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Zusammenfassung

Heterogenität in Populationen wird in allen biologischen Systemen in der Natur und Bioprozessen
beobachtet. Sie resultiert durch zum einen genetischer Diversität auf Populationsebene oder phe-
notypischer Differenzen zwischen genetisch identischen Zellen. Zusätzlich können stochastische
Schwankungen in biochemischen Prozessen (intrinisches Rauschen) oder Fluktuationen in den
Umgebungsbedingungen (extrinsisches Rauschen), zu Unterschieden in Genexpression führen.
Aufgrund verbesserter Fitness und Stresstoleranz kann Diversität einen selektiven Vorteil ver-
schaffen. Andererseits wird Populationsheterogenität als unerwünschte Folge bei der Skalierung
eines Bioprozesses auf Industriemaß erachtet, da diese mit verringerter Produktivität, Aus-
beute und vermehrter Nebenproduktbildung assoziiert wird. Aufgrund der vielen Ursachen
und Faktoren, sind die Mechanismen vom besonderen Interesse. Das Ziel dieser Arbeit ist es
ein tieferes Verständnis von dem Verhalten einer Population unter wechselnden Umgebungs-
bedingungen zu gewinnen und eine quantitative Beschreibung durch mathematische Modelle
und Simulationen zu erhalten. Zuerst wurde ein grobkörniges Modell als Ansatz für massener-
haltende Modelle zur Beschreibung von bakteriellem Wachstums in einem biotechnologischen
Produktionsprozess erarbeitet. Hierfür wurde ein Zusammenhang zwischen der Wachstum-
srate und den Aufnahme- und Produktionsraten mit dem intrazellulären Netzwerk und der
Zellkomposition basierend auf Massenbilanzen präsentiert. Ferner wurden Eigenschaften des
Modells, wie Gleichgewichtslagen und Relaxationszeiten untersucht. Das Konzept von Zellen im
und außerhalb ihres Gleichgewichtzustands wurde eingeführt, wobei Zellen im Gleichgewicht eine
Zellkomposition im Equilibrium mit ihrer Umgebung besitzen. Die Analyse der Relaxtionszeiten
offenbarte zwei Zeitskalen der Zellreaktion auf extrinsische Veränderungen für Zellen außerhalb
ihres Gleichgewichtszustands und eine Zeitskala für Zellen im Gleichgewicht. Die Beschreibung
des intrazellulären Netzwerks, welches aus dem grobkörnigen Modells resultiert, bildet eine Basis
für die Konzeption eines Populationsbilanzmodelles. Dies ermöglicht eine segregierte Sichtweise
auf die Population und die Einbindung der Zellteilung. Die Neuartigkeit des Modells liegt in der
Fähigkeit eine Population mit strukturierter Zellkomposition und Zellteilung in einem Bioreaktor
zu betrachten. Aufgrund des hohen Rechenaufwands von Populationsbilanzgleichungen, wurde
ein zweiter Ansatz, welcher ein Euler-Lagrange-Kompartimenten-Ansatz ist, entwickelt. Dieser
beschreibt die biologische Phase als einzelne Teilchen, welche mit dem grobkörnigen Modells zur
Beschreibung der intrazellulären Prozesse ausgestattet sind und dementsprechend auf ihre Umge-
bung reagieren. Die Erkenntnis von zwei unterschiedlichen Relaxtionszeiten für Zellen außerhalb
ihres Gleichgewichtzustandes motiviert die Einbindung von intrinsischem Rauschen, um den Zel-
lzustand von der lokalen Substratkonzentration in der Flüssigphase zu entkoppeln. Durch das
Simulieren von verschiedenen Bioreaktorsystemen wurde gezeigt, dass das Ausmaß und die Fre-
quenz der externen Perturbationen zusammen mit der zufälligen Zuordnung der Zellkomposition
bei Zellgeburt die Entstehung von Subpopulationen begünstigt. Experimentelle Daten eines L-
Phenylalanin-Produktionsprozesses wurden als exemplarischer Bioprozess verwendet und eine
gute Übereinstimmung von Simulation und Daten wurde erzielt.
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Abstract

Heterogeneity within a population is universally observed in all natural systems and biopro-
cesses. It is a result from either genetic diversity at population level or phenotypic differences
between genetically identical cells and may be driven by stochastic fluctuations within bio-
chemical processes (intrinsic noise) or environmental changes perceived by the cell population
(external noise), leading to differential gene expression. In many cases, diversity may provide
a selective advantage due to an improved fitness and higher stress tolerance during changes in
environmental conditions. On the other hand, population heterogeneity is often perceived as an
undesirable consequence during upscaling of a bioprocess as it may result in reduced produc-
tivity, yield and increased by-product formation. Because of the large variety of sources and
factors affecting heterogeneity, its mechanisms are of particular interest, providing motivation
for this work. The aim is to gain deeper insight into the behavior of a population exposed to
environmental changes and develop a quantitative description using mathematical models and
simulations.

As first step, a framework in form of a coarse-grained model was established that presents a
strict mass conservative model for bacterial growth during a biotechnological production pro-
cess. Conventionally, the growth rate is determined by an empirical function, but in this study
a relationship between the growth rate and the exchange rate of the entire network and cell
composition, which guarantees mass conservation at all time points, is presented. Furthermore,
the key properties of the model were analyzed, including the steady state behavior. The concept
of balanced and unbalanced cells was introduced, where balanced cells exhibit a cell composition
in steady state with their environment, while unbalanced cells are out of equilibrium. The inves-
tigation of the time scales revealed two different time scales in the cell response for unbalanced
cells, and only one time scale when balanced cells respond to external fluctuations.

The description of the intracellular network obtained from the coarse-grained model was inte-
grated into the framework of a population balance equation model. This enabled a segregated
view of the population and incorporation of the cell division process. The novelty of the pro-
posed model lies in its ability to depict a population with structured biomass composition and
cell division in the environment of a well-mixed homogeneous bioreactor. Due to the high com-
putational effort of solving a population balance equation, a second segregated model framework
was proposed, which is a Euler-Lagrange compartment approach, where the biological phase is
represented by trackable particles. Each particle was equipped with the coarse-grained model
to describe the intracellular response to extracellular conditions. The finding of two time scales
in case of unbalanced cells showed the necessity to include intrinsic noise, in order to maintain
different time scales in cellular response and decouple the cellular state from the local concentra-
tions in the liquid phase. Through studying various examples of scale-down bioreactor systems,
it was revealed that the magnitude and frequency of external perturbations, combined with
randomization of properties at birth, favors the emergence of subpopulations. Experimental
data from an L-phenylalanine production process were taken as an exemplary bioprocess, which
showed a good agreement between simulation and experimental data.
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1 Introduction: Population heterogeneity in
bioprocesses

Independent of the studied organism, population heterogeneity is observed in all bioprocesses
even in homogeneous environments. It is especially associated to be a consequence during
the upscaling of a bioprocess to an industrial-scale bioprocess, where concentration gradients of
process parameters arise from mixing insufficiencies due to higher viscosities and higher volumes.
Therefore, single cells are exposed to environmental changes [32, 38] and increased expression of
genes associated with stress have been observed [113]. An originally isogenic monoculture can
then evolve to a culture with different phenotypes to cope with this dynamic environment [171],
leading to possibly reduced yield, productivity, growth and increased by-product formation [57].
But on the other hand, population heterogeneity can also result in cells with improved fitness
due to a higher stress tolerance from adapting to the fluctuating environment. Even though
the phenomenon of population heterogeneity is well-known, the origins and mechanisms require
a deeper understanding. Gaining more knowledge about the changes of the individual cells
and their interaction with the environment, can therefore be beneficial to the optimization of
bioprocesses [32, 17].

The origins and influences of population heterogeneity can be divided into two classes: intrinsic
and extrinsic. Intrinsic heterogeneity has its sources in the stochasticity of gene expression and
biochemical reactions. Due to low numbers in cellular components, especially reactants like
DNA structures, promoters, mRNA and some proteins, fluctuations occur and largely impact
the dynamics of the population [69]. Furthermore, cellular processes such as growth, replication
and cell division contribute to differences between cells as well [65]. During cell division the
molecules are separated randomly, resulting in so-called partitioning errors [168, 22, 99]. Thus,
observed noise in RNAs and proteins is a consequence of both noise in gene expression and par-
titioning errors and the origins are difficult to retrace [65]. As intrinsic heterogeneity, regardless
of its source, is not affected by conditions of the environment, it occurs even in homogeneous
environments [29, 2]. Extrinsic heterogeneity originates from changes in the environment includ-
ing gradients in substrate, temperature and oxygen. In industrial-scale bioreactors the substrate
concentration can range between the concentration of the feeding solution to absolute substrate
exhaustion. While the former arises mainly from insufficient mixing, the latter is formed because
of a disparity between mixing and nutrient uptake. Therefore, cells present in the bioreactor
may move between one extreme to another and back leading to different cell compositions of
the population as response and ultimately to fluctuating growth rates [32, 73, 57, 84].

It is assumed that cell populations in bioreactors use the same strategies as in natural habitats
to cope with a dynamic environment, as the population distributions resemble each other. The
strategies can be divided into categories.

On one hand, noise in gene expression can result in population heterogeneity, often manifesting in
multimodal distributions of cell characteristics, and can appear even in stable environments [63].
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1 Introduction: Population heterogeneity in bioprocesses

The sources of noise can be divided into intrinsic noise, originating from the randomness of gene
expression due to low amount of reacting molecules, and extrinsic noise, which arise from the
interaction of the cell with global cellular and environmental factors [57, 48]. In E. coli , at low
levels of gene expression, intrinsic noise is the driving force in distribution of gene expression,
whereas at high expression levels extrinsic noise dominates [160]. It is suggested, that gene
expression noise is used as a regulatory mechanism to enhance population robustness [148, 120].

Additionally, in case of bet-hedging population heterogeneity occurs prior to a change in the
environment. This ensures that some individuals of a cell population can survive future envi-
ronments even though it may be disadvantageous for the current environment. Thus, rather
than being a response to a certain environmental change, it spreads the risk in order to min-
imize the temporal variance of offspring numbers per individual to maximize the mean fitness
of the whole population over various environments for many generations [57, 25, 150, 2]. This
is achieved by stochastically developed phenotypes with reduced fitness in a homogeneous envi-
ronment and is predicted to be successful in case of sudden environmental changes with severe
costs for maladaptation or for infrequently changing environments [48, 80].

One special case of bet-hedging is persistence, where upon stress exposure in a fluctuating
environment the population splits into persister and non-persister cells [62]. Normally the sub-
population of persister cells is smaller and performs poorer in an environment without stress.
During stress exposure, persister cells are unaffected, whereas non-persister cells go dormant or
grow poorly [2, 90]. Interestingly, after stress removal, persister cells in a yeast population are
able to revert to fast growing cells, enabling rapid growth in the surviving cells [157]. Extrinsic
and intrinsic noise is also an important factor of persistence [159, 90].

Another special case of bet-hedging is bistability, where due to noise in gene expression the
population is divided into two stable subpopulations. Cells then belong to distinct ”ON” and
”OFF” subpopulations with different protein content, where the former state has a high and the
latter state a low protein level and are able to switch between these gene expression states [116].
The time cells spent in the two states is referred to as memory and depending on the history of
the population, cells are more likely to switch to the ”ON” state in a stress recurring environment
to improve their fitness [172, 32]. Additionally, bistability also means that cells are either in one
or the other state and cannot rest in an intermediate state [35].

The last category of population heterogeneity is division of labor which involves cell-to-cell-
interaction where diffusive molecules are interchanged. In this process, one phenotype sacrifices
some of its fitness to improve the fitness over the whole population. Thus, this strategy depends
on the neighboring cells in the environment and is especially advantageous when multiple cellular
processes are present, but not compatible or efficient in the same cell [2, 17]. During a bioprocess,
cells can employ more than one of the strategies during different environments and thus the
effects of the strategies can be superimposed.

Investigating the gradients occurring in bioreactors is a challenging task, as the complex inter-
action between the flow field in the bioreactor and the physiology of the cell population has
to be understood. Arising population heterogeneity are mostly analyzed through lab-scale ex-
periments simulating the conditions of large-scale reactors in scale-down reactors that simulate
the fluctuating environments, also called multi-compartment reactors. The advantages of scale-
down reactors are that they are an easy and cheap alternative to full large-scale experiments
and enable investigations in a well-controlled environment [57]. There are many different set-ups
for scale-down reactors: a stirred tank bioreactor (STR) with separated internal compartments,
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a STR with randomly fluctuating substrate addition, a cascade of two or more STRs, tubular
loop bioreactors and a STR coupled to one or two plug-flow reactors (PFR), where the latest
set-up is most frequently used. It simulates the gradient zone in the PFR and the well-mixed
environment in the STR [122]. With such setups, the influence of gradients of different pro-
cess parameters on population heterogeneity can be studied using reporter strains, which carry
fluorescent proteins and can directly be linked to specific cell characteristics [85, 87]. Reporter
strains are the most common tools to visualize single cell dynamics in real time, since they are
fast and non-invasive. The growth of single cells has been monitored for different growth phases
and in pulse experiments [49, 56, 149]. Reporter strains have also been used to detect cellular
stress response to various stresses, e.g. starvation and nutrient limitation, and cell robustness
for different process conditions [30]. Furthermore, they can sense oxygen limitation [43]. It
is possible to introduce several fluorescent proteins into one strain and measure different cell
characteristics at the same time [32].

In addition to insight gained through experimental work, a better understanding of the inter-
play between different variables can be achieved by employing mathematical models, which has
become a standard in process engineering. The classical approach in biotechnology is to com-
bine models describing the cellular environment in a typically well-mixed bioreactor with models
describing all the reactions related to biomass. But for the purpose of investigating population
heterogeneity, more sophisticated modeling approaches are required to capture the differences
between the cells of the population, since former models typically average the values over the
whole population, thus making it impossible to characterize the processes in single cell [4]. This
can be accomplished by employing segregated models [86, 130]. Previous studies have proposed
modeling approaches to investigate the influence of gradients present in a bioreactor on popula-
tion heterogeneity [154, 51, 112]. Here, black-box kinetics for the biomass were often assumed,
which means that intracellular reactions were not considered, only the substrate uptake and
output of the desired product [87]. The downside of a majority of those investigations is the
disregard of the different time scales of cell adaption to the environment, as they assume instant
equilibrium between the extracellular and intracellular conditions.

Additionally, we established that intrinsic noise is another important factor resulting in popula-
tion heterogeneity, which was often neglected in bioreactor studies as well [87]. Due to random
fluctuations and switches between different cell states, a deterministic approach is not suitable
and a stochastic approach has to be used. Stochastic approaches are not commonly used, as de-
terministic models are of moderate complexity and can often be analyzed directly. This does not
always apply to stochastic approaches. As intrinsic noise occurs during biochemical reactions,
models which describe the system at single-species resolution are more advantageous leading to
a higher complexity than models on population level [47, 63]. Because of their restriction and
high complexity, the analysis of the mechanisms of intrinsic noise is challenging by itself and a
combination with the influence of dynamic fluid pattern in the environment is not feasible.

The points raised motivates this work to develop a framework for studying population hetero-
geneity induced by process variations and find a middle ground in complexity to study extrinsic
and intrinsic noise. In large-scale bioreactors cells may be exposed to zones with nutrient excess
or scarcity affecting the cell state. The goal is to apply this framework to a population in a
bio-reactor system with two distinguished zones consisting of a well-mixed region and a zone
exhibiting gradients to simulate two extreme scenarios a cell encounters.

The upcoming chapters are structured as follows: In Chapter 2 the theoretical background and
methods, including the most important mathematical concepts and tools, used in this work

3



1 Introduction: Population heterogeneity in bioprocesses

Figure 1.1: Model approaches to describe population heterogeneity proposed in this work: A model
for the intracellular network is introduced and integrated into two separate segregated ap-
proaches: a population balance equation and an discrete approach, which is coupled with
an environment compartment model, resulting in an Euler-Lagrange approach.

are explained. As a foundation for segregated models, a deterministic model describing micro-
bial growth in form of a coarse-grained model based on strict mass conservation is established
in Chapter 3. Several properties of the coarse-grained model are addressed and the model is then
applied to a L-phenylalanine production process, which serves as an exemplary biotechnological
production process. The description of the intracellular network is integrated into a population
balance equation (PBE) model, which is a dynamic, continuous and segregated approach, in
Chapter 4. Due to the challenging nature of a PBE, we focus on cell division as source for in-
trinsic noise. The influence of cell division is investigated for a fed-batch process and compared
to a model based on average values. A second segregated approach is proposed in Chapter 5
which is an Euler-Lagrange approach. In contrast to the PBE, this approach is discrete, as the
cells are considered to be discrete entities, which are equipped with an intracellular network
established in Chapter 3. Here, the influence of extrinsic and intrinsic noise due to cell division
is investigated. Extrinsic noise is implemented through the simulation of the hydrodynamics of
a bioreactor using a compartment model (CM) approach. Then, various examples of scale-down
bioreactor studies are described and the resulting cell property distribution analyzed. The pre-
sented model approaches are pictured in Figure 1.1. Chapters 3-5 close off with a short summary
and discussion and Chapter 6 provides an overall discussion of the results and an outlook on
future directions.
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2 Theoretical background and methods

In this chapter, the most important definitions, terminology and methods used in this work are
introduced to describe population heterogeneity in a dynamic environment of a bioreactor. The
focal point of this study lies in the description of bacterial growth and, in particular, the interplay
between the environment perceived by the cells and the cellular state. Mathematical models
can take many different forms such as dynamical systems, differential equations and statistical
models. As we are especially interested in the behavior of a system over time, we have to
utilize dynamic models, which are typically represented by differential equations. Deterministic
models form a common starting point for describing a system of interest. Thus, the chapter
starts with an introduction into deterministic models and continues with the formulation of a
mass conservating model approach for microbial growth. The set of mass balance equations is
then complemented by equations describing the environment of a bioreactor.

In general, one can classify mathematical models for cell populations into unsegregated/seg-
regated and unstructured/structured models [153]. The simplest case of an unstructured and
unsegregated model considers a homogeneous population of averaged cells, while the most com-
plex case, segregated and structured models, describe a heterogeneous population of single cells
taking into account a cellular network with more than one variable [45]. There are two general
approaches that can quantify the degree of heterogeneity with special focus on dynamic changes:
PBE models [107, 86, 4, 109, 97], and Euler-Lagrange models [82, 81, 27, 79, 51], where the first
approach is a continuous and the latter a discrete approach [58]. Both approaches are introduced
here as well. Additionally, the concept of a CM approach for the hydrodynamics of a bioreactor
is presented. An overview of the approaches is depicted in Figure 1.1.

2.1 Definition of a deterministic model

A deterministic model is based on a set of assumptions and rules used to describe the relation-
ships between the variables of the system. For a given set of input, it produces the same output
repeatedly, thus it is a non-probabilistic approach. ODEs are the most prominent deterministic
models, which describe the evolution of a variable with respect to a second variable such as time
or space. If the dynamics of several variables are considered, one speaks of an ODE system. A
first-order ODE system has the following general description

ċ = f(c), (2.1)

where c ∈ Rr is a vector containing the variables of interest and f describes its rate of change
with respects to a quantity of interest. Here, this variable is the time t. Thus, we use the
common notation of ċ to indicate the time derivative. The term ”first-order” indicates, that the
function f is only a function of c and t and does not contain derivatives of c, which would make
the ODE system a higher-order problem.
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2 Theoretical background and methods

2.1.1 Steady states

Often times, one is not interested in the exact solution, but in the long-time behavior or in the
so-called steady states or stationary solution. A steady state s is given if the state fulfills the
equation

ċ = f(s) = 0. (2.2)

If this state is reached, the system does not leave this state, as the rate of change is zero at this
point. In the following, we want to study the solution space of the steady states for a linear
ODE system, which reads

ċ = A c, (2.3)

where c ∈ Rr and A ∈ Rm×r. The steady state space of this system is given by the kernel or
null space of A. In the scope of this work, we use the term ”kernel”. It is formally defined as

ker(A) = {v | A v = 0}. (2.4)

The kernel is a linear subspace and therefore has the following three properties:

1. ker(A) always contains the zero vector.
2. If v ∈ ker(A) and w ∈ ker(A), then v + w ∈ ker(A).
3. If v ∈ ker(A) and a scalar k, then k v ∈ ker(A).

Additionally, we introduce the term ”linear independence”. A set of vectors v1, v2,...,vk is said
to be linear dependent if ∃ a1, a2,..., ak ∈ R, but not all zero, such that

a1 v1 + a2 v2 + ...+ ak vk = 0. (2.5)

If no scalars can be found, the set of vectors is linearly independent. The concept of linear
independent vectors is central for the definition of dimension of a vector space V . The dimension
of a vector space is given by the number of vectors of its basis. A basis B of vector space V
contains a set of vectors, where each element of V can be written as a finite linear combination
of vectors of the basis B. The elements of a basis are linearly independent and are said to span
the vector space V . A vector space V may have several bases, but the dimension of the vector
space remains the same.

Going back, to the ODE system in Eq. (2.3), the matrix A is a map that transforms the vector c
from the vector space V , called domain, into a vector A c = c′ ∈ W . We have introduced the
term ”kernel” which is a linear subspace of the domain V . A subspace of W is called image of
map A such that

Im(A) = {w | A v = w, v ∈ V }. (2.6)

Now that the solution space of the steady states have been characterized, further insight into
the behavior of the system can be gained by analyzing the stability of a steady state. Arnold [6]
provides a few definitions:

Steady states are called stable if ∀ϵ > 0: ∃δ > 0, which is independent from t, such that
∀c0 with ∥co∥ < δ1 the solution ϕ of system (2.1) with initial condition ϕ(0) = c0 can be

1Euclidean norm: For c = (c1, ..., cn)
T : ∥c∥2 = c21 + ...+ c2n.
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2.1 Definition of a deterministic model

extended for all t > 0 and satisfies ∥ϕ(t)∥ < ϵ ∀t > 0. Thus in other words, the solutions whose
initial values tend to the steady state, converge uniformly for t→ ∞ to a constant solution.

A steady state is called asympotically stable if it is stable and

lim
t→∞

ϕ(t) = 0, (2.7)

for every solution with ϕ(0) = 0 lying in a sufficiently small neighborhood of zero. The existence
of asympotically stable steady states therefore provides us some knowledge about the long-term
behavior of a system. If the steady state is not stable, it is called unstable. In case of a
linear ODE system (2.3) with quadratic A, a steady state c = 0 is asymptotically stable if all
eigenvalues λi of A have negative real parts Re(λ) < 0.

In general, the system of interest is not linear. In this case, the system can be linearized in the
close neighborhood of a steady state c0 using the Jacobian matrix J0

J0 =
∂f

∂c

∣∣
c=c0

=



∂f1
∂c1

∂f1
∂c2

. . . ∂f1
∂cr

∂f2
∂c1

∂f2
∂c2

. . . ∂f2
∂cr

...
...

. . .
...

∂fr
∂c1

∂fr
∂c2

. . . ∂fr
∂cr


∣∣∣∣
c=c0

, (2.8)

The linearization is valid only in the close neighborhood of the steady state c0. For the stability
analysis, the eigenvalues of J0 have to be computed. Again, all eigenvalues have to exhibit
negative real parts, in order for c0 to be asymptotically stable. Even if one eigenvalue has a
positive real part, the steady state is unstable. There are other possibilities instead of calculating
the steady states such as the Routh-Hurwitz criterion, but we will not got further in to these
methods.

2.1.2 Time scales of a model

In biological systems, the dynamics of involved components may occur on different time scales.
Reaction rates involving macromolecular components, such as proteins, are much slower, as their
molecular weights are much higher, than reaction rates involving lowmolecular components, such
as metabolites [40, 125, 110]. In order to measure this, different concepts of time scales can be
employed. One possibility is to investigate the relaxation time of a variable. Relaxation is
defined as the return of a system to its equilibrium, if it exists, after being perturbed. Each
process can be then categorized by a time scale indicating its relaxation time τr. The simplest
function describing a relaxation is

f(t) = e−
t
τr . (2.9)

In this case, τr indicates the time at which f reduces its value to 1/e times of its initial value.
This function is the solution of the following ODE

ẋ = −λ x. (2.10)
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2 Theoretical background and methods

For a general ODE with an asymptotically stable steady state s0 ∈ Rn the rate of change from
a point s towards the steady state is given by

d(s− s0)

dt
= J0(s− s0), (2.11)

where J0 is the Jacobian matrix, introduced earlier.

Let λi for i ∈ {1, ..., n} be the eigenvalues of J0. Thus, the solution of system (2.11) for the
components of (s− s0) is given by

(si − s0,i)(t) =
n∑
j=1

Cje
λjt. (2.12)

Since s0 is an asymptotically stable steady state, the eigenvalues λi are negative and (2.12) is
an exponentially declining function. If the components of s are independent from each other,
the relaxation time of each component is given by τr = 1/λi, otherwise the relaxation time is
determined by the superposition of the exponential functions [162].

In this work, we examine two scenarios and recover the relaxation times for these scenarios. In
the first scenario, the relaxation time of the variables of the system towards a steady state after a
process parameter is perturbed, e.g. substrate concentration in the environment, is investigated.
The system is in equilibrium, while the environment is perturbed. In the second scenario, the
environment stays constant and the system is perturbed to exhibit an arbitrary state and its
relaxation time towards the steady state is recovered. These relaxation times give us insight
into the behavior of the system upon perturbations of different origins, external and internal.

2.2 A mass conservative model for microbial growth

Growth of microbial populations can be modeled in a various ways. In the simplest case, the
growth can be described by a deterministic ordinary differential equation (ODE)

µ =
ṁX

mX
. (2.13)

where µ is the specific growth rate at which the population of cells increase by means of its
expanding biomass mX in grams (g).

2.2.1 Description of a intracellular network

Eq. (2.13) does not describe the biochemical processes which lead to cellular growth and a struc-
tured, but not segregated, approach can be utilized. The biomass is represented by an averaged
cell population and the metabolism of an average cell is characterized by a small network. For
this network, the biomass of the cells mX is structered into NC molecular components Ci with
weights mCi in grams (g)

mX =
∑
i

mCi i ∈ {1, ..., NC}. (2.14)
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2.2 A mass conservative model for microbial growth

Via the biochemical reactions, which form the intracellular network of the cells, the molecular
components Ci are continuously produced and consumed, leading to an increase of the total
biomass mX . As the biochemical reactions are based on physical encounters in the cells [55], it
is more appropriate to express the molecular components Ci by their intracellular concentration

Ci =
nCi

mX
, (2.15)

where nCi is the molar mass of the component Ci. The relation between the mass mCi and the
molar mass nCi is given by the molecular weight of the component wCi , which is a fixed number,
leading to

1 =
∑
i

wCi Ci. (2.16)

The temporal change of the intracellular concentrations are given by means of a mass balance.
They are dependent on the structure of the intracellular network, which is given by a stoichio-
metric matrix N , and the reaction rates r, indicating the rates at which a component is produced
or consumed. Therefore, the dynamics can be written as

ċ = N r − µ c, (2.17)

where c is the vector containing all NC components, r defines the vector of Nr reaction rates
and N is a stoichiometric matrix with the dimension NC × Nr. Nij corresponds to the net
change number of component i through the reaction j, meaning, for positive Nij component i is
produced by reaction j, while for negativeNij component i is consumed. Thus, the row vectorNi

contains all stoichiometric coefficients of all reactions of the intracellular network concerning
component i. Therefore, the first term of Eq. (2.17) describes the change in component i due
to the intracellular network. The second term is a dilution term caused by the growth of the
cells. From Eqs. (2.13)-(2.17) another expression for the growth rate can be obtained

µ = wT N r, (2.18)

where w is a vector containing the molecular weights wi from Eq. (2.16) of all components Ci.
The reaction rates r may be dependent on the components Ci. In this case, it would be more
appropriate to write r(c). It is important to note here, that in this approach all cells are averaged
and the reaction rates do not differ between the cells. From Eq. (2.18) it is apparent that the
growth rate is the net rate of accumulation of the intracellular components Ci based on the
structure of the metabolic network scaled with their molecular weight wi.

2.2.2 Description of the environment of a bioreactor

The microbial population does not grow independently, but in an environment, which means in
the context of biotechnology that it corresponds to a bioreactor with a volume VR, filled with
various extracellular concentrations S, such as substrate and products. These concentrations
affect the metabolic network or are produced by it, leading to an interaction between the micro-
bial population and the environment. The dynamics of the extracellular concentrations S are
described by

Ṡ = rS,ex − nS ϕ(c,S) X, (2.19)
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2 Theoretical background and methods

where rS,ex is the term containing the net rate of change in S, which is independent of the
interaction with the cells, such as dilution and feed, depending on the bioprocess. nS is a
stoichiometric vector, containing the net change numbers of S. X = mX/VR is the biomass
concentration in the bioreactor and its temporal change is

Ẋ = (µ− rX,ex) X, (2.20)

where rX,ex accounts for changes in the biomass concentration unrelated to cellular growth.
ϕ(c,S) is the consumption or production rate of S due to the metabolic network. It is a
subset of the reaction rate vector r in Eq. (2.17), containing those reactions where intracellular
components and extracellular components are exchanged. Due to this relation the sign of ϕ(c,S)
is chosen.

Through Eqs. (2.19) and (2.20), different process designs can be described. For batch-processes,
where the reactor volume stays constant over the process (V̇R = 0) without additional substrate
feed, the terms rS,ex and rX,ex are zero. In case of a fed-batch process with a feeding rate of qin,
feed concentration Sin, the equations for the environment read

V̇R = qin

rS,ex =
qin
VR

(Sin − S)

rX,ex =
qin
VR

. (2.21)

In a chemostat the culture is supplied through a feed with feeding rate qin, while culture liquid
is removed at the same rate keeping the volume of the reactor constant. The equations in this
case are the same as in (2.21), except for the equation for VR, which derivative is zero. The
term qin

VR
is usually denoted as D and represents the dilution term.

