown true
deterioration state Xk at time instance tk is given by

ZSHM,k = ZG
k

(
Xk, E = θ

′′
(T̃k)E0

)
+ ηk (5.22)

ZSHM,k is the vector of OMA-identified eigenvalues {λ̃km ,m = 1, ..., Nm} and ZG
k is the vector of

Nm FE model predicted eigenvalues at time tk and temperature T̃k. G is now parametrized by
the deterioration state Xk and the effective Young’s modulus. Note that for the effective Young’s
modulus, the monitoring-informed modification factor θ′′ of Eq. (5.16) is used. To accelerate compu-
tations, a surrogate model of G can be employed. The error term ηk models the prediction error in
the estimation of the modal eigenvalues, assumed to follow a zero-mean joint Gaussian distribution
with variance proportional to the measured eigenvalues. With this assumption, the SHM likelihood
function is

fZSHM,k|Xk
(ZSHM,k|Xk) =

Nm∏

m=1

N
(
λ̃km − λG

km

(
Xk, E = θ

′′
(T̃k)E0

)
; 0, c2λmλ̃2

km

)
(5.23)

Visual inspections might be required for complementing the monitoring at certain time instances
over the structural life-cycle. At a time instance tk, when a visual inspection is performed, the
complementary inspection measurement equation is

Zinsp,k = Xk + ϵk, (5.24)

where Zinsp,k is the uncertain outcome of a visual inspection and Xk is the unknown true deterioration
state at time tk. ϵk models the uncertainty of the visual inspection outcome, and is assumed to follow
a zero-mean Gaussian distribution with an assigned coefficient of variation (cvinsp) reflecting the
quality of the inspection (in the numerical investigations of Section 5.6, cvinsp=0.15). The resulting
inspection likelihood function is

fZinsp,k|Xk
(Zinsp,k|Xk) = N (Zinsp,k;Xk, cvinsp) (5.25)

A Bayesian filter [10, 50, 60] can be implemented to solve the sequential Bayesian joint state-
parameter estimation problem. The Bayesian filter implemented within the presented VoSHM
framework is provided in the algorithmic summary of Section 5.5. More specifically, we imple-
ment an on-line particle filter [27], which performs Gaussian mixture (GM)-based [32] resampling
[26] whenever the effective sample size drops below a user-defined threshold (step 8 in the algorithmic
summary of Section 5.5). The specific resampling scheme aims to counteract the issues of sample
degeneracy and impoverishment that occur in on-line joint state-parameter estimation settings [50].
By running the filter, one obtains for each time step tk the one-step ahead predictive posterior dis-
tribution πpos(X̃k | Z1:k−1) and the filtered posterior distribution πpos(X̃k | Z1:k). It is not the
primary focus of this paper to provide a thorough elaboration on the use of Bayesian filtering; to
this end, the interested reader is referred to [60, 26], where code is offered on an extended set of
Bayesian algorithms. More specifically, the particle filter with GM resampling (PFGM) presented
in [26] is the method that we employ in this work.

5.4.3 Structural reliability and its updating

In many instances, a failure event at time t can be expressed in terms of a structural capacity R(t)
and a demand S(t), which are both random variables. We assume that the structural capacity
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R(t) can be separated from the demand S(t), and that a deterministic function R(Xk) that outputs
the structural capacity for a given deterioration state Xk can be determined. Modeling R(Xk) as
deterministic is based on the assumption that the main uncertainties stem from the deterioration
and the load, and that further physical and model uncertainties related to the structural capacity are
not incorporated. More details on the definition of this problem-dependent deterministic function
are provided for a specific structure in Section 5.6, as well as in previous work of the authors [25].
Such a simplified modeling choice is adopted here for the purpose of enabling a VoSHM analysis of
practicable computational cost. The uncertain demand acting on the structure is modeled by the
distribution of the maximum load Smax in a one-year time interval. Fsmax denotes the cumulative
distribution function (CDF) of this distribution.

The time-variant reliability problem can be replaced by a series of time-invariant reliability problems
[57]. F ∗

k is defined as the event of failure in interval (tk−1, tk]. For a given value of the deterioration
state Xk, the structural capacity R(Xk) is fixed and the conditional interval probability of failure is
defined as:

Pr(F ∗
k | Xk) = Pr (Smax > R(Xk)) = 1− Pr (Smax ≤ R(Xk)) = 1− Fsmax

(
R(Xk)

)
(5.26)

The unconditional accumulated probability of failure up to time tk, Pr(Fk) = Pr(F ∗
1 ∪ F ∗

2 ∪ ...F ∗
k ),

can be computed through the conditional interval probabilities Pr(F ∗
k |Xk),

Pr(Fk|Xk) = 1−
k∏

m=1

[1− Pr(F ∗
m | Xm)] (5.27)

and by use of the total probability theorem:

Pr(Fk) =

∫

ΩXk

Pr(Fk | Xk)π(Xk)dXk. (5.28)

If one replaces π(Xk) with πpos(Xk | Z1:k) in Eq. (5.28), the updated estimate of the accumulated
probability of failure is obtained:

Pr(Fk|Z1:k) =

∫

ΩXk

Pr(Fk | Xk)πpos(Xk | Z1:k)dXk (5.29)

The above integral can be solved with random sampling-based techniques. Here we employ a particle
filtering scheme [50] to obtain weighted samples following πpos(Xk | Z1:k).

5.5 Algorithmic summary of the heuristic-based expected total life-
cycle cost calculation

In this section, we present a detailed algorithmic summary of the proposed methodology for the
heuristic-based total expected life-cycle cost computation in the SHM preposterior analysis, i.e., the
computation of EX,Zinsp,ZSHM

[Ctot (X,Z insp,ZSHM,w)]. For the sake of readability, in this section
Z = [ZSHM,Z insp].

• Fix the heuristic parameter vector w = [pIth,∆tI, p
R
th], which defines the heuristic strategy Sw.
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• Draw nMCS samples of the parameter vector [Q(i), H(i), U (i), Y (i), τ (i)] defining multiple poten-
tial underlying “true” realizations of the environmental variability model. For each realization,
create eigenvalue (modal) “measurements” sampled at different temperatures in the initial un-
damaged structural state, and perform an offline Bayesian estimation, e.g., using the iTMCMC
algorithm [6], to learn the posterior distribution of the environmental model parameters and
subsequently obtain θ

′′(i).

• Draw nMCS samples from the prior model of the deterioration process, which define multiple po-
tential underlying “true” realizations of the deterioration process X̃

(i)
= [X

(i)
k , A(i), B(i)]⊺, i =

1, .., nMCS.

• For each θ
′′(i) and X̃

(i)
realization, do the following:

– Draw np particles of the initial deterioration state X
(j)
0 and the time-invariant parameter

vector [A
(j)
0 , B

(j)
0 ] and set particle weights w

(j)
0 = 1

np
, j = 1, .., np.

– For each k = 1, . . . , T do the following:

1. Draw a new point X
(j)
k for each point in the particle set {X(j)

k−1, j = 1, .., np} from
the deterioration state process equation:

X
(j)
k = X

(j)
k−1 +A

(j)
k−1B

(j)
k−1

(
tk−1+tk

2

)B(j)
k−1−1

∆t · exp(ωk) + ∆D
(j)
k

and for the time-invariant parameters:

[A
(j)
k , B

(j)
k ]⊺ = [A

(j)
k−1, B

(j)
k−1]

⊺

2. Estimate the one-step-ahead prediction for the time-dependent accumulated failure
probability and the hazard function h, which expresses the failure rate of the structure
conditional on survival up to the previous time instance:

Pr
(
Fk | Z(i)

1:k−1

)
≈∑np

j=1w
(j)
k−1Pr(Fk | X(j)

k )

hk

(
Z

(i)
1:k−1

)
≈

Pr
(
Fk|Z(i)

1:k−1

)
−Pr

(
Fk−1|Z(i)

1:k−1

)
Pr

(
Fk−1|Z(i)

1:k−1

)

3. If hk

(
Z

(i)
1:k−1

)
≥ pRth: a repair is prescribed at time tk−1. Set {X(j)

k−1 = 0, j =

1, .., np} and go back to step 1, i.e., after repair the structure is assumed to return
back to its original undamaged state, and starts deteriorating anew.

4. If hk
(
Z

(i)
1:k−1

)
≥ pIth: an inspection needs to be performed at time tk−1. The uncer-

tain inspection outcome Z
(i)
insp,k−1 is sampled from the inspection likelihood function

of Eq. (5.25).

5. If (tk = tcpp), i.e., if an extreme event has occurred, an inspection needs to be
performed at time tk. The uncertain inspection outcome Z

(i)
insp,k is sampled from the

inspection likelihood function of Eq. (5.25).

6. Sample the measurement Z
(i)
SHM,k from the SHM system model (see Fig. 5.5).
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7. Perform the filtering step. Update the weights

w
(j)
k ∝ fZSHM,k|Xk

(Z
(i)
SHM,k|X

(i)
k ) · fZinsp,k|Xk

(Z
(i)
insp,k|X

(i)
k ) · w(j)

k−1

and normalize these to sum to unity. Filter the accumulated probability of failure

Pr
[
Fk | Z(i)

1:k

]
≈∑np

j=1w
(j)
k Pr[Fk | X(j)

k ]

8. Neff,k = 1∑np
j=1(w

(j)
k )2

≤ c · np with c ∈ [0, 1] indicates sample degeneracy. To resolve

that, fit a GM proposal distribution according to {X(j)
k , w

(j)
k } [32], which approx-

imates the current posterior, and sample np new particles from this GM proposal
distribution. Reset particle weights to w

(j)
k = 1

np
[26].

– The lifetime inspection, repair and risk of failure costs corresponding to θ
′′(i) and X̃

(i)

are:

C
(i)
I =

∑ninsp
m=1 γ

(
t
(m)
insp

)
c̃I

C
(i)
R =

∑nrep
m=1 γ

(
t
(m)
rep

)
c̃I

R
(i)
F =

∑T
k=1 γ(tk)c̃F

{
Pr[Fk|X(i)

k ]− Pr[Fk−1|X(i)
k−1]

}

• Compute the expected value:

EX,Zinsp,ZSHM
[Ctot (X,Z insp,ZSHM,w)] ≈ 1

nMCS

∑nMCS
i=1

(
C

(i)
I + C

(i)
R +R

(i)
F

)

The methodology presented above can further be employed “as is” with only few modifications for
the computation of EX,Zinsp

[Ctot (X,Z insp,w)], i.e., for the preposterior analysis in the case of only
inspections.

5.6 Numerical investigations

Ky
(1)

F(x): Gaussian white noise excitation

w=0.1m

200X6 plane stress elements

h=0.6m

Kx
(1) Ky

(2) Kx
(2) Ky

(3) Kx
(3)

L1 =12m L2 =13mKy
(i) =107 N/m Kx

(i) =108 N/m

ν=0.2, ρ=2000kg/m3

accelerometers

Figure 5.4: Bridge system subject to environmental variability and damage due to deterioration at
the middle pier.

Fig. 5.4 shows the numerical benchmark model of a two-span bridge system [59], which has already
been employed by the authors for a VoI analysis in [25, 23]. The model is used as a simulator
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Table 5.1: Prior distribution of environmental variability and deterioration model parameters

Parameter Distribution Mean cv
Q Normal -0.005 0.1
H Normal 1.115 0.025
U Normal 0.165 0.1
Y Normal -1.00 0.25
τ Normal 3.00 0.20
A Lognormal 1.94·10-4 0.4
B Normal 2.0 0.10
ωk Normal -0.005 0.10
Di Lognormal 3.75 0.25
N(t) Poisson 0.04·t -

for creating dynamic response measurement samples from the bridge system, which is subjected
to environmental variability and to gradual and shock deterioration at the middle elastic support,
simulating the case of scour [45, 44, 16, 65, 51]. Scour is one of the main causes of failure events on
bridges [44, 51].

Elastic boundaries in both directions are assumed for all three support points, in the form of trans-
lational springs with Kx = 108 N/m and Ky = 107 N/m. Damage is introduced as a reduction of
the stiffness in the y-direction of the spring K

(2)
y . The evolution of damage over the bridge lifespan

of T = 50 years is described by the damage model of Eq. (5.30), where K
(2)
y,0 is the initial undam-

aged value, and X(t) is the gradual and shock (e.g., due to flood occurrences) deterioration process,
described by the model in Eq. (5.17).

K(2)
y (t) =

K
(2)
y,0

1 +X(t)
(5.30)

Modeling scour damage as a stiffness reduction at the support is not straightforward. When doing
so, we ensure that the implemented damage properly reflects percentual changes of the modal prop-
erties equivalent to ones reported in literature for cases of scour [45, 44]. As a result, the modeled
deterioration X(t) can lead to large reductions of the stiffness K

(2)
y (t).

To model the environmental variability, a linear elastic material is assigned, with the Young’s mod-
ulus assumed to vary with temperature, as described by Eq. (5.13). The nominal value for the
Young’s modulus at a reference temperature of 20◦C is E0 = 29.11GPa, intended to represent re-
inforced concrete. The prior probabilistic models for the random variables entering the models of
Eqs. (5.13) and (5.17) are summarized in Tab. 5.1.

5.6.1 SHM probabilistic data sampling process

It is assumed that the two-span bridge system is continuously monitored from the beginning of its
operation using a set of 12 sensors measuring vertical accelerations, whose locations correspond to
predefined FE nodes (see Fig. 5.4), as well as temperature sensors continuously providing ambient
temperature measurements. A distributed Gaussian white noise excitation F(x) is used as the load
acting on the bridge, to simulate the unknown ambient excitation.
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Figure 5.5: SHM modal data sampling process

As explained in Section 5.4, a VoSHM analysis requires a model of the SHM system, which can
furnish probabilistic predictions of the life-cycle monitoring data. The SHM modal eigenvalue data
sampling process is summarized in Fig. 5.5. At a time instance tk, for a given input value of the
deterioration state Xk and for a given temperature T̃k, a dynamic time history analysis is run and
the “true” vertical acceleration signals ẍ at the sensor locations (FE nodes) are obtained. This
noise-free acceleration time series data set is then contaminated with Gaussian white noise of 5%
root mean square noise-to-signal ratio, simulating a sensor measurement error. Subsequently, the
noisy accelerations ˜̈x are fed into the SSI algorithm [40], which identifies between m = 3 to 5 lower
eigenvalues.

5.6.2 Bayesian learning of the environmental variability model

This section demonstrates the Bayesian learning of the environmental variability model, as explained
in Section 5.4.1.1. The linear FE model G predicting the eigenvalues for the Bayesian updating
process is the same FE model as the one used in the SHM modal data sampling process, which
constitutes a so-called inverse crime [66]. However, this is a built-in feature of preposterior decision
analysis. In a real SHM setting, the model is initially adjusted to reflect the true behavior as closely
as possible, but existence of model uncertainty is inevitable, which will affect the accuracy of the
VoSHM calculation. This, however, is a challenge pertinent to any engineering analysis.

For illustrating the updating process, we consider one underlying “true” realization of the environ-
mental variability model, shown in black in the bottom right panel of Fig. 5.6, with associated
parameter values [Q∗ = 1.101, H∗ = −0.0057, U∗ = 0.174, Y ∗ = −1.292, τ∗ = 3.464]. We assume
that Nt=50 eigenvalue sets, identified at different ambient temperature values via the SSI process,
are available from the SHM in the initial operational period of the structure, when it is assumed
that no damage is present. Via Bayesian analysis, the posterior distribution of the environmental
variability model parameters is obtained. This is shown in Fig. 5.6, where the first five panels plot
the prior and posterior distribution of the five parameters. The last panel (bottom right) plots the
prior mean model of Eq. (5.13) with its 95% credible interval (CI), and the monitoring-informed
estimate of the model E(T̃ ) = θ

′′
(T̃ )·E0 with its 95% CI, obtained from posterior parameter samples

generated from the iTMCMC algorithm [6]. One can observe that the underlying “true” model is
captured very well and the posterior 95% CI is very narrow, reflecting small posterior uncertainty.
For subsequent damage identification purposes, the learned blue model for the effective Young’s
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Figure 5.6: Bayesian learning of the parameters of the environmental variability model.

modulus is employed.

5.6.3 VoSHM quantification

In Section 5.3.1 the heuristic-based VoSHM quantification via Eq. (5.8) is presented. For the nu-
merical investigations in this section, the optimal heuristic thresholds pI∗th and pR∗

th are computed via
a preposterior analysis for the case of visual inspections only. The periodic inspections interval ∆tI
is set equal to 5 years, which is common practice for scour-specific inspections in many countries,
and is not optimized, i.e., the heuristic parameters are w∗

1 = [pI∗th, p
R∗
th ,∆tI = 5]. Obtaining w∗

2

can become computationally unaffordable, therefore we use for w∗
2 the same heuristic thresholds

pI∗th and pR∗
th that were optimized in the case of visual inspections only. This leads to a potential

underestimation of the VoSHM, as these choices may not be fully optimal. In the case of continuous
SHM, we assume that no fixed-interval periodic inspections will be performed. Naturally, this choice
is based on the assumption of a high level of trust in the adequate functionality of the SHM system
throughout the whole life-cycle. Eventually, w∗

2 = [pI∗th, p
R∗
th ,∆tI = ∞].

The following costs are assigned: c̃F = 5 · 107e, c̃I = 2 · 104e, c̃R = 6 · 105e. The scour inspection
cost is assigned based on [8], and the scour repair cost based on [44, 1]. The discount rate is taken
as r = 2%. The lifetime of T = 50 years is discretized into flexible decision-making intervals.
“Inspect?” {yes, no} and “Repair?” {yes,no} decisions are made once per year, and potentially also
at the specific time steps when an observed extreme event occurs.

It should be noted that the model describing the outcome of a visual inspection that we assume
in this work, described by Eq. (5.25), is a hypothetical, simplified model, employed for the sake of
performing a VoSHM analysis. In reality, an inspection outcome would not come in the form of
an estimated stiffness loss, and a more detailed analysis would be needed to express the inspection
outcome in this form. Even so, this simplified inspection model can still incorporate the expected
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quality of the visual inspection by an appropriate choice of the assumed coefficient of variation cvinsp
in Eq. (5.25). The effect of this choice on the VoSHM result has been investigated by the authors
in [22].

For the structural reliability computation, the uncertain demand acting on the structure is modeled
by the maximum load in each time interval with a Gumbel(an=0.0509, bn=0.297) distribution. The
parameters of the Gumbel distribution are chosen such that the probability of failure in the initial
undamaged state is equal to 10−6. In this work, we are interested in effects that are related to damage
and are imprinted on monitored structural properties, in the form of residual stiffness reduction. We
determine the deterministic function of the capacity for given deterioration state, R(Xk), considering
that for increasing stiffness reduction at the middle elastic support, the load bearing capacity of the
bridge system decreases due to increase in the normal stresses at the middle of the right midspan. A
one-dimensional grid of possible values of the deterioration Xk is created, and each of those values is
given as input for a static analysis with the FE model. For each implemented Xk value, the loss of
load bearing capacity of the structure relative to the initial undamaged state is evaluated, leading to
the corresponding R(Xk) value. The same modeling choice was employed by the authors in previous
work (see Fig. 15 in [25]).

Finally, for the sequential Bayesian estimation of the deterioration state and parameters with con-
tinuous vibration-based SHM data, a polynomial ridge regression [36] surrogate model is used to
replace each of the structural FE model G-predicted eigenfrequencies entering Eq. (5.22). We create
a two-dimensional grid of possible values for the deterioration X(t) and for the effective Young’s
modulus as a function of temperature E(Tt). For each point in this two-dimensional grid, we execute
a modal analysis using the structural FE model and store the output eigenfrequencies. Eventually,
for each eigenfrequency, we fit a two-dimensional polynomial ridge regression response surface model,
as exemplarily shown in Fig. 5.7 for the first two eigenfrequencies, which we use as the surrogate
model.
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Figure 5.7: Polynomial ridge regression surrogate model for eigenfrequencies f1 and f2.
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Figure 5.8: Bayesian filtering of the deterioration state and the reliability using intermittent visual
inspection data.

