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Abstract

Materials with fibrous microstructures play a significant role in biology and engineering due to
their diverse properties and applications. Therefore, the generation, characterization, and mod-
eling of these materials have received increasing attention in recent decades. Despite numerous
studies analyzing the mechanical behavior of fibrous materials, some fundamental questions
about their properties remain unanswered. For example, it is still unresolved in significant parts
which microstructural descriptors of a fiber network determine the macromechanical properties
of the network or to what extent the mechanical properties depend on individual microstructural
descriptors of the network. To answer these key questions, it is required to develop a numerical
tool which can generate a large variety of fibrous microstructures with predefined descriptors.

In this dissertation, a two-stage numerical approach is proposed to generate representative vol-
ume elements (RVEs) of random fiber networks with the desired predefined descriptors at both
the network and fiber/ligament levels. The generated RVEs are homogeneous, fully connected,
and periodic. That is, in addition to the uniform distribution of fibers throughout the RVE, there
is at least one connection path between each pair of points in the fiber phase through that phase.
The proposed approach is computationally highly efficient and well parallelizable. The numeri-
cal code is developed in Matlab, and the finite element method is applied to study the mechanical
properties of the generated RVEs.

In the first stage of the approach developed for this dissertation, a numerical optimization
algorithm, called the simulated annealing method, is used to generate a network structure. Vari-
ous network level descriptors are studied, and it is found that the mechanical properties of fiber
microstructures in the linear regime are determined almost exclusively by four key descriptors.
These are the number ligaments per volume, the mean junction valency, the mean distance be-
tween the adjacent junctions and the mean direction cosine between ligaments adjacent to the
same node. Considering different values of these four descriptors, more than 2500 RVEs are
generated, and based on the numerical results of mechanical studies, the relationship between
these descriptors and macromechanical properties is investigated.

In the second stage of the approach developed for this dissertation, the desired ligament shape
is assigned to the ligaments within the RVEs generated in the first stage. The ligaments can
have a curvature and variable thickness along their centerline. The curvature and thickness
of the ligaments are described mathematically by Taylor and Fourier series, respectively, so
that the approach can in principle model ligaments of any shape. Considering ligaments of
different curvature and thickness, almost 5000 realizations of ligamentous RVEs are generated.
The mechanical properties of these RVEs are calculated using the finite element method, and the
relationship between the ligament level descriptors and the macroscopic mechanical properties
is studied.

The proposed approach provides, for the first time, a general framework for generating random
networks of ligaments, where the descriptors can be tailor-made predefined at both the network
and ligament level. The approach can be easily modified for any other combination of descriptors
different from the one considered in this work. Therefore, the proposed approach allows further
studies on the mechanical behavior of ligamentous microstructures to determine their structure-
property relationship.
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Zusammenfassung

Materialien mit faserigen Mikrostrukturen spielen aufgrund ihrer vielfältigen Eigenschaften und
Anwendungen eine wichtige Rolle in der Biologie und im Ingenieurwesen. Daher wurden der
Erzeugung, Charakterisierung und Modellierung dieser Materialien in den letzten Jahrzehn-
ten immer mehr Aufmerksamkeit geschenkt. Trotz zahlreicher Studien zur Analyse des me-
chanischen Verhaltens von Fasermaterialien bleiben einige grundlegende Fragen zu ihren Ei-
genschaften unbeantwortet. So ist es beispielsweise immer noch in erheblichen Teilen unge-
klärt, welche mikrostrukturellen Deskriptoren eines Fasernetzwerks die makromechanischen
Eigenschaften des Netzwerks bestimmen oder inwieweit die mechanischen Eigenschaften von
einzelnen mikrostrukturellen Deskriptoren des Netzwerks abhängen. Zur Beantwortung dieser
Schlüsselfragen ist es erforderlich, ein numerisches Werkzeug zu entwickeln, das eine große
Vielfalt von faserigen Mikrostrukturen mit vordefinierten Deskriptoren erzeugen kann.

In dieser Dissertation wird ein zweistufiger numerischer Ansatz vorgeschlagen, mit dem re-
präsentative Volumenelemente (RVEs) von Zufallsfasernetzwerken mit den gewünschten vorde-
finierten Deskriptoren sowohl auf Netzwerk- als auch auf Faser- bzw. Ligamentebene erzeugt
werden können. Die generierten RVEs sind homogen, vollständig verbunden und periodisch.
Das heißt, zusätzlich zur gleichmäßigen Verteilung der Fasern im gesamten RVE gibt es zwi-
schen jedem Punktpaar in der Faserphase mindestens einen Verbindungsweg durch diese Phase.
Der vorgeschlagene Ansatz ist rechnerisch sehr effizient und gut parallelisierbar. Der numerische
Code wurde in Matlab entwickelt, und die Finite-Elemente-Methode wurde angewandt, um die
mechanischen Eigenschaften der erzeugten RVEs zu untersuchen.

In der ersten Stufe des für diese Dissertation entwickelten Verfahrens wird ein numerischer
Optimierungsalgorithmus, die so genannte Simulated-Annealing-Methode, verwendet, um eine
Netzwerkstruktur zu generieren. Es wurden verschiedene Deskriptoren auf Netzwerkebene un-
tersucht, und es zeigte sich, dass die mechanischen Eigenschaften von Fasermikrostrukturen im
linearen Regime fast ausschließlich durch vier Schlüsseldeskriptoren bestimmt werden. Dabei
handelt es sich um die Anzahl der Fasern pro Volumen, die mittlere Knotenpunktsvalenz, den
mittleren Abstand zwischen den benachbarten Knotenpunkten und den mittleren Richtungsko-
sinus zwischen den an denselben Knotenpunkt angrenzenden Fasern. Unter Berücksichtigung
verschiedener Werte dieser vier Deskriptoren wurden mehr als 2500 RVEs erzeugt, und auf der
Grundlage der numerischen Ergebnisse mechanischer Studien wurde der Zusammenhang zwi-
schen diesen Deskriptoren und den makromechanischen Eigenschaften untersucht.

In der zweiten Stufe des für diese Dissertation entwickelten Verfahrens wird den Ligamenten
innerhalb der in der ersten Stufe erzeugten RVEs die gewünschte Ligamentform zugewiesen.
Die Ligamente können eine Krümmung aufweisen sowie eine variable Dicke entlang ihrer Mit-
tellinie. Die Krümmung und die Dicke der Ligamente werden mathematisch durch Taylor- bzw.
Fourier-Reihen beschrieben, so dass der Ansatz grundsätzlich Ligamente beliebiger Form mo-
dellieren kann. Unter Berücksichtigung von Ligamenten verschiedener Krümmung und Dicke
werden fast 5000 Realisierungen von Ligament-RVEs erzeugt. Die mechanischen Eigenschaften
dieser RVEs wurden mit der Finite-Elemente-Methode berechnet und die Beziehung zwischen
den Deskriptoren auf Ligamentebene und den makroskopischen mechanischen Eigenschaften
untersucht.

Der vorgeschlagene Ansatz bietet zum ersten Mal einen allgemeinen Ansatz zur Erzeugung
von zufälligen Netzwerken von Ligamenten, bei dem die Deskriptoren sowohl auf Netzwerk-
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als auch auf Ligamentebene maßgeschneidert vordefiniert werden können. Der Ansatz kann
leicht für jede andere Kombination von Deskriptoren modifiziert werden, die sich von der in
dieser Arbeit betrachteten unterscheidet. Daher ermöglicht der vorgeschlagene Ansatz weitere
Studien über das mechanische Verhalten von Ligament-Mikrostrukturen, um deren Struktur-
Eigenschafts-Beziehung zu ermitteln.
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1 Introduction

1.1 Motivation

Ligament microstructures can be widely found in both industrial and biological materials. In
addition to the materials in which the fibrous microstructure is obvious, considering a series of
simplifications, the microscopic structure of various materials can be modeled as a network of
fibers or ligaments. Therefore, generating, characterization, and analysis of mechanical behavior
of these networks attained an increasing attention in the last decades. Despite the quantity and di-
versity of research in this field, there are still many unanswered questions regarding the modeling
of ligamentous microstructures. The first step to find the answer to these questions is developing
a numerical tool which can generate various networks of ligaments with specific characteristics.
In this dissertation, a general and computationally efficient approach is suggested, providing a
framework for further studies. In the rest of this section, a number of previous studies most
related to our work are briefly discussed and it is explained how the present work can improve
the available models.

