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Abstract

Modern intelligent transportation systems (ITSs) integrate various advanced technologies
with transportation infrastructures to significantly improve road safety and traffic efficiency.
Pose estimation is an essential geometric perception problem in ITSs, which relies on mea-
surements from various sensors, such as the camera, radar, and light detection and ranging
(LiDAR), etc., to accurately estimate the position and orientation of objects within the traffic
environment. To meet system safety requirements, pose estimation techniques must be able
to effectively handle a large number of outliers, thus ensuring reliable and accurate results.

Branch and bound (BnB) is an algorithm framework for deterministic global optimization,
which is highly robust against noise and outliers and can provide globally optimal solutions
with theoretical guarantees. Therefore, this thesis aims to explore global and robust solutions
based on BnB for two typical categories of pose estimation problems in ITSs, comprising sen-
sor extrinsic calibration and point cloud registration. In conclusion, the main contributions
are as follows:

• This thesis proposes a globally optimal and robust extrinsic calibration method for traf-
fic radar. The proposed calibration method is targetless, which can tackle the incon-
venience during ITS operation. Besides, a novel BnB-based globally optimal registra-
tion method is proposed, which aligns the measurements of traffic radar and GPS in
a simultaneous pose and correspondence registration manner. Practical experiments
demonstrate that the proposed method is robust to noise and outliers in radar mea-
surements and is able to avoid failure by getting trapped in local optima in the case of
large relative angles.

• This thesis proposes an efficient and robust method for the LiDAR registration problem.
Specifically, a novel pose decoupling strategy based on residual projections is intro-
duced to effectively decompose the raw problem into three search sub-problems. Com-
pared with existing methods, the proposed approach searches for the optimal solution
in the low-dimensional solution domain, thereby improving search efficiency. Subse-
quently, a novel upper bound based on interval stabbing is derived, and a BnB-based
deterministic search algorithm is proposed to address these sub-problems. Extensive
experiments demonstrate that the proposed method outperforms state-of-the-art meth-
ods in terms of efficiency while simultaneously ensuring robustness.

• This thesis proposes an efficient and robust method for the LiDAR registration problem
with gravity prior. First, a novel decoupling scheme is proposed, which can decouple
the joint transformation into separate translation and rotation with the aid of known
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gravity directions. Subsequently, a BnB-based deterministic optimization algorithm for
the translation search sub-problem is proposed, followed by an efficient global voting
algorithm for the rotation estimation sub-problem. Compared with the state-of-the-art
methods, the proposed method is not only more robust against outliers and biases in
gravity directions but also more efficient.

• By further exploring the geometric constraints from the perspective of screw theory,
this thesis proposes another efficient and robust method for LiDAR registration with
gravity prior. Specifically, a novel transformation decoupling strategy is proposed by
leveraging screw theory, which can decompose the original registration problem into
three sub-problems. Accordingly, a novel and deterministic three-stage search strategy
for the decoupled sub-problems is proposed, which contains interval stabbing, BnB,
and global voting algorithms. Extensive experiments demonstrate that the proposed
method is more efficient and robust than state-of-the-art methods.

Most of the main contents were published in international journals, indicating the origi-
nality and reliability of the work.
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Zusammenfassung

Moderne intelligente Transportsysteme (ITS) integrieren verschiedene fortschrittliche Tech-
nologien in die Verkehrsinfrastruktur, um die Verkehrssicherheit und Effizienz erheblich zu
verbessern. Die Pose-Schätzung ist ein wesentliches geometrisches Wahrnehmungsproblem
in ITS, das auf Messungen von Sensoren wie Kamera, Radar und Lichterkennung und Ab-
standsmessung (LiDAR) basiert, um die Position und Ausrichtung von Objekten innerhalb
der Verkehrsumgebung genau zu schätzen. Um den Sicherheitsanforderungen des Systems
zu entsprechen, müssen Pose-Schätztechniken in der Lage sein, eine große Anzahl von Aus-
reißern effektiv zu handhaben, um so zuverlässige und genaue Ergebnisse zu gewährleisten.

"Branch and Bound" (BnB) ist ein Algorithmusrahmen für die deterministische globale
Optimierung, der äußerst robust gegenüber Störungen und Ausreißern ist und theoretisch
garantierte global optimale Lösungen liefern kann. Daher zielt diese Arbeit darauf ab, globale
und robuste Lösungen auf der Grundlage von BnB für zwei typische Kategorien von Proble-
men bei der Pose-Schätzung in ITS zu erforschen, nämlich die extrinsische Kalibrierung von
Sensoren und die Registrierung von Punktwolken. Zusammenfassend sind die Hauptbeiträge
wie folgt:

• Diese Arbeit schlägt eine global optimale und robuste extrinsische Kalibrierungsmeth-
ode für Verkehrsradare vor. Die vorgeschlagene Kalibrierungsmethode ist ziellos, was
die Unannehmlichkeiten während des Betriebs von ITS bewältigen kann. Darüber hin-
aus wird eine neuartige, auf BnB basierende global optimale Registrierungsmethode
vorgeschlagen, die die Messungen von Verkehrsradar und GPS in einer simultanen Pose-
und Korrespondenzregistrierungsweise ausrichtet. Praktische Experimente zeigen, dass
die vorgeschlagene Methode robust gegenüber Störungen und Ausreißern in Radarmes-
sungen ist und Ausfälle vermeiden kann, indem sie nicht in lokalen Optima bei großen
relativen Winkeln stecken bleibt.

• Diese Arbeit schlägt eine effiziente und robuste Methode für zur LiDAR-Registrierung
vor. Speziell wird eine innovative Pose-Decoupling-Strategie auf Basis von Residual-
projektionen vorgestellt, um das Rohproblem effektiv in drei Teilprobleme aufzuteilen.
Im Vergleich zu bestehenden Methoden sucht der vorgeschlagene Ansatz nach der op-
timalen Lösung im niederdimensionalen Lösungsbereich, wodurch die Sucheffizienz
verbessert wird. Anschließend wird eine neue Obergrenze auf Basis von Intervall-
Stabbing abgeleitet, und ein auf Branch-and-Bound basierender deterministischer Suchal-
gorithmus wird vorgeschlagen, um diese Teilprobleme zu bewältigen. Umfangreiche
Experimente zeigen, dass die vorgeschlagene Methode in Bezug auf Effizienz die Meth-
oden auf dem neuesten Stand der Technik übertrifft und gleichzeitig Robustheit gewährleis-
tet.

• Diese Arbeit schlägt eine effiziente und robuste Methode zur LiDAR-Registrierung mit
vorgegebener Schwerkraft vor. Zunächst wird ein neuartiges Entkopplungsschema vorgeschla-
gen, das die gemeinsame Transformation mithilfe bekannter Schwerkrichtungen in sep-
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arate Translation und Rotation aufspalten kann. Anschließend wird ein auf Branch-
and-Bound basierender deterministischer Optimierungsalgorithmus für das Teilprob-
lem der Translationssuche vorgeschlagen, gefolgt von einem effizienten globalen Ab-
stimmungsalgorithmus für das Teilproblem der Rotationsabschätzung. Im Vergleich zu
Methoden auf dem neuesten Stand der Technik ist die vorgeschlagene Methode nicht
nur robuster gegenüber Ausreißern und Verzerrungen in den Schwerkraftrichtungen,
sondern auch effizienter.

• Durch eine weitere Untersuchung der geometrischen Einschränkungen aus der Per-
spektive der Schraubentheorie schlägt diese Arbeit eine weitere effiziente und robuste
Methode für die LiDAR-Registrierung mit vorgegebener Schwerkraft vor. Speziell wird
eine innovative Transformationsentkopplungsstrategie mithilfe der Schraubentheorie
vorgeschlagen, die das ursprüngliche Registrierungsproblem in drei Teilprobleme zer-
legen kann. Entsprechend wird eine neuartige und deterministische Dreistufige Such-
strategie für die entkoppelten Teilprobleme vorgeschlagen, die Interval Stabbing, BnB
und globale Abstimmungsalgorithmen enthält. Umfangreiche Experimente zeigen, dass
die vorgeschlagene Methode effizienter und robuster ist als Methoden auf dem neuesten
Stand der Technik.

Der Großteil der Hauptinhalte wurde in internationalen Fachzeitschriften veröffentlicht,
was die Originalität und Zuverlässigkeit der Arbeit belegt.
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1
Introduction

1.1 Overview

Modern intelligent transportation systems (ITSs) integrate various advanced information,
communication, and sensing technologies with transportation infrastructures to significantly
improve road safety and traffic efficiency. For instance, ITSs can provide autonomous vehi-
cles, as well as traditional vehicles, with extra detailed information about traffic participants
and the overall traffic situation, thus extending their perception field [Zha+11; Men+17;
Krä+19; Ye+22]. Providing road users with this supplementary information enhances their
spatial understanding of the surrounding environment, allowing for safer and more proactive
maneuver planning. Moreover, ITSs with these capabilities can provide a variety of services to
further support decision-making, such as emergency vehicle notification, variable speed lim-
its, and collision warning. As an important frontline module in ITSs, the perception system
commonly utilizes a diverse range of sensors to acquire live traffic data in various modalities,
including cameras, event cameras, radar, and light detection and ranging (LiDAR), etc. The
typical infrastructures of ITS equipped with multiple sensors are given in Fig. 1.1.

Pose estimation is an essential geometric perception problem in ITSs, which leverages
sensor measurements to accurately estimate the position and orientation of objects within
the traffic environment. Specifically, it is a task of estimating the relative transformation,
including rotation and translation, between the object of interest and the reference co-
ordinate system from multiple kinds of sensor measurements (e.g. visual, inertial, and
laser-scan data) [Wu+20; Li+23g]. Nowadays, pose estimation problems have a wide
range of applications in ITS-related perception tasks, including vehicle localization and map-
ping [Li+23b; Zhu+22; Li+23a], object detection [Guo+14; Che+23a], camera pose esti-
mation [Che+22b; LCK23], sensor extrinsic calibration [Bel+22; Jia+23b], and point cloud
registration [Zha+23b; Yan+23; Che+23b]. It is worth noting that numerous high-level
planning and decision-making tasks within ITS heavily depend on the information deliv-
ered by the perception system. If inaccurate pose estimation results are provided, it could
prompt inappropriate actions taken by traffic participants, potentially leading to severe fail-
ures. Hence, it is crucial for pose estimation algorithms to deliver satisfactory solutions.

1



2 Chapter 1 Introduction

Figure 1.1: One of the measurement points on the highway A9 from Providentia++ project (https://
innovation-mobility.com/en/project-providentia/). Adapted from Fig. 1 in [Li+23d].

A typical pose estimation pipeline including a matching front-end that extracts and matches
relevant features from original sensor measurements, and an optimization back-end that es-
timates the relative transformation from the given putative feature matches (i.e., correspon-
dences) [YC22; YP23]. However, in practical applications, due to various imperfections and
uncertainties (e.g., sensor failures, noisy measurements, and incorrect matching), the pres-
ence of outliers in feature correspondences is inevitable in the front-end. It is widely rec-
ognized that even a single outlier can significantly distort the estimation results [TAC19;
Ant+21]. Therefore, the existence of outliers significantly elevates the safety risk in ITS. To
meet safety demands, it is imperative for the pose estimation technology to incorporate an
outlier-robust back-end capable of effectively handling substantial amounts of outliers.

To further explain the importance of a robust back-end in pose estimation technologies,
the 3D point cloud registration task is taken as an example. As shown in Fig. 1.2, the front-
end first establishes the 3D feature correspondences between the source and target point
clouds by 3D descriptors, e.g., fast point feature histograms (FPFH) [RBB09]. When the cor-
respondences are all inliers, the back-end can provide an elegant closed-form solution [Hor87;
AHB87], although the non-convexity of the special orthogonal group SO(3). Nonetheless, it
is almost impossible to generate the feature correspondences without outliers in practice,
and a significant number of outliers is quite common (often > 95% [BC17; Li+23b]), such
as shown in Fig. 1.2. Therefore, obtaining robust solutions for pose estimation problems in
the presence of outliers is crucial. Random sample consensus (RANSAC) [FB81] is one of
the most popular methods to suppress outlier correspondences. Unfortunately, due to its ran-
domized nature, RANSAC is non-deterministic and only generates satisfactory results with
a certain probability [Li09; Le+19]. In other words, RANSAC probably returns an unsatis-
factory solution without notice. In practical applications, these incorrect results may cause
misjudgment of the ITS perception system, leading consequent modules in the system to take
risky actions.

To obtain highly reliable and robust solutions, an increasing number of deterministic

https://innovation-mobility.com/en/project-providentia/
https://innovation-mobility.com/en/project-providentia/
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Figure 1.2: A typical pose estimation pipeline for point cloud registration problem. Given two point clouds, the
pipeline first extracts and matches keypoints to generate putative correspondences (referred to as the matching
front-end). Next, the pipeline estimates the best rotation and translation to align two point clouds by solving a
mathematical optimization problem (referred to as the optimization back-end). The source, target, and aligned
point clouds are green, orange, and blue, respectively.

global optimization algorithms have been proposed to address pose estimation problems re-
cently [Li09; Flo13; Chi+17; CCK19; Le+19; Fan+21]. Most of these methods employ
the branch and bound (BnB) optimization algorithm [HK09; Li09; ZSO11; BSP12; Yan+16;
LZY16]. The BnB algorithm is a globally optimal optimization technique capable of address-
ing many non-convex and NP-hard problems [Sch11]. From the optimization aspect, the BnB
algorithm systematically searches the entire parameter space to seek the global optimum so
that it can avoid local optima. The BnB algorithm has two significant advantages: 1) it can
provide the globally optimal solution with theoretical guarantees, and 2) it is independent
of initial parameters. Particularly, employing BnB necessitates the development of specific
lower and upper bound functions tailored to different target problems. Therefore, this thesis
delves into developing robust and accurate back-end optimization methods based on BnB to
solve typical pose estimation problems.

In a nutshell, the pose estimation problem has a wide range of applications in ITSs, es-
pecially as a core component of many geometric perception tasks, where a robust back-end
is extremely important. However, the existence of outliers, almost inevitable in practical ap-
plications, will significantly affect the perception performance and increase the ITS safety
risk. Unfortunately, conventional pose estimation algorithms commonly cannot guarantee to
provide optimal solutions from outlier-contaminated data. Therefore, this thesis presents an
investigation of BnB-based robust solutions for typical pose estimation problems in ITSs so
as to improve perception performance and system safety.

1.2 Problems and Challenges

Pose estimation problems refer to the general task of estimating the transformation of an
object from a given reference pose. This thesis mainly focuses on two typical categories
of pose estimation problems in ITSs, including sensor extrinsic calibration and point cloud
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registration.

1.2.1 Sensor Extrinsic Calibration

The ITS commonly utilizes heterogeneous sensors, such as cameras, LiDAR, and radar, to
acquire information on different modalities and significantly expand the perception range.
These sensors usually have different installation locations and different fields of view. Thus,
sensor extrinsic calibration is necessary for multi-sensor spatial fusion. The purpose of sensor
extrinsic calibration is to determine how measurements from different sensors can be trans-
formed into a reference coordinate system and build a consistent environment model. The
transformation commonly contains a rotation and a translation.

According to the pipeline in Fig. 1.2, the front-end of sensor extrinsic calibration is
building feature correspondences. The existing calibration methods are classified as target-
based [PMP19; TPH20; DKG21; Bel+22] and targetless [Zuñ+19; Yua+21; Che+22a; Sun+22a]
depending on the way of extracting features (reviewed in Chapter 2). Then, the back-end
estimates the transformation parameters by minimizing the reprojection error between the
feature correspondences.

Typically, target-based methods rely on prepared artificial targets, such as checkerboards,
retro-reflective landmarks, and custom-built calibration patterns. These methods can gen-
erate reliable and high-quality feature correspondences based on the specialized targets,
thereby obtaining high-accuracy calibration results. However, target-based methods are la-
borious and time-consuming for practical scenarios because sometimes the installation of
specialized targets is infeasible, such as during ITS operation. Targetless calibration meth-
ods commonly build feature correspondences from the environment structure, such as lines,
edges, and planar regions. However, these methods suffer from the problem of low-quality
feature correspondences since environmental features are unstable and sensors are suscep-
tible to noise, leading to outlier correspondences. In summary, the challenges of sensor
extrinsic calibration mainly arise from the following three aspects: 1) feature extraction from
noisy measurements, 2) feature matching between multi-modal sensors or unavailable fea-
ture matching, and 3) robust pose estimation.

1.2.2 Point Cloud Registration

Point cloud refers to a set of 3D points acquired by LiDAR or RGB-D cameras. Given source
and target point clouds in different coordinate systems, point cloud registration aims to esti-
mate the 6 degrees of freedom (DOF) transformation to align the two point clouds best. The
6-DOF transformation includes both 3-DOF rotation and 3-DOF translation. Besides, point
cloud registration is also known as scan matching or point set registration. On the other
hand, autonomous vehicles in ITSs are commonly equipped with inertial measurement units
(IMUs), which can provide high-precision gravity directions. Thus, researchers leverage prior
information from external sensors, such as IMUs, to assist point cloud registration. With the
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aid of gravity directions, the relative rotation is reduced to 1 degree of freedom (DOF). Thus,
the original 6-DOF point cloud registration problem is reduced to a 4-DOF problem.

For both point cloud registration problems, the front-end commonly generates feature
correspondences by 3D handcrafted or learning-based descriptors from original point clouds.
Subsequently, given the putative correspondences, the optimization back-end estimates the
relative transformation. However, in cases where generating correspondences is intractable,
such as when the point clouds are not sampled densely from smooth surfaces, the registra-
tion problem can be tackled only through the optimization back-end, employing a simulta-
neous pose and correspondence registration paradigm. Therefore, the current registration
methods are classified as correspondence-based [YSC20; Yan+23; Zha+23b; Che+23b] and
correspondence-free [BM92; BS03; Yan+16; ZYD21] (reviewed in Chapter 2). Due to the
limited performance of existing 3D feature matching methods and the non-convexity of the
registration problem, the challenges of point cloud registration include: 1) establishing reli-
able correspondences, 2) robustness against outliers, and 3) computational complexity.

1.3 Contributions

This thesis adopts the deterministic and global BnB algorithm to address the above-mentioned
challenges of typical pose estimation problems in ITSs, including sensor extrinsic calibration
and point cloud registration. By utilizing the BnB algorithm, the back-end of the pose esti-
mation technique can suppress heavy outlier correspondences and obtain robust solutions.
Specifically, the main contributions are concluded as follows:

• This thesis proposes a targetless radar extrinsic calibration method based on GPS to
overcome the inconvenience during ITS operation, since the installation of a special-
ized calibration object on the highway is impractical and dangerous. The high-precision
GPS device installed on the moving vehicle can provide traffic radar with accurate po-
sitioning information of the detection target. Furthermore, in the back-end of extrin-
sic calibration, a globally optimal registration method is proposed, which is robust to
noise and outliers in radar measurements. Concretely, a robust objective function is
first constructed by utilizing the Gaussian mixture model (GMM). Then, novel relax-
ation bounds are derived for this objective, and a BnB-based algorithm is proposed,
which overcomes the susceptibility to local minima and the dependence on the initial-
ization of traditional methods. The proposed algorithm can align the measurements
of traffic radar and GPS in a simultaneous pose and correspondence registration (i.e.,
correspondence-free registration) manner. Compared with existing methods, extensive
experiments on synthetic and real-world data demonstrate that the proposed method
is not only globally optimal but also more accurate and robust.

• This thesis proposes an efficient and robust method for the general 6-DOF point cloud
registration problem. Current 3D feature matching approaches in the front-end com-
monly generate an overwhelming number of outlier correspondences, which makes
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the outlier-robust back-end indispensable. Nonetheless, BnB-based methods are time-
consuming to search the entire 6-dimensional parameter space simultaneously since
their computational complexity is exponential to the dimensionality of the solution do-
main in the worst-case. In order to enhance algorithm efficiency, existing works attempt
to decouple the 6-DOF original problem into two 3-DOF sub-problems, thereby reduc-
ing the dimensionality of the parameter space. In contrast, a novel pose decoupling
strategy based on residual projections is introduced in this thesis, which effectively
decomposes the raw problem into three search sub-problems. Subsequently, a novel
BnB-based deterministic search method is proposed to solve these sub-problems, and
the relevant bound functions based on interval stabbing are derived. Moreover, the pro-
posed upper bound is modified by interval merging to solve the registration problem
without correspondence. Extensive experiments conducted on synthetic and real-world
datasets demonstrate that the proposed method outperforms state-of-the-art methods
in terms of efficiency while simultaneously ensuring robustness.

• This thesis proposes an efficient and robust method for the point cloud registration
problem with gravity prior. The key idea is to speed up BnB-based methods by decou-
pling the joint pose into individual translation and rotation with the aid of known grav-
ity directions. This effectively reduces the search domain to 3-DOF+1-DOF, thereby
enhancing algorithm efficiency. Specifically, a novel BnB-based consensus maximiza-
tion method for 3-DOF translation searching is proposed, and the specific lower and
upper bound functions are derived. Then, an efficient global voting method to esti-
mate the rotation with 1-DOF is proposed. Extensive experiments on both synthetic
and real-world datasets are conducted to demonstrate the superiority of the proposed
method. The experimental results show that 1) the proposed method is more robust
against outliers and noise than several existing methods and far faster than the ex-
isting BnB-based 4-DOF method by almost an order of magnitude, 2) the proposed
method is robust against the biases in gravity directions, such that the general error of
IMUs is acceptable, and 3) thanks to its significant robustness, the proposed method
can solve the challenging correspondence-free registration problem under the all-to-all
correspondence assumption.

• By further exploring the geometric properties and constraints, this thesis proposes an-
other efficient and robust method for point cloud registration with gravity prior. Firstly,
the registration problem is reformulated by screw theory, and a novel transformation
decoupling strategy is proposed accordingly. This strategy is to decompose the 4-DOF
original problem into three sub-problems with 1-DOF, 2-DOF, and 1-DOF, respectively,
thereby enhancing the algorithm efficiency. Specifically, the first 1-DOF represents the
translation along the rotation axis, and an interval stabbing-based method is proposed
to estimate it. The second 2-DOF represents the pole which is an auxiliary variable in
screw theory. It is reformulated as a linear model fitting problem, and a BnB-based
algorithm is utilized to solve it. The last 1-DOF represents the rotation angle, and a
global voting method is proposed for its estimation. The proposed method sequen-
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Figure 1.3: The framework of this thesis.

tially solves three consensus maximization sub-problems to achieve efficient and de-
terministic registration. In particular, the proposed method can be extended to solve
the correspondence-free registration problem without the all-to-all correspondence as-
sumption. Extensive experiments on synthetic and real-world datasets demonstrate
that the proposed method is more efficient and robust than state-of-the-art methods.

Most of the contents provided in this thesis are either previously published or under sub-
mission for international journals.

1.4 Outline

As shown in Fig. 1.3, this thesis is structured as follows:

• Chapter 1 first gives an overview of the pose estimation problems in ITSs and introduces
the importance of robust solutions in practical applications. Furthermore, it states two
typical categories of pose estimation problems in ITSs and their challenges. Finally, the
main contributions are summarzied.

• Chapter 2 extensively reviews the related work of sensor extrinsic calibration and point
cloud registration.

• Chapter 3 presents a globally optimal robust radar extrinsic calibration method and
provides rigorous theoretical derivations and extensive experiment results.

The main contents of this chapter have been published in IEEE Transactions on Intelligent
Transportation Systems [Li+23d].
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• Chapter 4 proposes an efficient and robust method for the point cloud registration
problem and provides rigorous theoretical derivations and extensive experiment results.

The main contents of this chapter have been submitted for possible publication in IEEE.
The associated arXiv version is [Li+23c].

• Chapter 5 proposes two novel algorithms for efficient and robust point cloud regis-
tration with gravity prior. The first algorithm decouples the transformation by known
gravity directions. By further exploring the geometric constraints, the second algorithm
decouples the transformation by screw theory. Rigorous theoretical derivations and ex-
tensive experiment results are provided.

The main contents of Section 5.2 have been published in ISPRS Journal of Photogrammetry
and Remote Sensing [Li+23e]. The main contents of Section 5.3 have been submitted for
possible publication in IEEE. The associated arXiv version is [Li+23f]

• Chapter 6 comprehensively summarizes the contributions and discusses limitations and
future directions.



2
Related Work

This chapter provides a comprehensive discussion and comparison of the existing
work, focusing on sensor extrinsic calibration and point cloud registration domains.
Additionally, the strengths and limitations of current methods are summarized and
analyzed.

2.1 Sensor Extrinsic Calibration

In the past few decades, researchers have conducted a wide range of studies on sensor extrin-
sic calibration to improve the perception accuracy of autonomous vehicles and ITSs. Gener-
ally, one of the requirements for the front-end of extrinsic calibration is the reference feature,
which is extracted from a dedicated target or environment structure. This requirement di-
vides the sensor extrinsic calibration methods into two categories, target-based and targetless
methods.

2.1.1 Target-based Calibration

Target-based methods calibrate the extrinsic parameters of the sensor by using specialized
objects that are easily detected, such as checkerboards [Gei+12; Xie+18; ZLK18; Mis+20;
Jia+23b], spherical targets [KKL18; KK20; TPH20], reflective landmarks [El +15; PMP19;
Lee+20; Olu+21], and custom-built patterns [DKG21; Bel+22]. Compared with targetless
methods, target-based methods are commonly more accurate due to the reliable feature cor-
respondences.

Among the various specialized objects, the checkerboard stands out as one of the most
commonly used. For example, Geiger et al. [Gei+12] proposed a toolbox for the camera-
to-LiDAR calibration based on the checkerboard. The well-known iterative closest point
(ICP) algorithm is employed for registration in the back-end. Zhou et al. [ZLK18] also pre-
sented an extrinsic calibration method for LiDAR and camera using the checkerboard. In
the front-end, the line and plane correspondences are generated to reduce the number of

9
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required checkerboard poses. Then the parameters are estimated at the back-end using the
Levenberg-Marquardt (LM) algorithm. Jiao et al. [Jia+23b] proposed a checkerboard-based
and globally optimal extrinsic calibration method for LiDAR, camera, and event camera. They
introduced a general solver based on Gröbner-basis to globally solve the optimization prob-
lems in the back-end. Furthermore, Kümmerle et al. [KKL18] employed the spherical target
to calibrate the camera and LiDAR. RANSAC is used to achieve outlier-robust pose estima-
tion. Tóth et al. [TPH20] established feature correspondences about sphere centers between
the camera and LiDAR. Then, they applied the singular value decomposition (SVD) method
to obtain the closed-form solution of the relative transformation.

Reflective landmarks are commonly used for millimeter-wave (MMW) radar extrinsic cal-
ibration. Natour et al. [El +15] established the radar-to-image correspondences by a ded-
icated target with high reflectivity to implement the calibration between radar and cam-
era. They employed the LM algorithm to determine the relative transformation. Chou et
al. [CYS17] introduced a mirror-assisted combined calibration object and proposed an ex-
trinsic calibration method for the ground penetrating radar and camera. The LM algorithm
is also employed in the back-end to minimize the reprojection error. Peršić et al. [PMP19]
designed a triangular-shaped corner reflector for radar, LiDAR, and camera calibration. They
used the LM algorithm to minimize the reprojection error, followed by radar cross-section
(RCS) enhanced optimization. Lee et al. [Lee+20] implemented the spatial and temporal
calibration for radar and LiDAR by the RCS measurements from a triangular board. In ad-
dition, Olutomilayo et al. [Olu+21] proposed a radar extrinsic calibration method based
on corner reflector targets with the known pose. They optimized the extrinsic parameters
by using the Kabsch algorithm. Domhof et al. [DKG21] proposed a novel extrinsic calibra-
tion tool for radar, camera, and LiDAR by using a specialized target and utilized three joint
optimization configurations to perform both relative and absolute calibration. Beltrán et
al. [Bel+22] presented a custom-built calibration board for LiDAR and camera calibration.
The SVD method is used to estimate the optimal relative transformation. The advantage of
target-based methods is that they are accurate and easy to implement. However, target-based
methods are impractical in ITS-related applications since the installation of dedicated targets
on the road is dangerous and infeasible.

2.1.2 Targetless Calibration

Different from the target-based methods, the targetless methods commonly extract feature
correspondences from the environment structure, such as points [GRG09; ZZM15], lines [MBZ13;
BJX20; Zha+21], edges [LT13; KD20; Yua+21], and objects [YJC21; Sun+22b; Sun+22a;
Lia+23]. In [MBZ13], authors extracted and matched line features to determine the extrin-
sic parameters between the camera and LiDAR. Similarly, Zhang et al. [Zha+21] proposed
a line-based extrinsic calibration method for LiDAR and camera. Then, they presented an
adaptive optimization approach to estimate the relative transformation. In [LT13], the 3D
edge features were extracted from the point cloud by depth discontinuities and then projected
onto the 2D image. They addressed the calibration problem by minimizing the reprojection
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error. In [KD20], authors proposed a camera-LiDAR calibration method that minimizes the
misalignment of edges by utilizing the gradient descent algorithm. In [Yua+21], authors
presented an extrinsic calibration method by aligning edge features in the point cloud and
image. They introduced a maximal likelihood optimization method to estimate the extrinsic
parameters. Furthermore, Yoon et al. [YJC21] employed semantic objects to build feature
correspondences and then calibrated extrinsic parameters for the camera and LiDAR. Simi-
larly, Liao et al. [Lia+23] extracted semantic features from both point clouds and images, fol-
lowed by estimating extrinsic parameters. Sun et al. [Sun+22b] proposed an attention-based
object-level matching network to build 2D-3D correspondences and then presented a parti-
cle swarm optimization algorithm to estimate the relative transformation. In [Sun+22a],
authors extracted and associated objects by the instance segmentation method and adopted
the differential evolution (DE) algorithm to optimize the cost function. In addition to these
appearance-based approaches, motion-based methods have also been introduced in [IOI18;
Wal+19; Zuñ+19; Yuw+20; LZ21; Jia+21; LYZ22; Das+22; Che+22a], which utilize the
motion of sensors as auxiliary cues. These methods commonly formulate extrinsic calibration
as a hand-eye calibration problem, where the extrinsic parameters are estimated using the
motions of sensors. Nonetheless, these methods typically require sufficient motions to extract
co-visible features. Moreover, their accuracy is highly susceptible to the cumulative drifts of
the estimated motion.

Due to the sparseness and noisiness of MMW radar measurements, radar can not pro-
vide any descriptive features such as edges and corners from the environment structure.
Therefore, researchers have utilized additional prior information or a moving platform to
associate targets. For example, Schöller et al. [Sch+19] proposed a data-driven targetless
radar calibration approach based on deep learning to estimate the relative rotation angle,
which can avoid the target association problem between camera and radar measurements.
However, this approach only achieves the rotational calibration and ignores the translational
calibration. Izquierdo et al. [Izq+18] proposed a targetless calibration method based on the
high-definition (HD) map for multiple radars onboard a vehicle. The reference features are
the static objects with specific categories and high RCS, such as street lights and traffic signs.
However, they assumed that the vehicle could be localized on the HD map by using GNSS.
Similarly, Heng et al. [Hen20] proposed a targetless calibration method for multiple 3D Li-
DARs and 3D radars mounted on a vehicle. They first utilized the LiDAR data to build a 3D
map of the environment and then registered the radar scans with the 3D map. They also
assumed that known vehicle poses are provided by a GNSS system. Wise et al. [Wis+21]
utilized continuous-time velocity measurements to implement the extrinsic calibration of on-
board 3D radar instead of 2D (planar) radar. This study is based on the ego-motion estimation
of a moving vehicle. Du et al. [Du+21] introduced a spatio-temporal calibration method for
roadside cameras and radar. They proposed an object-matching method based on multiple
virtual detection lines to generate object-level correspondences. The objects are extracted
from the camera and radar measurements by multi-object tracking methods. However, due
to the limited performance of multi-object tracking methods, this calibration method suf-
fers from low accuracy. In general, all the aforementioned targetless methods adhere to
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the principle of feature matching, followed by parameter optimization. However, they still
encounter problems related to feature extraction and matching, which often result in outlier-
contaminated correspondences and thus affect the accuracy of parameter optimization.

2.2 Point Cloud Registration

Despite decades of research, the rigid point cloud registration is still an active and challenging
problem since it has the chicken-and-egg property [LH07]. Specifically, the registration prob-
lem comprises two mutually interlocked sub-problems: pose and correspondence estimations.
If one sub-problem is solved, another sub-problem will be solved accordingly. Commonly, ex-
isting registration methods are classified into two categories based on the requirement of
correspondence or not, which are correspondence-based registration and simultaneous pose
and correspondence registration (a.k.a. correspondence-free registration).

2.2.1 Correspondence-based Registration

Correspondence-based registration is the 3D extension of image matching, which comprises
two major steps: 1) matching correspondences between point clouds by 3D keypoints and
feature descriptors, and 2) estimating the transformation from the candidate correspon-
dences. In the matching process, 3D handcrafted or learning-based keypoints (e.g., ISS [Zho09],
MeshDoG [Zah+09], Harris3D [SB11], KeypointNet [Suw+18], 3DFeatNet [YL18], USIP [LL19],
and RSKDD-Net [Lu+20]) are first extracted from point clouds. Then keypoints are en-
coded to high-dimensional feature vectors by 3D feature descriptors [TSD13; Guo+16].
Compared to hand-crafted 3D descriptors (e.g., FPFH [RBB09], SHOT [TSD10; STD14],
RoPS [Guo+13a], and TriSI [Guo+13b]), the learning-based descriptors (e.g., 3DMatch [Zen+17],
3DSmoothNet [Goj+19], FCGF [CPK19], D3Feat [Bai+20], SpinNet [Ao+21], Predator [Hua+21],
and YOHO [Wan+22]) exhibit outstanding precision and have achieved more attention in
recent years. Finally, the putative correspondences between point clouds are established
by computing pairwise similarity, such as utilizing the nearest neighbor matcher [Low04].
Recently, learning-based matchers (e.g., CoFiNet [Yu+21], GeoTransformer [Qin+22], and
RoITr [Yu+23]) are also investigated to improve correspondence quality, which excludes key-
point detection. However, due to the existence of repetitive structures, noisy data, and point
density variations, these methods hardly achieve a correspondence set completely free of
outliers. Therefore, the outlier-robust optimization back-end is highly desirable.