5.6.3.1 First case study: Gradual deterioration and shock deterioration due to an
observed extreme event

As a first case study, we assume a scenario with gradual and shock deterioration, where a CPP shock
deterioration occurrence corresponds to an observed extreme event, e.g., a flood occurrence. In this
case, both without and with continuous SHM, an additional visual inspection will take place right
after the extreme event.

Performing a heuristic-based expected total life-cycle cost minimization without SHM, the optimal
heuristic parameter vector w∗

1 = [pI∗th = 5 ·10−4, pR∗
th = 1 ·10−3,∆tI = 5] is found. For the solution of

the joint expectation EX,Zinsp
, as summarized in Section 5.5, nMCS = 1000 samples were drawn, each

defining one potential underlying “true” realization of the deterioration process and the corresponding
visual inspection data.

We demonstrate how the sequential Bayesian estimation of the deterioration state and the corre-
sponding sequential decision-making operates without and with continuous vibration-based SHM,
by looking at one of these underlying “true” deterioration process realizations. The dashed black
line in the first panel of Figs. 5.8 and 5.9, corresponds to this single underlying “true” realiza-
tion. For this sample, no extreme event occurs, and the deterioration process is driven by grad-
ual deterioration only. The left panel of Fig. 5.8 plots the filtered deterioration state estimate,
and the right panel plots the filtered failure rate estimate, as obtained in view of intermittent
visual inspection data. For w∗

1 = [pI∗th = 5 · 10−4, pR∗
th = 1 · 10−3,∆tI = 5], a visual inspec-

tion is performed at tinsp = [5, 10, 15, 20, 25, 30, 35, 40, 45] years, as dictated by ∆tI = 5. Since
pI∗th and pR∗

th are not exceeded, no additional inspection or repair takes place. Fig. 5.9 plots the
corresponding estimates in the case when eigenvalue data from the investigated SHM system is
continuously available. One can see that, in the presence of continuous SHM data, system state
awareness at all times is accomplished, as opposed to Fig. 5.8, and the choice not to perform
the periodic visual inspections leads to cost savings. More specifically, for this single realization
Ctot (x, zinsp,w

∗
1)− Ctot (x, zinsp, zSHM,w∗

2) = 1.13 · 105e.

Figs. 5.10 and 5.11 plot the sequential Bayesian estimates for a second potential underlying “true”
deterioration process realization. Without SHM, inspections are performed at ∆tI=5 year intervals,
when pIth is exceeded, as well as when an extreme event occurs. More specifically, for the realization
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Figure 5.9: Bayesian filtering of the deterioration state and the reliability using continuous SHM
and inspection data.

in Fig. 5.10, tinsp = [5, 10, 15, 20, 25, 26.3, 31, 31.2, 36, 42, 47]. A repair is performed at year 36,
after an inspection triggered by pIth at year 36 causes the pRth to be exceeded. With SHM instead,
tinsp = [26.3, 31.2, 32, 33, 34, 35, 36] (this shows that the heuristic w∗

2 is indeed suboptimal for the
case with SHM). The inspections to complement the SHM are triggered when an extreme event
occurs, and when pIth is exceeded. Also with SHM, a repair at year 36 is informed by pRth. For this
second realization, Ctot (x, zinsp,w

∗
1)− Ctot (x, zinsp, zSHM,w∗

2) = 6.02 · 104e.

In Fig. 5.11, the bottom two panels further plot the estimates of the time-invariant gradual deteriora-
tion parameters A,B. Learning deterioration model parameters, and quantifying their uncertainty,
is instrumental for predictive maintenance tasks.

In this subsection, we illustrated the sequential decision making process and the corresponding
life-cycle cost calculation for two samples of the underlying “true” deterioration process and the
corresponding sampled inspection and SHM data. Since the quantification of the V oSHM , as shown
in Eq. (5.8), requires the evaluation of the expectation operator, one needs to draw a sufficiently large
finite number of samples of X and Z insp/ZSHM and compute the cost difference Ctot (X,Z insp,w

∗
1)−

Ctot (X,Z insp,ZSHM,w∗
2) for each of those, and then take the mean value. For this first case study,

with nMCS = 1000 samples, V oSHM = 1.11 · 105e, which indicates a potential benefit of installing
an SHM system on the deteriorating bridge structure. This value does not contain the total life-cycle
cost of the SHM system itself (cost of installation, maintenance, repair, etc.). One should compare
the V oSHM value with the expected total life-cycle cost of the SHM system, and then decide
whether installing such a system can be cost-beneficial. Furthermore, the presented VoSHM analysis
is based on the premise that the SHM system will be continuously operating in an unobstructed
fashion, and that complete trust will be put on the SHM system to replace all periodic inspections,
which seems unrealistic. In this regard, the obtained V oSHM value provides an upper limit to the
potential economic benefit that uninterrupted monitoring with the investigated SHM system would
generate.
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Figure 5.10: Bayesian filtering of the deterioration state and the reliability using intermittent visual
inspection data.

0 10 20 30 40 50

Time t (years)

0

2

4

6

8

10

12

14

16

D
et

er
io

ra
ti

on
X

(t
)

underlying true X(t)

filtered mean

95 % credible interval

0 10 20 30 40 50

Time t (years)

10−6

10−5

10−4

10−3

u
p

d
at

ed
fa

ilu
re

ra
te

[y
r−

1
] failure rate

pIth

pRth

0 10 20 30 40 50

Time t (years)

0.0010

0.0015

0.0020

0.0025

0.0030

A

posterior mean

true value before repair

true value after repair

95 % credible interval

0 10 20 30 40 50

Time t (years)

1.6

1.8

2.0

2.2

2.4

B

posterior mean

true value before repair

true value after repair

95% credible interval

Figure 5.11: Bayesian filtering of the deterioration state, the time-invariant model parameters and
the reliability using continuous SHM and inspection data. In the bottom two panels, A and B
correspond to the time-invariant parameters of the deterioration model of Eq. (5.17)

.
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5.6.3.2 Second case study: Gradual deterioration and shock deterioration due to an
unobserved event

As a second case study, we assume scenarios when the CPP shock deterioration occurs due to an
unobserved event, e.g., due to a sudden bridge bearing failure, or due to an extreme truck overloading.
In such cases, without continuous SHM, no visual inspection will take place at the time of occurrence
of this extreme event, since there is no knowledge of this occurrence. In contrast, with continuous
vibration-based SHM in place, one will have access to continuous vibration data, and therefore data
will be available right after the deterioration jump occurrence. This can lead to a timely tracking
of the deterioration state increment and a subsequent prompt inspection or repair decision.

We consider the same single underlying true realization of the deterioration process as in Figs. 5.10
and 5.11, and demonstrate the corresponding sequential decision making in the second case study.
Comparing the left panel of Fig. 5.12 to the top left panel of Fig. 5.11, one observes that the
estimation with SHM barely differs between the two case studies, due to the continuity of the SHM
data. The actions corresponding to Fig. 5.12 are inspections at tinsp = [32, 33, 34, 35, 36], as informed
by exceedance of pIth, and repair at trep = 36. On the other hand, comparing Fig. 5.13 to Fig. 5.10,
it is clear that the absence of visual inspection measurements right after the deterioration jump
events leads to a severe underestimation of the underlying true deterioration state. For the same
heuristic thresholds as the ones in Fig. 5.10, the actions corresponding to Fig. 5.13 (without SHM)
are inspections at tinsp = [5, 10, 15, 20, 25, 30, 35, 37, 38, 44, 49] and repair at trep = 38, i.e., two years
after the repair informed by SHM, with an increased risk of failure during this time period. For this
single realization, in the second case study, Ctot (x, zinsp,w

∗
1)−Ctot (x, zinsp, zSHM,w∗

2) = 1.14·105e.

With nMCS = 1000 samples, in the second case study we quantify V oSHM = 1.42 · 105e, which is
larger than the V oSHM result obtained for the first case study. This increased V oSHM value is
expected.
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Figure 5.12: Bayesian filtering of the deterioration state and the reliability using continuous SHM
and inspection data.

5.6.3.3 Third case study: Near-real time VoSHM in case of extreme event

As discussed in Section 5.2.1, SHM can be valuable in informing near real-time decisions for avoiding
catastrophic failures, or avoiding unnecessary close-downs after the occurrence of an extreme event.
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Figure 5.13: Bayesian filtering of the deterioration state and the reliability using intermittent in-
spection data.

As a third case study, we consider such an SHM for near-real time decision support.

As in the first case study of Section 5.6.3.1, we assume that a CPP shock deterioration corresponds
to an observed extreme event. When such an event occurs, e.g., a flood, an inspection will have to
take place right after the event, both in the case with and without SHM. However, we consider that
it will only be possible to perform the inspection one week after the event, e.g., because inspectors
cannot operate until the water level reduces or because they do not have the capacity to inspect
all bridges in a short time. In this scenario, without SHM, an operator will have to close down
the bridge for this one week until the inspection. This decision will induce a corresponding cost.
According to [68], a close-down of a road bridge in the USA can cost up to 2 · 105 $/day, while
according to [29, 51], in the UK scour-related close-downs of a railway bridge can induce costs up to
1.65 · 105£/day. Herein, we assume a cost of close-down cclsdn = 1.5 · 105e/day. This cost is subject
to discounting.

The benefit of continuous SHM is that the SHM system will be in operation also right after the
extreme event, timely providing vibrational data from the state of the structural system. Already
with the near-real time SHM data (hours) after the extreme event occurrence, the bridge operator
will have an updated estimate of the state, and can therefore use this estimate to decide whether
to close down the bridge for one week until the inspection, or whether to continue operating the
bridge. We assume that in presence of the SHM data, the operator will be willing to accept a risk
associated with continuation of the bridge operation if the updated estimate of the failure rate is
lower than pIth. If pIth is exceeded, then the bridge will be closed down, with an associated cost of
cclsdn = 1.5 · 105e/day.

To summarize, in the case without SHM, inspections take place every 5 years, when pIth is exceeded,
and one week after an extreme event occurrence. The bridge is always closed down for this one week
until the inspection. A repair is triggered when pRth is exceeded.

In the case with SHM, inspections take place when pIth is exceeded, and one week after an extreme
event occurrence. If the near real-time SHM-informed estimate of the failure rate exceeds pIth, then
the bridge is closed down for this one week until the inspection, otherwise it is allowed that the
bridge continues operating. A repair is triggered when pRth is exceeded.
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With the setup described above, we run the VoSHM analysis with nMCS = 1000 samples, and we
obtain an estimate of the near-real time V oSHM = 1.34 · 106e. The V oSHM in this third case
study is one order of magnitude larger than in the previous two case studies. The reason for this
is that the close-down cost per day is large, and hence the expected total close-down costs largely
dominate the expected total life-cycle cost (the are one order of magnitude larger than the expected
total inspection, repair, and risk costs).

This result shows that an effective SHM system for near real-time diagnostics might provide signif-
icant economic benefit, if it leads to avoidance of unnecessary close-downs.

5.6.3.4 Fourth case study: Reliability-based management

In all three case studies of Section 5.6.3.1-Section 5.6.3.3, we employ the heuristic parameter vector
w∗

1 = [pI∗th = 5 · 10−4, pR∗
th = 1 · 10−3,∆tI = 5], which is optimized for the case without SHM, and

w∗
2 = [pI∗th = 5 · 10−4, pR∗

th = 1 · 10−3,∆tI = ∞]. The values pI∗th and pR∗
th of the thresholds used for

inspection and repair decisions imply failure rates that are higher than what is typically accepted by
authorities. As mentioned in Section 5.3.1, the presented framework can also be used when replacing
the optimization of the heuristic parameters by a choice based on expert assessment. The current
subsection aims to demonstrate the VoSHM quantification in the case when reliability thresholds
are imposed by authorities.

To this end, we revisit the first case study of Section 5.6.3.1, but we now assume that a threshold
for repairs pRth = 10−5 is imposed, and not subject to any optimization. We therefore optimize only
the inspection threshold, and we find pI∗th = 7 · 10−6. We eventually use the heuristic parameter
vector w∗

1 = [pI∗th = 7 · 10−6, pRth = 10−5,∆tI = 5] for the case of inspections only, and w∗
2 =

[pI∗th = 7 · 10−6, pRth = 10−5,∆tI = ∞] for the case with SHM, and we run a VoSHM analysis with
nMCS = 1000 samples. We quantify V oSHM = 7.70 · 104e. This value is slightly lower than
the VoSHM value from the first case study of Section 5.6.3.1, where both thresholds pIth, p

R
th were

optimized for the case without SHM.

5.7 Concluding remarks

This paper presents a Bayesian decision analysis framework for quantifying the expected gains that
continuous vibration-based SHM-aided maintenance planning can provide when compared against
the currently dominant approach of intermittent inspection-based maintenance planning; the Value
of SHM (VoSHM) metric is adopted for formally computing this benefit. The framework requires
the a-priori definition of damage scenarios and the associated stochastic deterioration models, de-
scribing the damage evolution over a target structure’s lifetime. Furthermore, a case-specific SHM
system model is necessary to allow for sampling of monitoring information. Contingent on these
considerations, this framework can support the a-priori decision, in an operational evaluation level,
on whether opting for an SHM system on a target structure can provide economic benefit.

We detail the computational aspects of a VoSHM analysis, which involves stochastic sequential
decision making, Bayesian analysis and structural reliability analysis. The modal data, identified
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sequentially over the structural life-cycle at different damage levels and for varying environmental
conditions, is sampled in a realistic manner, following a state-of-the-art operational modal analy-
sis procedure. The effect of the environmental variability present in the identified modal data is
accounted for via Bayesian analysis. Sequential Bayesian updating of the deterioration state and
model parameters, and consequently the structural reliability, is efficiently performed via adoption
of a particle filtering scheme. Heuristic decision strategies, based on the updating of the risk esti-
mation through inspection and monitoring, simplify the computationally challenging solution to the
stochastic sequential decision making problem. A detailed algorithmic summary of a VoSHM anal-
ysis is provided, which is meant to act as an implementation template of the proposed framework
for the interested reader.

We discuss a novel classification of SHM use cases in terms of the associated time scales for decision
making for infrastructure management. A gradual and shock stochastic deterioration model is
employed, which is flexible in simulating various of these use cases. By means of a numerical
model of a deteriorating two-span bridge system, we showcase the VoSHM analysis for four different
case studies, across different time scales. The results show that investing in SHM systems can
potentially lead to large benefits. It should be noted that the VoSHM framework of this paper does
not incorporate deterioration or failure of the SHM system itself, and does not take into account
modeling errors; it thus provides an upper limit to the “true” VoSHM. For the purpose of illustration,
in the presented numerical investigations, only a single deteriorating component has been considered,
which tends to underestimate the VoSHM. The framework can, however, be extended to multiple
deteriorating components. In general, the models utilized to showcase the illustrated framework in
this paper can be extended to incorporate additional factors and uncertainties. While this can lead
to increased computation, the main challenge to such extensions lies in the need for more detailed
modeling, which is often difficult to justify in real-world projects. Hence, we believe that the level
of detailing and accuracy reflected in the illustration in this paper is representative of what one can
do when assessing the benefit of real-world SHM systems.

This framework can be applied for optimal sensor placement studies as well. In this regard, the
sensor placement which leads to the optimal balance between a large VoSHM and a low life-cycle
cost of the SHM system would be the preferred arrangement.
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Abstract

Data-informed predictive maintenance planning largely relies on stochastic deterioration models.
Monitoring information can be utilized to update sequentially the knowledge on model parameters.
In this context, on-line (recursive) Bayesian filtering algorithms typically fail to properly quantify
the full posterior uncertainty of time-invariant deterioration model parameters. Off-line (batch)
algorithms are - in principle - better suited for the uncertainty quantification task, yet they are
computationally prohibitive in sequential settings. In this work, we adapt and investigate selected
Bayesian filters for parameter estimation: an on-line particle filter, an on-line iterated batch im-
portance sampling filter, which performs Markov chain Monte Carlo (MCMC) move steps, and an
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off-line MCMC-based sequential Monte Carlo filter. A Gaussian mixture model is used to approx-
imate the posterior distribution within the resampling process in all three filters. Two numerical
examples serve as the basis for a comparative assessment. The first case study considers a low-
dimensional, nonlinear, non-Gaussian probabilistic fatigue crack growth model that is updated with
sequential monitoring measurements. The second high-dimensional, linear, Gaussian case study
employs a random field to model corrosion deterioration across a beam, which is updated with se-
quential sensor measurements. The numerical investigations provide insights into the performance
of off-line and on-line filters in terms of the accuracy of posterior estimates and the computational
cost, when applied to problems of different nature, increasing dimensionality and varying sensor
information amount. Importantly, they show that a tailored implementation of the on-line particle
filter proves competitive with the computationally demanding MCMC-based filters. Suggestions on
the choice of the appropriate method in function of problem characteristics are provided.

Impact Statement

Stochastic models describing time-evolving deterioration processes are widespread in engineering.
In the modern data-rich engineering landscape, Bayesian methods can exploit monitoring data to
sequentially update knowledge on underlying model parameters. The precise probabilistic character-
ization of these parameters is indispensable for several real-world tasks, where decisions need to be
taken in view of the evaluated margins of risk and uncertainty. This work investigates and compares
on-line and off-line Bayesian filters and adapts the former for posterior uncertainty quantification of
time-invariant parameters. We show that tailored on-line particle filters are competitive alternatives
to off-line Bayesian filters, especially in certain high-dimensional settings.

6.1 Introduction

Structural deterioration of various forms is present in most mechanical and civil structures and
infrastructure systems. Accurate and effective tracking of structural deterioration processes can
help to effectively manage it and minimize the total life-cycle costs [8, 30, 51, 46]. The deployment
of sensors on structural components/systems can enable long-term monitoring of such processes.
Monitoring data obtained sequentially at different points in time must be utilized in an efficient
manner within a Bayesian framework to enable data-informed estimation and prediction of the
deterioration process evolution.

Monitored structural deterioration processes are commonly modeled using Markovian state-space
representations [63, 9, 5], whereby the deterioration state evolution is represented by a recursive
Markov process equation, and is subject to stochastic process noise [19]. Monitoring information
is incorporated by means of the measurement equation. The deterioration models further contain
time-invariant uncertain parameters. The state-space can be augmented to include these parameters,
if one wishes to obtain updated estimates thereof conditional on the monitoring information [80, 72,
83, 19, 90, 21, 45]; this is referred to as joint state-parameter estimation [73, 48].

A different approach entails defining the structural deterioration state evolution solely as a function

120



Chapter 6. On off-line and on-line Bayesian filtering for uncertainty quantification of
structural deterioration

of uncertain time-invariant model parameters [25, 87, 28, 78], which can be updated in view of the
monitoring data. This updating, referred to herein as Bayesian parameter estimation, is often the
primary task of interest. In this approach, the deterioration state variables are obtained as outputs
of the calibrated deterioration model with posterior parameter estimates [50, 69]. The parameter
estimation problem can be cast into a Markovian state-space representation. Quantifying the full
posterior uncertainty of the time-invariant model parameters is essential for performing monitoring-
informed predictions on the deterioration process evolution, the subsequent monitoring-informed
estimation of the time-variant structural reliability [81, 59] or the remaining useful life [83, 51], and
eventually for predictive maintenance planning.