A prevalent example of fibrous network in biology is the network formed by collagen which
shapes and reinforces tissues such as skin, tendons, and bone [1]. Due to the key role of these
structures in bioengineering, numerous studies are performed to generate such networks [2, 3, 4]
and in many of them, finite element method (FEM) has been used to simulate the mechanical
behavior of the generated networks [5, 6]. Based on the numerical results, biomaterials with
fibrous structures indicate strain-stiffening characteristic [7, 8, 9, 10] and it found that there is a
relation between the network architecture and their mechanical properties [11, 4, 1, 12].

Nanoporous materials (NPMs) are another example of heterogeneous materials with ligamen-
tous microstructure which have abundant applications in engineering. They are the product of
a chemical or electrochemical dealloying process [13] and have a bicontinuous microstructure
which can be modeled as a ligamentous network. Due to the fascinating and various proper-
ties resulted from their complex microstructure, NPMs are of great interest [14, 15, 16, 17, 18].
Various research has been accomplished to develop three-dimensional models of nanoporous
materials [19, 20, 21, 22]. They have analyzed the mechanical behavior of NPMs [23, 24, 25]
and investigated the relations between the microstructure and the macroscopic behavior of these
materials [26, 27, 28]. However, although the ligamentous microstructure of NPMs is com-
pletely random, in most of the mentioned studies, nanoporous materials are modeled as a fully
structured network [29] or as a structured lattices with some random changes [30, 31].

The complexity of ligamentous microstructures makes it too complicated to develop an an-
alytical model of ligament networks. Therefore, numerical models are required to study the
macroscopic mechanical behavior of ligamentous networks. To develop such a numerical model,
we need to specify a so-called representative volume element (RVE). The representative volume
elements should be as small as possible to reduce the computational costs. However, they must
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1 Introduction

be large enough to represent the geometrical and physical properties of the material. The rep-
resentative volume element of a random ligamentous material plays a similar role as of the unit
cell in a structured network. Accordingly, specifying an appropriate RVE would be a principal
step in numerical modeling of ligamentous materials; hence many studies in this field focused on
generating such a volume element [32, 33, 34, 35, 36, 37, 38]. Since it is not possible to define
an RVE which represents the entire properties of the material, depending on the field of interest,
one or a group of material characteristics may be considered in the numerical model.

In the literature, different descriptors of network level such as point-correlation function
[39, 40, 41], cluster-correlation function [42], chord distribution function [43], lineal-path func-
tion [44], radial distribution function [45], and pore-size distribution function [46] were consid-
ered as network specifications for reconstruction of a heterogeneous microstructure. Moreover,
the numerical simulations revealed that the macroscopic mechanical properties of ligamentous
networks also depend on the geometrical descriptors of ligaments [47, 48, 27, 49, 50].

When the desired morphological descriptors are determined, different optimization methods
such as simulated annealing (SA) [51], genetic algorithms (GA) [52], or fast Fourier transform
(FFT) [53] can be used as a numerical tool to reconstruct a heterogeneous RVE [54, 55]. In fact,
the reconstruction of a heterogeneous material is an optimization problem which looks for a final
solution that has the minimum difference with the desired RVE based on the selected descriptors.
Among the numerical methods mentioned before, the simulated annealing approach is the most
popular method in reconstruction of different heterogeneous materials [45, 56, 57, 2, 58]. That
is due to the ability of SA in finding the global optimum among various local optima and the
efficiency of this approach from computational point of view. Therefore, SA is employed in this
thesis to reconstruct the representative volume elements of ligamentous microstructures.

The mechanical behavior of generated ligamentous RVEs is investigated by either finite ele-
ment method (FEM) [59, 60, 61, 62] or molecular dynamic (MD) [63, 64]. That makes it possible
to study the relation between macroscopic mechanical properties and the microscopic descrip-
tors in ligamentous materials [30, 65]. However, to perform a comprehensive study about the
relation of macroscopic properties and network descriptors, it is required to have a tool for gen-
erating networks of ligaments with desired predefined microstructural descriptors. That means,
this tool must be able to control every single descriptor considered in the generating procedure.
Therefore, by controlling the variation of each microstructural descriptor when the others are
kept constant, it would be possible to study the relation between that specific variable descriptor
and the mechanical properties of the network. To the best of the author’s knowledge, such a
network generating tool is not available in the literature.

To summarize the brief review presented above, the available numerical models of ligamen-
tous materials cannot answer the following fundamental questions regarding their macromechan-
ical behavior:

• Which descriptors of network level and to what extent can determine the mechanical prop-
erties at the macroscale?

• What is the relationship between descriptors of ligamentous microstructure (both in net-
work and ligament level) and the macroscopic material properties?

To answer these questions, in this dissertation, a computationally efficient network generating
approach is proposed. The suggested approach generates homogeneous and isotropic RVEs in
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1.2 Overview

which the ligament phase is continuous not only within a single RVE but also in the case of
larger material volumes resulted from repetition of RVEs along with each other. This approach
provides a framework in which the different descriptors can be added/removed to/from the re-
construction procedure. Therefore, due to the ability of the proposed approach in generating a
large number of ligamentous microstructures with predefined desired descriptors, it would be
possible to perform a comprehensive study about the dependency of macroscopic properties on
microstructural descriptors.

The proposed approach generates ligamentous RVEs in two stages. At the first stage, con-
sidering the network level descriptors, the overall network structure is generated. At the sec-
ond stage, the shape of components is assigned to the network generated at the first stage. A
schematic workflow of this approach is indicated in Figure 1.1.

1.2 Overview

The remainder of this dissertation is organized as follows: in chapter 2, first, the definition
of morphological descriptors considered in the proposed network generating approach is pro-
vided. These descriptors are classified into two categories of network level and component level
descriptors. Afterwards, the simulated annealing method is briefly explained. Finally, the sug-
gested two-stage approach is described in detail. In chapter 3, a summary and the authors’
contributions of Paper A [66] and Paper B [67] are given. The full texts are reprinted in A.1
and A.2, respectively. Chapter 4 presents a brief conclusion of this thesis and an outline of the
potential future research.
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Figure 1.1: Workflow of the proposed two-stage ligamentous network generating approach. At
the first stage, it generates the network structure based on predefined network level
descriptors. At the second stage, it assigns the components’ geometry to the product
of stage one.
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2 Methodology

An approach which can generate representative volume elements of ligamentous materials with
complex microstructures is still in demand. In this thesis, a two-stage approach is proposed to
generate ligamentous RVEs not only with predefined network morphology but also with desired
ligament shapes. This approach produces the overall network structure at the first stage and
assigns the shape to the individual ligaments at the second stage. In addition, the generated
RVEs by this approach are homogeneous, isotropic, fully periodic and connected. This chapter
is structured as follows: in section 2.1, the microstructural descriptors considered in the network
generating approach are described. The simulated annealing method, the numerical optimization
algorithm applied in the proposed approach, is introduced in section 2.2. Finally, in section 2.3,
the two-stage network generating approach is explained step-by-step.

2.1 Descriptors

The characteristics of a microstructure can be determined by a number of so-called descriptors.
The representative volume element of a ligamentous microstructure is composed by a number
of ligaments or fibers connected to each other at specific points called junctions or nodes (see
Figure 2.1). Therefore, each descriptor of a ligamentous microstructure measures a specific
characteristic of its components (i.e., its junctions or its ligaments). Depending on the field of
study, a set of descriptors may be used to characterize the material properties. The purpose
of this dissertation is to generate RVEs representing the mechanical properties of ligamentous
material. Therefore, among numerous assumable descriptors of such materials, the focus is on
the microstructural descriptors having the strongest relationship with the mechanical properties.
This section presents only the mathematical definitions of investigated descriptors. The proposed
approach generates RVEs at two distinct stages, first generates the overall network and then
forms the components geometry. Similar classification is applied to the descriptors, and they are
categorized as network level and component level descriptors, respectively defined in 2.1.1 and
2.1.2.