Ideally, if the correspondences are known, the registration problem can have a closed-form
solution [Hor87; AHB87], despite the non-convexity of SO(3). Besides, Olsson et al. [OKO08]
proposed a globally optimal registration method based on branch and bound (BnB) for the
outlier-free problem. Their method enables point-to-point, point-to-line, and point-to-plane
registration. In practical scenarios, several well-established paradigms have been extensively
studied to suppress the outlier correspondences and achieve robust registration, such as M-
estimation [ZPK16; YSC20; Li+20; SMG23], outlier removal [ART10; BC17; Cai+19; Li22;
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Yan+22a; Li+23b], consistency voting [Gle+14; Yan+19; SSO20; Yan+22b; Yan+23], and
consensus maximization [FB81; QY20; BM21; Yan+21; Che+22d; Che+23b; Zha+23b]. In
addition to the aforementioned geometric-based paradigms, recent studies have also utilized
deep learning techniques for correspondence-based point cloud registration, such as 3DReg-
Net [Pai+20], DGR [CDK20], PointDSC [Bai+21], DHVR [Lee+21], DetarNet [CYT22], and
VBReg [Jia+23a].

A representative M-estimation method, called fast global registration (FGR), was pro-
posed by [ZPK16]. This method formulates the registration problem using the Geman-
McClure objective function and then combines graduated non-convexity (GNC) to solve the
registration problem. While this approach is highly efficient, it can easily generate incorrect
solutions at a high outlier rate. Combining the ideas of outlier removal and M-estimation,
Yang et al. [YSC20] proposed a certifiable and deterministic approach, i.e., truncated least
squares estimation and semidefinite relaxation (TEASER). TEASER leverages the translation
invariant measurements (TIMs) to decouple the 6-DOF transformation search problem into
a 3-DOF rotation search sub-problem followed by a 3-DOF translation search sub-problem.
Meanwhile, TEASER allows outlier pruning by maximum clique method [Bus+19], which,
however requires quadratic memory space (i.e., O(N2)). The pioneering work of outlier re-
moval is [ART10], which proposed an inlier selection method based on the game-theoretic
framework for point cloud registration. This method is stochastic and has no global optimal-
ity guarantees. Parra and Chin [BC17] first proposed a guaranteed outlier removal (GORE)
method, which leverages geometrical bounds to prune outliers and guarantees that elimi-
nated correspondences are not the inlier. Another outlier removal method based on GORE
was proposed by [Li22], which is initialization-free and only costs polynomial running time to
prune the outlier correspondences. However, it sacrifices global optimality for efficiency. The
same authors proposed a quadratic-time GORE [Li+23b], which preserves the global opti-
mality while significantly improving the efficiency. Yan et al. [Yan+22a] presented an outlier
removal strategy based on the reliability of the correspondence graph, called graph reliabil-
ity outlier removal (GROR). The pioneering work in the consistency voting paradigm was
introduced by Buch et al. [Gle+14], which proposed a voting-based method that integrates
local and global constraints to score correspondences. Sahloul et al. [SSO20] presented a
two-stage voting strategy aimed at ranking correspondences based on local and global geo-
metric consistencies. In a more recent study, Yang et al. [Yan+23] introduced a mutual voting
method that involves calculating the node clustering coefficients of the compatibility graph
constructed from the correspondence set. Subsequently, both nodes and edges in the graph
are mutually scored, leading to the ranking of correspondences based on the voting scores.

With regard to the consensus maximization paradigm, the most popular registration
method is based on the heuristic RANSAC [FB81]. During each iteration, RANSAC em-
ploys a minimal solver to calculate the 3-DOF rotation and the 3-DOF translation sepa-
rately. Nonetheless, RANSAC-based methods demonstrate efficient performance primarily
when dealing with low outlier rates. Moreover, they are non-deterministic and generate a cor-
rect solution only with a certain probability due to the essence of random sampling [Le+19].
Recently, several RANSAC-based variants[CMK03; LMC12; LHA20; LHA21; BM21; Sun21;
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BNM21] were proposed by introducing novel sampling strategies or local optimization meth-
ods. For instance, Graph-cut RANSAC [BM21] (GC-RANSAC) introduced the graph-cut al-
gorithm to improve the local optimization performance. In [QY20], authors introduced a
new sampling strategy guided by compatibility to prioritize samples consisting of geometri-
cally compatible correspondences. Yang et al. [Yan+21] proposed a consensus maximization
method for robust registration, called sample consensus by sampling compatibility triangles
in graphs (SAC-COT). They introduced a new correspondence sampling method based on
the compatibility triangle representation. More recently, Chen et al. [Che+22d] introduced
a new metric based on second-order spatial compatibility to assess correspondences and pro-
posed a two-stage sampling strategy to maximize the inlier set accordingly. Besides, Zhang et
al. [Zha+23b] introduced a point cloud registration method based on maximal cliques. This
method first constructs a graph from the correspondence set and searches maximal cliques in
the graph. Then, it generates and evaluates the hypotheses according to the maximal cliques
and finally selects the best one. Despite previous efforts, these methods still face challenges
in terms of time efficiency and accuracy, especially when dealing with high outlier rates.

Against this background, several deterministic global optimization methods have been
proposed, most of which are based on the globally optimal BnB framework [BSP12; BC17;
Cai+19; Che+22c]. BnB [Sch11; Flo13] is a powerful optimization algorithm framework
for solving non-convex and NP-hard problems. The fundamental concept underlying BnB
involves the iterative alternation between solution domain segmentation (branch) and sub-
branch bounds computation (bound) until the globally optimal solution is obtained. Among
the existing BnB-based methods, Bazin et al. [BSP12] proposed a globally optimal consensus
maximization method based on BnB for the 3-DOF rotation search. Except for the proposed
guaranteed outlier removal method, GORE [BC17] converts the 6-DOF registration prob-
lem to a 3DOF rotational registration problem and then utilizes BnB to maximize the inlier
set. Then, Cai et al. [Cai+19] presented an extension of GORE for the 4-DOF terrestrial
LiDAR registration. This method jointly searches for the globally optimal solution in the
high-dimensional domain by BnB. To speed up the BnB algorithm, Chen et al. [Che+22c]
proposed both a new transformation decomposition strategy for 6-DOF registration and an
efficient two-stage search method based on BnB. Their decomposition strategy is different
from current TIMs-based methods in that it decomposes 6-DOF into (2+1)-DOF and (1+2)-
DOF by special geometric constraints. Although some transformation decomposition strate-
gies have been developed, the main limitation of the BnB algorithm is the high time cost.
Theoretically, the computational complexity of BnB optimization is exponential to the dimen-
sion of the solution domain in the worst-case. Hence, there is still potential for improving the
algorithm efficiency by considering the dimensionality of the registration problem.

2.2.2 Correspondence-free Registration

In contrast to correspondence-based methods, correspondence-free methods utilize raw point
data as input instead of features, eliminating the need for explicit correspondence between
points. Expectation-maximization (EM)-type methods are considered as classic approaches
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for solving the simultaneous pose and correspondence registration (SPCR) problem. These
methods aim to iteratively find the maximum likelihood or maximum a posteriori (MAP)
estimates of parameters. Within EM-type methods, ICP [BM92] is the most representative
and popular. Starting from an initial estimation, it solves the association of correspondence
and the estimation of transformation alternately until convergence. ICP also has many vari-
ants [RL01; GP02; Fit03; CSK05; SHT09; Mai+11; Pav+18; Rus19; ZYD21; Li+22], which
enhance the robustness and efficiency. For example, Trimmed ICP [CSK05] introduced a
trimmed least squares cost function. Sparse ICP [BTP13] introduced a sparse Lp norm to
build the loss function. Robust ICP [ZYD21] adapted the Welsch function as the robust ker-
nel. RSICP [Li+22] presented a symmetric point-to-plane distance metric to construct the
robust loss function. However, ICP and its variants commonly tend to converge to the lo-
cal minima during the iterative optimization process and are highly dependent on the initial
transformation estimation.

In recent years, researchers have developed several methods of representing the point
cloud with Gaussian mixture models (GMMs) to improve robustness [TK04; JV05; MS10;
JV10]. These methods transform the registration problem into the probability distribution
alignment problem, which seeks to maximize the similarity of two distributions. Although
these methods converge quickly to the optimal value when they have reasonable initial esti-
mations, they also do not provide any performance guarantees. Besides, these methods are
highly dependent on the initial estimations, and if the initial start point is not properly set,
these algorithms tend to converge to the local minimum. Furthermore, there is another kind
of heuristic method [AMC08] for the SPCR problem, which is similar to RANSAC, i.e., the
4-points congruent sets approach (4PCS). Rather than sampling a minimal of three points,
4PCS-based registration methods sample four approximately co-planar points as the base set
and then find the corresponding four points in the target point cloud. They assume that the
cross-diagonal ratios are constant under the affine transformation in any planar quadrangle.
Many variants [TWS14; MAM14; Ge17; Xu+19] have also been developed based on 4PCS,
with enhancements that include using sparse keypoints as candidate points to reduce the
number of input points, increasing robustness, and reducing computational complexity, etc.
However, these local methods are not guaranteed to provide optimal solutions.

In addition to these local methods, there has been a great deal of research on solving the
SPCR problem with global methods, such as particle swarm optimization [KN10], filtering-
based [SDT09; Li+17], and simulated annealing [LLH00]. Methods of this kind have an
increased probability of reaching the global optimum regardless of the initialization con-
ditions. However, global optimality cannot be guaranteed. Another direction to globally
address the SPCR problem is estimating the globally optimal solution based on the BnB al-
gorithm, such as [LH07; Yan+16; Bus+16; CP16; Str+17; Liu+18b; Cam+18; Liu+18a;
Cam+19; Wan+21a]. A pioneer work is [LH07], in which authors proposed a rotational reg-
istration method that utilizes BnB to minimize the Lipschitz cost function. Go-ICP [Yan+16]
is the first practical globally optimal approach for the 6-DOF SPCR problem that employs
the nested BnB search structure to minimize the objective function based on the L2 residual.
Parra et al. [Bus+16] introduced a tight bound function based on stereographic projections
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to achieve a fast 3-DOF rotation search by BnB. They also extended the proposed method to
perform globally optimal 6-DOF registration by utilizing the nested BnB framework. Camp-
bell et al. [CP16] proposed a more efficient and accurate BnB-based approach to minimize the
GMM-based objective function. However, both these methods jointly search for the globally
optimal solution over the 6-dimensional parameter space, leading to relatively high computa-
tional costs. One common direction to improve algorithm efficiency is reducing the dimension
of the solution domain by decoupling the transformation. For instance, Straub et al. [Str+17]
proposed a decoupling method based on surface normal distributions, which decomposes the
6-DOF registration problem into the separate 3-DOF rotation and 3-DOF translation sub-
problems. Liu et al. [Liu+18b] introduced the rotation invariant features (RIFs) to enable
sequential estimations of the 3-DOF translation and the 3-DOF rotation instead of the joint
6-DOF transformation search. On the other hand, several BnB-based methods were also pro-
posed for solving the 2D-3D SPCR problem. For instance, Campbell et al. [Cam+18] modeled
the 2D-3D SPCR problem as a consensus maximization problem and proposed tight bound
functions to jointly search for the 6-DOF solution. Liu et al. [Liu+18a] also used the consen-
sus maximization scheme to robustly solve the 2D-3D rotation search problem and derived
several different bound functions for BnB. Wang et al. [Wan+21a] leveraged RIFs to decou-
ple the joint 6-DOF searching into two separate 3-DOF searching processes and proposed
efficient bound functions. In general, these global approaches still suffer from inefficiencies,
especially on data with large sizes and high outlier rates.

Recently, some investigations also tried to achieve end-to-end registration based on deep
learning [Aok+19; WS19a; WS19b; YL20; Yua+20; Fu+21; YL22]. For instance, Point-
NetLK [Aok+19] proposed an end-to-end registration model based on the Lucas and Kanade
(LK) algorithm. DCP [WS19a] utilized feature similarity to establish soft correspondences
and subsequently employed weighted SVD to calculate the rigid transformation. PR-Net [WS19b]
utilized keypoint detection to solve the partial-to-partial problem. RPM-Net [YL20] em-
ployed the Sinkhorn normalization and annealing to achieve soft assignments of correspon-
dences. DeepGMR [Yua+20] leveraged a probabilistic registration paradigm based on GMM.
RegTR [YL22] used attention mechanisms to achieve significant feature representation. How-
ever, learning-based methods require additional training procedures, and their generalization
capabilities are not always reliable.
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Globally Optimal Robust Radar Calibration

Radar is among the most popular sensors in modern Intelligent Transportation Sys-
tems (ITSs), enabling weather-robust perception. The orientation and position of
the traffic radar are crucial for perception fusion in ITSs. However, due to the un-
known target association, sparseness, and noisiness of radar measurements, robust
and accurate extrinsic calibration is challenging. This chapter proposes a targetless
traffic radar calibration method based on GPS to overcome the inconvenience during
ITS operation. Furthermore, in the back-end of extrinsic calibration, this chapter
proposes a globally optimal registration method, which is highly robust to noise and
outliers in radar measurements. Extensive experiments demonstrate that the pro-
posed method is not only globally optimal but also more accurate and robust.

3.1 Background

Modern Intelligent Transportation Systems can significantly improve transportation efficiency
and reduce the occurrence of traffic accidents by providing vehicles with extra detailed infor-
mation about the present traffic flow in the form of a digital twin [Zha+11; Krä+19]. In ITSs,
many heterogeneous sensors, such as monocular cameras, event cameras, LiDARs, radars,
etc., should be equipped to acquire information on different modalities. These sensors, which
usually have different capabilities and fields of view, need to be integrated into the ITS. Ex-
trinsic calibration, a key step in multi-sensor integration, can find the spatial relationship
between the sensor coordinate systems and build a consistent environment model [Dub+14;
Du+21; Bel+22; Jia+23b]. The focus of this chapter is the sensor extrinsic calibration in
ITSs.

Traffic radar is known as the most popular sensor for wide applications in ITSs, such as
object detection, tracking, and localization [CA15; Wan+16; Arn+20; Che+20]. Because
the millimeter wave can penetrate fog, smoke, and dust easily, the millimeter wave radar is
robust, especially in extreme weather conditions [Sko80; LMD21]. Moreover, it can detect
targets at longer distances than other sensors, such as LiDARs. However, the measurements
of traffic radar have the following properties:
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• Because of the low spatial resolution in the vertical direction, the field of view of the
traffic radar is considered to be planar.

• Traffic radar detections are sparse, as shown in Fig. 3.1. Because the traffic radar
outputs measurements solely in the form of detected objects (traffic participants).

• Traffic radar measurements are usually contaminated by noise and outliers because the
reflected waves come from all moving and non-moving targets.

Therefore, due to the low precision and high outlier rate of radar measurements, accurate
and robust extrinsic calibration of traffic radar is crucial but challenging. On the other hand,
because traffic radar is used to detect and track traffic participants, mainly to confirm which
lane they are in, the accuracy of traffic radar calibration is required at the meter level.

Traditional extrinsic calibration methods are generally classified as target-based [PMP17;
Oh+18; PMP19] method and targetless [KD20; Pen+20; Yua+21] method. Among the
target-based methods, researchers leverage external dedicated targets, such as the corner
reflector, to build reference features for detection and association. However, target-based
calibration methods are infeasible for the real practical scenario, such as during ITS opera-
tion. Because the installation of dedicated calibration targets on the highway is impractical
and dangerous. In addition, it is not always practical to calibrate the sensor with a prepared
target for different real applications. Thus, to overcome the inconvenience during ITS oper-
ation, this thesis proposes a targetless extrinsic calibration method based on GPS for traffic
radar. The global and accurate positioning information from high-precision GPS can improve
the accuracy of the calibration. The extrinsic calibration problem is then transformed into
estimating the rigid transformation between the measurement sets of radar and GPS. The
destination measurement set is obtained from the GPS mounted on the moving vehicle, and
the source measurement set is obtained from the traffic radar mounted on the ITS infras-
tructure. By combining with the high-precision GPS, the proposed traffic radar calibration
method can promote the environmental perception fusion among each measurement point
in the ITS so as to build an accurate global coordinate system for the digital twin.

Please note that, for both target-based and targetless calibration methods, the complex
target association problem must be addressed. In most studies, the extrinsic calibration is
transformed into a correspondence-based registration problem [AHB87; BC17; YSC20]. For
instance, the correspondences are derived from the dedicated calibration target in target-
based calibration approaches. In targetless approaches, researchers use environmental fea-
tures sensed by both sensors to find the correspondences, such as geometric descriptors.
Nevertheless, traffic radars can not provide any descriptive features such as edges and cor-
ners because of the measurement mechanism and the limited resolution. The association of
radar measurements with vehicles in images or geometrical features from LiDAR point clouds
is intractable. This association problem must be rethought from a different perspective, such
as using the registration method to find correspondences between measurements from differ-
ent sensors. Therefore, the above-mentioned alignment of the measurement sets from radar
and GPS can be considered as a simultaneous pose and correspondence registration (SPCR)
problem [BM92; BS03; MS10; JV10]. Different from the correspondence-based registration
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Figure 3.1: This is the image after the traffic radar measurements being projected onto the camera picture. The
measurements (blue points) are sparse and contain biases and misdetections caused by noise.

problem, the correspondences in this problem are unknown, such that the correspondences
and transformation need to be addressed simultaneously. Moreover, the SPCR problem is
usually non-convex due to the quadratic orthogonality constraints of rotation [Yan+16]. Ex-
isting methods, such as ICP [BM92], CPD [MS10], and GMMReg [JV10], have been used
to solve the SPCR problem. However, they are prone to delivering erroneous results (local
optimum) during the iterative optimization process and are highly dependent on the initial
estimation of transformation, i.e., initialization.

Recently, globally optimal methods have been proposed according to the branch and
bound (BnB) paradigm [Cla99; Sch11; TN20]. The prominent features of the BnB-based
method are that 1) it can find the globally optimal solutions with theoretical guarantee, 2) it
is independent of initialization. In this study, a robust globally optimal method is proposed
to solve the SPCR problem for targetless calibration, called Gaussian Mixture Robust Branch
and Bound (GMRBnB). In detail, the measurement sets are first represented by the Gaussian
mixture model (GMM) [Rey09; JV10] to counteract the influence of noise and outliers. Next,
the robust objective function is constructed using the closed-form solution of the statistical
difference metric between two Gaussian mixtures. Then, a BnB-based optimization method
with newly proposed relaxation bounds is presented to find the globally optimal transforma-
tion. Notably, due to the inherent high computational cost drawback of BnB-based meth-
ods [Cam+18], the proposed method is only used for offline calibration, which is admissible
in real applications. This study puts more attention on the accuracy of the calibration, i.e.,
how to find the globally optimal solution.

The main contributions of this chapter can be summarized as follows:

• This chapter proposes a targetless calibration method for traffic radar to tackle the
inconvenience during ITS operation. The combination of high-precision GPS on the
moving vehicle and traffic radar on the ITS infrastructure enables accurate extrinsic
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Figure 3.2: The top view of GPS coordinate system.

calibration. Besides, there are no restrictions on the relative position of sensors, i.e.,
the relative angle and translation are arbitrary.

• This chapter proposes a BnB-based globally optimal registration method to align the
measurements of traffic radar and GPS in a simultaneous pose and correspondence
registration manner. The GMRBnB algorithm searches for the globally optimal solution
in the domain of 2D rotation and translation. Therefore, the proposed method can
avoid failure by getting trapped in local optima in the case of large relative angles.

• Extensive experiments demonstrate that the proposed method achieves accurate and
robust performance on both synthetic and real-world data in contrast to the existing
methods.

The rest of this chapter is organized as follows: Section 3.2 illustrates the problem for-
mulation of the traffic radar extrinsic calibration. Section 3.3 demonstrates the principle
and details of the proposed method. Section 3.4 presents the experiment results with syn-
thetic data and real-world data from the Providentia++ project. Finally, Section 3.5 gives
the summary.

3.2 Problem Formulation

3.2.1 ITS Coordinate System

The measurement of GPS is the position in the WGS-84 coordinate system, i.e., (XGPS, YGPS, ZGPS).
It also is the trajectory of the moving vehicle with timestamps. In this study, the coordinate
system of GPS measurements is converted to the same planar universal transverse merca-
tor (UTM) coordinate system as the ITS coordinate system (Xroad, Yroad), i.e.,

�

X ′GPS, Y ′GPS

�

,
as shown in Fig. 3.2. Further, radar detection of targets is all based on the same principle:
low-frequency electromagnetic pulses are emitted from the radar antenna and reflected back
to the sensor from conductive targets in the environment [Sko80]. The bearing, distance,
and radial velocity of the target can be obtained by measuring the time of flight and phase
of the returned pulse. The roadside traffic radar performs projection on a horizontal plane
with depth and azimuth of a detected target, and the projected point is denoted as mr(α, r)
in the 2D polar coordinate system, where α and r are azimuth and depth of the target re-
spectively, as shown in Fig. 3.3. The height of the traffic radar H can be easily measured
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Figure 3.3: The traffic radar coordinate system and its top view.

Figure 3.4: The ITS coordinate system related to the extrinsic calibration.

by a laser rangefinder so that the measurements of traffic radar can be projected onto the
same UTM plane with the coordinate system (Xradar, Yradar), as shown in Fig. 3.3. The overall
ITS coordinate system is shown in Fig. 3.4. Regarding the traffic radar measurements, as
explained above, only the pre-processed data of detected targets can be acquired. Hence, un-
der the geometric representation, the measurements in the measurement set are represented
as discrete points in the coordinate system (Xradar, Yradar). Therefore, the proposed targetless
extrinsic calibration method is transformed into aligning the two measurement sets of radar
and GPS in the 2D UTM projection plane such that the relative pose of traffic radar can be
obtained.

3.2.2 Measurement Set Registration Problem

Define the source and destination measurement sets X = {Xi}
m
i=1 and Y =
�

Y j

	n
j=1, where

Xi , Y j ∈ R2 represent the coordinates of measurements in radar and GPS frames, respectively.
The problem is estimating the correspondence and 3-DOF rigid transformation (with rotation
angle θ ∈ [−π,π] and translation t ∈ R2) between the two measurement sets, so that the
transformed set X is as close as possible to the set Y. The L2 residual between the transformed
point Xi and point Y j is defined as

eXi ,Y j
(θ , t ) =


R(θ )Xi + t − Y j





2 (3.1)
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where R(θ ) is the rotation matrix, i.e.,

R(θ ) =

�

cosθ − sinθ

sinθ cosθ

�

(3.2)

Further, the residual between the transformed point Xi and set Y is defined as

eXi
(θ , t ) = min

Y j∈Y
eXi ,Y j

(θ , t ) (3.3)

which is to find the correspondence between point Xi and set Y, i.e., find the closest point of
Xi from the set Y. Then the objective function to align the two measurement sets is given by

E(θ , t ) =
m
∑

i=1

eXi
(θ , t )2 (3.4)

The SPCR problem is trying to simultaneously find the optimal solution and correspon-
dences that minimizes the objective function in Eq. (3.4). If the real correspondences in
Eq. (3.3) are known, the rigid transformation in Eq. (3.4) can be calculated in the closed-form
by the optimizing algorithms such as the least squares optimization method based on singular
value decomposition (SVD). However, it is difficult to determine correspondences perfectly
in practical applications. The solution of traditional local methods is prone to converge to
the local minimum for the SPCR problem. On the other hand, the results are susceptible to
noise and outliers in measurement sets. In the following section, the GMM is utilized to con-
struct the negative objective function for enhancing the robustness and propose a BnB-based
method to find the globally optimal solution for this SPCR problem.

3.3 Method

3.3.1 Gaussian Mixture Model and Similarity Measures

The representation of measurement sets with GMM is extensively employed to solve the
registration problem [CP15; CP16; MS10; JV10; Hir21; LWC21]. The main idea of this
representation is mapping the discrete measurement sets to the continuous domain by prob-
ability density function, which is defined as a weighted sum of Gaussian density functions,
i.e., p(x |G) =
∑k

i=1ωiN
�

x |µi ,σ
2
i

�

. It is the probability density of observing a point x given a

GMM G =
�

ωi ,µi ,σ
2
i

	k
i=1, with mixture weights ωi, means µi, variances σ2

i and the number
of Gaussian components k, respectively. In summary, the benefits of GMM representation
include: 1) it uses a continuous probability density field for the representation of measure-
ments and does not require partitioning and discretization of the space, 2) the covariance
matrix in the GMM can better deal with the noise and outliers in the measurements, and 3)
the correspondence update or closest point search is not performed during the optimization
process.

Assuming no prior information, a simple construction method for GMM from the given
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measurement set is as follows: 1) all Gaussian components have the same weights and covari-
ance matrixes, 2) the mean of each component is the spatial coordinate of the corresponding
measurement point, and 3) the number of Gaussian components and the measurement points
are identical. Then the GMMs GX = {ωX

i , Xi ,σ
2
iX }

m
i=1 and GY = {ω

Y
j , Y j ,σ

2
jY}

n
j=1 are generated

from the destination and source measurement sets X and Y respectively, as shown in Fig. 3.5.
In this study, the L2 distance is employed as the statistical difference metric between two

GMMs since the formulation can be expressed in closed-form [JV10; CP16]. The rigid trans-
formation function T (G,θ , t ) is defined to denote the rotation θ ∈ [−π,π] and translation
t ∈ R2 for the GMM. The L2 distance between two GMMs is defined as

D(θ , t ) =

∫

R2

�

p
�

x |T (GX ,θ , t )
�

− p(x |GY)
�2

dx (3.5)

Eq. (3.5) is then expanded as follows:

D(θ , t ) =

∫

R2

�

�

p
�

x |T (GX ,θ , t )
�

�2
+
�

p(x |GY)
�2

− 2p
�

x |T (GX ,θ , t )
�

p(x |GY)
�

dx

(3.6)

where the first term is invariant for any rigid transformation, the second term is indepen-
dent of the rigid transformation, and the third term is relevant to the rigid transformation.
However, the third term has a closed-form, derived by the following formula:

∫

R2

N (x |µ1,σ2
1)N (x |µ2,σ2

2)dx

=N (0|µ1 −µ2,σ2
1 +σ

2
2)

(3.7)

Thus the negative GMM robust objective function over the L2 distance is given by

G(θ , t ) = −
∫

R2

p
�

x |T (GX ,θ , t )
�

p(x |GY)dx

= −
m
∑

i=1

n
∑

j=1

ωX
i ω

Y
j N
�

0|R(θ )Xi + t − Y j ,σ
2
iX +σ

2
jY

�

= −
m
∑

i=1

n
∑

j=1

ωX
i ω

Y
j

N
exp
�

−

�

eXi ,Y j
(θ , t )
�2

2[σ2
iX +σ

2
jY]

�

(3.8)

where eXi ,Y j
(θ , t ) is the point-to-point L2 residual in Eq. (3.1) and N is the normalisation

factor. A negative GMM objective function is built instead of the traditional objective function
in Eq. (3.4), which displays statistical robustness to counteract the noise and outliers. Further,
the most significant difference is that the GMM objective function does not need to find the
closest corresponding point, such as Eq. (3.3). The function is the sum of the sums, not the
sum of the minima so that the problem to be solved is simplified. In the next section, the
relaxation bounds for the minimum of this objective function are derived.
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Figure 3.5: The representation of measurement sets X and Y with GMMs GX and GY .

3.3.2 BnB and Relaxation Bounds

BnB is a global optimization framework for solving non-convex and NP-hard problems. It
searches the entire solution domain to seek a globally optimal solution with theoretical guar-
antees. The BnB-based algorithm operates according to two principles: 1) branch, it recur-
sively divides the search domain into smaller sub-boxes, and 2) bound, it evaluates the lower
and upper bounds on the optimal solution in each constrained sub-box. Then, the algorithm
uses these bounds to prune the search domain and delete the sub-box that can be proved
not to contain the optimal solution. The algorithm converges when the lower and upper
bounds on the optimal solution are tight enough, i.e., a predetermined threshold is achieved.
The algorithm depends on efficient estimation of the lower and upper bounds of branches.
Breadth-first search (BFS) and depth-first search (DFS) have been employed to traverse the
tree of sub-boxes [MSS08]. The DFS strategy is recommended when no good heuristic is
available for producing an initial estimation.

Define D is the search domain and B ⊂ D is the segmented sub-box. Assume that functions
fL(B) and fU(B) satisfy

fL(B)≤ min
∀(θ ,t )∈B

G(θ , t )≤ fU(B) (3.9)

where fL(B) is the lower bound function and fU(B) is the upper bound function. It should
be noted that the upper bound function can generally be chosen as the value obtained by
substituting any value in the search domain or sub-boxes into the objective function. Besides,
Eq. (3.10) is the property of bounds functions that can guarantee the convergence of the
BnB-based algorithm, which is given by

lim
σ(B)→0

�

fL(B)− fU(B)
�

= 0 (3.10)
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(a) Rotation domain (b) Translation domain

Figure 3.6: Search domain parametrization for BnB. The rotation domain is the range of rotation angle, i.e.,
[θ−,θ+]. The translation is assumed to be a 2D rectangle [t−, t+]2. The splitting policy is to divide from the
center of each dimension of the domain, so there will be 23 = 8 sub-boxes after one splitting.

where σ(B) is the diameter of sub-box B. Eq. (3.9) and Eq. (3.10) described above are
necessary conditions to prove the bounds functions.

According to the registration problem, the parameterization of the search domain is D =
�

(θ , t ) ∈ [−π,π]×R2|t− ≤ t ≤ t+
	

. The rotation domain and translation domain are shown
in Fig. 3.6. The next step is then to derive the lower and upper bound of the L2-based
negative GMM objective function G(θ , t ) within the domain D, which is the core of the BnB-
based algorithm. In the objective function G(θ , t ), all terms except for the point-to-point
L2 residual are easy to calculate. Thus the focus is on bounding the point-to-point residual
eXi ,Y j

(θ , t ), as shown in the following proposition.

Proposition 3.1 (Relaxation bounds of the objective function G(θ , t )). For the sub-box B =
�

(θ , t )|θ− ≤ θ ≤ θ+, t− ≤ t ≤ t+
	

centred at (θc , tc), the relaxation upper bound RU(B) and
lower bound RL(B) of the negative GMM robust objective function G(θ , t ) for Xi , Y j are

RU(B) = −
m
∑

i=1

n
∑

j=1

ωiω j

N
exp
�

−

�

eXi ,Y j
(θc , tc)
�2

2[σ2
i +σ

2
j ]

�

(3.11)

RL(B) = −
m
∑

i=1

n
∑

j=1

ωiω j

N
exp
�

−

�

eL,Xi ,Y j
(θ , t )
�2

2[σ2
i +σ

2
j ]

�

(3.12)

where eL,Xi ,Y j
(θ , t ) is the lower bound of the point-to-point L2 residual eXi ,Y j

(θ , t ), and is given
by

eL,Xi ,Y j
(θ , t ) =







max
¦
�

�∥Y j∥2 − ∥Xi∥2
�

�−ρ, 0
©

, α≤ β

max
¦

min{l−, l+} −ρ, 0
©

, α > β
(3.13)

where angles α, β are shown in Fig. 3.7, ρ is the radius of the translation relaxation disk, and
l− =


Y j −R(θ−)Xi





2, l+ =


Y j −R(θ+)Xi





2.
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Figure 3.7: The schematic of the relaxation lower bound function RL(B) with two cases, and eL is the abbreviation
of the lower bound of the point-to-point residual eL,Xi ,Y j

(θ , t ).

Proof. To prove the effectiveness and validity of the relaxation lower bound RL(B) and up-
per bound RU(B) for the objective function G(θ , t ), there are three issues that need to be
addressed.

• Observe that ∀(θ , t ) ∈ B,

min eXi ,Y j
(θ , t ) =min


R(θ )Xi − (Y j − t )




2 (3.14)

This minimum can be denoted as the minimum distance between circular arc
�

R(θ )Xi|θ ∈
[θ−,θ+]
	

and rectangle {x ∈ R2|Y j − t+ ≤ x ≤ Y j − t−} in any branch sub-box B =
�

(θ , t )|θ− ≤ θ ≤ θ+, t− ≤ t ≤ t+
	

, and the radius of the arc is ∥Xi∥2. Then the rect-
angle domain can be relaxed to a disk shaped domain as shown in Fig. 3.7 and can be
expressed by the following equation.

D =
�

x ∈ R2|∥x − Y j∥22 −ρ
2 ≤ 0
	

(3.15)

where ρ is the radius of the relaxation disk, and ρ = ∥t+ − t−∥2/2. Obviously, the
minimum distance between the circular arc and the rectangle is greater than or equal
to the minimum distance between the circular arc and the relaxation disk, while both
are greater than or equal to zero, that is,

min eXi ,Y j
(θ , t )≥min


R(θ )Xi − D




2 ≥ 0 (3.16)

Then the minimum distance between the circular arc and the relaxation disk is equal
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to the minimum distance between the circular arc and the center of the disk domain Y j

minus the radius of the relaxation disk ρ, which is

min


R(θ )Xi − D




2 =min


R(θ )Xi − Y j





2 −ρ (3.17)

The minimum distance between the circular arc and the center of the disk domain is an
easy problem, that is, the minimum distance between the arc and the point. According
to the different position relationships between the arc and the point, it is divided into
two cases for consideration, as shown in Fig. 3.7. When the point lies within the rota-
tion sector corresponding to the circular arc (Case 1), the minimum distance between
the arc and the point is the difference between the two distances from the origin, which
is
�

�∥Y j∥2 − ∥Xi∥2
�

�. When the point lies outside the rotation sector corresponding to the
circular arc (Case 2), the minimum distance between the arc and the point is the mini-
mum distance between the endpoints of the arc R(θ−)Xi, R(θ+)Xi and the point, which
is the minimum of {l−, l+}. Details are shown below,

min


R(θ )Xi − Y j





2 −ρ

=







max
¦
�

�∥Y j∥2 − ∥Xi∥2
�

�−ρ, 0
©

, α≤ β

max
¦

min{l−, l+} −ρ, 0
©

, α > β

(3.18)

As for angles α and β , since the endpoints of the circular arc R(θ−)Xi, R(θ+)Xi and the
center of the disk domain Y j are known, it is easy to compare these two angles. Define
eL,Xi ,Y j

(θ , t ) =min


R(θ )Xi − Y j





2 −ρ, then,

min
∀(θ ,t )∈B

eXi ,Y j
(θ , t )≥ eL,Xi ,Y j

(θ , t ) (3.19)

By substitution into Eq. (3.8),

min
∀(θ ,t )∈B

G(θ , t )≥ RL(B) (3.20)

Therefore, RL(B) is the lower bound of the objective function G(θ , t ).