2.2.3 Coarse-grained models

Modeling of microbial cells can vary in complexity, ranging from whole-cell models with hundreds
of individual reactions and components, to pathway models, which describe specific pathways in
detail to so-called coarse-grained models [3]. Coarse-grained models only comprise a low number
of components and reactions, thus individual molecular components are lumped together to form
a few classes of components with their respective macroreactions. The kinetic parameters are
obtained by estimation from literature data or by regression from experimental data.

Typically, coarse-grained models involve a self-replicator system. The simplest self-replicator
system contains a precursor and a second component, e.g. ribosomes, which synthesizes itself
from the precursor, providing the name for the system [106]. Thus, the simplest microbial
growth model involves the conversion of external substrate into a metabolic precursor and sub-
sequent synthesis of a macromolecule as seen in Figure 2.1A. Cellular processes are carried out
by proteins and are accelerated with increasing protein levels. Protein translation are depen-
dent on the level of ribosomes, which have a self-replicating nature. Therefore, the synthesis
of ribosomes competes with protein production, providing a limit for the increase in protein
production [70]. For this reason, the simplest coarse-grained model should be extended to ac-
count for ribosomal and non-ribosomal proteins (Figure 2.1B). In order to investigate additional
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2.2 A mass conservative model for microbial growth

Figure 2.1: Simplest self-replicator system (A), simplest coarse-grained model of a cell including a self-
replicator system with cells comprising metabolites, ribosomes and other proteins (B).

factors affecting cellular growth, the simple coarse-grained model can easily be adapted to suf-
fice the additional requirements. Self-replicator models have been employed under the aspect of
overflow metabolism [106, 10], a closer investigation into different growth conditions [19, 66, 163]
and the adaptation to environmental changes [44, 111, 166].

A common way to incorporate more detail into the coarse-grained model is to consider different
protein fractions depending on their cellular function. The first fraction has been already men-
tioned: the ribosomal proteins R. Scott et al. [140] showed that the rate for protein synthesis is
linearly correlated to the ribosomal fraction R. Another protein fraction T is dedicated to the
central metabolism, which we simply call transporter proteins in the course of this work. This
protein fraction affects the transport of substrate into the cell. Several works consider models
with only these two protein fractions, while some also consider an additional fixed protein sector,
representing the remaining proteins, for the sake of completeness. Those models were already
able to show interesting dynamics and behavior with this simple structure [174, 140, 19, 44, 5].
This model structure already poses an allocation problem, as the cells have to regulate where
to allocate their resources in order to achieve maximal growth

max
T,R

µ

subject to
0 = N r − µ c
µ = wT N r
0 = P −R− T
r = f(T,R).

(2.22)

In order to investigate specific conditions and scenarios, the fractions or cell components can
be refined further to include fractions reacting to different limitations, such as catabolic and
anabolic limitations [66], a component for ATP to investigate the energy fluxes [96] or a more
detailed cell description to include rRNA [158].

2.2.4 General solution of a system of equations

In the course of this work, the steady states of the intracellular network are investigated. Usually,
in classic flux balance analysis, the dilution term in Eq. (2.17) is neglected and only consists
of the term with the stoichiometric matrix N . It is a constraint-based model approach, where
the reaction vector r, called flux vector, is calculated at steady-state under given constraints,
e.g. enzymatic capacity limitations or experimentally determined maximal uptake or production
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2 Theoretical background and methods

rates [119]. Thus, the reaction rates of interest fulfill the equation

N r = 0. (2.23)

The stoichiometrix matrix N is not typically quadratic, as it usually contains more unknown
reaction rates than equations. Without neglecting the dilution term, the steady state solutions
are not fully covered by Eq. (2.23), this will be investigated in the scope of this work in Sec-
tion 3.2.1. For this, we need the concept of pseudoinverses. We consider a system of linear
equations

A x = b (2.24)

with A ∈ Rm×n and b ∈ Rn. In this case, the solutions can be calculated by

x = A+ b+ (Idn −A+A)s s ∈ Rn, (2.25)

where Idn is the identity matrix of dimension n, s and arbitrary scalar and A+ is the pseudoin-
verse of A. Pseudoinverses are often referred to as Moore-Penrose inverse. It is the most widely
known generalization of the inverse matrix [12]. In case that A is invertible, the pseudoinverse
is its inverse A−1. A pseudoinverse A+ ∈ Rn×m of A ∈ Rm×n has to satisfy the following
conditions, also known as Moore-Penrose conditions [124]:

1. AA+A = A (A+ maps all column vectors of A onto themselves)
2. A+AA+ = A+ (A+ acts like a weak inverse)
3. (AA+)T = AA+ (Hermitian)
4. (A+A)T = A+A (Hermitian)

If A has linearly independent columns, A+ can be expressed as

A+ = (ATA)−1AT (2.26)

and if A has linearly independent rows, as

A+ = AT (AAT )−1. (2.27)

In the first case, the pseudoinverse is a left inverse, meaning A+A = Id, and in the second it
is a right inverse, meaning AA+ = Id. The pseudoinverse is often used to find a ”best fit”,
using least squares solution, in case the system is not solvable, or the minimum Euclidean-norm
solution, in case of infinite solutions, as

∀x ∈ Rn: ∥Ax− b∥ ≥ ∥Az − b∥, z = A+b, (2.28)

where equality only holds if x = A+ b+ (Idn −A+A)s for any vector s ∈ Rn [127]. Solutions of
Eq. (2.24) exist if and only if AA+b = b and is unique if and only if A has full column rank.

2.3 Population balance equation models

A PBE describes of the evolution of a population of particles, such as droplets or cells, which
interact with their environment. As the name suggests, it is based on a balance on the num-
ber of particles of a particular state. These models take into account the various processes
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2.3 Population balance equation models

Figure 2.2: Processes involved in a PBE

that can affect the population, such as nucleation, aggregation, cell division, birth, death and
growth (Figure 2.2). In this work, we are investigating bacterial cell populations and therefore
use the term ”cells”. For bacterial cell populations only cell division, birth, death and growth
processes are relevant. Nucleation and aggregation can occur e.g. in droplets, but not in bacte-
rial cell populations. The main idea of PBE is that individual cells are differentiated by a state
vector of variables that characterize the cell (age [11], size [93, 24], mass [92, 105, 86], intracellu-
lar concentration of a certain cell component representing a cell’s state [126, 145], etc.), allowing
a segregated view on the population. The state vector generally contains continuous variables,
marking this a continuous modeling approach to address population heterogeneity. Depending
on the number of cell properties, population balance equation models are classified into single-
or multivariate models. In general, PBE are integro-partial differential equations, which are
equations that involve both integrals and derivatives of a function, making this approach a
continuous modeling approach to investigate population heterogeneity.

2.3.1 General formulation

The state vector of a cell can be divided into internal properties ξ ∈ Ωξ, which represent the state
of the cell, and external properties x ∈ Ωx, which describe the physical location of the particle
in the environment [133, 132]. Ωξ is the domain of the internal properties with dim(Ωξ) = d
and Ωx the domain of external variables with dim(Ωx) = dx. These domains can be bounded
or have infinite boundaries. In general, the PBE for a population of cells has the following
formulation proposed by Ramkrishna [131]

∂N(ξ, x, t)

∂t
+∇ξ[rξ(ξ, x)N(ξ, x, t)] +∇x[rx(ξ, x)N(ξ, x, t)], = h(ξ, x, t) (2.29)

where N(ξ, x, t) is the number density function, meaning N(ξ, x, t)dVξdVx is the number of cells
at time t with states between (ξ, x) and (ξ, x)+∆(ξ, x). dVξdVx is the infinitesimal volume in the
cell state space. The second and third term on the left account for the loss of cells in state (ξ, x)
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due to change in the internal property ξ with rate rξ(ξ, x) and due to transport in the spatial
space x with velocity rx(ξ, x). The function h(ξ, x, t) represents the net rate of appearance of
new cells with state (ξ, x). Thus, h(ξ, x, t) can include terms related to cell division, birth, death
and loss of cells due to dilution. In case of cell division of a cell, or breakage, as it is usually
referred to in the field of PBE models, and consequently birth of two daughter cells, the net
term reads

h(ξ, x, t) = 2

∫ ξmax

ξ
Γ(ξ′, x)p(ξ, ξ′, x)N(ξ′, x, t) dVξ′ − Γ(ξ, x)N(ξ, x, t), (2.30)

where Γ(ξ, x) is the division rate and p(ξ, ξ′, x) the partition probability density where a cell
with state vector (ξ′, x) produces two daughter cells with state (ξ, x). The partition probability
function is symmetric p(ξ, ξ′, x)= p(ξ′ − ξ, ξ′, x) since there is no loss of ”mass” during cell
division. Both functions have to be non-negative. Under the assumption that cells divide into
two identical daughter cells, the partition probability density is

p(ξ, ξ′, x) =

d∏
i=1

δ

(
ξi −

ξ′i
2

)
. (2.31)

Here, δ(·) is the Dirac delta function, which assumes the value ∞ for 0 and 0 otherwise. With
this partition probability density, the net term (2.30) simplifies to

h(ξ, x, t) = 2d+1 Γ(2ξ, x)N(2ξ, x, t)− Γ(ξ, x)N(ξ, x, t). (2.32)

This assumption has been compared to unequal partitioning for a single-variable case as well as a
three-variable test case by Matzaris et al. [101, 100]. For equal partitioning the number density
function exhibits a periodic behavior, which has been shown mathematically and explained for a
single-variable case by Diekmann et al. [33] and further verified numerically [92, 101, 100]. The
different moments of the particle density function play an important role, since they correspond
to physical properties such as the total cell number, total cell mass, etc. [39, 75, 152]. The p-th
order moment of N(ξ, x, t) is given by

Mp1,...,pd(t) =

∫
Ωξ

∫
Ωx

d∏
i=1

ξpii N(ξ, x, t) dVxdVξ, (2.33)

where pi is a non-negative integer. The total number of cells Nt(t) at time t, which is the zeroth
moment of N(ξ, x, t), is given by

Nt(t) =

∫
Ωξ

∫
Ωx

N(ξ, x, t) dVxdVξ. (2.34)

The temporal change of the total number of cells is given by

dNt(t)

dt
=

∫
Ωξ′

Γ(ξ′, x)N(ξ′, x, t) dVξ′ . (2.35)

For a single-variable PBE with the cell mass as descriptor variable, the first moment corresponds
to the total cell mass of the population.
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In case of a multi-variable PBE, where each entry of ξ represent a different cell property, the
first moment of a specific property ξi is the total content of that particular property

M0,...,1,...,0(t) =

∫
Ωξ

∫
Ωx

ξiN(ξ, x, t) dVxdVξ, (2.36)

where 1 is in the i-th position.

In order for the model (2.29) to be well-defined, initial and boundary conditions are necessary.
The initial condition is given by the initial population distribution, which has to be specified for
the internal properties as well as the external variables at t = 0

N(ξ, x, 0) = N0(ξ, x). (2.37)

Depending on the structure of the PBE, several types of boundary conditions can be applied.
Dirichlet boundary conditions hold when fixed values are assigned to ∂Ωξ and ∂Ωx. If the fluxes
at the boundary of the state vector space are defined, then the solution satisfies a Neumann
boundary condition. For unbounded state vector spaces the fluxes at infinity vanish, as they do
not represent cell sources or sinks

∇ξ[rξ(ξ, x)N(ξ, x, t)] → 0 for |ξ| → ∞,

∇x[rx(ξ, x)N(ξ, x, t)] → 0 for |x| → ∞. (2.38)

In a closed system, the fluxes at the boundaries are zero

∇ξ[rξ(ξ, x)N(ξ, x, t)] = 0 ξ ∈ ∂Ωξ,

∇x[rx(ξ, x)N(ξ, x, t)] = 0 x ∈ ∂Ωx. (2.39)

An open system is given if at parts of the boundary cells can originate. This can be the case, if
cells enter the system as part of an particle-fluid mixture for example.

In this work, we consider a cell population interacting with the environment of a bioreactor.
Thus, the PBE (2.29) has to be rewritten to account for the dependence on the environment
with nutrient and extracellular concentrations S

∂N(ξ, x, t)

∂t
+∇ξ[rξ(ξ, x,S)N(ξ, x, t)] +∇x[rx(ξ, x,S)N(ξ, x, t)] = h(ξ, x,S, t) (2.40)

The equation of the external concentrations S, which has been introduced for a averaged cell
model (2.19), is adjusted to be

Ṡ = rS,ex +

∫
Ωξ

∫
Ωx

ϕ(ξ, x,S)N(ξ, x, t) dVxdVξ (2.41)

where ϕ(ξ, x,S) is the production or consumption rate of the external concentrations S and rS,ex
again the net rate of change in S. In this case, ϕ(ξ, x,S) also has to include a factor for the
cell’s mass.
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2.3.2 Numerical methods

One challenge of PBE models is that analytical solutions are rarely available and numerical
methods have to be employed to solve the PBE. Possible methods include the method of suc-
cessive approximations [132], the method of moments, which is useful if one is only interested
in the evolution of moments leading to a better trade-off between accuracy and numerical ef-
fort [9, 94, 37], finite element methods [117, 95, 136], finite volume schemes [20, 137, 24] and
sectional methods [77]. Finite element methods are based on the discretization of the domain
into smaller elements, which are finite, and the employment of Ansatzfunctions to solve the prob-
lems for the finite elements [175]. Finite volume methods solve the problem by using volume
integrals and evaluating the fluxes at the surface of each finite volume, resulting in a method
based on conservation of mass, momentum and energy within the finite volumes. Thus, the
solution is approximated through the usage of the average values of the solution over the fi-
nite volumes [89]. Sectional methods divide the population into smaller sections and solve the
PBE independently for each section. They have been mostly employed to approximate PBE
for aggregration-breakage processes [59, 164]. The choice of method depends on the processes
which are considered by the PBE model. In the scope of this work, we consider a population of
cells that are growing and dividing in an environment S without external variables x. Therefore,
we neglect the spatial coordinates x of the cells and assume a homogeneous environment. For
these type of models, the finite volume method with the inclusion of a cell average technique has
been proposed in literature [76, 137, 24]. Finite volume methods have the advantage of being
conservative and require less computation time than e.g. the fixed pivot technique, which has
been proposed by Kumar and Ramkrishna [77]. They are often used to solve conservation laws.

Finite volume method for a bivariate PBE

In the following, a finite volume method for a bivariate PBE is introduced. The domain
Ωξ = [0, ξ1,max] × [0, ξ2,max] is considered to be finite for the computation and is discretized
into a equally spaced 2D-grid, where each grid cell has the size ∆ξ1×∆ξ2. Instead of an equally
spaced grid space, there are also other possibilities to discretize the space, e.g. geometric spac-
ing and even moving boundaries [78]. A geometric grid space can be an appropriate choice for
breakage and aggregation processes. But as cell growth is considered, an equally spaced grid is
a better fit. Each grid cell is represented by its grid cell center χij = (ξ1,i, ξ2,j) for i ∈ {1, ..., I}
with I =

ξ1,max

∆ξ1
and j ∈ {1, ..., J} with J =

ξ2,max

∆ξ2
, whose cell faces in ξ1 direction are given by

ξ±1,i = ξ1,i ± ∆ξ1
2 and in ξ±2,j = ξ2,j ± ∆ξ2

2 in ξ2 direction. As we only discretize the state space
and not the temporal space, the numerical scheme is semi-discrete. The cell average value of
the number density n̂ij(t) of the grid cell represented by χij at time t is defined as

n̂ij(t) =
1

∆ξ1∆ξ2

∫ ξ+1,i

ξ−1,i

∫ ξ+2,j

ξ−2,j

N(ξ1, ξ2, t) dξ1dξ2 (2.42)

and the total number of cells in each grid cell as

N̂ij(t) = ∆ξ1∆ξ2 n̂ij(t) =

∫ ξ+1,i

ξ−1,i

∫ ξ+2,j

ξ−2,j

N(ξ1, ξ2, t) dξ1dξ2. (2.43)

For simplicity reasons N̂ij(t) will be denoted as N̂ij and n̂ij(t) as n̂ij .
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2.3 Population balance equation models

The two processes of increase in the space of the internal variables ξ and cell division can be
split and handled as two separate processes

∂N(ξ, t)

∂t
+ Increase in ξ = Cell division. (2.44)

Increase in the space of internal variables ξ

For the rate of change in the internal space a first-order upwind scheme is presented [128, 16].
The term ”upwind scheme” is used for a class of numerical schemes for the solution of hyperbolic
partial differential equations and was introduced by Courant et al. [23]. It involves estimating
the derivatives by taking backward differences, thus resulting in estimations biased to more
”upwind” points suitable for positive advection [88]. The accuracy of this scheme is determined
by the estimation of the fluxes at the grid-cell faces [128]. The scheme is said to be first-order
accurate because the accuracy of the solution is determined by the first derivative of the solution
with respect to time. The PBE (2.29), considering only positive rate of change in ξ using a cell
average finite volume technique, can be rewritten as

dN̂ij

dt
+

∫ ξ+1,i

ξ−1,i

∫ ξ+2,j

ξ−2,j

∂

∂ξ1
(rξ1(ξ1, ξ2,S)N(ξ1, ξ2, t)) +

∂

∂ξ2
(rξ2(ξ1, ξ2,S)N(ξ1, ξ2, t)) dξ1dξ2 = 0.

(2.45)

The first term can be written as∫ ξ+1,i

ξ−1,i

∫ ξ+2,j

ξ−2,j

∂

∂ξ1
(rξ1(ξ1, ξ2,S)N(ξ1, ξ2, t)) dξ1dξ2 = ∆ξ2

(
(rξ1N)i+j − (rξ1N)i−j

)
, (2.46)

where the first term (rξ1N)i+j corresponds to the flux leaving the grid cell ij in ξ1 direction,
while the second term (rξ1N)i−j is the influx of the grid cell in ξ1 direction . Using a first-order
upwind scheme the flux terms at the cell faces are expressed as

(rξ1N)i+j = rξ1,i+jn̂ij (rξ1N)i−j = rξ1,i−jn̂i−1,j . (2.47)

One has to note that in Eq. (2.47) n̂ij is the cell average number density, while the values of
the rate of change term rξ1,i+j are computed at the point (ξ+1,i, ξ2,j). Analogously, the fluxes in
ξ2 direction can be expressed as

(rξ2N)ij+ = rξ2,ij+ n̂ij (rξ2N)ij− = rξ2,ij− n̂i,j−1. (2.48)

In order to obtain higher order accuracy, the fluxes can be interpolated piecewise polynomialy
instead of a first-order upwind scheme

(rξ1N)i+j = rξ1,i+j

(
n̂ij +

1 + κ

4
(n̂i+1,j − n̂ij) +

1− κ

4
(n̂ij − n̂i−1,j)

)
κ ∈ [−1, 1], (2.49)

where we obtain an second-order one-sided upwind scheme for κ = −1 and a second-order central
scheme for κ = 1.
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2 Theoretical background and methods

Cell division

Multidimensional systems pose a challenge when dealing with cell division and preserving its
moments. In a one-dimensional case, the first moment corresponds to the total mass of the
cell system. In a multidimensional system, the d-th order moment M1,...,1(t) represents the
hypervolume of the cells if the properties are sizes, as length, width, etc. This concept can-
not be applied to general cell properties, which can include internal cell concentrations. In
order to ensure conservation of the total content, the sum of first-order moments has to be
conserved. Depending on the choice of division rate Γ(ξ, x) and partition probability density
function p(ξ, ξ′, x), cell division processes can lead to mass-loss in the system, which is also
known as ”shattering” [21, 151]. Therefore, Saha et al. [137] proposed a weighted finite-volume
scheme, which is able to predict the zeroth moment and first-order moments with good accuracy.
Discretizing the PBE (2.29) without the growth term, with cell division into two daughter cells
and inclusion of two weight functions for a bivariate case leads to

dN̂ij(t)

dt
=

I∑
l=i

J∑
k=j

Γ(ξ1,l, ξ2,k,S) N̂ij P(i, j|l, k) W b
lk

− Γ(ξ1,l, ξ2,k) N̂(ξ1,i, ξ2,j) W
d
ij , (2.50)

where

W b
lk =

ξ1,l + ξ2,k∑l
i=1

∑k
j=1 ((ξ1,l + ξ2,k)− (ξ1,i + ξ2,j)) P(i, j|l, k)

(2.51)

W d
lk =

W b
lk

ξ1,l + ξ2,k

l∑
i=1

k∑
j=1

((ξ1,i + ξ2,j)) P(i, j|l, k) (2.52)

and

P(i, j|l, k) =
∫ ρ1,il

ξ−1,i

∫ ρ2,jk

ξ−2,j

p((ξ1, ξ2)
T , (ξ1,l, ξ2,k)

T )dξ1 dξ2, (2.53)

as well as

ρm,il =

{
ξm,l for l = i,
ξ+m,i for l ̸= i

(2.54)

for m ∈ {1, 2}. W b
lk and W d

lk are the weight functions related to the birth and death terms,
respectively. It can be shown, that the scheme is number-preserving as well as conservative of
the total first-order moments. To combine the two processes of change in the internal space and
cell division, the schemes can simply be added as seen in Eq. (2.44).

2.4 Hydrodynamic model of a bioreactor

In order to understand the behavior of a microbial population in a bioreactor, the hydrodynamics
and mixing in a bioreactor have to be investigated and described. Computational fluid dynam-
ics (CFD) can provide a very detailed description of the liquid phase for different bioreactor
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2.4 Hydrodynamic model of a bioreactor

scales and give us more insight into the differences when scaling up a process. CFD simula-
tions are also able to help improve the bioreactor design and estimate parameters such as shear
stress, oxygen concentration and mass-transfer coefficients [72, 134, 52]. One downside of CFD
simulations is that they are computationally time consuming and simulations of a few hundered
seconds of process time can take hours. The incorporation of complex biological systems as well
as multiphase (gas-liquid, liquid-solid or gas-liquid-solid) simulations pose a very difficult chal-
lenge. Due to this problem, CM approaches, also called multi-zone or network-of-zone models,
are used to predict the hydrodynamics [165, 173, 28, 27]. Here, the volume of interest is divided
into a finite number of interconnected volumes which are considered to be homogeneous. They
were first developed in 2D [173] and then extended to 3D [64, 71]. In order to predict the
mixing behavior accurately, CFD simulations are combined with CMs, where CFD are used to
obtain the turbulent flow and developing the compartment models based on the CFD results.
The flow rates between the compartments can be obtained from CFD velocity fields [28]. CMs
require less computational effort than CFD simulations and, therefore, it is possible to include
more complex descriptions for the biophase later on [68]. This way, they form a middle ground
between ideal well-mixed bioreactor descriptions and full CFD models. In the course of this
work, CFD simulations were not necessary, as the flow between the compartments is known
through a set flow rate circulating the liquid phase in the bioreactor system.

2.4.1 Flow field of a bioreactor

In this section, we present the CM proposed by Delafosse et al. to describe the transport of the
liquid phase in a bioreactor [28]. The bioreactor with volume VR is divided into nz compartments,
where each compartment is a volume of fluid Vi with i ∈ {1, ..., nz} and therefore

∑
i Vi = VR.

Let F be a square matrix with dimension nz × nz, such that Fi,j contains the exit flow rate
from compartment i to neighboring compartment j as seen in Figure 2.3 and are set positive.
The diagonal entries Fi,i correspond to the cumulative exit flow rates of compartment i and
are set negative. In this manner, the matrix conserves the total mass in each compartment of
the bioreactor

F =


F1,1 F1,2 . . . F1,nz

F2,1 F2,2 . . . F2,nz

...
...

. . .
...

Fnz ,1 Fnz ,2 . . . Fnz ,nz

 Fi,i = −
nz∑
j ̸=i

Fi,j . (2.55)

In general, the matrix F is not constant, but is periodically updated from previously stored flow
fields, which can be obtained from CFD. This way, unsteadiness of the flow, which occur in the
impeller swept zone in the bioreactor, can be considered as well.

2.4.2 Scalar transport in the liquid phase

Let sl ∈ Rns be a dissolved species (hereafter named scalar) in the liquid phase, where sl,i is
the concentration of this scalar over a compartment i, and ns is the total number of dissolved
scalars. From the definition of the compartments and the flow rates between the compartments,
we can set up the mass balance for the scalar sl,i describing the transport of the dissolved scalar
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2 Theoretical background and methods

Figure 2.3: Flow rates between compartment i and compartment j

in the bioreactor

d(Visl,i)

dt
=

nz∑
k=1

sl,kFk,i − sl,i

nn∑
j=1

Fi,j +Φl,iVi i ∈ {1, .., nz}, l ∈ {1, .., ns}, (2.56)

where nn is the number of neighbors of compartment i. In a 3D case, the number of neighbors is
6, coinciding with the number of faces of the compartment, while in a 2D case the number reduces
to 4. The first term represents the total flow into compartment i originating from compartment k,
while the second term represents the sum of all fluxes leaving the compartment i and the third
term is the sum of volumetric source terms due to the interfacial mass transfer. From a rigourous
perspective, the multiphase nature of the bioreactor requires refering to mass transfer between
the liquid and biotic phases. Let S be a ns×nz matrix, where Sl,i contains the concentration of
scalar sl in compartment i, and Φ be a matrix with the dimension ns × nz, where Φl,i contains
the overall transfer rate for scalar sl in the compartment i. The mass balance (2.56) can be
rewritten using the matrix formulation (2.55) as

d(SV )

dt
= SF +ΦV , (2.57)

where V is a diagonal matrix with the dimension of the number of compartments nz containing
the volume of each compartment Vi on its diagonal. It is worth noting, that there is no spatial
information associated to the compartments. The index indicating the compartment of interest
is embedded in the matrix F . The non-zero terms of F through the column indices provide
the knowledge about the neighbors of any compartment i. With this information, a visual
representation resembling the physical fluid domain can be recreated. The distribution of the
scalar sl in the bioreactor can be characterized by the following quantities:

The mean volumetric concentration

s̄l(t) =
1

VR

nz∑
i=1

sl,i(t) Vi(t). (2.58)

The variance of the concentration distribution

σ2sl(t) =
1

nz

nz∑
i=1

(sl,i(t)− s̄l(t))
2. (2.59)
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2.5 Euler-Lagrange Models

While the mean volumetric substrate concentration indicates the mean environment a particle
encounters, the variance in concentration distribution provides information about the degree of
gradients in the substrate concentration.

2.5 Euler-Lagrange Models

Microbial growth and product formation is the result of a complex interplay between the ex-
tracellular environment and intracellular variables. In order to investigate this, models linking
the metabolic network and description of the bioreactor have been developed. First approaches
have been based on the assumption that liquid, gas and biophase are continuous, marking these
Euler-Euler-approaches [135, 138]. In segregated approaches of these, the biotic phase is usually
described with a PBE, which was introduced in Section 2.3, and an Euler approach for the liquid
phase. Because of the nature of the PBE, it is very challenging to incorporate a complex system
for the intracellular network involving multiple variables even for the description of a population
in a well-mixed homogeneous bioreactor [101, 58, 36]. The liquid phase can also be described
using CFD simulations. But the approaches combining a PBE and CFD simulations have the
same limitations [109]. One resort is to divide the environment into compartments, as presented
earlier in Section 2.4, and formulate PBE within these compartments with an unstructured de-
scription of the liquid phase [165, 15]. Besides Euler-Euler models employing PBEs, another
possibility to quantify the degree of heterogeneity is the Euler-Lagrange approach, which is a
discrete. Lapin et al. [81, 82] introduced these category of models, the term ”Euler” refers to
the continuous liquid phase, while the biotic phase is described by discrete virtual particles,
which are coupled with a state vector describing its intracellular state ξ, thus employing a ”La-
grangian” approach. The particles and their movement through the bioreactor, the so-called
”lifelines” can be tracked and investigated [50]. The cellular state of a single particle at time t∗

is given by their initial cell state at t = 0 and their particular trajectory during the time period
0 < t < t∗ [31]. With a sufficiently high number of particles the continuum limit represented by
a PBE model can be approximated.

2.5.1 Transport of particles

The movement of the particles and their encounter of different environmental condition can be
considered as stochastic processes. A deterministic approach as used in Euler-Euler approaches
is not appropriate since the approach here follows the perspective of a particle and a decision
process for each particle has to be defined. First attempts to simulate this includes a multi-
ple change point model, which accounts for stochasticity in growth rates due to a fluctuating
environment [31]. Another approach employs a Gillespie’s stochastic simulation algorithm to
calculate the intracellular reaction rates based on their probibility for certain events such as a
change in position in the bioreactor or a cell division event [118]. In recent years, the particles are
considered as Lagrangian point masses moving in the bioreactor. This process can be described
as a discrete random walk and the obtained lifelines are evaluated statistically [79, 50].

In the framework here, the use of a compartmentalized description of the reactor, as presented
in Section 2.4, allows the replacement of particle trajectory calculation by a procedure changing
the location index of a particle in the space of compartments. Mayorga Espinoza [103] presented
a stochastic transport algorithm, adapted from Delafosse et al. [27], based on the residence time
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2 Theoretical background and methods

distribution to describe the movement of the particles. It is a continuous-time Markov chain,
which is a stochastic process in which a quantity moves from one state to another. A key property
of a Markov chain is that the probability of each event is only dependent on the very last event.
Thus, the movement from compartment i to j occurs with a probability that is independent of all
the previous states and the resident time in the compartment. We consider Np particles, present
in the bioreactor, and each particle p is assigned a location index x, corresponding with the
index of the compartment in which it resides. As the particle moves in the bioreactor over the
course of time, the location index x is updated after each time step. Let Pout be the probability
that a particle that resides in compartment i leaves its current compartment during the time
interval ∆t

Pout

{
= 1− e−∆t/τr(i)

≈ ∆t/τr(i), if ∆t << τr(i)
(2.60)

where τr(i) is the mean residence time in the compartment i

τr(i) =
Vi∑
j Fi,j

. (2.61)

The probability for a particle leaving the compartment i to reach the compartment j is given by

Pi,j =
Fi,j∑
k Fi,k

(2.62)

The transport scheme is a iterative process that is performed in two steps. First, we determine
if a particle leaves its compartment and secondly, the destination compartment of the particle
is set. In order to determine if the particle leaves its compartment, a random number α from
a uniform distribution is drawn and particle p leaves if α < Pout. To select the destination
compartment by drawing a second random number β from a uniform distribution, a step-wise
function is defined

CPi,n =
n∑
k=1

Pi,k n ∈ 1, ..., nz, (2.63)

which exhibits as many non-zero entries as neighbors of compartment i and the destination
compartment is chosen by identifying the interval β falls into using Eq. (2.63)

CPi,n < β < CPi,n+1. (2.64)

The location of the particle is updated to n+ 1. In order to save storage space, the matrix CP
can be shortened to only exhibit as many columns as the maximal number of possible neighbors.
The remaining columns are zero vectors otherwise and do not contain any useful information.
Two examples of the procedure to identify the destination compartment index are presented in
Figure 2.4.