2.1.1 Descriptors of network level

The first stage of the proposed approach generates the overall structure of the network regardless
of the components’ geometry. The descriptors considered for generating the overall structure of
the network are classified as network level descriptors. These descriptors specify a character-
istic of the network independent of its components’ shape. In other words, they determine the
arrangement of components within the RVE. In addition to the descriptors defined in the follow-
ing, many other descriptors of network level can be defined, some of which are introduced in
Paper A. The numerical studies performed in Paper A [66] indicated that the linear mechanical
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2 Methodology
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Figure 2.1: A simple 2D schematic of a ligamentous RVE with the size of lRV E composed of (a)
nj junctions drawn as solid circles and (b) nl ligaments drawn as straight connecting
lines.

properties of fiber networks are mainly determined by only four descriptors of network level. In
the following, the definitions of these four descriptors are presented. Since the ligaments in the
generated RVEs must form a fully connected network, the connectedness is also considered as a
network level descriptor and explained here.

• Junction valency distribution V

In a ligamentous network, a pair of junctions which are directly connected to each other by
a ligament are called adjacent junctions. The valency of k-th junction vk is the number of
its adjacent junctions or equivalently, the number of ligaments connected to this junction.
Accordingly, the valencies are positive integers and the valency equals to one represents
a dead-end ligament which depending on the respective real example may be practical
assumption or not. Here, for the sake of generality the junction with valency of one is also
allowed. The junction valency distribution V is the probability distribution of the junction
valencies in the RVE.

• Adjacent junctions’ distance distribution L

The probability distribution of the euclidean distance between all pairs of adjacent junc-
tions within the RVE is considered as a descriptor of the network level. For example, k-th
junction in Figure 2.2-(a) is adjacent with q-, r- and s-th junctions through m-, p- and n-th
ligaments, respectively and the corresponding distances are shown as lm, lp and ln. In the
networks with straight ligaments, the adjacent junctions’ distance is equal to the length of
the respective ligament.
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2.1 Descriptors

• Direction cosine distribution C

Connecting a junction to its adjacent junctions by imaginary lines forms angles between
each pair of lines as indicated in Figure 2.2(b). In this Figure, the dashed lines represent
the imaginary connecting lines and their corresponding angles are illustrated. The lines
connecting the k-th junction with the valency of vk to its adjacent junctions construct vk⇥
(vk�1)/2 angles. Computing the cosine of all the angles and repeating the computation for
all the junctions within the RVE gives a set of cosines. The probability distribution of this
set is called direction cosine distribution and considered as a descriptor of network level.
Direction cosine distribution together with the adjacent junctions’ distance distribution
determine the relative position of junctions throughout the RVE.

(a) (b)
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Figure 2.2: Visualization of definition of (a) adjacent junctions’ distance and (b) direction cosine
for a sample junction jk in a 2D-view.

• Compactness of the network

The number of network components per unit volume of the RVE indicates the compactness
of the network. A ligamentous microstructure is composed of ligaments and junctions.
Therefore, the compactness of a ligamentous network is determined by the number of
ligaments per unit volume of RVE Nl, and the number of junctions per unit volume of
RVE Nj . However, for the RVEs with specified valency distribution, the following relation
exist between the number of ligaments nl, and the number of junctions nj

nl =
1

2

njX

k=1

vk, (2.1)
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2 Methodology

where vk is the valency of k-th junction. Therefore, determining either Nl or Nj , deter-
mines the compactness of the network.

• Connectedness

This is a boolean descriptor which checks whether the ligament phase in a ligamentous mi-
crostructure is fully connected. Connectedness in a ligamentous network means that there
is at least one connecting path through the ligament phase between each pair of points of
this phase. It is the connectedness inside the RVE which is called internal connectedness.
In addition, since the proposed approach is designed to generate periodic RVEs, the net-
work must be also externally connected. That means, the ligament phase must also be
connected within a larger volume of material produced by the repetition of RVE in direc-
tions aligned with its edges. Therefore, a fully connected network is both internally and
externally connected.

2.1.2 Descriptors of component level

The component level descriptors are the descriptors which describe the geometry of network
components i.e., the ligaments and the junctions. In the following, the mathematical defini-
tions of the microstructural descriptors used to shape the components of the generated RVE are
presented.

• Junction’s radius distribution rj

The junctions within the network are modeled as spheres where the radius of k-th junction
is shown by rkj . The probability distribution of junctions’ radii is assumed as a component
level descriptor.

• Ligament’s cross-section radius rl

The cross-section of ligaments in the generated RVEs is assumed to be circular with vari-
able radius along the ligament’s centerline. For the k-th ligament, a local coordinate sys-
tem, xkykzk is defined in which the xk-axis passes through the start and end junctions of
the ligament. The radius of this ligament at an arbitrary point xk is rkl (xk) which can be
expressed as a sum of polynomials

rkl
�
xk
�
=

imaxX

i=0

dki
�
xk
�i
, 0  xk  lk, (2.2)

where lk is the euclidean distance between the start and end junctions of k-th ligament. If
the function rkl (x

k) is determined, the coefficients dki can be calculated by the Taylor series

dki =
rkl

(i)
(0)

i!
, (2.3)

where rkl
(i)

(0) is the i-th derivative of rkl (xk) at xk = 0. Otherwise, the desired function
of ligament’s cross-section radius can be produced by setting the coefficients dki (see Paper
B).
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2.2 Simulated annealing method

• Ligament’s curvature 

For simplicity, it is assumed that the centerline of the k-th curved ligament lies entirely
in the xkyk-plane. As explained above, the local xk-axis connects the junctions confining
the k-th ligament. The centerline of this ligament can be expressed by a Fourier series as
follows

yk
�
xk
�
=

ak0
2

+
fmaxX

n=1


akn cos

✓
⇡nxk

lk

◆
+ bkn sin

✓
⇡nxk

lk

◆�
, (2.4)

where

akn =
2

lk

Z lk

0

yk
�
xk
�
cos

✓
⇡nxk

lk

◆
dxk, (2.5a)

bkn =
2

lk

Z lk

0

yk
�
xk
�
sin

✓
⇡nxk

lk

◆
dxk. (2.5b)

The curvature of k-th ligament k
�
xk
�

can be calculated by the following relation

k
�
xk
�
=

����
d2yk

(dxk)
2

����

1 +

⇣
dyk

dxk

⌘2
� 3

2

. (2.6)

To model the networks with known ligaments’ curvature, the coefficients akn and bkn are
determined by Eqs. (2.5a) and (2.5b). Otherwise, the desired curvature can be produced
by setting these coefficients.

The three component level descriptors explained in this section are illustrated for a sample
ligament in Figure 2.3.

2.2 Simulated annealing method

The network generating approach proposed in this thesis employs a numerical optimization
method named Simulated annealing (SA). The general concepts of SA are presented here. To
find the desired microstructure, SA starts from an initial random structure and gradually opti-
mizes it by applying small random changes to it. However, in the intermediate steps, SA may
replace the current structure by a worse structure according to the descriptors considered for the
target microstructure. In other words, such steps are not toward the optimum structure but rather
away from it. However, these steps guarantee finding the global optimum instead of getting
trapped in the local optima. The probability of replacing a structure with a worse structure de-
creases as the iteration goes forth. In fact, this method’s name refers to the annealing technique
in metallurgy, which includes an initial heating followed by a gradual and controlled cooling
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yk

xk

rlk

rjs rjq

yk(xk)

Figure 2.3: A 2D-view of k-th ligament connecting the s-th junction to the q-th junction.

procedure to change the material microstructures to improve its properties. Similarly, in the sim-
ulated annealing method, the probability of selecting a worse structure is deliberately set to be
high in the beginning and decreases gradually in each iteration.