• The point-to-point L2 residual at a specific point within any sub-box of the search do-
main is larger than the minimal residual within the search domain, that is

eXi ,Y j
(θc , tc)≥ min

∀(θ ,t )∈B
eXi ,Y j

(θ , t ) (3.21)

Then substituting into Eq. (3.8),

RU(B)≥ min
∀(θ ,t )∈B

G(θ , t ) (3.22)

Therefore, RU(B) is the upper bound of the objective function G(θ , t ).

• When the sub-box B =
�

(θ , t )|θ− ≤ θ ≤ θ+, t− ≤ t ≤ t+
	

collapses to a single point
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Algorithm 1: GMRBnB: An algorithm for globally optimal spatial registration with
Gaussian Mixture Model representation

Input: Gaussian Mixture Models GX , GY with means Xi and Y j respectively, weights
ω, and variances σ2; Solution domain D; Convergence threshold ε.

Output: ε-optimal solution (θ , t )∗.
1 Let ξ be the list of sub-boxes, initialize ξ= {D}, and normalize means Xi and Y j;
2 while The tolerance between global upper and lower bound is larger than the threshold
ε, U − L > ε do

3 Select a sub-box B with the minimum of lower bound, i.e., B= arg minRL(Bk),
Bk ∈ ξ, and split it into eight sub-boxes S(B) = {B1, . . . ,B8};

4 Delete B from ξ, and add {B1, . . . ,B8} into ξ;
5 Update L =minRL(Bk), Bk ∈ ξ;
6 Update U =min {U , RU (δ(Bk))} with Bk ∈ ξ. If U = RU (δ(Bk)), set (θ , t )∗ = δ(Bk);
7 Delete Bk from ξ with RL(Bk)> U;

8 end

(θ0, t0), then, eXi ,Y j
(θ0, t0) = eL,Xi ,Y j

(θ0, t0) and RL(θ0, t0) = RU(θ0, t0), i.e.,

lim
σ(B)→0

�

RL(B)− RU(B)
�

= 0 (3.23)

The gap between the upper and lower bound is equal to zero, and the convergence is
proved.

3.3.3 GMRBnB Algorithm

According to the relaxation bounds of the negative GMM robust objective function G(θ , t ) in
the last section, the GMRBnB algorithm is outlined in Algorithm 1. To simplify the calculation
and speed up the algorithm, GMMs are assumed to have the same covariance matrix and
weights. In practice, the coordinates of the measurement set can be normalized so that
the translation domain can be [−1,1]2, which can not only achieve a smaller box but also
ensure that the domain covers every feasible translation, as shown in Line 1. Define function
δ(B) ∈ B returns the center point of box B, and function S(B) divides the box B in half in
each dimension of the domain. The exploration policy in Algorithm 1 is DFS. In detail, the
search priority is inverse to the value of the lower bound, as shown in Line 3, and the next
branch to be divided is the branch with the minimal lower bound. Line 4 is intended to delete
the box that has been split. Line 5 is intended to update L to the minimum of the current
lower bound of all branches. Line 6 is intended to update U to the minimum of the upper
bound of all branches in all iterations. The pruning policy is in Line 7, and the algorithm
will prune the branch whose lower bound is larger than the global upper bound. After the
algorithm converges, the ε-optimal solution is obtained without correspondences, i.e., only
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(a) Bounds curve (b) Remaining area

Figure 3.8: Convergence curves of the proposed GMRBnB algorithm.

the transformation parameters (θ , t ). This is because the GMM-based objective function
avoids solving the explicit target association problem, i.e., finding the closest corresponding
point. In addition, the algorithm outputs the best-so-far solution in each iteration, as shown
in Line 6. Therefore, it can still provide best-guess transformation parameters when dealing
with problems with limited running time, even if the upper and lower bounds are not fitted
tightly enough.

3.4 Experiments

To demonstrate the performance and global optimality of the proposed method, GMRBnB
is compared with existing registration algorithms, including ICP [BM92], CPD [MS10], and
GMMReg [JV10], using challenging synthetic and real data in this section. These algorithms
are conducted in MATLAB 2019B, and all experiments are implemented on a laptop with an
i7-9750H CPU and 16GB RAM.

3.4.1 Experimental Setup and Convergence

According to the property of the GMM objective function, the convergence range is influ-
enced by the standard deviation σ of the Gaussian components, i.e., the width of the peak
corresponding to the Gaussian distribution. Therefore, after some trying and comparing, the
standard deviation σ of the Gaussian components is set to 0.1 in all experiments. What’s
more, there exists a normalization factor N in the objective function G(θ , t ). Thus, the con-
vergence threshold for GMRBnB is set as ε = 0.01. In addition, to evaluate the accuracy and
robustness, the translation error and rotation error are defined as

et =


tgt − t ∗


 (3.24a)

eθ =


θgt − θ ∗


 (3.24b)

where tgt and θgt are motion ground truth, t ∗ and θ ∗ are optimal solutions.



30 Chapter 3 Globally Optimal Robust Radar Calibration

(a) Initial measurement sets pair (b) Calibrated measurement sets pair

Figure 3.9: An example of measurement sets pair before and after calibration.

For a simple demonstration of the convergence for the proposed lower and upper bounds,
a pair of synthetic measurement sets (m= n= 20) is set as input, and the convergence curves
are obtained in Fig. 3.8. It is obvious that the gap between the lower and upper bounds is
converging to zero, and after several hundred iterations, the proposed method can converge
to the optimal solution. Moreover, the remaining area is rapidly decreasing.

3.4.2 Control Experiments on Synthetic Data

This section illustrates the accuracy, robustness, and global optimality of the proposed al-
gorithm relative to the other three algorithms through three control experiments. Synthetic
data with different experimental conditions containing rotation angle, outlier rate, and noise
level is employed. In the experiments, the false negatives and false positives in the corre-
spondences are denoted as outliers uniformly.

Data generation

Initially, the first measurement set is generated by creating m random points that are dis-
tributed in square [−1, 1]2. Then, the random rotation in [−π,π] and random translation in
[−1, 1]2 are applied to this measurement set to obtain the corresponding transformed mea-
surement set. They are the source measurement set and the destination measurement set,
respectively. An example of a measurement sets pair before and after calibration is shown in
Fig. 3.9. The simulation of the outliers is performed by randomly replacing some points in
the transformed measurement set. The simulation of the noise is achieved by perturbing the
measurement set with the noise from the uniform distribution U [−δnoise,δnoise].

Meanwhile, the average of the translation error et and rotation error eθ for T trials repre-
sent the accuracy. The median runtime of T trials under each set of experimental conditions
is also recorded in order to compare the efficiency and computational expense. Further, to
demonstrate the global optimality of the proposed method, the success rate is defined as
T+/T , where T is the total number of trials under the same experimental conditions and T+

is the number of successful cases satisfying et < 0.1m and eθ < 5◦. As for the experimental
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Figure 3.10: Success rate of CPD, GMMReg, ICP, and GMRBnB algorithms without translation.

conditions, the outlier rate is λ = moutlier/m where moutlier is the number of outliers and m is
the total number of points in the measurement set. Further, the value of δnoise is considered
as the noise level.

Deterministic global optimality

In this section, the deterministic global optimality of the proposed GMRBnB algorithm is
compared with ICP, CPD, and GMMReg. In terms of the details of data generation, the
source measurement set is rotated in the range of [−180◦, 180◦] at 1◦ increments without
translation to generate the destination measurement set. Each measurement sets pair has
m = n = 50 points, and the outlier rate and noise level are λ = 0 and δnoise = 0 separately.
The measurement sets pair is randomly generated 100 times for each rotation angle, and
then the related registration experiments with different algorithms are performed. A case is
considered successful when the rotation error satisfies eθ < 5◦. The same experiments for
ICP, CPD, and GMMReg are performed, and the success rate versus rotation angle is shown
in Fig. 3.10.

As seen from Fig. 3.10, the proposed GMRBnB algorithm maintains a 100% success rate
over the entire range of rotation angles, which represents the deterministic global optimality.
However, the other algorithms only maintain a 100% success rate over a small range of
rotation angles. The ICP algorithm has a 100% success rate only when rotation angle is in the
range [−15◦, 15◦], the CPD algorithm has a 100% success rate only in the range [−48◦, 48◦],
and the GMMReg algorithm has a 100% success rate only in the range [−45◦, 45◦]. When the
range is exceeded, the success rate of these algorithms decreases rapidly. Moreover, when
the rotation angle is close to about ±60◦, the success rate of the ICP algorithm is close to
zero, that for the CPD algorithm is about ±105◦, and that for the GMMReg algorithm is about
±150◦. The overall success rates of both the GMMReg and CPD algorithms are higher than
that of the ICP algorithm, which indicates that the ICP algorithm is easier to converge to a
local optimum. In contrast, the GMRBnB algorithm has deterministic global optimality, and
its convergence range is the whole rotation domain, which is much better than that of the
other algorithms.
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(a) Average translation error (b) Average rotation error

(c) Median runtime (d) Success rate

Figure 3.11: Control experiments on synthetic data with different outlier rates.

Robustness to noise and outliers

In this section, the robustness to noise and outliers of each algorithm is compared by chal-
lenging synthetic data experiments. The experimental conditions include different outlier
rates and noise levels. Firstly, the robustness of the GMRBnB algorithm is tested in various
outlier rates λ = {0, . . . , 0.5} and then compared with other algorithms. The pair of mea-
surements set with m = n = 50 points is generated in each experiment, and the noise level
is δnoise = 0.1. Under each experimental setting, the experiment is repeated T = 100 times
to verify the generality and global optimality. Further, the average rotation error, average
translation error, median runtime, and success rate are recorded and plotted in Fig. 3.11.

Secondly, the robustness of the GMRBnB algorithm is tested at different noise levels
δnoise = {0, . . . , 0.12}. The pair of measurements set with the same m = n = 50 points is
generated, and the outlier rate is λ = 0.1. This experiment is also repeated T = 100 times in
each experimental setting to observe the global optimality. Besides, the average error, median
runtime, and success rate are plotted in Fig. 3.12.

From the results of all control experiments in this section, the summary is given as follows:

• Firstly, as the outlier rate and the noise level increase, the proposed method always
maintains a 100% success rate, which confirms the global optimality of the algorithm.
Moreover, the robustness of the algorithm against outliers and noise is also demon-
strated by the average error.



3.4 Experiments 33

(a) Average translation error (b) Average rotation error

(c) Median runtime (d) Success rate

Figure 3.12: Control experiments on synthetic data with different noise levels.

• Secondly, the average rotation errors of the ICP, CPD, and GMMReg algorithms are
much larger than that of the GMRBnB algorithm under all experimental conditions.
According to the experiments in the previous section, it is clear that the rotation angle
has a large effect on the success rate of these algorithms, while translation has a rela-
tively small effect. Therefore, the average rotation errors of these algorithms become
large in the arbitrarily repeated experiments. Besides, the average translation errors of
the GMRBnB are all smaller than those of the ICP, CPD, and GMMReg algorithms. This
also indicates that the proposed method can obtain better accuracy than other methods.

• Finally, the proposed method is higher than other algorithms in terms of computational
cost. BnB-based methods search the whole solution domain for the globally optimal so-
lution, which is essential for safety-critical applications but is admissible for offline cal-
ibration. Besides, the required time of the proposed method increases with the growth
of the outlier rate or noise level.

3.4.3 Calibration Experiments on Real-World Data

In this section, the performance of GMRBnB on real-world data is investigated. These real
data are collected by driving the test vehicle on parts of the German highway A9, which is the
test field of ITS. The test vehicle is equipped with a high-precision RTK-GPS device, as shown
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Figure 3.13: This is the test car with a high-precision RTK-GPS device (cm-level).

in Fig. 3.13. Multiple sensors are installed on the highway infrastructures, specifically on
gantry bridges, overlooking a total of ten traffic lanes. We repeatedly drove on the highway
several times, each time passing in a different traffic lane and collecting detection data on
the test vehicle from three traffic radars (Radar RA, RB, and RC). These radars are installed
in different locations and directions at two measurement points, but they have overlapped
fields of view. Notably, the radar measurements contain missed detections, ghost detections,
and multiple detections for trucks or buses due to measurement noise. In addition, the cor-
responding positioning information of the test vehicles is collected from the RTK-GPS device.
The radar measurements are represented as the source measurement set with m measure-
ment points, and the GPS measurements are represented as the destination measurement set
with n measurement points.

Manual association and ground truth acquisition

In order to obtain the ground truth poses of these radars, the closed-form solution of transfor-
mation is calculated using the method that manually establishes the target correspondence.
Specifically, the timing clocks of traffic radar and GPS are unified to the ITS public clock
under the form of the UNIX timestamp first. Their measurements are then temporal syn-
chronized by a data interpolation method since they have different sampling frequencies,
which are 10Hz and 13Hz, respectively. Besides, the sensor detection is transformed into the
ITS coordinate system. The measurements of the two sensors are then manually associated
based on UNIX timestamps, and the pair of measurement sets with the same size is obtained,
i.e., m = n. Finally, the transformation matrix is calculated using the least squares optimiza-
tion method based on SVD. The results are employed as the transformation ground truth of
follow-up experiments, as shown in Fig. 3.14(b), Fig. 3.15(b), and Fig. 3.16(b). It is appar-
ent that the ground truth obtained even by the manual association method does not enable
a perfect alignment of the two measurement sets. Thus, realizing the traffic radar extrinsic
calibration in this practical situation is challenging.
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Figure 3.14: The initial measurement sets of radar and GPS are m = 851 and n = 637, respectively. The
calibration results of manual association, GMRBnB, ICP, GMMReg, and CPD for Radar RA are compared.
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Figure 3.15: The initial measurement sets of radar and GPS are m = 1199 and n = 896, respectively. The
calibration results of manual association, GMRBnB, ICP, GMMReg, and CPD for Radar RB are compared.

Calibration results

In this section, the input data for the experiments are different from the input data for the
least squares optimization method in the previous section, which is the real measurement
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Figure 3.16: The initial measurement sets of radar and GPS are m = 1122 and n = 881, respectively. The
calibration results of manual association, GMRBnB, ICP, GMMReg, and CPD for Radar RC are compared.

(a) Scenario 1 before calibration (b) Scenario 2 before calibration (c) Scenario 3 before calibration

(d) Scenario 1 after calibration (e) Scenario 2 after calibration (f) Scenario 3 after calibration

Figure 3.17: After projecting the detection of Radar RA (blue points) onto the camera image, the performance of
the proposed calibration method is compared before and after its application in three different scenarios.

without manually established correspondence. The size of the measurement sets of the two
sensors is different because their sampling rates are different. During the implementation, the
input measurement sets are normalized such that the translation domain is set to be [−1,1]2.
The proposed targetless calibration method is conducted offline. The accuracy and robustness
of the extrinsic calibration is our main concern. Then the calibration results of GMRBnB, ICP,
GMMReg, and CPD for three radar are compared with the manually obtained ground truth,
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(a) Scenario 1 before calibration (b) Scenario 2 before calibration (c) Scenario 3 before calibration

(d) Scenario 1 after calibration (e) Scenario 2 after calibration (f) Scenario 3 after calibration

Figure 3.18: After projecting the detection of Radar RB (blue points) onto the camera image, the performance of
the proposed calibration method is compared before and after its application in three different scenarios.

(a) Scenario 1 before calibration (b) Scenario 2 before calibration (c) Scenario 3 before calibration

(d) Scenario 1 after calibration (e) Scenario 2 after calibration (f) Scenario 3 after calibration

Figure 3.19: After projecting the detection of Radar RC (blue points) onto the camera image, the performance of
the proposed calibration method is compared before and after its application in three different scenarios.

as shown in Fig. 3.14, Fig. 3.15, and Fig. 3.16. According to the ground truth, the rotation
angles of the data corresponding to the three radars are 177.65◦, 6.33◦, 3.56◦, respectively. As
can be seen from Fig. 3.14, ICP, GMMReg, and CPD algorithms fail to converge to the optimal
solution. However, the proposed method can still obtain the globally optimal solution in the
case of a large relative angle. In Fig. 3.15 and Fig. 3.16, all methods, including local methods,
converge to the correct result because the relative rotation angle is close to zero degrees.
These results demonstrate that the proposed method can find the globally optimal solution
with performance guarantees while existing local methods are prone to incorrect solutions
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Table 3.1: Comparison of rotation error and translation error of all algorithms for three radars

Methods GMRBnB ICP [BM92] GMMReg [JV10] CPD [MS10]

Radar RA
eθ (◦) 0.2419 - - -
et (m) 0.2746 - - -

Radar RB
eθ (◦) 0.0056 12.5305 12.8170 0.0688
et (m) 0.9370 2.0060 1.7647 1.6873

Radar RC
eθ (◦) 6.7084 7.0121 6.9147 7.0350
et (m) 8.9213 9.5871 8.5321 10.1841

(local optima) in the case of a large relative angle. The deterministic global optimality of the
proposed method is verified in these real-world experiments.

Meanwhile, rotation errors and translation errors of all methods are recorded to compare
the accuracy and robustness, as shown in Table 3.1. It is obvious that the rotation error and
translation error of GMRBnB are almost the smallest with the data of all three radars. Even
for the data of Radar RC, the translation error of GMRBnB is also competitive compared to
the smallest value of GMMReg. Compared to other methods, the proposed method has a dif-
ferent formulation, in other words, a different objective function, which is the negative GMM
objective function. Theoretically, each objective function has a different surface or shape,
leading to slightly different optimal solution locations corresponding to different objective
functions [Cam+18]. The solution of the proposed method is theoretically guaranteed to
be optimal for the formulation. This is the reason that the translation error of the proposed
approach is not minimal for Radar RC. On the other hand, the employed ground truth is
manually obtained, and it does not even enable perfect alignment of the two measurement
sets due to a large amount of noise and outliers inherent in the traffic radar measurements.
Thus, the errors of all methods for Radar RC are relatively large. In summary, the results
demonstrate that the proposed method is more robust to outliers and noise than existing
local methods.

In addition, three scenarios for each radar from the real recorded data are selected to
further demonstrate the performance of the proposed calibration method in the application
of camera and traffic radar fusion. After projecting the radar measurements onto the camera
image, the performance of the proposed calibration method is compared before and after its
application, as shown in Fig. 3.17, Fig. 3.18, and Fig. 3.19. The upper row of images shows
the initially erroneous calibration results, where the projected radar measurements do not
align with the vehicles in the camera image. After implementing the proposed targetless ex-
trinsic calibration, each detection is overlapped with the corresponding object in the camera
image. Notably, a few measurement points are still not perfectly aligned with the vehicles in
the image, caused by the noise in measurements. The traffic radar and camera fusion results
show that the proposed method achieves precise and reliable extrinsic calibration of traffic
radar, and the calibration results are effective for camera and radar fusion.
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3.5 Summary

In order to tackle the inconvenience during ITS operation, this chapter proposes a targetless
extrinsic calibration method for the traffic radar in this chapter. This method does not require
any dedicated target and is also safe and easy to implement. On the other hand, a simulta-
neous pose and correspondence registration method is used to address the difficult target
association problem for radar measurements. Further, since existing registration methods are
prone to converge to the local optimum and are overly dependent on the initialization, an
initialization-free GMRBnB algorithm is proposed to find the globally optimal solution with
performance guarantees. The novel relaxation upper and lower bound functions are derived
for the GMRBnB algorithm. Then, comparative experiments are conducted on challenging
synthetic data to illustrate the theoretical performance of the proposed algorithm. Besides,
the performance of the proposed method is evaluated on real-world data and is validated
in the application of radar-camera fusion. Extensive experiments demonstrate that the pro-
posed method not only can avoid failures due to getting trapped in local optima, but also is
more accurate and robust than existing methods.

Nevertheless, there is still potential space for the improvement of the proposed method in
some aspects. Currently, the proposed method is only suitable for offline calibration and is not
purely automatic for the ITS. Therefore, achieving automatic calibration and improving effi-
ciency is valuable. Because the sensors are susceptible to environmental disturbances, such
as the vibration of the mounting bar due to high winds or displacement due to temperature
changes. These perturbations lead to changes in the pose of sensors, hence the calibration pa-
rameters need to be automatically updated online. The second point is to further explore the
geometrical property in the pose estimation problem and find a new optimization framework,
which can effectively accelerate the calibration process.





4
Efficient and Robust LiDAR Registration

Estimating the rigid transformation between two LiDAR scans through putative 3D
correspondences is a typical point cloud registration paradigm. Current 3D feature
matching approaches, including learning-based methods, commonly lead to substan-
tial outlier correspondences. Nonetheless, a common drawback of outlier-robust
global registration methods is their inherent high computational cost, particularly
when dealing with large-scale data and high outlier rates. This chapter introduces a
novel pose decoupling strategy based on residual projections to effectively decompose
the original registration problem into three sub-problems, thus improving efficiency.
Subsequently, a novel BnB-based deterministic search method is proposed to solve
these sub-problems within a lower-dimensional domain, resulting in robust and effi-
cient registration. Extensive experiments demonstrate that the proposed method out-
performs state-of-the-art methods in terms of efficiency while simultaneously main-
taining robustness.

4.1 Background

Rigid point cloud registration is a core and fundamental problem in the field of 3D vision
and robotics with a wide range of applications, such as autonomous driving [Zha+22], 3D
reconstruction [BL95; Li22], and simultaneous localization and mapping (SLAM) [CVV22;
ZS15; Li+23b]. Given the source and target point clouds in different coordinate systems, it
aims to estimate the 6 degrees of freedom (DOF) transformation in SE(3) to align the two
point clouds best. The 6-DOF transformation includes both 3-DOF rotation in SO(3) and
3-DOF translation in R3.

Despite decades of research, rigid point cloud registration is still an active and challenging
problem since it has the chicken-and-egg property [LH07]. Specifically, the registration prob-
lem comprises two mutually interlocked sub-problems: pose and correspondence estimations.
If one sub-problem is solved, another sub-problem will be solved accordingly. Commonly, ex-
isting registration methods are classified into two categories based on the requirement of
correspondences or not, which are correspondence-based registration (e.g., fast global regis-

41
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tration, FGR [ZPK16]) and simultaneous pose and correspondence registration (SPCR) (e.g.,
iterative closest point, ICP [BM92]). The widely used ICP is a local optimization method
for SPCR, meaning it is highly dependent on the initialization of transformation and thus
prone to fall into local minima, as shown in Fig. 4.1(d-2). The global methods for SPCR,
however, deliver relatively low efficiency (e.g., globally optimal ICP, Go-ICP [Yan+16]), as
shown in Fig. 4.1(d-3). Thus, the correspondence-based registration approaches are gradu-
ally attracting attention since they are initialization-free and more efficient [ZPK16; YSC20].
This chapter focuses on the correspondence-based registration problem, while, interestingly,
the proposed approach can also be extended to solve the challenging SPCR problem.

Current 3D feature matching approaches have achieved satisfactory development. How-
ever, outlier correspondences are still inevitable either for handcrafted or learning-based de-
scriptors [CPK19; Hua+21; Yan+22a]. Several paradigms have been extensively developed
to implement robust registration, of which the consensus maximization (a.k.a. inlier set maxi-
mization) is inherently robust to outliers without smoothing or trimming to change the objec-
tive function [Li09; Cam+18]. Random sample consensus (RANSAC) [FB81] is the most pop-
ular heuristic method for solving the consensus maximization problem of correspondence-
based registration. However, RANSAC and its variants are non-deterministic and only gen-
erate satisfactory solutions with a certain probability due to the random sampling mecha-
nism [Le+19; BM21].

More recently, many global and deterministic methods based on the branch and bound
(BnB) framework have been applied to solve the point cloud registration problem with op-
timality guarantees [HK09; Yan+16; CP16; Bus+16; Str+17; BC17; Liu+18b; Che+22c].
However, the computational complexity of BnB optimization is exponential to the dimen-
sionality of the solution domain in the worst-case. Most studies address the issue by jointly
searching for the optimal solution in SE(3) [Yan+16; CP16; Bus+16]. In order to improve
the algorithm efficiency, one direction is utilizing the known gravity directions measured
by inertial measurement units (IMUs) to reduce the dimension of the parameter space to
4-dimensional [Cai+19]. Another direction for reducing the problem dimension is to decom-
pose the original problem into two 3-DOF sub-problems by leveraging the geometric proper-
ties [Str+17; BC17; Liu+18b; YSC20]. Typically, two unique categories of features are em-
ployed for pose decoupling, i.e., the rotation invariant features (RIFs) [Liu+18b; Wan+21a]
and the translation invariant measurements (TIMs) [Jia+22; YSC20]. Nonetheless, the pair-
wise features increase the number of input data quadratically, resulting in limited efficiency
gains. Furthermore, a more efficient strategy is proposed based on the rotation decomposi-
tion, which decouples 6-DOF transformation into i) (2+1)-DOF, i.e., 2-DOF rotation axis and
1-DOF of translation along the axis, and ii) (1+2)-DOF, i.e., the remaining 1-DOF rotation
and 2-DOF translation [Che+22c].

In this chapter, we propose an efficient and deterministic search strategy based on resid-
ual projections for the rigid registration problem, in which a novel pose decoupling strat-
egy is introduced. Specifically, we decouple the 6-DOF original problem into three search
sub-problems by projecting the residuals based on the Chebyshev distance, i.e., L∞ resid-
ual [SH06; KH08], on the coordinate axes. We then define the consensus maximization ob-
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Figure 4.1: The proposed method can efficiently address the rigid registration problem in different scenar-
ios with high outlier rates or low overlap rates. For the correspondence-based registration problem, the input
correspondences are generated by the traditional descriptor FPFH [RBB09] and the learning-based descriptor
FCGF [CPK19]. The input point clouds are selected from (a) Bremen dataset [BEN13], (b) ETH dataset [TWS14],
(c) KITTI dataset [GLU12], and (d) Bunny dataset [CL96], respectively. The source point cloud is green, the target
point cloud is yellow, and the aligned point cloud is blue. Compared with state-of-the-art (SOTA) correspondence-
based methods, the proposed method achieves significant performance in terms of robustness and efficiency.
Besides, the proposed method also can solve the SPCR problem efficiently and robustly.

jective function for each sub-problem and apply a BnB-based optimization method to search
for the solution globally and deterministically while obtaining the consensus set. A novel
polynomial-time upper bound is derived based on the interval stabbing technique [BC17;
Cai+19; PTV22] for the proposed objective. The proposed BnB algorithm searches for three
2-DOF rotation matrix components individually. Meanwhile, three 1-DOF translation projec-
tions on the coordinate axes are implicitly estimated by interval stabbing. After solving these
three sub-problems, we can obtain the solution to the 6-DOF registration problem, as well as
the final consensus set. Finally, in order to get refined and valid results, the final rotation and
translation are re-estimated by using Singular Value Decomposition (SVD) on the estimated



44 Chapter 4 Efficient and Robust LiDAR Registration

consensus set.
Contrary to existing methods that search in the three-dimensional domain via BnB, the

proposed method allows searching only in the two-dimensional parameter space, thus en-
hancing the computational efficiency, as shown in Fig. 4.1. In addition, the proposed method
requires no initialization of the translation domain, which is challenging to accurately de-
termine in different practical scenarios. Therefore, it avoids the problems that would arise
when the translation domain is not initialized correctly. Notably, we can also partially verify
if the solution is valid by checking whether the coarse solutions of the three sub-problems
are orthogonal before SVD. This is because rotation matrices are inherently orthogonal, with
a determinant of 1.

The main contributions of this chapter can be summarized as follows:

• This chapter proposes a novel pose decoupling strategy based on the L∞ residual pro-
jections. Compared with existing methods, our approach searches for the solution in a
lower-dimensional parameter space, thereby improving search efficiency.

• This chapter a novel deterministic BnB-based search method for the decoupled sub-
problems. The specific upper bound is derived based on the interval stabbing technique,
allowing a further dimensionality reduction of the branching space.

• Due to its significant robustness, the proposed method can be extended to solve the
challenging SPCR problem. The proposed upper bound is adapted to the SPCR objective
by interval merging technique.

The rest of this chapter is organized as follows: Section 4.2 illustrates the problem for-
mulation of the proposed method. Section 4.3 demonstrates the principle and details of our
method. Section 4.4 presents extensive experimental results on both synthetic and real-world
datasets. Finally, Section 4.5 gives a summary.

4.2 Problem Formulation

4.2.1 Inlier Set Maximization

Given the source point cloud P and the target point cloud Q, a set of putative correspondences
K = {(pi ,qi)}

N
i=1 is extracted by matching points between P and Q, where pi ,qi ∈ R3, and N is

the correspondences number. The proposed method aims to estimate the rigid transformation
between the source and target point clouds. Specifically, the 6-DOF transformation matrix
T ∈ SE(3) is formed by the 3-DOF rotation matrix R ∈ SO(3) and the 3-DOF translation
vector t ∈ R3. The rotation matrix R is an orthogonal matrix in which the columns and
rows are orthogonal vectors, i.e., RRT = I , with a determinant of 1. Formally, the inlier set
maximization formulation is adopted for the robust registration problem:

T ∗ = arg max
T∈SE(3)

E (T(P),Q) , (4.1)
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Figure 4.2: A toy 2D registration example to demonstrate L∞ residual projection. Specifically, {(pi ,qi)}
3
i=1 is the

set of input correspondences, r j , j = X , Y , is the transpose of each row of the rotation matrix, and t j , j = X , Y ,
is the component of the translation vector. The red line segments represent the projections of the residual on the

coordinate axes X and Y , i.e.,
�

�

�r T
j p1 + t j − q j

1

�

�

�, j = X , Y . The inlier constraint for L∞ residual indicates that

(p1,q1) is an inlier only if both residual projections on the coordinate axes are not larger than the inlier threshold.

where E is the objective function for calculating the cardinality of the inlier set.
Different from existing approaches [Yan+16; Bus+16; BC17; Cai+19; Che+22c] that

commonly employ the L2 residual to measure the alignment, the Chebyshev distance is ap-
plied, i.e., L∞ residual [SH06; KH08; Liu+18b], to build the robust objective function.
Therefore, considering the presence of noise, we estimate the rotation and translation that
maximize the objective:

E(R, t |K,ε) =
N
∑

i=1

I
�

∥Rpi + t − qi∥∞ ≤ ε
�

, (4.2)

where I(·) is the indicator function that returns 1 if the input condition is true and 0 otherwise,
∥·∥∞ denotes the L∞-norm, and ε is the inlier threshold.

4.2.2 Residual Projections and Pose Decoupling

Mathematically, we apply the following definitions to derive the residual projections. Firstly,
we denote the rotation matrix as

R ≜







rX1 rX2 rX3

rY 1 rY 2 rY 3

rZ1 rZ2 rZ3






=
�

rX rY rZ

�T
. (4.3)

where r j =
�

r j1, r j2, r j3

�T
, j = X , Y, Z , is the transpose of each row of the rotation matrix. The

translation vector is
t ≜ [tX , tY , tZ]

T . (4.4)

Given the definitions of R and t , according to the definition of Chebyshev distance, the
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inlier constraint in the objective function (4.2) can be rewritten as

∥Rpi + t − qi∥∞ ≤ ε (4.5a)

⇔
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≤ ε (4.5b)
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≤ ε (4.5c)

⇔
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(4.5d)

⇔
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(4.5e)

where qi ≜
�

qX
i , qY

i , qZ
i

�T
, and
�

�

�r T
j pi + t j − q j

i

�

�

�, j = X , Y, Z , are projections of the i-th residual

on the coordinate axes, as shown in Fig. 4.2. Then we can set I
�
�

�

�r T
j pi + t j − q j

i

�

�

�≤ ε
�

= L j
i .

Therefore, the objective function (4.2) can be reformulated as

E(R, t |K,ε) =
N
∑

i=1

I
�

LX
i ∧L

Y
i ∧L

Z
i

�

, (4.6)

where ∧ is the logical AND operation.
Geometrically, the objective function (4.6) indicates that, given an arbitrary correspon-

dence (pi ,qi) and the inlier threshold ε, only when the residual projections on the X , Y , and
Z coordinate axes are not larger than ε, (pi ,qi) is an inlier, as shown in Fig. 4.2. Notably,
these three conditions are equally independent. Accordingly, we may reduce the original
constraint in Eq. (4.6) as three separate constraints, i.e., LX

i , LY
i , and LZ

i .
In this way, the original search problem for the transformation in SE(3) can be decoupled

into three sub-problems. The inlier set maximization objective for each sub-problem can be

E j(r j , t j|K,ε) =
N
∑

i=1

I
�
�

�

�r T
j pi + t j − q j

i

�

�

�≤ ε
�

, j = X , Y, Z . (4.7)

In other words, we reformulate the L∞ residual-based objective function in the form of resid-
ual projections. Then we decompose the joint constraint into three independent constraints to
decouple the original registration problem into three sub-problems, i.e., max EX (rX , tX |K,ε),
max EY (rY , tY |K,ε), and max EZ(rZ , tZ |K,ε). The following section will introduce a step-wise
search strategy to solve these three sub-problems.
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Figure 4.3: The solution domain before and after exponential mapping, and the pipeline of the proposed BnB
algorithm. The original solution domain of the vector r is a unit sphere in the 3D Euclidean space. The exponential
mapping method maps the unit sphere to two identical 2D disks, representing the solution domains of r and −r ,
respectively. We can only branch one 2D-disk domain during each iteration, followed by the calculation of upper
and lower bounds for each sub-branch. The proposed BnB algorithm converges until the optimal solution r ∗

is found, and the optimal t∗ is found by interval stabbing simultaneously. In the visualization results of interval
stabbing, the black line segments are the candidate intervals of each correspondence, and the red line segments
are the intervals crossed by the blue probe with the max-stabbing number. The probe position is the max-stabbing
position.