Bayesian estimation of time-invariant deterioration model parameters is the main focus of this paper.
In long-term deterioration monitoring settings, where data is obtained sequentially at different points
in time, Bayesian inference can be performed either in an on-line or an off-line framework [79, 48,
4]. In literature, these are also referred to as recursive (on-line) and batch (off-line) estimation [73].
Parameter estimation is cast into a state-space setup to render it suitable for application with on-line
Bayesian filtering algorithms [48], such as the Kalman filter [44] and its nonlinear variants [42, 43,
22, 76], the ensemble Kalman filter [29], and particle filters [26, 18, 27, 40, 73, 84]. We employ
on-line particle filter methods for pure recursive estimation of time-invariant deterioration model
parameters. This is not the typical use case for such methods, which often yield degenerate and
impoverished posterior estimates, hence, failing to effectively characterize the posterior uncertainty
[61, 73]. In this work we tailor on-line particle filters for quantifying the full posterior uncertainty
of time-invariant model parameters. Subsequently, we provide a formal investigation and discussion
on their suitability with respect to this task.

In its most typical setting within engineering applications, Bayesian parameter estimation is com-
monly performed with the use of off-line Markov Chain Monte Carlo (MCMC) methods, which have
been used extensively in statistics and engineering to sample from complex posterior distributions
of model parameters [39, 35, 6, 38, 15, 65, 89, 57]. However, use of off-line methods for on-line
estimation tasks is computationally prohibitive [61, 48]. Additionally, when considering off-line in-
ference, in settings when measurements are obtained sequentially at different points in time, off-line
MCMC methods tend to induce a larger computational cost than on-line particle filter methods,
which can be important, e.g., when optimizing inspection and monitoring [67, 56, 45]. Questions
that we investigate in this context include: Can one precisely quantify the posterior uncertainty of
time-invariant parameters when employing on-line particle filter methods? How does this quantifi-
cation compare against the posterior estimates obtained with off-line MCMC methods? How does
the estimation accuracy depend on the nature of the problem, i.e., dimensionality, nonlinearity, or
non-Gaussianity? What is the computational cost induced by the different methods? Ideally, one
would opt for the method which can provide sufficiently accurate posterior results at the expense of
the least computational cost. To address these questions, this paper selects and adapts algorithms
in view of parameter estimation, and performs a comparative assessment of selected off-line and
on-line Bayesian filters specifically tailored for posterior uncertainty quantification of time-invariant
parameters. The innovative comparative assessment results in a set of suggestions on the choice of
the appropriate algorithm in function of problem characteristics.

The paper is structured as follows. Section 6.2 provides a detailed description of on-line and off-line
Bayesian inference in the context of parameter estimation. Three different selected and adapted
Bayesian filters are presented in algorithmic detail, namely an on-line particle filter with Gaussian
mixture-based resampling (PFGM) [60, 58], the on-line iterated batch importance sampling filter
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(IBIS) [17], which performs off-line MCMC steps with a Gaussian mixture as a proposal distribution,
and an off-line MCMC-based sequential Monte Carlo (SMC) filter [61], which enforces tempering
of the likelihood function (known as simulated annealing) to sequentially arrive to the single final
posterior density of interest [64, 41]. The tPFGM and tIBIS variants, which adapt the PFGM and
IBIS filters by employing tempering of the likelihood function of each new measurement, are further
presented and proposed for problems with high sensor information amount. Section 6.3 describes the
two case studies that serve as the basis for numerical investigations, one non-linear, non-Gaussian
and low-dimensional and one linear, Gaussian and high-dimensional. MATLAB codes implementing
the different algorithms and applying them on the two case studies introduced in this paper are made
publicly available via a GitHub repository1. Section 6.4 summarizes the findings of this comparative
assessment, provides suggestions on choice of the appropriate method according to the nature of the
problem, discusses cases which are not treated in our investigations, and concludes this work.

6.2 On-line and off-line Bayesian filtering for time-invariant param-
eter estimation

This work assumes the availability of a stochastic deterioration model D, parametrized by a vec-
tor θ ∈ IRd containing the d uncertain time-invariant model parameters. We collect the uncertain
parameters influencing the deterioration process in the vector θ. In the Bayesian framework, θ is
modeled as a vector of random variables with a prior distribution πpr(θ). We assume that the deteri-
oration process is monitored via a permanently installed monitoring system. Long-term monitoring
of a deterioration process leads to sets of noisy measurements {y1, . . . , yn} obtained sequentially
at different points in time {t1, . . . , tn} throughout the lifetime of a structural component/system.
Such measurements can be used to update the distribution of θ; this task is referred to as Bayesian
parameter estimation. Within a deterioration monitoring setting, Bayesian parameter estimation
can be performed either in an on-line or an off-line framework [48], depending on the task of interest.

In an on-line framework, one is interested in updating the distribution of θ in a sequential manner,
i.e., at every time step tn when a new measurement yn becomes available, conditional on all mea-
surements available up to tn. Thus, in an on-line framework, inference of the sequence of posterior
densities {πpos(θ|y1:n)}n≥1 is the goal, where y1:n denotes the components {y1, . . . , yn}. We point
out that in this paper the term on-line does not relate to “real-time” estimation, although on-line
algorithms are also used in real-time estimation [13, 71].

In contrast, in an off-line framework, inference of θ is performed at a fixed time step tN using a fixed
set of measurements {y1, . . . , yN}, and the single posterior density πpos(θ|y1:N ) is sought, which can
be estimated via Bayes’ rule as

πpos(θ|y1:N ) ∝ L(y1:N |θ)πpr(θ), (6.1)

where L(y1:N |θ) denotes the likelihood function of the whole measurement set y1:N given the pa-
rameters θ. With the assumption that measurements are independent given the parameter state,

1https://github.com/antoniskam/Offline_online_Bayes
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L(y1:N |θ) can be expressed as a product of the likelihoods L(yn|θ) as

L(y1:N |θ) =
N∏

n=1

L(yn|θ). (6.2)

MCMC methods sample from πpos(θ|y1:N ) via simulation of a Markov chain with πpos(θ|y1:N ) as its
stationary distribution, e.g., by performing Metropolis Hastings (MH) steps [39]. MCMC methods do
not require estimation of the normalization constant in Eq. (6.1). However, in the on-line framework,
MCMC methods are impractical, since they require simulating anew a different Markov chain for each
new posterior πpos(θ|y1:n), and the previously generated Markov chain for the posterior estimation
of πpos(θ|y1:n−1) is not accounted for, except when choosing the seed for initializing the new Markov
chain. This implies that MCMC methods quickly become computationally prohibitive in the on-line
framework, already for a small n. An additional computational burden stems from the fact that
each step within the MCMC sampling process requires evaluation of the full likelihood function
L(y1:n|θ), i.e., the whole set of measurements y1:n needs to be processed. This leads to increasing
computational complexity for increasing n, and can render use of MCMC methods computationally
inefficient even for off-line inference, especially when N is large.

On-line particle filters [73, 48] operate in a sequential fashion by making use of the Markovian
property of the employed state-space representation, i.e., they compute πpos(θ|y1:n) solely based on
πpos(θ|y1:n−1) and the new measurement yn. The typical use of particle filters targets the tracking
of a system’s response (dynamic state) by means of a state-space representation [37, 73], while
they are often also used also for joint state-parameter estimation tasks, wherein the state-space is
augmented to include the model parameters to be estimated [73, 48]. In addition, particle filters
can also be applied for pure recursive estimation of time-invariant parameters, for which the noise in
the dynamic model is formally zero [61, 73], although this is not the typical setting for application
of particle filters. A model of the Markovian discrete time state-space representation for the case of
time-invariant parameter estimation is given in Eqs. (6.3a) and (6.3b)

θn = θn−1 (6.3a)
yn = Dn (θn) exp (ϵn) , (6.3b)

where ϵn models the error/noise of the measurement at time tn, and θn denotes the time-invariant
parameter vector at time step n. The dynamic equation for the time-invariant parameters Eq. (6.3a)
is introduced for the sole purpose of casting the problem into a state-space representation. Since the
measurements are assumed independent given the parameter state, the errors ϵn in Eq. (6.3b) are
independent. It should be noted that the measurement error, which is introduced in multiplicative
form in Eq. (6.3b), is commonly expressed in an additive form [19]. Indeed, Eq. (6.3b) can be
reformulated in the logarithmic scale, whereby the measurement error is expressed in an additive
form. The multiplicative form of the measurement error in Eq. (6.3b) is consistent with the fact
that - in the context of structural deterioration - measurements yn cannot be negative. All target
distributions of interest in the sequence πpos(θn|y1:n) are defined on the same space of θ ∈ IRd.
In the remainder of this paper, the subscript n will therefore be dropped from θn. As previously
discussed, particle filters are mainly used for on-line inference. However, these can also be used in
exactly the same way for off-line inference, where only a single posterior density πpos(θ|y1:N ) is of
interest. In this case, particle filters use the sequence of measurements successively to sequentially
arrive to the final single posterior density of interest via estimating all the intermediate distributions.
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6.2.1 On-line Particle Filter

Particle filter (PF) methods, also referred to as sequential Monte Carlo (SMC) methods, are impor-
tance sampling-based techniques that use a set of weighted samples {(θ(i)

n , w
(i)
n ) : i = 1, . . . , Npar},

called particles, to represent the posterior distribution of interest at estimation time step n, πpos(θ|y1:n).
PFs form the following approximation to the posterior distribution of interest:

πpos(θ|y1:n) ≈
Npar∑

i=1

w(i)
n δ(θ − θ(i)

n ), (6.4)

where δ denotes the Dirac delta function.

When a new measurement yn becomes available, PFs shift from πpos(θ|y1:n−1) to πpos(θ|y1:n) by
importance sampling using an appropriately chosen importance distribution, which results in a
reweighting procedure (updating of the weights). An important issue that arises from this weight
updating procedure is the sample degeneracy problem [73]. This relates to the fact that the impor-
tance weights w

(i)
n become more unevenly distributed with each updating step. In most cases, after

a certain number of updating steps, the weights of almost all the particles assume values close to
zero (see Fig. 6.1). This problem is alleviated by the use of adaptive resampling procedures based on
the effective sample size Neff = 1/

∑Npar
i=1 (w

(i)
n )2 [55]. Most commonly, resampling is performed with

replacement according to the particle weights whenever Neff drops below a user-defined threshold
NT = cNpar, c ∈ [0, 1]. Resampling introduces additional variance to the parameter estimates [73].
In the version of the PF algorithm presented in Alg. 1, the dynamic model of Eq. (6.3) is used as the
importance distribution, as originally proposed in the bootstrap filter by [37]. Theoretical analysis
of PF algorithms can be found in numerous seminal sources, e.g., [18, 61, 40].

Algorithm 1 Particle Filter (PF)

1: generate Npar initial particles θ(i) from πpr(θ), i = 1, . . . , Npar

2: assign initial weights w
(i)
0 = 1/Npar, i = 1, . . . , Npar

3: for n = 1, . . . , N do

4: evaluate likelihood of the particles based on new measurement yn, L(i)
n = L

(
yn | θ(i)

)

5: update particle weights w
(i)
n ∝ L

(i)
n · w(i)

n−1 and normalize s.t.
∑Npar

i=1 w
(i)
n = 1

6: evaluate Neff = 1∑Npar
i=1

(
w

(i)
n

)2

7: if Neff < NT then
8: resample particles θ(i) with replacement according to w

(i)
n

9: reset particle weights to w
(i)
n = 1/Npar

10: end if
11: end for

When using PFs to estimate time-invariant parameters, for which the process noise in the dynamic
equation is zero, one runs into the issue of sample impoverishment [73]. The origin of this issue is the
resampling process. More specifically, after a few resampling steps, most (or in extreme cases all) of
the particles in the sample set end up assuming the exact same value, i.e., the particle set consists
of only few (or one) distinct particles (see Fig. 6.1). The sample impoverishment issue poses the
greatest obstacle for time-invariant parameter estimation with PFs. A multitude of techniques have
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Prior particle distribution

Posterior particle distribution (sample degeneracy)

Resampled posterior particle distribution (sample impoverishment)

Ideal posterior particle distribution

Prior distribution
Posterior distribution

Figure 6.1: Sample degeneracy and impoverishment

been suggested in literature to alleviate the sample impoverishment issue in joint state-parameter
estimation setups [see, e.g., 36, 54, 62, 79, 1, 10, 2, 16, 12]. Fewer works have proposed solutions
for resolving this issue in parameter estimation setups [see, e.g., 17, 61]. One of the simplest and
most commonly used approaches consists in introducing artificial dynamics in the dynamic model
of the parameter vector, i.e., the dynamic model θn = θn−1 + ϵn−1 is employed, where ϵn−1 is a
small artificial process noise [52]. In this way, the time-invariant parameter vector is transformed
into a time-variant one, therefore, the parameter estimation problem deviates from the original one
[73, 48]. This approach can introduce a bias and an artificial variance inflation in the estimates [48].
For these reasons, this approach is not considered in this paper.

To resolve the sample impoverishment issue encountered when using the PF Alg. 1 for parameter es-
timation, this work employs the particle filter with Gaussian mixture resampling (PFGM), described
in Alg. 2. The PFGM algorithm relates to pre-existing concepts [60, 86], and is here specifically
tailored for the parameter estimation task, with its main goal being, in contrast to previous works,
the quantification of the full posterior parameter uncertainty. A comparison between Algs. 1 and 2
shows that the only difference lies in the way that the resampling step is performed. PFGM replaces
the standard resampling process of PF by first approximating the posterior distribution at estimation
step n by a Gaussian mixture model (GMM), which is fitted via the Expectation-Maximization (EM)
algorithm [58, 14] on the weighted particle set. The degenerating particle set is then rejuvenated by
sampling Npar new particles from the GMM of Eq. (6.5),

p (θ | y1:n) ≈
NGM∑

i=1

ϕiN (θ;µi,Σi) , (6.5)

where ϕi represents the weight of the Gaussian component i, while µi and Σi are the respective
mean vector and covariance matrix. The number of Gaussians in the mixture NGM, has to be chosen
in advance, or can be estimated by use of appropriate algorithms [74, 11, 33]. In the numerical
investigations of Section 6.3, we set NGM=8. We point out that the efficacy of PFGM strongly
depends on the quality of the GMM posterior approximation. The reason for applying a GMM (and
not a single Gaussian) is that the posterior distribution can deviate from the normal distribution,
and can even be multimodal or heavy-tailed.
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Algorithm 2 Particle Filter with Gaussian mixture resampling (PFGM)

1: generate Npar initial particles θ(i) from πpr(θ), i = 1, . . . , Npar

2: assign initial weights w
(i)
0 = 1/Npar, i = 1, . . . , Npar

3: for n = 1, . . . , N do

4: evaluate likelihood of the particles based on new measurement yn, L(i)
n = L

(
yn | θ(i)

)

5: update particle weights w
(i)
n ∝ L

(i)
n · w(i)

n−1 and normalize s.t.
∑Npar

i=1 w
(i)
n = 1

6: evaluate Neff = 1∑Npar
i=1

(
w

(i)
n

)2

7: if Neff < NT then
8: EM: fit a Gaussian mixture proposal distribution gGM(θ) according to {θ(i), w

(i)
n }

9: sample Npar new particles θ(i) from gGM(θ)

10: reset particle weights to w
(i)
n = 1/Npar

11: end if
12: end for

The simple reweighting procedure used in the on-line PFs is based on the premise that πpos(θ|y1:n−1)
and πpos(θ|y1:n) are likely to be similar, i.e., that the new measurement yn will not cause a very large
change in the posterior. However, when that is not the case, this simple reweighting procedure is
bound to perform poorly, leading to very fast degeneration of the particle set. In cases where already
the first measurement set y1 is strongly informative relative to the prior, the PF is bound to strongly
degenerate already in the first weight updating step (e.g., we observe this in the second case study
of Section 6.3.2 in the case of 10 sensors). To counteract this issue, in this paper we incorporate the
idea of simulated annealing (enforcing tempering of the likelihood function) [64] when needed within
the on-line PFGM algorithm, which we term the tPFGM Alg. 3. The tPFGM algorithm draws
inspiration from previous works [31, 24], but is here tailored for the parameter estimation task,
opting for the quantification of the full posterior parameter uncertainty. The algorithm operates as
follows: At estimation time step n, before performing the reweighting operation, the algorithm first
checks the updated effective sample size for indication of sample degeneracy. If no degeneracy is
detected, tPFGM operates exactly like PFGM. When sample degeneracy occurs, tPFGM employs
adaptive tempering of the likelihood L (yn | θ) of the new measurement yn in order to “sequentially”
sample from πpos(θ|y1:n−1) to πpos(θ|y1:n) by visiting a sequence of artificial intermediate posteriors,
as defined by the tempered likelihood function Lq (yn | θ). The tempering factor q takes values
between 0 and 1. When q = 0, the new measurement yn is neglected, while q = 1 entails considering
the whole likelihood function of yn, thus reaching to πpos(θ|y1:n). The intermediate values of q are
adaptively selected via solution of the optimization problem in line 11 of Alg. 3, which ensures that
the effective sample size does not drop below the threshold NT for the chosen q value. Naturally,
use of tPFGM can trigger more resampling events than PFGM, as resampling can occur more than
once within a time step n.

The PFGM and tPFGM filters rely entirely on the posterior approximation via a GMM for sampling
Npar new particles during the resampling process. However, there is no guarantee that these new
particles follow the true posterior distribution of interest. The IBIS filter of the following Section 6.2.2
aims at addressing this issue.
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Algorithm 3 Particle Filter with Gaussian mixture resampling and likelihood tempering (tPFGM)

1: generate Npar initial particles θ(i) from πpr(θ), i = 1, . . . , Npar

2: assign initial weights w
(i)
0 = 1/Npar, i = 1, . . . , Npar

3: for n = 1, . . . , N do

4: evaluate likelihood of the particles based on new measurement yn, L(i)
n = L

(
yn | θ(i)

)

5: set q = 0 and create auxiliary particle weights w
(i)
a = w

(i)
n−1

6: while q ̸= 1 do

7: if Neff =

(∑Npar
i=1 w

(i)
a · L(i)

n

1−q
)2 /∑Npar

i=1

(
w

(i)
a · L(i)

n

1−q
)2

> NT then

8: update auxiliary particle weights w(i)
a ∝ w

(i)
a ·L(i)

n

1−q
and normalize s.t.

∑Npar
i=1 w

(i)
a = 1

9: set q = 1
10: else

11: solve
(∑Npar

i=1 w
(i)
a · L(i)

n

dq
)2 /∑Npar

i=1

(
w

(i)
a · L(i)

n

dq
)2

−NT = 0 for dq

12: set qnew = min [q + dq, 1]
13: set dq = qnew − q and q = qnew

14: update auxiliary particle weights w
(i)
a ∝ w

(i)
a ·L(i)

n

dq
and normalize s.t.

∑Npar
i=1 w

(i)
a = 1

15: EM: fit a Gaussian mixture proposal distribution gGM(θ) according to {θ(i), w
(i)
a }

16: sample Npar new particles θ(i) from gGM(θ)

17: reset auxiliary particle weights to w
(i)
a = 1/Npar

18: end if
19: end while
20: set w

(i)
n = w

(i)
a

21: end for

6.2.2 Iterated Batch Importance Sampling

Implementing MCMC steps within PF methods to move the particles after a resampling step was
originally proposed by [36], in the so-called resample-move algorithm. [17] introduced a special case
of the resample-move algorithm, specifically tailored for application to static parameter estimation
purposes, namely the iterated batch importance sampling (IBIS) filter. IBIS was originally intro-
duced as an iterative method for solving off-line estimation tasks by incorporating the sequence of
measurements one at a time. In doing this, the algorithm visits the sequence of intermediate pos-
teriors within its process, and can therefore also be used to perform on-line estimation tasks. An
on-line version of the IBIS filter is presented in Alg. 5, used in conjuction with the MCMC routine
of Alg. 4.