Based on the given overview, to apply the simulated annealing optimization method, the fol-
lowing items must be clearly defined:

• Initial solution

To start the optimization procedure, it is necessary to have an initial random solution to
the problem. In the network generating problem, the initial solution can be any arbitrary
microstructure which fulfills the general constraints of the problem.

• Perturbation mechanism

In each iteration, a new solution to the optimization problem is suggested which must
be in the current solution’s neighborhood. That means, the new solution is obtained by
applying slight changes to the current solution. The perturbation mechanism determines
these changes. For every optimization problem the appropriate perturbation mechanism
must be designed. This mechanism must apply random changes which do not violate the
overall constraints of the problem. Notice that the suggested solution at each iteration may
be accepted or rejected.

• Energy function

During the optimization procedure, the SA compares the considered descriptors of sug-
gested solutions with those of the optimum solution. The mathematical parameter which

10



2.3 RVE generating approach

measures the difference between the descriptors of suggested and the optimum solution is
called energy function (cost function or objective function). Therefore, the energy function
of the optimum solution is zero.

• Cooling schedule

As discussed previously, in each step of the SA, a new solution is suggested. The method
accepts suggestions which reduce the energy function. However, it is probable that the SA
accepts a new suggested solution which increases the energy function. This probability
is controlled by a temperature-like variable and the cooling schedule determines how this
variable decreases in each iteration.

• Cut-off criterion

Depending on the desired accuracy or run-time, a cut-off criterion can be defined which
determines when the SA must be terminated. Although the overall precision of solutions
increases with increasing the number of iterations, it can be too time-consuming or com-
putationally expensive. Therefore, the cut-off criterion determines the maximum allowed
number of iterations or the minimum acceptable accuracy.

Here, it should be emphasized that the above-mentioned items should be defined for any
individual optimization problem depending on the assumptions and constraints of the problem.
They may vary from case to case and there is not any general mathematical definition of them.
The overall schematic of SA is plotted as a flowchart in Figure 2.4.

2.3 RVE generating approach

In this section, the two stages of the proposed RVE generating approach are explained in detail.
In subsection 2.3.1, it is explained how the simulated annealing method is used at the first stage
of the approach to generate the overall structure of the network. The second stage of the approach
is described in 2.3.2. At the second stage, the geometry of components is assigned to the network
produced at the first stage.

2.3.1 Stage 1, generating the overall network structure

The first stage of the proposed RVE generating approach produces a network of fibers consider-
ing the network level descriptors without taking into account the geometry of components. As
mentioned in 2.1.1, the network level descriptors considered in this work are the compactness
of the network, junction valency distribution, adjacent junctions’ distance distribution, and di-
rection cosine distribution. In addition, the generated RVEs must be fully connected (see 2.1.1).
At this stage, first, a fully connected random network of ligaments is generated. The number
of ligaments (i.e., the compactness of the network) and the junction valency distribution of the
generated RVE exactly match the predefined target values. This random RVE is considered as
the initial solution for the simulated annealing method. Therefore, the perturbation mechanism
of the SA is designed such that it does not change the number of ligaments, the valency of the
junctions, or the connectedness of the RVE. That means, the target values of the compactness
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Generating initial solution and setting that 
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Figure 2.4: Flowchart of the simulated annealing method.
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2.3 RVE generating approach

of the network, the junction valency distribution, and the connectedness are fulfilled in the ini-
tial solution and kept unchanged until the end of the optimization procedure. Accordingly, SA
optimizes the two other descriptors, i.e., the adjacent junctions’ distance distribution and the
direction cosine distribution. The only constraint of this optimization problem is the maximum
allowed distance between the adjacent junctions lmax. To reduce the finite size effect, a maximum
distance equals to one-third of the RVE edge length is assumed between the adjacent junctions
(lmax  lRV E). In the following, first, the procedure of generating random initial network is
explained. Afterwards, the other items of SA (see 2.2) are mathematically defined.

Initial solution

To generate a fully connected random network of ligaments with predefined compactness and
junction valency distribution, different algorithms can be designed. The most computationally
expensive part of such algorithms is the part checking the connectedness of the network. More-
over, considering the constraint lmax  lRV E/3, looking for eligible pairs of junctions can be
the most time-consuming part. It may be impossible to eliminate these calculations, however
it is desired to reduce them as much as possible. Considering the mentioned costs, a fast and
computationally efficient algorithm is proposed. The algorithm generates the network in three
steps as follows:

1. Generating desired number of junctions

First, a cubic RVE with the edge length of lRV E is generated. The origin of the global
coordinate system XY Z is in one of the corners of the RVE and the coordinate axes are
parallel to the edges of this RVE. Having the target junction valency distribution V , and
the target ligament density Nl, the number of junctions per unit volume Nj is determined
by Eq. (2.1). Consequently, the number of junctions in this RVE is nj = Nj ⇥ (lRV E)3.
To reduce the computational costs of checking the maximum distance constraint, the RVE
is divided into a set of 63 = 216 equal-sized cubic subdomains. By this partitioning, the
distance between any pair of junctions located in a similar subdomain is less than lRV E/3.
Now, the junctions are generated at random positions throughout the subdomains in such
a way that all the subdomains contain an equal number of junctions. Note that it is not
always possible to generate exactly an equal number of junctions in all subdomains. In
these cases, some subdomains contain only one more junction than the other subdomains.
A 2D schematic of this step is illustrated in Figure 2.5(a).

2. Connecting the junctions with the minimum number of ligaments

The purpose of this step is to connect all the junctions generated in the previous step by the
minimum number of ligaments. That means, at the end of this step the network is inter-
nally connected. Despite each connection is added between a random pair of junctions, for
the sake of uniformity, the minimum number of connections required for an internally con-
nected network are added here. For an RVE containing nj junctions, (nj�1) ligaments are
needed to construct an internally connected network. To generate the connections (each
connection corresponds to a ligament), first, a random pair of junctions both within the
same subdomain is selected and a ligament is added between them. The procedure is re-
peated for the subdomain until it becomes internally connected. For a sample subdomain
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(a) (b) (c)

Figure 2.5: A 2D illustration of the algorithm for generating the initial network, (a) step 1, imag-
inary subdomains, and the generated junctions, (b) step 2, internally connecting the
subdomains, and (c) step 2, connecting the subdomains to make the whole RVE in-
ternally connected. In each section, the newly added components are drawn in red.

containing 5 junctions, at least 4 ligaments are required to make it internally connected.
In an analogous manner, connections are added to the other subdomains until all of them
become internally connected (see Figure 2.5(b)). So far, no extra calculation for checking
the maximum distance constraint is required. From now on, the connections are added in
such a way that they connect a random junction in a subdomain to another random junction
in a neighboring subdomain (the ligaments plotted in red in Figure 2.5(c)). Each newly
added ligament must decrease the number of subdomains which do not have any connec-
tion with the other subdomains. The ligaments are added between the subdomains until
all the subdomains have a connection to one of their neighboring subdomains. Now, the
RVE is internally connected with the minimum number of ligaments. When a connection
between the subdomains is added, the maximum distance constraint of lRV E/3 must be
checked. Also, when a pair of junctions is nominated for a new connection, it must be
checked that the connection does not violate the target junction valency distribution. In
case of violating the maximum distance constraint or the target valency distribution, the
suggested connection is rejected and replaced by another suggestion.