4.3 Step-wise Search Strategy Based on Branch and Bound

Branch and bound (BnB) is an algorithm framework for global optimization. To design the
BnB-based algorithm, two main aspects need to be addressed: i) how to parameterize and
branch the solution domain, and ii) how to efficiently calculate the upper and lower bounds.
Then, the BnB-based algorithm can recursively divide the solution domain into smaller spaces
and prune the sub-branches by upper and lower bounds until convergence.

4.3.1 Parametrization of Solution Domain

Rotation

For each sub-problem of the objective function (4.7), the unknown-but-sought vector r j (de-
noted by r in this section) is on the surface of a unit sphere (denoted by S2). Then we divide
the unit sphere into two unit hemispheres (S2+ and S2−) to represent the parameter spaces
of the “positive” vector r and the “negative” vector −r . The “upper” hemisphere is defined as

S2+ =
�

r |r Tr = 1, r3 ≥ 0
	

, (4.8)

where r ≜ [r1, r2, r3]T is a unit vector in R3. Geometrically, since these two hemispheres are
centrally symmetric, the “lower” hemisphere is S2− which can be seen as −S2+. In order to
parametrize S2+ and S2− minimally, we introduce the exponential mapping [LCK20b; Liu+22]
technique to map a 3-dimensional hemisphere to a 2-dimensional disk efficiently. Specifically,
given a vector r ∈ S2+, it can be represented by a corresponding point d ∈ R2 in the 2D disk,
i.e.,

r T =
�

sin(γ)d̂T, cos(γ)
�

, and d = γd̂ (4.9)
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where γ ∈ [0,π/2], and d̂ is a unit vector in R2. Notably, the range of γ corresponds to r3 ≥ 0,
and its maximum corresponds to the radius of the 2D disk, i.e., π/2, as shown in Fig. 4.3. For
a vector −r ∈ S2−, we define another exponential mapping method,

−r T = −
�

sin(γ)d̂T, cos(γ)
�

. (4.10)

Accordingly, the total solution domain (unit sphere) is mapped as two identical 2D disks,
which represent the parameter spaces of r and −r , respectively. Compared to the unit sphere
representation within three parameters and a unit-norm constraint, the exponential mapping
is a more compact representation within only two parameters [Liu+22]. Meanwhile, for ease
of operation, a circumscribed square of the disk domain is initialized as the domain of r in
the proposed BnB algorithm, and the domain of −r is relaxed in the same way.

Further, we introduce the following lemma [LCK20b] about the exponential mapping
between S2+ and R2.

Lemma 4.1. ra, rb ∈ S2+ are two vectors in the unit hemisphere, and da,db ∈ R2 are corre-
sponding points in the 2D disk. Then we have

∠(ra, rb)≤ ∥da − db∥ . (4.11)

According to Lemma 4.1, we can obtain the following proposition.

Proposition 4.1. Given a sub-branch of the square-shaped domain B, its center is d c ∈ R2 and
half-side length is σ. For ∀d ∈ B, we have

∠ (r , r c)≤ ∥d − d c∥ ≤
p

2σ, (4.12)

where r and r c correspond to d and d c, respectively.

Defining α ≜ max∠ (r , r c), we can obtain α ≤
p

2σ with Proposition 4.1, as shown in
Fig. 4.3. Geometrically, Proposition 4.1 indicates that one square-shaped sub-branch of the
2D disk domain is relaxed to a spherical patch of the 3D unit sphere. In addition, Lemma 4.1
and Proposition 4.1 hold for both hemispheres S2+ and S2−. In this study, we apply Proposi-
tion 4.1 as one of the fundamental parts to derive the proposed bound functions.

Translation

Estimating the translation component t j ∈ R, j = X , Y, Z in the objective function (4.7) is
a 1-dimensional problem. The translation is unconstrained, and it is not easy to estimate a
suitable solution domain accurately in advance for various practical scenarios. Existing BnB-
based approaches [Yan+16; Che+22c; Liu+18b] commonly initialize the translation domain
as a redundant space and search it exhaustively, leading to a significant decrease in efficiency.
Meanwhile, if the translation domain is not initialized correctly, the algorithm may not find
the optimal (correct) solution since the optimal solution may be excluded from the initial
search domain.
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This study proposes an interval stabbing-based method to estimate the translation compo-
nents {tX , tY , tZ} without any prior information on the size of the translation domain, which
can effectively reduce the total parameter space and improve the algorithm efficiency. It
also avoids the problems that may arise when the translation initialization is incorrect. The
proposed method will be described thoroughly in Section 4.3.2.

4.3.2 Interval Stabbing and Bounds

We first introduce the following lemma to derive the bounds for the objective function (4.7).

Lemma 4.2. Given an arbitrary consensus maximization objective F(x |A) =
∑M

i=1 Fi (x , ai),
where x is the variable to be calculated, A = {ai}

M
i=1 is the set of input measurements, and

Fi(x , ai) is an indicator function with a certain constraint. Then we have

max
x

F(x |A) =max
x

M
∑

i=1

Fi (x , ai)≤
M
∑

i=1

max
x

Fi (x , ai) . (4.13)

Proof. For the i-th input measurement ai, we can obtain Fi (x , ai) ≤ maxx Fi (x , ai) ≤ 1.
Therefore, it is obvious that the maximum of

∑M
i=1 Fi (x , ai) is not bigger than the sum of

maxx Fi (x , ai).

In this study, the upper and lower bounds are proposed as follows:

Proposition 4.2 (Upper bound for S2+). Given a sub-branch of the square-shaped domain B,
whose center is d c ∈ R2 (corresponds to r c

j ∈ S
2+) and half-side length is σ, the upper bound can

be set as

E
+
j (B) =max

t j

N
∑

i=1

I
�

t j ∈
�

t i−
j , t i+

j

��

, (4.14a)

t i−
j = −ε− ∥pi∥ cos

�

max
¦

∠
�

r c
j , pi

�

−
p

2σ, 0
©�

+ q j
i , (4.14b)

t i+
j = ε− ∥pi∥ cos

�

min
¦

∠
�

r c
j , pi

�

+
p

2σ,π
©�

+ q j
i . (4.14c)

Proof. First, we rewrite the maximum of the objective function (4.7) as,

max
r j ,t j

N
∑

i=1

L j
i =max

t j
max

r j

N
∑

i=1

L j
i . (4.15)

Therefore, according to Lemma 4.2, we have

max
t j

max
r j

N
∑

i=1

L j
i ≤max

t j

N
∑

i=1

max
r j
I
�
�

�

�r T
j pi + t j − q j

i

�

�

�≤ ε
�

. (4.16)

Additionally, given a sub-branch B, according to the triangle inequality in spherical geom-
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etry [Cam+18] and Proposition 4.1, we have

∠
�

r j , pi

�

≤ ∠
�

r c
j , pi

�
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j , r j

�

(4.17a)
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+α (4.17b)

≤ ∠
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j , pi

�

+
p

2σ, (4.17c)

and

∠
�

r j , pi

�

≥ ∠
�

r c
j , pi

�

−∠
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j , r j
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(4.18a)

≥ ∠
�
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j , pi
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−α (4.18b)
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−
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2σ. (4.18c)

Thus, according to r T
j pi =


r j



∥pi∥ cos∠
�

r j , pi

�

and


r j



= 1, we have

r T
j pi ∈
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�
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¦

∠
�
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j , pi
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2σ,π
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,

∥pi∥ cos
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∠
�
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�
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2σ, 0
©��

.
(4.19)

Then, given a sub-branch B, whose center is d c (corresponds to r c
j ) and half-side length is σ,

we can observe that,

max
r j
I
�
�

�

�r T
j pi + t j − q j

i

�

�

�≤ ε
�

(4.20a)

=max
r j
I
�

−ε− r T
j pi + q j

i ≤ t j ≤ ε− r T
j pi + q j

i

�

(4.20b)

≤I
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��

, (4.20c)

where

t i−
j = −ε− ∥pi∥ cos

�
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∠
�
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−
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2σ, 0
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+ q j
i , (4.21a)
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j = ε− ∥pi∥ cos
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Then,
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Finally, we have

max
r j ,t j

N
∑

i=1

L j
i ≤max

t j

N
∑

i=1

I
�

t j ∈
�

t i−
j , t i+

j

��

(4.23)

Therefore, Proposition 4.2 is proved.

Proposition 4.3 (Upper bound for S2−). Given a sub-branch of the square-shaped domain B,
whose center is d c ∈ R2 (corresponds to −r c

j ∈ S
2−) and half-side length is σ, the upper bound
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can be set as

E
−
j (B) =max

t j

N
∑

i=1

I
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t j ∈
�
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j , t i+

j

��

, (4.24a)
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j = −ε+ ∥pi∥ cos
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i , (4.24b)
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j = ε+ ∥pi∥ cos
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j , pi

�

−
p

2σ, 0
©�

+ q j
i . (4.24c)

Proof. The proof is similar to Proposition 4.2, which is simple enough that we omit it.

Although the upper bounds in Proposition 4.2 and Proposition 4.3 are theoretically pro-
vided, we still need to find an appropriate method to compute them. Mathematically, the
calculation of the upper bounds is a typical interval stabbing problem [De +97]. As shown in
Fig. 4.3, the interval stabbing problem aims to find a probe (i.e., the blue line segment) that
stabs the maximum number of intervals. There has been a deterministic and polynomial-time
algorithm [Cai+19] to solve the interval stabbing problem. More details are given in [De
+97; Cai+19].

By utilizing the interval stabbing technique to compute the upper bounds, the proposed
BnB-based method only needs to search a 2-dimensional solution domain, thereby improving
the algorithm efficiency. Meanwhile, the translation projections {tX , tY , tZ} are implicitly
estimated by interval stabbing without requiring the initialization of the translation domain.
In other words, the interval stabbing approach returns not only the max-stabbing number
(i.e., the upper bound), but also the max-stabbing position (i.e., the estimation of t j).

To sum up, considering the total solution domain S2+ and S2−, we have the following
proposition.

Proposition 4.4 (Upper bound for S2). Given a sub-branch of the square-shaped domain B,
whose center is d c ∈ R2 and half-side length is σ, the upper bound of the objective function (4.7),
can be set as

E j(B) =max
¦

E
+
j (B), E

−
j (B)
©

. (4.25)

Proof. The maximum of these two upper bounds is not smaller than the maximum of the
objective function (4.7). Therefore, E j(B) is the final upper bound of the objective function
(4.7).

Proposition 4.5 (Lower bound for S2). Given a sub-branch of the square-shaped domain B,
whose center is d c ∈ R2 and half-side length is σ, the lower bound of the objective function (4.7)
can be set as

E j(B) =max
¦

E+j (B), E−j (B)
©

, (4.26a)
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, (4.26b)

E−j (B) =
N
∑
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I
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�−
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�T
pi + t−j − q j

i

�
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�≤ ε
�

, (4.26c)
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(a) SPCR Upper for S2+: 33 (b) SPCR Upper for S2−: 38

Figure 4.4: The visualization results for the 24-th iteration of a representative SPCR test on synthetic data. The
black line segments are the intervals after interval merging, and the red line segments are the intervals crossed by
the blue probe with the max-stabbing number. After interval merging, interval stabbing is utilized to calculate the
upper bounds. Notably, the blue probe resulting from interval stabbing can only penetrate at most one interval for
each point pi . The final SPCR upper bound for S2 is 38.

where t+j is the max-stabbing position of the upper bound for S2+, and t−j is the max-stabbing
position of the upper bound for S2−.

Proof. The maximum of the objective function in the given sub-branch B should be no less
than any objective value at a specific point. Therefore, E j(B) is the lower bound of the
objective function (4.7).

Proposition 4.6 (Bound convergence). When the sub-branch of the square-shaped domain B
collapses to a single point whose center is d c ∈ R2 and half-side length is zero, we can have

E j(B) = E j(B). (4.27)

Proof. When the sub-branch B collapses to a single point, we have σ = 0, and the upper
bound for S2+ is

E
+
j (B) =max

t j

N
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I
�

t j ∈
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j , t i+
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��

, (4.28a)
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i , (4.28b)

t i+
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pi + q j

i . (4.28c)

The lower bound for S2+ is

E+j (B) =
N
∑

i=1

I
�
�

�

�

�
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j

�T
pi + t+j − q j

i

�

�

�≤ ε
�

, (4.29)

where t+j is the max-stabbing position of the upper bound for S2+. Therefore, E
+
j (B) = E+j (B).

Similarly, we can have E
−
j (B) = E−j (B). Finally, E j(B) = E j(B) is proved.

Based on the upper and lower bounds in Proposition 4.4 and Proposition 4.5, the proposed
2D BnB search algorithm for solving decoupled sub-problems is outlined in Algorithm 2. We
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Algorithm 2: 2D BnB search for decoupled sub-problems

Input: The set of correspondences K = {(pi ,qi)}
N
i=1, inlier threshold ε.

Output: Optimal solution r ∗j ∈ S
2 and t∗j ∈ R.

1 Initialize the solution domain B0;
2 Initialize the list of sub-branches ξ= {B0};
3 Initialize the lower bound L = 0 and the upper bound U = N ;
4 Define function δ(B) returns the center of sub-branch B;
5 Define function η(B) returns the max-stabbing position of sub-branch B

corresponding to the upper bound;
6 while U − L > 0 do
7 Select a sub-branch B with the maximal upper bound from ξ, i.e.,

B= arg max E j(Bk), Bk ∈ ξ;
8 Subdivide B into four sub-branches {B1, . . . ,B4};
9 Insert {B1, . . . ,B4} into ξ and eliminate B from ξ;

10 Update U =maxE j(Bk), Bk ∈ ξ;

11 Update L =max
¦

L, E j(Bk)
©

with Bk ∈ ξ, if E j(Bk)> L, set r ∗j = δ(Bk) and

t∗j = η(Bk);

12 Eliminate Bk from ξ if E j(Bk)< L, Bk ∈ ξ;

13 end

employ the depth-first search strategy [MSS08] to implement the proposed BnB algorithm.
As we indicated in Section 4.3.1, although the initial solution domain S2 is mapped to two
identical 2D-disks, only one disk domain is branched, since the bounds of S2+ and S2− can be
computed separately in the same disk domain, as shown in Fig. 4.3. During each iteration,
the branch with maximal upper bound is partitioned into four sub-branches since the current
parameter space is only 2-dimensional. Then, the branch list is updated, and the upper and
lower bounds for each sub-branch are estimated. The sub-branches that do not have a better
solution than the best-so-far solution are eliminated. As the number of iterations increases,
the gap between the upper and lower bounds gradually decreases. Until the gap reduces to
zero, the proposed BnB algorithm obtains the optimal solutions (r ∗j , t∗j ) and consensus set.
As shown in [Str+17; Liu+18b; Che+22c], existing methods usually solve sub-problems se-
quentially. However, we can solve three sub-problems in an arbitrary order with Algorithm 2
and obtain the final results R∗ and t ∗ by SVD refinement.

4.3.3 Simultaneous Pose and Correspondence Registration

This section extends the proposed correspondence-based registration method to address the
challenging simultaneous pose and correspondence registration (SPCR) problem. The SPCR
problem inherently poses greater complexity than the correspondence-based problem. For-
mally, given the source point cloud P = {pi}Mi=1 and the target point cloud Q= {qk}Nk=1, there
are M × N candidate correspondences totally. Similar to [Cam+18; Wan+21a], we define
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the inlier set maximization objective function for the SPCR problem as

S j(r j , t j|P,Q,ε) =
M
∑

i=1

max
k
I
�
�

�

�r T
j pi + t j − q j

k

�

�

�≤ ε
�

, (4.30)

where j = X , Y, Z . This formulation implies that for each point pi, as long as a sufficiently
close point qk exists, then it contributes a maximum of 1 to the objective function. In other
words, for each point pi, we may not need to explicitly check all N points in Q.

The upper and lower bounds for the SPCR objective (4.30) are slightly different from
those of correspondence-based registration, given by the following propositions. In addition,
the optimization of objective (4.30) is also based on BnB.

Proposition 4.7 (SPCR Upper bound for S2). Given a sub-branch of the square-shaped domain
B, whose center is d c ∈ R2 and half-side length is σ, the SPCR upper bound for S2+ can be set as

S
+
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The SPCR upper bound for S2− can be set as
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The final SPCR upper bound for S2 can be set as

S j(B) =max
¦

S
+
j (B), S

−
j (B)
©

. (4.33)

Proof. The proof is similar to the proofs of Proposition 4.2, Proposition 4.3, and Proposi-
tion 4.4, hence we omit it.

In Proposition 4.7, the challenge lies in finding a solution to the problem of maxk I
�

t j ∈
�

t ik−
j , t ik+

j

��

while ensuring its maximum value does not exceed 1. Given that there are N intervals for
each point pi, and these intervals may overlap, directly applying interval stabbing to these
M × N intervals is unfeasible (otherwise, the upper bound function value would be much
larger than the maximum value of the objective function M). Therefore, the interval merg-
ing technique [De +97] can be employed as a pre-processing method before applying the
interval stabbing algorithm to calculate bounds (4.31a) and (4.32a). After interval merg-
ing, the max-stabbing probe can penetrate at most one interval for each point pi, meaning
each point pi contributes a maximum of 1 to the upper bound functions (4.31a) and (4.32a).
The complete interval merging algorithm for all points {pi}Mi=1 is presented in Algorithm 3.
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Specifically, interval merging is executed one time for each point pi, and then a total of M

times for point cloud P. Subsequently, interval stabbing is employed on the merged intervals
to compute upper bounds. An example of the visualization results of interval merging and
stabbing is given in Fig. 4.4. Similarly, when computing the SPCR lower bound, we employ
another indicator function to solve this “multi-interval” problem, as shown in Eq. (4.34b)
and Eq. (4.34d) of the following Proposition 4.8.

Proposition 4.8 (SPCR Lower bound for S2). Given a sub-branch of the square-shaped domain
B, whose center is d c ∈ R2 and half-side length is σ, the SPCR lower bound can be set as

S j(B) =max
¦

S+j (B), S−j (B)
©

, (4.34a)

S+j (B) =
M
∑

i=1

I
�

M j+
i > 0
�

, (4.34b)

M j+
i =

N
∑

k=1

I
�
�

�

�

�

r c
j

�T
pi + t+j − q j

k

�

�

�≤ ε
�

, (4.34c)

S−j (B) =
M
∑

i=1

I
�

M j−
i > 0
�

, (4.34d)

M j−
i =

N
∑

k=1

I
�
�

�

�−
�

r c
j

�T
pi + t−j − q j

k

�

�

�≤ ε
�

, (4.34e)

where t+j is the max-stabbing position of the SPCR upper bound for S2+, and t−j is the max-
stabbing position of the SPCR upper bound for S2−.

Proof. The proof is similar to the proof of Proposition 4.5, hence we omit it.

Proposition 4.9 (SPCR bound convergence). When the sub-branch of the square-shaped do-
main B collapses to a single point whose center is d c ∈ R2 and half-side length is zero, we can
have

S j(B) = S j(B). (4.35)

Proof. The proof is similar to the proof of Proposition 4.6, hence we omit it.

To improve the total efficiency, we can only solve the first sub-problem (e.g., maximize
SX (rX , tX |P,Q,ε)) using the extended BnB-based SPCR approach. Then we can solve the
second sub-problem (e.g., maximize EY (rY , tY |K,ε)) and third sub-problem (e.g., maximize
EZ(rZ , tZ |K,ε)) by Algorithm 2. This is because we can obtain the candidate inlier corre-
spondences after solving the first SPCR sub-problem, which is implicitly determined by the
residual projection constraint. Notably, partial outliers occasionally satisfy this constraint and
cannot be removed. However, the proposed correspondence-based method can be applied to
robustly address the two remaining sub-problems and generate the final consensus set.
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Algorithm 3: Interval merging for SPCR bounds calculation

Input: Intervals
¦¦�

t ik−
j , t ik+

j

�©M

i=1

©N

k=1
.

Output: Merged intervals ψ= {[al , bl]}
N ′
l=1, where N ′ =

∑M
i=1 Ni.

1 Initialize the index i = 1;
2 Initialize the list of merged intervals ψ= ;;
3 while i ≤ M do

4 Sort the intervals
¦�

t ik−
j , t ik+

j

�©N

k=1
by left side t ik−

j in ascending order;

5 Initialize the index k = 1, l = 1;
6 Initialize a1 = t i1−

j , b1 = t i1+
j ;

7 while k < N do
8 if t ik+

j ≥ t i(k+1)−
j then

9 bl =max
¦

t ik+
j , t i(k+1)+

j

©

;

10 else
11 l = l + 1;
12 al = t i(k+1)−

j , bl = t i(k+1)+
j ;

13 end
14 k = k+ 1;

15 end

16 Insert the merged intervals into list ψ, i.e., ψ=ψ∪
�

[al , bl]
	Ni

l=1, where Ni is the
number of merged intervals for pi;

17 end

4.4 LiDAR Registration Experiments

This section compares the proposed method with SOTA correspondence-based methods on
both synthetic and real-world datasets. Additionally, we evaluate the extended method
against existing SPCR methods, specifically on synthetic data. We implement the proposed
method in Matlab 2019b and conduct all experiments on a laptop with an i7-9750H CPU and
16GB RAM.

4.4.1 Experimental Setting

We denote the proposed method as Ours. The compared methods for correspondence-based
registration are as follows,

• GORE [BC17]: A guaranteed outlier removal registration method based on BnB and
pose decoupling. It is implemented in C++.

• RANSAC [FB81]: A typical consensus maximization registration approach implemented
in Matlab. The maximum number of iterations is set to 104.



4.4 LiDAR Registration Experiments 57

• TEASER [YSC20]: A certifiable decoupling-based registration method with a robust
cost function. It is implemented in C++.

• FGR [ZPK16]: A fast registration method with a robust cost function. It is implemented
in C++.

• GC-RANSAC [BM21]: A variant of RANSAC-based registration method with improve-
ments in local optimization. It is implemented in C++, and the maximum number of
iterations is set to 104.

• TR-DE [Che+22c]: A deterministic point cloud registration method based on BnB and
pose decoupling. It is implemented in C++.

• DGR [CDK20]: A learning-based outlier rejection method employing the sparse convo-
lutional network. It is implemented in Python.

• DHVR [Lee+21]: A learning-based outlier rejection method leveraging the Hough vot-
ing. It is implemented in Python.

• PointDSC [Bai+21]: A learning-based outlier rejection method utilizing the spatial con-
sistency. It is implemented in Python.

Besides, the compared methods for SPCR are as follows,

• GO-ICP [Yan+16]: A 6-DOF global optimal registration method based on BnB. It is
implemented in C++.

• GO-ICPT [Yan+16]: A variant of GO-ICP with outlier trimming.

• ICP [BM92]: A typical EM-type method implemented by pcregistericp function in MAT-
LAB.

• CPD [MS10]: A robust GMM-based registration approach implemented in C.

• GMMReg [JV10]: A robust and general GMM-based registration method implemented
in C.

Similar to [YSC20; Che+22c; Bai+21], the evaluation metrics for point cloud registration
in this study include 1) rotation error ER, 2) translation error Et , 3) running time, 4) success
rate SR, and 5) F1-score. The error definitions are as follows:

ER = arccos

�

Tr(R−1
g t R∗)− 1

2

�

, (4.36a)

Et = ∥tg t − t ∗∥, (4.36b)

where tg t and Rg t are the ground truth, t ∗ and R∗ are the estimated solutions, and Tr(·) is
the trace of a matrix. The successful cases must satisfy the predefined threshold for ER and
Et . Besides, the definition of F1-score is given in [Bai+21].
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Table 4.1: Controlled experiments with the extremely high number of correspondences. The results include
average rotation error (◦) | average translation error (m) | average running time (s). Bolded and underlined fonts
indicate the first two best values.

Method 10k 20k 50k 100k 200k 500k

GORE >1 hour
TEASER out-of-memory
RANSAC 0.121|0.152|4.506 0.086|0.185|6.732 0.073|0.153|12.51 0.079|0.137|30.13 0.080|0.143|92.37 4.961|4.883|315.7

GC-RANSAC 0.111|0.176|2.636 0.100|0.200|9.976 122.4|141.3|20.64 139.3|142.0|20.64 126.3|138.4|20.64 133.4|148.5|20.64
FGR [ZPK16] 0.021|0.010|1.540 0.024|0.013|2.477 0.037|0.022|6.346 0.031|0.018|12.13 0.024|0.018|23.97 0.047|0.025|68.74

Ours 0.016|0.017|0.397 0.022|0.028|0.649 0.025|0.025|1.649 0.025|0.028|2.963 0.023|0.027|6.111 0.018|0.025|15.56

4.4.2 Synthetic Data Experiments

In this section, we conduct various experiments on synthetic data to compare the perfor-
mance of the proposed method with SOTA correspondence-based and correspondence-free
registration methods.

Data generation

First, we randomly generate the source point cloud P in the cube [−100,100]3. The source
point cloud is transformed by a random rotation Rg t ∈ SO(3) and a random translation tg t ∈
[−100, 100]3 to generate the target point cloud Q. Then, a portion of points in the target
point cloud is replaced by arbitrarily generated points to simulate outliers. The outlier rate
η is the ratio of these replaced points to all points. Besides, zero-mean Gaussian noise with
standard deviation σ is added to the target point cloud. Notably, the inlier threshold in each
synthetic data experiment is set according to the standard deviation of the noise.

Efficiency and accuracy experiments

This section presents three sets of experiments comparing the efficiency and accuracy of
Ours with GORE, RANSAC, TEASER, FGR, GC-RANSAC, and TR-DE. Rotation errors, trans-
lation errors, and time costs are recorded for each experiment group. The first group fo-
cuses on experiments with a regular number of correspondences. We randomly generate
N = {1000, 2000, . . . , 5000} correspondences with a noise level of σ = 0.5 and an outlier rate
of η = 0.5. The experiment is repeated 50 times for each setting, and the average results
are depicted in Fig. 4.5. It is worth noting that results are not reported when the running
time exceeds 1800 seconds. Among the deterministic methods, GORE and TEASER exhibit
relatively high accuracy. However, their time costs increase significantly as the number of cor-
respondences grows, with TEASER being the fastest in this regard. FGR, on the other hand,
demonstrates occasional unsuccessful results but shows high efficiency. RANSAC and GC-
RANSAC suffer from lower accuracy due to sampling uncertainty. Nevertheless, they exhibit
relatively high efficiency at the regular outlier rate (η = 0.5). In contrast, Ours outperforms
all other methods in terms of both efficiency and accuracy. When N reaches 4000, Ours is
approximately 104 times faster than GORE and TEASER. This may be explained by the rea-
son that even after outlier rejection, a significant number of candidate inlier correspondences
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are still retained when dealing with a large number of correspondences. Consequently, the
optimization process for GORE and TEASER becomes slower.

Since the code of TR-DE [Che+22c] is not released publicly, we set the same experimental
conditions as TR-DE to compare the performance, which is the second group of experiments.
Specifically, the source point cloud is randomly generated within the unit cube, and the
experiment is conducted with N = {2000, 2500, . . . , 4000}, σ = 0.005, and, η = 0.55. We also
conduct 200 independent trials for each setting and record the average experiment results, as
shown in Fig. 4.6. We use the gray rectangular region to approximately represent the results
of TR-DE given in [Che+22c]. We can observe that Ours is about 10 times faster than TR-DE
while keeping comparable accuracy.

To further investigate the potential efficiency advantages of Ours, we conduct the third
group of experiments, specifically focusing on extremely high numbers of correspondences:
N = {10k, 20k, 50k, 100k, 200k, 500k} (where k denotes one thousand). The remaining set-
tings are consistent with those of the first group. Table 4.1 presents the average rotation
errors, average translation errors, and average time costs of each method. The running time
of GORE exceeds one hour starting from N = 10k, thus its results are not reported. Fur-
thermore, TEASER demands a substantial amount of memory space, which renders it unable
to operate efficiently under such extreme experimental conditions. As N increases to 500k,
RANSAC yields numerous unsatisfactory solutions and incurs a time cost of up to 315.7s.
Additionally, GC-RANSAC fails to converge to the correct result after N reaches 50k due to
early termination. In comparison to FGR, Ours delivers more accurate rotation estimates but
slightly less accurate translation estimates. However, experimental results indicate that the
number of correspondences has a relatively minor impact on the efficiency of our method.
For instance, when the number of correspondences increases from 10k to 500k, Ours is ap-
proximately 8 to 20 times faster than RANSAC and roughly 4 times faster than FGR. Overall,
the proposed method exhibits superior efficiency while maintaining competitive accuracy
compared to SOTA approaches.

Robustness experiments

In this section, we conduct a group of controlled experiments to compare the robustness of
Ours with GORE, RANSAC, TEASER, FGR, and GC-RANSAC. We randomly generate N =
2000 correspondences with varying outlier rates (η = {0.1, 0.2, . . . , 0.8}) and a noise level of
σ = 0.5. The average rotation errors, average translation errors, and average time costs for
each method are reported in Fig. 4.7. Results beyond a running time of 1800 seconds are not
recorded in this group of experiments. Comparing the registration errors demonstrates that
Ours, GORE, RANSAC, and TEASER are robust against up to 80% outlier rates. RANSAC has
relatively higher registration errors than Ours, GORE, and TEASER. Moreover, the running
time of RANSAC increases significantly with an increase in the outlier rate. In contrast, both
GORE and TEASER display a significant decrease in running times as the outlier rate increases
due to a corresponding reduction in the number of inliers. This indicates that, for GORE and
TEASER, the time required for outlier removal is considerably smaller compared to the time
spent on the optimization part. Consequently, they exhibit lower efficiency at regular outlier
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rates (e.g., η ≤ 0.5). On the other hand, despite the high efficiency exhibited by both the
deterministic FGR and the non-deterministic GC-RANSAC, they do not perform well when
confronted with high outlier rates (e.g., η ≥ 0.7). In contrast, Ours stands out as one of the
fastest and most robust methods.

Challenging SPCR experiments

In this section, we evaluate the performance of our extended simultaneous pose and corre-
spondence registration (SPCR) method against GoICP, GoICPT, ICP, CPD, and GMMReg using
the Bunny dataset [CL96]. The Bunny dataset consists of 35947 points and is pre-normalized
to fit within the cube [−1, 1]3, as required by GoICP [Yan+16]. Similar to [YSC20], we
downsample the Bunny dataset to M = 100 points, which serve as the source point cloud
P. To generate the target point cloud Q, we apply a random rotation and translation to the
source point cloud. Additionally, we randomly remove a certain proportion of points from
Q to simulate partial overlap between P and Q. The visualization results for a pair of syn-
thetic data are shown in Fig. 4.1(d-1), where the bolded points represent the downsampled
point clouds. Furthermore, we add zero-mean Gaussian noise with σ = 0.001 to the source
point cloud P. The registration experiment is repeated 50 times for each overlap rate in
ρ = {0.9, 0.8, . . . , 0.4}. Notably, the trimming fraction of GoICPT is set to be identical to the
overlap rate.

The registration errors and average running times for each approach are presented in
Fig. 4.8. Notably, the running times of building distance transform (DT) [Yan+16] for GoICP
and GoICPT are not recorded and approximately take 23s on average. During repeated exper-
iments, the local methods, ICP, CPD, and GMMReg, exhibit a tendency to converge to local
optima, resulting in incorrect results. However, their efficiency remains a notable advantage.
In contrast, the global methods GoICP and its variant GoICPT demonstrate greater robust-
ness than these local methods. In particular, with a precisely tuned trimming ratio, GoICPT
achieves remarkably high accuracy across all overlap rates. Nevertheless, these global meth-
ods suffer from relatively slow running times, which increase more rapidly than the proposed
method. Consequently, when the overlap ratio is low (e.g., ρ ≤ 0.7), Ours is faster than
GoICP and GoICPT. As a global method, Ours also falls short in terms of efficiency compared
to the local methods. However, Ours is more robust than local methods such as ICP, CPD,
and GMMReg. Furthermore, as depicted in Fig. 4.1(d), Ours exhibits greater robustness than
ICP and higher efficiency than GoICP on a randomly generated pair of Bunny data (ρ = 0.6).
These experiments illustrate the potential practicality of our proposed approach in addressing
the challenging SPCR problem and its strength in terms of robustness and efficiency.

4.4.3 Real-World Data Experiments

In this section, to assess the performance of the proposed method on real-world data, we
conduct experiments using the ETH dataset [TWS14] and the KITTI dataset [GLU12]. These
datasets depict challenging outdoor LiDAR scenarios, with the former captured using terres-
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Table 4.2: Detailed information about the ETH Dataset.

Scan pair
Number of

points (106)
Number of
keypoints

Number of
correspondences Outlier rate

Arch1 23.56-30.90 19007-12254 12617 98.45%
Arch2 30.90-29.45 12254-13286 11699 98.77%

Courtyard1 12.71-12.15 9634-12125 15325 86.55%
Courtyard2 12.15-16.75 12125-4081 8069 90.62%

Facade1 25.08-15.25 1586-2810 1901 97.16%
Facade2 15.25-15.79 2810-2215 2368 96.92%
Office1 10.73-10.69 1348-1277 1279 97.65%
Office2 10.69-10.75 1277-1486 1355 98.97%
Trees1 19.63-19.60 10883-10898 9543 99.41%
Trees2 20.39-20.48 12542-12522 11253 97.87%

trial LiDAR and the latter collected from onboard LiDAR.