The core idea of the IBIS filter is the following: At estimation step n, if sample degeneracy is iden-
tified, first the particles are resampled with replacement, and subsequently the resampled particles
are moved with a Markov chain transition kernel whose stationary distribution is πpos(θ|y1:n). More
specifically, each of the Npar resampled particles is used as the seed to perform a single MCMC step.
This approach is inherently different to standard applications of MCMC, where a transition kernel
is applied multiple times on one particle.

127



6.2. On-line and off-line Bayesian filtering for time-invariant parameter estimation

A question that arises is how to choose the Markov chain transition kernel. [17] argues for choosing
a transition kernel that ensures that the proposed particle only weakly depends on the seed particle
value. It is therefore recommended to use an independent Metropolis-Hastings (IMH) kernel, wherein
the proposed particle is sampled from a proposal distribution g, which has to be as close as possible to
the target distribution πpos(θ|y1:n). In obtaining such a proposal distribution, along the lines of what
is described in Section 6.2.1, in this work we employ a GMM approximation (see Eq. (6.5)) of the
target distribution as the proposal density gGM(θ) within the IMH kernel [66, 77]. The IMH kernel
with a GMM proposal distribution is denoted IMH-GM herein. The acceptance probability (line 6 of
Alg. 4) of the IMH-GM kernel is a function of both the initial seed particle and the GMM proposed
particle. The acceptance rate can indicate how efficient the IMH-GM kernel is in performing the
MCMC move step within the IBIS algorithm. It is important to note that when computing the
acceptance probability, a call of the full likelihood function is invoked, which requires the whole set
of measurements y1:n to be processed; this leads to a significant additional computational demand,
which pure on-line methods are not supposed to accommodate [26].

The performance of the IBIS sampler depends highly on the mixing properties of the IMH-GM
kernel. If the kernel leads to slowly decreasing chain auto-correlation, the moved particles are bound
to remain in regions close to the particles obtained by the resampling step. This can lead to an
underrepresentation of the parameter space of the intermediate posterior distribution. It might
therefore be beneficial to add a burn-in period within the IMH-GM kernel [61]. Implementing that
is straightforward and is shown in Alg. 4, where nB is the user-defined number of burn-in steps.
Naturally, the computational cost of the IMH-GM routine increases linearly with the number of
burn-in steps.

Algorithm 4 Independent Metropolis Hastings with GM proposal (IMH-GM)

1: IMH-GM Input: {θ(i), L(i) · πpr(θ
(i))}, πpr(θ), L(y1:n|θ) and gGM(θ)

2: for i = 1, . . . , Npar do
3: for j = 1, . . . , nB + 1 do

4: sample candidate particle θ
(i)
c,j from gGM(θ)

5: evaluate L
(i)
c,j = L(y1:n|θ(i)

c,j) for candidate particle

6: evaluate acceptance ratio α = min

[
1,

L
(i)
c,j ·πpr(θ

(i)
c,j)·gGM(θ(i))

L(i)·πpr(θ
(i))·gGM(θ

(i)
c,j)

]

7: generate uniform random number u ∈ [0, 1]
8: if u < α then
9: replace {θ(i), L(i) · πpr(θ

(i))} with {θ(i)
c,j , L

(i)
c,j · πpr(θ

(i)
c,j)}

10: end if
11: end for
12: end for
13: IMH-GM Output: {θ(i), L(i) · πpr(θ

(i))}

Alg. 5 details the workings of the IMH-GM-based IBIS filter used in this work. In line 11 of this
algorithm, the IMH-GM routine of Alg. 4 is called, which implements the IMH-GM kernel for the
MCMC move step. Comparing Algs. 2 and 5, it is clear that both filters can be used for on-line
inference within a single run, but the IBIS filter has significantly larger computational cost, as
will also be demonstrated in the numerical investigations of Section 6.3. In the same spirit as the
proposed tPFGM Alg. 3, which enforces simulated annealing (tempering of the likelihood function)

128



Chapter 6. On off-line and on-line Bayesian filtering for uncertainty quantification of
structural deterioration

in cases when πpos(θ|y1:n−1) and πpos(θ|y1:n) are likely to be quite different, the same idea can be
implemented also within the IBIS algorithm. That leads to what we refer to as the tIBIS algorithm
in this paper.

Algorithm 5 IMH-GM-based Iterated Batch Importance Sampling (IBIS)

1: generate Npar initial particles θ(i) from πpr(θ), i = 1, . . . , Npar

2: assign initial weights w
(i)
0 = 1/Npar, i = 1, . . . , Npar

3: for n = 1, . . . , N do

4: evaluate likelihood of the particles based on new measurement yn, L(i)
n = L

(
yn | θ(i)

)

5: evaluate the new target distribution, L(y1:n|θ(i)) ·πpr

(
θ(i)
)
= L

(i)
n ·L(y1:n−1|θ(i)) ·πpr

(
θ(i)
)

6: update particle weights w
(i)
n ∝ L

(i)
n · w(i)

n−1 and normalize s.t.
∑Npar

i=1 w
(i)
n = 1

7: evaluate Neff = 1∑Npar
i=1

(
w

(i)
n

)2

8: if Neff < NT then
9: EM: fit a Gaussian mixture proposal distribution gGM(θ) according to {θ(i), w

(i)
n }

10: resample Npar new particles {θ(i), L(y1:n|θ(i)) · πpr(θ
(i))} with replacement according to

w
(i)
n

11: IMH-GM step with inputs {θ(i), L(y1:n|θ(i)) · πpr(θ
(i))}, πpr(θ), L(y1:n|θ) and gGM(θ)

12: reset particle weights to w
(i)
n = 1/Npar

13: end if
14: end for

6.2.3 Off-line Sequential Monte Carlo sampler

In Section 4 of [61], the authors presented a generic approach to convert an off-line MCMC sampler
into a sequential Monte Carlo (SMC) sampler tailored for performing off-line estimation tasks, i.e.,
for estimating the single posterior density of interest πpos(θ|y1:N ). The off-line SMC sampler used in
this work is presented in Alg. 6 based on [61] and [41]. The key idea of this sampler is to adaptively
construct the following artificial sequence of densities,

πj(θ|y1:N ) ∝ Lqj (y1:N |θ)πpr(θ), (6.6)

where qj is a tempering parameter which obtains values between 0 and 1, in order to “sequentially”
sample in a smooth manner from the prior to the final single posterior density of interest. Once
qj = 1, πpos(θ|y1:N ) is reached. Similar to what was described in tPFGM, the intermediate values
of qj are adaptively found via solution of the optimization problem in line 5 of Alg. 6. The GMM
approximation of the intermediate posteriors and the IMH-GM kernel of Alg. 4 in order to move the
particles after resampling are also key ingredients of this SMC sampler. Unlike PFGM and IBIS,
this SMC algorithm cannot provide the on-line solution within a single run, and has to be rerun from
scratch for every new target posterior of interest. In this regard, use of Alg. 6 for on-line inference
is impractical. We choose to include this algorithm for the purpose of the comparative assessment
in this paper, as off-line algorithms are generally considered to be better suited for the full posterior
uncertainty quantification of time-invariant parameters.
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Algorithm 6 IMH-GM-based Sequential Monte Carlo (SMC)

1: generate Npar initial particles θ(i) from πpr(θ), i = 1, . . . , Npar

2: evaluate for every particle the full likelihood L(i) = L(y1:N | θ(i)) and the prior πpr(θ
(i))

3: set q = 0
4: while q ̸= 1 do

5: solve
(∑Npar

i=1 L(i)dq
)2 /∑Npar

i=1 L(i)2·dq −NT = 0 for dq

6: set qnew = min [q + dq, 1]
7: set dq = qnew − q and q = qnew

8: evaluate particle weights w(i) ∝ L(i)dq and normalize s.t.
∑Npar

i=1 w(i) = 1

9: EM: fit a Gaussian mixture proposal distribution gGM(θ) according to {θ(i), w(i)}
10: resample Npar new particles {θ(i), L(i)q · πpr(θ

(i))} with replacement according to w(i)

11: IMH-GM step with inputs {θ(i), L(i)q · πpr(θ
(i))} , πpr(θ), Lq(y1:N |θ) and gGM(θ)

12: reset particle weights to w(i) = 1/Npar
13: end while

6.2.4 Computational remarks

The algebraic operations in all presented algorithms are implemented in the logarithmic scale, which
employs evaluations of the logarithm of the likelihood function and, hence, ensures computational
stability. Furthermore, the EM step for fitting the GMM is performed after initially transforming
the prior joint probability density function of θ to an underlying vector u of independent standard
normal random variables [53]. In standard normal space, the parameters are decorrelated, which
enhances the performance of the EM algorithm.

6.3 Numerical investigations

6.3.1 Low-dimensional case study: Paris-Erdogan fatigue crack growth model

A fracture mechanics-based model serves as the first case study. This describes the fatigue crack
growth evolution under increasing stress cycles [68, 25]. The crack growth follows the following
first-order differential Eq. (6.7), known as Paris-Erdogan law,

da (n,θ)

dn
= exp (Cln)

[
∆S
√
πa (n)

]m
(6.7)

where θ = [a,∆S,Cln,m] is a vector containing the uncertain time-invariant model parameters.
Specifically, a is the crack length, n is the number of stress cycles, ∆S is the stress range per
cycle when assuming constant stress amplitudes, C and m represent empirically determined model
parameters; Cln corresponds to the natural logarithm of C.

The solution to this differential equation, with boundary condition a (n = 0) = a0, can be written as
a function of the number of stress cycles n and the vector θ = [a0,∆S,Cln,m] as (for the derivation
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see, e.g., [25]):

a (n,θ) =
[(

1− m

2

)
exp (Cln)∆Smπm/2n+ a

(1−m/2)
0

](1−m/2)−1

. (6.8)

We assume that noisy measurements of the crack yn are obtained sequentially at different values of
n. The measurement Eq. (6.9) assumes a multiplicative lognormal measurement error, exp (ϵn).

yn = a(n,θ) exp (ϵn) (6.9)

In numerical investigations that follow, the measurement Eq. (6.9) is used for generating synthetic
measurements of the deterioration state. In this context, a multiplicative lognormal measurement
error ensures that non-negative generated measurements of the deterioration state are not feasible.

Under this assumption, the likelihood function for a measurement at a given n is shown in Eq. (6.10).

L
(
yn; a (n,θ)

)
=

1

σϵn
√
2π

exp


−1

2

(
ln (yn)− µϵn − ln

(
a (n,θ)

)

σϵn

)2

 (6.10)

Tab. 6.1 shows the prior probability distribution model for each random variable in the vector θ [25,
80], as well as the assumed probabilistic model of the measurement error. In this case study we are
dealing with a non-linear model and a parameter vector with non-Gaussian prior distribution.

Table 6.1: Prior distribution model for the fatigue crack growth model parameters and the measure-
ment error.

Parameter Distribution Mean Standard Deviation Correlation
a0 Exponential 1 1 −
∆S Normal 60 10 −

Cln, m Bi-Normal (−33; 3.5) (0.47; 0.3) ρCln,m = −0.9
exp (ϵn) Log-normal 1.0 0.1508 −

6.3.1.1 Markovian state-space representation for application of on-line filters

A Markovian state-space representation of the deterioration process is required for application of on-
line filters. The number of stress cycles is discretized as n = k∆n, with k = 1, . . . , 100 denoting the
estimation time step and ∆n = 1× 105 the number of stress cycles per time step. The dynamic and
measurement equations of the discrete-time state-space representation of the fatigue crack growth
model with unknown time-invariant parameters θ = [a0,∆S,Cln,m] are shown below:

θk = θk−1

yk = a (k∆n,θk) exp (ϵk) =
[(

1− mk

2

)
exp (Clnk

)∆Smk
k πmk/2k∆n+ a

(1−mk/2)
0

](1−mk/2)
−1

exp (ϵk) .

(6.11)
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Figure 6.2: Reference posterior solution: mean and credible intervals for the sequence of posterior
distributions πpos (θ|y1:k).
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Figure 6.3: Reference mean and credible intervals for the filtered crack growth state a(k∆n,θ).

The state-space model of Eq. (6.11) is nonlinear and the prior is non-Gaussian. For reasons explained
in Section 6.2, the subscript k in θk is dropped in the remainder of this section.

6.3.1.2 Reference posterior solution

For the purpose of performing a comparative assessment of the different filters, an underlying “true"
realization of the fatigue crack growth process a∗(n,θ) is generated for n = k∆n, with k = 1, . . . , 100
and ∆n = 1 × 105. This realization corresponds to the randomly generated “true” vector of time-
invariant parameters θ∗ = [a∗0 = 2.0,∆S∗ = 50.0, C∗

ln = −33.5,m∗ = 3.7]. Sequential synthetic
crack monitoring measurements yk are sampled from the measurement Eq. (6.9) for a(k∆n,θ∗), and
for randomly generated measurement noise samples exp (ϵk). These measurements are scattered in
green in Fig. 6.3.

Based on the generated measurements, the sequence of reference posterior distributions πpos (θ|y1:k)
is obtained using the prior distribution as an envelope distribution for rejection sampling [75, 70].
More specifically, for each of the 100 posterior distributions of interest πpos (θ|y1:k), 105 independent
samples are generated. The results of this reference posterior estimation of the four time-invariant
model parameters are plotted in Fig. 6.2. With posterior samples, the reference filtered estimate
of the crack length a(k∆n,θ) at each estimation step is also obtained via the model of Eq. (6.8)
and plotted in Fig. 6.3. In the left panel of this figure, the filtered state is plotted in logarithmic
scale. In an off-line estimation, a single posterior density is of interest. One such reference posterior
estimation result for the last estimation step, πpos (θ|y1:100), is plotted for illustration in Fig. 6.4.
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Figure 6.4: Reference final posterior: prior and single posterior distribution of interest πpos (θ|y1:100).

6.3.1.3 Comparative assessment of the investigated on-line and off-line filters

We apply the PFGM filter with 5000 and 50000 particles, the IBIS filter with 5000 particles, and the
SMC filter with 5000 particles for performing on-line and off-line time-invariant parameter estimation
tasks. We evaluate the performance of each filter by taking the relative error of the estimated mean
and standard deviation of each of the four parameters with respect to the reference posterior solution.
For example, the relative error in the estimation of the mean of parameter a0 at a certain estimation
step k is computed as |µa0,k

−µ̂a0,k

µa0,k
|, where µa0,k is the reference posterior mean from rejection-

sampling (Section 6.3.1.2), and µ̂a0,k is the posterior mean estimated with each filter. Each filter is
run 50 times, and the mean relative error of the mean and the standard deviation of each parameter,
together with the 90% credible intervals (CI), are obtained. These are plotted in Fig. 6.5.

Figure 6.5: Comparison of the relative error of the mean and standard deviation of the parameters
evaluated for each filter. The solid lines show the mean and the shaded areas the 90% credible
intervals inferred from 50 repeated runs of each filter. In the horizontal axis, n is the number of
stress cycles.

Fig. 6.6 plots the L2 relative error norm of the mean and the standard deviation of all four parameters,
i.e., the quantity of Eq. (6.12) (here formulated for the mean at estimation step k)

√√√√
∑d

i=1 (µi,k − µ̂i,k)
2

∑d
i=1 (µi,k)

2
, (6.12)
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Figure 6.6: Comparison of the L2 relative error norm of the mean and the standard deviation of
the parameters evaluated for each filter. The solid lines show the mean and the shaded areas the
90% credible intervals inferred from 50 repeated runs of each filter. In the horizontal axis, n is the
number of stress cycles.

Table 6.2: Average number of model evaluations (Eq. (6.8)) for the fatigue crack growth model
parameter estimation.

method PFGM 5000 PFGM 50000 IBIS SMC (final posterior) SMC (all posteriors)
model evaluations 5× 105 5× 106 3.4× 106 4.5× 106 1.9× 108

where d is the dimensionality of the time-invariant parameter vector θ (in this example d = 4).
More specifically, Fig. 6.6 plots the mean and credible intervals of the L2 relative error norm of the
estimated mean and standard deviation, as obtained from 50 runs of each filter.

Figs. 6.5 and 6.6 reveal that, when all three filters are run with the same number of particles, the
IBIS and SMC filters yield superior performance over PFGM. When the number of particles in the
PFGM filter is increased to 50000, the PFGM filter performance is comparable to the one of the
IBIS and SMC filters. In estimating the mean, the mean L2 relative error norm obtained from
the PFGM filter with 50000 particles is slightly larger than the corresponding error obtained from
IBIS and SMC with 5000 particles, while the 90% credible intervals of the PFGM filter estimation
are still wider. In estimating the standard deviation, the PFGM filter with 50000 particles proves
competitive.

Figs. 6.5 and 6.6 show the estimation accuracy of each filter when used for on-line inference, i.e.,
for estimating the whole sequence of 100 posterior distributions πpos (θ|y1:k), k = 1, . . . , 100. The
PFGM and IBIS filters, being intrinsically on-line filters, provide the whole posterior sequence with
one run. On the other hand, the off-line SMC filter is run anew for each of the 100 required posterior
estimations. Hence, Figs. 6.5 and 6.6 enclose the results of both the on-line and the off-line inference.
If one is interested in the off-line estimation accuracy at a specific stress cycle n, one can simply
consider a vertical “cut” at n.

Tab. 6.2 documents the computational cost associated with each filter, expressed in the form of
required model evaluations induced by calls of the likelihood function. When using the term model,
we refer to the model defined in Eq. (6.8), which corresponds to an analytical expression with negli-
gible associated runtime. However, unlike the simple measurement equation that we have assumed

134



Chapter 6. On off-line and on-line Bayesian filtering for uncertainty quantification of
structural deterioration

in this example, in many realistic deterioration monitoring settings, the deterioration state cannot
be measured directly (e.g., in vibration-based structural health monitoring [46]). In such cases, each
deterioration model evaluation often entails evaluation of a finite element (FE) model, which has
substantial runtime. It therefore appears appropriate to evaluate the filters’ computational cost in
terms of required model evaluations. The on-line PFGM filter with 5000 particles requires 5 × 105

model evaluations, and yields by far the smallest computational cost, while at the same time pro-
viding the solution to both on-line and off-line estimation tasks. However, it also yields the worst
performance in terms of accuracy of the posterior estimates. Running the IBIS filter with 5000
particles, which performs MCMC move steps, leads to 3.4 × 106 model evaluations. Comparing
this value against the 5 × 105 model evaluations required by the PFGM filter with 5000 particles
for performing the same task distinctly shows the computational burden associated with MCMC
move steps, which require a complete browsing of the whole measurement data set in estimating the
acceptance probability. However, the IBIS filter also leads to enhanced estimation accuracy, which
might prove significant when the subsequent tasks entail prognosis of the deterioration evolution,
the structural reliability or the remaining useful lifetime, and eventually the predictive maintenance
planning. Using 50000 particles, the PFGM filter performance increases significantly with a com-
putational cost that is comparable to the IBIS filter with 5000 particles. For the off-line SMC
algorithm, 4.5×106 model evaluations are required only for the task of estimating the final posterior
density. The 1.9 × 108 model evaluations required by the SMC for obtaining the whole sequence
of posteriors πpos (θ|y1:k), k = 1, . . . , 100, clearly demonstrate that off-line MCMC techniques are
unsuited to on-line estimation tasks.

6.3.2 High-dimensional case study: Corrosion deterioration spatially distributed
across beam

4m

Figure 6.7: Structural beam subjected to spatially and temporally varying corrosion deterioration.
The deterioration process is monitored from sensors deployed at specific sensor locations (in green).

As a second case study, we employ the deterioration model of Eq. (6.13), which describes the spatially
and temporally varying corrosion deterioration across the structural beam shown in Fig. 6.7.