3. Adding ligaments to fulfill the target junction valency distribution

In the last step, (nl � nj + 1) remaining ligaments are added one-by-one to the RVE
generated at the previous steps. To this end, a pair of junctions is randomly selected.
If the euclidean distance between the selected junctions is less than lRV E/3 and adding
a connection between them does not violate the predefined target valency distribution,
the connection is added to the network. Otherwise, another pair of junctions is tried. The
junctions can freely be chosen from all the junctions within the RVE without any limitation
regarding their positions. In addition, to achieve the externally connectedness, it is also
allowed to select a junction from the identical ghost RVEs placed around the RVE (the
RVEs demonstrated in gray in Figure 2.6). Each 3D RVE has 26 neighboring ghost RVEs.
To be externally connected, the RVE must be connected to its neighboring RVEs in each
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2.3 RVE generating approach

coordinate direction by at least one ligament. Externally connectedness must be checked
at the end of the step. If the generated RVE is not externally connected, the whole step
must be repeated.

Figure 2.6: A sample 2D ligamentous network (the colorful RVE). The ligaments added to the
RVE in steps 2 and 3, are plotted in red and blue, respectively. The neighboring ghost
RVEs are drawn in gray.

The explained algorithm generates ligamentous RVEs with desired predefined compactness of
the network and junction valency distribution. In addition, the generated RVEs are homogeneous
and fully connected.
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Perturbation mechanism

The perturbation mechanism determines how the changes are applied to the generated RVE.
In this study, the perturbations must not change the compactness of the network, nor the junction
valency distribution, nor the connectedness of the network. In addition, they must be random
and compatible with the maximum distance constraint. Considering the mentioned constraints,
two different perturbation mechanisms are suggested as follows:

Mechanism type 1, moving a random junction: in this mechanism, a junction within the
RVE is randomly selected and moved along a random displacement vector (Figure 2.7(a)). That
means, both the magnitude and the direction of the displacement vector are random. To ap-
ply a small perturbation, the maximum magnitude of the displacement vector is assumed to be
LRV E/20. This perturbation mechanism may violate the maximum distance constraint. There-
fore, after the perturbation, the euclidean distances between the translated junction and all its
adjacent junctions must be checked. In case of violating the constraint, the suggested solution is
rejected and replaced by another suggestion.

(b) (c)(a)

Figure 2.7: Perturbation mechanism (a) type 1, and (b, c) type 2. The perturbed components
are plotted in red. Dashed and solid lines indicate the components before and after
perturbation, respectively.

Mechanism type 2, shifting the connections between two pairs of adjacent junctions: in
this mechanism, a pair of random ligaments is deleted and then a new pair is added. The added
ligaments must connect the respective junctions of the deleted ligaments. Therefore, for each
pair of deleted ligaments, there are two alternative pairs for adding. The two alternatives for a
pair of deleted ligaments in a sample 2D network are depicted in Figure 2.7(b) and (c). This
perturbation mechanism does not change the network’s compactness, nor the junction valency
distribution. However, the distances between the new adjacent junctions and the connectedness
of the perturbed network must be checked. If the maximum distance constraint is violated or the
new configuration is not fully connected, the suggested solution is rejected, and another solution
must be suggested.
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2.3 RVE generating approach

Energy function

To compare the suggested solution with the optimum solution or with the current solution, a
measure is required. That is the energy function E which can generally be expressed as

E =
ndX

m=1

wm · Em, (2.7)

where nd is the number of descriptors optimizing by SA. Em is the energy function of the m-th
descriptors and wm is its corresponding weighting coefficient. In the current study, nd = 2 since
SA optimizes the two descriptors of adjacent junctions’ distance distribution L and direction
cosine distribution C. Therefore, the Eq. (2.7) can be written as

E = wL · EL + wC · EC . (2.8)

EL and EC are measured via the Cramer-von Mises test [68] as

EL =
1

12nL
+

nLX

i=1


2i� 1

2nL
� cL(xLi)

�2
, (2.9)

and

EC =
1

12nC
+

nCX

i=1


2i� 1

2nC
� cC(xCi)

�2
. (2.10)

In Eq. (2.9), cL is the cumulative distribution function of adjacent junctions’ distance and xLi

are its realizations. nL is the number of realizations of L which equals the number of ligaments,
nL = nl. Similarly, in Eq. (2.10), cC is the cumulative distribution function of direction cosine
and xCi are its realizations. nC is the number of realizations of C. That is

nC =
1

2

njX

i=1

vi ⇥ (vi � 1). (2.11)

Cooling schedule

If the perturbation results in a decrease in the energy function, the current network is replaced
by the perturbed network. Because a network with lower energy function is more similar to
the desired network. However, SA may replace the current network with a perturbed network
with higher energy function. This probability is controlled by a cooling schedule and decreases
during the optimization procedure. Among the various schedules proposed in the literature, the
following function is employed in this dissertation
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Ti = T0 · d(i�1)
r , (2.12)

where T0 and Ti are the initial temperature and the temperature at the i-th iteration, respectively
and, dr is the decay rate. Here, the initial temperature T0 is considered to be 1 and the decay
rate dr is set to 0.9. Note that the proper value of these parameters can be different for various
problems. There are not any predetermined values for them, however suggestions can be found
in the literature [69].

Considering the defined cooling schedule, the chance of accepting a perturbed network at i-th
iteration piaccept is expressed as

piaccept(�E) =

(
1 �E  0

exp(��E/Ti), �E > 0
, (2.13)

where �E = Ei � Ei�1.

Cut-off criterion

In this study, the maximum number of iterations is 1, 000, 000 (imax = 1, 000, 000). The
minimum acceptable precision is attained if the energy function of each descriptor be less than
0.01 (i.e., EL < 0.01 and EC < 0.01). Accordingly, each of these criteria fulfilled sooner
terminates the SA.

Now, the simulated annealing method is completely determined and can be used to generate
tailor-made ligamentous networks. An overall network structure of a sample RVE generated by
the first step of the proposed approach is plotted in Figure 2.8(a).

In this dissertation, considering different target descriptors of network level, more than 2500
sample RVEs are generated, and their mechanical properties are calculated. The corresponding
numerical results are presented in Paper A.

2.3.2 Stage 2, assigning the components’ geometry

At the first stage, employing the simulated annealing method, ligamentous microstructures with
desired predefined descriptors are generated. In that stage, the ligamentous RVEs are generated
without considering the shape of junctions and ligaments. In other words, at the first stage of
the proposed approach, the junctions and the ligaments are modeled as points and line segments,
respectively. Although it is only a simplified model of ligamentous materials with complex mi-
crostructure, it provides a valuable understanding of these materials (see Paper A). At the second
stage of the proposed approach, the component level descriptors are assigned to the ligamentous
microstructure generated at the first stage. The component level descriptors considered in this
thesis are: i) junction’s radius distribution, ii) ligament’s cross-section radius, and iii) ligament’s
curvature (definitions presented in 2.1.2). In the following, it is explained how they are assigned
to the overall network structure.
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2.3 RVE generating approach

Radius of junctions

The junctions are modeled as spheres and a probability distribution function is defined for the
junctions’ radius. The probability distribution function, named rj , determines the likelihood of
the junctions’ radius in the interval of [rmin, rmax]. To assign radius to the junction based on the
predefined distribution, first, a set of nj discrete values in the range of [rmin, rmax] is generated.
The generated set must have the same probability distribution as rj (for more details, refer to
Paper B). Then, each element of the generated set is randomly assigned to a junction. The value
of this element is the radius of the corresponding junction.

Radius of Ligaments

Using Eq. (2.2) and setting the dki , ligaments with desired cross-section radius can be gen-
erated. It is assumed that the ligament’s cross-section radius at its start and end points is equal
to the radius of the respective junctions. For example, consider the k-th ligament, illustrated
in Figure 2.3, which starts at the s-th junction and ends at the q-th junction. The cross-section
radius of the k-th ligament at its start and end points is

rkl (x
k)|xk=0 = rsj , rkl (x

k)|xk=lk = rqj , (2.14)

where rsj and rqj are the radius of the s-th and the q-th junctions, respectively.
In this study, setting imax in Eq. (2.2) to 2, the ligaments’ cross-section radius is modeled by

quadratic polynomials as

rkl (x
k) = dk2(x

k)2 + dk1x
k + dk0. (2.15)

Setting the coefficient dk2 to desired values, the coefficients dk1 and dk0 are determined by the
relations presented in Eq. (2.14). Note that for a convex, concave, and conical ligament shape,
the coefficient dk2 is negative, positive, and zero, respectively.