2.5.2 Formulation of the mass transfer between biotic and liquid phase

Due to the biological phase present in the compartment i, the scalars sl in the liquid phase
are produced or consumed. Strictly speaking, the source terms, which have been introduced in
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2.5 Euler-Lagrange Models

Figure 2.4: Two examples of the identification of the destination compartment index for a given random
number β in case of 6 neighboring compartments using the cummulative probability function
CP of Eq. (2.63). The index of the destination compartment is indicated by a red or blue
square respectively.

Section 2.4.2, correspond to mass transfer between the liquid and biotic phases or between gas
and liquid phases. As the latter aspect is not treated in this work, we will not consider this.
The overall consumption or production rates result from the contribution of all the cells present
in the bioreactor considering their particular physiological state and the availability of nutrients
in the environment. With the approach of a CM, the source term Φl,i is computed through the
summation of elementary transfer rates ϕ over the particles present in the compartment i

Φl,i =
1

Vi

Np,i∑
p

ϕl(ξp,Si), (2.65)

where Np,i denotes the number of particles in compartment i. ϕl(ξp,Si) is a vector of specific
transfer rates achieved by particle p exploiting its physiological properties ξp in an environment
characterized by the vector of concentrations Si. For unstructured descriptions of the biotic
phase, where the cells are only described by their biomass mp = ξp, the transfer rates ϕl(ξp,Si)
are only dependent on Si and mp [154]. For structured cells, the transfer rates ϕl(ξp,Si) can be
obtained from the description for the intracellular network, which can easily be incorporated in
this framework as seen in recent works [112, 51].
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Hier soll eine Seitenzahl stehen
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3 A minimal description of a intracellular
network

In order to investigate a cell population in a bioreactor and its response to the dynamic envi-
ronment, a description of the cellular network is required. For this, we employ a coarse-grained
model. These types of models are useful choice to get a better understanding on cellular control
strategies, gene expression, and resource allocation [18, 140]. Characteristics of coarse-grained
models have already been presented in Section 2.2.3.

Typically, coarse-grained models comprise a set of differential equations for the components of
the model. However, mass balance equations must fulfill the conservation of mass as dictated
by the first fundamental theorem of thermodynamics, and often, a consistent transfer from mass
balance equations to differential equations for the concentrations of the model components is
faulty or inadequate. Therefore, we introduce a minimal coarse-grained model, where a new
relationship for the specific growth rate in dependence on the exchange reactions of the entire
network is given. This equation is fundamental since it guarantees strict mass conservation for
the complete system. Conventionally, the growth rate is an empirical function and, therefore,
strict mass conservation is not ensured.

Next, we perform flux analysis of these types of models and show interesting properties of the
steady state behavior of the reaction rates. We provide a general steady state solution for bio-
chemical networks and for the minimal coarse-grained model. Furthermore, under consideration
of the regulation of the cells metabolism as resource allocation problem to achieve maximal
growth, relations between the allocation of the proteome and the growth rate are determined.
The linear relation between the ribosomal protein fraction and the growth rate, which is well-
established knowledge [140, 8], is recovered as result of the optimization problem using the
minimal coarse-grained model. Additionally, limitations on the substrate rate, which may oc-
cur in a changing environment, where the substrate uptake is controlled by the transport of
substrate in the liquid phase rather than by the cell uptake capacity itself, are addressed.

With the coarse-grained model approach, a L-phenylalanine production process is simulated
and compared to experimental data. The deterministic behavior of the coarse-grained model is
characterized by the steady states of the cellular components and a time scale analysis for cellular
response to environmental changes and internal noise is proposed. Here, the concept of balanced
and unbalanced cells, which gains importance in Chapter 5, is introduced and discussed. The
results of this chapter have partially been published in [34].

3.1 Model formulation

At first, we present a typical minimal reaction system as shown in Figure 3.1, which we have
briefly mentioned in Section 2.2.3. The cellular network represents the entire biomass and
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3 A minimal description of a intracellular network

Figure 3.1: General scheme of a coarse-grained model with partitioned proteome (ribosomal proteins R,
proteins linked with the central metabolism T , and residual protein fraction Q) as the self-
replicator system [142]; it consists of two components, indicated as blue boxes; (metabolite,
low molecular weight), protein; and residual biomass (high molecular weight; protein is
assumed to be 50% of total biomass). The components are connected by a minimal set of
reactions, indicated by yellow boxes, for substrate uptake, overflow metabolism, and protein
synthesis.

contains only one anabolic reaction. The scheme of the system is given by

(S) → α M

γ M → β P

M → (by-product). (3.1)

An extension to two or more anabolic reactions can easily performed since, in general, the mass
fractions of the macromolecules are well-known. The systems consist of a pool of metabolitesM ,
the precursor of the minimal system, proteins P , and reactions ri which connect the intracellular
components with each other and the environment. The transport rate of substrate S into the
cell is noted as rT , while the overflow metabolism is described by rO. Proteins P are synthesized
with rate rP [96, 44, 121]. The stoichiometric matrix for this system, therefore, reads

N =

(
α −γ −1
0 β 0

)
. (3.2)

Thus, the intracellular network for this minimal model can be written as

˙(
M
P

)
= N

rTrP
rO

 − µ

(
M
P

)
, (3.3)

where the vector of intracellular components is c = (M,P )T and represent the concentrations
of these components in the cell. With Eq. (2.18) the growth rate for this specifc system is

µ = (α rT − rO) wM + rP (β wP − γ wM ), (3.4)

where wM and wP are the molecular weights of metabolites M and proteins P , respectively. In
case, that no mass is lost in the synthesis of proteins P from metabolites M , the second term in
Eq. (3.4) becomes zero and the growth rate is only determined by the reaction rates connecting
the cells with the environment.
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3.2 Flux analysis

3.2 Flux analysis

The construction of kinetic models rely on extensive knowledge of the functional formulation
of the enzymatic reaction rates and their associated parameters. The exchange rates between
the microbial population and the environment can easily be obtained from experiments, but
knowledge about the intracellular rates is limited, as they are more difficult to be recovered.

3.2.1 Flux analysis of a general intracellular network

In this section, we investigate metabolic networks which are given through a mass balance based
on stoichiometry. Those systems are described by Eqs. (2.17) and can be rewritten by plugging
Eq. (2.18) into (2.17)

ċ = N r − wT N r c =
(
Id− c wT

)
N r =W N r, (3.5)

where W is a matrix determined by molecular properties of the components Ci, which includes
the concentration values c and the molecular weights w. Thus, W is a matrix describing the
cell composition. The analysis of this system provides useful information for the estimation
of the reaction kinetics. The concentrations of the intracellular components can be measured
or estimated using data from literatue. Under the assumption that the stoichiometry N of
the system and the intracellular concentrations c are known, the solution space of the reaction
rates r in steady state can be analyzed

0 =W N r, (3.6)

which is obtained by setting Eq. (3.5) to zero. The steady states r0 are given by the kernel
of WN . The kernel of WN is determined by two vector spaces

r0 = rw,0 + rn,0. (3.7)

One subset of the kernel of WN is given by the kernel of N , as in classic flux balance analysis,
and the elements are defined by

rn,0 = (Id−N+N ) a, (3.8)

where a ∈ R is an arbitrary vector with the same dimension as r0. Here, we make usage of the
pseudoinverse, which was introduced in Section 2.2.4, as N is not a square matrix in general.
The remaining elements of ker(WN ), denoted as rw,0, satisfy the following equations

W N rw,0 = 0 and N rw,0 = cw,0 ̸= 0. (3.9)

To put conditions given by Eq. (3.9) into words, this means cw,0 is given by the kernel of W .
The cell composition matrix W is nonsingular, as the determinant of W is given by

det(W ) = 1−
NC∑
i=1

wi ci, (3.10)

where the addends of the second term are the mass fractions of the intracellular components Ci
and with Eq. (2.16) sum up to one, and det(W ) is, therefore, always zero. Additionally, the
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kernel of W is in fact one-dimensional, which is shown in the Appendix, Section A.1.1, and can
be formulated as

cw,0 = c s, s ∈ R, (3.11)

leading to

rw,0 = N+ cw,0. (3.12)

Thus, plugging Eqs. (3.8) and (3.12) into (3.7), the steady states of (3.5) are given by

r0 = N+ cw,0 + (Id−N+N ) a. (3.13)

Alternatively, under the assumption that the growth rate µ and cellular composition c is known,
e.g. from experimental data, the steady state condition of the system is given by

µ c = N r. (3.14)

Comparing the solution of this Eq. (3.14), using Eq. (2.25), and Eq. (3.13) reveals that both
solutions correspond to each other with

cw,0 = µ c. (3.15)

The principle of the found solution space, defined by Eq. (3.13) holds true for all types of
metabolic networks independently of its size and form, which can range from whole-cell models
to coarse-grained models.

3.2.2 Flux analysis of a minimal coarse-grained cell model

The procedure for the search of the solution space of the rate vector can be applied to the
minimal coarse-grained model given by Eqs. (3.2) and (3.3). The pseudoinverse of N in this
case is

N+ =


α

α2+1
γα

β+βα2

0 1
γ

− 1
α2+1

− γ
β+βα2

 , (3.16)

and with the formular obtained in Eq. (3.13) the solution space of the reaction rates is

r0 =


1

α2+1

0

α
α2+1

 a + N+c s s ∈ R, a ∈ R, (3.17)

with the first term representing the solution from the stoichiometry of the system, usually
also obtained from flux balance analysis, and the second term the solution determined by the
molecular composition of the cell. A closer look at the solution given by Eq. (3.17) reveals
that the rate connecting only the intracellular components of the system, which is the protein
synthesis rate rP , is defined by the second term solely. Thus, for the assumption of the known
specific growth rate µ and molecular composition of the cell, the second term is fixed to N+c µ
and the protein synthesis rate rP is uniquely defined. On the other hand, the remaining rates,
meaning the substrate uptake rate rT and the overflow metabolism rate rO, are coupled through
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one degree of freedom a. If one of these rates is known, the degree of freedom a can be determined
and, therefore, the last remaining rate.

3.3 Resource allocation as optimization problem

In the last section, the solution space of reaction vector r was investigated. Now, we assume
fixed reaction kinetics for the three reaction rates and analyze the allocation of resources to the
different protein fractions. This is treated as optimization problem (introduced in Section 2.2.3),
as the cells have to regulate its metabolism to achieve maximal growth and using Eq. (2.22) this
problem can be written as

max
0≤x≤1

µ(x)

subject to
0 = N r − µ c
µ = w N r
0 = 1−Q− T −R,

(3.18)

where x is a fraction of P , such that R = x θ P and T = (1−x) θ P with Q forming a constant
protein fraction, meaning Q/P = 1− θ. We assume the residual biomass U to form a constant
biomass fraction of ρ = wU U . The constraints of this optimization problem correspond to cells,
which exhibit a balanced cell state and are in steady state. In the following, different sets of
kinetic rate laws are investigated. The first set of reaction rates includes linear dependencies on
the protein fractions T and R and Michaelis-Menten kinetics depending on M for the protein
synthesis rP

rT = kT
S

S + KT
T

rP = kP
M

M + KP
R

rO = kO M T . (3.19)

The optimal solution for the partitioning of the proteome is obtained for different substrate
concentrate values S ranging from S = 0.01 g/L to S = 1 g/L and can be seen in Figure 3.2.
The parameters such as the maximal reaction rates ki are chosen to achieve a growth rate of
around µ = 0.5 1/h for S = 1 g/L. The residual biomass fraction is assumed to occupy 40 %
of the total biomass and the metabolite concentration is adjusted to occupy 3-10 % of the total
biomass as seen in Figure 3.2B. The optimal solution for the protein fractions T/P and R/P
are plotted as functions of µ in Figure 3.2C. With increasing growth rate, the concentration of
transporter proteins T decrease while ribosomal proteins R increase, which is a well-established
relation [142]. As the sum of both protein fractions add up to half of the proteome, the optimal
solution differs from the protein fraction values obtained from experimental data taken from
the study by Schmidt et al. [139]. In comparison with the experimental data, the slopes are
steeper with fraction T/P ∈ [0.21, 0.34], R/P ∈ [0.16, 0.29] and a point of intersection at around
µ ≈ 0.41 1/h as seen in Figure 3.2C. In the following, only the protein fractions T/R and R/P are
visualized and compared in Figure 3.3, as the parameters are chosen to achieve a maximal growth
rate of µ = 0.5 1/h and the cell component composition does not differ between the different
models. The optimal solution of the first set of reaction rates is depicted in Figure 3.3A for
comparison. The parameter sets for the kinetic rate laws are given in Appendix, Section A.1.3.
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Figure 3.2: Solution of the optimization problem for a model with reaction rates given by Eq. (3.19):
Specific growth rate µ as a function of substrate S (A). Mass fractions of the intracellular
components for different substrate concentrations: metabolites M (blue), proteins P (red),
and residual biomass U (grey) (B). Mass fractions of T (blue) and R (red) and experimental
data (dashed lines) are taken from the study by Schmidt et al. [139] (C).

In Figure 3.3B, the proteome allocation of a model with linear dependencies on the protein
fractions T and R and Michaelis-Menten kinetics for M in both reaction rates rP and rO is
shown. Here, a very shallow slope with a greater distance between the fraction values is observed.
The values of the protein fractions vary for different kinetic parameters, as e.g. higher parameter
values for kT or kP lead to a smaller T fraction or R fraction, respectively. A higher value for
kT reduces the impact of T on the reaction, which can shift the protein allocation in favor of
R to maximize the growth rate. This relation holds true for all model variation, considered
in this section. Nevertheless, the shallow slope remains for all parameter variations. In the
third variation, we consider Michaelis-Menten kinetics for T in both reactions rT and rO, which
contain a dependency of T . Figure 3.3C, shows a non-linear relation between the optimal
allocation into T and R and the growth rate µ, as the fraction T first increases for growth rate
values µ ∈ [0.1, 0.2] and then decreases, with the fraction R the other way round. This non-linear
relation can not be seen in the experimental data. A similar behavior is obtained in Figure 3.3D
for a model which assumes Michaelis-Menten kinetics for all reactions concerning T andM . The
turning point in this case with the set parameter values occurs at a higher growth rate value
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Figure 3.3: Mass fractions of T (blue) and R (red) over growth rate µ for different sets of kinetic rate
laws: Michaelis-Menten kinetics forM in rP (A), Michaelis-Menten kinetics forM in rP and
rO (B), Michaelis-Menten kinetics for T in rT and rO (C) and Michaelis-Menten kinetics
for T in rT and rO and M in rP and rO (D).
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µ = 0.34 1/h. It is worth to note, that even though the parameter values are chosen to satisfy
µmax ≈ 0.5, the biomass yield is not maintained constant over the 5 different model variations.
In order to keep the biomass yield constant in addition, a more elaborate approach has to be
employed to determine the appropriate kinetic parameters. Nevertheless, the first three model
variations all reproduce the linear relation between R and µ, while the last two with the chosen
parameter sets do not. In the latter sections, we chose the first set of reaction rate formulations
given by Eq. (3.19), as this formulation is able to reproduce the relations obtained experimental
data with best approximation.

3.4 Application: L-phenylalanine production with Escherichia coli

In this section, we consider a L-phenylalaine producing E. coli strain with glycerol as substrate
S as an example for a biotechnological production process to which we can employ the proposed
coarse-grained approach. The process exhibits a decoupling between the biomass and product
formation due to L-tyrosine auxotrophism, meaning biomass is only formed if L-tyrosine is
available in the environment [155, 169]. The considered strain and the considered process are
characterized in the following works [34, 60, 61].

3.4.1 Model formulation

The minimal model in Section 3.1 is extended to include an additional rate rF describing the L-
phenylalanine (F ) production formation with a corresponding protein sector FP and a rate rC
proportional to the rate of respiration. Furthermore, we split the macromolecules into the
proteins and residual biomass U , which is synthesized with rate rU . The extension of the
scheme can be seen in Figure 3.4.

The stoichiometric matrix for this system is

N =

α −γ −1 −δ −1 −1
0 β 0 0 0 0
0 0 0 ϵ 0 0

 (3.20)

Figure 3.4: Scheme of the coarse-grained model expanded to include the formation of L-phenylalanine
with rate rF , respiration rC , and residual biomass U and corresponding synthesis rate rU .
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and the differential equations describing the system are

˙MP
U

 = N



rT
rP
rO
rU
rF
rC

 − µ

MP
U

 . (3.21)

In the next step the reaction rates of the system are defined. The rates which are involved
in the central metabolism are dependent on the proteome fraction T . The rates in question
are: substrate uptake rate rT , overflow metabolism rO and respiration rate rC . The anabolic
reactions, rP and rU , and the L-phenylalanine production rate rF are dependent on R and FP
respectively. The dependency of the rates on the the respective protein fractions is a common
approach resulting in self-replicator systems, as introduced in Section 2.2.3 [142, 121, 44]. The
L-tyrosine auxotrophism is incorporated through a factor τ(A) which is multiplied with the
protein synthesis rate rP and the synthesis rate of the residual biomass rU . This factor τ(A) is
set to 1 if L-tyrosine A is available and otherwise 0.1, leading to a lower biomass production for
a absence of L-tyrosine, which occurs during the L-phenylalanine formation phase. Thus, the
reaction rates are

rT = kT
S

S + KT
T

rP = kP
M

M + KP
R τ(A)

rO = kO M T

rU = kU
M

M + KU
R τ(A)

rF = kF M FP

rC = kC M T , (3.22)

where

τ(A) =

{
1, A > 0
0.1, A ≤ 0.

(3.23)

The partitioning of the proteome into the fractions T and R is determined by an estimated
linear function of M [34] obtained from experimental data [139]

T = (aT M + bT ) P

R = (aT M + bR) P . (3.24)

where aT and aR are the slope at which the fractions T/P and R/P increase or decrease with
M and bT and bR are the fractions at M = 0/mol/gDW. After induction of the L-phenylalanine
production, a part of the proteome is allocated to fraction FP , leading to a shift of carbon flux
from biomass production to product formation due to lack of L-tyrosine in the feed at time tind
with a time delay as follows

FP = ψ(t) Fmax P , (3.25)
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Figure 3.5: Feeding profile of the process. Reactor volume V (A) and substrate concentration S of
the feed Sin (B) over the time course of the process, where vertical lines indicate the three
process phases (batch phase, fed-batch phase, and production phase with constant feeding).

where

ψ(t) =
t− tind

(t− tind) + tψ
(3.26)

with tψ a constant indicating the time where half amount of Fmax is attained. The remaining
fraction form fraction Q, which is not of further interest

1 = T +R+ FP +Q. (3.27)

In the following, we can set equations to model a complete bioprocess consisting of two process
phases: a biomass production phase, which comprises a initial batch phase. This is followed by
two fed-batch phases with two corresponding feeding solutions containing different substrate con-
centrations, and which was initiated with induction of the cells with IPTG. For now, we assume
ideal mixing conditions in a bioreactor of volume VR = 1.35 L with a feeding profile, as seen in
Figure 3.5, and feeding rate qin. The fed-batch phases exhibit exponential feeding to accompany
a growth rate of µset = 0.1 1/h and a constant feeding is chosen for the L-phenylalanine produc-
tion phase. Thus, according to the already presented equations in Section 2.2.2, the dynamics
of VR are described by

V̇R = qin (3.28)

and we consider only one feeding substrate S (glycerol) with feed concentration Sin

Ṡ =
qin
VR

(Sin − S)− rT X wS nS . (3.29)

The biomass concentration is described by

Ẋ = µ X − qin
VR

X (3.30)

and the product equations are

Ḟ = nF rF X wF − qin
VR

F

Ȯ = rO X wO − qin
VR

O, (3.31)

where wF and wO are the molecular weights of F and O, respectively.
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Here, O represents acetate as an exemplary by-product of the process. Experimental data
provide the variables qin, Sin, A and initial values for Eqs. (3.28)-(3.31). After around process
time t = 71 h, experimental data suggest a stop in biomass and product formation and a
increased production of acetate. The behavior at the end of the process has not been investigated
at this point and the mechanism of this behavior is not depicted in the reaction system.

3.4.2 Flux analysis of a metabolic model including product formation

Flux analysis can also be performed on the metabolic model with L-phenylalanine production.
The pseudo-inverse of N in this model is

N+ =
1

D



α α γβ α δϵ
0 D

β 0

−1 − γ
β − δ

ϵ

0 0 D
ϵ

−1 − γ
β − δ

ϵ

−1 − γ
β − δ

ϵ


, (3.32)

where D = α2 + 3. The kernel of WN is the image of the matrix

Id−N+N =
1

D



D − α2 0 α 0 α α
0 0 0 0 0 0
α 0 D − 1 0 −1 −1
0 0 0 0 0 0
α 0 −1 0 D − 1 −1
α 0 −1 0 −1 D − 1

 (3.33)

Analogous to the minimal model described by Eqs. (3.2) and (3.3), the anabolic reaction rates,
which connect internal cell components, are determined by only the first term in solution (3.13).
The solution space for reaction rates, which connect intracellular pools with the environment,
is expanded by the second term, thus by the image of (3.33). The non-zero column vectors in
(3.33) are linearly independent and therefore the kernel of WN is 4-dimensional, resulting in
four degrees of freedom.

3.4.3 Numerical simulation and comparison with experimental data

A numerical simulation of Eqs. (3.20)-(3.31) with process time up to t = 75 h was performed
using MATLAB 2022a with ode15s as ODE solver, which is a multistep solver with variable
step sizes. The numerical solution, which is divided into the two process phases analogous to
the experiments, is compared with experimental data as seen in Figure 3.6. Experimental data
show positive substrate concentration during the batch phase and no substrate excess afterwards
in Figure 3.6A. The cell population grows exponentially during the biomass production phase
and its growth slows down after the induction of the product formation with a complete stop in
biomass increase coinciding with the absence of L-tyrosine in Figure 3.6B. Since the cultivation
is exposed to different process conditions and is affected by its auxotrophism due to the absence
of L-tyrosine during the L-phenylalanine production phase, different sets of parameters were
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Figure 3.6: Comparison of the simulated quantities (blue) against the experimental data (orange points)
of the L-phenylalanine production process up to t = 75 h. Time course of the following
concentrations: glycerol S (A), biomass X, L-tyrosine A (B), L-phenylalanine F (C), and
acetate O (D).

used for the different process phases. The L-phenylalanine production phase exhibits a higher
by-product formation as seen in Figure 3.6C. With this in mind, the reaction constants were
set higher for by-product formation and respiration for the production phase, and the used
parameters can be found in Appendix, Section A.1.4. The solution at the end of the first
process phase is used as initial value for the production phase. Figure 3.6 shows good agreement
between the simulated concentrations of substrate S (Figure 3.6A), biomass X (Figure 3.6.B),
acetate O (Figure 3.6C), L-phenylalanine F (Figure 3.6D) and the experimental data. Thus,
for the given parameter set, the model is able to reproduce the dynamics of the L-phenylalanine
production process.

Besides the measurable data, the solution of the intracellular concentrations can be investigated
as well, as seen in Figure 3.7. The metabolite concentration M is high during the time of
the fed-batch coinciding with higher substrate levels in the environment, decrease over the
course of the fed-batch phases and remains at constant level during the product formation
phase (Figure 3.7A). A look at the mass fractions of the intracellular components in Figure 3.7B
reveals that the macromolecules P and U occupy most of the biomass, where the first makes up

Figure 3.7: Time course of intracellular concentrations of the L-phenylalanine process: metabolite con-
centration M (A). Mass fractions over the course of the process: metabolites M (blue),
proteins P (red), and residual biomass U (grey) (B). Mass fractions of T (blue), R (red),
and F (yellow) over the course of the process (C).
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Figure 3.8: Time course of the simulated specific growth rate µ (blue) and the point-wise calculated
specific growth rate obtained from experimental data indicated as orange dots (A), substrate
transport rate rT (B), protein synthesis rate rP (C), overflow metabolism rate rO (D),
residual biomass synthesis rate rU (E), product formation rate rF (F), and respiration
rate rC (G).

around 60% of the biomass, while the mass fraction of the metabolitesM is negligible, especially
after the initial batch phase. With decreasing metabolite concentrationM over the course of the
biomass production phase, the concentration of ribosomal proteins R decreases as well, while
the concentration of transporter proteins T increases, as the protein fractions R and T follow
the behavior of M (Figure 3.7C). During the L-phenylalanine production phase, the levels of
ribosomal and transporter protein concentrations remain constant. Protein fraction FP , which
is dedicated to the product formation, follows the description in Eq. (3.25) and (3.26).

Additionally, the growth rate µ and the reaction rates of the intracellular network can be ob-
tained from the model and are depicted in Figure 3.8. During the batch phase, the growth
rate starts at a higher value and decreases during the fed-batch phase as long as L-tyrosine is
available in the environment, roughly following the trend of the growth rate, which is obtained
by pointwise calculation from the experimental data of the biomass (Figure 3.8A). We note that
the pointwise calculated growth rate has to be considered with caution, as it is calculated from
two consecutive points with large time differences which can result in large deviations from the
actual growth rate. Over the course of the biomass production phase, the reaction rates, except
for rF , follow the dynamics of the metabolites M since all of them are dependent on M and the
concentration of T and R hardly changes as seen in Figure 3.8B-G. In the product formation
phase, the anabolic reaction rates are dominated by the L-tyrosine auxotrophism and therefore
nearly zero (Figure 3.8C and E).
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3.5 Consideration of substrate uptake limitations

In this section, we want to introduce a rate limiting concept, where the substrate uptake rate
is limited by two factors, which was presented by Morchain et al. [109, 110]. This refinement is
necessary to reflect heterogeneous systems in a changing environment. Here, cells may encounter
the situation in which the substrate uptake rate is limited by the transport of the substrate in
the liquid phase (physical regime) rather than by the the substrate uptake capacity of the cell
itself (biological regime). Thus, in order to obtain the actual substrate uptake, both limiting
factors (external and internal) have to be considered. The internal biological uptake capacity ϕbS
is determined by the availability of transporter proteins T

ϕbS = kT T . (3.34)

The biological uptake rate ϕbS can be compared to the substrate transport rate by micro-
mixing. The shift between these two regimes is based on the characteristic time scales for
micro-mixing τmix, which is related to properties of the fluid and local turbulent energy dissipa-
tion rate, and biological uptake τu. The micro-mixing time is defined as

τmix ≈ 17

√
µL
ρLϵ

, (3.35)

where µL is the dynamic viscosity and ρL the density of the liquid phase, and ϵ the local
turbulent-energy dissipation rate [7]. In this work, the micro-mixing time τmix remains constant.
The characteristic time for substrate uptake writes

τu =
S

wS X kT Tmax
, (3.36)

where Tmax is the maximal possible transporter protein concentration. This time scale is deter-
mined by the local substrate concentration and the denominator represents the substrate the
cells are able to take up. Thus, τu is the time the cells require to consume the local substrate
concentration. With Eqs. (3.34)-(3.36) the actual specific substrate uptake rate ϕS is

ϕS = ϕbS

(
1− e−τu/τmix

)
= kT T

(
1− e−τu/τmix

)
. (3.37)

Therefore, the substrate uptake rate depends on both the biological substrate uptake capacity,
represented by the first factor, and the relative supplying capacity of the environment, repre-
sented by the second factor. If the environment is sufficiently rich to feed the cells, the actual
substrate uptake rate is determined by its own internal uptake capacity. Otherwise, the uptake
rate is limited by the environmental supply. It can be shown that the simulation of a bioprocess
for the refined substrate uptake rate (3.37) compares to the reaction rate with Michaelis-Menten
kinetics given by Eq. (3.22) as seen in Appendix, Section A.1.5.

3.6 Deterministic behavior of the metabolic model

We consider the metabolic system given by Eqs. (3.20)-(3.22). Product formation left aside,
it is a very generic model that is able to reproduce the dynamics of an E. coli population in
a bioreactor. In the following sections, we use the same parameter set as in the numerical
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simulation of Section 3.4. In order to understand the response of the model to different sources
of perturbations in the system, we investigate the deterministic behavior of this model.

3.6.1 Steady states

First, we study a simplified metabolic model containing the four reactions: substrate uptake
rate rT , protein synthesis rate rP , residual synthesis rate rU and overflow metabolism rO. The
rate of respiration is left aside here, but can be assumed to be incorporated in rO. For the
purpose of calculating an analytical solution for the steady states, we do not consider feedback
through protein fractions T and R, leading to following system of ODEs

Ṁ = α kT − γ kP
M

M +KP
− kO M − δ kU

M

M +KU
− wM (α kT − kO M) M

Ṗ = kP
M

M +KP
− wM (α kT − kO M) P

U̇ = kU
M

M +KP
− wM (α kT − kO M) U . (3.38)

In order to study the stability of steady states, we can linearize the ODE system and set up the
Jacobian matrix by differentiating the differential equation system

J =

−γ kP
KP

M+KP
−kO−δ kU

KU
M+KU

−wM (α kT−2 kO M) 0 0

γ kP
KP

M+KP
−wM kO P −wM (α kT−kO M) 0

δ kU
KU

M+KU
−wM kO U 0 −wM (α kT−kO M)

 (3.39)

The Jacobian matrix is a triangular matrix and, therefore, the eigenvalues are the elements of
the main diagonal. For positive parameter values and concentrations the steady states are stable
if α kT > kO M . We set parameter values as in the simulation in Section 3.4, the stoichiometric
coefficients, the molecular weights of the cellular components and S = 0.1 g/L. This leads
to three steady states, where only one solution is biologically relevant, as the other two have
negative values for M . With the observation in (3.39), we can conclude that this steady state
is stable if α kT > kO M .