ETH dataset experiments

The ETH dataset [TWS14] is a challenging large-scale LiDAR dataset that encompasses five
distinct scenarios: Arch, Courtyard, Facade, Office, and Trees. The average overlap rates of
these scenarios are 30− 40%,40− 70%,60− 70%,> 80%,≈ 50%, respectively, as reported in
[Li+23b]. To ensure the generality of the registration algorithm, we select two scan pairs
from each scenario for our registration experiments. The ETH dataset provides ground truth
information regarding the relative pose, enabling accurate evaluation. Similar to [Li22;
Li+23b], we initially downsample the scans using the voxel grid algorithm [RC11]. Sub-
sequently, we extract ISS [Zho09] keypoints and calculate FPFH [RBB09] descriptors for
each keypoint. Through K-nearest neighbor search, we generate the set of putative corre-
spondences K. The downsampling resolution and the inlier threshold are both set to 0.1m.
Detailed information about the ETH dataset, including the number of points, number of key-
points, number of correspondences, and outlier rate, can be found in Table 4.2. The outlier
rate in the ETH dataset ranges from approximately 86% to 99%, with the number of corre-
spondences varying from around 1k to 15k. To evaluate the registration performance, we
compare Ours, GORE, RANSAC, TEASER, FGR, and GC-RANSAC using a total of 10 scan
pairs from the ETH dataset.

Fig. 4.9 reports the rotation error, translation error, and running time for each method
evaluated on the ETH dataset. Ours, GORE, and TEASER achieve remarkable robustness
over all five scenes, successfully registering all scan pairs. GORE exhibits better accuracy
overall compared to Ours, although it is time-consuming. Nevertheless, the registration er-
rors achieved by Ours are still acceptable for practical applications. While the overall accu-
racy of TEASER is lower than that of Ours and GORE, its time cost increases significantly
when dealing with a large number of inliers. For instance, Ours is approximately 280 times
faster than TEASER in aligning the scan pair Courtyard1 with an outlier rate of 86.55%,
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(a) Rotation error

(b) Translation error

(c) Running time

Figure 4.9: Experiment results on the ETH dataset [TWS14] with the FPFH [RBB09] descriptor. The results
include rotation errors, translation errors, and running times.

and about 42 times faster than TEASER in aligning the scan pair Courtyard2 with an outlier
rate of 90.62%. Another registration case for the scan pair Arch1 (with an outlier rate of
98.45%) is illustrated in Fig. 4.1(b), where Ours achieves the lowest translation error and is
roughly 480 times faster than GORE and about 4 times faster than TEASER. The visualization
results of the proposed method for the remaining four scenarios are provided in Fig. 4.10.
Besides, FGR and GC-RANSAC demonstrate relatively high efficiency but exhibit instability
when registering scan pairs with high outlier rates, such as Office2 and Trees1. RANSAC is
not only time-consuming on the ETH dataset, but also prone to producing incorrect regis-
tration results. In summary, benefiting from the pose decoupling strategy based on residual
projections, the proposed registration method is more efficient than the SOTA methods while
maintaining robustness.
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(a) Courtyard1 (b) Facade1

(c) Office1 (b) Trees1

Figure 4.10: Registration results of the proposed method on the ETH dataset [TWS14], including four scan pairs:
(a) Courtyard1, (b) Facade1, (c) Office1, and (d) Trees1. The aligned source point cloud is blue, and the target
point cloud is yellow.

Table 4.3: Detailed information about the Bremen Dataset.

Scan pair
Number of

points (106)
Number of
keypoints

Number of
correspondences Outlier rate

s1-s0 16.16-15.90 30328-30290 5001 98.54%
s2-s0 15.25-15.90 39368-30290 6303 99.64%
s3-s2 15.03-15.25 43856-39368 8194 95.08%
s4-s2 18.05-15.25 26581-39368 5393 97.59%
s5-s4 18.76-18.05 20023-26581 4768 91.19%
s6-s5 20.33-18.76 9423-20023 1840 97.34%
s7-s6 18.47-20.33 16608-9423 2554 93.46%
s8-s7 15.85-18.47 19599-16608 3934 94.20%
s9-s7 16.29-18.47 32281-16608 4291 97.48%

s10-s9 15.18-16.29 36689-32281 8662 90.67%
s11-s9 14.61-16.29 37187-32281 7563 96.50%

s12-s10 15.76-15.18 36084-36689 8214 92.62%

Bremen dataset experiments and 3D Scene Reconstruction

The Bremen dataset [BEN13] is a large-scale outdoor dataset with 13 LiDAR scans. We
follow the same data preparation strategy outlined in the ETH dataset experiment to establish
the initial correspondence set K. The ground-truth pose for each scan is provided within
the dataset. Since the proposed method is only for pair-wise registration, we construct 12
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(a) Rotation error

(b) Translation error

(c) Running time

Figure 4.11: Experiment results on the Bremen dataset [BEN13] with the FPFH [RBB09] descriptor. The results
include rotation errors, translation errors, and running times.

scan pairs to register all scans. Table 4.3 provides detailed information for each scan pair
from the Bremen dataset, including the number of points, number of keypoints, number of
correspondences, and outlier rate. The downsampling resolution for the Bremen dataset is set
to 0.15m, which also determines the inlier threshold. With several thousand correspondences,
the outlier rate ranges from approximately 90% to 99% for the Bremen dataset. We employ
the proposed method (Ours), as well as GORE, RANSAC, TEASER, FGR, and GC-RANSAC, to
register these scan pairs.

The rotation error, translation error, and running time of each method for each scan pair
are shown in Fig. 4.11. Notably, when dealing with the registration of the scan pair s2-s0, all
compared methods, except for Ours, fail due to the exceptionally high outlier rate (99.64%).
GORE and TEASER demonstrate successful alignment with relatively high accuracy for the
remaining scan pairs. Despite this, GORE exhibits the highest time cost among all methods,
even when the number of correspondences is small or the outlier rate is low, which is con-
sistent with the findings from synthetic data experiments. For instance, in the case of the
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Figure 4.12: Our 3D scene reconstruction results on the Bremen dataset [BEN13], where different scans are
indicated by different colors. The pair-wise point cloud registration is conducted for all 12 scan pairs.

pair s10-s9, which only has a 90.67% outlier rate, GORE requires over 3 hours for alignment,
while TEASER takes up to 26.84 seconds. In contrast, Ours achieves registration in a mere
0.342 seconds. Furthermore, Fig. 4.1(a) shows another registration case for the scan pair s8-
s7, where Ours not only achieves better accuracy but also is approximately 103 times faster
than GORE and about 4 times faster than TEASER. Overall, Ours shows higher efficiency
compared to GORE and TEASER, which exhibit similar levels of robustness and accuracy as
Ours.

On the other hand, non-deterministic RANSAC demonstrates unstable performance, occa-
sionally generating unsatisfactory solutions with significant registration errors, as observed in
pairs s1-s0, s2-s0, s4-s2, and s9-s7. Moreover, RANSAC is also time-consuming in these prac-
tical scenarios with high outlier rates and a large number of correspondences. FGR, while fast
for all scan pairs, often converges to erroneous results. Although GC-RANSAC outperforms
RANSAC in terms of stability and efficiency, it still struggles to register all scan pairs success-
fully. In contrast, Ours exhibits remarkable robustness, achieving a 100% registration success
rate on the Bremen dataset. The 3D scene reconstruction results on the Bremen dataset are
given in Fig. 4.12.

KITTI dataset experiments

Following the data preparation strategy in [CPK19; Bai+21; Che+22c], we evaluate the per-
formance of the proposed method on the KITTI dataset [GLU12]. The initial correspondences
are generated using the learning-based descriptor FCGF [CPK19], and the inlier threshold is
set to 0.6m. For successful registration, we set the thresholds for rotation error (ER) and trans-
lation error (Et ) to 5◦ and 0.6m, respectively. In addition to comparing the performance of
Ours against traditional methods such as RANSAC, TEASER, FGR, GC-RANSAC, and TR-DE,
we also compare it with learning-based methods, including DGR [CDK20], DHVR [Lee+21],
and PointDSC [Bai+21]. Notably, the learning-based descriptor FCGF outperforms tradi-
tional descriptors, resulting in a relatively low outlier rate for FCGF-based correspondences
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Table 4.4: Experiment results on the KITTI dataset[GLU12] with FCGF [CPK19] descriptors. Bolded and under-
lined fonts indicate the first two best values.

Method SR(%) ER(◦) Et (cm) F1(%) Time(s)

i) Traditional
RANSAC[FB81] 96.40 0.36 21.12 84.77 2.56
TEASER[YSC20] 95.50 0.33 22.38 85.77 31.5

FGR[ZPK16] 96.94 0.34 19.69 85.80 0.99
GC-RANSAC[BM21] 97.48 0.32 20.68 85.42 1.16

TR-DE[Che+22c] 98.20 0.38 18.00 85.99 3.01

ii) Deep learned
DGR[CDK20] 95.14 0.43 23.28 73.60 0.86

DHVR[Lee+21] 99.10 0.29 19.80 - 0.83
PointDSC[Bai+21] 97.84 0.33 20.99 85.29 0.31

Ours 98.20 0.32 20.05 86.40 0.62

(approximately 58.7% on average). Consequently, GORE is significantly slow on the KITTI
dataset, so we do not report its results.

As shown in Table 4.4, all methods achieve a success rate exceeding 95% owing to the low
outlier rate of FCGF-based correspondences. Among these methods, Ours attains the second-
best success rate of 98.20%, slightly lower than DHVR with 99.10%. Although Ours is not the
most efficient method, it ranks second in terms of efficiency among all approaches. For in-
stance, Ours is approximately 5 times faster than the SOTA BnB-based TR-DE, about 4 times
faster than the non-deterministic RANSAC, and approximately 50 times faster than the deter-
ministic TEASER. It is worth mentioning that the most efficient method is the learning-based
registration method, PointDSC. However, learning-based methods often require additional
training procedures and may perform well only on the datasets they were trained on. Addi-
tionally, Ours exhibits the second-best rotation accuracy and the best F1-score. In Fig. 4.1(c),
an example of registering a selected pair from the KITTI dataset is provided, where Ours
has better accuracy and efficiency than FGR and GC-RANSAC. In general, when compared to
SOTA methods, including learning-based methods, Ours showcases competitive performance
in efficiency and robustness. This underscores the effectiveness of both the proposed pose
decoupling strategy and the BnB-based search method.

Orthogonality evaluation and verification

As the proposed method independently searches for the three rotation vectors without consid-
ering the orthogonality constraint, an evaluation of the orthogonality of the estimated coarse
results is conducted on the KITTI dataset. Following the definition of a rotation matrix, the
inner product for each pair of rotation vectors and the determinant of the coarse rotation
matrix are computed, and the results are recorded in Table 4.5. Notably, the calculation of
the mean and standard deviation of the metrics includes both successful and unsuccessful
registration cases on the KITTI dataset. The findings indicate that, in most cases, the inner
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Table 4.5: Orthogonality and determinant evaluation results on the KITTI dataset. The evaluation metrics comprise

OX Y , defined as the inner product of r ∗X and r ∗Y , alongside OX Z , OY Z , and the determinant Det of
�

r ∗X , r ∗Y , r ∗Z
�T

.
The mean and standard deviation of these metrics are given.

Metric OX Y OX Z OY Z Det

Mean -0.0044 0.0031 -0.0019 0.9819
Standard deviation 0.0791 0.0990 0.1427 0.0763

product of any two rotation vectors is very close to 0, and the determinant of the coarse rota-
tion matrix is likewise close to 1. Despite our method not explicitly considering orthogonality,
its exceptional robustness (thanks to BnB) results in the coarse rotation matrix obtained from
solving the sub-problems closely approximating the ground-truth rotation matrix in the ma-
jority of cases. This also indicates that the final consensus set obtained is very close to the
true inlier set. As a consequence, the registration results after SVD refinement on the final
consensus set are satisfactory (the registration success rate is 98.2%).

Additionally, thresholds of 0.3 for the inner product and 0.7 for the determinant are es-
tablished to verify if the estimated solution of the decomposed sub-problems is valid. In the
KITTI dataset (sequence 8 to 10), consisting of a total of 555 pairs of point clouds, the success
rate of our method is 98.2%, implying 10 unsuccessful registration cases. Nonetheless, it is
noteworthy that the estimated coarse matrices from 6 pairwise registration cases are veri-
fied as invalid rotation matrices. In this case, the SVD will also only yield erroneous results.
Therefore, we can partially verify (6/10) if the solution is valid by checking the orthogonality
of the coarse rotation vectors and the determinant of the coarse rotation matrix and thereby
assess the quality of the estimations.

4.4.4 Sensitivity Analysis

In this section, synthetic data experiments are conducted to theoretically assess the sensitivity
of the proposed method to the inlier threshold. The inlier threshold is systematically adjusted
to λ = {1,2, 3,4, 5}σ, while varying the outlier rate to η = {0,0.2, 0.4,0.6, 0.8}. We maintain
N = 2000 and a noise level of σ = 0.5 throughout the experiments. Each configuration is
replicated 100 times, and the results are presented in Fig. 4.13. The findings reveal that the
inlier threshold λ only has a limited impact on registration accuracy and efficiency. Even with
λ = 5σ, both the rotation error and translation error remain below 1◦ and 1m, respectively.
However, increasing the inlier threshold leads to a slight increase in running time, potentially
attributed to the larger inlier threshold resulting in a more relaxed upper bound, subsequently
increasing the number of iterations.
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(a) Rotation error

(b) Translation error

(c) Average running time

Figure 4.13: Controlled experiments with different inlier thresholds λ = {1,2, 3,4, 5}σ and outlier rates η =
{0,0.2, 0.4,0.6, 0.8}. The results include rotation errors, translation errors, and average running times.

4.5 Summary

This chapter presents an efficient, robust, and deterministic point cloud registration method,
leveraging a novel pose decoupling strategy. By utilizing L∞ residual projections, we success-
fully decouple the initial registration problem into three sub-problems, resulting in improved
efficiency. Furthermore, we introduce a step-wise search strategy based on branch and bound
for these sub-problems. Specifically, we define the inlier set maximization objective function
and derive the novel upper bound based on the interval stabbing technique. Benefit from
interval stabbing, we can additionally reduce the dimensionality of the branching space, thus
accelerating the BnB search. Interestingly, thanks to its significant robustness, our proposed
method can be extended to solve the challenging SPCR problem by introducing the inter-
val merging technique. Extensive experiments conducted on both synthetic and real-world
datasets demonstrate the competitive performance of our proposed method in terms of effi-
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ciency and robustness when compared to SOTA approaches.





5
Efficient and Robust LiDAR Registration with Grav-

ity Prior

This chapter aims to address the problem of robust point cloud registration with
gravity prior, which is quite common in practice. The gravity directions are typi-
cally provided by inertial measurement units (IMUs) and can reduce the rotation
to 1 degree of freedom (DOF). Commonly, existing outlier-robust global registration
methods exhibit low efficiency. To overcome this limitation, this chapter introduces
two novel registration algorithms based on transformation decoupling that allow
searching for the solution within the lower-dimensional space, thereby significantly
improving efficiency. The first algorithm utilizes known gravity directions to decom-
pose the original 4-DOF problem into two sub-problems with 3-DOF and 1-DOF.
Then, a deterministic global two-stage solver is presented to address the decoupled
sub-problems sequentially. By further exploring the geometric properties, the second
method employs the screw theory to decompose the raw 4-DOF problem into three
sub-problems with 1-DOF, 2-DOF, and 1-DOF, respectively. A deterministic global
three-stage solver is then developed. Extensive experiments demonstrate the superior
performance of the two proposed methods in terms of efficiency and robustness.

5.1 Background

Given 3D source and target point clouds, rigid point cloud registration is estimating the best
transformation in SE(3) that aligns two point clouds. It is also known as surface matching,
an essential problem of computer vision and robotics. Point cloud registration has exten-
sive applications in 3D reconstruction [BL95; Guo+20], pose estimation [Li+23d], object
recognition [Guo+14; Xia+21], and robot localization [Li+23b; Zhu+22], etc.

Currently, researchers leverage prior information and reasonable assumptions to assist
point cloud registration, such as planar motion, axis-fixed rotation, prior known gravity di-
rections, etc [Cai+19; Don+20; Lim+22; Jia+22]. These pieces of information serve to
reduce the dimensionality of the registration problem, particularly in terms of the param-
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eters to be optimized, thereby enhancing algorithm efficiency. Among these prior pieces of
information, the gravity direction (a.k.a. vertical direction) is extensively studied and serves as
a shared direction to facilitate relative pose estimation [Din+20; Din+21; Liu+21], absolute
pose estimation [HK17; Lec+19; LCK20a; LCK23], SLAM [Svä+16; Örn+22; KVP22], and
panoramic stitching [DBK21; Bar+21]. With the aid of gravity direction, the relative rota-
tion is reduced to 1 degree of freedom (DOF). Thus, the 6-DOF transformation in point cloud
registration is reduced to only 4-DOF. In practice, modern autonomous systems, e.g., self-
driving systems [Xu+22], commonly are equipped with inertial measurement units (IMUs),
which can provide high precision gravity directions. On the other hand, the angular accu-
racy of the gravity direction is about 0.5◦ even for low-cost IMUs and less than 0.02◦ for
high-accuracy IMUs [Din+20; Liu+21]. Alternatively, gravity directions can be obtained
by vanishing point detection techniques from some structural scenarios [ADV03; LCK20b;
Li+23a]. In this chapter, we focus on the general 4-DOF point cloud registration problem in
which gravity directions are prior known. In particular, the registration for terrestrial LiDAR
scans is a typical 4-DOF problem since the built-in tilt compensator keeps the rotation axis
fixed [Cai+19; Don+20].

A classic paradigm for point cloud registration is estimating the transformation from a set
of candidate correspondences generated by feature matching techniques and is also known
as correspondence-based registration [BC17; Li22]. Nonetheless, due to the limited perfor-
mance of current 3D matching methods and the challenges posed by partial overlap, noisy
data, and structural duplication within real-world point clouds, the putative correspondences
commonly contain a substantial number of outliers (often > 95%) [BC17; Li+23b]. To
achieve robust registration, several common paradigms have been developed, of which the
consensus maximization paradigm employed in our work is inherently robust to outliers and
noise without smoothing or trimming to change the objective function [Li09; Cam+18]. Fur-
thermore, consensus maximization has also been successfully adopted in many applications
of robust fitting and estimation [CS17; Wen+19; TZN20; Liu+22].

The most popular heuristic used for solving the consensus maximization problem of point
cloud registration is random sample consensus (RANSAC) [FB81]. RANSAC is an iterative
hypothesize-and-test method that terminates after finding a consensus inlier set with suffi-
cient correspondences or after achieving the total number of permitted iterations. However,
RANSAC is non-deterministic and only generates a correct solution with a certain probabil-
ity [Le+19]. Besides, the running time of RANSAC grows exponentially with the outlier
rate [BC17]. To achieve highly outlier-robust registration, an increasing number of glob-
ally optimal and deterministic algorithms have been proposed. Most of the global meth-
ods [OKO08; HK09; BSP12; Yan+16; Bus+16; CP16; Cai+19] use branch-and-bound (BnB)
to systematically search the entire solution domain. BnB-based methods can also solve the
challenging problem of simultaneous pose and correspondence registration (SPCR) [Yan+16;
Bus+16; CP16; Liu+18b; Cam+18; Liu+18a; Wan+21a], which is another paradigm for
point cloud registration. BnB-based methods have two advantages: 1) they can find the
globally optimal solution with theoretical guarantees, and 2) they are independent of ini-
tialization. However, their convergence speed is exponential to the dimensionality of the
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solution domain in the worst-case. Consequently, global methods are best appropriate for
problems with small size and/or low dimensionality.

A popular strategy to improve the efficiency is transformation decoupling [BC17; Liu+18b;
Str+17; Che+22c], by which the registration problem can be addressed within lower-dimensional
parameter spaces. However, most existing methods address the general 6-DOF registration
problem, with relatively fewer studies concentrating on the 4-DOF registration problem with
gravity prior. Existing methods commonly decouple the original 6-DOF problem into two
separate 3-DOF sub-problems [BC17; Str+17; Liu+18b; Li+18; Che+22c]. For instance,
two special invariants are employed to decouple the rotation and translation, i.e., the rota-
tion invariant features (RIFs) [Liu+18b; Wan+21a] and translation invariant measurements
(TIMs) [Jia+22; YSC20]. Therefore, the algorithm efficiency still has potential room for
improvement by considering the dimensionality of the registration problem.

5.2 Transformation Decoupling by Gravity Direction

This section proposes a novel, efficient, and deterministic registration method. The key idea
is to decompose the joint 4-DOF pose into two sequential sub-problems with the aid of prior
known gravity directions, i.e., 1) 3-DOF translation search, and 2) 1-DOF rotation estimation,
as shown in Fig. 5.1. This decomposition mechanism reduces the search domain to 3-DOF,
thus increasing efficiency. Specifically, a novel BnB-based method for the 3-DOF consensus
maximization sub-problem is proposed, and then the corresponding lower and upper bound
functions are derived. Next, an efficient global voting method for the 1-DOF rotation esti-
mation sub-problem is proposed. Different from existing strategies based on RIFs [Liu+18b;
Wan+21a] and TIMs [Jia+22; YSC20], which typically require at least two pairs of corre-
spondences, our decoupling scheme is valid for a single pair of correspondences. In addition,
since our target problem (4-DOF) is different from theirs (6-DOF), the core geometrical prin-
ciples and operations in our work are also quite different. For example, the solution domain
for rotation in the 6-DOF problem is SO(3), while in ours, it is [−π,π]. Furthermore, inspired
by [YSC20], the SPCR problem is reformulated as a correspondence-based problem by assum-
ing all-to-all correspondences and revising the objective and bound functions. Specifically, we
assume that each point in the source point cloud is associated with all points of the target
point cloud, and the impending problems have a large-scale set of candidate correspondences
and extremely high outlier rates. However, the proposed method can also robustly solve this
challenging SPCR problem.

Although both sub-problems are globally optimized in this study, the solution is not nec-
essarily globally optimal for the raw 4-DOF point cloud registration problem but is determin-
istic. Notably, this is an inherent drawback common to the other decomposition-based ap-
proaches [Liu+18b; YSC20; Wan+21a; Che+22c]. The deterministic convergence of the pro-
posed method is also essential for safety-critical applications like autonomous driving since
the solutions given by the proposed method are guaranteed to be repeatable. In contrast, the
results of heuristic methods such as RANSAC are probabilistic and non-deterministic.
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Figure 5.1: Principle of our decoupled 4-DOF point cloud registration method. Specifically, the joint pose can
be decoupled into the translation and rotation when the gravity directions are known. Our method comprises two
procedures: 1) a 3-DOF translation search by BnB and 2) a 1-DOF rotation estimation by global voting. Since the
search space of BnB is only 3-DOF, our method is able to significantly reduce the running time compared to the
joint 4-DOF BnB-based method [Cai+19]. The illustration shows one pair of terrestrial LiDAR scans from Arch in
the ETH dataset. After applying the fast match pruning (FMP) [Cai+19] to the candidate correspondences set, the
running times of our method and the joint 4-DOF BnB-based method are 2.6ms and 635ms, respectively. Please
note that the gravity directions used here are assumed as [0,0,−1]T.

The main contributions of this section can be summarized as follows:

• This section proposes a novel, simple, yet efficient decoupling scheme for the 4-DOF
correspondence-based point cloud registration problem. Specifically, the 4-DOF prob-
lem is decoupled into two sub-problems with gravity prior. This strategy improves the
convergence speed significantly by reducing the dimensionality of the solution domain.

• This section proposes a deterministic BnB-based optimization algorithm for the 3-DOF
translation search sub-problem. Specifically, a new consensus maximization objective
function is constructed with an angle-based criterion, and the new upper and lower
bound functions are derived from the geometrical conditions. Furthermore, an efficient
global voting algorithm is proposed for the 1-DOF rotation estimation sub-problem.

• Extensive experiments on several synthetic and real-world datasets demonstrate that
the proposed method is not only more robust to outliers and noise than several exist-
ing heuristic methods, but also almost an order of magnitude faster than the existing
joint 4-DOF BnB-based method. The proposed method strikes a balance between effi-
ciency and robustness, promoting the BnB-based methods one step further in practical
applications.

• This section extends the proposed method to address the challenging SPCR problem,
employing the all-to-all correspondence assumption and accordingly developing a new
objective. Experimental results show that the proposed method is more robust and
accurate than several benchmark methods.

The rest of this section is organized as follows: Section 5.2.1 illustrates the problem for-
mulation of the 4-DOF point cloud registration. Section 5.2.2 demonstrates the geometrical
principle and details the proposed registration method.
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5.2.1 Problem Formulation

Inlier Set Maximization

The source and target point clouds are defined as P and Q, respectively. In the correspondence-
based registration setup, a set of candidate correspondences K = {(pi ,qi)}

N
i=1 is extracted by

matching points from P and Q, where pi ,qi ∈ R3 represent the point coordinates. The
correspondences in K tend to be contaminated by outliers and noise. The common 6-DOF
registration problem is intended to estimate the rigid transformation T ∈ SE(3), including
rotation R ∈ SO(3) and translation t ∈ R3, so that the transformed point cloud T(P) is as
close as possible to the point cloud Q. In past studies, different forms of objective functions
are employed, such as the L2 residual [Yan+16], Gaussian mixture model [CP16], and con-
sensus maximization [Cai+19; Wan+21a; Che+22c]. In these objective functions, consensus
maximization (a.k.a. inlier set maximization) is not only robust but also easy to compute. It is
only necessary to compare the residual with the predefined threshold and count the number
of inliers. Specifically, the optimization problem to be solved is:

T ∗ = arg max
T∈SE(3)

O (T(P),Q) , (5.1)

where O is the objective function for counting the number of inliers. Moreover, in the con-
figurations of consensus maximization, different alignment criteria are applied, involving
distance-based metrics [Bus+16; Liu+18a; Cai+19] and angle-based metrics [Cam+18;
BWG19; Wan+21a], which then generate different problem formulations. In this section,
the angle-based criterion is adopted to measure the alignment of point clouds. Specifically,
assuming a candidate correspondence pair ki = (pi ,qi) is an inlier, we obtain:

R(pi + t ) = qi . (5.2)

Then, given an arbitrary unit vector v ∈ R3, the angle between the direction vector repre-
sented by each of the two points and this unit vector should be equal, i.e.,

∠
�

R(pi + t ), v
�

= ∠(qi , v). (5.3)

Therefore, points pi and qi are considered as aligned (an inlier) only if
�

�∠
�

R(pi + t ), v
�

−
∠(qi , v)
�

�≤ ζ, where ζ is the angle-based inlier threshold.

4-DOF Registration

With the aid of known gravity directions provided by IMUs, the 6-DOF registration problem
is reduced to 4-DOF. This is because the axes of coordinate systems can be aligned with the
gravity direction so that the rotation is only 1-DOF. When the aligned axis is the Z-axis, the
relative rotation is a pure yaw rotation. Now let us see the parameterization of rotation
R. The utilization of the geometric constraints introduced by the known gravity direction is
considered. The gravity direction is a reference direction with unit-norm. Geometrically, the
constraint of the gravity direction is given by:
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Rvp = vq, (5.4)

where vp and vq are unit gravity directions in the source and target point clouds P, Q,
respectively. The solution to this equation is:

R = R(θ , vq) ·R
vq
vp

, (5.5)

where R
vq
vp

is the rotation that aligns vp to vq with the minimum geodesic motion, R(θ , vq)
is the rotation that rotates θ ∈ [−π,π] about axis vq, and θ is an unknown scalar (a 1-DOF
problem). Please refer to [BC17] for more details regarding this solution. Eq. (5.5) indicates
that the rotation is reduced from 3-DOF to 1-DOF. Therefore, given an arbitrary unit vector
v ∈ R3, the 4-DOF registration problem is given by:

θ ∗, t ∗ = argmax
θ∈[−π,π],t∈R3

N
∑

i=1

I
�
�

�∠
�

R(pi + t ), v
�

−∠(qi , v)
�

�≤ ζ
�

, (5.6)

where I is an indicator function that returns 1 if the input condition is true and 0 otherwise,
and ζ is the angle-based inlier threshold. The decoupling scheme will be introduced in the
next section.

4-DOF Transformation Decoupling by Gravity Direction

If consider the known gravity direction vq to be the arbitrary unit vector v in Eq. (5.6), then
the objective function is:

E(R, t |K,ζ) =
N
∑

i=1

I
�
�

�∠
�

R(pi + t ), vq

�

−∠(qi , vq)
�

�≤ ζ
�

, (5.7)

where R represents the 1-DOF rotation, and K represents the set of candidate correspon-
dences. According to Eq. (5.4), we have:

∠
�

R(pi + t ), vq

�

= ∠
�

R(pi + t ),Rvp

�

= ∠(pi + t , vp).
(5.8)

Eq. (5.8) results from the simple fact that when two 3D direction vectors are rotated together,
the angle between the two vectors remains invariant. Since qi and vq are known, then we
can define γi = ∠(qi , vq). Thus the objective function (5.7) can be rewritten as:

E(t |K,ζ) =
N
∑

i=1

I
�
�

�∠(pi + t , vp)− γi

�

�≤ ζ
�

. (5.9)

The objective function (5.9) is only related to the unknown translation t . Regarding the
parameterization of the 3-DOF translation, t can be regarded as lying in the translation
uncertainty cube Ct with center t0 and radius ρt , i.e., t ∈ [t0 −ρt , t0 +ρt ].

To sum up, the constraint of known gravity direction is utilized to decouple the 4-DOF
consensus maximization problem into 3-DOF translation and 1-DOF rotation sub-problems.
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Figure 5.2: Geometric principle of the proposed upper and lower bounds for BnB. The uncertainty cube Cpi
t is the

red cube. The center of the cube is pi + t0. The light gray sphere is the relaxed circumsphere of the cube. The
bound for the uncertain angle αi is [α−i ,α+i ]. The splitting policy is to divide from the center of each dimension of
the translation domain, i.e., there will be 23 = 8 sub-branches after one split.

In the next section, an efficient two-stage solver for these sub-problems will be developed.

5.2.2 Decoupled 4-DOF Point Cloud Registration

Global Translation Search

BnB-based algorithms operate according to two principles: 1) branch: they recursively di-
vide the search domain into smaller sub-branches, and 2) bound: they evaluate the lower
and upper bounds on the optimal solution in each constrained sub-branch. The BnB-based
algorithms then use these lower and upper bounds to prune the search domain and delete the
sub-branch that can be proved not to contain the optimal solution. The BnB-based algorithms
converge when the lower and upper bounds of the optimal solution are equal. Therefore, the
key to BnB-based methods for solving the registration problem is to construct the correspond-
ing upper and lower bounds.

In order to bound the objective function (5.9) on an arbitrary branch, the bound for angle
∠(pi+ t , vp) needs to be found based on the uncertainty cube Cpi

t . First, the cuboidal region of
pi+ t with radius ρt can be relaxed into a circumsphere region with radius δt =

p
3ρt . Then,

given this circumsphere region, the uncertain angle can be defined as αi = ∠(pi + t , vp), and
the bound of αi can be derived geometrically, i.e., α−i ≤ αi ≤ α+i . Specifically, α−i and α+i are
the minimum and maximum angles between the tangents of the relaxed circumsphere region
and the vector vp, respectively, as shown in Fig. 5.2. The tangents are constructed between
the relaxed circumsphere region and the origin, with a conical shape, shown in orange in
Fig. 5.2. Then α0

i is defined as the middle point of the interval [α−i ,α+i ], and we can obtain:

α0
i = (α

−
i +α

+
i )/2

= ∠(pi + t0, vp).
(5.10)

Moreover, ri is defined as the radius of the interval [α−i ,α+i ], such that ri is the half conic
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Figure 5.3: A 2D illustration of the upper bound in Case 1, i.e., the relaxed circumsphere and the origin do not
intersect.

Figure 5.4: A 2D illustration of the upper bound in Case 2, i.e., the relaxed circumsphere and the origin intersect.
The uncertain angle αi lies arbitrarily within the interval [−π,π].

angle from the geometric perspective, as shown in Fig. 5.3. However, there is another case
in which the relaxed circumsphere intersects with the origin, such that ri is π, as shown in
Fig. 5.4. This case means that the uncertain angle αi is arbitrary within the interval [−π,π].
Overall, there are two cases of ri: either that the circumsphere and the origin do not intersect
(Case 1), as shown in Fig. 5.3, or the circumsphere and the origin intersect (Case 2), as
shown in Fig. 5.4, i.e.:

ri =







arcsin
�

δt/∥pi + t0∥
�

, if δt ≤ ∥pi + t0∥

π, otherwise.
(5.11)

where δt =
p

3ρt . Numerically, the minimum distance between γi and interval [α−i ,α+i ] is
defined as l =min

�

�γi − [α−i ,α+i ]
�

�, and we obtain:

|αi − γi| ≥ l. (5.12)

Eq. (5.12) is due to α−i ≤ αi ≤ α+i . When γi is not in the interval [α−i ,α+i ], l is equal to
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the distance from the point γi to the middle point α0
i of the interval minus the radius of the

interval ri, i.e.:

l = |α0
i − γi| − ri ≥ 0. (5.13)

On the other hand, when γi is in the interval [α−i ,α+i ], we obtain:

|α0
i − γi| − ri ≤ 0≤ l. (5.14)

Therefore, according to Eq. (5.13) and Eq. (5.14), we obtain:

l ≥ |α0
i − γi| − ri . (5.15)

Then, combined with Eq. (5.12), we obtain:

|αi − γi| ≥ |α0
i − γi| − ri . (5.16)

Finally, the upper bound function on the sub-branch B ⊂ R3 is derived as follows:

E(B) =
N
∑

i=1

I
�

|α0
i − γi| − ri ≤ ζ
�

. (5.17)

In this upper bound function, instead of first calculating the circumsphere and then calculat-
ing the cone of the external tangent, we can directly calculate α0

i and ri, which is given by
Eq. (5.10) and Eq. (5.11). In addition, the lower bound function can be:

E(B) =
N
∑

i=1

I
�

|α0
i − γi| ≤ ζ
�

. (5.18)

The following proposition and proof show the validity of Eq. (5.17) and Eq. (5.18).