Curvature of Ligaments

In this thesis, for simplicity, only the ligaments with sinusoidal curvature are studied. That
means, in Eq. (2.4), fmax = 1 and ak0 = ak1 = 0. Accordingly, the equation (2.4) can be rewritten
as

yk(xk) = bk1 sin

✓
⇡xk

lk

◆
. (2.16)

Setting the free parameter bk1 to different values, ligaments with various curvatures can be
modeled. Note that the Eq. (2.16) is defined in the local coordinate system xkykzk corresponding
to the k-th ligament. The xk-axis connects the two junctions confining the k-th ligament and the
curved ligament is positioned entirely in the xkyk-plane. Mapping from the local to the global
coordinate system can be performed by a translation followed by a series of rotations (details are
presented in Paper B).
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It should be mentioned that, at the second stage of the proposed approach, each ligament
is shaped independently; hence in case of RVEs with high number of ligaments or complex
ligaments’ geometry, parallel computing can be performed.

A sample RVE with curved convex ligaments generated by the proposed two-stage approach
is plotted in Figure 2.8.

(a) (b)

Figure 2.8: A sample ligamentous RVE generated by the proposed approach in this dissertation
at the end of its (a) first, and (b) second stages.

Combining different values of descriptors at both network and component levels, 4940 sample
RVEs are generated. Their mechanical properties are calculated by the finite element method and
the numerical results are investigated in Paper B.

20



3 Summary of publications

This paper-based dissertation is written based on the publications Paper A [66] and Paper B [67]:

• I. Davoodi Kermani, M. Schmitter, J. F. Eichinger, R. C. Aydin, C. J. Cyron. Computa-
tional study of the geometric properties governing the linear mechanical behavior of fiber
networks. Computational Materials Science, 199:110711, 2021.

• I. Davoodi Kermani, L. Dyckhoff, R. C. Aydin, N. Huber, C. J. Cyron. Simulated anneal-
ing framework for generating representative volume elements of materials with complex
ligamentous microstructures. Computational Materials Science, 228:112302,2023.

A summary and the authors’ contributions of these publications are presented in this chapter
and their full texts are reprinted in Appendix A.
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3 Summary of publications

3.1 Paper A

Computational study of the geometric properties governing

the linear mechanical behavior of fiber networks

Iman Davoodi Kermani, Maximilian Schmitter, Jonas F. Eichinger, Roland C. Aydin,
Christian J. Cyron

3.1.1 Summary

Fiber microstructures, due to their widespread applications in biological and engineering mate-
rials, gained an increasing attention in recent years. Therefore, many studies focused on gener-
ating, characterization, and analysis of fibrous materials. However, the mechanical behavior of
these materials is still not completely determined. To enable this study, it is required to develop
a model of fibrous networks. The complexity of random fiber microstructures made it almost
impossible to develop a theoretical model of these structures. Therefore, the initial step to study
the mechanical properties of a fiber network would be to develop a computationally efficient
model of the network.

In this study, based on the simulated annealing optimization method, we proposed a network
generating algorithm which can generate tailor-made representative volume elements (RVEs) of
fiber microstructures. The generated fiber microstructures form a continuous fiber phase both
within a single RVE and within the larger material volumes resulted by repetition of the RVE in
one or more directions aligned with its edges. Furthermore, the generated RVEs by the suggested
approach are homogeneous and isometric.

Using the suggested method and considering the number of fibers per volume, the nodes’
valency distribution, the fibers’ length distribution, and the direction cosine distribution as tar-
get descriptors, more than 2500 sample RVEs are generated. The macromechanical properties
of all these RVEs are calculated by finite element method. This provided sufficient materials
to perform a comprehensive study regarding the relation between the macroscopic mechanical
properties and microstructural descriptors of the fiber networks. This investigation indicated
that the macroscopic Young’s modulus and Poisson’s ratio of the network will be determined by
determining the four mentioned descriptors.

Based on the numerical results of the finite element analysis, the Young’s modulus increases
with increasing the mean valency. However, the macroscopic stiffness of the network decreases
with increasing the averaged fibers’ length or increasing the mean value of the direction cosine
distribution. The linear dependency of Young’s modulus on the number of fibers per volume is
explained by a simple theoretical analysis. The results indicated that the Poisson’s ratio does not
change significantly with variation of the studied descriptors.

3.1.2 Author contributions

Iman Davoodi Kermani designed the study and developed the Matlab code for generating the
RVE of fiber network. The finite element code was developed by Maximilian Schmitter. Iman
Davoodi Kermani carried out all the computations and plotted the results. The methodology and
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analysis were done based on critical discussions between Iman Davoodi Kermani and Christian
J. Cyron. The manuscript was initially prepared by Iman Davoodi Kermani and finalized after
critical feedback and contribution provided by other authors.
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3.2 Paper B

Simulated annealing framework for generating representative

volume elements of materials with complex ligamentous

microstructures

Iman Davoodi Kermani, Lena Dyckhoff, Roland C. Aydin, Norbert Huber,
Christian J. Cyron

3.2.1 Summary

Various materials, from nanoporous metals to biological tissues, are formed by ligamentous
microstructure. In real examples, the ligaments within a ligamentous material have complex
geometries. They are curved and have variable cross-section area. In addition, in many examples
of ligamentous microstructures, the overall network is completely random although they may
have some specific characteristics. Therefore, it is computationally expensive to develop a model
which can produce representative volume elements (RVEs) of ligamentous materials considering
all these complexities.

Despite multitudinous research in modeling of ligamentous microstructures, there is not yet
a general and efficient approach to generate these microstructures with desired descriptors. In
this paper, we proposed an efficient two-stage network generating approach which produces
representative volume elements of ligamentous networks with predefined descriptors of both
network and component levels.

The first stage of this approach generated an overall structure of the network considering the
descriptors: i) number of ligaments per volume, ii) junctions’ valency distribution, iii) adjacent
junctions’ distance distribution, and iv) direction cosine distribution. At this stage, similar to the
approach presented in Paper A [66], the simulated annealing optimization method was applied
to generate the overall network microstructure.

At the second stage, we assigned the descriptors of component level to the overall network
structure produced at the first stage. The component level descriptors considered at this stage
were: i) the junction’s radius distribution, ii) ligaments cross-section radius, and iii) ligaments
curvature. We used fundamental mathematical functions to describe the ligaments’ thickness
and curvature. This enabled the approach to produce ligamentous microstructures with a large
variety of ligaments shapes.

To indicate the ability and efficiency of this approach in generating networks of ligaments,
we generated more than 4900 sample RVEs with various microstructural descriptors. The me-
chanical behavior of generated RVEs were studied by the finite element method. The numerical
results provided valuable information regarding the relation between macroscopic mechanical
properties and microstructural descriptors. It was indicated that the famous Gibson-Ashby scal-
ing law [70] which is commonly used to model the mechanical properties of porous materials,
cannot consistently predict the properties. Therefore, a modified version of this scaling law was
suggested.
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3.2.2 Author contributions

Iman Davoodi Kermani designed the framework and developed the numerical code for generat-
ing the ligamentous representative volume elements. Lena Dyckhoff and Norbert Huber devel-
oped the finite element code and performed the mechanical calculations of the RVEs generated
by Iman Davoodi Kermani. Christian J. Cyron contributed to the conceptualization and method-
ology. Iman Davoodi Kermani plotted the figures and discussed them with Christian. J. Cyron
and Norbert Huber. Iman Davoodi Kermani drafted the manuscript and other authors reviewed
it and provided valuable comments.
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4 Conclusion and Outlook

4.1 Conclusion

Various materials from biological tissues to industrial materials have ligamentous microstruc-
tures. Due to the specific characteristics and diverse applications of ligamentous materials, many
research has focused on the analysis of their mechanical behavior. Therefore, numerous studies
have been carried out to develop theoretical or numerical models of ligament networks. However,
it is not yet clearly determined which microstructural descriptors and to what extent determine
the macromechanical properties of ligamentous materials. To find the answer to this question, it
is necessary to be able to generate representative volume elements of these materials which are
sufficiently large to represent the material properties though they are as small as possible for the
sake of computational costs.