The steady states of the metabolic model including feedback for both substrate uptake rates,
described in the last Section 3.5, are simulated for different substrate concentration values S.
The solutions for the different substrate concentration values are indicated by dots and linearly
interpolated. For simplicity reason, the substrate rate defined in Section 3.5 is simply called
substrate uptake rate with micro-mixing. For this case, the steady states are calculated with a
constant value of the biomass value of X = 18 g/L, as it equals the biomass concentration of the
L-phenylalanine production process at t = 38 h. This time point coincides with the time at which
the distribution of cell properties is investigated in Chapter 5. The results of the simulated steady
states are depicted in Figure 3.9. The content in P ranges from Pmin = 11.75 × 10−6 mol/gDW

to Pmax = 12.45 × 10−6 mol/gDW (Figure 3.9A), whereas the metabolite content ranges from
Mmin = 0 mol/gDW to Mmax = 25 × 10−5 mol/gDW (Figure 3.9B). Thus, we can note that
the steady states of P are closer together than the steady states of M . For large substrate
concentrations, the steady states of both models are equivalent, since the substrate uptake rate
is determined by the biological regime for a substrate rich environment. For lower substrate
concentrations, the substrate uptake rate with micro-mixing (orange curve) is dominated by the
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Figure 3.9: Steady state values for the protein concentration P (A), metabolite concentration M (B)
and growth rate µ (C) for different substrate concentrations (solutions indicated by dots)
for the model with substrate uptake rate with Michaelis-Menten kinetics (blue) and with
micro-mixing (orange)

physical regime, leading to a lower metabolite concentration M and therefore higher protein
concentration P . This reflects that at low substrate concentration and high biomass concentra-
tion, the environmental supply might become insufficient to satisfy the intracellular demand,
resulting in a lower growth rate compared to the model with the standard Michaelis-Menten
formulation (Figure 3.9C). The difference between the two models become less prevalent or non
existent when the biomass concentration is low. The values M , P and µ (also U , but this
variable is not shown here and can be obtained from M and P ), at steady state form a set of
consistent values, which correspond to cells with balanced metabolism.

3.6.2 Time scale for cellular response to environmental changes

As mentioned in Section 2.1.2, we investigate two scenarios. First, the response to external
noise and later, in Section 3.6.3, the response to intrinsic noise is examined. For the first case,
a homogeneous cell population in steady state is initialized and we investigated the adaption to
a new steady state due to a change in the environmental variables like substrate concentration.
The relaxation time of the variables is recovered through determination of the time needed to
reach 95 % of the steady state when the substrate concentration changes, while starting in a
steady state. The relaxation time for M is τ = 0.015 h as seen in Figure 3.10A. The relaxation
time for P depends on the transition distance between the steady states. For steady states
which are closer together as pictured in Figure 3.10B (light blue), the relaxation time is long.
Here, the initial change in metabolite concentration are fast, but then require a long time to
converge to the final steady state. The relaxation time is determined by a superposition of at
least two exponential functions, one with a fast time scale analogous to the metabolites M and
one with a longer time scale, driving the protein concentration slowly to its new steady state.
It is important to note that the difference between these two steady states in this case is very
small and therefore can be neglected.

The relaxation time for the growth rate µ is in the same range as for M and P . But we observe
that for the growth rate the values vary a lot for the first time steps until it reaches its new
steady state (Figure 3.11). During the transition time, the growth rate exhibits higher values
before converging to a lower growth rate if the substrate concentration increases. If the cells are
adapted to an environment without substrate excess and the substrate concentration decreases
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Figure 3.10: Investigation of the relaxation time for the transition from the the steady state at
S = 0.1 g/L to S = 0.01 g/L for the following variables: P (blue), M (orange),
where the black lines indicate the bands, where the distance to the new steady state is
smaller than 5% of its distance to its original steady state (A), and the phase portrait over
the M-P plane for the transition from the the steady state at S = 0.1 g/L to S = 0.01 g/L
(blue) and S = 5 g/L to S = 7 g/L (light blue), where the black line indicates the line of
the steady states for different substrate concentration (B).

further, then the growth rate of the cells even take negative values, otherwise we only observe
positive growth rate during the transition phase. Negative growth rate values indicate a loss
in biomass, which can occur if the substrate uptake is smaller than the respiration rate and
overflow metabolism. Thus, if the substrate concentration S increases in the environment, the
cells experience an accumulation of metabolites on short term, leading to a higher growth rate
during transition. In case of a decrease of substrate S, the metabolite pool M of the cells are
exhausted, leading to a short term loss of biomass (negative growth rate).
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Figure 3.11: Investigation of the relaxation time for the growth rate µ for different substrate changes.
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3.6 Deterministic behavior of the metabolic model

3.6.3 Time scale for cellular response to intrinsic noise

During cell division, unbalanced cells, whose system variables are not in steady state, are formed.
This corresponds with an perturbation of a cell from steady state to a randomly chosen numerical
value. In this section, the system dynamics and its time scales are analyzed for this scenario.
Particles are initialized in a constant environment with random properties at t = 0 and their
evolution is tracked in time. Figure 3.12 shows the initialized particles converging to a steady
state. A closer look at the time axis reveals that the protein concentration converges to its
steady state in Figure 3.12A a lot slower taking hours than metabolite M in Figure 3.12B,
which converges in seconds. The numerical solution of the steady state can be compared with
the analytical solution from the simplified model in Section 3.6.1. The different time scale for
P compared to the time scale obtained in the last section does not pose a contradiction, as
the difference lies in the initial state of the cells: Since the initial state is randomly assigned,
the cells do not exhibit a consistent set of properties P , M and µ, meaning that the cell are
unbalanced. The time scales do not change for different substrate concentration values in the
environment, which remain constant during the simulation.

The time scales of different modifications of the metabolic model can be obtained and compared
with the full model. Interestingly, the time scales do not change in Figure 3.13A and B for a
metabolic model, which does not contain the feedback loops through T or R. When modifying
the reaction kinetic ri = ki f(c) to exclude the dependency of a protein fraction, the maximal
reaction rate constant ki is multiplied with a constant value of the corresponding protein fraction
Pi equal to the value of this protein fraction in steady state of the full metabolic model. Thus,
the modified reaction rate r̂i is determined by

r̂i = ki Pi f(c). (3.40)

Only considering feedback in the substrate uptake rate rT , couples the time scales for M to P
and M now converges after hours, not after seconds, as seen in Figure 3.13C and D. In the very
first time steps, the values of M change a lot within seconds and slow down until they converge
with the same time scale as P in Figure 3.13D. An even larger changes in the first time steps
and slow convergence afterwards are observed for M in a model with only feedback through R
or only T in Figure 3.13F and H, while the behavior of convergence for P stays the same for
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Figure 3.13: Time scale of P andM to converge to their respective steady-state in an environment with
a substrate concentration of S = 0.1 g/L and random initial system variables P andM for
different modified models: no feedback through R nor T (A,B), only feedback in rT (C,D),
only feedback through R (E,F) and only feedback through T (G,H).

all model modifications. Thus, two different time scales for M and P can only be observed if
we consider feedback through T and R or none at all. The consideration of only one protein
fraction results in a coupling of M to the dynamics of P and the exhibition of only one time
scale.

3.7 Modified minimal coarse-grained model

For the purpose of incorporating a description of the intracellular network of the cells in a PBE, a
modified minimal coarse-grained model is presented, which is shown schematically in Figure 3.14.
Again, the model comprises two components M and P , but this time, the interpretation of the
components differ. P represents a part of the proteome consisting of transporter proteins T
and ribosomal proteins R. Component M represents the remaining cell components, in terms
of former cell component classes: metabolites, other proteins and residual biomass. Both cell
components have equal molecular weight w, thus the stoichiometric matrix is given by

N =

(
1 −1 −1
0 1 0

)
(3.41)
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3.7 Modified minimal coarse-grained model

Figure 3.14: Scheme of a coarse-grained model with partitioned proteome (ribosomal proteins R, pro-
teins linked with the central metabolism T ); it consists of two components, indicated as
blue boxes; residual biomass, proteins (transporter and ribosomal proteins). The pools are
connected by a minimal set of reactions, indicated by yellow boxes, for substrate uptake,
overflow metabolism, and protein synthesis.

and the reaction rates are described by Eq. (3.19). This model is later used in a well-mixed
environment and thus we do not consider limitations through the liquid phase, as described
in Section 3.5. Since the biomass only contains two cell components, the concentration of one
component can be expressed by the other, if the latter is known

M =
1

w
− P . (3.42)

M represents a different pool of cellular components in this model, therefore another function
of M has to be employed to describe the allocation of proteins to fractions T and R. We assume
that compartment P consist of 58 − 63% transporter proteins T and the remaining fraction
is allocated to R. Furthermore, M is assumed to take values between Mmin = 1 mol/gDW

and Mmax = 2.5 mol/gDW. With these assumptions, the concentrations of R and T are
determined by

T =

(
0.63− 0.63− 0.58

(2.5− 1)× 10−5
M

)
P (3.43)

R =

(
0.37 +

0.63− 0.58

(2.5− 1)× 10−5
M

)
P . (3.44)

As the component M in this model is macromolecular, the higher molecular weight has to be
considered when setting up the equation of the substrate concentration S. Thus, the Eq. (3.29)
is adapted to

Ṡ =
qin
VR

(Sin − S)− rT X wS γ nS . (3.45)

The equations for biomass and the reactor volume remain the same.

In the following, the biomass production phase, as described in Section 3.4, is simulated using
the modified model (orange) and compared with the simulation obtained in Section 3.4.3 (blue).
Figure 3.15A shows the simulated substrate concentration S, which reveal almost no difference
between both models. A slightly higher biomass production is seen for the modified model in
Figure 3.15B, while still being in good agreement with the experimental data. The concentrations
of intracellular components M and P are depicted in Figure 3.16A. Similar to the full model,
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3 A minimal description of a intracellular network

compartmentM shows higher values during the batch phase and decreases over the course of the
fed-batch phase. This is also apparent, when investigating the mass fractions of components M
and P in Figure 3.16B. The mass fraction of P varies from 10−50% of the biomass, thus showing
a much higher range than in the full model. It is worth noting that the full model assumes a fixed
mass fraction for the sum of transporter proteins T and R and exhibits a protein concentration
with little variation, leaving a very narrow range for T and R. In comparison, this modified
model allows a larger variation for protein fractions T and R. The ratio between transporter
proteins T and ribosomal proteins R in Figure 3.16C shows the same tendencies and similar
values as the ratio between T and R in the full model, which are obtained by calculating the
fraction T/(T + R) and R/(T + R). With decreasing values for M , the fraction T increases,
while R decreases, as more transporter proteins are needed to transport components M into the
cell to counter the decrease.

Figure 3.17 shows a comparison of reaction rates between the modified model and the full model.
Despite of a very high growth rate in the beginning of the batch phase, the difference between
the values of the growth rate µ is small in Figure 3.17A. The reaction rates rT , rP and rO
cannot be compared side-by-side, as M has higher molecular weight in the modified model.
To conclude, this modified model reproduces the dynamics of the concentrations in the liquid
phase, but with lower detail in the description of the metabolic network. The relation between
the protein fractions T and R are not based on experimental data as in the full model and have
to be taken with caution.

3.8 Short summary and discussion

While simple growth models taking into account only biomass, substrate and product often are
insufficient to describe observed dynamics in a bioprocess [46], whole-cell models are complex
and difficult to calibrate [102]. A good compromise represents coarse-grained models because of
their simple model structure and their ability to take the most important cellular processes into
account. In this chapter, we proposed a coarse-grained modeling approaches based on a strict
mass conservation to model bacterial growth as a basis for metabolic engineering applications. In
this way, classical flux analysis could be extended to take into account fluxes into macromolecules
such as the proteome. In classic flux balance analysis, the system of equations only consists of
the stoichiometric matrix N as mentioned in Section 2.2.4. Thus, the term describing the
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process up to t = 39 h. Time course of the following concentrations: glycerol S (A) and
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Figure 3.16: Time course of intracellular concentrations of the modified model: compartment M (blue)
and proteins P (orange) (A). Mass fractions over the course of the process: compartment
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modified model (solid line) and full model (dashed line) (C).
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Figure 3.17: Time course of the simulated specific growth rate µ (A), substrate transport rate rT (B),
protein synthesis rate rP (C) and overflow metabolism rate rO (D) for the modified model
(orange) compared to the full model (blue).

dilution due to cellular growth is absent. In the approach presented, additional solutions of the
reaction rate state space are provided by the null space of the mass matrix W that requires
information on the mass fraction of the components of the model. Therefore, the solution space
is a superposition of the kernel of N , which is typically also obtained in flux balance analysis,
and the kernel of W . This principle holds for the minimal coarse-grained model as well as for a
general cellular network independently of its internal structure under the condition of strict mass
conservation. One downside of this approach is the required knowledge of the cell composition
to computeW . The reaction rates obtained from the steady state analysis were not computed in
particular, but if one would continue with the approach, the challenge has to be faced. While the
molecular weights of the components can easily be obtained from data bases, the concentrations
of the components are more difficult to recover. With the minimal coarse-grained model, the low
number of components is a additional advantage, as the mass fractions can be estimated in this
case. Macromolecular components are measurable and given the condition of mass conservation,
the concentration of the low molecular can be determined through procedure of exclusion. In case
of more complex networks, especially multiple low molecular components, the clear identification
of the mass fraction can pose a difficult challenge due to low abundance and wide range of the
metabolites [13, 144]. On the other hand, the reaction kinetic laws are often times unknown.
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Thus, if the cellular composition can be determined, the approach provides the opportunity to
estimate the reaction kinetics through the solution space obtained.

As the focus of this research is coarse-grained models, we provided a formulation for a minimal
model whose structure is in accordance with that in previous studies [143, 14]. Many studies have
dealt with the derivation of growth laws under various conditions [74, 19, 66]. We considered two
main protein fractions, an R fraction representing the transcription and translation apparatus
and a T fraction, taking into account metabolic and transport enzymes. In contrast to the
previous approach, the reaction kinetics were fixed, while the cellular composition is unknown.
An optimization program, similar to other works [8, 123], under the assumption that the sum
of the R fraction and T fraction is taken as constant, was set up and the results for different
sets of reaction rates were compared. In the process, we obtained a solution that leads to a
comparable behavior of the R and T fraction as a function of the specific growth rate, and we
conclude that the measured data are in good agreement with the expectation of an efficient and
optimal acting organism.

Based on the structure of the minimal model, we have expanded the model to include the
dynamic environment of a bioreactor system that allows us to realize also different process design
strategies such as feeding or continuous culture. For the reaction kinetics, the set of equations
with the best agreement from the optimization program was chosen. Experimental data from
an L-phenylalanine production process are taken as an example for parameter identification and
estimation, and a good agreement between simulation and experimental data is obtained. The
end of the bioprocess, indicated by a stop of product and increased by-product formation, has
not been investigated in the scope of this work. In order to describe this phase, mechanistics
behind the shift from product to by-product have to be understood. Here, additional cell process
regulations might be necessary.

Furthermore, the concept of different limitations on the substrate uptake was introduced. As
we aim to simulate population heterogeneity induced by process variations, a model with the
appropriate response to a wide range of substrate concentrations in different environments has to
be formulated. Often times, the parameters of the biological model had to be adjusted according
to the reactor scale since either lower substrate uptake than expected or an over-prediction of
biomass yield was obtained [84, 109]. This emphasizes the requirement to incorporate the
limitations originating from the substrate supply provided by the environment affected by the
dynamics of the liquid phase and substrate uptake capacity of the biological phase. In a nutrient
rich well-mixed environment the substrate uptake rate is determined by the biological regime
and the refinement would not be necessary, but with the possibility of cells competing for the
available resources, the substrate uptake is limited by the supplying capacity of the environment.
This was observed when comparing the steady state solution of the models with and without
the incorporation of micro-mixing. While the dynamics remain unchanged for an substrate rich
environment, the growth rate is decreased in environments with lower substrate concentrations.
The severity of slowing down of the substrate uptake depends on the parameter value assumed
for the micro-mixing time scale and on the biomass concentration present, but does not change
the overall behavior of the simulation. This justifies the higher parameter value, as usually
assumed in other studies [109, 103], chosen for the simulations in the upcoming Chapter 5.

Due to the possibility of population heterogeneity originating from external and internal sources,
the time scales of cellular response to these two kind of perturbations have been analyzed. The
investigation revealed two different time scales in the cell response for the appropriate choice
of reaction kinetics when the cell are out of equilibrium (uptake rate, internal composition
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and growth rate are not balanced), and only one time scale when cells at equilibrium respond
to external fluctuations. A deciding factor for the two time scales stem from the different
magnitudes in molecular weight of the cellular components. While the formation of metabolites is
a fast process, the synthesis of proteins happens over longer time-scale due to the high molecular
weight and the unbalanced state of the cells. In unbalanced cellular state, the cell’s composition
is not adapted to the current environment leading to a non-optimal amount of T and R proteins,
which are responsible for the regulation of the cellular processes. This result shows the necessity
to include intrinsic noise, which result in randomly distributed cells regarding their cell state,
when simulating a population in an changing environment, the aim in Chapter 5, in order to
maintain different time scales in cellular response and decouple the cellular state from the local
concentrations in the liquid phase.

In order to utilize a coarse-grained model as a basis for a PBE modeling approach, the current
coarse-grained model has to be simplified further to decrease the number of cellular components
to two. Additionally, a higher possible range of mass fractions of the components is required
to ensure the necessary flexibility in cell state. A detailed reasoning for the requirements of
the biological model is given in the upcoming Section 4.1. The modified coarse-grained model,
which is characterized by a different interpretation of the cell components, is able to reproduce
similar time courses for the substrate and biomass concentration and, additionally, the growth
rate is in agreement with the experimental data. Due to the components representing different
intracellular pools, the proteome allocation into the protein fractions in dependency of M is
more challenging and difficult to compare with experimental data. Here, the allocation into T
and R is based on assumption about the range ofM , T and R. While it overall does have similar
tendencies as the behavior in the original coarse-grained model, the dynamics of T and R are
much slower upon changes in the environment. The precursor M represents a much larger pool
from which P is synthesized, which is not biologically sound and questionable. The limitations
have to be kept in mind and caution should be exercised, when utilizing this model.

To summarize, coarse-grained models are a sound basis for the development of bioprocesses due
to their simple structure with only a minor number of parameters and the flexibility to simulate
and optimize different biotechnological process designs. The structure of the minimal coarse-
grained model can easily be extended to include other cellular processes of interest such as the
dependence of oxygen availability on growth through the addition of reaction rates or protein
fractions.
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Hier soll eine Seitenzahl stehen
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4 A population balance equation approach for
modeling microbial growth

In the previous chapter, an unsegregated coarse-grained model based on mass conservation was
established. To account for the fact that cell populations are segregated into discrete cells with
different cell states, a common choice are PBE models. The characteristics of a PBE and its
general formulation have been presented in Section 2.3. Early examples of these models were
based on the age [11, 42] or the mass [54, 101] as an indicator for the cell state. The problem with
the former as variable for a PBE is that it is impossible to obtain data about the age of a microbial
population. Cell size or cell mass as state variable overcomes this problem. Additionally, cell
size strongly depends on the environmental conditions as the population leans towards higher
cell sizes in a nutrient rich environment. But with this interdependence, the downside is that
the cell size is primarily an outcome of the perceived environment and cannot predict the cell’s
response towards dynamical changes in the environment [41]. Therefore, we introduce a PBE
model which includes the cell mass and the protein content of a cell to describe its cellular state.
The cellular processes are defined by the coarse-grained model established in the last section.
With the combination of the two variables a good indicator about the cell’s history through
the cell mass is given and through the protein content as variable the cellular response to the
environment is determined. The outcome of the PBE model is compared to the results of the
unsegregated coarse-grained model and the influence of intrinsic noise is investigated. The latter
is accomplished by varying the cell division rate function and the degree of unequal distribution
of the cell mass and protein content during cell division. Furthermore, it is shown that the
numerical scheme used for the simulation conserves the first moments.

4.1 Model formulation

In order to employ a PBE to model microbial growth, we have to define the processes involved
in the description of the population. For a cell population, we consider a PBE with growth
and cell division. Additionally, descriptor variables of the model have to be defined. To keep
the computational effort when solving the PBE numerically, the number of descriptor variables
have to be minimized. Coming from the set-up of coarse-grained models, one could think about
using the protein concentration as descriptor variable. But the usage of the concentration of a
cell component is not a suitable choice, as cell division is not a compatible concept with this
descriptor choice. A cell with a given cell component concentration divides into two daughter
cells, which are usually assumed to have the same cell component concentration as the mother
cell. Thus in this instance, the cell division term in the PBE would vanish. Another possibility is
to consider the biomass concentration or mass of a cell as descriptor variable. The disadvantage
of this choice is the lack of knowledge about the cell composition especially the proteome of
the cell. Therefore, knowledge about the cell composition is needed. In Section 3.7, we intro-
duced a modified coarse-grained model with only two cell components, where knowledge of one
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4 A population balance equation approach for modeling microbial growth

Figure 4.1: State space of a population balance equation with two descriptor variables: biomass of a
cell mB and protein content of a cell nP .

component is sufficient to describe the cell state through Eq. (3.42). The reaction rates of the
model are determined by the concentration of each cell component. Furthermore, to compare
the result of the PBE with the non-segregated simulation in Section 3.7, the biomass concen-
tration of the population is required. On that account, we require two descriptor variables in
order to employ the model presented in Section 3.7 for the description of the metabolic network
of the cell population: the mass of a cell mB ∈ [mmin,mmax] given in gDW and the amount of
protein substance in a cell nP ∈ [nmin, nmax] given in mol. Through both variables the protein
concentration of a given cell can be calculated

P =
nP
mB

. (4.1)

The question arises why the coarse-grained model which was presented in Section 3.1 had to be
modified in the first place. The choice of the proteome consisting of only the fractions T and
R has the following reasoning: If we take a look at the two-dimensional state space for the two
descriptor variables and consider the protein content in y-direction and biomass in x-direction,
the smallest possible concentration is given by Pmin = nmin/mmax, which is the upper right
corner, and the largest by Pmax = nmax/mmin, which is the lower left corner. One has to keep in
mind, that in order for cell division to take place mmax and nmax have to be multiples of mmin

and nmin, respectively. Additionally, the largest possible protein concentration, which e.g. can
be assumed as proteins forming all of the biomass of the cell, is constraint by

Pmax ≤ 1

w
. (4.2)

This imposes a constraint on how mmin and nmax can be chosen. The smaller mmin is, the
smaller nmax has to be as well, as Pmax is bounded. Therefore, we have to set mmin > 0. If we
want to look at a population, the cells ideally should mainly reside in the upper left part of the
state space to be able to grow in both directions. The division process should also dominate over
the growth for larger cells, meaning that larger cells are more likely to divide than to further
increase their biomass and cell content. The necessity for the cell division process is the problem
if we consider a model with two components, where e.g. M represents only the metabolites and
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P all the macromolecules, which would make up nearly all of the biomass, as the cells in question
would mainly reside in the lower left part of the state space due to the protein concentration
being near to the maximal possible concentration. We need the protein concentration to be able
to vary and therefore to be considerably smaller than Pmax. The same problem occurs if we
assign a fixed biomass fraction to the compartment U and keep the intracellular components M
and P .

According to Eq. (2.29), the PBE for the density number function N(nP ,mB, t) with the two
defined descriptor variables is given by

∂N(nP ,mB, t)

∂t
+

∂

∂nP
(rn(nP ,mB, S)N(nP ,mB, t)) +

∂

∂mB
(rm(nP ,mB, S)N(nP ,mB, t))

(4.3)

= 8 Γ(2nP , 2mB)N(2nP , 2mB, t)− Γ(nP ,mB)N(nP ,mB, t)

under the assumption that cells divide into two identical daughter cells. Furthermore, we neglect
the spatial coordinate of the cells, as we assume a well-mixed homogeneous environment. The
first term accounts for the accumulation of cells with the state (nP ,mB), the second and third
term represent the loss cells with state (nP ,mB) due to a change in the protein content and cell
growth. The right hand-side comprise the terms due to cell division. For simplicity reasons, we
will use np = n and mB = m.

The rate of change functions are given by

rn(n,m, S) = ṅ = γP m rP (n,m) (4.4)

and

rm(n,m, S) = ṁ = µ m = wT N r(n,m, S) m (4.5)

where r(n,m) is the vector containing all the reaction rates rT , rP and rO, which are defined in
the coarse-grained model by Eq. (3.19).

Following the works of Mantzaris [98, 99] and Quedeville et al. [129], the division rate is given by

Γ(n,m) =

(
m

mc

)α( n

nc

)β
, (4.6)

where mc and nc are critical values above which cells are more likely to divide and two scalars α
and β. The higher the exponents α and β are, the sharper is the division function. The advantage
of this division rate function over the one used in some works [53, 101] is that it is defined on
the whole state space and does not require an additional assumption for the distribution used,
but only the critical values mc and nc. In the following, both exponents in the division rate
are set to 5, analogous to the work of Mantzaris [98]. Additionally, the critical values used are
mc = 500 fg and nc = 1.3×10−3 fmol. Figure 4.2 shows the division rate function in logarithmic
scale for variable protein amount n and constant biomass m (Figure 4.2A) and variable biomass
m and constant protein content n (Figure 4.2B), as well as the function dependent on both
variables (Figure 4.2C). Thus, the probability for a cell to divide increases exponentially with
its cell mass m and protein content n.
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Figure 4.2: Division rate functions Γ as functions of protein amount n for constant biomass m = 130 fg
(blue), m = 550 fg (red), and m = 970 fg (yellow) in logarithmic scale (A), as functions of
biomass m for constant protein content n = 4.5 · 10−4 fmol (blue), m = 0.0013 fmol (red),
and m = 0.0021 fmol (yellow) in logarithmic scale (B), as well as function of both variables
m and n.

Furthermore, boundary conditions have to be set. Here, the system is closed and the fluxes at
the boundaries are zero. The cells do not grow when they reach their maximal mass

rm(n,mmax) = 0. (4.7)

This is not entirely true, as cells do not in fact stop growing, but they never reach infinite mass,
as for high mass values the division process dominates over the growth process. To avoid dealing
with unbounded state spaces, the maximal mass of the cells is set to a very high values. The
fluxes at the other side of the domain are also zero, since there are no cells outside of the domain
which grow to reach a mass of mmin

rm(n,mmin) = 0. (4.8)

The same applies for the protein content of a cell

rn(nmax,m) = 0 rn(nmin,m) = 0. (4.9)

In order to get a full set of equations to describe the dynamics of a well-mixed bioreactor. The
liquid phase is described by the equation for the substrate

Ṡ = rSin −
∫ mmax

mmin

∫ nmax

nmin

rT (n,m, t) m N(n,m, t) wS γ nS dn dm (4.10)

4.2 Numerical simulation

Using the Finite Volume method introduced in Section 2.3.2, the biomass production phase of
the L-phenylalanine process can be simulated for the PBE model given by Eqs. (4.4)-(4.10) using
MATLAB 2022a with ode23s as ODE solver, which is based on an explicit Runge-Kutta method.
For the process involving change in the internal variables we employ a first-order upwind scheme,
as the rate rm is always positive and rn is positive for the majority of the time. For the cases
where rn < 0, we use a first-order backward scheme instead. The state space of Eq. (4.4) is
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Figure 4.3: Comparison of the simulated quantities using the unsegregated model (blue) and the PBE
model (orange) against the experimental data (yellow points) of the L-phenylalanine pro-
duction process up to t = 39 h. Time course of the following concentrations: glycerol S (A)
and biomass X (B)

given by n ∈ [4×10−4 fmol, 2.2×10−3 fmol] and m ∈ [100 fg, 1000 fg] and the domain is divided
into a 15 × 20 grid. For the initial population distribution, we assume every cell to have the
same cell mass m0 = 250 fg and the protein content of the cells to be normally distributed with
µ = 1.2 × 10−4 fmol and σ = 5 × 10−5 fmol. The total number of cells is set to correspond to
the initial biomass concentration of the bioprocess and with Eq. (2.36) given by

X0 =
M0,1(0)

VR(0)
=

1

VR(0)

∫ mmax

mmin

∫ nmax

nmin

m N(n,m, 0) dn dm (4.11)

The simulation of the PBE model is compared with the simulation of the coarse-grained model
from Section 3.7, which is a unsegregated model. The time course of the substrate concentration
S shows no big differences in both approaches in Figure 4.3A. The biomass yield during the fed-
batch phase in the PBE model is not as high as in the unsegregated model as seen in Figure 4.3B.
The dynamics for batch phase, on the other hand, do not differ. A look at the internal properties
of the cell population in Figure 4.4A reveal a higher mean protein concentration P during the
fed-batch phase and therefore a lower concentration for M , leading to a small difference in the
allocation into protein fractions T and R in Figure 4.4C. The reduced biomass yield is also
apparent in the growth rate, which reveals lower values for the PBE model in Figure 4.5A. This
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is a result of a slightly lower substrate uptake rate, lower protein synthesis rate and a higher
overflow metabolism over the majority of the fed-batch phase seen in Figure 4.5B to D.