D(t, x) = A(x)tB(x), t = 0, . . . , 50. (6.13)

A(x), B(x), x ∈ Ω are random fields defined on Ω = [0, L], with L denoting the length of the beam
taken as L = 4m. A(x) models the deterioration rate, while B(x) models the nonlinearity effect
of the deterioration process in terms of a power law in time. The corrosion deterioration D(t, x) is
therefore also a spatial random field.

A random field, by definition, contains an infinite number of random variables, and must therefore be
discretized [85]. One of the most common methods for discretization of random fields is the midpoint
method [23]. Thereby the spatial domain Ω is discretized into m elements, and the random field
is approximated within each element through the random variable that corresponds to midpoint
of the element. In that case, the uncertain time-invariant deterioration model parameter vector
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is θ = [A1, . . . , Am, B1, . . . , Bm], where Ai := A(xi), Bi := B(xi), i = 1, . . . ,m, are the random
variables corresponding to the element midpoints. With the midpoint discretization, the spatial
deterioration D(t, x) is parametrized by θ.

We assume that noisy measurements of the corrosion deterioration state Dt,l(θ) := D(t, xl,θ) at time
t and at certain locations l of the beam are obtained sequentially (summarized in one measurement
per year) from nl sensors deployed at these locations (nl = 10 sensor locations are shown in Fig. 6.7).
The measurement Eq. (6.14), describing the corrosion measurement at time t and sensor location l,
assumes a multiplicative measurement error, exp (ϵt,l),

yt,l = Dt,l (θ) exp (ϵt,l) = Ailt
Bil exp (ϵt,l) , (6.14)

where il returns the discrete element number of the midpoint discretization within which the mea-
surement location l lies. Tab. 6.3 shows the prior distribution model for the two random fields of the
deterioration model of Eq. (6.13) and the assumed probabilistic model of the multiplicative measure-
ment error. Since A(x) models a lognormal random field, ln(A(x)) follows the normal distribution.
For both random fields ln(A(x)) and B(x), the exponential correlation model with correlation length
of 2m is applied [82].

Table 6.3: Prior distribution model for the corrosion deterioration model parameters and the mea-
surement error.

Parameter Distribution Mean Standard Deviation Corr. length (m)
A(x) Lognormal 0.8 0.24 2
B(x) Normal 0.8 0.12 2

exp (ϵt,l) Lognormal 1.0 0.101 -

The goal is to update the time-invariant deterioration model parameters θ = [A1, . . . , Am, B1, . . . , Bm]
given sequential noisy corrosion measurements yt,l from nl deployed sensors. The dimensionality of
the problem is d = 2×m. Hence, the more elements in the midpoint discretization, the higher the
dimensionality of the parameter vector.

The main goal of this second case study is to investigate the effect of the problem dimensionality
and the amount of sensor information on the posterior results obtained with each filter. We choose
the following three midpoint discretization schemes:

1. m = 25 elements: d = 50 time-invariant parameters to estimate.
2. m = 50 elements: d = 100 time-invariant parameters to estimate.
3. m = 100 elements: d = 200 time-invariant parameters to estimate.

Furthermore, we choose the following three potential sensor arrangements:

1. nl = 2 sensors (the 4th and 7th sensors of Fig. 6.7).
2. nl = 4 sensors (the 1st, 4th, 7th and 10th sensors of Fig. 6.7).
3. nl = 10 sensors of Fig. 6.7.

We therefore study nine different cases of varying problem dimensionality and number of sensors.
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6.3.2.1 Markovian state-space representation for application of on-line filters

A Markovian state-space representation of the deterioration process is required for application of
on-line filters. The dynamic and measurement equations are shown in Eq. (6.15). The measurement
equation is written in the logarithmic scale. Time t is discretized in yearly estimation time steps k,
i.e., k = 1, . . . , 50, and the subscript l = 1, . . . , nl corresponds to the sensor location.

θk = θk−1

ln (yk,l) = ln (Dk,l(θk)) + ϵk,l ⇒ ln (yk,l) = ln (Ak,il) +Bk,il ln (tk) + ϵk,l,
(6.15)

where θk denotes the time-invariant parameter vector at time step k. In the logarithmic scale, both
the dynamic and measurement equations are linear functions of Gaussian random variables. For
reasons explained in Section 6.2, the subscript k in θk is dropped in the following.

6.3.2.2 Underlying “true” realization

To generate a high-resolution underlying “true" realization of the two random fields A(x) and B(x),
and the corresponding synthetic monitoring data set, we employ the Karhunen-Loève (KL) expansion
using the first 400 KL modes. The KL expansion is an alternative random field discretization
scheme to the midpoint method that represents the random field in terms of the eigenfunctions
of its autocovariance function [82, 34]. The implementation of the KL expansion can be found in
the Matlab codes accompanying this article2. We remark that a fine resolution KL expansion is
chosen to represent the “true” realization in order to avoid the inverse crime [88]. These realizations
are shown in the left panel of Fig. 6.8. Given these A(x) and B(x) realizations, the underlying
“true" realizations of the deterioration process at ten specific beam locations are generated, which
correspond to the ten potential sensor placement locations shown in Fig. 6.7. Subsequently, a
synthetic corrosion sensor measurement data set (one measurement per year) at these 10 locations
is generated from the measurement Eq. (6.14). These are shown in the right panel of Fig. 6.8.

6.3.2.3 Reference posterior solution

For the investigated linear Gaussian state space representation of Eq. (6.15), we create reference on-
line posterior solutions for each of the nine considered cases by applying the Kalman filter (KF) [44],
which is the closed form solution to the Bayesian filtering equations. The process noise covariance
matrix in the KF equations is set equal to zero. The linear Gaussian nature of the chosen problem
ensures existence of an analytical reference posterior solution obtained with the KF. One such
reference on-line posterior solution for the case described by m = 25 elements (d = 50) and nl = 4
sensors is shown in Fig. 6.9.

2https://github.com/antoniskam/Offline_online_Bayes
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Figure 6.8: Left: the blue solid line plots the underlying “true" realization of ln(A(x)) and B(x)
created using the KL expansion. Right: the blue solid line plots the underlying “true" realization of
ln (D(t, x)) at 10 specific sensor locations and the corresponding synthetic sensor monitoring data
are scattered in black. In both figures, the black dashed lines plot the prior mean and the black
solid lines the prior 90% credible intervals

Figure 6.9: Case with m = 25, nl = 4: reference on-line posterior solution at 10 locations across the
beam obtained by applying the Kalman filter for solving Eq. (6.15). The solid blue horizontal line
represents the underlying “true" values of ln(A(x)) and B(x) at these locations. The black dashed
lines plot the posterior mean and the black solid lines the posterior 90% credible intervals. Locations
1,4,7,10 correspond to the four assumed sensor placement locations

6.3.2.4 Comparative assessment of the investigated on-line and off-line filters

The goal of this section is to offer a comparative assessment among the three Bayesian filtering
algorithms presented in this paper when applied on a high-dimensional problem. To be able to derive
a reference solution, as described above, a linear Gaussian state space representation of a structural
deterioration problem has been defined (Eq. (6.15)). We apply the tPFGM filter, the tIBIS filter,
and the SMC filter, all with Npar=2000 particles, for estimating the time-invariant parameter vector
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θ. For each of the nine cases of varying problem dimensionality and number of sensors described
above, we compute the L2 relative error norm of the estimated means, correlation coefficients, and
standard deviations of the parameters with respect to the corresponding KF reference posterior
solution, i.e., we estimate a quantity as in Eq. (6.12) for all estimation steps k = 1, . . . , 50. In
Figs. 6.10 to 6.12 we plot the mean and credible intervals of these relative errors as obtained from
50 different runs. The off-line SMC filter, which does not provide the on-line solution within a single
run, is run anew for estimating the single posterior density of interest at years 10, 20, 30, 40, 50,
and in between, the relative error is linearly interpolated. Although each of the nine panels in the
figures corresponds to a different case with a different underlying KF reference solution, their y axes
have the same scaling. Tab. 6.4 documents the computational cost of each filter in each considered
case, measured by average number of evaluations of the model of Eq. (6.13).

Figs. 6.10 and 6.11 show that the off-line IMH-GM-based SMC filter yields the best performance in
estimating the KF reference posterior mean and correlation, for all nine considered cases, while at
the same time producing the narrowest credible intervals. Comparison of the relative errors obtained
with the SMC and tIBIS filters reveals that, although they are both reliant on the IMH-GM MCMC
move step, the on-line tIBIS filter leads to larger estimation errors. The on-line tPFGM and tIBIS
filters generate quite similar results in estimating the reference posterior mean and correlation,
thus rendering the benefit of the MCMC move step in tIBIS unclear, except in cases with more
sensors and lower parameter dimension. Figs. 6.10 and 6.11 reveal a slight trend, indicating that for
fixed dimensionality, availability of more sensors (i.e., stronger information content in the likelihood
function) leads to a slight decrease in the relative errors when using the SMC and tIBIS filters,
whereas the opposite trend can be identified for the tPFGM filter. Increasing problem dimensionality
(for fixed number of sensors) does not appear to have strong influence on the posterior results in
any of the columns of Figs. 6.10 to 6.12, a result that initially appears puzzling.

Figure 6.10: Comparison of the L2 relative error norm of the means of the parameters evaluated for
each filter. The solid lines show the mean and the shaded areas the 90% credible intervals inferred
from 50 repeated runs of each filter.

Fig. 6.12 conveys that the tPFGM filter, which entirely depends on the GMM posterior approx-
imation, induces the smallest relative errors for the estimation of the standard deviation of the
parameters in all considered cases. This result reveals a potential inadequacy of the single applica-
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Figure 6.11: Comparison of the L2 relative error norm of the correlation coefficients of the parameters
evaluated for each filter. The solid lines show the mean and the shaded areas the 90% credible
intervals inferred from 50 repeated runs of each filter.

Figure 6.12: Comparison of the L2 relative error norm of the standard deviations of the parameters
evaluated for each filter. The solid lines show the mean and the shaded areas the 90% credible
intervals inferred from 50 repeated runs of each filter.

tion of the IHM-GM kernel for the move step within the tIBIS and SMC filters in properly exploring
the space of θ. In all 50 runs of the tIBIS and SMC filters, the standard deviation of the parameters
is consistently underestimated compared to the reference, unlike when applying the tPFGM filter.

Based on the discussion of Section 6.2.2, we introduce a burn-in period of nB=5 in the IMH-GM
kernel of Alg. 4 and perform 50 new runs of the tIBIS and SMC filters. One can expect that inclusion
of a burn-in is more likely to ensure sufficient exploration of the intermediate posterior distributions.
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Table 6.4: Average number of model evaluations (Eq. (6.8)) for the high-dimensional case study. For
the SMC, the required model evaluations for obtaining the single final posterior density are reported.

elements 25 50 100

sensors 2 4 10 2 4 10 2 4 10

tPFGM 129,480 154,000 194,440 129,440 155,560 195,760 130,480 157,120 199,040

tIBIS 602,400 1,038,440 1,878,000 603,240 1,049,400 1,909,880 567,720 1,017,280 1,876,240

SMC 1,130,000 1,596,000 2,298,000 1,108,000 1,582,000 2,250,000 1,100,000 1,504,000 2,150,000

However, at the same time the computational cost of tIBIS and SMC increases significantly, with a
much larger number of required model evaluations than in Tab. 6.4. In Figs. 6.13 and 6.14 we plot
the mean and credible intervals for the relative errors in the estimation of the mean and standard
deviation of the parameters. Comparing Fig. 6.10 and Fig. 6.13, inclusion of burn-in is shown to
lead to an improved performance of tIBIS and SMC in estimating the mean of the parameters in all
cases. This improvement is more evident in the lower-dimensional case with 25 elements, and lessens
as the problem dimension increases. Hence, it is only after the inclusion of burn-in, which leads to
an enhanced posterior solution, that one starts observing the anticipated deterioration of the tIBIS
and SMC filters’ performance with increasing dimensionality. This effect was masked in the results
of Fig. 6.10 without burn-in. This point becomes more evident when looking at the relative errors
of the estimated standard deviation in Fig. 6.14. With burn-in, the tIBIS and SMC filters provide
better results than the tPFGM filter in estimating the standard deviation in the case of 25 elements,
but perform progressively worse as the dimensionality increases, where they underestimate the KF
reference standard deviation. This underestimation is clearly illustrated in Fig. 6.15. The reason
for this behavior is the poor performance of the IMH-GM algorithm in high dimensions, which is
numerically demonstrated in [66]. We suspect that this behavior is related to the degeneracy of the
acceptance probability of MH samplers in high dimensions, which has been extensively discussed
in the literature for random walk samplers, e.g., in [32, 3, 49, 7, 20, 65]. Single application of
the IHM-GM kernel without burn-in yielded acceptance rates of around 50% for all cases. With
inclusion of burn-in, in higher dimensions, the acceptance rate in IMH-GM drops significantly in
the later burn-in steps, leading to rejection of most proposed particles. To alleviate this issue, one
could consider using the preconditioned Crank Nicolson (pCN) sampler to perform the move step
within the IBIS and SMC filters, whose performance is shown to be independent of the dimension
of the parameter space when the prior is Gaussian [20].

Increase of dimensionality does not seem to have any influence on the results obtained with the
tPFGM filter. The illustrated efficacy of the tPFGM filter in estimating the time-invariant pa-
rameters in all considered cases of increasing dimensionality is related to the nature of the studied
problem. The tPFGM filter relies entirely on the GMM approximation of the posterior distribution
within its resampling process, in that it simply “accepts” all the Npar GMM-proposed particles,
unlike the tIBIS and SMC filters, which contain the degenerating acceptance-rejection step within
the IMH-GM move step. Clearly, the worse the GMM fit, the worse the expected performance of
the tPFGM filter. The particular case investigated here has a Gaussian reference posterior solution,
hence the GMM fitted by EM proves effective in approximating the posterior with a relatively small
number of particles, even when going up to d=200 dimensions, thus leading to a good proposal
distribution for sampling Npar new particles in tPFGM. As reported in Tab. 6.4, the tPFGM filter
is associated with a significantly lower computational cost than its MCMC-based counterparts.
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Figure 6.13: Comparison of the L2 relative error norm of the mean of the parameters evaluated for
each filter. The solid lines show the mean and the shaded areas the 90% credible intervals inferred
from 50 repeated runs of each filter. Burn-in nB=5.

Figure 6.14: Comparison of the L2 relative error norm of the standard deviation of the parameters
evaluated for each filter. The solid lines show the mean and the shaded areas the 90% credible
intervals inferred from 50 repeated runs of each filter. Burn-in nB=5.
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Figure 6.15: Updating of the random field ln (D(t = 50, x)) in three different cases of varying problem
dimensionality. The solid lines show the mean and the shaded areas the 90% credible intervals
inferred from 10 repeated runs of each filter. The black dashed line represented the posterior mean
obtained via the KF, and the black solid lines the KF 90% credible intervals

6.4 Concluding remarks

In this article, we present in algorithmic detail three different on-line and off-line Bayesian filters.
The on-line filters are specifically tailored for quantifying the full posterior uncertainty of time-
invariant deterioration model parameters in long-term monitoring settings. Specifically, the three
presented methods are an on-line particle filter with Gaussian mixture resampling (PFGM), an on-
line iterated batch importance sampling (IBIS) filter, and an off-line sequential Monte Carlo (SMC)
filter, which applies simulated annealing to sequentially arrive to a single posterior density of interest.
The IBIS and SMC filters perform Markov Chain Monte Carlo (MCMC) move steps via application
of an independent Metropolis Hastings kernel with a Gaussian mixture proposal distribution (IMH-
GM) whenever degeneracy is identified. A simulated annealing process (tempering of the likelihood
function) is further incorporated within the update step of the on-line PFGM and IBIS filters for
cases when each new measurement is expected to have a strong information content; this leads to
the presented tPFGM and tIBIS filters. The SMC filter can be employed only for off-line inference,
while the PFGM, tPFGM, IBIS and tIBIS filters can perform both on-line and off-line inference
tasks.

With the aid of two numerical examples, a comparative assessment of these algorithms for off-line
and on-line Bayesian filtering of time-invariant deterioration model parameters is performed. In
contrast to other works, the main focus here lies on the efficacy of the investigated Bayesian filters
in quantifying the full posterior uncertainty of deterioration model parameters, as well as on the
induced computational cost.
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For the first non-linear, non-Gaussian and low-dimensional case study, the IBIS and SMC filters,
which both contain IMH-GM-based MCMC move steps, are shown to consistently outperform the
purely on-line PFGM filter in estimating the parameters’ reference posterior distributions. However,
they induce a computational cost of at least an order of magnitude larger than the PFGM filter,
when the same initial number of particles is used in all three filters. With similar computational
cost, i.e., when increasing the number of particles in PFGM, it achieves enhanced posterior accuracy,
comparable to the IBIS and SMC filters.

The second case study involves a linear, Gaussian and high-dimensional model. The focus here lies on
evaluating the performance of the investigated filters in increasing dimensions. The linear Gaussian
nature of the problem allows access to an exact reference posterior solution with the Kalman filter.
For this case study, the results vary with increasing problem dimensionality and number of sensors.
The on-line tPFGM filter achieves a consistently satisfactory quality with increasing dimensionality,
a behavior explained by the linear Gaussian nature of the problem, while a slight drop in the
posterior quality is observed for increasing amount of sensor information. The tIBIS and SMC
filters are shown to consistently outperform the tPFGM filter in lower dimensions, they however
perform progressively worse in higher dimensions, a behavior likely explained by the degeneracy of
the acceptance probability of MH samplers in high dimensions. The computational cost of the tIBIS
and SMC filters is an order of magnitude larger than the tPFGM filter.

Some general conclusions drawn from the delivered comparative assessment are listed below.

• The purely on-line PFGM (and its tPFGM variant) filter is competitive with MCMC-based
filters, especially for higher-dimensional well-behaved problems.

• The IBIS (and its tIBIS variant) and SMC filters, which contain MCMC move steps, offer
better approximations of the posterior mean of the model parameters than the purely on-line
PFGM (and its tPFGM variant) filter with the same number of samples, as shown in both
studied examples.

• The independent Metropolis Hastings (IMH)-based MCMC move step performed within the
IBIS, tIBIS and SMC filters proves inadequate in properly exploring the posterior parameter
space in high-dimensional problems.

Finally, to support the reader with the selection of the appropriate algorithm for a designated
scenario, we provide Tab. 6.5, which contains an assessment of the methods presented in this paper
in function of problem characteristics.

This paper does not investigate the performance of these filters when applied to high-dimensional
and highly non-Gaussian problems. Such problems are bottlenecks for most existing filters and
we expect the investigated filters to be confronted with difficulties in approximating the posterior
distributions.
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Table 6.5: Set of suggestions on choice of the appropriate method in function of problem character-
istics.