In this thesis, a two-stage computationally efficient approach was proposed which for the first
time can generate representative volume element of ligamentous microstructures with predefined
descriptors of both network and ligament level. This approach provides a very general frame-
work which can be applied to different descriptors with different target values. Since the RVEs
are generated randomly, they are homogeneous and isometric. Moreover, the ligaments within an
RVE form a bicontinuous microstructure. In addition, the ligament phase is continuous in larger
material volumes resulted from the repetition of RVE in one of the three directions aligned with
its edges.

In the first stage of this approach, it was assumed that all the ligaments are straight and have a
constant cross-section radius. A numerical optimization method called simulated annealing was
used to generate fiber microstructures with desired predefined descriptors. Considering different
values for the descriptors: i) number of fibers per volume, ii) junctions’ valency distribution,
iii) adjacent junctions’ distance distribution, and iv) direction cosine distribution, more than
2500 sample RVEs of fiber networks were generated. The relation between these descriptors
and macromechanical properties of the generated RVEs was studied by the numerical results
of the finite element analysis. This study indicated that the four mentioned descriptors largely
determine the linear mechanical properties, Young’s modulus and Poisson’s ratio. Interestingly,
it showed that by determining these descriptors, some other morphological or graph-theory-
based [71, 72, 73, 74] descriptors are determined.

The numerical results of this stage, presented in Paper A, revealed that there is a linear relation
between the number of fibers per volume and the macroscopic Young’s modulus explained by
a simple theoretical analysis. Based on the numerical results at this stage, it was found that the
Young’s modulus of fibrous networks depends on the mean value of junctions’ valency, adjacent
junctions’ distance, and direction cosine distributions but not on the corresponding distributions.
In these networks, the stiffness increases in a quadratic manner with increasing the mean valency
where it decreases linearly with increasing mean adjacent junctions’ distance and mean direction
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cosine. The numerical results also indicated that, i) the dependency of Young’s modulus on the
fiber density and junctions’ valency is higher compared to the other two descriptors and, ii) the
dependency of Young’s modulus on the studied descriptors is much stronger than the dependency
of Poisson’s ratio.

In the second stage of this approach, the ligaments’ geometry was added to the networks
generated at the first stage. The junctions are modeled as spheres and the ligaments as curved
cylinders with variable cross-section radius along their centerlines. Therefore, the component
level descriptors considered in this model can be listed as: i) junctions’ radius, ii) ligaments’
cross-section radius and, iii) ligaments’ curvature. Since the geometry of each ligament is de-
fined individually and independent of the other ligaments, the microstructures with complex ge-
ometries can be modeled by performing parallel computations. Considering different values of
network and component level descriptors, nearly 5000 realizations of ligamentous microstruc-
tures were generated, and finite element analysis was used to investigate the scaling relation
between microstructural descriptors and stiffness of the generated RVEs (see Paper B).

The comparison of numerical results with the Gibson-Ashby scaling law [70], a scaling re-
lation which is commonly used to model the mechanical properties of nonporous materials, re-
vealed that this scaling law is not valid for the cases in which the solid fraction changes due to a
change of the network architecture. For instance, in the networks with constant volume fraction,
the Young’s modulus decreases linearly with increasing the number of ligaments. This study
became possible for the first time because the approach proposed in this dissertation can control
the descriptors of generated RVEs; hence it enables generating a large number of microstructures
which are different only in one descriptor. Therefore, this approach enables the study of the re-
lation between macroscopic material properties and every single descriptor. Despite the fact that
the Gibson-Ashby scaling law is not valid for all cases, some numerical results are in agreement
with the available studies. For example, in the networks with fixed topology and for the case in
which all the junctions have the same radius, the macroscopic stiffness increases with increasing
the radius of ligaments with a power law whose component varies between 1 and 2 which is
in agreement with [30]. The macroscopic stiffness showed a similar behavior to the change of
ligaments’ convexity. In contrast, the dependency of macroscopic stiffness on the ligaments’
curvature can be modeled as a power law with a negative component which is in agreement with
[31].

4.2 Outlook

In this section, some of the potential future research based on the approach proposed in this
thesis are presented. In addition, it is explained how the suggested approach can be generalized
and improved.

At both stages of this approach, only the linear mechanical properties of ligament networks are
investigated. However, large deformation, plasticity, and failure of ligament networks strongly
depend on their microstructure [54, 75, 76]. Therefore, a substantial future step in realization of
mechanical behavior of ligamentous materials can be the mechanical analysis of such networks
at large deformation.
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The mechanical properties of nonporous metals are usually described by a scaling law orig-
inally suggested by Gibson-Ashby [70]. Similarly, in this thesis, the numerical results of the
proposed approach are compared with the modified versions of this law presented in the lit-
erature (see Paper B). Since, for the first time it was possible to produce random ligamentous
RVEs with predefined descriptors, a more detailed study about the relation of microstructural
descriptors and macromechanical properties was performed. It was concluded that the Gibson-
Ashby scaling law in its present format is not consistently valid. Therefore, a modified version
of this scaling law was proposed. Although nearly 5000 realizations of ligamentous RVEs were
generated and studied to determine the scaling behavior of mechanical properties, much more
realizations are required to completely specify the modified version of Gibson-Ashby scaling
law. Such a comprehensive investigation can be a potential future work.

In this dissertation, to reduce the complexity of numerical model, the interpenetrating of liga-
ments is not taken into consideration for modeling. Although this simplification may not have a
significant effect on the networks with low volume fractions, the interpenetration of ligaments in
the networks with high volume fractions is inevitable. Therefore, an extension to the proposed
two-stage approach would be the model in which the interpretation of the ligaments is taken into
the calculations.

Furthermore, the contact between the fibers within a network is highly likely, especially at
large deformations. However, due to its complexity, this phenomenon is not considered in nu-
merical modeling presented in this thesis. Investigation of ligamentous networks under various
loading conditions with consideration of contact between the deformed ligaments can be a po-
tential future study to complete the results of the current research.
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A B S T R A C T   

Materials whose microstructure is formed by random fiber networks play an important role both in biology and 
engineering. So far, it still remains unclear which geometric properties of the fiber network determine the 
macroscopic mechanical properties of such materials. This paper presents a computational study based on a large 
number of representative volume elements of random fiber networks. Our study reveals that the linear me-
chanical properties of fiber networks (i.e., Young’s modulus and Poisson’s ratio) are largely determined by only 
four scalar key descriptors. These are the number of fibers per volume, the mean node valency, the mean fiber 
length, and the mean direction cosine between fibers adjacent to the same node. Number of fibers per volume 
and node valency were found to be responsible for around 80% of the variance of the mechanical properties, 
making them the two by far dominant microstructural descriptors. In the part of the configuration space covered 
by our study, we observed a linear or quadratic relationship between the above four scalar microstructural 
descriptors and the Young’s modulus. For the number of fibers per unit volume we propose a theoretical 
explanation for this simple relation.   

1. Introduction 

Fibrous materials are abundant both in nature (e.g., soft tissues such 
as ligaments and skin or wood), and in engineering (e.g., textile mate-
rials, paper). Therefore, the development of numerical models to study 
their mechanical properties under divers mechanical loading conditions 
has received significant attention, in materials science, mechanical en-
gineering, biomechanics and biophysics [1–18]. The key to computa-
tional modeling of fibrous materials is often the ability to set up a so- 
called representative volume element (RVE) of their microstructure. 
The geometric features of these RVEs need to agree with the ones of the 
microstructure of the real materials with respect to relevant statistical 
descriptors [19–23]. If so, computational studies with the RVE can help 
understand the mechanical properties of the materials on the macroscale 
and also how certain changes of their microstructure could be used to 
optimize these. 