With the approach of a segregated model, we can investigate the distribution of the population
over its internal properties n and m. Figure 4.6 shows the number density function over the
state space for different time points: the beginning of the process (t = 0 h), the middle of the
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Figure 4.6: Number density function over the n-m-plane for different time points of the process.
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batch phase (t = 7 h), the end of the batch phase (t = 14 h),the middle of the first fed-batch
phase (t = 21 h), a point in the middle of the second fed-batch phase (t = 28 h) and a point
near to the end of the fed-batch phase (t = 35 h). The distribution during the batch phase at
t = 7 h and t = 14 h shows a peak at around n ≈ 0.6× 10−3 fmol and m ≈ 330 fg. As the mean
protein concentration P increases for the fed-batch phase at t = 21 h, the distribution moves
to higher protein content values at around n ≈ 1.1× 10−3 fmol, but lower biomass at m ≈ 190
fg. A small subpopulation forms at the upper boundary of the protein content domain. This
subpopulation continues to increase as seen for time points t = 28 h and t = 35 h.

A distribution over the protein concentration is obtained by Eq. (4.1) and sorting the resulting
values in ascending order. Figure 4.7A shows the normalized protein concentration distributions
for different time points, such that the bars add up to 1. These time points coincide with the
beginning of the process (t = 0 h), a time point at the end of the batch phase (t = 14 h), the
middle of the first fed-batch phase (t = 21 h) and a time point near to the end of the fed-batch
phase (t = 35 h). It is worth noting that sorting the protein concentrations corresponding to the
mid grid cell points does not result in a protein concentration domain with evenly spaced values.
This leads to a highly noisy protein concentration distribution. To deal with this problem, the
resulting distribution is binned into evenly spaced intervals. Since the population distribution
does not change much over the batch phase, only one time point (t = 14 h) is shown here. The
same applies for the fed-batch phase. As seen in the mean values of the protein concentration
in Figure 4.4, the protein concentration distribution exhibits smaller values during the batch
phase (orange) and shifts to higher protein concentration values in the fed-batch phase (yellow).
Additionally, the distribution broadens over the course of the fed-batch phase, which can also be
observed when calculating the variance of the protein concentration in Figure 4.4B. The variance
shows a peak at t ≈ 25 h, which coincides with the switch to the second fed-batch phase with
a higher substrate concentration feed. After the switch the variance drops, but increases again
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Figure 4.7: Evolution of the protein concentration distribution: Protein concentration distribution nor-
malized to 1 for different time points of the bioprocess: the beginning of the process (t = 0 h),
a time point at the end of the batch phase (t = 14 h), the middle of the first fed-batch phase
(t = 21 h) and a time point near to the end of the fed-batch phase (t = 35 h) (A), Variance
of protein concentration over the course of the bioprocess (B).
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until t ≈ 35 h, where it drops on the short-term. During these peaks, a significant part of the
population forms at the boundary as seen in Figure 4.6 at t = 35 h.

4.2.1 Influence of cell division rate function

The critical values mc and nc have an impact on the simulation, as they determine the values
at which the cells are more likely to divide. Therefore, the resulting protein concentration
distributions are compared for different sets of critical values: base case with mc = 500 fg and
nc = 1.3×10−3 fmol (blue), higher critical values mc = 800 fg and nc = 1.7×10−3 fmol (orange)
and lower critical values mc = 400 fg and nc = 1.3 × 10−3 fmol (yellow). The different critical
values have a large effect on the resulting protein distribution especially during the fed-batch
phase, as seen in Figure 4.8. Two time points during the fed-batch phase (t = 21 h and t = 35 h)
are shown in Figure 4.8A and B, which reveal a narrower distribution for higher critical values
and broader distribution for lower critical values. This observation is confirmed when calculating
the variance of the protein concentration in Figure 4.8D. These results also apply for the batch
phase. The protein distributions during the batch phase are not shown here, but can be found
in Appendix, Figure A.3. The mean protein concentration shifts to lower values for higher
critical values and higher values for the other case (Figure 4.8C). This relation is not obvious
and requires a deeper investigation. During the fed-batch phase a part of the population exhibits
internal property values at the boundary of the state space, which effects the mean value of the
population and the process of cell division dominates the dynamics of the population. Therefore,
the question arises if the differences between the simulations arise mainly from the subpopulation
at boundaries of the state space. Thus, the influence of the different critical cell division values
is investigated by analyzing the behavior of an exponentially growing population in a constant
environment. Here, the differences between the different protein distributions are negligibly
small, which is shown in Appendix, Figure A.3. The population shifts on a diagonal for higher
critical values, but the mean protein concentration remains the same. This implies that the

Figure 4.8: Comparison of the protein distribution for division rate functions with different critical
values mc and nc: base case with mc = 500 fg and nc = 1.3 × 10−3 fmol (blue), higher
critical values mc = 800 fg and nc = 1.7 × 10−3 fmol (orange) and lower critical values
mc = 400 fg and nc = 1.3× 10−3 fmol. Protein distribution at time point t = 21 h (A) and
t = 35 h. Mean protein concentration (C) and variance of the protein concentration (D)
over the course of the bioprocess.
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Figure 4.9: Comparison of the number density function over the n-m-plane for division rate functions
with different critical values mc and nc at time point t = 35 h: base case with mc = 500 fg
and nc = 1.3× 10−3 fmol (A), higher critical values mc = 800 fg and nc = 1.7× 10−3 fmol
(B) and lower critical values mc = 400 fg and nc = 1.3× 10−3 fmol (C).

critical cell division values affect the solution of the distribution only if part of the population
shows values at the boundary of n. Figure 4.9 shows the number density functions over the
n-m-plane for the time point t = 35 h for the three different cell division functions, where all
three cases show the mentioned subpopulation. For higher mc this population is shifted to the
right as seen in Figure 4.9B, while it is shifted to the left for lower mc. We can observe that the
subpopulation for higher critical values forms the majority of the cell population and explains
the smaller variance in protein concentration in Figure 4.8D. The reasoning behind this is that
the cells are only able to grow in m direction, if they have reached the maximal value in protein
content n, and since mc is higher, these cells are able to increase their biomass for a longer time,
resulting in more cells at the boundary of n. With increasing biomass the protein concentration
of the cells decreases as well, explaining the observation in Figure 4.8C. If the critical value
mc is smaller, the cells are more likely to divide when reaching the boundary, resulting in a
more evenly split population as seen in Figure 4.9C. The influence of the cell division rate
on the dynamics of the cell population also affects the biomass yield as seen in Figure 4.10.
Lower protein concentrations lead do a larger pool of cell components M , an increased overflow
metabolism and therefore smaller growth rate of the population.
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Figure 4.10: Comparison of the dynamics of the biomass for division rate functions with different critical
values mc and nc: base case with mc = 500 fg and nc = 1.3 × 10−3 fmol (blue), higher
critical valuesmc = 800 fg and nc = 1.7×10−3 fmol (orange), lower critical valuesmc = 400
fg and nc = 1.3×10−3 fmol and unsegregated model (dotted line). The experimental data
points are indicated by yellow dots.
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4 A population balance equation approach for modeling microbial growth

4.2.2 Influence of unequal cell division

For a one-dimensional PBE it has been shown that cell division into two equally sized daughter
cells creates periodicity in the number density function, which vanishes when considering un-
equal partitioning [33, 101]. In case of unequal partitioning, the partition probability density is
given by

p(n,m, n′,m′) =
1

B(q, q)2
1

n′

( n
n′

)q−1 (
1− n

n′

)q−1 1

m′

(m
m′

)q−1 (
1− m

m′

)q−1
, (4.12)

which is a symmetrical beta distribution B with parameter q, which is set to 20 in the simulation.
This way the cells divide into two daughter cells, where its new internal properties are distributed
according to the beta distribution, rather than producing two identical cells. In order to focus on
the effect of the partitioning function, the number density functions of an exponentially growing
population in a constant environment is considered. It is worth noting, that in the presented
2D PBE, the number density function does not show periodicity unlike the 1D PBE [101].
Comparing the number density function over the n-m-plane in Figure 4.11A, which shows equal
partitioning, to the result in Figure 4.11B, reveals a slightly broader distribution for unequal
partitioning. This is reasonable as unequal partitioning creates more variety in the newly formed
cells. Interestingly, the protein distributions in Figure 4.11C are almost identical with a very
slight shift towards smaller protein concentrations in case of unequal partitioning. Note that
due to the set up of the discrete grid space, empty bins in the protein concentration space may
occur as apparent in Figure 4.11C.

In the last section, we observed a higher dependency of the dynamics on the division process
during the fed-batch phase. Therefore, we investigate the affect of unequal partitioning in this
scenario. Figure 4.12A reveals a broader cell population distribution over the n-m-plane analo-
gous to cell population in a constant environment in Figure 4.11. An additional subpopulation
forms at the upper-left corner, which corresponds to the daughter cells of the middle cell pop-
ulation. A closer look at the protein concentration distribution in Figure 4.12B shows a slight
shift towards lower concentration values. Contrary to the distribution over n-m, the distribu-
tions is narrower leading to lower variance values as seen in 4.12C. As the population exhibits
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Figure 4.11: Comparison of equal and unequal partitioning: Number density function over the n-m-
plane for equal partitioning (A) and unequal partitioning (B). Comparison of the protein
concentration distribution, where the distribution for equal partitioning is indicated in
blue and unequal partitioning is indicated in orange (C).
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Figure 4.12: Comparison of equal and unequal partitioning for the whole biomass production phase:
Number density function over the n-m-plane for unequal partitioning at t = 35 h (A).
Comparison of the protein concentration distribution at t = 35 h (B) and Variance of
protein content (C), where the distribution for equal partitioning is indicated in blue and
unequal partitioning is indicated in orange.

values at the boundary of the state space, it can not be excluded that this affects the broadness
of the protein concentration distribution. Overall, we can conclude that unequal partitioning
leads to a broader distribution over the internal variables, but does not change the dynamics of
the population.

4.3 Validation of conservation of the first moments

In this section, we check the numerical scheme for conservation of the first moments. First, the
conservation of the first moments is investigated for the growth process. The first moment in
protein content is given by M10 and its dynamics is obtained by multiplying the PBE given by
Eq. (4.4) by n and integrating over the whole domain

dM10

dt
=

∫ ∫
n
∂N(n,m, t)

∂t
dm dn =

∫ ∫
rn(n,m, S)N(n,m, t) dm dn. (4.13)

The right hand-side of the PBE is zero as cell division only changes the number of cells and does
not change the total sum of protein content across the population. The step-wise increase rate
in total protein content calculated using the first moment in protein content

µn,step(t) =
1

M10(t)

M10(t+∆t)−M10(t−∆t)

2∆t
, (4.14)

which is obtained through a central scheme, can be compared to the rate of change obtained in
Eq. (4.13)

µn(t) =

∫ ∫
rn(n,m, S)N(n,m, t) dm dn

M10
(4.15)

Analogously, the growth rate in biomass can be compared for consistency. Figure 4.13 shows the
increase rates of the two first moments using Eqs. (4.14) and (4.15). The simulation is performed
for an exponentially growing cell population in a constant environment with S = 1 g/L using
a 15 × 15 and a 20 × 20 grid. The increase rates concerning the protein content n are almost
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4 A population balance equation approach for modeling microbial growth

Figure 4.13: Comparison of rates of change of the first moments M10 (A) and M01 (B), where step-
wise rates of change calculated using the moments are indicated by red circles and rate of
change rates obtained using rn and rm by blue circles. The transparent circles are obtained
using a 20× 20 grid, while the solid circles are from a 15× 15 grid

aligned (Figure 4.13A), while a larger difference is observed for the growth rate in biomass
(Figure 4.13B). The difference between the rates of change can be decreased if a finer grid is
employed. Additionally, it has to be noted that a second order central scheme is used to estimate
the growth rate in Eq. (4.14), which can be exchanged for a higher order method. Overall, we
can conclude that the first moments are conserved considering the growth dynamics of the cell
population.

In the next step, we check for mass conversation during the cell division process. For this, we
calculate the right hand-side after multiplying by n, and or m respectively, and integrating over
the domain. For conservation of the sum of the first moments, we calculate∫ ∫

(n + m)(birth− death) dm dn = O(10−1) (4.16)

which is comparable small to the sum of the first moments which have O(1014), thus the division
process conserves sum of the two first moments. For the conservation of the total protein content,
we obtain ∫ ∫

n(birth− death) dm dn = O(108) (4.17)

while M10 = O(1010) and for the total biomass∫ ∫
n(birth− death) dm dn = O(108) (4.18)

while M10 = O(1015), thus we do have some numerical error, but it is negligible compared to
the order of magnitude on the left hand-side. Overall, it has been shown that the numerical
scheme preserves the first moments and the numerical errors are sufficiently small.

4.4 Short summary and discussion

Past approaches to model microbial growth using PBEs either considered only the cell mass as
variable or multiple variables for the intracellular components of a cell. While the former is not
sufficient to fully capture a populations growth and its cell states, the latter is to complex and
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no numerical solution is attempted if the number of variables exceed two [156, 41] or extensive
computational effort is required [67]. Other cases with several state variables did not consider
cell division, but incorporated stochastic intracellular behavior. Here, the PBE model is solved
numerically through a transformation into a Fokker-Planck type differential equation using an
Euler algorithm [145] or stochastic algorithm [146, 147].

In this chapter, a compromise between simplification and necessary complexity has been aimed
for and a bivariate PBE with the cell mass m and protein content n of a cell as state variables
presented. With knowledge about the two variables, the protein concentration P in the cells
can be determined as well as the concentration of compartment M since the biomass only
comprise these two intracellular components. The dynamics of the components in the cell follow
the coarse-grained model formulation given in Section 3.7. The presented PBE describe the
evolution of the state variables and cell division in the environment of a well-mixed homogeneous
bioreactor. Thus, in the current set-up intrinsic noise due to cell division is incorporated and
external noise neglected. The biomass production phase of the L-phenylalanine production
process has been simulated using the PBE model with a weighted Finite Volume method. While
the mean values of the segregated and unsegregated model do not differ during the batch phase,
the results vary significantly during the fed-batch phase leading to a lower biomass to substrate
yield for the PBE model. The distribution over the state variables were accessed for different
time points of the process, showing a normally distributed population during the batch phase
and a split population in the n-m-state space during the fed-batch phase.

In the following, we want to discuss this behavior during the fed-batch phase. The two emerging
distributions lie on a line in the n-m-plane. Thus, exhibiting roughly the same protein concen-
tration. During the fed-batch phase, the protein concentration shifts to higher values, which
are located beneath the diagonal of the state space. The higher the value the closer it is to
the lower left corner of the state space. The boundaries of the state space are fixed by the
maximum value of P and cannot be freely set. If one would allow higher values for n, protein
concentration values that are larger than possible would result. Furthermore, a look at the range
of n reveals that a cell with nmax can only divide two times. The larger subpopulation exhibits
a protein content value of n ≈ 1.1× 10−3 mol and, given the upper boundary of n, cells of this
subpopulation are able to grow to double their size, while keeping their protein concentration
constant, forming the second subpopulation. Cells reaching the boundary of n are then only
able to change their state in direction of m, leading to a decreased protein concentration, an
overall mean protein concentration and higher variance of the whole population. This is a down-
side of the current set-up of the PBE as one normally sets the upper boundaries of the state
variables to a high value which is usually not reached as cells tend to divide earlier. Thus, the
emergence of the subpopulations and the different mean values during the fed-batch phase can
be attributed to the upper-boundary imposed on the protein content n. This also explains the
normally distributed population during the batch phase. Here, the protein concentration P is
smaller and the population resides on the upper left corner of the state space. Therefore, cells
tend to divide before they reach the boundaries of the state space. The time point at which
cells divide is determined by the critical values in the division function and different sets of
critical values were simulated. While the effects during the batch phase were negligible, larger
differences were observed during the fed-batch as anticipated. Higher critical values led to a
higher accumulations of cells at the boundary with higher mass, while smaller critical values
forced the cells to divide earlier, but not enough prevent the formation of a subpopulation at
the boundary. The incorporation of unequal partitioning, on the other hand, only increased the
variance of the population, but left the overall dynamics unchanged.
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4 A population balance equation approach for modeling microbial growth

The numerical scheme used was examined for conversation of the first moments and consistency
resulting in sufficiently small numerical errors. Overall, we can conclude that the presented
model is able to describe a segregated population in a well-mixed environment and produces
good results in a nutrient rich environment as seen in the simulation of the batch phase. The
results during the fed-batch phase have to be considered with caution due to the limitations of
the state space of the PBE.
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5 Analysis of a cell population exposed to
external and intrinsic noise

As the employment of PBEs poses a big challenge to describe a segregated population with
multiple properties, we utilize an Euler-Lagrange approach in this chapter. The advantages of
these models were already mentioned in Section 2.5. Here, we present an Euler-Lagrange CM
for a heterogeneous cell population in a scaled-down bioreactor system to study the effects of
external and intrinsic noise. For this, a particle tracking algorithm, introduced in Section 2.5.1,
is used to describe the movement of virtual particles within the bioreactor system. Following a
large number of virtual particles allows an accurate computation of the local consumption and
production terms, due to biological activity, in the mass balance equations. Also, a dynamic
model describing the cellular response to external stimuli, which was presented in Chapter 3,
is attached to each virtual particle which enables following cell adaptation along its trajectory
inside the bioreactor system. Hence, not only the global heterogeneity at the reactor scale can
be accessed (as shown in [51]), but also the local distributions of cell physiological properties
at different locations of the bioreactor system. Moreover, the introduction of division processes
constitutes a major originality of the present work. As randomization of cell properties with a
frequency relates to the cell growth rate, cell division produces individuals whose metabolism
are not balanced. Various examples of scale-down bioreactor studies are described revealing
that the magnitude and frequency of external perturbations combined with randomization of
properties at birth favors the emergence of subpopulations.

5.1 Model setup of an Euler-Lagrange approach

The scaled down bioreactor system in question consists of a well-mixed ideal STR and PFR in
bypass. The STR is assumed to be homogeneous. For the fed-batch process, the feed can be
assumed to be in the STR as well as the PFR. The coupling of the two bioreactors splits the
environment into a well-mixed zone (STR) and a zone which exhibits substrate gradients, leading
to possible starvation zones or zones with excess substrate availability. These two scenarios
depend on the feed input location, where a feed in the STR creates the former and a feed in
the PFR the latter [114]. This is due to the fact that the volume of the STR is significantly
larger than the inlet of the PFR, leading to a quick dispersion of the feed in the STR and higher
dilution. Thus, the substrate is quickly consumed, leaving no substrate to be transported into
the PFR. For a feed at the inlet of the PFR, the substrate concentration is much higher in the
PFR due to the small volume.
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Figure 5.1: Compartmentalization of a scaled-down bioreactor system with a stirred tank bioreactor
and plug flow reactor in bypass (nz = 11).

5.1.1 Hydrodynamic model of the scaled-down bioreactor system

As presented in Section 2.4, we opt to employ a CM to describe the hydrodynamics of the scaled-
down bioreactor system. Thus, we compartmentalize the environment of the bioreactor system
into a subset of nz volumes. Each compartment is considered to be homogeneous. The STR is
assumed to be ideal and is represented by the first compartment with volume VSTR. The PFR is
divided into nPFR volumes, which we set to nPFR = 10 in the following, with a total volume VPFR
as seen in Figure 5.1. Thus, in this setup each compartment has exactly two neighbors. The
working volume of the STR is VSTR = 0.9 L and the volume of the PFR is VPFR = 0.45 L.
Therefore, the ratio between the two environments is 2 : 1. The liquid phase moves through
the PFR with flow rate QR and backflow of bfQR. These parameters of the hydrodynamic
model can be varied to modify the degree of mixing in the bioreactor system, the frequency
of feast and starvation events, as well as their magnitude. The transport of dissolved scalars
in the bioreactor system is described using the finite volume approach presented in Section 2.4
by Eq. (2.57), while the mass transfer between the liquid an biological phase is described in
Section 2.5.2 by Eq. (2.65). The environment in the bioreactor system is characterized by only
one variable: the glycerol concentration S.

5.1.2 Dynamical evolution of the particles

The biological phase is represented by N discrete virtual particles, which are coupled with a
state vector describing its intracellular state as shortly depicted in Section 2.5. In this work,
each virtual particle represents an ensemble of biological cells, which possess the same set of
physiological properties ξ and a total biomassm. Thus, it is worth noting that we track the total
cell mass of the virtual particle, but do not specify the exact number of biological cells a virtual
particle represents. The total biomass m can be regarded as an additional physical property
of the virtual particle besides the physiological properties ξ. Furthermore, as the mass transfer
between liquid and biological phase given through Eq. (2.65) sums over the number of particles
present in a given compartment at time t, each particle is assigned a physical property x, which
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5.1 Model setup of an Euler-Lagrange approach

indicates the index i of the compartment the particle resides in. Thus, the state vector of each
particle is given by (ξ,m, x). Over time, the properties of the particles change as they move
through the bioreactor system and equations for the evolution of the properties have to be
proposed. The movement in x is characterized by a stochastic transport algorithm, which was
introduced in Section 2.5.1. In contrast to the PBE model in Chapter 4, we are not bound to at
best only two variables, as the computational effort to solve the PBE increases exponentially with
the number of variables. In this framework of an Euler-Lagrange model approach, the dynamics
of the internal properties of the particles can be described by simple ODEs. Additionally,
transport of particles in the spatial space and dynamics of the internal properties are handled
separately. At each time step, the virtual particle is first updated in its internal property and
then moved in space. This creates the opportunity to employ more detailed descriptions for the
particles forming the biological phase. Hence for the evolution in the physiological properties m
and ξ, we can utilize the equations of the coarse-grained model (3.20)-(3.22), which are described
in Section 3.4.1. The advantage of the coarse-grained model is that it is able to describe the
intracellular network of a cell with only 6 reactions and 3 variables, while still containing the
most important cellular processes. The variables are the three intracellular components: P
and M , with the first representing the complete proteome, the second the residual biomass and
both being macromolecular; and M representing a metabolite, which has low molecular weight.
Using Eqs. (3.20)-(3.22) the physiological properties of each particle p are ξ = (P,M,U) and
their evolution is described by

ξ̇ = N r(ξ, S) − µ ξ

ṁ = µ m

µ = w N r(ξ, S). (5.1)

The vector r contains all intracellular reactions and mass transfer rates for those scalars present
in the environment and is not to be mistaken with ϕl(ξp,Si), which only contains the latter rates.
As we only consider one scalar in the environment S, the mass transfer rate of S is denoted
as ϕS . For the mass transfer rate ϕS , we additionally used the rate limiting concept introduced
in Section 3.5. As the cells move in the scaled-down bioreactor system, they encounter situations
in which the substrate uptake is limited by either external or internal factors. The characteristic
time for substrate uptake given by Eq. (3.36) varies over the different compartments and can be
calculated for each compartment as

τu =
S

wS Xi kT Tmax
, (5.2)

where the total biomass Xi in each compartment i is calculated through summing over all Np,i

particles present in compartment i

Xi =
1

Vi

Np,i∑
p

mp p ∈ {1, .., Np,i}. (5.3)

In the scope of this work, we use a rather large parameter value for τmix in order to avoid negative
substrate concentration values in compartments with very low substrate concentrations as well
as keep the computational time reasonable. We have already shown in Section 3.5 and 3.6.1
that the two models behave similarly justifying the choice for a higher value of τmix.
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5.1.3 Intrinsic noise

In the current setup, there is no distinction between growth in cell mass or growth in cell number.
The virtual particles represent a large ensemble of individual cells and the growth in mass and
growth in number is equivalent being described by the growth rate µ. Through cell division,
however, the cellular content of a cell is randomly distributed to the daughter cells leading to
noise in the cellular composition. Thus, cell division creates unbalanced cells, a concept we
introduced in Section 3.6.3. As a short recap, unbalanced cells require a longer time to return to
their balanced state, especially in terms of P , than balanced cells need to adapt to a change in
the environment. In order to account for this phenomenon and still keep the number of virtual
particles constant, it is proposed to change the physiological properties ξ of a number of virtual
particles, which equals the number of cell divisions during a time interval ∆t. For this purpose,
the total number of cell divisions have to be calculated and the same amount of virtual particles
with corresponding mass receive a new set of physiological properties ξ.

In the model, the virtual particles do not represent the same number of cells. The total biomass
of the particle and its growth rate has to be taken into account in order to determine the total
number of cell divisions during a time step ∆t. On average, the relative change in cell number
N is proportional to the relative change in mass of the virtual particles

∆N

N
=

∑
p µp mp ∆t∑

pmp
. (5.4)

A more detailed derivation of Eq. (5.4) can be found in Appendix, Section A.3.1. Now that
we obtained the number of cell divisions, we have to decide which virtual particles are chosen
to be assigned new physiological properties. This can be done by introducing weights d for
the random sampling of the cells. In later Section 5.3, we investigate the outcome of different
weighting functions. One consideration when setting up a weighting function is to take the total
biomass of the particle into account

dj =
mj∑
pmk

j ∈ {1, ..., Np}, (5.5)

where
∑

j dj = 1. Note that here we use the subscript p in order to emphasize the summation
over all particles p. Another possibility is to consider the growth rates as particles with higher
growth rates are more likely to contain cells that divide than slower growing particles leading
to following weights

dj =
µj∑
p µp

j ∈ {1, ..., Np}, (5.6)

These two considerations can be combined leading to

dj =
µj mj∑
p µp mk

j ∈ {1, ..., Np}. (5.7)

When considering the growth rate to determine the sampling weights, there is the possibility
of negative weights as the growth rate can be negative. In order to ensure non-negativity, we
set the sampling weights of particles with negative growth rate to zero. This is also biologically
sound, as particles with negative growth do not divide.
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The new properties of the selected particles are sampled from a normal distribution centered
around the old properties (M0, P0), which can be regarded as the properties of the mother cells,
with a standard deviation of σM = 0.1 M0 and σP = 0.05 P0. The remaining property U is
uniquely defined once M and P are chosen and has to satisfy

wM M + wP P + wU U = 1. (5.8)

It can be anticipated that cell division is a source of heterogeneity that will affect the physiolog-
ical state of the particles of the population even in absence of external perturbations. Generally,
both sources of noise are present and are investigated in this chapter.

5.2 Contribution of external noise on population heterogeneity

In this section, intrinsic noise, as described in the previous Section 5.1.3, is not considered in
order to focus solely on extrinsic sources of population heterogeneity. With the presented frame-
work, simulations of a fed-batch process in the scaled-down bioreactor system withN ≊ 104 par-
ticles have been performed using MATLAB 2022a. The investigated process follows the same
structure as the process investigated in Section 3.4.1 with the only difference being the bioreac-
tor setup and the focus on the biomass production phase. Parameter values used can be found
in Appendix, Section A.3.2. Additionally, the flow rate is set to QR = 1 L/h, back flow in the
PFR is left aside and the time step used is ∆t = min(τr)/10. The mean population growth and
reaction rates, over all particles present in the bioreactor system are calculated using particle
mass weighted averages

ṽ =
Σpmp vp
Σp mp

v ∈ {ξ, µ, r}. (5.9)

In order to investigate the effects of a heterogeneous environment present in the scaled-down
bioreactor system, the simulation of a cell population in such a environment with a feed in the
STR is compared with the simulation of a single well-mixed STR as seen in Section 3.4.1 [115].
As mentioned earlier, the PFR creates a starvation zone in this operating condition. The
difference between these two operating conditions manifest only during the fed-batch phase, as
the environment over all compartments during the batch phase is nearly homogeneous and only
the addition of the feed into the STR creates a substrate gradient over the compartments. This
is confirmed by comparing the simulated mean quantities in Figure 5.2.

Thus, we focus on the fed-batch phase. The mean substrate consumption of the cell population
in both setups does not differ (Figure 5.2A), but the biomass yield is lower in the scaled-
down bioreactor (Figure 5.2B) as the cell population grows with lower specific growth rate µ
compared to the population in a homogeneous environment (Figure 5.2C). The lower growth
rate stems from a higher mean substrate uptake rate rT , higher mean respiration rate rC , but
lower mean protein synthesis rate rP . The synthesis rate of the residual biomass rU and overflow
metabolism rate rO are not depicted in Figure 5.2 since they have the same dynamics as the
protein synthesis rate rP and respiration rate rC , respectively. Basically, this reflects that a
part of the cell population resides in a starvation zone and additionally can not optimally adapt
its intracellular content due to the fluctuating environment. Hence, a segregated approach
combined with a dynamic model which uncouples growth and local substrate uptake is essential
to predict the well-known result that concentration gradients reduce substrate to biomass yield
and growth [38, 97]. The novelty compared to the previous work of Morchain et al. [108] is
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Figure 5.2: Comparison of the substrate concentration S (A), biomass concentration X (B), growth rate
µ (C), substrate transport rate rT (D), protein synthesis rate rP (E) and respiration rate rC
(F) in a STR (blue) and in a two-compartment bioreactor (orange), where the quantities are
mean values over all compartments and particles. The separation of the batch and fed-batch
phase is indicated by the vertical black line.

that the two aspects (growth and uptake) are considered simultaneously as the growth rate is
determined by the intracellular composition of the cell rather than being a empirical function.