Proposition 5.1. For any translation sub-branch B ⊂ R3 with center t0 and radius ρt , the
upper bound and lower bound of the objective function (5.9) can be chosen as E(B) and E(B)
from Eq. (5.17) and Eq. (5.18), respectively.

Proof. To prove the validity of the upper bound E(B) and lower bound E(B), there are three
issues that need to be addressed. Specifically, the maximum cardinality of the inlier set in
any sub-branch B should lie between the lower and upper bounds, i.e.,

E(B)≥max
t∈B

E(t |K,ζ)≥ E(B). (5.19)

Additionally, the lower and upper bounds should be equal when sub-branch B collapses to a
single point. The following is the detailed proof procedure.

• Observe that ∀t ∈ B, and according to Eq. (5.16), when (pi ,qi) contributes 1 to the
objective function (5.9), i.e.,

I
�

|αi − γi| ≤ ζ
�

= 1, (5.20)

(pi ,qi) must contribute 1 to Eq. (5.17), i.e.,
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I
�

|α0
i − γi| − ri ≤ ζ
�

= 1. (5.21)

On the other hand, when (pi ,qi) contributes 0 to the objective function (5.9), i.e.,

I
�

|αi − γi| ≤ ζ
�

= 0, (5.22)

(pi ,qi) probably contributes 1 or 0 to Eq. (5.17), i.e.,

I
�

|α0
i − γi| − ri ≤ ζ
�

= 1 or 0. (5.23)

Thus, for all correspondences (pi ,qi) in K, we obtain:

E(B) =
N
∑

i=1

I
�

|α0
i − γi| − ri ≤ ζ
�

≥max
t∈B

E(t |K,ζ). (5.24)

Therefore, E(B) is the upper bound of the objective function E(t |K,ζ).

• The objective function E(t |K,ζ) at an arbitrary point within sub-branch B is less than
the maximum of the objective function within sub-branch B. We can easily pick the
center of the sub-branch, i.e., t0. Then, we obtain:

E(B) =
N
∑

i=1

I
�

|α0
i − γi| ≤ ζ
�

≤max
t∈B

E(t |K,ζ). (5.25)

Therefore, E(B) is the lower bound of the objective function E(t |K,ζ).

• When the sub-branch B collapses to a single point ts, and radius ρt = 0, we have ri = 0,
i.e.,

lim
ρt→0

�

E(B)− E(B)
�

= 0. (5.26)

Therefore, the gap between the upper bound and lower bound is equal to zero, and the
convergence of E(B) and E(B) is proved.

The BnB-based 3-DOF translation search algorithm is outlined in Algorithm 4 according
to the proposed lower and upper bound in Proposition 5.1. The depth-first search strat-
egy [MSS08] is employed, and the branch with the maximum upper bound is divided into
eight sub-branches at each iteration, as shown in Line 6. The point of Line 7 is to delete the
branch that has been split. Line 8 updates U to the maximum of the current upper bound of
all branches (the current maximum), while Line 9 updates L to the maximum of the lower
bound of all branches in all iterations (the historical maximum). The pruning process in Line
10 improves the convergence efficiency of the algorithm, which deletes the branches with up-
per bounds less than the historical maximum lower bound L. After the algorithm converges,
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Algorithm 4: BnB for 3-DOF translation search (solution to problem (5.9))
Input: Solution domain B, Inlier threshold ζ, Set of candidate correspondences

K = {(pi ,qi)}
N
i=1, and Gravity directions vp, vq.

Output: Globally optimal solution t ∗.
1 Let ξ be the list of sub-branches, initialize ξ= {B};
2 Define function δ(B) returns the center point of sub-branch B;
3 Define function S(B) splits the sub-branch B;
4 Initialize L = 0, and U = N ;
5 while U − L > 0 do
6 Select a sub-branch B with the maximum upper bound from ξ, i.e.,

B= arg max E(Bk), Bk ∈ ξ. Then split B into eight sub-branches
S(B) = {B1, . . . ,B8};

7 Delete B from ξ, and add {B1, . . . ,B8} to ξ;
8 Update U =maxE(Bk), Bk ∈ ξ;
9 Update L =max

�

L, E(Bk)
	

with Bk ∈ ξ. Meantime, if E(Bk)> L, set t ∗ = δ(Bk);
10 Delete Bk from ξ with E(Bk)< L, Bk ∈ ξ;

11 end

Figure 5.5: Geometric intuition for angle θ , which is the angle between the projections of two vectors v1 =
R

vq
vp
· (pi + t ) and v2 = qi . The projections v ′1 and v ′2 are on the plane with vq as the normal.

the globally optimal solution for the translation can be obtained. In addition, the algorithm
outputs the best-so-far solution in each iteration, as shown in Line 9, and it can still provide a
best-guess solution when dealing with problems with limited running time, even if the upper
and lower bounds are not equal.

Global Rotation Estimation

In this study, the axis-angle form instead of the Euler angle form is used to represent the rota-
tion according to the alignment of axes in the 4-DOF scenarios. Then Eq. (5.5) is substituted
into Eq. (5.2):
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R(θ , vq) ·R
vq
vp
· (pi + t ) = qi , i = 1, . . . , N , (5.27)

where

R(θ , vq) = exp
�

θ[vq]×
�

(5.28)

= I + sinθ[vq]× + (1− cosθ )[vq]
2
×, (5.29)

and [vq]× returns the cross product matrix of vq. The solution to Eq. (5.27) is the rotation
angle θ such that the vector v1 = R

vq
vp
· (pi + t ) can rotate θ around axis vq to the vector

v2 = qi. Geometrically, θ is the angle between the projections v ′1 and v ′2 of these two vectors
on the plane with axis vq as the normal, i.e., θ = ∠(v ′1, v ′2). The geometric intuition is shown
in Fig. 5.5. Moreover, the rotation R

vq
vp

that aligns vp to vq with the minimum geodesic motion
is:

R
vq
vp
= exp
�

ρ[vm]×
�

, (5.30)

where ρ = arccos(vp · vq), and vm =
vp×vq

∥vp×vq∥
.

The optimal translation t ∗ is obtained from the last section. Therefore, a candidate
rotation angle θi for every single correspondence (pi ,qi) can be calculated according to
Eq. (5.27). Thus, the histogram voting [Che+09] can be directly leveraged in the interval
[−π,π] to find the globally optimal solution. Specifically, the interval is equally divided into
360 segments, and then the candidate rotation angles {θi}Ni=1 are distributed into these 360
segments. The midpoint of the segment with the maximum number of θi is approximately
picked as the optimal rotation angle θ ∗. The global voting algorithm for 1-DOF rotation
estimation is outlined in Algorithm 5.

Overall, the 4-DOF correspondence-based point cloud registration problem can be easily
solved by running the 3-DOF translation search in Algorithm 4 and the 1-DOF rotation es-
timation in Algorithm 5 sequentially. Due to the decoupling of the joint pose, the proposed
method is theoretically more efficient than the existing method [Cai+19]. It should be noted
that the separately optimal solutions of these two sub-problems do not necessarily result in
the globally optimal solution for the raw 4-DOF problem. Since the objective of the first
sub-problem is formulated as a problem only about translation, the constraint about rotation
is dropped. It is like dropping rank-one constraint in semidefinite programming (SDP) re-
laxation [YSC20]. Therefore, the decomposition is, to some extent, a relaxation, implying
that the two sub-problems are not exactly the same as the raw 4-DOF problem. Nonetheless,
the proposed two-stage method is deterministic, robust, and efficient, verified by extensive
experiments in Section 5.4.1.

Simultaneous Pose and Correspondence Registration

This section extends the proposed method to solve the challenging registration case, where
the putative correspondences are unknown. However, all possible correspondences between
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Algorithm 5: Global voting for 1-DOF rotation estimation (solution to problem
(5.27))

Input: Globally optimal solution t ∗, Set of candidate correspondences
K =
�

(pi ,qi)
	N

i=1, and Gravity directions vp, vq.
Output: Globally optimal solution θ ∗.

1 Calculate R
vq
vp

according to Eq. (5.30);

2 Calculate angle θi, i = 1, . . . , N for each candidate correspondence in K;
3 Operate histogram voting in the interval [−π,π] for angle θi , i = 1, . . . , N ;

the source point cloud P = {pi}Ni=1 and target point cloud Q = {q j}Mj=1 can be generated ac-
cording to the hypothesis of all-to-all correspondences. Consequently, the objective function
(5.9) can be modified to:

S(t |K,ζ) =
N
∑

i=1

M
∑

j=1

I
�
�

�∠(pi + t , vp)−∠(q j , vq)
�

�≤ ζ
�

. (5.31)

The modified upper and lower bounds for any translation sub-branch B are:

S(B) =
N
∑

i=1

M
∑

j=1

I
�
�

�α0
i −∠(q j , vq)
�

�− ri ≤ ζ
�

, (5.32)

S(B) =
N
∑

i=1

M
∑

j=1

I
�
�

�α0
i −∠(q j , vq)
�

�≤ ζ
�

. (5.33)

Thus the globally optimal solution t ∗ can also be obtained by Algorithm 4, i.e.,

t ∗ = argmax
t∈R3

S(t |K,ζ). (5.34)

The next sub-problem of estimating the rotation θ ∗ can also be solved by Algorithm 5,
since the first step implicitly estimates the correspondences when estimating the optimal t ∗.
Under the modified formulation, the proposed 4-DOF correspondence-based method could
be easily extended to solve the challenging SPCR problem, including the correspondence-
free translation search and correspondence-based rotation estimation. The performance of
the extended method is presented in Section 5.4.1.

5.3 Transformation Decoupling by Screw Theory

In this section, we reformulate the registration problem by screw theory [Bal76] and propose
a novel transformation decoupling strategy accordingly. This strategy decouples the original
4-DOF registration problem into three sub-problems with 1-DOF, 2-DOF, and 1-DOF. Con-
cretely, the first 1-DOF refers to the translation along the rotation axis, and we propose a
polynomial-time method to solve it based on interval stabbing. The second 2-DOF represents
the pole which is an auxiliary variable in screw theory. We reformulate it as a linear model fit-
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ting problem by exploring geometric constraints, and utilize a BnB-based algorithm to search
for the globally optimal solution. The last 1-DOF refers to the rotation angle, and we propose
an efficient global voting method for its estimation. The proposed three-stage search method
sequentially solves three sub-problems in low-dimensional spaces to achieve efficient and
deterministic registration. It fills the gap between efficient but non-deterministic heuristics
(e.g., RANSAC) and deterministic but exhaustive global algorithms (e.g., BnB). We explore
the scalability of the proposed method through extreme synthetic experiments. For instance,
the proposed method accurately solves the registration problem with 95% outlier rate and
105 correspondences in 0.1 seconds (see Table 5.3), while one of the state-of-the-art (SOTA)
deterministic global methods, FMP+BnB [Cai+19], takes about 648 seconds. In another
more extreme case, the proposed method solves the registration problem with 95% outlier
rate and 106 correspondences in 2 seconds, while another SOTA method GROR [Yan+22a]
takes at least 1800 seconds.

In conclusion, the main contributions are as follows:

• By reformulating the point cloud registration problem from the perspective of screw
theory, this section accordingly proposes a novel transformation decoupling strategy
with the aid of known gravity directions. It decouples the 4-DOF registration prob-
lem into three sub-problems with 1-DOF, 2-DOF, and 1-DOF, respectively, significantly
improving the algorithm efficiency.

• To achieve highly robust registration, this section proposes an efficient and determin-
istic three-stage search strategy for the decoupled sub-problems, which contains inter-
val stabbing, BnB, and global voting techniques. The proposed method has a good
robustness-efficiency trade-off.

• The proposed method is extended to solve the challenging SPCR problem without the
all-to-all correspondence assumption. It avoids the potential hard combinatorial prob-
lem when input point clouds are of large size and thus is highly efficient.

The rest of this section is organized as follows: Section 5.3.1 illustrates the problem
formulation of the 4-DOF point cloud registration. Section 5.3.2 demonstrates the principle
and details the proposed registration method. Section 5.3.3 introduces the extended method
for the correspondence-free registration problem.

5.3.1 Problem Formulation

Inlier Set Maximization with Screw Theory

Typically, outlier-robust rigid point cloud registration can be formulated as a consensus max-
imization (a.k.a. inlier set maximization) problem, where the cardinality of the inlier set is
to be maximized. We assume that the set of putative correspondences C =

�

(pi ,qi)
	N

i=1 is
extracted between the source point cloud P and the target point cloud Q, where pi ,qi ∈ R3.
Considering the existence of noise, we introduce a threshold ε for the identification of inliers.
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Figure 5.6: Schematic of Chasles’ Theorem and screw transformation. Specifically, the Euclidean transformation
of point pi , i.e., Rpi + t can be represented by a screw rotation S(pi) combined with a screw translation t∥. The
screw axis is defined by a unique point Ci in the plane Ωi and the rotation axis r .

Thus, the inlier set maximization problem for rigid registration is commonly organized as
below,

max
R,t ,I⊆H

|I|

s.t. ∥Rpi + t − qi∥ ≤ ε, ∀i ∈ I,
(5.35)

where R ∈ SO(3) is the rotation matrix, t ∈ R3 is the translation vector, H = {1, . . . , N} is
the set of indices for C, I represents the inlier set, |·| is the cardinality of a set, and ∥·∥ is
the L2-norm. This optimization problem aims to find the optimal R∗ and t ∗ to maximize the
cardinality of the inlier set. This problem is inherently a 6-DOF optimization problem since
both R and t require three parameters to be defined.

Screw theory [Bal76] is a widely used important tool in robot mechanics [LP17] and
computational geometry [De +97]. It includes a fundamental theorem, which is known as
Chasles’ Theorem [HH78; BR90], as shown in Theorem 5.1. In this section, we will reformu-
late the rigid point cloud registration problem from the perspective of screw theory.

Theorem 5.1 (Chasles’ Theorem [HH78; BR90]). Each Euclidean transformation in three-
dimensional space has a screw axis, and the transformation can be decomposed into a rotation
about and a translation along this screw axis.

Chasles’ Theorem indicates that the six parameters of a Euclidean transformation contain
the four independent components that define the screw axis, together with the rotation angle
about and translation along this screw axis [Bal76]. Typically, the six parameters defining
the Euclidean transformation can also be given by three Euler angles of rotation and three
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translation components. In screw theory, the Euclidean transformation is also known as the
screw transformation, the rotation about the screw axis is known as the screw rotation, and the
translation along the screw axis is known as the screw translation. Mathematically, according
to Chasles’ Theorem, the screw transformation of pi can be represented by

T(pi) = Rpi + t (5.36a)

= (Rpi + t⊥) + t∥ (5.36b)

= S(pi) + t∥, (5.36c)

where T ∈ SE(3) denotes the Euclidean transformation, S(·) denotes the screw rotation,
and t⊥ and t∥ are the translation components perpendicular and parallel to the screw axis,
respectively. Therefore, the screw rotation S(·) contains the rotation R and the translation t⊥.
The screw translation is the translation component t∥. The related geometrical interpretation
of Chasles’ Theorem and screw transformation is shown in Fig. 5.6. We define the unit-norm
constrained orientation vectors of the screw and rotation axis as vs and vr . Specifically, the
screw axis s can be defined by the orientation vector vr and a unique point Ci ∈ R3 in the
rotation plane Ωi that is perpendicular to vr and through the point pi. Thus the screw axis
is parallel to the rotation axis, i.e., vs is parallel to vr . In three-dimensional space, the screw
rotation S(·) is then defined as

S(pi) = R(pi −Ci) +Ci . (5.37)

Notably, after screw rotation, the transformed point S(pi) remains in the rotation plane that
is perpendicular to vs and vr . For this unique point Ci, we can obtain

S(Ci) = Ci . (5.38)

Therefore, according to the definition of rotation, the rigid motion S(·), which can keep a
point fixed (i.e., Ci), is a rotational motion called screw rotation. Both the orientation of the
screw axis and the rotation angle of the screw rotation are identical to that of the original
rotation R. The only difference is that the rotation axis r is through the origin O by default,
while the screw axis s is through the point Ci. In general, the 6-DOF rigid registration
problem (5.35) under screw theory can be rewritten as

max
R,Ci ,t∥,I⊆H

|I|

s.t.


S(pi) + t∥ − qi



≤ ε, ∀i ∈ I.
(5.39)

Solving this optimization problem thus amounts to searching for R (a 3-DOF problem), Ci (a
2-DOF problem), and t∥ (a 1-DOF problem).

On the other hand, we can also obtain the following theorem about the planar specializa-
tion of Chasles’ Theorem.

Theorem 5.2 (Planar Chasles’ Theorem [HH78; BR90]). When a Euclidean transformation
specializes to a planar transformation in two-dimensional space, the screw axis becomes a pole,
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Figure 5.7: Calculation flow of the proposed three-stage method for correspondence-based registration. The
source, target, and aligned point clouds are green, orange, and blue, respectively. In the initial correspondences
set, green and red line segments represent inliers and outliers, respectively (only a subset of correspondences is
shown for visual clarity). For the interval stabbing part, the candidate intervals are represented by the black line
segments, while the intervals crossed by the max-stabbing probe are depicted as the red line segments.

and the planar transformation can be represented by a rotation about this pole.

Theorem 5.2 indicates that a 2D rigid transformation (e.g., transform point p to q) in
the plane can be converted to a pure rotational motion around a unique pole C0. This pure
rotational motion is a 2D screw rotation, denoted by S2(·), and we can obtain

S2(p) = R2(p −C0) +C0 = q , (5.40)

where p,q ,C0 ∈ R2, and R2 is a 2D rotation matrix. In this study, Theorem 5.2 is also one of
the fundamental parts of the proposed transformation decoupling strategy.

Rigid Registration with Gravity Prior

In the case that the gravity directions are given, we assume they are denoted by unit vectors
vp, vq for the source and target point clouds P, Q, respectively. The constraint of gravity
directions is given by

vq = Rvp. (5.41)

The solution of this equation is given by [BC17; LCK23]

R = R(θ , vq)R
vq
vp

, (5.42)

where R(θ , vq) is the rotation that rotates θ about axis vq, and R
vq
vp

is the rotation that rotates
vp to vq with the minimum geodesic motion. Eq. (5.42) indicates that the rotation R is only
dependent on the rotation angle θ ∈ [−π,π] when the gravity directions are prior known.
Without loss of generality, we can align the Z-axis of the source point cloud P to the Z-axis
of the target point cloud Q by the following rotation,

p ′i = R
vq
vp

pi . (5.43)
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After this rotation, the 6-DOF rigid registration problem (5.39) can be reduced to a 4-DOF
problem, i.e.,

max
θ ,C ,t∥,I⊆H

|I|

s.t.


S′(p ′i ) + t∥ − qi



≤ ε, ∀i ∈ I,
(5.44)

where S′(p ′i ) = R′(p ′i − C) + C , and we set R′ ≜ R(θ , vq) for convenience. Please note that
in problem (5.44), the orientation of the screw axis is parallel to vq rather than the original
rotation axis vr , i.e., vq is the current rotation axis. Accordingly, t∥ in problem (5.44) is the
translation component parallel to vq, and t⊥ is the component perpendicular to vq.

5.3.2 Three-Stage Consensus Maximization Registration

Due to the high-dimensional parameter space, solving the 4-DOF problem (5.44) jointly is
relatively time-consuming [Cai+19]. To accelerate the registration, we first reduce the 4-
DOF original problem to a 1-DOF sub-problem with the aid of known gravity directions in
Stage I. The 1-DOF sub-problem is estimating the translation parallel to the screw axis. Then
we decouple the remaining 3-DOF sub-problem into a 2-DOF and a 1-DOF sub-problem by
screw theory, which is addressed in Stage II and Stage III, respectively. The 2-DOF sub-
problem is searching for the pole, an auxiliary variable in screw theory. The last 1-DOF sub-
problem is estimating the rotation angle. After acquiring the rotation angle, we can readily
calculate the translation orthogonal to the rotation axis and thereby obtain the final optimal
solution. Similar to the original problem, we formulate all three sub-problems as consensus
maximization problems. The pipeline of the proposed method is given in Fig. 5.7.

Stage I: Estimation for the Translation Parallel to the Screw Axis

Using the known gravity directions, we can reduce the original problem into a 1-DOF sub-
problem that solely involves the translation parallel to the screw axis. Specifically, for an ideal
inlier correspondence (pi ,qi), we have the following derivation about the original constraint
in Eq. (5.44),

qi = S′(p ′i ) + t∥ (5.45a)

⇔qi − p ′i = S′(p ′i )− p ′i + t∥ (5.45b)

⇒vT
q

�

qi − p ′i
�

= vT
q

�

S′(p ′i )− p ′i + t∥
�

(5.45c)

⇔vT
q

�

qi − p ′i
�

=


t∥


 (5.45d)

where Eq. (5.45d) is from the fact that vector S′(p ′i )− p ′i is perpendicular to vq (see Fig. 5.6),
and t∥ is parallel to vq. Considering the noise, we have the following new inlier constraint,

�

�

�



t∥


+ vT
q

�

p ′i − qi

�

�

�

�≤ δ, (5.46)

where δ is the inlier threshold. Since the gravity direction vq is given, the constraint in
Eq. (5.46) is only dependent on



t∥


. Accordingly, we can rewrite Eq. (5.46) in the form of
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an interval for l ≜


t∥


, i.e.,

−δ− vT
q

�

p ′i − qi

�

≤ l ≤ δ− vT
q

�

p ′i − qi

�

. (5.47)

Given the set of initial correspondences and gravity directions, the first sub-problem aims
at estimating the optimal l∗ to maximize the cardinality of the inlier set, which is defined by

max
l,I1⊆H

|I1|

s.t. l ∈
�

l−i , l+i
�

, ∀i ∈ I1,

l−i = −δ− vT
q

�

p ′i − qi

�

,

l+i = δ− vT
q

�

p ′i − qi

�

,

(5.48)

where I1 denotes the inlier set that only satisfies the constraint in Eq. (5.48). From the
perspective of computational geometry, solving the consensus maximization problem (5.48)
is a typical interval stabbing problem [De +97]. Recently, the interval stabbing technology
has been widely used to solve different geometric optimization problems [BC17; Cai+19;
PTV22; Yan+22a; Zha+23a].

As depicted in Fig. 5.7, the interval stabbing problem is concerned with finding a probe
(represented by the blue line segment) that stabs the maximum number of intervals. The
interval stabbing problem can be efficiently solved with a time complexity of O(N log N). In
contrast to existing algorithms, the proposed interval stabbing algorithm (Algorithm 6) en-
hances the precision by returning the midpoint of the maximum overlapping interval instead
of the common left endpoint. The max-stabbing number returned from Algorithm 6 is the
maximized cardinality of the inlier set. The returned max-stabbing position is the value of
optimal l∗. Besides, since l∗ is a scalar, we can obtain the optimal translation parallel to vq by

t ∗∥ = l∗ · vq (5.49)

Stage II: Searching for the Pole

In this section, we first reduce the original 4-DOF problem (Eq. (5.44)) into a 2D-2D rigid
registration problem with 3-DOF using plane projection. Subsequently, we decouple this 3-
DOF registration problem into a 2-DOF sub-problem and a 1-DOF sub-problem by screw
theory. This section focuses on solving the 2-DOF sub-problem, concretely searching for the
pole.

Plane Projection and Pole For an ideal inlier correspondence (pi ,qi), the constraint in
Eq. (5.44) can be rewritten as,

qi = R′p ′i + t⊥ + t∥. (5.50)
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Algorithm 6: Interval stabbing algorithm (solution to problem (5.48))

Input: Intervals
��

l−i , l+i
�	N

i=1

Output: Optimal l∗

1 Sort the left sides
�

l−i
	N

i=1 in ascending order as
�

l−j
	N

j=1;

2 Sort the right sides
�

l+i
	N

i=1 in ascending order as
�

l+k
	N

k=1;
3 Initialize the number of stabbed intervals n= 0, and the max-stabbing number

max = 0;
4 Initialize the index j = 1, k = 1;
5 while j ≤ N AND k ≤ N do
6 if l−j ≤ l+k then

7 n= n+ 1;
8 if n> max then
9 max = n, α= j, β = k;

10 end
11 j = j + 1;

12 else
13 n= n− 1, k = k+ 1;
14 end

15 end
16 l∗ = (l−α + l+

β
)/2

Figure 5.8: The geometrical interpretation of the coordinate conversion by Rez
vq

and the plane projection to Ω0.
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It can be observed that only the translation t∥ is along the screw axis, while the rotation
R′ and the translation t⊥ maintain the point p ′i within the rotation plane Ωi. This plane
is perpendicular to vq and passes through p ′i . Therefore, given the gravity direction vq,
we can project the set of correspondence C from the three-dimensional space onto a two-
dimensional plane Ω0 that is perpendicular to vq and through the origin O (i.e., Ω0 is parallel
to each Ωi). After plane projection, the original 3D rigid transformation can be reduced to
a 2D transformation with 3-DOF, which solely contains the 1-DOF rotation angle θ and the
2-DOF translation t⊥. Interestingly, the 2D rigid transformation can be represented by a 2D
screw rotation (Theorem 5.2). In the next step, we first conduct the following coordinate
conversion operation to achieve plane projection, and the geometrical illustration is given in
Fig. 5.8.

Firstly, we introduce a new coordinate system, in which the rotation axis vq corresponds
to the Z-axis (denoted by ez = [0,0, 1]T). The transformation from the original coordinate
system to the new one is given by

ez = Rez
vq

vq. (5.51)

We can transform each vector in Eq. (5.50) to the new coordinate system by

p̃i = Rez
vq

p ′i , q̃i = Rez
vq

qi , t̃⊥ = Rez
vq

t⊥, t̃∥ = Rez
vq

t∥. (5.52)

Then we have the following coordinate conversion,

qi = R′p ′i + t⊥ + t∥ (5.53a)

⇔Rez
vq

qi = Rez
vq

R′(Rez
vq
)TRez

vq
p ′i +Rez

vq
t⊥ +Rez

vq
t∥ (5.53b)

⇔q̃i = Rθ p̃i + t̃⊥ + t̃∥, (5.53c)

where Rθ ≜ Rez
vq

R′(Rez
vq
)T is the rotation matrix in the new coordinate system, as shown in

Fig. 5.8. The rotation axis in this coordinate system is now the Z-axis, thus Rθ can be denoted
as

Rθ ≜







cosθ − sinθ 0

sinθ cosθ 0

0 0 1






. (5.54)

Furthermore, t̃⊥ and t̃∥ have the following form

t̃⊥ ≜ [ta, tb, 0]T , t̃∥ ≜ [0, 0, l]T . (5.55)

After projecting the 3D rigid transformation in Eq. (5.53c) onto the 2D plane Ω0, we can
obtain the 2D rigid transformation as shown below

q̂i = R̂θ p̂i + t̂⊥, R̂θ =

�

cosθ − sinθ

sinθ cosθ

�

, (5.56)

where t̂⊥ = [ta, tb]
T, p̂i ≜ [xp, yp]T, and q̂i ≜ [xq, yq]T. The geometrical illustration for plane

projection is given in Fig. 5.9. Estimating the optimal R̂θ and t̂⊥ is a typical 2D-2D rigid
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Figure 5.9: The geometrical interpretation of the 2D rigid transformation and the 2D screw rotation after plane
projection.

registration problem.
In the formulation based on screw theory, the 2D rigid transformation can be reformu-

lated by a 2D screw rotation, as presented in Theorem 5.2. The 2D screw rotation is a pure
rotational motion around pole C0 ∈ R2, which is the projection of Ci ∈ R3. We can rewrite
Eq. (5.56) as,

q̂i = R̂θ (p̂i −C0) +C0 = Ŝ(p̂i). (5.57)

Accordingly, under screw theory, the 2D-2D rigid registration problem consists of estimating
the 2-DOF rotation center C0 and the 1-DOF rotation angle θ , as shown in Fig. 5.9. An
essential property of this rotation center (pole) is that it must stand on the vertical bisector
of each line segment p̂iq̂i, as presented in Proposition 5.2.

Proposition 5.2. When a point rotates around a rotation center on a plane, the rotation center
must fall on the perpendicular bisector of the line segment connecting the two corresponding
points.

We first define the perpendicular bisector as a linear function of the form ai x+bi y+ci = 0.
For an ideal inlier correspondence (p̂i , q̂i), we can obtain

ai = xq − xp,

bi = yq − yp,

ci = −(
xp + xq

2
ai +

yp + yq

2
bi).

(5.58)

Pole C0 ≜
�

Cx , Cy

�T
should stand on this line. However, when the rotation angle tends to

zero, C0 stands in an infinite far position, which can not be expressed in a normal way. To
avoid this limitation, we use the homogeneous coordinate Ĉ ≜

�

cx , cy , w
�T

to represent pole
C0, and the constraint of such coordinate is ∥Ĉ∥ = 1. We also use the vector expression for
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each perpendicular bisector, i.e., ni ≜ [ai , bi , ci]
T. Therefore, the constraint of the pole can be

expressed as
aicx + bicy + ciw= nT

i Ĉ = 0. (5.59)

Considering the noise, estimating pole C0 can be formulated as a linear model fitting prob-
lem [Wan+21b; Liu+22]. We can solve this problem by addressing the following consensus
maximization problem, in which we seek an optimal unit-norm constrained Ĉ with the largest
number of candidate inliers.

max
Ĉ ,I2⊆I∗1

|I2|

s.t. |nT
i Ĉ | ≤ τ, ∀i ∈ I2,

∥Ĉ∥= 1,

(5.60)

where I2 is the inlier set extracted from the cardinality-maximized inlier set I∗1, and τ is the
inlier threshold.

Branch and Bound Since searching for the exact solution of the consensus maximization
problem (5.60) is NP-hard [TZN20], we utilize the globally optimal and deterministic BnB al-
gorithm [Mor+16; Sch11] to solve this optimization problem. Specifically, the BnB algorithm
systematically explores the entire parameter space (a.k.a. solution domain) by iteratively
dividing it into smaller sub-branches and calculating the upper and lower bound for each
sub-branch. It discards those sub-branches where larger objective function values than the
current optimal value are impossible. As the solution domain progressively narrows down,
the gap between the upper and lower bounds gradually diminishes until zero, and then the
BnB algorithm achieves the optimal solution. An example of the convergence curve of the
proposed BnB algorithm is given in Fig. 5.7.

The first step in constructing the BnB algorithm is the parameterization of the solution
domain. Geometrically, the unit-norm constrained vector Ĉ lies on the surface of a unit sphere.
We denote the unit sphere as S2. Since Ĉ and −Ĉ have the same inlier set, we can set the
solution domain of Ĉ as a hemisphere denoted by S2+ = {h = [h1, h2, h3]T

�

�∥h∥ = 1, h3 ≥ 0}.
We then use a compact representation method, exponential mapping [HK09; LCK20b], to map
the 3D unit hemisphere to a 2D disk. Concretely, the vector h ∈ S2+ corresponds to a unique
point ϕ ∈ R2 in the disk,

h =
�

sinω · ϕ̂T, cosω
�T

(5.61a)

ϕ = ϕ̂ ·ω (5.61b)

where ω ∈ [0,π/2], and ϕ̂ is a unit vector in R2. Therefore, to facilitate manipulation, the
solution domain of Ĉ is defined as a circumscribed square (with a radius of π/2) of the disk
domain, as shown in Fig. 5.10.

The next step is estimating the upper and lower bound for the sub-branch. We first
introduce the following lemma.

Lemma 5.1. Given a square-shaped sub-branch B in the exponential mapping plane, its center
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Figure 5.10: Exponential mapping of the solution domain and the geometrical interpretation of Lemma 5.1.

is ϕc ∈ R2 and half-side length is γ. For ∀ϕ ∈ B, we have

∠ (h, hc)≤ ∥ϕ −ϕc∥ ≤
p

2γ, (5.62)

where ϕ and ϕc correspond to h ∈ S2+ and hc ∈ S2+, respectively.

Proof. The completed proof is given in [LCK20b].

Based on Lemma 5.1, the upper and lower bound of the proposed BnB algorithm for
problem (5.60) can be set as

Proposition 5.3. Given a square-shaped sub-branch B, whose center is ϕc ∈ R2 (corresponds to
hc ∈ S2+ by exponential mapping) and half-side length is γ, the upper bound U(B) and lower
bound L(B) can be set as

U(B) =
N ′
∑

i=1

I
�

|nT
i hc| ≤ Ψi

�

, (5.63a)

L(B) =
N ′
∑

i=1

I
�

|nT
i hc| ≤ τ
�

, (5.63b)

Ψi =







∥ni∥ sin(
p

2γ+ ξi),
p

2γ+ ξi < π/2

∥ni∥ ,
p

2γ+ ξi ≥ π/2
(5.63c)

where ξi ≜ arcsin(τ/∥ni∥), τ is the inlier threshold, and N ′ is the cardinality of the inlier set I∗1.

Proof. The completed proof is given in [Liu+22].
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Algorithm 7: BnB algorithm (solution to problem (5.60))
Input: Solution domain B, inlier threshold τ, candidate inlier correspondence set

{(p̂i , q̂i)}
N ′
i=1 of problem (5.48).