Criterion PFGM
(tPFGM)

IMH-GM-based
IBIS (tIBIS)

IMH-GM-based
SMC

On-line inference ✓ ◦ ×
Computational cost C1 C2 C3

A
pp

lic
ab

ili
ty

to
va

ri
ou

s
pr

ob
le

m
s

Mean estimation
in low-dimensional, nonlinear,

non-Gaussian problems
Q3 Q4 Q4

Uncertainty quantification
in low-dimensional, nonlinear,

non-Gaussian problems
Q3 Q4 Q4

Mean estimation
in high-dimensional,

well-behaved problems
Q2 Q3 Q4

Uncertainty quantification
in high-dimensional,

well-behaved problems
Q3 Q1 Q1

Increasing sensor
information amount × (✓) × (✓) ✓

Q1: low quality
Q2: moderate quality
Q3: moderate to high quality
Q4: high quality

✓: applicable
◦: partly applicable
×: not applicable

C1: moderate
C2: moderate to high
C3: high
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Abstract

Prognostic Health Management aims to predict the Remaining Useful Life (RUL) of degrading com-
ponents/systems utilizing monitoring data. These RUL predictions form the basis for optimizing
maintenance planning in a Predictive Maintenance (PdM) paradigm. We here propose a metric for
assessing data-driven prognostic algorithms based on their impact on downstream PdM decisions.
The metric is defined in association with a decision setting and a corresponding PdM policy. We
consider two typical PdM decision settings, namely component ordering and/or replacement plan-
ning, for which we investigate and improve PdM policies that are commonly utilized in the literature.
All policies are evaluated via the data-based estimation of the long-run expected maintenance cost

151



7.1. Introduction

per unit time, using monitored run-to-failure experiments. The policy evaluation enables the es-
timation of the proposed metric. We employ the metric as an objective function for optimizing
heuristic PdM policies and algorithms’ hyperparameters. The effect of different PdM policies on the
metric is initially investigated through a theoretical numerical example. Subsequently, we employ
four data-driven prognostic algorithms on a simulated turbofan engine degradation problem, and
investigate the joint effect of prognostic algorithm and PdM policy on the metric, resulting in a
decision-oriented performance assessment of these algorithms.

7.1 Introduction

Prognostics is primarily concerned with the prediction of the time instance when a system or com-
ponent loses its functionality [30]. In the context of an on-line monitoring strategy, this typically
implies the use of a prognostic model, which furnishes estimates of the Remaining Useful Life (RUL)
on the basis of available measurements of the system’s response [18]. The subsequent task of optimal
maintenance planning informed by the prognostic model output is known as health management.
Prognostic Health Management (PHM) [30, 18, 70] is the umbrella term used to define this proce-
dure. Multiple sources of uncertainty enter the prognostics process, which motivates the adoption of
a stochastic approach to the estimation of the RUL [15]. Consequently, the associated maintenance
planning can be defined as a sequential decision problem under uncertainty [32, 49, 41, 39, 2].

One can distinguish between model-based and data-driven prognostic methods [30]. A recent re-
view paper [35] classified prognostic approaches into four distinct categories: physics model-based
approaches, statistical model-based approaches, artificial intelligence (AI) approaches and hybrid
approaches. An overview of recent literature reveals the increasing popularity of data-driven AI
approaches [37, 64, 38], owing amongst other factors, to their applicability in case where the degra-
dation pattern cannot be easily represented a-priori via physics-based or statistical models [45, 35].
On the downside, it is often not straightforward to capture the uncertainty in machine learning
(ML) predictions [15, 47]. The task of quantifying such an uncertainty, that is inherent in RUL
predictions, is essential for subsequent maintenance planning tasks.

The PHM community has established various experimental and numerical prognostic datasets, which
typically contain multivariate time series data obtained from continuous monitoring of run-to-failure
experiments on deteriorating components/systems, such as rolling bearings [45], batteries [54], tur-
bofan engines [59] and industrial machines [52]. Several of these datasets have been made publicly
available by the NASA Prognostics Center of Excellence [44]. The availability of such datasets has
paved the way for the development and training of a multitude of data-driven prognostic algorithms.
These are reviewed in [60, 23, 35]. Most of the available literature focuses on the RUL prediction
task [37, 64, 38, 3], and does not consider the subsequent health management task.

For the task of health management on the basis of RUL predictions, the predictive maintenance
(PdM) paradigm stands out [19, 8, 14]. PdM tasks usually relate to planning intermittent inspections
and maintenance [11, 31], and planning maintenance actions informed via continuous monitoring [10,
46, 65]. PdM can be classified as either model-based PdM or data-driven PdM [46, 14]. The former
is based on the assumption that a physics-based model, e.g., the Paris-Erdogan law for fatigue crack
growth [50], or a statistical process model, e.g., a Gamma process [63] or a Wiener process [68], is
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available for describing the deterioration process. The performance of model-based PdM depends
on the adopted model. Most PdM studies to date either employ model-based PdM [11, 21, 40, 9,
65, 26], or simplistically consider hypothetical models of the prognostics information and only focus
on the maintenance decision optimization [12, 5]. End-to-end data-driven PdM frameworks (from
data-driven prognostics to data-driven PdM planning) have recently been introduced and applied
on prognostic datasets [46, 10, 7, 42, 69]. The data-driven PdM framework relies on availability of
a sufficient amount of monitoring data from run-to-failure experiments. These are required both for
the training of data-driven prognostic algorithms as well as for the data-driven evaluation of PdM
policies.

Given the diversity of prognostic models, the definition of metrics for assessing and comparing the
performance of prognostic algorithms can be of defining importance in decision making [57, 58, 45,
22, 20, 4, 51]. Recent papers review such metrics [35, 36]. Most of these metrics only implicitly
account for the subsequent health management task in their design, e.g., how early the algorithm
allows for prediction [58, 45]. Our conjecture is that the choice of a performance metric should be
guided by the type of PdM decisions that are to be triggered by the algorithms’ outcome.

The current paper proposes a metric for assessing the efficacy of data-driven prognostic models
based on their impact on downstream PdM decisions. We clarify the role that PdM policies play in
the definition of this metric. The metric can be applied within any given decision setting. In this
paper, two PdM decision settings are considered, namely i) component replacement planning and ii)
component ordering-replacement planning, which are fairly common for industrial components. We
thoroughly investigate some PdM policies of different complexity that are utilized in the literature.
These dynamically receive as input the RUL prediction from prognostics and opt for the actions
that should lead to an optimal balance between the predicted risk of failure/risk of late order for
a new component, and the benefit of extending the life-cycle of a component/not keeping a spare
component in the inventory, respectively. Alternatives and improvements to these PdM policies are
proposed. We evaluate these in terms of the estimation of the long-run expected maintenance cost
per unit time [11, 13], upon applying the policies on a run-to-failure dataset. The proposed metric
is evaluated on the basis of this estimation.

The paper is organized as follows. Section 7.2 introduces the proposed decision-oriented metric
and discusses its data-driven estimation via samples of run-to-failure experiments. Subsequently,
the metric is described within the context of two typical PdM decision settings, for which specific
PdM policies are presented and discussed. Section 7.3 introduces a virtual RUL simulator, which
serves as an initial test-bed for investigating different aspects of optimality/sub-optimality of the
presented PdM policies and their effect on the metric. Section 7.4 contains numerical investigations
on an actual case study related to degrading turbofan engines, by use of the well-known CMAPSS
prognostic dataset [59]. Four different data-driven prognostic algorithms, three classifiers and one
regression model, are implemented and compared on the basis of the proposed decision-oriented
metric. The interplay between RUL prediction algorithm and PdM policy on the metric is also
investigated. Finally, Section 7.5 discusses and concludes this work.

153



7.2. Predictive maintenance decision policies on the basis of RUL predictions

7.2 Predictive maintenance decision policies on the basis of RUL
predictions

To evaluate the quality of different prognostic algorithms that deliver RUL predictions, we compare
their performance on subsequent PdM decision making. To evaluate the RUL-based decisions,
policies are introduced [24]. A policy is a rule that determines the action to take at time t, based
on the available information up to that time, i.e., past monitoring data and performed actions. For
example, a policy answers the following question: “Preventively replace the component?" {yes, no}.
In this work, we consider only decision settings in which the policy is the same at all times, and we
refer to this stationary policy [32] as the PdM policy.

7.2.1 Decision-oriented metric for prognostics performance evaluation

Towards the goal of providing a formal decision-oriented framework for assessing and optimizing the
performance of prognostic algorithms, this section proposes a metric that quantifies the optimality of
the resulting maintenance decisions triggered by the algorithm’s RUL predictions within any given
decision setting. The proposed framework is summarized in Fig. 7.1.

7.2.1.1 Data-based evaluation of a generic PdM policy

The long-run expected maintenance cost per unit time (over an infinite time horizon) is typically the
quantity of interest when evaluating a PdM policy. According to renewal theory [62, 11, 13], specifi-
cally the renewal-reward theorem, the long-run expected maintenance cost per unit time corresponds
to the ratio:

R =
E[Cm]

E[Tlc]
, (7.1)

where E[Cm] is the expected maintenance cost induced within one life-cycle of the component when
following a certain PdM policy, and E[Tlc] is the expected length of one life-cycle. This result is valid
without discounting [63]; for renewal theory with discounting, see, e.g., [48]. It allows evaluating
the above expectations for a PdM policy by applying it on n independent single life-cycles. In the
vast majority of the literature, this evaluation is done with the aid of a model, with which a large
number of life-cycle realizations is simulated [11]. In cases where data from multiple run-to-failure
experiments are available, the expectations in Eq. (7.1) can be evaluated based on the data. More
specifically, a PdM policy can be applied on n independent components of the same type (e.g., n
engines of the same type in the CMAPSS dataset [59]) and the cost of maintenance Cm and the
lifetime Tlc (also known as a renewal cycle in the context of renewal theory [62]) of each component
can be evaluated. The expectations in the numerator and denominator of Eq. (7.1) can then be
approximated as:

E[Cm]

E[Tlc]
≈ R̂ =

1
n

∑n
i=1C

(i)
m

1
n

∑n
i=1 T

(i)
lc

, (7.2)

where R̂ denotes the data-based estimator of the quantity in Eq. (7.1), C(i)
m and T

(i)
lc are the cost of

maintenance and the lifetime of the i-th component, respectively. The lifetime T
(i)
lc is the time to
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failure or replacement of the component.

With finite n, the estimate of R provided by Eq. (7.2) is subject to uncertainty. A first-order
approximation of the variance of the estimator in Eq. (7.2) is [29]:

Var[R̂] ≈ 1

n

[
Var[Cm]

E[Tlc]2
+

E[Cm]
2 · Var[Tlc]

E[Tlc]4
− 2 · E[Cm] · Cov[Cm, Tlc]

E[Tlc]3

]
. (7.3)

It is noted that occasionally in literature the expectation of the ratio E
[
Cm

Tlc

]
is evaluated, instead

of the ratio of the expectations of Eqs. (7.1) and (7.2). This is only an approximation, which can be
poor if the variance of the denominator is large.

7.2.1.2 Data-based evaluation of the perfect PdM policy

As a reference, we consider the hypothetical scenario of perfect prognostics, in which the time to
failure is known exactly. Perfect prognostics would lead to perfect PdM decisions for each component.
Based on the n run-to-failure experiments, the long-run expected maintenance cost per unit time of
the perfect PdM policy can be estimated via Eq. (7.4):

Rperfect =
E[Cm,perfect]

E[Tlc,perfect]
≈ R̂perfect =

1
n

∑n
i=1C

(i)
m,perfect

1
n

∑n
i=1 T

(i)
lc,perfect

, (7.4)

where C
(i)
m,perfect and T

(i)
lc,perfect are the optimal cost of maintenance and length of the first life-cycle

of the i-th component, respectively.

7.2.1.3 Proposed metric

To specify the decision-oriented metric for assessing prognostic algorithms, we evaluate the long-run
expected maintenance cost per unit time that is achieved with a specific prognostic algorithm in
combination with a PdM policy, which is then compared with the respective quantity obtained from
perfect prognostics. We define a scalar metric M as the relative difference between the two, based on
which the performance of a prognostic algorithm can be assessed with respect to the PdM decisions
that are triggered by its outcome:

M =

E[Cm]

E[Tlc]
− E[Cm,perfect]

E[Tlc,perfect]

E[Cm,perfect]

E[Tlc,perfect]

. (7.5)

Based on the n run-to-failure experiments, the metric M can be estimated as:

M̂ =
R̂− R̂perfect

R̂perfect

. (7.6)
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Evaluate on a run-to-failure dataset

Define PdM policy

Choose and train 

prognostic algorithm
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Optimize prognostic algorithm’s hyperparameters

Optimize a PdM policy

Figure 7.1: Summary of the proposed framework for a decision-oriented performance assessment and
optimization of data-driven prognostic algorithms based on the proposed metric M .

M = 0 is the optimal result; the larger the value of the metric M , the worse the performance of
the prognostic algorithm. M cannot assume a negative value. In a loose sense, a connection can be
identified between the metric M and the Value of Information (VoI) metric [13, 25] from Bayesian
decision theory [53].

The estimate of Eq. (7.6) for the metric M is subject to uncertainty. Assuming that the variance of
R̂perfect is negligible, the variance of M̂ is quantified as:

Var[M̂ ] = Var

[
R̂− R̂perfect

R̂perfect

]
= Var

[
R̂

R̂perfect

− 1

]
≈ 1

R̂2
perfect

· Var[R̂] (7.7)

Due to the assumption that the variance of R̂perfect is negligible, the covariance of R̂ and R̂perfect is
neglected.

The decision-oriented metric M can further serve as an objective function for optimizing PdM policies
and for optimizing the training process of prognostics algorithms (e.g., hyperparameter tuning, see
Eq. (7.27)) directly with respect to subsequent PdM decision-making (see Fig. 7.1). This will be
demonstrated in the numerical investigations of Sections 7.3 and 7.4.

The metric M is generally applicable in any given decision setting in conjunction with a PdM policy.
The sections that follow specify the metric M for two common decision settings.

7.2.2 PdM decision settings

In this paper, we consider and discuss two PdM decision settings that are typical for industrial
assets. In the first basic setting (Section 7.2.3), the only decision that has to be taken is when to
replace a component. In the second setting (Section 7.2.4), we additionally consider a decision on
ordering and keeping a replacement component in the inventory. Both considered decision settings
have the following characteristics:

• We study single component problems.
• Continuous monitoring of a component is available.
• The monitoring data is employed to derive a probabilistic RUL prediction.
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• Inspections are not considered.
• Decisions on maintenance actions can only be made at discrete points in time, defined by
tk = k · ∆T , for a fixed time interval ∆T and integer k = 1, 2, . . . , N . The choice of ∆T is
problem-dependent. For example, in the case of aeroengines, a value of ∆T = 5 − 10 flight
cycles is deemed realistic based on the authors’ expertise.

• Two types of replacement actions are considered:
1. Preventive replacement with cost cp.
2. Corrective replacement with cost cc, which occurs upon component failure before a pre-

ventive replacement. Corrective replacement induces a larger cost than preventive re-
placement, which also accounts for longer downtime: cc > cp.

• A replacement is assumed to be a perfect replacement, bringing the component back to a
pristine state. Replacement at t leads to the end of one life-cycle of the component, and
the component starts deteriorating anew. The stochastic deterioration process starting at
time t is a probabilistic copy of the process starting at time 0. These assumptions allow for
use of renewal theory [62]. Within renewal theory, the time interval between two successive
replacements defines a renewal cycle.

• Maintenance is a viable decision, i.e., it is possible to assume remediative action within the
decision horizon.

• It is assumed that failure is self-announcing.
• We do not include discounting of future costs.

7.2.3 Predictive maintenance (PdM) planning for replacement

We first consider the simple dynamic PdM decision setting, in which one determines at each time
step tk whether a component should be preventively replaced or not. The assumption here is that
the new component is readily available when a preventive replacement is decided or a corrective
replacement is imposed.

7.2.3.1 Metric for prognostic performance evaluation with respect to PdM planning
for replacement

Following a certain PdM policy for planning replacement (specific PdM policies are introduced in
Sections 7.2.3.2 to 7.2.3.4), each i-th component life ends with a preventive replacement informed
at time T

(i)
R , or a corrective replacement in case of component failure at time T

(i)
F . A preventive

replacement can only be performed at discrete points in time, i.e., T (i)
R lies in the set {tk = k ·∆T, k =

1, 2, . . . }. A corrective replacement is performed immediately upon failure at T
(i)
F . The (non-

discounted) cost of the replacement action for the i-th component is

C(i)
rep =

{
cp, if T (i)

R < T
(i)
F

cc, else.
(7.8)

Replacement (preventive or corrective) leads to the end of one life-cycle of a component. The length
of the life-cycle of the i-th component is thus T

(i)
lc = min[T (i)

R , T
(i)
F ]. In this setting, the cost of

maintenance for the i-th component is equal to the cost of the replacement action, i.e., C(i)
m = C

(i)
rep.
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Within the current decision setting, the perfect PdM policy would not lead to any corrective re-
placement, as this is more costly, or any early preventive replacement, as this leads to shortening
of the component life-cycle. Thus, the perfect PdM policy is a preventive replacement with cost
C

(i)
m,perfect = cp at the optimal time step tk = k · ∆T directly before T

(i)
F

1. This is denoted by

T
(i)
R,perfect. The long-run expected maintenance cost per unit time of the perfect PdM policy is

evaluated via Eq. (7.4).

Eventually, the decision-oriented metric proposed in Eq. (7.5), in particular in conjunction with a
PdM policy for replacement, is estimated as:

M̂ =

1
n

∑n
i=1C

(i)
rep

1
n

∑n
i=1 T

(i)
lc

− cp
1
n

∑n
i=1 T

(i)
R,perfect

cp
1
n

∑n
i=1 T

(i)
R,perfect

. (7.9)

7.2.3.2 PdM policy 1: simple heuristic PdM policy for preventive replacement

The first PdM policy that we consider is a simple heuristic policy, similar to [46]. Heuristic policies
employ simple and intuitive decision rules that are easily understood by engineers and operators
[39]. Specifically, at each time step tk = k ·∆T , the policy determines the action arep,k to take as:

arep,k =

{
DN, if Pr(RULpred,k ≤ ∆T ) < pthres

PR else,
(7.10)

where DN denotes the do nothing action, PR denotes the preventive replacement action, RULpred,k

is the RUL prediction estimated at time tk from the employed prognostic algorithm, and pthres is
a variable heuristic threshold. In [46], a value of pthres = cp/cc has been used. The PR action is
associated with a cost cp, while the DN action entails the predicted risk of component failure within
the next time step, Pr(RULpred,k ≤ ∆T ) · cc. The reasoning behind pthres = cp/cc is that the PR
action is performed at time tk only when the associated cost is smaller than the predicted risk of
component failure in the next time step. This is a simplification, as it does not account for the future
time steps; after a replacement, one has a new component with - on average - lower maintenance
costs. Hence the choice pthres = cp/cc leads to suboptimal decisions. An improvement can be reached
by optimizing the heuristic threshold pthres, as we demonstrate in the numerical investigations of
Sections 7.3 and 7.4.

The simple heuristic PdM policy requires the predicted probability of RUL exceedance within the
next decision time step, Pr(RULpred,k ≤ ∆T ), as sole input from the prognostics, in order to evaluate
the DN versus PR decision at each time step. Different prognostic algorithms operate in distinct
manners, and thus use different methods for deriving this probability. This can be specified as the
probability of the RULpred,k belonging to a certain class (corresponding to RULpred,k ≤ ∆T ) in
the case of a prognostic classifier [46]. For the case of prognostic regression models, uncertainty
quantification in the RUL predictions is a prerequisite for obtaining this probability.

1In extreme cases, where cc is very close to cp, and where ∆T is small enough, the optimal action may be to allow
the component to fail at T

(i)
F with a cost C

(i)
m,perfect = cc.
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tk
TR,k

PPR

Figure 7.2: Optimization of TR,k. PPR corresponds to the probability of a preventive replacement
for a fixed TR,k, which appear in the objective function of Eq. (7.12)

Eventually, this heuristic PdM policy informs the replacement decision for each i-th component,
leading to C

(i)
rep and T

(i)
lc . The long-run expected maintenance cost per unit time associated with this

heuristic PdM policy can then be evaluated via Eq. (7.2).