With the employment of a segregated approach and the large number of virtual particles used,
we can access the distribution of the internal properties for any time point of the cultivation
providing insight into occurring population heterogeneity. It can be shown that the differences
between the substrate and biomass concentration X are small with a slight accumulation of
substrate concentration S being observable in compartment 1 and a decrease of substrate con-
centration over the compartments with a concentration of zero in compartment 11 (Appendix,
Figure A.6). Figure 5.3C-K shows the protein, metabolite concentration and growth rate distri-
butions of the entire population over the whole bioreactor system for different time points of the
process: the end of the batch phase t = 14 h (C-E), the beginning of the fed-batch phase t = 16 h
(F-H) and the end of the fed-batch phase t = 38 h (I-K). The distributions are normalized to
1 considering all particles of the bioreactor system. As expected, the distributions during the
batch phase are unimodal in Figure 5.3A-C, since all cells experience the same environment.
The protein distribution exhibits a narrow gaussian shape in Figure 5.3A, while the metabolite
concentration and growth rate is equal for all particles in the system. With the beginning of
the fed-batch, the bioreactor is split into two environments and Figure 5.3D and E reveal a
bimodal distribution for M and P reflecting the two different substrate environments. These
subpopulations can be categorized into growing and non-growing cells as seen in Figure 5.3F.
At the end of the fed-batch phase, the population remains split into two subpopulations as seen
in Figure 5.3G-I, Interestingly, the two subpopulations are closer together compared to the dis-
tributions at the beginning of the fed-batch. This is also evident when calculating the standard
deviation of the internal properties as shown in Figure 5.3J-L. The particles start with a rather
broad protein concentration distribution, which narrows over the batch phase and increase again
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5.2 Contribution of external noise on population heterogeneity

Figure 5.3: Distributions of protein concentration (A,D,G), metabolite concentration (B,E,H) and
growth rate (C,F,I) at different time points t = 14 h (A-C), t = 16 h (D-F) and t = 38 h
(G-I) without intrinsic noise normalized to 1 for all particles over the whole bioreactor sys-
tem for different compartments: compartment 1 STR (blue), compartment 2 PFR inlet
(orange) and compartment 11 PFR outlet (yellow). Time course of the averaged mean of
the protein concentration (J), metabolite concentration (K) and growth rate (L) with its
standard deviation.

with the formation of the two subpopulation in Figure 5.3J. The particles have the same metabo-
lite concentration at the end of the batch, thus the standard deviation is zero during this time in
Figure 5.3K. With the addition of the feed, the standard deviation increases instantly, decreases
until the switch to the second feed solution increasing the deviation instantly again with a fol-
lowing decrease until the end of the fed-batch. The narrowing of the metabolite concentration
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5 Analysis of a cell population exposed to external and intrinsic noise

distribution is surprising as one would initially expect that with an increasing substrate gradi-
ent the distribution would widen as well. The reason behind this is explained later on when
the steady states for the corresponding environments in the compartments are calculated. This
behavior is mirrored by the standard deviation of the growth rate µ in Figure 5.3L.

In addition to the distributions for any time point of the process, we can access the local
distribution of any compartment as well. Figure 5.4A-C shows the local distributions at the
end of the fed-batch (t = 38 h) for the protein concentration, metabolite concentration and
growth rate in three different compartments (colored according to the compartment): the STR
(compartment 1), the first and last compartments of the PFR (compartment 2 and 11). A look at
the local distributions of metabolite content in Figure 5.4B compared to Figure 5.3H shows that
cells with high metabolite concentrations are present in the STR (compartment 1) or have just
left the STR, while the subpopulation residing at the outlet of the PFR (compartment 11) has
metabolite concentration close to zero. Thus, differentiating after the compartments reveals that
the subpopulations correspond to their respective substrate environment. In Section 3.6.2 we
have established that the relaxation times of M and P for balanced cells are both τ = 0.015 h
and, therefore, shorter than the smallest mean residence time in a compartment min(τr) =
0.045 h. The cell population at the end of the batch phase comprise balanced cells and with
the short residence time the particles are able to adjust their metabolite and protein content
to be in equilibrium with their local environment. Thus, the cellular state is directly correlated
to its current environment and regardless of their location, the vast majority of the particles
are in balanced state. The gradient of the substrate in the bioreactor system is depicted in
Figure 5.4D and E through two different representations: in terms of volume distribution and
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Figure 5.4: Comparison of the distributions of protein concentration (A), metabolite concentration (B)
and growth rate (C) at t = 38 h without intrinsic noise normalized to 1 for different compart-
ments (compartment 1 STR (blue), compartment 2 PFR inlet (orange) and compartment 11
PFR outlet (yellow)). Distribution of substrate over the compartment volumes normalized
to 1 (D) and substrate concentration in log scale for all compartments (E).
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5.2 Contribution of external noise on population heterogeneity

more conventionally in terms of concentration profile. The concentration in the STR is around
0.2 g/L and drops suddenly to 0.06 g/L and further decreases logarithmically to 10−7 g/L at
the end of the PFR. As result, the metabolite content decreases to zero due to the limitation by
the environment. It must be noted that the concept of limitation corresponds to an insufficient
supply from the environment with respect to the cell needs (largely determined by the conditions
prevailing in the STR). Comparison of Figure 5.3K and Figure 5.4C indicates the origin of the
non-growing subpopulation (yellow distribution in Figure 5.4C) as the PFR, which causes a
prolonged exposure of the particles to starvation.

Comparing the local average values of the internal properties to the steady states, calculated
using Eq. (5.9), corresponding to the local environment in Figure 5.5 confirms that the internal
properties of the particles in the STR (compartment 1) and at the end of the PFR (compart-
ment 11) are in balanced state with their respective environment. These balanced cell states can
be obtained from the steady states calculated in Section 3.6.1. The steady state protein con-
centration value of the particles in compartment 11 cannot be obtained as the local substrate
concentration is practically zero and the metabolite concentration in the cells get exhausted.
Therefore, the values of the protein concentration are set to correspond to a biomass fraction of
60 %. Some of the particles which recently entered the PFR (compartment 2) are in transition
and the values do not completely agree with the steady state values. This is especially apparent
for the growth rate values in Figure 5.5C, which exhibits negative growth rate values as already
seen in Figure 5.4C. Additionally, the global average (dotted purple line) and the steady states
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Figure 5.5: Comparison of the local average values for compartments 1 (blue), 2 (orange) and 11 (yel-
low), indicated by circles, steady state values corresponding to the local environment (solid
lines), global average (dotted purple line) and steady state corresponding to the global av-
erage environment (dashed green line) of internal properties for different time points of the
process for the protein concentration (A,D), metabolite concentration (B,E) and growth
rate (C,F).
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5 Analysis of a cell population exposed to external and intrinsic noise

corresponding to the global average environment, meaning the average substrate concentration
weighted by the respective volumes of the compartments (dashed green line), calculated using
Eq. (2.58), is depicted as well in Figure 5.5D-F. Figure 5.5E shows a decrease in metabolite
concentration over the course of the bioprocess as the steady state solution is affected by the
limitation due to the physical regime. With increasing biomass concentration the relative sup-
plying capacity of the environment in Eq. (3.37) decreases leading to a lower steady state value
for the metabolite concentration. This explains the narrowing of the metabolite distribution in
Figure 5.3. Interestingly, the mean average protein and metabolite concentration of the par-
ticles in compartment 2 are equal to the global average concentration in Figure 5.5D and E.
The global average and steady state corresponding to the global average environment of the
growth rate show the largest difference out of the three properties. Here, the local average value
of compartment 2 does not match the global environment, but rather the steady state values
corresponding to the local environment of compartment 1 and compartment 2. Therefore, par-
ticles in compartment 2 are unbalanced and its cell state is closer to the cell state of the global
environment. Overall, we can conclude that in case of a populating comprising balanced cells,
the cell state of the particles represent their respective local environment if the mean residence
time is larger than the relaxation time.

5.3 Contribution of cell division on population heterogeneity

In the last section, we considered a population of mostly balanced cells, but now we want to
incorporate intrinsic noise through cell division as well and analyze the influence of different
weighting and redistribution functions during the cell division process. Cell division leads to a
reshuffling of cell content. Therefore, it creates particles with non-balanced metabolism which
further induces a decoupling of the time scales for protein P and metabolite M adaptation
as time scale analysis in Section 3.6.3 indicates that the protein concentration P converges
much slower than the metabolites M . Thus, intrinsically induced heterogeneity is most likely to
interfere with external noise and enhances heterogeneity in a population. The simulated mean
quantities, such as substrate concentration, biomass concentration and reaction rates do not
differ from the case with only external noise. This can be seen in Appendix, Figure A.5.

First, in Figure 5.6 we consider a simulation of the bioreactor system with intrinsic noise using
weights defined by Eq. (5.7). The first row depicts the distributions for the entire population,
while the second row refers to the local distributions. To compare the results with a population
with only extrinsic noise, the last row shows the distributions of the entire population with and
without intrinsic noise. With the inclusion of the effect of cell division, the protein distribution
is much wider and the two modes, present in the simulation without noise seen in Figure 5.4A,
are only slightly visible in Figure 5.6A. Contrary, the metabolite concentration in Figure 5.6B is
mostly unchanged and explains the two distinctive subpopulations exhibiting zero growth and a
growth rate of µ = 0.2 1/h in Figure 5.6C. The overall temporal evolution of the global property
distributions is the same as the case with only external noise and can be seen in Appendix,
Figure A.7. Distinguishing after the local distribution, shows little variation in the protein con-
centration distributions over the different compartments as protein synthesis is a biologically
slow process. It is implied that the majority of the particles is not able to optimally adapt their
protein content to the local environment, but nevertheless, the local average protein concentra-
tion is correlated to the steady state solution corresponding to the local environment, analogous
to the last section. But it is worth mentioning that the global average protein concentration
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5.3 Contribution of cell division on population heterogeneity

Figure 5.6: Comparison of the distributions of protein concentration (A,D), metabolite concentration
(B,E) and growth rate (C,F) at t = 38 h with intrinsic noise. Normalized distribution for all
particles over the whole bioreactor system (A, B, C) and for different compartments (D,E
F; compartment 1 STR (blue), compartment 2 PFR inlet (orange) and compartment 11
PFR outlet (yellow)). Comparison of the distributions over the whole bioreactor without
intrinsic noise (blue) and with intrinsic noise (orange) (G, H, I). Time course of the average
of the protein concentration (J), metabolite concentration (K) and growth rate (L) and its
standard deviation.
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5 Analysis of a cell population exposed to external and intrinsic noise

and the values exhibit by particles in compartment 1 are much closer together. This is shown
in Appendix, Figure A.8.

The distributions in metabolite concentration over the different compartments in Figure 5.6E
on the other hand resemble the distributions in Figure 5.4E, showing again a correlation with
the local environment. This is due to the fact that the conversion of substrate into metabolites
is a fast process compared to the transport in the space of concentrations by fluid motion.
The substrate uptake is, on one hand, defined by the substrate availability in the environment
and, on the other hand, based on the proteome fraction T , which varies on a degree depending
on the already available metabolite concentration M defined by Eq. (3.24). A high amount
of available metabolite concentration reduces the fraction T of the proteome and, therefore,
decreases the influx of substrate into the cell, while up-regulating the protein synthesis by
increasing the fraction R. The inclusion of noise does not change the mean growth rate over
the whole population (Figure 5.6J-L) but creates a population of individuals that are all out-
of-equilibrium, not in a balanced state. This leads to some spreading in the distribution of
the growth rate as seen in the population in compartment 2 in Figure 5.6F, which is broader
in comparison to the simulation without intrinsic noise. Calculating the standard deviation
of the internal properties and comparing those with the standard deviations in case of only
external noise confirm the observations. Figure 5.6J shows overall standard deviations in the
protein concentration P due to the added intrinsic noise, while the standard deviations for the
metabolite concentration M and growth rate µ are comparable with the latter case. Therefore,
the additional noise in the growth rate distribution as seen in compartment 2 has no effect on
the overall standard deviation.

Next, we investigate the influence of the sampling weighting function for cell division on the
distribution of the internal properties. As the process of intrinsic noise through cell division is
a stochastic process, we perform the simulations for each case five times to exclude differences
originating from stochasticity. We focus on the fed-batch phase since population heterogeneity is
more pronounced in this process phase. The three cases which are investigated in the following
were defined by Eqs. (5.5)-(5.7) and we will show that introducing sampling weights favors
particles residing in compartment 1.

First, we compare the outcome of random sampling with equal weights and weights considering
the total biomass of the virtual particles following the formulation of Eq. (5.5). Thus, if we
consider the total biomass of a particle when sampling for cell division, particles with higher mass
are more likely to be selected. Particles with higher total biomass are more likely to exhibit higher
metabolite concentrations. Due to this, these particles comprise faster growing cells and are able
to increase their biomass faster. A more detailed analysis of the relation between the biomass
and a particles’ internal properties can be found in Appendix, Section A.3.3. Particles with
generally higher total biomass, therefore, can be matched to the environment of compartment 1,
where particles exhibit the corresponding cell state, in Figure 5.7D. Additionally, the the total
biomass distribution of particles in the last compartment is shifted to lower values, leading to a
lower average total biomass in comparison to compartment 1 as seen in Figure 5.7D.

Particles in compartment 1 are exposed to higher substrate concentrations compared to particles
in the PFR, hence, in average they contain lower protein concentrations. The assignment of new
physiological properties follows a normal distribution centered around the old properties. With
a favored selection of these particles, a shift towards a lower mean protein concentration is
expected. This is confirmed through comparison of the performed simulations in Figure 5.8A
which shows a slight shift towards lower values. The difference is very small, but consistent
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5.3 Contribution of cell division on population heterogeneity

Figure 5.7: Normalized distribution of the total biomass of the virtual particles at t = 38 h (A) and time
coarse of the average total biomass of the virtual particles (B) for compartment 1 (blue)
and compartment 11 (yellow).

for the whole fed-batch phase. In the following, we opt to investigate the variation instead
of the standard deviation indicated by bands around the average mean values to be able to
see the differences more clearly. Figure 5.8B shows the variance of the protein concentration
over the course of the fed-batch phase. The variances are comparable at the beginning of the
fed-batch. After a couple of hours, the variance for the case of weights considering the particle
mass is higher until t = 32 h, after which it is smaller than for the simulations considering
equal sampling weights. A detailed description of the influence on the protein and growth rate
distribution can be found in Appendix, Section A.3.3. Because of the favoring of particles in
compartment 1, the distributions are affected, but the differences are small.
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Figure 5.8: Comparison of the average protein concentration P (A), variance of protein concentration
(B) and average growth rate µ (C) for sampling with equal weights (blue) and weights
considering the biomass of the particles (orange) during the fed-batch phase. Each case is
the average of 5 simulations.

Next, we compare random sampling with equal weights and weights considering the growth
rate of each particle as described in Eq. (5.6). It is worth noting that in case of random
sampling with equal weights, each particle has the same probability to be chosen. Thus, it is
possible that particles with negative growth rate can be chosen to ”divide” and are assigned new
physiological properties. The same problem applies when considering the total biomass for the
sampling weights. With the introduction of weights considering the growth rates, only particles
with positive growth rates are eligible to be chosen. As faster growing particles are favored,
we expect particles residing in the STR (compartment 1) are more likely to be selected again.
This bias is even stronger than the last case, since particles with higher growth rate only reside
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Figure 5.9: Comparison of the average protein concentration P (A), variance of protein concentration
(B) and average growth rate µ (A) for sampling with equal weights (blue) and weights
considering the growth rate of the particles (orange) during the fed-batch phase. Each case
is the average of 5 simulations.

in compartment 1, while particles with higher total biomass can be found at other locations
of the bioreactor systems as well. Analogous to the last case, a shift towards a lower mean
protein concentration is expected. This is confirmed in Figure 5.9A which shows a slight shift
towards lower values when considering the growth rate as sampling weights. The difference is
very small again, except for a small number of short time periods near to the end of the fed-batch
phase, where the average protein concentration is the same. Furthermore, a lower variance in
protein concentration over all particles in the bioreactor system is observed in Figure 5.9B as
well. This originates from the fact that the standard deviation of the normal distribution for the
new internal properties is dependent on the protein concentration of the selected particles. As
particles with lower protein concentration are favored, the standard deviation is smaller leading
to a smaller variety of protein concentration. The mean growth rate µ does not differ between
the two cases in Figure 5.9C.

The problem of only considering the growth rate for the sampling weights is that particles
with a very high growth rate, but low total biomass are favored even though they represent a
smaller amount of biological cells. Thus, it is more realistic to consider both factors: the total
biomass of a particle and the growth rate. This is the reasoning behind the original choice of
the weighting function given by Eq. (5.7), and we continue to use this set of weights in the
following. From the previous observations, we expect a combination of the effects. The mean
total biomass of a particle is higher in compartment 1 and the difference between the mean in
the compartments increases over the course of the fed-batch phase. Additionally, the majority
of particles with higher growth rate reside in compartment 1 as well. Thus, a lower average
protein concentration, lower protein concentration variance is expected. This is confirmed in
Figure 5.10. The average protein concentration and variance is smaller than for sampling with
equal weights as shown in Figure 5.10A and B. The mean growth rate in Figure 5.10C is the
same for both cases. Since we employ these sampling weights going forward, we analyze the
effects on the distribution more in detail. Favoring particles of higher growth rate and particle
mass leads to more variety in particles with lower protein concentration during the switch to
a new feed solution at t = 26.5 h in Figure 5.10D and less spreading for particles with higher
protein concentration, which tend to reside in the PFR. A higher peak for particles with lower
protein concentration can be observed near to the end of the fed-batch at t = 38 h, accompanied
by a narrower distribution in Figure 5.10F. The growth rate distribution shows a higher peak
considering the subpopulation of growing cells with a right skewed distribution, while sampling
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Figure 5.10: Comparison of the average protein concentration P (A), variance of protein concentration
(B) and average growth rate µ (A) for sampling with equal weights (blue) and weights
considering the growth rate and biomass of the particles (orange) during the fed-batch
phase. Comparison of the protein concentration (D,F) and growth rate (E,G) distributions
at t = 26.5 h (middle row) and t = 38 h (lower row) over the whole bioreactor normalized
to 1. Each case is the average of 5 simulations.

with equal weights result in a left skewed distribution for both time points in Figure 5.10E
and G. The differences between the distributions are slightly more pronounced compared to the
other cases. Overall, we can conclude that the differences between the different sets of sampling
weights are small and do not largely affect the behavior of the population and its properties.
Nevertheless, we opt to use the most reasonable choice given by Eq. (5.7) for selection of cells
to undergo cell division.

Another parameter that influences the degree of population heterogeneity is the standard devia-
tion chosen for the normal distribution used for reshuffling of the internal properties during cell
division. Thus, we compare the simulations using different values for the standard deviation by
doubling (σM = 0.2 M0 and σP = 0.1 P0) and halving (σM = 0.05 M0 and σP = 0.025 P0) the
factor. Figure 5.11A-C shows the distributions of the internal properties for the three different
cases at the end of the fed-batch phase t = 38 h. The protein distribution is wider for higher
and narrower for lower values as seen in Figure 5.11A. This fact is supported by calculating the
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5 Analysis of a cell population exposed to external and intrinsic noise

standard of P over the course of the fed-batch phase, which is provided in Figure 5.11D. Dou-
bling the standard deviation nearly quadruples the variance in P , but remains below the factor
of 4 for the majority of the time, while halving the standard deviation reduces the variance to
around a third of the original case. Interestingly, for higher standard deviation the variance
remains noisy over the course of the fed-batch without showing the same trends as the original
case, where the variance decreases over each fed-batch phase. This can be traced back to the
difference between the distributions of the split environment of the bioreactor system. For a
higher standard deviation it can be shown, that bimodality in the protein concentration is less
pronounced than in case of higher standard deviations (Appendix, Figure A.14A and D). There-
fore, the increased intrinsic noise dominates over the dynamics of the distance between the values
of the two subpopulations. But besides the shape of the protein concentration distribution, the
increased or decreased standard deviation does not affect the mean protein concentration over
the course of the fed-batch phase, thus the average protein concentration is indicated in black in
Figure 5.11D. In contrast to the proteins, the dynamics of the metabolites are fast. Therefore,
the distribution of metabolite concentration remains unaffected by the standard deviation. We
have established earlier that particles undergoing cell divisions tend to reside in the STR and
are growing at faster rate. Thus, the differences between the standard deviations manifest in
the subpopulation of growing cells. With higher standard deviation, the variety of growth rate
is larger without affecting the mean growth rate of the population. Investigating the effects
of different standard deviations, we can conclude that the shape of the distributions for the
protein concentration and growth rate are dependent on this parameter, but does not change
the overall behavior of the population. If fluorescent data correlating to the growth rate exists,
the appropriate standard deviation parameter can be found. For understanding the interplay

Figure 5.11: Comparison of the distributions of protein concentration (A), metabolite concentration
(B) and growth rate (C) at t = 38 h, as well as, variance of P (D) and average protein
concentration P (black) with its standard deviation, for simulations using a normal dis-
tribution with σM = 0.2 M0 and σP = 0.1 P0 (orange), σM = 0.1 M0 and σP = 0.05 P0

(blue) and σM = 0.05 M0 and σP = 0.025 P0 (yellow) for reshuffling of the properties.
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between the internal properties or the qualitative behavior of the particle properties, the value
of the standard deviation is irrelevant.

Before going further, a summary of the findings is necessary. Without intrinsic noise, cells
remain in their balanced state as the adaptation of P and M is fast compared to the residence
time in the different compartments. The dynamics of P and M are similar. When intrinsic
noise is added, the randomization of cell properties at birth creates new cells that are not in a
balanced state. For those cells, the adaptation of the protein content is now much slower than
the adaptation of the metabolite content. Hence, more physiological diversity is found when a
reshuffling of cell properties is considered. These results show the necessity to include intrinsic
noise when using a structured metabolic model such as a coarse-grained model for the biological
phase. It provides a rationality of the decoupling between the growth rate and the substrate
concentration, which has been observed for changing environments [1, 91]. In our model, the
growth rate depends on both the cellular state, which is determined by the history of the particle,
and the environmental supply. In other words, the growth rate must be regarded as a dynamic
cell property, rather than simply being set by the liquid phase composition through an algebraic
equation µ = f(S). The impact of cell division on cell dynamics as well as the decoupling of
uptake and growth rates is of utmost importance. It is consistent with the choice of µ as an
internal variable subject to a redistribution mechanisms at cell division, in biological population
balance models previously developed [108, 109, 110, 125].

5.4 Contribution of process operation on population heterogeneity

In the last sections, the effects of external noise and intrinsic noise induced by cell division have
been investigated. But the degree of external noise is also dependent on the operation of the
bioprocess. Thus, in this section different operation settings are simulated.

5.4.1 Different flow rates QR

As the residence time in the compartments has an effect on the cell composition of the particles,
we simulate different flow rates through the bioreactor system. A higher flow rate leads to
smaller substrate gradients and smaller mean residence times in the compartments as seen in
Figure 5.12A and B, which shows the substrate concentration in log scale for all compartments
of the bioreactor system at t = 38 h as well as the variance of the substrate distribution over the
whole time course of the bioprocess for two different flow rates: QR = 1 L/h and QR = 20 L/h.
The substrate concentration barely drops from compartment 1 to 2 and reaches its minimal value
in compartment 11 at S = 0.06 g/L, which is around the value of the substrate concentration
in compartment 2 for a flow rate of QR = 1 L/h in Figure 5.12A. The variance of the substrate
concentration distribution increases significantly after the addition of the second feed solution
for both flow rates in Figure 5.12B, but the sudden increase is proportionally smaller for the
higher flow rate. Near to the end of the fed-batch phase at t = 38 h, the variance is almost ten
times lower. The mean volumetric substrate concentration remains the same in Figure 5.12C.
In order to perform the simulation in reasonable computation time, the step size is increased
to ∆t = min(τr). For a flow rate of QR = 20 L/h, the smallest mean residence time in a
compartment min(τr) = 0.0023 h is smaller than the relaxation time for M , while the mean
residence time of the first compartment τr(1) = 0.045 h is larger. Results of the simulation are
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Figure 5.12: Comparison of the environment for different flow rates QR = 1 L/h (blue) and QR = 20
L/h (orange) showing the substrate concentration in log scale for all compartments at
t = 38 h (A), variance of the substrate concentration distribution (B) and the mean
volumetric substrate concentration S (C).

presented in Figure 5.13: the first row deals with the local protein, metabolite and growth rate
distributions, while colors refer to the compartment (STR, inlet/outlet of the PFR). The second
row compares the overall distributions for various flow rates, colors being here indicative of the
flow rate.

At QR = 20 L/h, the protein distributions are again space-independent in Figure 5.13A and
span the same range as in Figure 5.6D. All metabolite distributions, in Figure 5.13B, now span
a narrower range, from 20 to 80 µmol/gDW. The range corresponds to the values of the steady
state in compartment 1 and 11. The biomodality in M is less pronounced (compared to 5.6 E)
but still present. The growth rate distribution on the other hand is very broad and even exhibit
negative growth rates in Figure 5.13C.

As they enter the PFR zone, cells are subject to a sudden decrease in substrate availability,
which leads to a depletion in the metabolite content and results in negative growth rates. In
contrast to the previous case (at QR = 1 L/h), the residence time in the PFR is not sufficient for
cell to reach a local equilibrium with the environment. As a result, the change in the metabolite
distribution between the first and the second compartment is smaller than at lower flow rates
and metabolite distributions are wider. When they reach the last compartment in the PFR,
nearly all particles show negative growth rates, as all of them have been experiencing decreasing
substrate concentrations for a time, but since they had not enough time to adapt to it, their
content in M is not zero. As they move back to the STR, with higher substrate concentration
again, the particles rebuild their metabolite content. The mean residence time in the first
compartment is larger than the relaxation time, which allow cells to reach high growth rates.
To sum up, the exposure frequency to low substrate concentration is multiplied by 20 when the
flow rate goes from QR = 1 L/h to QR = 20 L/h whilst the magnitude of the concentration
change from STR to PFR is smaller and the duration of the exposure to adverse conditions is
reduced.

Increasing the flow rate up to QR = 120 L/h, confirms that the range of the protein and
metabolite distributions over the whole population decreases as the flow rate increases as seen
in Figure 5.13D and E. Thus, the particle population is more homogeneous as the environment
is more homogeneous, in line with the reduction of external noise. The width of the growth rate
distribution is accordingly smaller since the substrate gradient is smaller at higher flow rates.
Nevertheless, some heterogeneity in the growth distribution in the form of two subpopulations
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Figure 5.13: Comparison of the distributions of protein concentration (A,D), metabolite concentration
(B,E) and growth rate (C,F) at t = 38 h with a flow rate of QR = 20 L/h normalized to 1
for different compartments (A-C; compartment 1 STR (blue), compartment 2 PFR inlet
(orange) and compartment 11 PFR outlet (yellow)) and comparison of the distributions
over the whole bioreactor system (D-F) for three flow rates QR = 1 L/h (blue), QR =
20 L/h (orange) and QR = 120 L/h (yellow). M -P -plane of all particles over the whole
bioreactor system colored by their growth rate for QR = 20 L/h (G) and QR = 120 L/h
(H)
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5 Analysis of a cell population exposed to external and intrinsic noise

remains because intrinsic noise keeps forming cells with unbalanced properties. These two
subpopulations cannot be matched to a specific compartment as it was the case for low flow
rates. This can also be observed when comparing the spreading of the particles over the M-P
plane for two different flow rates, in Figure 5.13G and Figure 5.13H. Interestingly, higher growth
rates in Figure 5.13G are achieved by cells with an intermediate content in M while low content
is associated with negative growth rate and high content correlated with growth rates µ between
0.1 and 0.2 1/h, i.e. close to the mean population growth rate. It was further verified that the
mean values of the growth rate and reaction rates at QR = 120 L/h coincides with the values
obtained from a homogeneous STR which can be seen in Appendix, Section A.3.4.

The homogenization of particle content with increasing flow rate is further confirmed through
calculating the variance of protein and metabolite concentration in Figure 5.14A and B. Since
we are investigating several flow rates later on, we compare the variances instead of the standard
deviation again. The flow rate has a much larger effect on the variance of metabolite concentra-
tion in Figure 5.14B than protein concentration in Figure 5.14A, as the dynamics of the protein
concentration is much slower and is also affected by internal noise through cell division, while
the metabolite concentration is only affected by external noise. For high flow rates the effect of
intrinsic noise on the protein concentration dominates over the effect of external noise and the
hint of the formation of subpopulations which can be associated to the split environment is not
visible.
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Figure 5.14: Comparison of the variance of protein concentration (A), metabolite concentration (B) for
different flow rates QR = 1 L/h (blue), QR = 20 L/h (orange) and QR = 120 L/h (yellow).

Investigating the variances of growth rate in Figure 5.15, reveals the importance of the residence
time compared to the relaxation time of the growth rate as well as the range of substrate con-
centration encountered, which was already hinted at while analyzing the property distributions.
At a flow rate of QR = 20 L/h, the substrate gradient is sufficiently large and the residence time
short enough to result in a higher variance compared to QR = 1 L/h. For QR = 120 L/h the
substrate gradient is too small and, therefore, the particles despite of comprising unbalanced
cells exhibit growth rates of smaller variety. From simulating with a flow rate of QR = 20 L/h,
we observed an increased variance of the growth rate and a decreased variance for a very high
flow rate of QR = 120 L/h in Figure 5.15. This poses the question, at which flow rate the
variance is maximal. Performing the simulation for different flow rates reveal a maximal vari-
ance in growth rate can be achieved for QR ≈ 7.5 L/h. In this case, the variance triples in
comparison to the base case of QR = 1 L/h. The internal property distributions can be seen in
Appendix, Section A.3.5. The growth rate distribution for QR = 7.5 L/h takes shape as mixture
of the distributions of QR = 1 L/h and QR = 20 L/h, but with a wider spread between the two
subpopulations of growing and non-growing cells. Thus, the substrate gradient is large enough
to enable a wide range of growth rates and the residence time in each compartment is too small
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leaving the particles in unbalanced state. With a flow rate of QR = 60 L/h, the variance of
growth values are the same as for QR = 1 L/h, but the shape of the distributions clearly differ.

We can conclude that the residence time of the particles in the compartments has a significant
effect on population heterogeneity, especially on the growth rate distribution. Pivotal is the
mean residence time compared to the relaxation time of the variables. For small flow rates the
substrate distribution in the bioreactor system is wide and the distributions of the proteins,
metabolites and growth correlates with the substrate distribution, since the cell dynamics are
faster than the rate of change in the external concentration. For high flow rates the residence
times are lower than the relaxation time leading to a homogenization in the protein and metabo-
lite concentration. However, intrinsic noise creates diversity, even in a spatially homogeneous
reactor. Thus, particles are not optimally adapted to their environment and the repeated ex-
posure to perturbations (even small) in the cell environment lead to a broad range of growth
rates.