Output: Globally optimal solution Ĉ ∗.
1 Generate a set of perpendicular bisector functions

�

ni = [ai , bi , ci]T
	N ′

i=1 by Eq. (5.58);
2 Initialize the queue of sub-branches q = {B};
3 Initialize the lower bound L = 0, and the upper bound U = N ′;
4 Define function δ(·) returns the center of sub-branch;
5 while U − L > 0 do
6 Select the sub-branch B with the maximal upper bound from q;
7 Divide B into four sub-branches {B j}4j=1, and calculate each U(B j) and L(B j);

8 Insert the sub-branches with bounds into q and eliminate B from q;
9 Update U =max {U(Bk)} for all Bk ∈ q;

10 Update L =max {L, L(Bk)} for all Bk ∈ q, if L(Bk)> L, set Ĉ ∗ = δ(Bk);
11 Eliminate Bk from q that U(Bk)< L;

12 end

Based on Proposition 5.3, the proposed BnB algorithm for the 2-DOF pole search sub-
problem is given in Algorithm 7. To improve the algorithm efficiency, the input data of
Algorithm 7 is set as the candidate inlier correspondence set of problem (5.48). After ob-
taining the optimal solution Ĉ ∗ = [c∗x , c∗y , w∗]T by the proposed algorithm, we can transform
it back to the 2D coordinate by

C ∗0 =

�

c∗x
w∗

,
c∗y
w∗

�T

(5.64)

Stage III: Voting for the Rotation Angle

In the last stage, we aim to solve the remaining 1-DOF rotation angle estimation sub-problem.
According to Eq. (5.57), we can observe that the rotation angle is the angle between two
vectors (p̂i − C0) and (q̂i − C0) in 2D plane Ω0. Given optimal pole C ∗0 , the rotation angle for
the i-th candidate inlier correspondence can be computed as

θi = ∠(p̂i −C ∗0 , q̂i −C ∗0 ). (5.65)

Inspired by the uniform grid approach [Nes+18], we take s equally spaced 1D grids on [0,2π]
whose centers are {θk = (2k − 1)π/s}sk=1 as the complete solution domain of rotation angle.
Therefore, given the set of candidate inlier correspondences from problem (5.60), the third
sub-problem aims at estimating the optimal θ to maximize the cardinality of the inlier set,
which is defined by

max
θ∈{θk}sk=1,I3⊆I∗2

|I3|

s.t.
�

�θ −∠(p̂i −C ∗0 , q̂i −C ∗0 )
�

�≤ ζ, ∀i ∈ I3

(5.66)
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where I3 is the inlier set extracted from the cardinality-maximized inlier set I∗2, and ζ ≜ π/s
is the inlier threshold. We can apply voting-based method [Gle+14; Sca11; YSC20; Yan+23]
to efficiently address this consensus maximization problem. For N ′′ ≜

�

�I∗2
�

� candidate inlier
correspondences, we can vote θ ∗ with the largest consensus set I∗3 from {θi}N

′′

i=1. Due to
its logical simplicity, we omit the global voting algorithm here. Considering the trade-off
between accuracy and efficiency, we set s = 360 as an invariant parameter. A visualized
illustration of the proposed global voting method is presented in Fig. 5.7.

After obtaining optimal θ ∗, according to Eq. (5.56) and Eq. (5.57), we can derive that

t̂ ∗⊥ = (I − R̂∗θ )C
∗
0 (5.67)

where I is an identity matrix. Then, according to Eq. (5.54) and Eq. (5.55), we have

R∗θ =







cosθ ∗ − sinθ ∗ 0

sinθ ∗ cosθ ∗ 0

0 0 1






, t̃ ∗⊥ =

�

(I − R̂∗
θ
)C ∗0

0

�

(5.68)

Finally, according to Eq. (5.42) and Eq. (5.52), we can obtain the optimal rotation and trans-
lation by

R∗ = (Rez
vq
)TR∗θRez

vq
R

vq
vp

(5.69)

t ∗ = t ∗⊥ + t ∗∥ = (R
ez
vq
)T t̃ ∗⊥ + t ∗∥ (5.70)

5.3.3 Simultaneous Pose and Correspondence Registration

Since the performance limitation of current 3D feature matching methods, we have to face the
situation that the correspondences are unknown in some practical applications, such as when
the point clouds are not sampled densely from smooth surfaces [Yan+16]. Therefore, we
explore the feasibility and potential of the proposed approach in solving the more challenging
SPCR problem in this section.

We assume that point clouds P = {pi}Mi=1 and Q = {q j}Nj=1 are the source and target point
cloud, respectively. Following [Bus+16; Cam+18], and assuming known gravity directions,
we have the following consensus maximization problem

max
θ ,C ,t∥,I⊆S

|I|

s.t. ∃ j ∈ K,


S(p ′i ) + t∥ − q j



≤ ε, ∀i ∈ I,
(5.71)

where S = {1, . . . , M} and K = {1, . . . , N} are the sets of indices for point clouds P and Q,
respectively. According to the derivation in Section 5.3.2, we can obtain a new consensus
maximization sub-problem for estimating the translation parallel to the screw axis without
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Figure 5.11: Calculation flow of the proposed three-stage method for correspondence-free registration. The
bolded points in the point cloud represent the points after downsampling. For the interval merging and stabbing
part, the merged intervals are represented by the black line segments, while the intervals crossed by the max-
stabbing probe are depicted as the red line segments.

correspondences, which is defined by

max
l,I1⊆S

|I1|

s.t. ∃ j ∈ K, l ∈
�

l−i j , l+i j

�

, ∀i ∈ I1,

l−i j = −δ− vT
q

�

p ′i − q j

�

,

l+i j = δ− vT
q

�

p ′i − q j

�

.

(5.72)

For sub-problem (5.72), we introduce an interval merging algorithm [De +97] (Algo-
rithm 8) to effectively reduce the number of input intervals before interval stabbing. This
operation can avoid the all-to-all correspondence assumption [YSC20] in which the assumed
correspondence-based registration problem is extremely outlier-contaminated (with high in-
put number and high outlier rate), thereby affecting the efficiency. After interval merging,
the max-stabbing probe can only cross through at most one interval for each point p ′i . From
the perspective of inlier set cardinality, each point p ′i contributes a maximum of 1 to the
cardinality of the inlier set. Therefore, the interval merging algorithm is executed for each
point p ′i , followed by executing the interval stabbing algorithm (Algorithm 6) for all merged
intervals. The subplot of Fig. 5.11 illustrates an example of the visualization results about
interval merging and stabbing.

After solving the correspondence-free sub-problem (5.72), we can obtain candidate inlier
correspondences that only satisfy the 1-DOF constraint. While it may not be possible to iden-
tify outliers that coincidentally satisfy this constraint, we can readily employ the proposed
correspondence-based methods to tackle the second and third sub-problems (Eq. (5.60) and
Eq. (5.66)), enabling the estimation of the remaining translation and the rotation angle. The
three-stage calculation flow for the SPCR problem is shown in Fig. 5.11.

5.4 LiDAR Registration Experiments
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Algorithm 8: Interval merging algorithm

Input: Intervals
¦¦�

l−i j , l+i j

�©M

i=1

©N

j=1

Output: Merged intervals L=
�

[µk,νk]
	K

k=1, where K =
∑M

i=1 Ni

1 Initialize the index i = 1;
2 Initialize the list of merged intervals L= ;;
3 while i ≤ M do

4 Sort the intervals
¦�

l−i j , l+i j

�©N

j=1
by left side l−i j in ascending order;

5 Initialize µ1 = l−i1, ν1 = l+i1;
6 Initialize the index j = 1, k = 1;
7 while j < N do
8 if l+i j ≥ l−i( j+1) then

9 νk =max(l+i j , l+i( j+1));

10 else
11 k = k+ 1;
12 µk = l−i( j+1), νk = l+i( j+1);

13 end
14 j = j + 1;

15 end

16 Add the merged intervals into list L, i.e., L= L∪
�

[µk,νk]
	Ni

k=1, where Ni is the
number of merged intervals for i;

17 end

5.4.1 Experiments for the Two-Stage Method

This section compares the proposed two-stage method with several existing methods for the
correspondence-based registration problem on both synthetic and real-world data. The ex-
tended method is compared with several benchmark methods regarding the SPCR problem
on synthetic data. The proposed method is implemented in C. All experiments are performed
on a laptop with an i7-9750H CPU and 16GB RAM.

Experimental Setting

All the methods compared are listed below:

• BnB [Cai+19]: A joint 4-DOF BnB-based method implemented in C++ for correspondence-
based registration.

• RANSAC-2pt [FB81]: A 4-DOF version of RANSAC (using minimal 2-points) imple-
mented in C++ for correspondence-based registration. The confidence level is 0.99,
and the maximum number of iterations is 1e7.

• FGR-4DOF [ZPK16]: A 4-DOF version of FGR implemented in C++ for correspondence-
based registration. The annealing rate is 1.1.
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(a) Convergence curve (b) Remaining volume (c) Global voting

Figure 5.12: Efficient translation search by the proposed BnB and global voting for rotation estimation.

• GTR [ART10]: A stochastic outlier removal method implemented in C++ for correspondence-
based registration. The maximum number of iterations is 10000.

• K4PCS [TWS14]: A 4PCS-based variant based on keypoints implemented in C++ for
the SPCR problem. The score threshold is 0.001.

• GoICP [Yan+16]: A joint 6-DOF nested BnB-based method implemented in C++ for
the SPCR problem. Both source and target point clouds have to be normalized to fit
in [−1,1]3, such that the translation domain is [−0.5, 0.5]3. The rotation domain is
[−π,π]3, and the mean squared error (MSE) convergence threshold is 0.001.

• GoICPT [Yan+16]: A variant of 6-DOF GoICP with trimming (trimming fraction 10%).

• ICP [BM92]: A classic EM-type method implemented in the pcregistericp function of
MATLAB for the SPCR problem. The translation and rotation tolerance between con-
secutive iterations is [0.01,0.05], and the maximum number of iterations is 100.

• CPD [MS10]: A robust EM-type method implemented in C for the SPCR problem. The
weight of noise and outliers is 0.1, and the tolerance stopping criterion is 1e− 8.

• GMMReg [JV10]: A robust EM-type method implemented in C for the SPCR problem.
The maximum number of iterations is 1000.

Among the correspondence-based registration methods, BnB and FGR-4DOF are deter-
ministic. Conversely, RANSAC-2pt and GTR are non-deterministic due to sampling uncer-
tainty. The performance and accuracy of each algorithm are evaluated by 1) rotation error
erot, 2) translation error etrans, and 3) success rate rthr. The definitions are as follows:

erot = arccos

�

Tr(R−1
gt R∗)− 1

2

�

, (5.73)

etrans = ∥tgt − t ∗∥, (5.74)

rthr =
T+

Ttotal
, (5.75)
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Table 5.1: Success rates r1 and r2 (%) with successful cases satisfying Threshold 1 (erot ≤ 0.5◦, etrans ≤ 0.2m)
and Threshold 2 (erot ≤ 5◦, etrans ≤ 2m), respectively, on the ETH dataset

Dataset
Ours BnB RANSAC-2pt FGR-4DOF GTR K4PCS

r1 r2 r1 r2 r1 r2 r1 r2 r1 r2 r1 r2

Arch 100 100 80 80 80 100 40 40 0 0 0 60
Courtyard 100 100 100 100 100 100 100 100 0 43 57 71

Facade 100 100 100 100 100 100 100 100 100 100 33 83
Office 100 100 100 100 20 40 40 60 60 80 0 80
Trees 100 100 83 83 83 100 33 33 17 33 17 67

where tgt and Rgt are the ground truth, t ∗ and R∗ are the estimated solutions, Tr(·) is the
trace of a matrix, Ttotal is the total number of trials and T+ is the number of successful cases
satisfying the predefined threshold.

For a simple demonstration of the convergence of the proposed two-stage method, a
pair of synthetic point clouds (N = 1000) is used as the input, and the figures about the
convergence curve, remaining volume, and global voting are plotted in Fig. 5.12. It is evident
that the gap between the lower and upper bounds is converging to zero, and the proposed
method converges to the optimal solution after dozens of iterations. The remaining volume
of the translation domain decreases rapidly until convergence. Furthermore, the proposed
global voting method can successfully search the optimal angle θ ∗ from the interval [−π,π].

Synthetic Data Experiments

In this section, the performance of the proposed two-stage method is evaluated in both
correspondence-based registration and SPCR problems by conducting synthetic data exper-
iments. The advantage of synthetic data experiments is that the precise ground truth is
available, which means that detailed evaluations can be made and theoretical performance
can be achieved.

Data generation and settings. Initially, the source point cloud is generated by creating N

random points distributed in the cube [−100, 100]3. Random rotation in the interval [−π,π]
and random translation in the cube [−100, 100]3 are applied to the source point cloud to
obtain the corresponding target point cloud. Then, partial points in both source and target
point clouds are replaced with arbitrarily generated points in the cube [−100,100]3 to sim-
ulate outliers, and the outlier rate is defined as η. Finally, the zero-mean Gaussian noise
with standard deviation σ (noise level) is added to both source and target point clouds. The
visualization of the synthetic point cloud (N = 100) before and after registration using the
proposed two-stage method is shown in Fig. 5.13. In addition, the translation search domain
of the proposed method is [−200, 200]3 in all synthetic data experiments. The gravity direc-
tions in the proposed method are prior known. The settings of each algorithm are given in
Section 5.4.1. The distance-based inlier threshold for all compared methods is equal to the
standard deviation σ of noise. Similarly, the angle-based inlier threshold for the proposed
method is also selected according to the standard deviation of the noise.
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Table 5.2: The left part is detailed information about the ETH dataset. The right part is the registration running
time (ms) for each pair of scans on the ETH dataset.

Dataset
Number of

points (106)
Number of
keypoints

Number of
correspondences FMP Ours BnB RANSAC-2pt FGR-4DOF GTR K4PCS

Arch

s1-s2 23.56-30.90 7905-4783 19860 6793 2.6 635 9582 115 5200 553869
s2-s3 30.90-25.25 4783-7146 19328 5004 9.7 280 46081 98 4815 89452
s3-s4 25.25-29.45 7146-5337 22300 7534 21.6 616 6445 121 6153 245060
s4-s5 29.45-27.96 5337-4676 15508 3809 61.9 786 43127 82 3249 129117
s1-s5 23.56-27.96 7905-4676 17999 5894 5.6 1238 95211 100 4195 365587

Courtyard

s1-s2 13.32-18.80 3944-7451 28640 9109 27.0 860 477 171 9175 47901
s2-s3 18.80-12.71 7451-3316 24208 7132 22.1 2737 436 127 6826 418675
s3-s4 12.71-12.15 3316-4083 20047 4059 158.0 3893 121 106 5042 49795
s4-s5 12.15-16.75 4083-1400 11012 1670 43.0 1026 110 56 2098 159567
s5-s6 16.75-11.99 1400-3756 10640 1385 20.9 581 166 60 1712 3589
s6-s7 11.99-11.17 3756-4275 21979 4527 58.8 1145 310 125 6243 70327
s7-s8 11.17-11.45 4275-5609 26852 8904 14.2 1535 300 144 8565 70002

Facade

s1-s2 25.08-15.25 651-1066 3253 177 0.5 18 143 16 163 2859
s2-s3 15.25-15.79 1066-797 3709 166 0.9 10 118 24 201 11471
s3-s4 15.79-23.48 797-672 2965 101 2.1 22 78 16 135 4840
s4-s5 23.48-16.74 672-629 2872 93 0.8 34 47 14 122 3834
s5-s6 16.74-21.46 629-674 2823 92 0.8 46 57 15 117 3919
s6-s7 21.46-20.79 674-506 2499 78 1.2 13 148 12 89 3051

Office

s1-s2 10.72-10.71 482-434 2092 44 1.2 12 73 12 84 3835
s2-s3 10.71-10.73 434-470 2053 51 0.8 23 22 8 62 5998
s3-s4 10.73-10.69 470-411 1797 45 0.5 9 109 9 53 4013
s4-s5 10.69-10.75 411-468 1882 60 1.2 25 204 7 77 12971
s1-s5 10.72-10.75 482-468 2286 72 3.9 39 190 20 91 11303

Trees

s1-s2 19.63-19.60 11121-11324 33485 19172 0.3 793 151770 221 2578 983485
s2-s3 19.60-19.77 11324-11287 33740 19635 4.8 507 15816 217 2096 21669
s3-s4 19.77-20.39 11287-10178 31995 18809 3.8 207 320304 208 2065 1000000
s4-s5 20.39-20.48 10178-10982 32878 16915 15.2 617 16350 224 1911 757556
s5-s6 20.48-21.61 10982-9274 30898 17299 5.5 480 22998 183 1644 906439
s1-s5 19.63-20.48 11121-10982 32838 18774 130.4 1349 579404 187 1944 986573

Controlled experiments with different outlier rates and noise levels. In this section,
the robustness and efficiency experiments are conducted for Ours, BnB, RANSAC-2pt, FGR-
4DOF, GTR, and K4PCS at different outlier rates and noise levels. We first randomly generate
N = 1000 points for both the source and target point clouds to simulate the set of candidate
correspondences. We then set up three groups of experiments with different noise levels,
including normal (σ = 1.0) and high (σ = 1.5, 2.0). In each group, the outlier rates are se-
quential, i.e., η= {0.1,0.2, . . . , 0.8}. To observe the theoretical performance, the experiments
are repeated 100 times for each method under different conditions. The rotation errors and
translation errors of all methods are compared in the box plot, as shown in the first two rows
of Fig. 5.14, and the median running times of all methods are compared in the bar chart, as
shown in the last row of Fig. 5.14. The gray ’+’ in the box plot denotes the outlier in 100

trials.
A comparison of the rotation error and translation error shows that Ours and BnB perform

well under all outlier rates. Moreover, in most cases, the average errors of Ours are smaller
than those of all methods except FGR-4DOF. However, deterministic FGR-4DOF is prone to
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delivering erroneous results (local optimum) in some cases, especially when the outlier rate
exceeds 70%, resulting in very large average errors. In contrast, the outlier results in 100

trials for each set of experiments illustrate that the non-deterministic RANSAC-2pt occasion-
ally produces unsatisfactory results with significant errors. This is probably because of the
sampling uncertainty of RANSAC. Similar to RANSAC-2pt, stochastic GTR only generates a
satisfactory solution with a certain probability. Also, K4PCS, which solves the SPCR problem,
does not perform stably, even with a low outlier rate, and its average errors are the largest
of all the methods. On the other hand, our decomposed method is about 2 to 18 times faster
than the joint 4-DOF BnB in the comparison of median run times, which is almost an order
of magnitude faster. Thanks to the reduced search domain, the proposed method displays
significant efficiency. Although FGR-4DOF and GTR are the two fastest methods, they re-
turn unsatisfactory solutions with a certain probability. In general, our decomposition-based
method is more efficient than the approaches with comparable robustness to ours.

Controlled experiments with different numbers of correspondences. In this section, the
accuracy and efficiency experiments are conducted for Ours, BnB, RANSAC-2pt, FGR-4DOF,
and GTR with different numbers of correspondences. The set of candidate correspondences
is generated sequentially with the number N = {500, 1000, . . . , 10000}. Then, the outlier rate
is set to η = 0.5, and the noise level is set to σ = 1.0. The experiments are repeated 50

times for each method under different conditions. Then, the rotation errors and translation
errors in the box plot are compared, and the median running times are compared in the bar
chart, as shown in Fig. 5.15. Please note that the results of K4PCS are not plotted because
the duration is over 1000 seconds in most experiments.

For the deterministic methods, it can be observed that the accuracy of Ours is higher
than BnB and lower than FGR-4DOF. However, the average rotation and translation errors of
FGR-4DOF are the highest because FGR-4DOF occasionally leads to registration failure. The
non-deterministic methods RANSAC-2pt and GTR also generate correct solutions in most
cases, but their accuracy is lower than the deterministic methods. The median time plot in-
dicates that the proposed method is about 9 to 10 times faster than joint 4-DOF BnB under
different correspondence numbers. Moreover, as the number of correspondences increases,
the running time of Ours increases more slowly than RANSAC-2pt, which means that, for
instance, RANSAC-2pt is similar to Ours at 500 correspondences but slowest at 10000 cor-
respondences. These experiment results illustrate the superiority of the proposed two-stage
method in terms of accuracy and efficiency.

Robustness to gravity direction biases. In this section, biased gravity directions are gener-
ated to simulate the measurement biases of IMUs. Experiments are then conducted to verify
the robustness of the proposed two-stage method against gravity direction biases. Specifi-
cally, we first randomly generate N = 500 correspondences and set up one group of exper-
iments with noise level σ = 1.0. The outlier rates in the experiments are sequential, i.e.,
η = {0.1, 0.2, . . . , 0.8}. The biased angles are set as 0.1◦,0.3◦, and 0.5◦, respectively. Please
note that the biased angle is randomly generated in an arbitrary direction. The experiment
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(a) Arch

(b) Courtyard

(c) Facade

(d) Office

(e) Trees

Figure 5.18: Rotation error and translation error of all registration methods on the ETH dataset. Subfigures (a)-(e)
show the registration results of each scan pair for Arch, Courtyard, Facade, Office, and Trees.
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is repeated 100 times for each experimental setting. In this experiment, only the proposed
method with different biased angles is compared, since the other methods do not rely on the
gravity direction. Then, the rotation and translation errors are recorded in the box plot, and
the median running times are recorded in the bar chart, as shown in Fig. 5.16. As can be
seen, different biased angles have a certain effect on the rotation error but have little impact
on the translation error. In addition, the median time of the proposed method is insensitive
to the biased angle in gravity directions. Overall, these experiments prove that the proposed
two-stage method is robust to the biased angle in gravity directions and remains robust to
outliers when gravity directions are biased.

Challenging SPCR experiments. In this section, the challenging SPCR experiments are
conducted for Ours, GoICP, GoICPT, ICP, CPD, and GMMReg at different outlier rates. The
Bunny dataset from the Stanford 3-D Scanning Repository [CL96] is used for this experiment.
The Bunny dataset is first downsampled to 234 points as the source point cloud. Then, a ran-
dom transformation is applied to the source point cloud to obtain the target point cloud. In
accordance with the requirement of GoICP, the source and target point clouds are normal-
ized to fit in [−1, 1]3. Next, a fraction of the points in the source point cloud are removed
to simulate the outlier, with the remaining points as inliers. The zero-mean Gaussian noise
with σ = 0.001 is also added to both source and target point clouds. The experiments are
repeated 30 times at each outlier rate, i.e., η= {0.1,0.2, . . . , 0.6}.

The rotation and translation errors are recorded in the box plot, and the median running
times are recorded in the bar chart, as shown in Fig. 5.17. It can be observed that ICP and
GMMReg converge to the incorrect solution in most cases, leading to large average errors.
CPD is better than ICP and GMMReg but is still prone to incorrect transformation in many
cases. GoICP and GoICPT are global methods without initialization, and they perform much
better than ICP, CPD, and GMMReg. However, in most cases, the proposed method achieves
the fewest average errors. It is worth noting that GoICPT is a variant of GoICP with prior
trimming fraction (10%), such that its errors are the lowest at 10% outlier rate. Moreover,
the proposed method is faster than GoICP and GoICPT because our search domain for BnB is
3-DOF, while theirs is 6-DOF. This experiment shows that 1) the proposed method can also
solve the challenging SPCR problem, 2) it is more robust than the existing local methods,
e.g., ICP, CPD, and GMMReg, and 3) it is more accurate than the existing global methods,
e.g., GoICP.

Real-World Data Experiments

In this section, the performance of the proposed two-stage method is verified on the ETH
dataset [TS+12], a large-scale terrestrial LiDAR dataset. It incorporates several indoor and
outdoor sub-datasets, including Arch, Courtyard, Facade, Office, and Trees. Each sub-dataset
contains several different point clouds measured from different positions, and the experi-
ment registers pairwise point clouds in each sub-dataset. The overlapping ratios of Arch,
Courtyard, Facade, Office, and Trees are 30− 40%, 40− 70%,60− 70%,> 80%,≈ 50%, respec-
tively [LHA20]. A similar preparation strategy to that of [Cai+19] is utilized. Specifically, ISS
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keypoints [Zho09] and FPFH descriptors [RBB09] are first used to generate the putative cor-
respondences. The number of points, keypoints, and correspondences for each scan pair in
the ETH dataset are shown in the left part of Table 5.2. Then, Ours, BnB, RANSAC-2pt, FGR-
4DOF, GTR, and K4PCS are used to register pairwise point clouds from each sub-datasets. In
the process of operating Ours and BnB, FMP [Cai+19] is used to accelerate the convergence
of BnB-based methods. Please note that the Z-axis of each scan is aligned by the tilt compen-
sator in the terrestrial LiDAR scanner [Cai+19], thus the gravity direction employed in the
proposed method is set as [0,0,−1]T. The ground truth is contained in the dataset. The inlier
thresholds are set to 0.1m and 0.5◦ for distance-based and angle-based methods, respectively.

Fig. 5.18 shows the rotation and translation errors for different scan pairs in each sub-
dataset. In most cases, the errors of Ours are not the lowest since only rough gravity direc-
tions are employed in Ours. However, viewed overall, the errors of Ours are acceptable in
practice in all cases. On the other hand, the results of Ours can also be refined with EM-
type methods (e.g., ICP) to reduce errors. We set Threshold 1 (erot ≤ 0.5◦, etrans ≤ 0.2m) and
Threshold 2 (erot ≤ 5◦, etrans ≤ 2m) to decide the success rate, as shown in Table 5.1. The
success rates with two different thresholds of Ours always stay at 100%. The second best
method is deterministic BnB, which maintains a success rate of over 80%. FGR-4DOF, an-
other deterministic method, and all non-deterministic methods such as RANSAC-2pt, GTR,
and K4PCS randomly generate incorrect results. Table 5.2 shows the running time of each
method. Compared with BnB, the running time of Ours is about 10 to 250 times faster, which
indicates the high efficiency of the proposed two-stage method.

5.4.2 Experiments for the Three-Stage Method

Experimental Setting

In this section, we compare the performance of the proposed three-stage method with SOTA
correspondence-based approaches by utilizing both synthetic and real-world data. Besides,
we compare our extended SPCR method with different correspondence-free approaches. All
experiments are implemented in a PC with an AMD 5600x CPU and 32GB RAM.

Compared methods. In the correspondences-based registration experiments, our method
is compared with the 4-DOF as well as 6-DOF registration methods, including:

• FMP+BnB [Cai+19]: A joint 4-DOF BnB method using fast match pruning (FMP) as
the preprocessing step, programmed in C++.

• BnB [Cai+19]: A joint 4-DOF BnB method without fast match pruning.

• RANSAC [FB81]: A typical consensus maximization approach, which is customized for
4-DOF registration and programmed in C++. The maximum number of iterations is
set to 107.

• FGR [ZPK16]: A fast M-estimation method, which is customized for 4-DOF registration
and programmed in C++. The annealing rate is set to 1.1.
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• GTA [ART10]: A 6-DOF outlier removal method based on the game-theoretic frame-
work, programmed in C++.

• GROR [Yan+22a]: A 6-DOF fast outlier removal method based on the reliability of the
correspondence graph, programmed in C++.

In addition, our extended method is compared with the following global and local meth-
ods for the SPCR problem:

• GO-ICP [Yan+16]: A globally optimal approach that combines global BnB and local
ICP, programmed in C++.

• GO-ICPT [Yan+16]: A variant of GO-ICP with a specified trimming percentage for
outlier removal.

• ICP [BM92]: A classic rigid registration algorithm that finds the optimal transformation
by solving the least squares problem during each iteration, implemented in MATLAB
Toolbox.

• CPD [MS10]: A probabilistic method that transfers the registration as a probability
density estimation problem, programmed in C language.

• Gmmreg [JV10]: A probabilistic registration method that represents the input point
clouds as GMMs and aligns them, programmed in C language.

In both correspondence-based and SPCR experiments, the proposed three-stage method is
consistently referred to as Ours, which is implemented in Matlab 2022b.

Evaluation metrics. Following [Cai+19; Yan+22a], we employ running time T , rotation
error RE, translation error T E, and success rate SR to evaluate the registration performance.
The calculations of RE and T E are shown as below:

RE = arccos

�

Tr(RT
g tR
∗)− 1

2

�

(5.76)

T E =


tg t − t ∗


 (5.77)

where Rg t and tg t are ground truth rotation and translation, R∗ and t ∗ are estimated results,
and Tr(·) is the trace of a matrix. The point clouds are successfully aligned when RE and T E

are within the predefined thresholds.

Synthetic Data Experiments

To verify the theoretical performance of the proposed three-stage method, we first conduct
experiments using synthetic data. The source point cloud is randomly generated by creating
N points distributed in the cube [−1,1]3. Then, the source point cloud is transformed by
a random rotation, whose angle is within [−π,π], and a random translation in [−1,1]3 to
generate the target point cloud. Due to the limitations of [Cai+19], the rotation axis is
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Table 5.3: Controlled experiments on the number of correspondences in the extreme case. The results include
median running time (s) | success rate (%) with cases satisfying RE ≤ 1◦ and T E ≤ 0.01m.

Method
Number of correspondence (×103)

10 20 50 100 200 500 1000

FMP+BnB 7.375|100 26.73|100 165.9|100 647.7|100 > 1800s - -
BnB 32.20|100 83.85|100 374.8|100 1169|100 > 1800s - -

RANSAC 1474|94.0 > 1800s - - - - -
FGR 0.725|50.0 1.875|56.0 5.613|48.0 7.540|72.0 20.66|68.0 44.94|62.0 100.5|62.0

GTA 1.287|96.0 4.232|0.00 Out of memory - - - -
GROR 0.217|100 0.835|100 4.866|100 19.28|100 77.04|100 494.3|100 > 1800s
Ours 0.009|100 0.019|100 0.039|100 0.097|100 0.241|100 1.064|100 1.905|100

fixed as [0, 0,1]T. Therefore, the gravity direction utilized in the proposed method can be set
as [0,0,−1]T. Subsequently, a subset of points in the target point cloud is substituted with
randomly generated points in [−1, 1]3, imitating outliers. The outlier rate, denoted by η,
represents the proportion of these substituted points relative to the total number of points.
The noise is simulated by adding zero mean Gaussian noise to both source and target point
clouds, and the standard derivation is σ = 0.005. Following [Yan+22a; Li+23b], the inlier
threshold for each method is determined by σ.

Controlled experiments with different outlier rates. This section presents two groups of
controlled experiments designed to compare the outlier-robustness of the proposed three-
stage method with FMP+BnB, BnB, RANSAC, FGR, GTA, and GROR. The first group of ex-
periments has normal outlier rates, varying from 40% to 80% in increments of 10%. The
second group of experiments has extremely high outlier rates, ranging from 90% to 98% in
increments of 2%. The correspondence number in both experiments is fixed as N = 2000.
The experiment is repeated 50 times for each setting and each method. The median running
time, rotation error, and translation error are given in Fig. 5.19.

In the first group of experiments, all compared methods are robust against up to 80% out-
lier rate. In terms of rotation and translation accuracy, the proposed method demonstrates
comparable performance to the other methods. However, Ours has the lowest running time
except at 40% outlier rate. Notably, the running time of our method gradually decreases as
the outlier rate increases. This phenomenon can be attributed to the reason that in the first
stage, a significant number of outlier correspondences are rejected. Among the three stages,
the BnB-based second stage is relatively time-consuming (worst-case exponential time com-
plexity). Consequently, as the outlier rate increases, the input correspondences for the second
stage gradually decrease and so does the total running time. This indicates the effectiveness
of the proposed first stage in terms of outlier removal. FMP+BnB has a similar phenomenon
as Ours and is more efficient than pure BnB since it also contains an efficient preprocessing
step for outlier removal. Nonetheless, the SOTA FMP+BnB is approximately two orders of
magnitude slower than Ours. The running time of RANSAC increases exponentially with the
outlier rate, making it the slowest method starting from 60% outlier rate. FGR and GTA per-
form well under regular outlier rates. Another SOTA GROR is relatively efficient but is about
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(a) Arch s1-s2 (b) Courtyard s1-s2

N = 12617 N = 23572

η= 98.45% η= 93.69%

(c) Facade s1-s2 (d) Office s1-s2 (e) Trees s1-s2

N = 1901 N = 1437 N = 9543

η= 97.16% η= 99.51% η= 99.41%

Figure 5.23: Examples of scan pairs and initial correspondences for each scene from ETH dataset. The number
of correspondences and outlier rate are denoted by N and η, respectively.

3 times slower than Ours at 80% outlier rate.
In the second group of experiments, only FMP+BnB, BnB, GROR, and Ours are robust

against up to 98% outlier rate while maintaining comparable registration accuracy. RANSAC
only resists 94% outlier rate, and FGR starts breaking at 90% outlier rate. Due to its high
number of iterations (107), RANSAC is more robust than FGR but is the most time-consuming
method. GTA performs relatively better but is only robust to 96% outlier rate. On the other
hand, Ours outperforms all methods in terms of efficiency. For instance, Ours is approxi-
mately 3 × 104 times faster than RANSAC, 200 times faster than FMP+BnB, and 10 times
faster than GROR at 98% outlier rate. In general, Ours stands out as the fastest method and
one of the most robust.

Controlled experiments with different correspondence numbers. This section presents
two groups of controlled experiments aimed at comparing the registration efficiency. The
correspondence number in the first group of experiments varies from 1000 to 5000. The
outlier rate is fixed as 95%, and each experiment is repeated 50 times for each setting. The
experimental results are plotted in Fig. 5.20. Compared to other methods, the efficiency of
the proposed three-stage method is less affected by the correspondence number. This implies
that, with an increase in the number of correspondences, the efficiency advantage of Ours
will become more prominent. Similarly, the running time of FGR exhibits a slow increase
as the number of correspondences grows, resulting in only a marginal time difference be-
tween GTA and FGR at N = 5000. However, FGR often produces unsatisfactory registration
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Figure 5.24: Running times, rotation errors, and translation errors of all registration methods on the ETH dataset.
(a)-(e) show the registration results for Arch, Courtyard, Facade, Office, Trees.

results when outlier rates are high. RANSAC is the method most sensitive to the number of
correspondences and consistently exhibits the longest running time among all the methods.
Particularly, as the number of correspondences increases from 1000 to 5000, the efficiency of
Ours increases from being roughly 3 times faster than the second fastest method, GROR, to
being 16 times faster. In the case of FMP+BnB, this improvement ranges from being 70 times
faster to 613 times faster.