7.2.3.3 PdM policy 2: PdM policy for preventive replacement on the basis of the full
RUL distribution.

We consider a second PdM policy for preventive replacement, which determines at each time step
tk the action arep,k to take as:

arep,k =

{
PR, if tk +∆T ≥ T ∗

R,k

DN else,
(7.11)

where T ∗
R,k is the optimal time to replacement found through solving an optimization problem at

each time step tk. A preventive replacement is thus decided when T ∗
R,k is smaller or equal to tk+∆T ,

where ∆T defines the time interval until the next decision.

The most commonly employed objective function for finding the optimal T ∗
R,k in RUL-based PdM

[13, 65, 66] is presented in this section. It can be employed when the full distribution of the RUL
prediction at each time step tk is available, denoted by fRULpred,k

(t). The distribution of the predicted
time to failure (TF ) at time step tk is fTFpred,k

(t) = fRULpred,k
(t − tk), and is bounded below at tk.

The objective function for the optimization problem at each time step tk is:

f(TR,k) =
E[Crep(TR,k)]

E[Tlc(TR,k)]
=

PPR · cp + (1− PPR) · cc

PPR · (TR,k) +
TR,k∫
t

t fRULpred,k
(t− tk) dt

, (7.12)

where:

PPR =

∞∫

TR,k

fRULpred,k
(t− tk) dt (7.13)
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denotes the probability that the component will be preventively replaced at TR,k, whereas (1−PPR) is
the probability that the component will fail before TR,k with an induced cost cc. These probabilities
are graphically represented for a fixed TR,k in Fig. 7.2.

The objective function in Eq. (7.12) makes use of renewal theory and evaluates the long-run expected
maintenance cost per unit time, in order to determine the optimal time for preventive replacement
for a single component. The underlying assumption when using this objective function for optimizing
replacement for a single component is that the predicted distribution of the time to failure of the
component, fTFpred,k

(t), corresponds to the underlying distribution of the time to failure of the whole
population of components. This (incorrect) assumption has not been clarified in the literature that
uses this policy.

Eventually, this PdM policy optimizes the replacement decisions for each i-th component leading to
C

(i)
rep and T

(i)
lc . The long-run expected maintenance cost per unit time of this PdM policy can then

be quantified via Eq. (7.2).

7.2.3.4 PdM policy 3: modified PdM policy for preventive replacement on the basis
of the full RUL distribution

In this section we propose a modification of the objective function defined in Eq. (7.12) to overcome
the implicit assumption pointed out above, i.e., we no longer assume that all future components
have the same lifetime distribution as the one implied by the RUL prediction of the current compo-
nent. Instead, we approximate the long-run expected maintenance cost per unit time of all future
components,

ET̄F
[Crep]

ET̄F
[Tlc]

, and utilize it to formulate the objective function for the time to replace the
current component. This objective function is the sum of the cost associated with maintenance
of the current component and the “opportunity” loss associated with replacing the component too
early2. This opportunity loss is equal to the expected value of the lifetime of the current component
beyond the time of replacement TR,k multiplied with

ET̄F
[Crep]

ET̄F
[Tlc]

. The resulting objective function for
finding the optimal T ∗

R,k at each time step tk is:

f(TR,k) = PPR · cp + (1− PPR) · cc +
ET̄F

[Crep]

ET̄F
[Tlc]

∞∫

TR,k

(t− TR,k) · fRULpred,k
(t− tk) dt, (7.14)

where PPR is defined in Eq. (7.13). The first two terms of Eq. (7.14) (which correspond to the nu-
merator of the objective function in Eq. (7.12)) are the expected replacement cost of the component.
The integral in the last term of Eq. (7.14) is the expected lifetime of the component beyond TR,k.

To approximate the long-run expected maintenance cost per unit time of all future components,
ET̄F

[Crep]

ET̄F
[Tlc]

, we make use of the estimated distribution fT̄F
of the time to failure of the population of

components. We consider the following assumptions to approximate
ET̄F

[Crep]

ET̄F
[Tlc]

:

2Please note that the objective functions in Eqs. (7.12) and (7.14) have different units, as Eq. (7.12) quantifies a
cost per unit time, while Eq. (7.14) quantifies a cost.

160



Chapter 7. A metric for assessing and optimizing data-driven prognostic algorithms for
predictive maintenance

1. For an assumed case without monitoring, renewal theory can be used to find the optimal
time for preventive replacement with respect to fT̄F

. Then
ET̄F

[Crep]

ET̄F
[Tlc]

can be set equal to the
corresponding optimal value of the long-run expected maintenance cost per unit time. This
choice delivers an upper bound to the value of this term, causing early preventive replacements
to be penalized more, and consequently delivers a less conservative PdM policy.

2. For an assumed “perfect" monitoring case, replacement of every component will be a preventive
one, and the expected life-cycle length of the population of components will be equal to the
mean µT̄F

of the distribution fT̄F
. Therefore, one can set

ET̄F
[Crep]

ET̄F
[Tlc]

=
cp
µT̄F

. This choice yields
a lower bound to the value of this term, leading to a more conservative PdM policy.

3. A value for
ET̄F

[Crep]

ET̄F
[Tlc]

between the upper bound of option 1 and the lower bound of option 2
can be chosen, e.g., the average of these bounds.

7.2.4 Predictive maintenance (PdM) planning for component ordering and re-
placement

In the first decision setting of Section 7.2.3, it is assumed that the new component will always be
available for replacement. In this section, we consider a second decision setting, which includes
ordering and replacement decisions. A deterministic lead time L is assumed from the time of
component ordering Torder to the time of component delivery. We implicitly assume that L is a
multiple of ∆T .

7.2.4.1 Metric for prognostic performance evaluation with respect to PdM planning
for ordering & replacement

Following a certain PdM policy for component ordering and replacement (one specific policy is
introduced in Section 7.2.4.2), different costs will be induced. The cost of the replacement action
for the i-th component is given by Eq. (7.8).

The cost related to a late ordering of a component for replacement (preventive or corrective) is:

C
(i)
delay = max

(
T
(i)
order + L− T

(i)
lc , 0

)
· cunav, (7.15)

where cunav is the system unavailability cost per unit time, related to necessary operation shutdown
from T

(i)
lc until the time of component arrival, upon which a replacement can be performed.

The cost related to an early ordering of a component, i.e., the holding inventory cost, is:

C
(i)
stock = max

(
T
(i)
lc − (T

(i)
order + L), 0

)
· cinv, (7.16)

where cinv is the holding inventory cost per unit time for a component.

The total maintenance cost, excluding the cost of the new component, is:

C(i)
m = C(i)

rep + C
(i)
delay + C

(i)
stock (7.17)
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The long-run expected maintenance cost per unit time that is achieved with a PdM policy is evaluated
by applying the PdM policy on n independent components via Eq. (7.2).

In this second decision setting, the perfect PdM policy would replace the i-th component at T (i)
R,perfect,

which is the time step k ·∆T directly before T (i)
F , and order a component at T (i)

order,perfect = T
(i)
R,perfect−

L. Therefore, the costs induced when applying the perfect PdM policy to the i-th component are
C

(i)
stock,perfect = 0, C(i)

delay,perfect = 0, and C
(i)
rep,perfect = cp, resulting in C

(i)
m,perfect = cp.

Eventually, the decision-oriented metric for component ordering and replacement is estimated as:

M̂ =

1
n

∑n
i=1(C

(i)
rep + C

(i)
delay + C

(i)
stock)

1
n

∑n
i=1 T

(i)
lc

− cp
1
n

∑n
i=1 T

(i)
R,perfect

cp
1
n

∑n
i=1 T

(i)
R,perfect

. (7.18)

7.2.4.2 Simple heuristic PdM policy for component ordering and preventive replace-
ment

At each time step tk (as long as no replacement component has been ordered previously), the policy
first determines based on the prognostics input whether a replacement component should be ordered
(O), or not (NO). The considered simple policy determines the action to take as:

aorder,k =

{
O, if Pr(RULpred,k ≤ w +∆T ) ≥ porderthres

NO else,
(7.19)

where w =

⌈
L

∆T

⌉
· ∆T is the ordering lead time adjusted for the discrete time steps. porderthres is a

variable heuristic threshold.

The reasoning behind the condition of Eq. (7.19) is the following: a lead time L is required for
the component to become available upon ordering it. Therefore, if a component is ordered at time
step tk, the earliest future decision time at which the component will be available for replacement is
tk +w. The simple policy assumes that the critical threshold for the O-NO decision is based on the
predicted probability that a preventive replacement will be necessary at time tk + (w +∆T ). Once
a component has been ordered, the O-NO decision is no longer relevant until a replacement action
is performed.

At each time step tk, the policy further determines whether the component is preventively replaced
(PR) or nothing is done (DN). This applies independent of whether or not a new component is in
stock, which, as discussed in Section 7.4.3, is not an optimal choice. Similar to Section 7.2.3.2, the
policy determines the action to take arep,k as:

arep,k =

{
DN, if Pr(RULpred,k ≤ ∆T ) < prepthres

PR else.
(7.20)
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A value of prepthres = porderthres = cp/cc has been used in literature [46]. The values of the two heuristic
thresholds may be optimized, leading to an improvement of this heuristic policy, as we demonstrate
in Section 7.4.3.

The advantage of this heuristic PdM policy lies in its simplicity and universal applicability – it can
be applied as long as the RUL prediction provides the probabilities in Eqs. (7.19) and (7.20). Other,
more complex and possibly more optimal heuristic policies, or even algorithms such as partially
observable Markov decision processes (POMDP) [49, 2], can be investigated, but we leave this for
future work.

7.3 Numerical investigations on a virtual RUL simulator

This section investigates the proposed metric and the PdM policies presented in Section 7.2.3 in a
hypothetical setup. For this purpose, a virtual RUL simulator serves as a test-bed, which enables
the assessment and evaluation of PdM policies for varying data availability. The aim of this section
is to investigate and quantitatively assess the performance and optimality of the three PdM policies
for replacement and their effect on metric M , and eventually propose a set of directives towards
optimizing decision heuristics.

7.3.1 Virtual RUL simulator

In this section we introduce a virtual RUL simulator, i.e., we establish a model with which to generate
RULpred,k distributions over time, conditional on given underlying “true" realizations of the failure
time of a component, emulating uncertain RUL predictions provided by a prognostic algorithm in a
realistic setting.

We assume that the uncertain time to failure (expressed in cycles to failure) of a hypothetical popula-
tion of mechanical components follows a normal distribution, specifically TF ∼ N(µ = 225, σ = 40),
where N denotes the Gaussian probability density function (PDF) with mean µ and standard devia-
tion σ. We draw samples from this distribution, each representing one underlying “true" realization
of a component’s failure time.

We define a PdM planning problem, wherein it is assumed that the maintenance actions can only
be performed at discrete points in time tk, defined by tk = k · ∆T , for fixed ∆T = 10 cycles and
k = 1, . . . , N . The predicted time to failure, yielded as an output of a prognostic algorithm at
time step k, is denoted by TF,pred,k. Eq. (7.21) defines in logarithmic scale the modeled discrepancy
between the prognostic RUL prediction at time step k, RULpred,k = TF,pred,k−tk, and the underlying
“true" RUL value at time step k, RULk = TF − tk:

ln (RULpred,k) = ln(RULk) + ln(ϵk), (7.21)

where ϵk is the prognostic prediction error. We assume the following probabilistic model for the
random vector containing the logarithm of the prediction errors over time

[ln(ϵ1), . . . , ln(ϵn)] ∼ MVN (0,Σ) , (7.22)
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where MVN() denotes the multivariate normal distribution with mean vector 0 and covariance
matrix Σ, which is constructed as

Σ = D ·R ·D, (7.23)

where D is a diagonal matrix containing the standard deviation of the prediction errors σln(ϵk) in
the diagonal, and R is a correlation coefficient matrix. The prediction errors over time are assumed
to be correlated according to an exponential correlation model with correlation length l:

R = [ρij ], where ρij = exp
(
−|ti − tj |

l

)
(7.24)

With this model, the distributions fRULpred,k are obtained as follows:

• Sample the mean values µln(RULpred,k) of the different ln (RULpred,k) predictions via Eq. (7.25)

by drawing a sample [ln(ϵ(i)1 ), . . . , ln(ϵ(i)n )] from the MVN distribution of Eq. (7.22).

µ
(i)
ln(RULpred,k)

= ln(RUL
(i)
k ) + ln(ϵ(i)k ) (7.25)

• ln (RULpred,k) then follows the normal distribution with mean equal to the value sampled in

Eq. (7.25) and standard deviation σln(ϵk), i.e., ln (RULpred,k) ∼ N

(
µ = µ

(i)

ln(RULpred,k)
, σ = σln(ϵk)

)
.

For an underlying “true" realization T
(i)
F = 247, a sampled realization of means of the different

RULpred,k distributions over time and the 95% credible intervals (CI), are plotted in Fig. 7.3. For
generating these distributions, we have assumed σln(ϵk) = 0.4 and correlation length l = 50 cycles in
the definition of the prediction errors.

The useful feature of this virtual RUL simulator is that one can generate a large number of virtual
run-to-failure experiments via a Monte Carlo simulation. Each sample consists of a T

(i)
F sample

and associated RULpred,k distributions, assumed to be obtained via fusion of monitoring data with
a prognostic algorithm, simplistically simulating realistic PHM settings. Using these samples, the
ratio in Eq. (7.2) is evaluated for a PdM policy and subsequently the metric M corresponding to
a decision setting is estimated via Eq. (7.6). Introducing this virtual RUL simulator allows the
generation of a large number of samples, with which we investigate the performance of the three
PdM policies for replacement of Section 7.2.3 and the uncertainty in estimating the metric M via
Eq. (7.9) in function of the number of available run-to-failure experiments.

7.3.2 First decision setting: PdM planning for replacement

To investigate the first decision setting, we generate n = 2 · 103 samples of TF ∼ N(µ = 225, σ =
40) and corresponding RULpred,k distributions (generated for σln(ϵk) = 0.4). These correspond to
n = 2 · 103 hypothetical components, for which run-to-failure monitoring data, as well as predicted
RULpred,k distributions provided by means of a prognostic algorithm, are assumed available. We
employ all three PdM policies presented in Section 7.2.3, and for each component we compute the
C

(i)
rep and T

(i)
lc for each of the three policies, for different cost ratios cp/cc. Subsequently, for each

policy we evaluate the long-run expected maintenance cost per unit time via Eq. (7.2), and estimate
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Figure 7.3: Demonstration of the virtual RUL simulator. Generated RULpred,k distributions condi-
tional on an underlying true realization T

(i)
F = 247 cycles.

the metric M via Eq. (7.9). In Fig. 7.4a we plot the value of M̂ and the associated uncertainty,
represented with 95% CIs, in function of the cost ratio. The red line corresponds to the values of
M̂ when using the heuristic PdM policy 1 with pthres = cp/cc. The blue line corresponds to use of
the PdM policy 2, whereas the purple line corresponds to the PdM policy 3, where option 1 has
been chosen for the value of

ET̄F
[Crep]

ET̄F
[Tlc]

. Finally, the green line corresponds to the optimized heuristic
PdM policy 1, wherein the heuristic threshold has been optimized. The optimal threshold p∗thres is
found as the argument that minimizes the metric M , when estimating it using Eq. (7.9), with C

(i)
rep

and T
(i)
lc found by applying the heuristic PdM policy 1 on each of the n = 2 · 103 components. The

values that p∗thres assumes for the different cost ratios are plotted in Fig. 7.4b. It is noted that for
all cost ratios, the optimal value of p∗thres is smaller than cp/cc.

Various conclusions can be drawn from the results of this numerical investigation. For most cost
ratios, the PdM policies 2 and 3, which operate on the basis of the availability of the full RUL distri-
bution, lead to better performance than the heuristic PdM policy 1 and to reduced uncertainty. For
the relatively large level of prognostic uncertainty considered here (σln(ϵk) = 0.4), the PdM policies
2 and 3 tend to be more conservative than the heuristic PdM policy, leading to earlier preventive
replacements (for some components significantly earlier) in order to reduce the risk of corrective
failure, but also reducing the life-cycle of the components, especially for low values of cp/cc. The
heuristic PdM policy 1 instead informs later preventive replacements, which is favorable for many
components, but at the same time leads to corrective replacements for some components, even for
cases when cc is significantly large. The latter is the reason for its seemingly worse performance and
its associated increased uncertainty in the evaluation of the metric M . Naturally, as the ratio cp/cc
increases, corrective replacements become less critical, and all three policies do lead to some correc-
tive replacements. It is noted that even with a relatively large number of samples, the evaluation of
all considered PdM policies with Eq. (7.2), and the estimation of M with Eq. (7.6), seem to entail
non-negligible uncertainty.

The PdM policy 3 that we propose in Section 7.2.3.4 proves somewhat less conservative, and thus
delivers better results than the PdM policy 2, which is the one most widely used in literature.
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Figure 7.4: Results from virtual RUL simulator with n = 2·103 sampled components for σln(ϵk) = 0.4.

Optimizing the heuristic PdM policy leads to a policy that delivers the best performance among
all policies for all cost ratios. The PdM policy 1, and its optimized version, are characterized
by simplicity, fast evaluation, and universal applicability - as long as the prognostics provide the
Pr(RULpred,k ≤ ∆T ). Thus, when enough training data are available to optimize the heuristic
threshold, this simple PdM policy can outperform other more involved policies. However, in reality,
one is typically bounded by the availability of only a limited number of training data, which involves
a rather large uncertainty in the estimation of the long-run expected maintenance cost per unit time
and the metric M . This consequently complicates the task of finding a p∗thres value that will be
optimal also for future components.

The uncertainty in the RUL prognostics is propagated to the subsequent PdM planning task. It is
expected that reduced uncertainty in the RUL predictions given by a prognostic algorithm leads to
enhanced PdM policy performance, and thus to lower values for M . This can easily be shown in
the context of the virtual RUL simulator. Assuming a smaller value of σln(ϵk) corresponds to less
uncertain prognostics. Fig. 7.5a plots the uncertainty in M̂ that we find with each of the employed
PdM policies for the same n = 2 · 103 sampled components as in Fig. 7.4, but for RUL predictions
generated with σln(ϵk) = 0.15. It is clear that the values of M̂ are significantly reduced compared to
the ones reported in Fig. 7.4. With less uncertain prognostics, the heuristic PdM policy 1 leads to
fewer corrective replacements. At the same time, both PdM policies 2, 3 become less conservative.
However, they can lead to corrective replacements even for cases with large cc values, as does the
heuristic PdM policy 1. This explains the increased uncertainty in quantifying the metric M with
these two policies, when compared to Fig. 7.4. For small prognostic uncertainty, all three PdM
policies lead to comparable results. The optimized heuristic PdM policy 1 again leads to superior
performance, further showcasing the benefit of optimizing decision thresholds within simple heuristic
PdM policies. Fig. 7.5b plots the optimal heuristic threshold p∗thres.
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Figure 7.5: Results from virtual RUL simulator with n = 2 · 103 sampled components for σln(ϵk) =
0.15.

7.4 Case study: predictive maintenance of degrading turbofan en-
gines

Performance degradation histories of a turbofan engine due to wear and tear were numerically gen-
erated using the simulator C-MAPSS [16]. The engine is simulated under different flight conditions
and the effect of performance degradation is introduced in one of the engine modules in the form
of an exponential degradation model. The data consists of 14 input variables, which specify the
configuration parameters of the simulation, 21 output variables, which provide a measurement snap-
shot of the response of the system during or after each flight, and 3 variables that describe the
operation modes of the engine. The simulations are performed for a number of engine units and
they are randomized in the sense that different initial conditions, degradation and noise parameters
are selected for each scenario. The dataset contains four data subsets which have been generated
with different simulation settings.