5.4.2 Different feeding regimes

In order to introduce even higher substrate gradients in the bioreactor system, one can feed the
susbtrate into the PFR instead of the STR. This way, the particles now experience very high
substrate levels in the PFR (feast zone) and a low substrate environment in the first compartment
as seen in Figure 5.16D, which shows the substrate concentration levels across the different
compartments. These feeding strategies were also experimentally investigated in the work of
Neubauer et al. (Figure 2) [114]. The substrate gradient for a feed into the PFR at t = 38 h is
Smax − Smin = 11.34 g/L with a weighted mean substrate concentration of S̄ = 2.18 g/L, while
the substrate gradient for a feed into the STR only is Smax − Smin = 0.21 g/L with a weighted
mean substrate concentration of S̄ = 0.16 g/L. The substrate gradient enhances over the course
of the fed-batch process as more substrate is accumulated in the PFR. The mean residence time
in the PFR in both feeding regimes is the same since the same flow rate of QR = 1 L/h is
assumed. We note that the substrate distribution for a feed in the PFR is left skewed, while it
is right skewed for a feed in the STR as seen in Figure 5.16.D. The exposure to high substrate
concentration also creates some heterogeneity in the population but with distinct consequences
from an exposure to starvation. Namely, the metabolites content never falls to zero. The
metabolite concentration reflects their respective environment again and the range of its values
is larger as seen in Figure 5.16B. With a higher substrate gradient, the metabolite content shows
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5 Analysis of a cell population exposed to external and intrinsic noise

Figure 5.16: Comparison of the distributions of protein concentration (A), metabolite concentration
(B) and growth rate (C) at t = 38 h with feed (QR = 1 L/h) into the PFR normalized
to 1 for different compartments: compartment 1 STR (blue), compartment 2 PFR inlet
(orange) and compartment 11 PFR outlet (yellow). Comparison of the distributions of the
substrate concentration over the compartment volumes (D), protein concentration (E),
metabolite concentration (F) and growth rate (G) at t = 38 h for two feeding regimes:
feed into the STR (blue) and feed into the PFR (orange) normalized to 1.

a higher range as well. The opportunity of growing faster is offered to those cells that have the
ability to increase their growth rate due to their metabolic composition when they enter the PFR
zone. This is accompanied with an increase in the metabolite content, see Figure 5.16B and a
shift to the left of the protein distributions along the PFR in Figure 5.16A. The particle register
the environment simply as a high substrate environment and the cell demand is sufficiently
covered by the environmental supply. Taking the histogram over the whole population results in
a distribution with two subpopulations of slow growing and fast growing cells as shown in Figure
5.16G. The population in the STR exhibits a lower metabolite concentration, a higher protein
concentration and therefore grows at lower rate, while the population in the PFR exhibits the
contrary. The particles are not able to consume the substrate provided in the PFR as the
substrate supply is higher than the cellular demand leading to an accumulation of substrate in
the bioreactor system. Due to higher substrate concentration levels, the growth rate distribution
shows higher values in Figure 5.16H, but the mean value over the whole population is smaller
with µ̄PFR ≈ 0.11 1/h compared to µ̄STR ≈ 0.13 1/h, as the majority of the particles reside in
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Figure 5.17: Comparison of the variance of protein concentration (A) and metabolite concentration (B)
for different feeding regimes: addition of feed into the STR (blue) and PFR (orange).

a low substrate environment. In practice, such low differences in mean growth rate might not
be measurable. However, with the proposed modeling approach the difference can be attributed
to overflow metabolism [31], as seen in reaction rate rC , which occurs in the PFR, leading to
globally lower carbon flux towards growth as seen in Appendix, Section A.3.6.

The substrate gradient increases during each fed-batch phase leading to an amplification in het-
erogeneity of the environment. The substrate concentration in different compartments can be
found in Appendix, Figure A.19. As the population is exposed to these changes in the environ-
ment, the internal properties show a higher variance over each fed-batch phase in Figure 5.17 as
well. This holds true for both variables and contrasts with the behavior of a population in the
bioreactor system with a feed into the STR. Since the population in the latter case is exposed
to environment, in which substrate gradient remains nearly constant over the course of the fed-
batch process, the decrease in variance of the properties is due to the effects of micro-mixing. In
the current feeding regime, the environment of the bioreactor system changes, thus the variance
of the properties are dominated by the effect. With a higher substrate gradient in general, the
variance is larger over the whole process.

The two process options of a feed into the PFR and a higher flow rate of QR = 20 L/h can be
combined and the results analyzed. Similar to the earlier simulation in Section 5.4.1, a higher
flow rate leads to smaller residence times and substrate gradient, which can be seen in Appendix,
Figure A.20, as well as the creation of more particles with unbalanced internal properties due
to these environmental conditions. Therefore, the distributions of protein content considering
all particles of the bioreactor system in Figure 5.18A are narrower and nosier without a clear
distinction into subpopulations. The same applies to the metabolite content which shows a
smaller range of values in Figure 5.18B and the local distributions overlap in Figure 5.18E.
With the presence of more unbalanced particles, the growth rate of the particles have a larger
range and even exhibits negative growth rates in Figure 5.18C. This is also the main difference to
a population in a bioreactor system with a lower flow rate and even particles exposed to a higher
substrate environment upon entering compartment 2 might grow with negative rate, which is
depicted in Figure 5.18F. Nevertheless, high values of growth rate are only present in particles
residing in a high substrate environment as it was the case for a flow rate of QR = 1 L/h.

The smaller substrate gradient has a significant effect on the time course of the variance of
internal properties. Figure 5.18G shows a comparison of the variance for the different flow
rates with a feed into the PFR. While the variance for lower flow rate follows the increase

85



5 Analysis of a cell population exposed to external and intrinsic noise

20 25 30 35

Process time t [h]

1

1.5

2

2.5

3

V
a
ri
a
n
c
e
 P

 [
m

o
l2

/g
D

W
2

]

10
-13

20 25 30 35

Process time t [h]

0

0.5

1

1.5

V
a
ri
a
n
c
e
 M

 [
m

o
l2

/g
D

W
2

]

10
-8

20 25 30 35

Process time t [h]

0

0.05

0.1

0.15

V
a
ri
a
n
c
e
 

 [
1
/h

2
]

G H I

Figure 5.18: Comparison of the distributions of protein concentration (A,D), metabolite concentration
(B,E) and growth rate (C,F) at t = 38 h with a feed into the PFR and flow rate of
QR = 20 L/h. Normalized distribution for all particles over the whole bioreactor system (A,
B, C) and for different compartments (D,E F; compartment 1 STR (blue), compartment 2
PFR inlet (orange) and compartment 11 PFR outlet (yellow)). Time course of the variance
of the protein concentration (G), metabolite concentration (H) and growth rate (I).

of heterogeneity in the environment, the variance for higher flow rates does not follow this
trend and is a result of all effects superimposed. These effects being intrinsic noise due to cell
division, physical limitations of the substrate transport to the cell surface and the substrate
gradient present in the environment. Interestingly, the variance of metabolite concentration in
Figure 5.18H as well as the variance for the growth rate in Figure 5.18I resemble the variances
in the case of a feed into the STR, but with the same high flow rate of QR = 20 L/h. This
emphasizes the relation between the residence time and relaxation times of the internal properties
as an important factor on population heterogeneity.
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5.5 Short summary and discussion

Previous works approached the investigation of population heterogeneity with the focus on
the effect of external noise [79, 118, 97, 51]. The environment of a large-scale bioreactor is
recreated through the employment of a scaled-down bioreactor system, consisting of a well-
mixed STR and a PFR in bypass, which is a common choice in order to study environmental
changes [115, 167, 57]. The split into two environments enables a formation of substrate gradients
during a fed-batch process with a feed inlet at the STR or the PFR. Optionally, pulse experiments
can be conducted, but these scenarios were not investigated in the scope of this work. The
dynamics of the environment is approximated by compartimentalization of the bioreactor system
instead of using CFD to simulate the hydrodynamics of the bioreactor system. It has been shown
that CM approaches provide a good compromise between computational effort and an accurate
depiction of the hydrodynamics inside the bioreactor system [28, 112, 68].

This work provides improvements as it deals with both external sources, induced by substrate
gradients in the environment, and intrinsic noise, due to redistribution of cellular content taking
place at cell division. The biological phase is considered as a population of particles, each
carrying a specific biomass and representing a group of biological cells with the same internal
properties. The addition of the biomass carried by a virtual particle as internal property instead
of a virtual particle representing a fixed number of biological cells serves the purpose of keeping
the number of virtual particles constant over the course of the simulation. Otherwise, the number
of virtual particles would increase exponentially, as the population is in balanced growth during
the biomass production phase, which creates a bigger challenge when implementing the model.

The dynamical model of biological processes in the cells is based on a mass conservative coarse-
grained approach from Chapter 3, where the growth rate is a result of the intracellular network
rather than being described through an empirical function of external concentrations. An es-
sential feature of the model is the substrate uptake rate calculation which rely upon both the
environmental supply and the cell physiological state and, therefore, we move away from employ-
ing a black-box kinetic model towards a mechanistic model. The investigation of the time scales
of the dynamical model, already obtained in Chapter 3 in Section 3.6.3 revealed two different
time scales in the cell response when the cells are out of equilibrium (uptake rate, internal com-
position and growth rate are not balanced), and only one time scale when cells at equilibrium
respond to external fluctuations. Without the inclusion of intrinsic noise due to cell division,
the internal properties of the particles clearly reflect their local environment and the population
is clearly divided into two subpopulations: a subpopulation of growing particles present in the
STR and non-growing particles present in the starvation zone of the PFR. The only deciding
factor for the formation of distinct subpopulation is the relation between the mean residence
time in the compartments and the time scale of cellular response to external fluctuations. This
finding shows the necessity to include intrinsic noise, which result in randomly distributed cells
regarding their cell state, especially their protein content, when simulating a population in an
changing environment in order to maintain different time scales in cellular response and decou-
ple the cellular state from the local concentrations in the liquid phase. Through redistribution
of cell properties, the effects of cell divisions is implemented without changing the number of
particles as well. The new cell properties are chosen according to a Gaussian distribution,
centered on the mother cell properties. Special care must be taken during the sampling of
particles whose internal cell properties are redistributed. It has been shown that the choice of
sampling weights affects the shape of the protein concentration as well as the growth rate dis-
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tribution. The standard deviation of the Gaussian distribution on the other hand, only widens
or narrows the protein concentration and growth rate distribution, while leaving weighted mean
values unchanged. Other types of partitioning functions can be investigated and confronted to
experimental results which are however difficult to obtain.

The time scales of mixing compared to the time scales of cellular response is an important factor
on the extent of population heterogeneity, as mentioned earlier. For intense mixing, a broad
distribution of growth rates for similar cellular compositions is observed, which is induced by
very small substrate gradients. This is due to the fact that the majority of the population consist
of unbalanced cells and their cellular content is not optimally adapted to their local environment
leading to a diminished growth rate. Simultaneously, this also allows the development of fast
growing particles, which is possible for particles reentering the STR. These results emphasize
the necessity to approach population dynamics with segregated models, particularly when facing
dynamic environments.

The scenarios of starvation and exposure to high substrate concentration through the simulation
of a scaled-down bioreactor system have been analyzed separately, but the combination of the two
can also be investigated in the same framework. The simulation of exposure to high substrate
concentrations is accomplished through a feed into the inlet of the PFR resulting in higher
substrate gradients. The assumption of increased population heterogeneity is confirmed by the
increase of variance in the growth rate and protein concentration distribution. In this scenario,
the effects of external noise dominates over the effects of intrinsic noise. With increasing flow
rate of the liquid phase, the effects of intrinsic noise are more prominent again. Thus, we
can conclude that the main factors influencing the extent of population heterogeneity are: the
magnitude of the substrate gradient, the mean residence time in the compartments compared
to the time scale of the internal properties to return to equilibrium in presence of intrinsic noise
due to cell division.

Due to the numerical nature of the proposed framework, problems in maintaining positivity in
the liquid phase can occur. This problem may arise during a time step in a compartment with
very low substrate availability. Here, particles present in this compartment register the same
concentration during the time step and the procedure of the consumption of substrate happens
simultaneously leading to a possible higher sum of consumed substrate than available substrate.
Therefore, the consumption of substrate of a particle has to be slowed down significantly in
environments of low substrate. Here, we used a untypically large time scale for micro-mixing to
maintain positivity. Smaller parameter values for this time scale can be used, but with higher
computational effort through smaller time steps. Further improvements may be achieved by
employing other strategies or functions to describe limiting factors on the substrate uptake.

The gradients applied in this work are purely on substrate level. Thus, it can be said that
sufficient oxygen levels were assumed. In the experiments of the reference process, oxygen
availability has proven to be very influential on the productivity of the process. In order to
validate the results with fluorescent data linked to specific cellular traits, which can be obtained
experimentally using multiple reporter strains, the model has to be extended to include other
gradients such as oxygen. It can be a limiting factor, especially in the compartments of the PFR
if the PFR is not aerated. In this case even in nutrient rich environments, substrate cannot
be consumed by the particles at maximal rate. But due to the set-up of the framework of the
Euler-Lagrange approach, it can easily extended through additional reaction rates in the coarse-
grained description of the biological phase and an addition of the oxygen as second variable in
the liquid phase. Here, one can posit the question if a third phase, the gas phase, is necessary to
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be incorporated to depict the full dynamics of the scaled-down bioreactor system. Furthermore,
this proposed framework can be applied to the full bioprocess including the L-phenylalanine
production phase to study the effects of heterogeneity on the productivity.
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Hier soll eine Seitenzahl stehen
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6 Conclusion & Outlook

The main intention for this work was the development of a framework to model a segregated
population in a bioprocess and subsequent investigation of emerging population heterogeneity
induced by external and intrinsic noise. External noise occur especially in industrial-scale biore-
actors due to mass transfer limitations and mixing insufficiencies leading to substrate gradients
in the bioreactor the cells are exposed to. Intrinsic noise originates from the stochasticity of
biochemical processes resulting in different expression levels of proteins, different sizes and struc-
tures. This work aimed to consider both the influence of substrate gradients and intrinsic noise
due to cell division. The classical approach in biotechnology is to combine models describing the
cellular environment in a typically well-mixed bioreactor with models describing all the reactions
related to biomass. But these models average the values over the whole population, thus mak-
ing it impossible to describe the processes in single cells. In general, there are two approaches
that can quantify the degree of heterogeneity, which were both presented in the course of this
work: a PBE in Chapter 4 and an Euler-Lagrange approach in Chapter 5. With special atten-
tion on biotechnological purposes, all simulations of each model set-up are performed using a
L-phenylalanine production process with E. coli as reference process, where experimental data
was obtained from [61] to compare the results with a special focus on the biomass production
phase.

For both approaches, a model for the intracellular network of the cells was required. Since both
model approaches are computational demanding on their own, the intracellular model had to be
sufficiently simple, but still capture the most important cellular processes. For this purpose, the
employment of a coarse-grained model was an appropriate choice, which has become popular to
investigate the interdependence of the growth rate and the gene expression [106, 26, 163, 170]. A
minimal coarse-grained model was developed in Chapter 3, which contains a structure in accor-
dance to models of other works [143, 14] and an allocation of the proteome as in [8, 44, 142, 141].
The environment encountered by the cell population has an effect on the proteome allocation
and gene expression [141] and this relation is a key property implemented in the coarse-grained
model. Through the self-replicating nature of the model, the substrate uptake of the cell is reg-
ulated depending on the cells demand and state. In a nutrient rich environment, the substrate
uptake rate is down-regulated due to a subsequent high pool of metabolites which leads to a
higher ribosomal protein fraction and the synthesis of macromolecular cell components, such as
proteins, is up-regulated. During times of starvation, the metabolites are exhausted and a higher
protein fraction is allocated to transporter proteins in order to increase the uptake of substrate
and conversion into metabolites. Furthermore, the growth rate of the cells is determined by the
composition of the proteome and cell components and not by a empirical function dependent
solely on the environment. This model was applied to the mentioned L-phenylalanine production
process and was able to reproduce the dynamics of the process in line with the experimental
data in Section 3.4.

The novelty of this work lies in the coupling of the coarse-grained model description of the
intracellular network of the population based on strict mass conservation and the framework of
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each a PBE and an Euler-Lagrange approach. While segregated model descriptions employing
a PBE focused either only on the cell size or cell mass [54, 101], growth rate [108, 125] or only
the intracellular components of the cells [145, 146, 147], the integration of the mass conservating
coarse-grained model and the usage of cell mass and protein content as descriptor variables of
the PBE enabled the investigation of microbial growth as depicted in e.g. Figure 4.5A under
consideration of the cellular composition in Figure 4.4 and intrinsic noise due to cell division.
Using a Finite Volume method, which was proven to be conserving the first moments, a fed-
batch process was simulated and its results analyzed. The mean values of all involved variables
did not differ between the segregated and unsegregated model, while differences emerge with
the addition of the feed in Figure 4.3.

The proposed model has a few downsides. Due to the high computational effort of numerically
solving a PBE, the number of variables had to be reduced to a total of two, whereas the original
minimal coarse-grained model required a total of three variables: the metabolite and protein
content as well as the cell mass. Additionally, with the inclusion of cell division the structure
of the cell composition had to be adjusted as explained in Section 4.1. This complicates the
interpretation and comparison of the reaction rates and intracellular components. The allocation
into protein fractions T and R is still determined by a function of M given by Eq. (3.43) and
(3.44), but with the changed interpretation of M , representing all cellular components except
for T and R, the intracellular pool M in this model can not be directly linked to the metabolite
pool M of the original model in Section 3.4.1. Therefore, the allocation function is not directly
based on experimental data [139] and a new relation between M and the protein function had
to be proposed. The new relation was set through an estimation using the range of P , T and
R. Despite the modifications, the self-replicating nature of the model was kept for the modified
version.

In case of the presented Euler-Lagrange model approach in Chapter 5, the equations of the
intracellular network given by the coarse-grained model were integrated into the framework
of a model with two phases describing the biological phase and liquid phase as proposed by
Lapin et al. [81]. Thus, the approach inherits the advantages of the coarse-grained model being
based on mass conservation and having the growth being a result of the network rather then
being determined an empirical function. In line with the ”Eulerian” approach, the biological
phase was considered through a ensemble of virtual particles representing biological cells with
the same cellular properties (intracellular content and location). The dynamics of the intra-
cellular content (protein and metabolite concentration) of each particle are given through the
intracellular network of Chapter 3. Therefore, each particle reacts according to the environ-
ment it perceives and the dynamics of the intracellular network and the liquid phase as well as
the particles movement in the bioreactor can be characterized separately. This enables a more
complex description of the intracellular network in contrast to the PBE approach, which has
been done for a penicillin model containing multiple intracellular pools in [51] with a focus on
the ability to describe the hydrodynamics with CM compared to a full CFD simulation. The
movement of the particles followed a stochastic transport algorithm, as seen in [103, 27, 51],
based on the residence time distribution. Due to the easier implementation of this framework,
this approach was utilized to describe a scaled-down bioreactor system consisting of a STR and
a PFR in bypass through a CM. The expansion of the PBE model to include the description
of a bioreactor system can be done as well resulting in an Euler-Euler approach. Here, a PBE
can be set up for each compartment of the bioreactor with an additional term for the influx and
outflux of the population entering or leaving the compartment as done in [125]. But in doing
so, the computational effort, which is already high, multiplies with the number of compartments
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and, due to the more promising framework of the Euler-Lagrange approach, we refrained from
implementing a Euler-Euler approach.

One origin of intrinsic noise lies in the process of cell division. The PBE is able to describe cell
divisions, but a formulation for the cell division had to be assumed. In this work, we utilized
a smooth function involving critical values following some previous works [98, 99, 129]. Thus,
additional information about the critical values, where cell division at m = 2 mc and n = 2 nc is
almost guaranteed, is required and generally difficult to obtain. In the simulations of this work,
the critical values did not influence the results during the batch phase or in case of a constant
nutrient rich environment, where the population resides in the upper left corner of the n-m-state
space. In case, where the population moved away from the upper left corner, the critical values
affected the results significantly. In the framework of the Euler-Lagrange approach, cell division
is not modeled directly. In order to maintain a constant number of virtual particles for easier
implementation, a virtual particle represents a total amount of biomass instead of a fixed number
of biological cells. Furthermore, instead of modeling cell division itself, assuming division laws
and finding a way to keep the number of virtual particles constant, the stochasticity arising from
cell division was modeled as described in Section 5.1.3. Here, intrinsic noise due to cell division
was manifested in the reshuffling of cell properties with the same frequency of cell divisions that
happen during a time step according to the growth rates of the particles. The new properties of
the particles were determined by a Gaussian distribution centered around the cell properties of
the original particle. This sets this framework apart from previous works which only considered
external noise [112, 51].

With intrinsic noise present, the cell state of the particles is decoupled from the local environ-
ment. Here, we introduced the concept of balanced and unbalanced cells. We used the term
balanced cell if the intracellular composition of the particle is in steady state with the environ-
ment. It was shown in Section 5.3 and Section 5.4.1 that the degree of population heterogeneity
is dependent on the time scale of mixing compared to the time scale of cellular response in-
dicated by the relaxation time of the variables of the system. The cellular response happens
on two different time scales depending on the type of perturbation. In Section 3.6.2, it was
shown that the relaxation time for both metabolites and proteins is in the range of duzens of
seconds in response to environmental changes for cells in balanced state. Thus, as expected,
in absence of intrinsic noise in Section 5.2, the particles were in balanced state and able to
quickly adapt to changes in the environment leading to distinct subpopulations reflecting their
environment. The simulation of the bioreactor system exhibited a growing subpopulation in the
compartment of the STR and a non-growing subpopulation in the PFR. The relaxation times
of the metabolites and proteins to intrinsic noise in Section 3.6.3 were determined to happen
on two different scales, where the metabolites converged within the same time as the relaxation
time for external noise and the proteins required hours to converge as seen in Figure 3.12. This
was expected as the proteins are of much higher molecular weight and its synthesis time is much
longer than for metabolites. Due to the equal molecular weight in the modified model used for
the PBE, no time scale analysis was performed for this case. With the addition of intrinsic
noise on top of external noise in Section 5.3, the reshuffling of the internal properties due to
cell division created unbalanced particles. This resulted in the decoupling of the cellular state
in general from the environment the particle perceives with the protein content having a broad
distribution due to the longer relaxation time and the metabolite content corresponding to the
local substrate concentration in Figure 5.6. Thus, population heterogeneity is enhanced with the
inclusion of intrinsic noise and these results further showed the necessity to describe the growth
rate by other means than a function only dependent on the substrate concentration, which is in
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agreement with other studies [1, 91]. Furthermore, it is consistent with the choice of the growth
rate as an internal variable subject to a redistribution mechanisms at cell division in PBEs as
seen in [108, 109, 110, 125].

With the established framework several scenarios were simulated and compared. Different flow
rates through the bioreactor system, which means different mean residence times in the compart-
ments, affected the degree of heterogeneity as mentioned. But most interestingly populations in
a bioreactor with high flow rates, which result in a nearly homogeneous environment, are highly
heterogeneous in regards to their growth rate distribution. This result further emphasizes the
need to consider segregated models. Additionally, different feeding regimes were investigated
resembling events of substrate excess.

The batch phase of the L-phenylalanine process which was simulated in this work as exemplary
process, can be compared for the different model approaches. During this process phase the
environment of the bioreactor system can be regarded as homogeneous with very small external
noise due to stochasticity of the particle movement which can be neglected. Thus, only intrinsic
noise is present. The mean values of the variables did not differ for PBE approach in Section 4.2
nor the Euler-Lagrange approach in Section 5.3 in comparison to the unsegregated simulation
in Section 3.4.3. In both segregated approaches, the initial population was assumed to be
normally distributed and therefore is formed of unbalanced cells. Because of the long relaxation
time, the population remained normally distributed over the whole batch process phase in both
approaches.

Due to the structure of the model, it can be extended to consider additional factors that af-
fect the degree of heterogeneity and different bioreactor systems as well. In future works, the
framework can be adapted to simulate the scenarios, which were experimentally performed by
Neubauer et al. [114]. Here, fed-batch processes with the two different feeding profiles were inves-
tigated with the difference that the feed was constant. The PFR in this set-up was aerated and
therefore no oxygen limitation was assumed. Other possibilities include investigations of large-
scale bioreactors [51], different scaled-down bioreactor systems consisting of two STRs [122, 83]
or short time responses to pulses of substrate in a chemostat culture [104, 161]. In the first case,
the CM could be extended to a third dimension, where every compartment can have up to 6
neighbors. Thus, the matrix containing the flow field has to be adapted, but the transport of
particles and description of the biological phase remain unchanged. As the hydrodynamics for
large-scale bioreactors are more complex, insights of full CFD simulations as basis for the flow
field matrix can be helpful [51, 28, 27].

In the current set-up of the bioprocess, the bypass is not aerated and oxygen limitations do
occur. In the examplary L-phenylalanine production process, the low biomass to substrate yield
and the absence of byproduct formation suggests a high respiration rate and this can heavily
affect the productivity of the process. As mentioned in Section 5.5, we only considered one
substrate gradient. In order to incorporate the full respiration process and the dependency of
growth on oxygen availability, the coarse-grained model must be extended. A possibility is to
incorporate a dependency of the substrate uptake rate on the oxygen in the liquid phase. The
liquid phase present in the Euler-Lagrange model has to be extended to include the dissolved
oxygen as well. Analogous to substrate availability, special care has to be taken such that oxygen
levels do not fall below zero due to numerical errors. During energy production, the cells oxidize
carbon-containing substrates to carbon dioxide. The oxygen uptake rate and carbon dioxide
production rate can then be compared to experimental data and verified.
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The established framework can be employed with the aim to optimize the product formation
through a better understanding of the effects of population heterogeneity in industrial scale
bioreactors. Currently, the model description and simulations of the segregated population only
captured the biomass production phase of the L-phenylalanine production process, while the
product formation phase is already implemented in the coarse-grained model in Section 3.4.3.
After incorporation of oxygen dependent growth, the simulated process with the Euler-Lagrange
approach can be extended to include the last process phase as well. For this, the liquid phase is
expanded with a third scalar containing the L-phenylalanine concentration.

While we presented a promising framework to investigate population heterogeneity, it should
be verified experimentally. The results were only compared to the mean values of the biomass,
substrate concentration and growth rate provided by experimental data. Through the applica-
tion of multi reporter strains monitoring growth, general stress response, oxygen limitation and
L-phenylalanine production, fluorescent and proteome data can be integrated into the model
and compared to the distributions of the proteome fractions corresponding to property of in-
terest. While the fraction R can be directly linked to the stain monitoring growth and the
fraction FP to the stain monitoring the product formation, oxygen availability perceived by the
cell and general stress do not have a direct counterpart in the model. Nevertheless, the interplay
between at least growth, product formation and global oxygen availability can be evaluated in
this way. Proteomics data, on the other hand, can be used to refine the intracellular network
model to consider regulatory processes that may vary strongly during experiments, since some
proteins might be activated or deactivated under certain stress conditions. This can give a hint
towards which evolutionary strategies cells employ to cope with a fluctuating environment. Gen-
erally, high consistency between the simulation and experimental data leads to better prediction
accuracy.

A well-established model is the foundation for further optimization to achieve higher product
yields. One possibility is to find an optimal feeding strategy depending on the predicted property
distributions of the cell population. Another possibility to increase productivity lies in the search
of an optimal feeding rate through process optimization of the non-segregated model. The
current process is divided into three process phases with a total of three switching time points,
at which the feeding rate changes. These time points as well as the substrate concentration of
the feed can be evaluated and improved based on optimization studies.

To conclude, segregated model approaches to investigate population heterogeneity induced by
external and intrinsic noise due to cell division were presented and analyzed. Due to the flexible
structure, it can be applied to various microbial populations in different cultivation conditions.
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Hier soll eine Seitenzahl stehen

96



List of Variables and Functions

Symbol Description Unit 1st page

A L-tyrosine concentration g/L 30
c Vector containing all intracellular components Ci mol/gDW 4
Ci Intracellular components Ci mol/gDW 4
d Dimension of domain Ωξ - 11
F L-phenylalanine concentration g/L 29
F Matrix containing flow field of the CM L/h 17
Fi,j Exit flow rate from compartment i to j L/h 17
FP Proteins for L-phenylalanine production mol/gDW 29
M Metabolite concentration mol/gDW 24
m Total biomass of a particle in the CM gDW 60
mX Biomass weight gDW 4
N Number of particles in the CM - 60

N(ξ, x, t) Number density function of a PBE - 11
NC Number of intracellular components - 4
nCi Molar mass of component Ci mol 4
Np,i Number of particles in compartment i - 21
Nr Number of intracellular reactions - 4
N Stoichiometric matrix of the intracellular network - 4
ns Number of extracellular concentrations in the CM - 17
Nt(t) Total number of particles of a PBE - 12
nz Number of compartments in the CM - 17
O Acetate concentration g/L 31
P Protein concentration mol/gDW 24

p(ξ, ξ′, x) Partition probability density in a PBE - 12
Q Residual protein concentration mol/gDW 27
qin Feeding rate L/h 31
QR Flow rate of circulation in the bioreactor system L/h 60
R Ribosomal proteins mol/gDW 6
r Reaction rate vector of the intracellular network mol/gDWh 4

rξ(ξ, x) Rate of change of the internal properties ξ - 11
rx(ξ, x) Rate of change of the external variables x - 11
rC Rate of respiration mol/gDWh 29
rF Rate of L-phenylalanine production mol/gDWh 29
rO Rate of overflow metabolism mol/gDWh 24
rP Protein synthesis rate mol/gDWh 24
rT Substrate uptake rate mol/gDWh 24
rU Synthesis rate of residual biomass mol/gDWh 29
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List of Variables and Functions

Symbol Description Unit 1st page

S Substrate concentration g/L 24
Sin Feed concentration g/L 5
S External concentrations g/L 5
T Transporter proteins mol/gDW 6
t Time h 3
U Residual biomass concentration mol/gDW 29

VPFR Bioreactor volume of the PFR L 60
VR Bioreactor volume L 5
VSTR Bioreactor volume of the STR L 60
W Matrix containing mass fractions of cell components - 25
w Vector containing the molecular weights of intracellular

components
g/mol 4

x External variables / location of a particle - 11

Γ(ξ, x) Division rate in the PBE - 12
µ Specific growth rate 1/h 3
ξ Internal property of a particle - 11
τr Mean residence time h 19
τu Characteristic time for substrate uptake h 35
τ Relaxation time h 37
Φ Matrix containing transfer rates of external

concentrations S
mol/gDWh 18

ϕbS Internal biological uptake capacity mol/gDWh 35
ϕ Production or consumption rate of external

concentrations S
mol/gDWh 13

Ωξ Domain of the internal property ξ - 11
Ωx Domain of the external variables - 11
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List of Abbreviations

E. coli Escherichia coli
CFD Computational fluid dynamics
CM Compartment model
ODE Ordinary differential equation
PBE Population balance equation
PFR Plug-flow bioreactor
STR Stirred-tank bioreactor
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Zürich Ser. Springer International Publishing, Cham, 2nd edition, 1992.