To further explore the scalability of Ours, the second group of experiments has extremely
high correspondence numbers, varying from 10k to 1000k, where k represents 103. This
experiment also has 50 trials for each setting, and the outlier rates remain at 95%. The
results, including median running times and success rates, are presented in Table 5.3. The
thresholds for successful registration are RE ≤ 1◦ and T E ≤ 0.01m. Notably, if the running
time of a method exceeds 1800s, the results for that method are not reported. As can be seen
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(a) Running time

(b) Rotation error

(c) Translation error

Figure 5.25: (a) Running time, (b) Rotation error, and (c) Translation error of all registration methods on the WHU-
TLS dataset.

from the results of the success rate, only FMP+BnB, BnB, GROR, and Ours can successfully
register all point cloud pairs even with a large scale of correspondences. However, both
FMP+BnB and BnB surpass 1800s when the number of points reaches 200k. Although FGR
demonstrates better efficiency, it exhibits a low success rate. As N increases to 50k, GTA
is unable to even operate properly due to the memory problem. Furthermore, the running
time of GROR grows faster than that of FGR as the number of correspondences increases.
Therefore, GROR becomes slower than FGR starting from N = 100k, exceeding the time
limit of 1800s at N = 1000k. However, thanks to the proposed transformation strategy, the
results indicate that our three-stage method has the best scalability among all methods. It
can successfully align 100k correspondences in 0.1s and register 1000k correspondences in
2s.

Robustness experiments for gravity direction noise. In practical scenarios, the gravity
directions extracted from IMU measurements may exhibit bias. Consequently, we evaluate
the robustness of our three-stage method against noise in gravity directions in this section.
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Biased angles on gravity directions are intentionally introduced in various directions to sim-
ulate IMU noise. We then conduct controlled experiments with different biased angles, in-
cluding 0◦, 0.1◦, 0.3◦, and 0.5◦. The experiment maintains a fixed correspondence number of
N = 2000, while the outlier rate varies from 50% to 90%. We repeat 50 trials for each experi-
mental setting. The obtained results, encompassing median running time, rotation error, and
translation error, are given in Fig. 5.21. Experiment results show that varying biased angles
exhibit a discernible impact on rotation error but less effect on translation error. Furthermore,
the computational cost of the proposed method exhibits minimal sensitivity to gravity direc-
tion noise. In conclusion, despite gravity direction noise, the proposed three-stage method
shows significant robustness against outliers and high efficiency.

Controlled correspondence-free experiments. In this section, we perform challenging
correspondence-free experiments to compare our extended method with global GO-ICP, GO-
ICPT, and local ICP, CPD, and Gmmreg, using the Bunny dataset from the Stanford 3-D Scan-
ning Repository [CL96]. Due to the limitations of GO-ICP [Yan+16], the point cloud is
pre-normalized to fit within the cube [−1, 1]3. The Bunny dataset is initially downsampled
to M = 234 points, serving as the source point cloud. Random rotations and translations are
then applied to generate the target point clouds. Additionally, a specific proportion of points
is randomly removed from the target point cloud to simulate partial overlap between the
source and target point clouds, with the overlap rate denoted by ρ ranging from 90% to 40%.
Zero-mean Gaussian noise with σ = 0.001 is added to the target point cloud. The experi-
ments are repeated 30 times at each overlap rate, and the results are presented in Fig. 5.22.
Notably, the time costs for constructing distance transform (DT) [Yan+16] in GO-ICP and
GO-ICPT are not recorded but averaged about 12s.

It can be observed from the rotation and translation errors that local ICP tends to converge
to local minima even at ρ = 90%. Due to the adoption of GMM, the local CPD and Gmmreg
are more robust to partial overlap than ICP, as evidenced by their better error distributions
than those of ICP. Notably, global GO-ICP and GO-ICPT are much more robust than these
local methods. Among them, GO-ICPT (50%) demonstrates the best performance, indicating
that GO-ICP is strongly sensitive to the pre-set trimming percentage. However, as the overlap
rate decreases, the time costs of GO-ICP and GO-ICPT increase significantly compared to
local methods. In contrast, the proposed global method attains commendable robustness and
accuracy even at ρ = 40%. On the other hand, it is faster than the existing global method
(i.e., GO-ICP) and even has comparable efficiency to local methods. This shows the feasibility
of our three-stage method in addressing correspondence-free registration problems.

Real-World Data Experiments

To evaluate the registration performance on the real-world data, we use three challenging
large-scale datasets, including ETH dataset [TWS14] and WHU-TLS dataset [Don+20]. Fol-
lowing the preparation strategy in [Li22; Li+23b], the first step is to downsample the original
point cloud using the voxel grid algorithm [RC11]. The second step is to extract ISS [Zho09]
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Table 5.4: Detailed information about the ETH dataset

Scans
Number of

points (×106)
Number of
keypoints

Number of
correspondences Outlier rate

Arch

s1-s2 23.56-30.90 19007-12254 12617 98.45%
s2-s3 30.90-25.25 12254-19192 13217 99.33%
s3-s4 25.25-29.45 19192-13286 15187 98.54%
s4-s5 29.45-27.96 13286-11838 9312 99.77%
s1-s3 27.96-25.25 19007-19192 16608 99.71%
s2-s4 30.90-29.45 12254-13286 11699 98.77%

Courtyard

s1-s2 13.32-11.45 12450-26189 23572 93.69%
s2-s3 11.45-12.71 26189-9634 19018 92.33%
s3-s4 12.71-12.15 9634-12125 15325 86.55%
s4-s5 12.15-16.75 12125-4081 8069 90.62%
s5-s6 16.75-11.99 4081-11208 7534 93.28%
s6-s7 11.99-11.17 11208-13338 17369 92.22%
s7-s8 11.17-11.45 13338-20386 22649 95.37%

Facade

s1-s2 25.07-15.25 1586-2810 1901 97.16%
s2-s3 15.25-15.79 2810-2215 2368 96.92%
s3-s4 15.79-23.48 2215-1950 1959 96.43%
s4-s5 23.48-16.74 1950-1845 2204 93.06%
s5-s6 16.74-21.46 1845-1576 1809 94.25%
s6-s7 21.46-20.79 1576-1555 1615 96.78%
s7-s1 20.79-25.07 1555-1586 1601 94.25%

Office

s1-s2 10.72-10.71 1355-1407 1437 99.51%
s2-s3 10.71-10.73 1407-1348 1474 97.15%
s3-s4 10.73-10.69 1348-1277 1279 97.65%
s4-s5 10.69-10.75 1277-1486 1355 98.97%
s5-s1 10.75-10.72 1486-1355 1616 97.34%
s1-s3 10.72-10.73 1355-1348 1382 98.77%
s3-s5 10.73-10.75 1348-1486 1578 98.23%

Trees

s1-s2 19.63-19.60 10883-10898 9543 99.41%
s2-s3 19.60-19.77 10898-10873 9897 97.61%
s3-s4 19.77-20.39 10873-12542 9811 99.76%
s4-s5 20.39-20.48 12542-12522 11253 97.87%
s5-s6 20.48-21.61 12522-11894 10711 98.43%

keypoints and calculate FPFH [RBB09] descriptors for each keypoint. The third step is estab-
lishing the set of putative correspondences C through the K-nearest neighbor search [Low04].

ETH dataset experiments. The ETH dataset is a large-scale terrestrial LiDAR dataset, which
contains 5 scenes: arch, courtyard, facade, office, and trees. In each challenging scene, sev-
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Table 5.5: Detailed information about the WHU-TLS dataset

Scans
Number of

points (×106)
Number of
keypoints

Number of
correspondences Outlier rate

Railway1 6.74-6.34 6399-5180 6013 99.60%
Railway2 6.76-6.74 6500-6399 7073 99.80%

Mountain1 3.75-3.68 13287-11584 16243 89.42%
Mountain2 3.68-3.46 11584-8554 11805 92.75%

Park1 5.66-5.07 4849-5880 4248 98.68%
Park2 5.07-5.76 5880-7055 5564 97.27%

Campus1 12.44-11.68 18087-21353 14885 99.10%
Campus2 11.68-8.75 21353-40446 23591 98.68%
Heritage1 28.50-26.19 13827-14942 12019 99.89%
Heritage2 31.48-28.50 13409-13827 11645 98.38%
Tunnel1 22.36-22.42 1954-2098 1871 98.18%
Tunnel2 22.42-22.40 1799-1629 1319 99.70%

Table 5.6: Quantitative registration results on real-world datasets. The results include average running time (s) |
average rotation error (◦) | average translation error (m). Bolded fonts indicate the best results.

Method
Dataset

ETH-Arch ETH-Courtyard ETH-Facade ETH-Office ETH-Trees WHU-TLS

FMP+BnB 7.722|0.072 |0.037 30.02|0.048 |0.033 0.532|0.099 |0.032 0.276|1.368 |0.126 5.485|0.153 |0.036 10.45|0.245 |12.51

BnB 18.12|0.072 |0.037 42.33|0.048 |0.033 1.035|0.099 |0.032 0.885|1.368 |0.126 9.099|0.153 |0.036 22.02|0.245 |12.51

RANSAC 20.71|14.87 |3.139 0.185|0.071 |0.044 0.031|0.124 |0.038 0.451|1.369 |0.144 9.327|0.159 |0.040 5.121|0.214 |12.52

FGR 0.202|46.31 |11.07 0.075|0.041 |0.035 0.008|0.084|0.018 0.004|44.16 |0.899 0.044|9.533 |4.532 0.041|80.66 |37.96

GTA 1.966|31.12 |6.747 3.320|1.093 |1.056 0.048|0.106 |0.020 0.025|30.22 |2.155 1.253|0.458 |0.077 1.499|3.161 |15.09

GROR 0.374|0.116 |0.036 0.777|0.049 |0.039 0.031|0.151 |0.034 0.011|1.122|0.122 0.253|0.096|0.029 0.318|0.795 |12.72

Ours 0.033|0.048|0.020 0.010|0.027|0.014 0.006|0.091 |0.016 0.005|1.278 |0.086 0.018|0.174 |0.017 0.053|0.112|0.165

eral scans are captured from different positions, thus suffering from low overlap, self-similar
structures, and occlusion. As visualized in Fig. 5.23, the outlier rates for various scan pairs
in the ETH dataset are notably high, ranging approximately from 86% to 99%. We employ
adjacent scans as the input of pair-wise registration in each scene. Following [Yan+22a],
the downsample resolution is set to 0.1 m, as well as the inlier threshold. The detailed in-
formation can be found in Table 5.4, including the number of points, number of keypoints,
number of correspondences, and outlier rate. Notably, the gravity direction employed for the
proposed method is set to [0,0,−1]T . Fig. 5.24 shows the alignment results for a total of
32 scan pairs, and Table 5.6 presents the average running times and average errors for each
scene.

As can be seen from the results, only FMP+BnB, BnB, GROR, and Ours successfully regis-
ter all scan pairs with relatively low errors. Notably, with the exception of Office, our method
demonstrates the lowest average time cost in most scenes. Besides, Ours achieves the lowest
average rotation and translation errors in Arch and courtyard, as well as the lowest average
translation errors in facade, office, and trees. Although FMP+BnB and BnB perform admirably
across all scenes, they are computationally expensive compared to other methods. RANSAC,
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Table 5.7: Detailed information about the real-world datasets in SPCR experiments.

Dataset
Downsample

resolution
Number of points

(×103)
Number of points

(after downsample)
Stanford-Armadillo

0.006

26.94-25.57 865-801
Standford-Dragon 41.84-34.84 1081-953

U3M-Chef 66.87-65.96 1358-1286
U3M-Chicken 29.52-30.17 590-630

U3M-Parasaurolophus 46.00-42.94 944-849
U3M-T-rex 38.78-40.21 771-863

Table 5.8: Quantitative correspondence-free registration results on real-world datasets, including running time (s)
| rotation error (◦) | translation error (m). Bolded fonts indicate the best results.

Method
Dataset

Stanford-Armadillo Stanford-Dragon UWA-Chef UWA-Chicken UWA-Parasaurolophus UWA-T-rex

GO-ICP 12.89|4.745 |0.003 12.85|0.406 |0.001 13.18|6.294 |0.070 12.97|1.931 |0.022 12.96|4.278 |0.047 13.15|1.273 |0.014

GO-ICPT(10%) 12.98|0.751 |0.001 12.98|0.276 |0.001 13.04|4.619 |0.052 12.86|0.987 |0.010 13.19|0.613 |0.005 12.88|0.692 |0.003
GO-ICPT(50%) 13.02|0.193|0.001 12.94|0.205 |0.001 12.98|14.20 |0.158 13.01|19.42 |0.214 12.99|1.301 |0.008 12.95|9.853 |0.108

ICP 0.045|4.393 |0.003 0.027|0.415 |0.001 0.042|6.058 |0.068 0.020|1.691 |0.019 0.020|4.288 |0.047 0.014|1.220 |0.014

CPD 0.547|1.126 |0.001 0.547|0.456 |0.001 4.651|1.968 |0.021 0.234|3.765 |0.043 0.611|0.300 |0.002 0.520|0.518|0.006

Gmmreg 2.730|3.818 |0.004 1.941|12.07 |0.025 3.547|14.73 |0.164 1.592|7.783 |0.087 6.748|2.192 |0.020 2.850|4.625 |0.049

Ours 0.187|0.325 |0.001 0.394|0.175|0.001 0.302|1.224|0.018 0.083|0.433|0.001 0.133|0.216|0.005 0.116|0.585 |0.016

owing to its non-deterministic nature, occasionally produces inaccurate results, as seen in
the case of s4-s5 in Arch. Additionally, RANSAC becomes considerably time-consuming when
dealing with outlier rates surpassing 99%, as evident in the registration of scan pairs s4-s5
(η = 99.77%) and s1-s3 (η = 99.71%) in Arch. While FGR is highly efficient, it is susceptible
to failure, particularly in scenes with high outlier rates. A total of 8 scan pairs exhibit signif-
icant registration errors in the results obtained by FGR. Similar to RANSAC, GTA is efficient
but also occasionally generates erroneous results due to its non-deterministic nature. This is
particularly evident in Arch, where GTA exhibits high registration errors, including a 31.12◦

average rotation error and a 6.747m average translation error. GROR is the second-best ap-
proach, which has high accuracy and high efficiency. Overall, benefiting from the proposed
transformation decoupling strategy, our method shows superior registration efficiency and
accuracy compared to SOTA methods.

WHU-TLS dataset experiments. The WHU-TLS dataset is another large-scale terrestrial
LiDAR dataset. To ensure the generality of the registration algorithm, we randomly select
two scan pairs each from the Railway, Mountain, Park, Campus, Heritage and Tunnel scenes
for the registration experiment. Following [Yan+22a], the downsample resolution is set to
0.2m, as well as the inlier threshold. Detailed information about the selected scan pairs
is given in Table 5.5. The outlier rates for these chosen pairs range from approximately
89% to 99%, with correspondence numbers spanning from around 1k to 20k. Besides, the
gravity direction remains fixed at [0,0,−1]T . The registration results for a total of 12 scan
pairs, including running time, rotation error, and translation error, are shown in Fig. 5.25. In
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Figure 5.27: Qualitative correspondence-free registration results on the Standford and UWA datasets. (a)
Stanford-Armadillo, (b) Stanford-Dragon, (c) U3M-Chef, (d) U3M-Chicken, (e) U3M-Parasaurolophus, (f) U3M-
T-rex. The source, target, and aligned point clouds are green, orange, and blue.

addition, the quantitative average results are presented in Table 5.6.
Observing the average rotation and translation errors, it is evident that only our method

successfully registers all scan pairs in the WHU-TLS dataset. Despite their robust performance
in the ETH dataset, both FMP+BnB and BnB, as well as GROR, exhibit significant translation
errors when registering scan pairs Railway1, Railway2, and Tunnel2. This phenomenon can be
attributed to the abundance of self-similar structures frequently appearing in these railway
and tunnel scenes. As shown in Fig. 5.26, we provide qualitative and quantitative registra-
tion results for scan pair Railway1 to further illustrate this phenomenon. All methods, except
Ours, converge to similar registration solutions (local minima), as their translation errors are
nearly identical. This demonstrates the robustness of our approach to the abundant outliers
generated by practical self-similar structures. Similar to the findings in the ETH dataset ex-
periment, Ours, along with FMP+BnB, BnB, and GROR, achieve good registration results for
scan pairs other than those mentioned above. The performance of FGR and GTA is unsta-
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ble, as they occasionally yield unsatisfactory results despite their high efficiency. Besides,
RANSAC has high computational costs second only to FMP+BnB and BnB in most scenes.
In contrast, the proposed three-stage method not only achieves excellent accuracy (with the
lowest average rotation and translation errors) but also achieves the second-highest compu-
tational efficiency, surpassed only by FGR.

Correspondence-free experiments. In order to further assess the performance of the ex-
tended correspondence-free registration method, we employ benchmark datasets, i.e., the
Stanford dataset [CL96] and UWA dataset [MBO06]. A comprehensive comparison is con-
ducted against baseline methods, including GO-ICP, GO-ICPT(10%), GO-ICPT(50%), ICP,
CPD, and Gmmreg. In the experiment, we use the Armadillo and Dragon models from the
Stanford dataset, as well as the Chef, Chicken, Parasaurolophus, and T-rex models from the
UWA dataset. These datasets exhibit characteristics of partial overlap and self-occlusion. The
methods are tested on one pair of partially overlapped point clouds constructed from each
model, with a downsample resolution set to 0.006. The details on these scan pairs are pre-
sented in Table 5.7. The registration results are listed in Table 5.8, and qualitative outcomes
are visualized in Fig. 5.27.

From the results, the proposed deterministic global method obtains the lowest registration
error across most models. Consistent with the findings in synthetic data experiments, GO-ICP
exhibits strong sensitivity to the pre-set trimming percentage since GO-ICPT (10%) delivers
the most favorable results among GO-ICP and GO-ICPT. Local methods, including ICP, CPD,
and Gmmreg, display instability and occasionally yield unsatisfactory registration results (as
seen in Fig. 5.27). Additionally, from an efficiency standpoint, our method is significantly
faster than global methods while maintaining comparable efficiency to local methods. These
findings also showcase the feasibility of the proposed method in addressing correspondence-
free registration challenges.

5.4.3 Registration of LiDARs in ITS Infrastructure

To validate and compare the performance of the proposed two-stage and three-stage meth-
ods in autonomous driving scenarios, we employ the A9 dataset [Cre+22], which is gathered
by multiple roadside sensors mounted on the ITS Infrastructure, as shown in Fig. 5.28. The
purpose of this experiment is to align point clouds collected from two distinct LiDARs. In
particular, the captured point clouds contain diverse moving objects (as shown in Fig. 5.29),
including cars, buses, and pedestrians, resulting in the challenging registration task. We se-
lect 5 scan pairs with a minimum temporal separation of 10s as input for the experiment.
Following the segmentation of ground points, we leverage non-ground points to establish pu-
tative correspondences utilizing the same generation strategy in the last section. The down-
sample resolution is set to 0.1 m. Nevertheless, the outlier rates for both scan pairs exceed
99%. Table 5.9 provides detailed information about the selected scan pairs.

The proposed two methods are compared with 5 baselines: FMP+BnB [Cai+19], RANSAC [FB81],
FGR [ZPK16], GTA [ART10], and GROR [Yan+22a]. In addition, the two-stage and three-
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Figure 5.28: One of the measurement points of the Providentia++ project on the A9 highway (https://
innovation-mobility.com/en/project-providentia/a9-dataset/). The A9 dataset [Cre+22] is obtained from roadside
sensors, including multiple LiDARs, cameras, and radars.

Table 5.9: Detailed information about the A9 dataset

Scans
Number of

points (×106)
Number of
keypoints

Number of
correspondences Outlier rate

P1 0.114-0.110 1099-1392 2883 99.06%
P2 0.114-0.110 801-1443 2327 99.18%
P3 0.113-0.110 983-1401 2657 99.26%
P4 0.114-0.109 840-1183 2359 99.49%
P5 0.113-0.110 964-1124 2410 99.21%

stage methods are referred to as Ours1 and Ours2, respectively. Since both LiDARs are
parallel to the ground, the gravity direction employed remains [0,0,−1]T . The inlier thresh-
olds are set to 0.1m and 0.5◦ for distance-based and angle-based methods. In the process of
operating Ours1 and BnB, FMP is used to accelerate the convergence of BnB-based methods.
Additionally, all experiments are implemented in a PC with an AMD 5600x CPU and 32GB
RAM.

The registration results of all methods are shown in Table 5.10. Qualitative comparison
on scan pair P3 is provided in Fig. 5.29. The experimental results demonstrate that the pro-
posed two methods successfully register all scan pairs with significant accuracy. FMP+BnB
also delivers accurate results for all scan pairs but is relatively expensive in computation.
RANSAC is the most time-consuming method in this dataset due to the extremely high out-
lier rates. FGR and GTA are both very efficient. However, the performance of RANSAC,
FGR, and GTA is unstable, resulting in high average registration errors. GROR is capable of
aligning all scan pairs efficiently but has a relatively high average rotation error. In contrast,
the proposed method FMP+Ours1 is more efficient than FMP+BnB and achieves the best
translation accuracy. Additionally, the proposed method Ours2 has comparable efficiency to

https://innovation-mobility.com/en/project-providentia/a9-dataset/
https://innovation-mobility.com/en/project-providentia/a9-dataset/


126 Chapter 5 Efficient and Robust LiDAR Registration with Gravity Prior

(a) Initial (b) GROR

(c) FMP+Ours1 (b) Ours2

Figure 5.29: Qualitative results for scan pair P3 on the A9 dataset. (a) Initial, (b) GROR, (c) FMP+Ours1, (d)
Ours2.

GROR and is an order of magnitude faster than FMP+BnB. This demonstrates the effective-
ness of the two transformation decoupling strategies in our proposed methods. Particularly,
by further exploring the geometric properties, the three-stage method proposed based on the
screw theory exhibits better performance than the two-stage method.

5.5 Summary

This section introduces two novel transformation decoupling strategies for robust point cloud
registration with gravity prior. In the first approach, the known gravity directions are lever-

Table 5.10: Quantitative registration results on the A9 dataset. The results include running time (s) | rotation error
(◦) | translation error (m). Bolded fonts indicate the best results.

Method
Dataset

P1 P2 P3 P4 P5 Mean

FMP+BnB 0.326|0.428 |0.265 0.307|0.548 |0.328 0.608|0.416 |0.161 0.836|0.806 |0.415 0.838|0.919 |0.647 0.583|0.624 |0.363

RANSAC 20.71|0.606 |0.497 10.84|0.387|0.252 10.53|0.461 |0.173 13.25|0.929 |0.403 12.40|34.41 |10.44 13.55|7.359 |2.354

FGR 0.011|10.83 |6.531 0.006|30.47 |9.165 0.006|2.911 |7.549 0.009|37.33 |9.452 0.006|7.220 |7.363 0.008|17.75 |8.012

GTA 0.101|33.93 |7.734 0.065|102.4 |12.16 0.083|179.8 |16.01 0.071|6.089 |7.723 0.070|19.16 |8.735 0.078|68.28 |10.47

GROR 0.048|2.202 |0.582 0.036|0.430 |0.323 0.039|0.421 |0.090 0.038|3.076 |1.363 0.038|2.132 |0.268 0.040|1.652 |0.525

FMP+Ours1 0.265|0.325|0.382 0.204|0.412 |0.333 0.483|0.405 |0.179 0.613|0.928 |0.521 0.673|0.984 |0.225 0.448|0.611 |0.328
Ours2 0.005|0.388 |0.398 0.058|0.388 |0.365 0.140|0.386|0.254 0.050|0.412|0.488 0.023|0.397|0.299 0.055|0.394|0.361
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aged to decouple the joint 4-DOF pose into the sequential 3-DOF translation and 1-DOF
rotation. Then, a deterministic two-stage solver, including BnB and global voting, is devel-
oped for the two sub-problems. By leveraging screw theory to reformulate the registration
problem, the second approach successfully decouples the 4-DOF registration problem into
three sub-problems with 1-DOF, 2-DOF, and 1-DOF, respectively. Then, we propose an effi-
cient and deterministic three-stage method to tackle these sub-problems, including interval
stabbing, BnB, and global voting. These transformation decoupling strategies significantly
enhance registration efficiency. In particular, the three-stage method further reduces the di-
mensionality of the parameter space, thus obtaining a better efficiency than the two-stage
method. Overall, extensive experiments on both synthetic and real-world data shed light on
the favorable performance of our methods in terms of efficiency and robustness.





6
Conclusion

In this chapter, important conclusions are drawn based on the study carried out in this thesis,
and the new possible directions for future work are outlined to address the limitations of the
proposed methods.

6.1 Summary

Robust geometric perception of the surroundings is crucial for intelligent transportation sys-
tems to achieve complete autonomy within dynamic and complex traffic environments. Pose
estimation is one of the most widely used tasks in geometric perception. This thesis explores
highly robust solutions for typical pose estimation problems in ITSs, including sensor extrinsic
calibration and point cloud registration. From a mathematical standpoint, the pose estima-
tion problem, as discussed in previous studies [LH07; Yan+16], is inherently non-convex.
Consequently, tackling the pose estimation problem necessitates addressing the non-convex
optimization problem. Specifically, since the existence of noise and outliers is unavoidable in
real-world applications, it is essential to suppress their negative effects. To address this issue,
robust objective functions are formulated, typically non-convex and possibly non-smooth,
enabling the distinction between inliers and outliers. Our research aims to seek the optimal
solution for non-convex optimization problems, which often exhibit multiple local optima.
However, relying solely on locally optimal or non-deterministic algorithms poses a significant
risk of encountering failures, as they cannot guarantee the identification of the global opti-
mum. In order to meet the safety requirements of ITS, this thesis applies the BnB framework
to obtain global and robust solutions for various pose estimation problems. The presented
deterministic global approaches enable us to effectively handle geometric optimization prob-
lems involving a substantial number of outliers.
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6.2 Primary Contributions

This thesis studies the robust geometric perception problem in ITSs, specifically the pose
estimation problem. Concretely, the primary contributions of this thesis are as follows:

Chapter 3. A globally optimal and robust extrinsic calibration method for traffic radar is
proposed in this chapter. This targetless method can calibrate extrinsic parameters during
ITS operation without any artificial objects. In addition, a novel BnB-based globally opti-
mal registration method is introduced in the optimization back-end. This method effectively
aligns the measurements of radar and GPS in a simultaneous pose and correspondence reg-
istration manner. Practical experiments demonstrate the robustness of the proposed method
against noise and outliers in radar measurements. Furthermore, it successfully avoids failures
caused by falling into local optima, particularly when dealing with large relative angles.

Chapter 4. An efficient and robust point cloud registration method is proposed in this chap-
ter. Specifically, a novel pose decoupling strategy based on residual projections is intro-
duced, effectively decomposing the raw problem into three search sub-problems. Compared
with existing methods, the proposed approach searches for the optimal solution in the low-
dimensional solution domain, thereby improving search efficiency. Subsequently, a novel
upper bound based on interval stabbing is derived, and accordingly, a BnB-based search
algorithm is proposed to solve these sub-problems. Moreover, the proposed upper bound
is modified by interval merging to solve the registration problem without correspondence.
Extensive experiments demonstrate that the proposed method outperforms state-of-the-art
methods in terms of efficiency while ensuring robustness.

Chapter 5. An efficient and robust point cloud registration method with gravity prior is
proposed in Section 5.2. Firstly, a novel transformation decoupling scheme is presented,
which can reduce the solution domain to 3-DOF+1-DOF with the aid of known gravity di-
rections. Subsequently, this section presents a BnB-based optimization algorithm for the
3-DOF translation search and an efficient global voting algorithm for the 1-DOF rotation es-
timation. Moreover, the proposed method can be applied to solve the correspondence-free
registration problem using the all-to-all correspondence assumption. By further exploring
the geometric constraints for point cloud registration from the perspective of screw theory,
another efficient and robust method for registration with gravity prior is presented in Section
5.3. Specifically, a novel transformation decoupling strategy is proposed to decompose the
4-DOF registration problem into three sub-problems with 1-DOF, 2-DOF, and 1-DOF, respec-
tively. Accordingly, a novel three-stage solver for the decoupled sub-problems is proposed,
which contains interval stabbing, BnB, and global voting algorithms. The proposed approach
is also extended to solve the challenging correspondence-free registration problem without
the all-to-all correspondence assumption. Extensive experiments demonstrate the superiority
of both algorithms in terms of efficiency and robustness.
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6.3 Limitations

This thesis proposes different approaches to address robust pose estimation problems in ITS
to meet the safety demand. In particular, all methods are dependent on the BnB optimization
framework to obtain the global optimum of the estimation problem. For the low-dimensional
issues (e.g., extrinsic calibration in Chapter 3), BnB is directly used to search for the globally
optimal solutions. However, the computational complexity of BnB is exponential to the di-
mensionality of the solution domain in the worst-case. Hence, we develop different transfor-
mation decoupling strategies for BnB to address the high-dimensional problems (e.g., point
cloud registration in Chapter 4 and Chapter 5). Despite the promising results of the proposed
methods for pose estimation, there are still notable limitations:

• The proposed BnB-based methods are relatively time-consuming. While the BnB algo-
rithm is more efficient than exhaustive search, and we develop transformation decou-
pling strategies to accelerate BnB, it is still far from real-time. In practice, when the
outlier rate or data size of the input is large, the BnB algorithm commonly would be
computationally intractable.

• The optimal solutions of the decoupled sub-problems are not necessarily globally opti-
mal for the raw problem. The transformation decoupling is a geometric relaxation so
that the decoupled sub-problems only keep partial constraints compared to the original
problem.

• The proposed BnB-based methods are only suitable for low-dimensional problems. The
BnB algorithm systematically explores the entire parameter space. Thus, it will en-
counter the infamous curse of dimensionality [Sch11] when dealing with high-dimensional
issues.

6.4 Future Directions

6.4.1 Sensor Extrinsic Calibration

Automatic and online calibration. The proposed extrinsic calibration method is only suit-
able for offline calibration since it needs several manual operations for data acquisition and
preprocessing. The next step should be to make the entire calibration process fully automatic
and online, enabling calibration in various situations to ensure the perceptual stability of the
autonomous system. The measurements from another roadside sensor, such as the camera,
can be used to enable data association with the roadside radar. For instance, multi-object
tracking technology can be employed to extract and match traffic objects.

On the other hand, the proposed globally optimal registration method in the back-end
is robust, but also time-consuming. The current optimization back-end should be more effi-
cient while ensuring robustness to outliers and noise. A possible direction is utilizing GPU
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and parallel computing to accelerate the BnB algorithm. From the optimization perspective,
exploring a new optimization paradigm can also avoid computational limitations.

Spatio-temporal calibration. The temporal calibration between heterogeneous sensors is
also crucial, which can ensure reliable long-term operation of sensors. Heterogeneous sensors
commonly have various sampling rates. Thus, they have an inherent temporal misalignment.
The proposed calibration method considers this time synchronization problem. However,
the temporal parameters are not integrated into the optimization process. It is valuable to
simultaneously optimize the spatial and temporal parameters to achieve accurate time drift
and extrinsic parameter estimation.

Robust calibration for multi-sensors. To ensure a reliable environment understanding,
most perception systems incorporate multiple sensors and sensing modalities, such as LiDAR,
camera, and event camera. In practice, the performance of cross-modal feature extraction
is brittle, which may result in severe noise and outliers. As illustrated in the proposed cal-
ibration method, the BnB algorithm achieves significant performance in robust parameter
estimation. Therefore, introducing BnB algorithms in the extrinsic calibration of multi-modal
sensors is a challenging task but it has great significance in enhancing the robustness against
noisy and outlier-contaminated input.

6.4.2 Point Cloud Registration

Robust registration with optimality certification. Although the proposed point cloud reg-
istration approaches are highly efficient and robust, a shared and inherent drawback is that
they cannot theoretically guarantee global optimality in terms of inlier set maximization. The
transformation decoupling strategy relaxes the original constraint geometrically so that the
decoupled sub-problems are not exactly the same as the raw registration problem. Hence,
one potential direction is to explore robust registration methods with optimality certifica-
tion [YC22; Ant+21]. Such methods should be capable of verifying the optimality of the
obtained estimation results and, importantly, have the ability to identify cases of failed esti-
mation rather than blindly returning incorrect results.

Novel transformation decoupling strategy. This thesis presents three different transfor-
mation decoupling strategies according to different geometric properties and achieves promis-
ing registration results. This encourages us to deeply investigate the application of transfor-
mation decoupling strategies in geometry perception. For instance, researchers commonly
address the rotation search problem, a vital part of pose estimation, by BnB algorithms.
Developing the rotation decoupling strategy probably facilitates a good trade-off between
efficiency and robustness, while promoting the BnB algorithm a step further in practical ap-
plications. In addition, we initially explore how to accelerate BnB with the interval stabbing
technique in Chapter 4, which allows us to branch over a two-dimensional space for the
three-dimensional sub-problem. It would be interesting to further explore the application of
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this technique to other geometric problems for accelerating the BnB algorithm, such as the
relative pose estimation problem.

Pose estimation assisted with prior information. The proposed methods in Chapter 5 uti-
lize the prior known gravity directions to assist point cloud registration, thus significantly in-
creasing the registration efficiency. This is a good demonstration of utilizing prior information
or reasonable assumptions to help pose estimation. Therefore, leveraging additional prior
information or assumptions to assist a broader range of pose estimation applications may
offer potential benefits. The prior information or assumptions that can possibly be utilized
include the structural world assumption (e.g., Manhattan and Atlanta worlds), geometric
constraints (e.g., planar surfaces, intersecting lines, or parallel lines), semantic information,
motion model, etc.

Robust solutions for other pose estimation problems. This thesis addresses two typical
pose estimation problems, including sensor extrinsic calibration and point cloud registration.
However, pose estimation technology still has many other applications, such as camera abso-
lute pose estimation, relative pose estimation, vehicle localization, and direction estimation.
These problems have different geometric properties and constraints. For instance, both the
direction estimation and the relative pose estimation problem have the unit-norm constraint.
Besides, absolute pose estimation (i.e., 2D-3D registration) is inherently more difficult than
point cloud registration. Therefore, it is challenging but valuable to explore geometric prop-
erties and develop novel robust methods to address these problems.
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