At the start of each unit simulation, the engine is normally operating and a fault is introduced
in a certain time instance, with the parameters controlling the direction of the failure evolution
trajectory randomly selected. The reader is referred to the paper describing the benchmark problem
for further details [59]. The simulations and the corresponding datasets are split into two parts: i)
a training set that contains simulation data, wherein the fault grows in magnitude up to system
failure, and ii) a test set that contains simulation data up to a point before system failure. It should
be noted that this benchmark dataset has been developed for prediction purposes, with the aim of
challenging the development of RUL predictors that are to be evaluated on the test set. However,
this study is concerned with the decisions towards optimal PdM planning and as such, the results
reported in this section are derived using the FD001 training set, which contains simulation data
up to system failure and therefore offers the possibility of exploring the entire decision space. The
original training set is split into a training and a test subset, with the former used for the training
of prognostic models, as described in the following section, and the latter used for the evaluation of
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Figure 7.6: Flowchart of the adopted data-driven predictive maintenance decision process

these models with the PdM policies.

For the purpose of the investigations in this paper, the task of PdM planning for each engine unit
is simplistically considered as a problem for planning order and replacement actions for a single
component. Turbofan engines are complex machinery systems, whose maintenance is in practice
planned by taking multiple system-level considerations and logistic constraints into account (e.g.,
shop loading, parts lead time, consolidated repair planning, etc.). These are not reflected in the
simple PdM decision settings considered in this section, but may form part of future investigations.

7.4.1 Prognostic models

Data-driven prognostic models can be considered as mapping functions from a set of input parameters
x ∈ Rnx , which represent the available system response information, to a set of output quantities
of interest (QoI) y ∈ Rny 3, so that F : x → y. This mapping can be expressed by the following
mathematical model

y = FH (x,p) , (7.26)

where p denotes a set of model-specific parameters, which can be estimated from the training data4

and are used to configure the structure of the underlying model, and H is the vector of model
hyperparameters that are external to the model, and whose values control the training process. The
PdM policies presented in Section 7.2 in this paper rely on the availability of a probabilistic output
y from prognostics.

The selection of hyperparameters H for each type of model is typically carried out through an
optimization step that minimizes the prediction error evaluated on a set of test or validation data
points that are not seen during training. In this work, we instead propose a decision-oriented
optimization of hyperparameters:

H∗ = argmin
H

M (Yk) , (7.27)

which aims at extracting the optimal hyperparameter configuration that minimizes the proposed
metric M , which is defined in Eq. (7.5), and depends on the model output sequence Yk = [y1 y2 . . . yk]
as well as the corresponding decision setting and adopted PdM policy.

3The output QoI y is typically either some health indicator, which is used for inference of the RUL, or the RUL
itself.

4In this work, we choose the mean squared error as the loss function for training regression models, and the log
loss function for classification models [43].
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For the current case study, four different data-driven models are implemented for delivering RUL
predictions. Firstly, a Long Short-Term Memory (LSTM) network classifier is constructed in the
Keras Python library with the adopted architecture identical to the one proposed in [46]. The
network outputs the class label of the estimated RUL with an associated probability. The second
model is a Gaussian naive Bayesian (GNB) classifier, whereby the RUL prediction is again treated as
a classification problem [17]. In this case, a parent node is used to model the RUL, which can have a
healthy or close-to-failure label that is determined on the basis of the conditional probabilities of each
sensor signal. The third adopted model is a Decision Trees (DTs) classifier [6], which is estimated
using a maximum depth of four so as to prevent overfitting. Finally, the fourth model implements
Bayesian filtering of an exponential degradation (EXP) model for performing regression tasks. The
EXP regression model relies on the fitting of an exponential model to the first principal component
of the sensor data [33]. The EXP model parameters are initially extracted by fitting the model
to each of the training run-to-failure data sequences, and the sample-based statistical properties
of the parameters are used as priors in the prediction phase. Thereafter, the model parameters
are sequentially updated upon availability of new sensor measurements, using a Bayesian filtering
algorithm [56], which delivers the particle-based RUL distribution at each step.

It should be mentioned that the scope of this case study is not the comparison of predictive capabil-
ities of the specific modeling approaches, but the investigation of the metric M and the associated
decision policies as a means to compare/evaluate different prognostic algorithms. For the sake of
brevity, the reader is referred to the corresponding sources [46, 67, 17, 6, 55] for further information
on the mathematical background and the theoretical assumptions of each model.

The adopted steps for PdM planning using all four models are highlighted in Fig. 7.6. Concretely,
the available data from all sensing channels are initially passed through a preprocessing layer, which
essentially consists of i) a normalization step, so that all variables are scaled to a standardized range,
ii) the labeling of RUL values for the case of classification models, and iii) a smoothing step, which
is equivalent to filtering. Thereafter, the features of data to be used as inputs for each model are
selected and the training phase is carried out using the training dataset. The remaining data are
then used to evaluate the algorithms through the proposed metric M . As such, the data-driven
prognostic models are trained using an 80% partition of the FD001 dataset, which contains run-to-
failure monitoring data from 100 units, i.e., from 100 different degrading engine modules. For the
purpose of our investigations, as explained above, this training set is split into data from 80 units
that we use for the training, and data from the remaining 20 units that we employ for the evaluation
of the different PdM policies and the metric M.

7.4.2 First decision setting: PdM planning for replacement

For the first decision setting, it is assumed that preventive replacement actions can only be performed
at discrete points in time tk = k ·∆T , for ∆T = 10 flight cycles. The heuristic PdM policy 1 requires
the probability Pr(RULpred,k ≤ ∆T ) as input from the prognostics (see Eq. (7.10)). During the
training process of the LSTM, GNB and DT prognostic classifiers, the output RUL data are labeled
into two distinct classes, one corresponding to RUL > ∆T and the other to RUL ≤ ∆T . In this
way, the trained classifiers directly output Pr(RULpred,k ≤ ∆T ) as the associated class probability.
With the EXP model, at each time step tk, the RULpred,k is directly given as output in the form of
a vector y of np weighted samples with a corresponding vector of weights w, obtained via particle
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filtering [61, 27]. The required probability is then queried as

Pr(RULpred,k ≤ ∆T ) =

np∑

i=1

L0/1

(
y(i) ≤ ∆T

)
· w(i), (7.28)

where L0/1 denotes the 0-1 loss function [43].

On the other hand, the PdM policies 2 and 3 require prognostic input in the form of the full PDF
fRULpred,k

(t). To this end, for all considered prognostic models, some additional post-processing is
required. In the case of the EXP model, one simply has to fit the parameters of an appropriately
chosen distribution type to the weighted samples y. In the case of the LSTM, GNB, DT prognostic
classifiers, given the training routine that we describe in the previous paragraph, the sole prognostic
output is the Pr(RULpred,k ≤ ∆T ), i.e., a single evaluation of the cumulative distribution function
(CDF) of RULpred,k. Fitting the CDF of a chosen distribution type to a single available CDF value
is challenging. To tackle this problem, for each classifier type, we choose to simultaneously train
two classifiers. Let us, for illustration purposes, consider the LSTM model. We train one LSTM
model which outputs the Pr(RULpred,k ≤ ∆T ), and a second LSTM model which outputs another
probability, e.g., the Pr(RULpred,k ≤ 2 ·∆T ). In such a manner, two values of the CDF are obtained,
which enables fitting a chosen distribution type with two parameters. In all models, the lognormal
distribution is chosen to model fRULpred,k

(t).

Fig. 7.7 plots the results for the metric M computed via the four employed prognostic models for
different assumed cp/cc cost ratios. Specifically, Fig. 7.7a plots the results obtained with each model
when employing the heuristic PdM policy 1, whereas Fig. 7.7b corresponds to the results obtained
when employing the here proposed PdM policy 3, which we found to perform better on this dataset
compared to the PdM policy 2, which also operates on the basis of the full RUL distribution as
input. We thus choose not to include the results obtained with PdM policy 2 in the plot. An initial
observation is that, for this specific case study, and for the specific prognostic models, the PdM policy
1 leads to better decisions than the PdM policy 3 for all prognostic models, with the exception of
the DT classifier, for which the results are comparable. This result might appear inconsistent with
the results obtained in the theoretical investigations of Section 7.3.

Due to the large uncertainty involved in estimation of M with limited data, a general statement
should be made with care. In the current case study, we are limited to 80 available units for training
and 20 units for evaluation, which implies presence of significant variability in the results. In
particular, evaluation of M on 20 units via Eq. (7.6) is subject to significant statistical uncertainty.
Even though the results in Fig. 7.7b appear rather worse than the results in Fig. 7.7a, this difference
occurs even if the decisions triggered by the two distinct policies are in effect not so different. As
an example, let us consider the LSTM model, and the cost ratio cp/cc = 0.1. With PdM policy 1
we find M̂ = 1.62%. This corresponds to preventive replacements informed at TR=[230, 200, 290,
260, 180, 260, 170, 200, 210, 150, 130, 330, 150, 250, 280, 330, 190, 150, 180, 190] cycles for the
20 evaluation units and no corrective replacement. Correspondingly, with PdM policy 3 we obtain
M̂ = 4.76%, which corresponds to preventive replacements informed at TR=[220, 200, 280, 250,
170, 250, 160, 200, 200, 140, 130, 330, 150, 240, 270, 320, 190, 150, 170, 180] cycles. Comparing
the two vectors shows that the difference in M̂ originates from the fact that PdM policy 3 informs
preventive replacement one decision time step earlier than the PdM policy 1 for some components.

The results in Fig. 7.7a reveal that the LSTM prognostic classifier delivers the best performance
among all four prognostic models with respect to PdM planning for replacement. The other three
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Figure 7.7: Evaluation of the metric M in conjunction with a prognostic model and a PdM policy
for planning replacement, as a function of different cp/cc cost ratios. The LSTM prognostic classifier
gives the best performance with respect to M .

models seem to deliver comparable performance. A practitioner could interpret the difference in the
results obtained via the different prognostic models in Fig. 7.7 as the percentage of cost savings that
using algorithm x for PdM planning could provide compared to using algorithm y. This straightfor-
ward interpretation is a good feature for the use of the metric in practice. Naturally, the metric M
entirely depends on the choices related to the decision problem, such as, e.g., the values assigned to
the costs cp, cc.

Using M as a performance metric has various advantages. Typically, most widely used performance
metrics, such as the ones in [58, 45], or standard metrics such as the MSE of predictions, rely
upon a regression type of prognostic outcome. They can therefore not easily compare, e.g., the
performance of prognostic regression models directly against prognostic classifiers. This is not the
case when using metric M , with which any two models can be compared, as long as their prognostic
output can be provided as input in the fixed PdM policy. Furthermore, ideally the performance of a
prognostic algorithm should be appraised at later prediction stages, when the decisions for preventive
replacements actually become relevant, which is what metric M does. Testing a prognostic algorithm
with respect to how well it can predict the exact RUL value at an early point in time might provide
impractical conclusions.

In Section 7.2.3.2 we discussed optimizing the heuristic threshold in PdM policy 1, and in Sec-
tion 7.3.2 we showed that this can lead to a significant improvement in the PdM decision-making,
quantified with respect to metric M . This process is also performed in the context of the current
case study within the training phase. Specifically, we employ the heuristic decision rule of Eq. (7.10)
and we search for the optimal value p∗thres that leads to minimization of M̂ when evaluating the PdM
policy 1 on the 80 training set units. We then employ the heuristic decision rule of Eq. (7.10) with
the optimal value p∗thres for evaluating M̂ on the remaining 20 test set units. The values that the
metric M̂ assumes for each prognostic model with the corresponding optimized heuristic PdM policy
1 are plotted in Fig. 7.8a, demonstrating the non-negligible improvement in the decision-making.

The optimal values of p∗thres found for different cp/cc ratios are plotted in Fig. 7.8b. It may appear
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Figure 7.8: Optimizing the heuristic decision threshold for the heuristic PdM policy 1 within the
training process.

surprising that p∗thres assumes a large and constant value along the whole cp/cc axis for most of the
models. The reason is that the specific models considered here seem to deliver an overestimation of
the classification or regression probabilities. p∗thres assumes a large value in order to correct for this
bias. Furthermore, the fact that the optimization of pthres is performed on a limited number of units
is the reason for which p∗thres assumes constant values over the cp/cc axis for most models.
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Figure 7.9: Risk associated with optimizing pthres in the heuristic PdM policy 1.

It should be noted that despite the improvement in the decision-making performance upon optimizing
pthres, a risk always exists in terms of introducing an over-relaxation in the probability space, which
can lead to corrective replacements. This might be acceptable for large cp/cc cost ratio values (e.g.,
see Fig. 7.9b), however, it can lead to significantly poor performance at small cost ratios, where a
single corrective replacement is strongly weighted. An illustrative example of such a case is shown
in Fig. 7.9a. For this studied case, the optimal threshold p∗thres = 0.85 is found, which is the value
that best accounts for the probability bias that is present in the employed LSTM model. This value
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results in no triggering of corrective replacements when employing this PdM policy on the 80 training
units, and is also the value for which early preventive replacements are minimized. However, a small
increase in pthres (changing its value to 0.9) leads to a very large increase in the value of M . This
occurs as 2/80 components fail, inducing the very large cc cost.

7.4.3 Second decision setting: PdM planning for component ordering and re-
placement

In this section, along with the considerations of Section 7.4.2, we further consider that a component is
readily available for replacement only if it was ordered on time. A component should be ordered at a
time informed by the heuristic PdM policy of Section 7.2.4.2. A deterministic lead time L = 2·∆T =
20 cycles is assumed, which is the time from component ordering to delivery. The heuristic PdM
policy requires the probabilities Pr(RULpred,k ≤ w+∆T ) (see Eq. (7.19)) and Pr(RULpred,k ≤ ∆T )
(see Eq. (7.20)) as input from the prognostics. To this end, during the training process, the output
RUL data are labelled into three distinct classes, and the considered prognostic classifiers are trained
as multiclass classifiers.

Fig. 7.10a plots the results for the metric M computed via the four employed prognostic models
for varying cc cost, fixed costs cp = 100, cunav = 10, cinv = 1 and heuristic threshold values
prepthres = porderthres = cp/cc. The LSTM prognostic classifier delivers the best performance with respect
to PdM planning for component ordering and replacement, with the other three models delivering
comparable performance. For all four models, the metric M assumes significantly higher values than
those of Fig. 7.7a, owing to the additional costs related to late ordering and holding inventory of a
component. Naturally, the magnitude of M strongly depends on the chosen cp, cc, cunav, cinv costs.

The heuristic decision rule of Eq. (7.20) determines the PR versus DN action without taking into
account whether or not a new component is in stock. This proves to be a suboptimal choice,
especially when the cunav value is non-negligible. Let us take the LSTM model and the engine unit
with ID=100 (with true failure time at 200 cycles) as an example, for cc = 1000. The heuristic PdM
policy informs component ordering at T

(i)
order = 170 cycles, and a preventive replacement already at

the next decision time step, i.e., at T (i)
R = 180 cycles with component unavailability, which based on

Eq. (7.15) induces C(i)
delay = 100. Hence, this simple heuristic PdM policy should be improved in the

future.

For the LSTM model, we additionally perform an optimization of the two heuristic thresholds on the
training data. We then employ the heuristic PdM policy with the optimal values porder

∗

thres = 0.11 and
prep

∗

thres = 0.5 for evaluating M̂ on the test set units. The results plotted in Fig. 7.10b demonstrate
that this threshold optimization leads to a significant improvement of the policy.

7.5 Concluding remarks

In this paper, we introduce a decision-oriented metric M for assessing and optimizing data-driven
prognostic algorithms. The proposed metric assesses and optimizes algorithms by accounting for
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Figure 7.10: Evaluation of the metric M in conjunction with a prognostic model and the heuristic
PdM policy of Section 7.2.4.2 for planning component ordering and replacement. M̂ is plotted as
a function of cc values varying in the range [120, 5000]. The remaining costs are fixed: cp = 100,
cunav = 10, cinv = 1.

their effect on downstream predictive maintenance (PdM) decisions that are to be triggered by
their predictions (outputs). Hence, it is defined in association with a specific decision context
and a corresponding PdM policy, which informs the maintenance actions based on input uncertain
Remaining Useful Life (RUL) predictions. Here, we specifically define and discuss the metric within
two common PdM decision settings: i) component replacement planning and ii) component ordering-
replacement planning. We numerically investigate the metric with the aid of: 1) a hypothetical
virtual RUL simulator and 2) an application case study related to turbofan engine degradation,
for which a run-to-failure dataset is readily available (the CMAPSS dataset). For the latter case
study, four data-driven prognostic models for classification and regression are employed. We tune
the hyperparameters of these algorithms and assess their performance on the basis of the decision-
oriented metric M .

For component replacement planning, we discuss two PdM policies of varying complexity that are
most commonly used in the PHM literature. The first policy is a simple heuristic policy, which
informs replacement via imposing a heuristic threshold on the probability of RUL exceedance at
the next decision time step. A significant improvement to this policy occurs when optimizing the
value of the heuristic threshold. The optimal value is found as the argument that minimizes the
metric M estimated on n run-to-failure experiments contained in the training dataset. The second
policy operates on the basis of the availability of the full RUL distribution, and searches for the
optimal future time to replacement. This is done with the aid of a renewal-theory-based objective
function. This objective function, which is derived from an assumption adopted in state-of-the-art
literature, incorrectly assumes that the predicted distribution of the time to failure of the component
corresponds to the underlying distribution of the time to failure of the whole population of compo-
nents. We here clarify this, and propose an alternative objective function based on an alternative
assumption, which is shown to lead to an enhanced performance.
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For component ordering-replacement planning, we restrict ourselves to one simple heuristic PdM
policy, which informs ordering and replacement via heuristic thresholds on the probability of RUL
exceedance in future decision time steps. We show that optimizing the value of the heuristic thresh-
olds leads to a considerable improvement of this PdM policy.

For the CMAPSS case study, the Long Short-Term Memory (LSTM) network classifier is shown to
deliver the best performance among the implemented prognostic models with respect to both PdM
for replacement planning and PdM for component ordering-replacement planning.

The proposed decision-oriented performance assessment of prognostic algorithms through the metric
M has multiple advantages over conventional metrics that appraise the quality of a prognostic
algorithm. Notably, M can be used to compare the performance of any two algorithms, i.e., it does
not require a regression-based prognostic outcome like most prediction-based metrics. Besides, M
automatically appraises the efficacy of prognostic algorithms at later prediction stages, which are
crucial for decision-making. Finally, the metric M can be interpreted as the percentage cost savings
for maintenance associated with the use of each algorithm relative to the perfect policy.

The availability of monitoring datasets from run-to-failure experiments is essential to a data-driven
evaluation of the proposed metric. This could potentially free the analyst altogether from the need
of a-priori defining a stochastic model describing the deterioration process. Availability of only
a limited amount of such data, however, poses a bottleneck for this evaluation, as it leads to an
estimate with fairly large variability. For instance, in the CMAPSS case study, we see that 20 run-
to-failure samples are not sufficient for obtaining a reliable estimate of the metric M . Furthermore,
the metric depends on the initial choice of different cost values associated with a decision setting,
e.g., the preventive/corrective replacement cost, the unavailability cost. In order to perform and
optimize maintenance planning, one cannot escape quantifying these costs. While an exact estimate
of these uncertain costs is often difficult to obtain in practice, a rough estimate can typically be
made be experienced engineers. For the purpose of defining the metric, such rough estimates should
be sufficient for practical applications (see Figs. 7.7 and 7.10), considering that alternative metrics
do not consider and account for these costs at all.

A promising avenue of future research relates to training of prognostic algorithms to receive monitor-
ing data as input and directly output a decision within a certain decision setting, whereby the PdM
policy can be learnt during the training process, e.g., via deep reinforcement learning [1, 34]. Such
advanced policies will typically need to be calibrated to the specifics of the cost model, deterioration
processes and monitoring data, and would require the availability of a large amount of training data.
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