[89] R. J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge University
Press, 2012.

[90] S. F. Levy. Cellular heterogeneity: Benefits besides bet-hedging. Curr. Biol. : CB,
26(9):R355–7, 2016.

[91] H. Y. Lin, B. Mathiszik, B. Xu, S. O. Enfors, and P. Neubauer. Determination of the
maximum specific uptake capacities for glucose and oxygen in glucose-limited fed-batch
cultivations of Escherichia coli. Biotechnol. Bioeng., 73(5):347–357, 2001.

[92] J.-J. Liou, F. Srienc, and A. G. Fredrickson. Solutions of population balance models based
on a successive generations approach. Chem. Eng. Sci., 52(9):1529–1540, 1997.

[93] Y.-H. Liu, J.-X. Bi, A.-P. Zeng, and J.-Q. Yuan. A population balance model describing
the cell cycle dynamics of myeloma cell cultivation. Biotechnol. Prog., 23(5):1198–1209,
2007.

[94] G. Madras and B. J. McCoy. Reversible crystal growth–dissolution and aggregation–
breakage: numerical and moment solutions for population balance equations. Powder
Technol., 143-144:297–307, 2004.

[95] A. W. Mahoney and D. Ramkrishna. Efficient solution of population balance equations
with discontinuities by finite elements. Chem. Eng. Sci., 57(7):1107–1119, 2002.

[96] A. Maitra and K. A. Dill. Bacterial growth laws reflect the evolutionary importance of
energy efficiency. Proc. Natl. Acad. Sci. United States Am., 112(2):406–411, 2015.

[97] F. Maluta, M. Pigou, G. Montante, and J. Morchain. Modeling the effects of substrate
fluctuations on the maintenance rate in bioreactors with a probabilistic approach. Biochem.
Eng. J., 157:107536, 2020.

[98] N. V. Mantzaris. Stochastic and deterministic simulations of heterogeneous cell population
dynamics. J. Theor. Biol., 241(3):690–706, 2006.

[99] N. V. Mantzaris. From single-cell genetic architecture to cell population dynamics: quanti-
tatively decomposing the effects of different population heterogeneity sources for a genetic
network with positive feedback architecture. Biophys. J., 92(12):4271–4288, 2007.

[100] N. V. Mantzaris, P. Daoutidis, and F. Srienc. Numerical solution of multi-variable cell
population balance models: I. finite difference methods. Comput. & Chem. Eng., 25(11-
12):1411–1440, 2001.

[101] N. V. Mantzaris, J.-J. Liou, P. Daoutidis, and F. Srienc. Numerical solution of a mass
structured cell population balance model in an environment of changing substrate concen-
tration. J. Biotechnol., 71(1-3):157–174, 1999.

[102] L. Marucci, M. Barberis, J. Karr, O. Ray, P. R. Race, M. de Souza Andrade, C. Grier-
son, S. A. Hoffmann, S. Landon, E. Rech, J. Rees-Garbutt, R. Seabrook, W. Shaw, and
C. Woods. Computer-aided whole-cell design: Taking a holistic approach by integrating
synthetic with systems biology. Front. Bioeng. Biotechnol., 8:942, 2020.

107



BIBLIOGRAPHY

[103] C. L. Mayorga Espinoza. Flow structure analysis and velocity field reconstruction using
Reduced Order Method (POD and DMD : application to stirred tank and oscillating bubble
plume.). Theses, INSA de Toulouse, Apr. 2022.

[104] C. Meyer and W. Beyeler. Control strategies of continuous bioprocesses based on biological
activities. Biotechnol. Bioeng., 26(8):916–925, 1984.

[105] P. Mhaskar, M. A. Hjortsø, and M. A. Henson. Cell population modeling and param-
eter estimation for continuous cultures of saccharomyces cerevisiae. Biotechnol. Prog.,
18(5):1010–1026, 2002.

[106] D. Molenaar, R. van Berlo, D. de Ridder, and B. Teusink. Shifts in growth strategies
reflect tradeoffs in cellular economics. Mol. Syst. Biol., 5:323, 2009.

[107] J. Morchain and C. Fonade. A structured model for the simulation of bioreactors under
transient conditions. AIChE J., 55(11):2973–2984, 2009.

[108] J. Morchain, J.-C. Gabelle, and A. Cockx. Coupling of biokinetic and population balance
models to account for biological heterogeneity in bioreactors. AIChE J., 59(2):369–379,
2013.

[109] J. Morchain, J.-C. Gabelle, and A. Cockx. A coupled population balance model and CFD
approach for the simulation of mixing issues in lab-scale and industrial bioreactors. AIChE
J., 60(1):27–40, 2014.

[110] J. Morchain, M. Pigou, and N. Lebaz. A population balance model for bioreactors combin-
ing interdivision time distributions and micromixing concepts. Biochem. Eng. J., 126:135–
145, 2017.

[111] M. Mori, S. Schink, D. W. Erickson, U. Gerland, and T. Hwa. Quantifying the benefit of
a proteome reserve in fluctuating environments. Nat. Commun., 8(1):1225, 2017.

[112] G. Nadal-Rey, D. D. McClure, J. M. Kavanagh, B. Cassells, S. Cornelissen, D. F. Fletcher,
and K. V. Gernaey. Development of dynamic compartment models for industrial aerobic
fed-batch fermentation processes. Chem. Eng. J., 420:130402, 2021.

[113] G. Nadal-Rey, D. D. McClure, J. M. Kavanagh, S. Cornelissen, D. F. Fletcher, and K. V.
Gernaey. Understanding gradients in industrial bioreactors. Biotechnol. Adv., 46:107660,
2021.
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A.1 Supporting information for Chapter 3

A.1.1 Kernel of the cell composition matrix

In order to calculate the kernel of W , we analyze the detailed formulation of W

W = Id − c wT = Id −

c1w1 · · · c1wn
...

. . .
...

cnw1 · · · cnwn

 . (A.1)

Let NC be the dimension of W , corresponding to the number of intracellular components. The
determinant of W can be easily calculated up to dimension 3 and for larger dimensions obtained
from the Leibniz formula, leading to

det(W ) = 1 −
∑
i

wici (A.2)

which is zero due to strict mass conservation according to Eq. (2.16). One can show furthermore,
that the kernel of W is one-dimensional, as the values of W have a positive sign on the diagonal
and negative sign otherwise 

+ − · · · −
− + · · · −
...

. . .
...

− · · · − +

 . (A.3)

The rank of the matrix W is given by the maximum number of linearly independent column
or row vectors of the matrix. As the NC vectors of W all have exactly one positive entry at a
different position of the vector, one needsNC vectors in order to find a linear combination to form
zero and the maximum number of linearly independent vectors is NC−1. This argumentation
holds for both the set of column and row vectors. The system of equations for linear dependent
vectors can be written as

0 = λi − ci
∑
k

λkwk (A.4)

If we choose λi = sci with s ∈ R, then the set of equations hold as the latter term forms∑
k

s ckwk = s
∑
k

ckwk = s. (A.5)

Thus, the kernel of W is
cw,0 = s c, s ∈ R. (A.6)
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A.1.2 Flux analysis of the minimal model

In the example of the minimal model, N+ is given by

N+ =


α

α2+1
γα

β+βα2

0 1
γ

− 1
α2+1

− γ
β+βα2

 . (A.7)

Therefore, we obtain

Id−N+N =


1

α2+1
0 α

α2+1

0 0 0
α

α2+1
0 α2

α2+1

 . (A.8)

With this formulation, we can see that rank(Id − N+N) = 1, leading to a one-dimensional
solution space for r. The image of Id−N+N is given by

span

 1
α2+1

0
α

α2+1

 . (A.9)

A.1.3 Kinetic parameters of different reaction rate sets for proteome allocation

The following kinetic parameters were used for the study of proteome allocation for 5 different
model variations

kT kP kO
Linear kinetics 1000 3.5× 104 3× 106

Michaelis-Menten kinetics for M in rP 1000 3.5 1.5× 105

Michaelis-Menten kinetics for M in rP and rO 1000 8 440

Michaelis-Menten kinetics for T in rT 4× 10−3 8 1.2× 10−3

Michaelis-Menten kinetics for M and T 3.2× 10−3 6× 104 2

where the units of the kinetic parameters depend on the formulation of the reaction rate.
Additionally, let KP = 0.5 × 10−4 mol/gDW be the Michaelis-Menten constant for M in rP ,
KO = 2 × 10−6 mol/gDW the Michaelis-Menten constant for M in rO and KT = 1 × 10−6

mol/gDW the Michaelis-Menten constant for T .
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A.1.4 Parameter values for the simulation of a bioprocess

Table A.1: Overview of parameters values used for the simulation of a production process

Parameter Description of parameter Value Unit
V0 Initial reactor volume 1.35 L
X0 Initial biomass concentration 0.014 gDW/L
S0 Initial substrate concentration 4.08 g/L
M0 Initial metabolite concentration 2.4 · 10−4 mol/gDW

P0 Initial protein concentration 1.19 · 10−5 mol/gDW

U0 Initial residual biomass concentration 0.87 · 10−5 gDW/l
F0 Initial L-phenylalanine concentration 0.09 g/l
O0 Initial acetate concentration 0 g/l
Fmax Maximal fraction of L-phenylalanine proteins 0.05 -
ψP Protein length 212 -
wS Molecular weight of substrate 92.09 g/mol
wM Molecular weight of metabolites 217 gDW/mol
wP Molecular weight of proteins wM · ψP gDW/mol
wU Molecular weight of residual biomass wM · ψP gDW/mol
wF Molecular weight of L-phenylalanine 165.19 g/mol
kT Kinetic constant for transport rate 3.75 · 103 1/h
kP Kinetic constant for protein synthesis rate 2 1/h
kO Kinetic constant for overflow metabolism rate 1.5 · 104 g/molh
kU Kinetic constant for residual biomass synthesis rate 1.5 1/h
kF Kinetic constant for L-phenylalanine production rate 1.8 · 107 g/molh
kC,b Kinetic constant for respiration rate (biomass production

phase)
1.2 · 107 g/molh

kC,p Kinetic constant for respiration rate (production phase) 2 · 107 g/molh
KT Michealis-Menten constant for transport rate 0.05 g/l
KP Michealis-Menten constant for protein synthesis rate 0.5 · 10−4 mol/gDW

KU Michealis-Menten constant for residual biomass synthesis rate 0.5 · 10−4 mol/gDW

α Stoichiometric coefficient for transport rate 1 -
β Stoichiometric coefficient for protein synthesis rate 1 -
γ Stoichiometric coefficient for protein synthesis rate 212 -
ϵ Stoichiometric coefficient for residual biomass synthesis rate 1 -
δ Stoichiometric coefficient for residual biomass synthesis rate 212 -
nS Stoichiometric coefficient for substrate rate 2 -
nF Stoichiometric coefficient for L-phenylalanine production rate 2 -
aT Constant of linear function relating T to M −47.23 -
bT Constant of linear function relating T to M 0.223 -
aR Constant of linear function relating R to M 91.44 -
bR Constant of linear function relating R to M 0.131 -
tψ Time constant in function ψ 5 h
Tmax Maximal concentration of T 2.76× 10−6 gDW

A.1.5 Comparison of the substrate uptake rates

Between the two different models we cannot observe a big difference, except for a slight accu-
mulation of substrate S if we include the effect of micro-mixing with τmix = 17 × 10−3 h and
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Tmax is estimated with the assumption 0.57 = wP P and the maximal fraction Tl

Tmax =
0.57

wP
Tl (A.10)

Figure A.1: Comparison of the two sets of simulated quantities for the substrate uptake rate with
Michaelis-Menten kinetics (blue) and with micro-mixing (orange). Time course of the
following concentrations: glycerol S and biomass X

Figure A.2: Time course of the simulated specific growth rate µ, substrate transport rate rT , protein
synthesis rate rP , respiration rate rC for the substrate uptake rate with Michaelis-Menten
kinetics (blue) and with micro-mixing (orange).
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A.2 Supporting information for Chapter 4

Influence of cell division rate function

During the batch phase the differences between the protein concentration distributions are very
small as seen in Figure A.3. While higher critical values mc and nc lead to a slighty narrower
distribution, lower values lead to a broader distribution.

Figure A.3: Comparison of the protein distribution for division rate functions with different critical
values mc and nc during the batch phase: base case with mc = 500 fg and nc = 1.3× 10−3

fmol (A,B), higher critical values mc = 800 fg and nc = 1.7 × 10−3 fmol (C,D) and lower
critical values mc = 400 fg and nc = 1.3 × 10−3 fmol (E,F). Protein distribution at time
point t = 7 h (left column) and t = 14 h (right column).

In a constant environment, the cell population grows exponentially and exhibit internal prop-
erties, which correspond to values in the upper-left quarter of the state space. Thus, the cell
population does not exhibit internal property values at the boundaries of the state space. We
compare two cases: a base case with mc = 500 fg and nc = 1.3×10−3 fmol (A,B) and a case with
higher critical values mc = 700 fg and nc = 1.82× 10−3 fmol. Note, that the critical values for
mc and nc are increased by the same factor, but running the model with different ratios between
the two values does not show big differences. A look at the protein concentration distributions
for two different time points in Figure A.4 reveals negligible differences between the two cases
with an only slitghtly smaller variance for higher critical values.
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Figure A.4: Comparison of the protein distribution for division rate functions with different critical
valuesmc and nc in a constant environment: base case withmc = 500 fg and nc = 1.3×10−3

fmol (A,B) and higher critical values mc = 700 fg and nc = 1.82×10−3 fmol (C,D). Protein
distribution at time point t = 7 h (A,C) and t = 14 h (B,D). Mean protein concentration
(EC) and variance of the protein concentration (F).

A.3 Supporting information for Chapter 5

A.3.1 Number of cell divisions

For the inclusion of intrinsic noise, we calculate the number of cell divisions. The mass of all
cells after time step ∆t is given by ∑

i

µimi∆t+
∑
i

mi (A.11)

Thus the number of cells after time step ∆t can be calculated as

N ·
∑

i µi mi ∆t+
∑

imi∑
imi

= N ·
(∑

i µi mi ∆t∑
imi

+ 1

)
= N · 2k (A.12)

Therefore, we obtain

#cell divisions = N
∑
i

2i−1 = N · (2k − 1) = N ·
(∑

i µi mi ∆t∑
imi

)
(A.13)
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A.3.2 Parameter values of the Euler-Lagrange simulation

In addition to the parameters used for the bioprocess in a well-mixed bioreactor from Appendix,
Section A.1.4, following parameters are used in the Euler-Lagrange simulation.

Table A.2: Overview of parameters values used for the simulations

Parameter Description of parameter Value Unit

VSTR,0 Initial reactor volume of the stirred tank reactor 0.9 l
VPFR Reactor volume of the plug flow reactor 0.45 l
bf Back-flow 0 l/h
σM0 Initial metabolite concentration standard deriviation 0.1 · 10−4 mol/gDW

σP0 Initial protein concentration standard deriviation 0.15 · 10−5 mol/gDW

τmix Micro-mixing time 17× 10−3 h

A.3.3 Additional information about the contribution of cell division on population
heterogeneity
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Figure A.5: Comparison of the substrate concentration S (A), biomass concentration X (B), growth rate
µ (C), substrate transport rate rT (D), protein synthesis rate rP (E) and respiration rate
rC (F) in a STR (blue) and in a two-compartment bioreactor (orange) with intrinsic noise,
where the quantities are mean values over all compartments and particles. The separation
of the batch and fed-batch phase is indicated by the vertical black line.

A comparison between the simulation of a well-mixed bioreactor and the simulation of the
bioreactor system with the inclusion of external noise and intrinsic noise in Figure A.5 shows
the same relation as the comparison of the former with the simulation of the bioreactor system
with only external noise in Figure 5.2.

The substrate and biomass concentration shows little variation with differences between the
compartments occurring in the fed-batch phase. For the substrate concentration S a slight
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Figure A.6: Time course of substrate (A) and biomass concentration (B) for different compartments:
compartment 1 STR (blue), compartment 2 PFR inlet (orange) and compartment 11 PFR
outlet (yellow).

accumulation is observable in compartment 1 and a decrease of substrate concentration over the
compartments with a concentration of zero in compartment 11 (Figure A.6).

Figure A.7: Distributions of protein concentration (left column), metabolite concentration (middle col-
umn) and growth rate (right column) at different time points t = 14 h (top row), t = 16 h
(middle row) and t = 38 h (bottom row) with intrinsic noise normalized to 1.

Figure A.7 shows the distribution of the internal properties considering all particles of the
bioreactor system for three time points of the process, which are: t = 14 h (top row), t = 16 h
(middle row) and t = 38 h (bottom row). The first row depicts the distributions of the protein
concentration. With the inclusion of intrinsic noise, the protein distribution is much wider
compared to the simulation only considering external noise, as described in Section 5.3, while
the distributions for the metabolite concentration are not affected by the addition of internal
noise. The distribution for the growth rate is split into two distinct subpopulations, which are
slightly wider compared to the case with only external noise. Beside the difference in the shape
of the distributions, the behavior over the time course mirrors the previous simulation, with a
increased population heterogeneity at the beginning of the fed-batch and a followed decrease.
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Figure A.8: Comparison of the local average values for compartments 1 (blue), 2 (orange) and 11
(yellow), indicated by circles, steady state values corresponding to the local environment
(solid lines), global average (dotted purple line) and steady state corresponding to the global
average environment (green dashed line) of internal properties for different time points of
the process for the protein concentration (A), metabolite concentration (B) and growth
rate (C).

Figure A.8 shows the local average values for the three different compartments, compared to
the steady state values corresponding to the local environment, as well as the global average
and steady state corresponding to the global average environment. Again, the particles of com-
partment 1 exhibit the same average protein concentration as the steady state corresponding
to the local environment, while the average protein concentrations considering particles in com-
partment 2 or 11 lie below their respective steady state value. Interestingly, the global average
is much closer to the values of compartment 1 and the global steady state. The values for the
metabolite concentration as well as the growth rate mirror the behavior of the same variables
under the consideration of external noise alone.

For the purpose of analyzing the influence of sampling weights considering the biomass of a par-
ticle, the relation between the total biomass a virtual particle carries and its internal properties
is analyzed. This helps to understand the influence of intrinsic noise on the cell state of the cells
represented by the virtual particles when considering the total biomass as sampling weights.
Figure A.9A-C shows scatter plots of the total biomass and its internal properties as well as
the particle’s growth rate µ for all particles in the bioreactor system. No specific relation can
be found for the protein concentration P and the total biomass of the particle in Figure A.9A

Figure A.9: Relation between total biomass of a virtual particle and its other internal properties: protein
concentration (A), metabolite concentration (B) and growth rate (C) at t = 38 h.
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as the particles are normally distributed around the average protein concentration and average
total biomass. This is not surprising as both the dynamics of the protein concentration and the
total biomass of a particle are slow processes and therefore are Gaussian shaped. Figure A.9B
show two lines forming with metabolite concentration values of M = 8.6 × 10−5 mol/gDW and
M = 3 ×10−10 mol/gDW and the rest of the particles contain values in between those two.
Comparing the range of total biomass values the particles carry, we can observe that particles
with higher total biomass are more likely to also exhibit higher metabolite concentrations, while
particles with lower metabolite concentration tend to carry less biomass. This is reasonable, as
particles with higher metabolite concentration are faster growing cells, thus are able to increase
their biomass faster, which is confirmed in Figure A.9C.

Figure A.10 shows the protein concentration and growth rate distribution considering all parti-
cles of the bioreactor system for sampling for cell division with equal weights (blue) and weights
considering the total biomass of the particles (orange) at two different time points t = 26.5 h
(upper) and t = 38 h (lower row). A comparison of the protein distributions in Figure A.10A
reveals a slightly wider distribution and lower peak for the subpopulation with lower protein
concentration and a narrower distribution and higher peak for the subpopulation with higher
protein concentration in case of weights considering particles’ growth rate compared to equal
weights. The time point is shortly after the switch to the second feed solution. After hours at
t = 38 h in Figure A.10C, the population is more accustomed to the environment and the sub-
population with lower concentration values shows a higher peak at the mode. This outcome is
in agreement with our prediction that particles in the STR are favored leading to lower variation
on the right side of the protein concentration as those particles are less likely to be randomized.
The average growth rate µ does not differ between both cases in Figure A.10B. Thus, the bias

Figure A.10: Comparison of the protein concentration (A,C) and growth rate (B,D) distributions at
t = 26.5 h (upper row) and t = 38 h (lower row) over the whole bioreactor normalized
to 1 for sampling with equal weights (blue) and weights considering the biomass of the
particles (orange) during the fed-batch phase.. Each case is the average of 5 simulations.
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Figure A.11: Comparison of the mean growth rate (A) and variance of the growth rate (B) in compart-
ment 1 for equal sampling weights (blue) and sampling weights considering the particle
biomass (orange). Each case is the average of 5 simulations.

towards particles with higher total biomass does not affect the mean growth rate significantly.
The growth rate distributions reveal slight differences especially for the growing particles as seen
in Figure A.10D. The growth rate distribution in case of sampling weights considering the par-
ticle mass reveals less cells exhibiting higher growth rates as the mode of the subpopulation of
growing cells and a higher peak at the mode growth rate. This relation is apparent at both time
points. Therefore, we calculate the mean and variance considering particles of compartment 1.
Figure A.11 shows the mean growth rate and variance of the growth rate of the particles residing
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Figure A.12: Comparison of the protein concentration (A) and growth rate (B) distributions at t =
26.5 h over the whole bioreactor normalized to 1 for sampling with equal weights (blue)
and weights considering the growth rate of the particles (orange) during the fed-batch
phase. Each case is the average of 5 simulations.
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in compartment 1 for both cases. Both quantities do not differ between the two sampling weight
sets.

For sampling weights considering the growth rate of a particle, a close look at the protein
concentration distribution reveals the same behavior as in the previous case and can be seen
in the Figure A.12A. Investigating the growth rate distribution at t = 26.5 h in Figure A.12B
shows differences especially for the subpopulation with higher growth rate, resembling the last
case. With a stronger bias towards particles residing in compartment 1, the difference enhances,
but the mean growth rate remains unaffected as mentioned earlier.

In case of sampling weights considering both the particle mass and growth rate, the mean
growth rate as well as the variance of the growth rate considering particles in compartment 1
are comparable in both cases as seen in Figure A.13
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Figure A.13: Comparison of the mean growth rate (A) and variance of the growth rate (B) in compart-
ment 1 for equal sampling weights (blue) and sampling weights considering the particle
biomass and growth rate (orange). Each case is the average of 5 simulations.

Figure A.14 depicts the distributions of the internal properties at the end of the fed-batch
t = 38 h for particles residing in the three different compartments using a normal distribution
with a doubled (upper row) and halved standard (lower row) deviation for shuffling of the
properties. Analogous to considering all particles of the bioreactor system, doubling of the
standard deviation leads to wider protein concentration distributions in the compartments,
while halving the standard deviation narrows the distributions. With larger variety in the
compartments, the distributions of the compartments overlap more. The distributions of the
metabolite concentration of the particles remain unchanged, as the dynamics for the metabolites
are fast compared to the proteins. Thus, the different standard deviations do not affect the
distributions in Figure A.14B and E. The differences in growth rate in Figure A.14C and F are
small with no significant deviations in the distributions of compartment 2 and 11. But the range
of growth rates exhibited by the subpopulation residing in comparment 1 is wider for a larger
standard deviation.
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Figure A.14: Normalized distributions of protein concentrations (A,D), metabolite concentration (B,E)
and growth rate (C,F) at t = 38 h considering particles in different compartments: com-
partment 1 STR (blue), compartment 2 PFR inlet (orange) and compartment 11 PFR
outlet (yellow). The upper row shows the distributions for simulations using a normal
distribution with σM = 0.2 M0 and σP = 0.1 P0 for reshuffling of the properties, the
lower row uses σM = 0.05 M0 and σP = 0.025 P0.
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A.3.4 Simulation of a bioreactor system with a very high flow rate

The simulation of the bioreactor system can also be performed with a very high flow rate
of QR = 120 L/h. The simulated mean quantities such as substrate concentration, biomass
concentration and internal reaction rates of the particles are depicted in Figure A.15. The
simulation of both populations, homogeneous and segregated, are nearly identical.
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Figure A.15: Comparison of the substrate concentration S (A), biomass concentration X (B), growth
rate µ (C), substrate transport rate rT (D), protein synthesis rate rP (E), over ow
metabolism rate rO (F), residual biomass synthesis rate rU (G) and respiration rate rC
(H) in a STR (blue) and in a two-compartment bioreactor with QR = 120 L/h (orange),
where the quantities are mean values over all compartments and particles. The seperation
of the batch and fed-batch phase is indicated by the vertical black line.

With the high flow rate, the distribution of protein and metabolite concentration over all particles
are very narrow and no subpopulations are visible in Figure A.16A and B. The distribution of
the growth rate in Figure A.16C on the other hand still shows a split population into growing
and non-growing particles. Distinguishing after the compartments reveal no differences between
them. Thus, the two subpopulations in non-growing and growing particles can not be accounted
to a specific environment. The environment is not split into two distinct environments and the
substrate concentrations barely change between the compartments explaining the same internal
property distributions. The different growth rates originate from the fact that, nevertheless,
even very small changes in the environment lead to the formation of non-balanced particles and,
therefore, non-growing particles.
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Figure A.16: Comparison of the distributions of protein concentration (left), metabolite concentration
(middle) and growth rate (right) at t = 38 h with a flow rate of QR = 120 L/h normal-
ized to 1 for all particles over the whole bioreactor system (upper row) and for different
compartments (bottom row): Compartment 1 (blue), compartment 2 (orange) and com-
partment 11 (yellow).

A.3.5 Simulation for a bioreactor system with maximal variance for growth

Figure A.17 shows the internal properties for a simulation of the bioreactor system with a flow
rate of QR = 7.5 L/h, which has been shown to lead to a maximal variance of growth rate.
The protein distribution in compartment 1 and compartment 2 do not differ a lot and shifts
slightly in compartment 11 in Figure A.17D. For the metabolite concentration, the range spans
from nearly zero to values up to M = 8 × 10−5 mol/gDW with particles exhibiting values in
the whole range. This leads to a large variety of growth rates in Figure A.17C taking all values
between µmin = −0.3 1/h and µmax = 0.5 1/h. In contrast to the cases in Figure 5.13F, the
distribution is not split into two distinct subpopulations. This suggests that all particles except
of the subpopulation present in compartment 1 are in transition and non-balanced.
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Figure A.17: Comparison of the distributions of protein concentration (left), metabolite concentration
(middle) and growth rate (right) at t = 38 h with a flow rate of QR = 120 L/h normal-
ized to 1 for all particles over the whole bioreactor system (upper row) and for different
compartments (bottom row): Compartment 1 (blue), compartment 2 (orange) and com-
partment 11 (yellow).

A.3.6 Two-compartment bioreactor with feed into the PFR
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Figure A.18: Comparison of the substrate concentration S, biomass concentration X, growth rate µ,
substrate transport rate rT , protein synthesis rate rP and respiration rate rC in a STR
(blue) and in a bioreactor system with feed into the PFR (orange), where the quantities
are mean values over all compartments and particles. The seperation of the batch and
fed-batch phase is indicated by the vertical black line.
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Figure A.18 shows the weighted mean variables such as substrate concentration, biomass and
internal reaction rates for the two feeding regimes in question: feed into the STR (blue) and feed
into the PFR (orange). With addition of the feed into the PFR, substrate is accumulated in the
PFR in Figure A.18A since particles encounter a high substrate environment which is to rich for
them to consume, while they starve in the STR. This leads to a reduced biomass to substrate
yield in Figure A.18B. The substrate concentration in the different compartments is depicted
in Figure A.19, showing a high substrate concentration in compartment 2 and exhibiting the
lowest substrate concentration in compartment 1.
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Figure A.19: Comparison of the substrate concentration in the well-mixed bioreactor (green), weighted
mean (purple) and in different compartments: Compartment 1 (blue) and compartment
2 (orange).

With an increase of flow rate to QR = 20 L/h, the substrate gradient decreases, as seen in Fig-
ure A.20, and the biomass to substrate yield is almost the same as in a well-mixed envrionment.
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Figure A.20: Comparison of the substrate concentration in the well-mixed bioreactor (green), weighted
mean (purple) and in different compartments: Compartment 1 (blue) and compartment
2 (orange).
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