The microstructure of fibrous materials is often defined by a random 
network structure. Over the last decades, numerous stochastic 

algorithms were developed and applied to construct RVE of random 
heterogeneous media [24–28]. For detailed reviews of the current state 
of research in microstructure characterization, reconstruction ap-
proaches and multi-scale modeling of heterogeneous materials the 
reader is referred to [29–32]. Generally, reconstruction of heteroge-
neous materials is an optimization problem, which, due to its 
complexity, typically requires an iterative numerical solution. Among 
various numerical approaches, simulated annealing (SA) has received 
much attention. For SA, one defines a desired random microstructure by 
a set of so-called descriptors (each of which characterizes a specific 
geometric property of the microstructure). Then one typically starts with 
some random initial configuration and uses SA to adjust it by random 
steps until obtains a microstructures whose descriptors match the 
desired ones. SA was introduced for the reconstruction of dispersions of 
particles based on correlation functions [33]. Afterwards, the method 
was extended to the reconstruction of general random heterogeneous 
media [34], thereby becoming applicable to multidimensional, multi-
phase and anisotropic structures. Since SA is a method that can be 
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adapted quite easily to a specific problem, many studies have been 
performed in the past on the basis of SA [35–38]. 

Despite the many computational studies that have been performed 
with fiber networks, it remains to date still unclear which descriptors of 
their microstructure exactly govern their mechanical properties on the 
macroscale. To address this question, we propose in this paper an al-
gorithm for the construction of random fiber networks. We use this al-
gorithm to construct a large variety of random RVEs and compute their 
mechanical properties by finite element simulations to identify the de-
scriptors that mainly govern the mechanical properties of fiber networks 
on the macroscale. 

The present article is organized as follows. In Section 2, we briefly 
outline a large variety of different descriptors that can be used to 
characterize the geometry of fiber networks. In Section 3, we describe 
our algorithm to construct tailor-made RVE whose descriptors match the 
desired ones. In Section 4, we present the results of a computational 
study that reveal which of the large variety of considered descriptors are 
geometrically and mechanically most relevant. Finally, we summarized 
our results in Section 5. 

2. Descriptors 

Fiber networks consist of fibers connected to each other at so-called 
nodes. In order to characterize them or compare them with each other, 
one can use so-called descriptors. Each descriptor characterizes a 
different aspect of the geometry of the network. As we study herein 
random fiber networks, the descriptors are in general related to statis-
tical properties of the networks. The major goal of this paper is to un-
derstand which descriptors are primarily governing the mechanical 
properties of fiber networks. In general there is an infinite number of 
possible descriptors. As rigorous mathematical proofs about the rele-
vance or irrelevance of a descriptor appear to date impossible in most 
cases, we have to adopt a heuristic strategy. That is, in the following we 
present a finite set of the most common descriptors for networks from 
Euclidean geometry and graph theory. The role of each of these de-
scriptors will then be examined in a computational study. This way, we 
cannot make mathematically rigorous statements about the set of me-
chanically relevant descriptors. However, we can at least address this 
question from a heuristic perspective that can be hoped to be sufficient 
especially for most purposes in materials research. 

2.1. Morphological descriptors 

Morphological descriptors are based on the geometry and topology 
of the network in the Euclidean space. With respect to fiber networks, 
the following ones are most prominent. 

Node density ρnode is the number of nodes (vertices) in the RVE Nnode 
divided by the volume of the RVE. 
Valency distribution pv is the probability distribution of valency 
across the nodes in the RVE. The valency of a node v is the number of 
fibers (edges) connected to that node. 
Fiber length distribution pl is the probability distribution of the 
Euclidean length of the fibers l in the RVE. 
Direction cosine distribution pc is the probability distribution for 
the cosine c of the angles between all pairs of fibers connected to the 
same node. It describes how much the orientation of fibers joining at 
the same node is correlated. 
Connectedness of the networks is a boolean descriptor which de-
clares whether the fibers in the RVE are all connected to each other in 
some way, that is, whether between any pair of nodes in the network 
there exists at least one connection path along the fibers (edges) of 
the network. 
Pore-size distribution function ppore(r) describes in the fiber 
network the probability for a point in the void phase that the nearest 

point in the fiber phase is located at a distance of at least r (see also 
the more general discussion in [39]). 
Radial distribution function pr(r) is a function of distance which 
describes in a system of point-like particles the probability of finding 
particles in the distance of r from a reference particle [33]. In this 
work we apply this descriptor in two different ways to characterize 
the solid phase (fiber phase). First, we consider the nodes the rele-
vant set of particle and compute the probability of finding nodes in 
the distance of r from each other denoted as pr−node(r). Second, 
pr−fiber(r) which is the probability of finding fiber segments in the 
distance of r from each other. To this end, we discretize all the fiber 
within the RVE into segments. Then we compute the distance of all 
pair of segments within the RVE based on their central points. 
Geometric moment invariants I are very common and powerful 
tools for the recognition of objects and patterns in image processing. 
For an image described by the scalar intensity function f(x, y, z) in 
three dimensions, the geometric moments are [40] 

mijk =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
xiyjzkf (x, y, z)dxdydz, (1)  

where the exponents i, j and k are non-negative integers and 
r = i+j+k is the order of the moment. The low order moments have 
physical concepts. m000 can be interpreted as the mass of an object, 
x = m100/m000, y = m010/m000 and z = m001/m000 respectively as the 
coordinates of the center of mass in x-, y- and z-direction, and the 
second order moments m200,m020,m002 as the moments of inertia 
around the x-, y- and z- axis respectively. Accordingly, the so-called 
central geometric moments can be defined as [40] 

μijk =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
(x − x)i(y − y)j(z − z)kf (x, y, z)dxdydz. (2) 

By the combination of different geometric moments, we can define 
various geometric moment invariants which are unchanged under a 
group of transformations such as translation, rotation and scaling [41]. 
A large list of geometric moment invariants can be found in [42]. The 
invariants of higher order are often extremely small compared to the 
invariants of lower order and are often neglected in image processing. 
Thus also we herein use only the first three invariants 

I1 = (μ200 + μ020 + μ002)
/
(μ000)

(5/3), (3)  

I2 = (μ2
200 + μ2

020 + μ2
002 + 2μ2

110 + 2μ2
101 + 2μ2

011)
/
(μ000)

(10/3), (4)  

I3 = (μ3
200 + μ3

020 + μ3
002 + 3μ200(μ2

110 + μ2
101)+ 3μ020(μ2

110 + μ2
011)

+ 3μ002(μ2
101 + μ2

011)+ 6μ110μ101μ011)
/
(μ000)

5. (5) 

In our fiber networks, we assumed f to be a Dirac-type function with 
infinite intensity on the (infinitesimally thin) fibers and zero intensity 
everywhere else. For the practical calculation of the geometric moment 
invariants, the fibers were divided into a finite number of segments, each 
associated with a weight according to the segment length, and then an 
approximation of the moment invariants was calculated based on this 
discretization. 

2.2. Graph descriptors 

In mathematics, graphs are formed by a set of vertices (nodes) and 
edges (links or lines) connecting them. So-called simple graphs are 
graphs where no vertex is connected by an edge to itself and where the 
connection between two vertices is always established by exactly one 
(rather than in general several) edges. Undirected graphs are graphs 
where the connections between vertices are bidirectional. Apparently, 
one can interpret networks of thin fibers (on which we solely focus 
herein) from an abstract point of view as graphs. Doing so, the fibers 
play the role of the edges and the nodes the one of the vertices, and the 
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mathematical quantities that are usually applied to characterize graphs 
(graph descriptors) can be used to characterize also fiber networks. 
There are many different descriptors in graph theory [43–46], and it is 
not possible to study all of them in this paper. Rather we focus on a set of 
the most common ones briefly summarized in the following. 

Clique number is the number of vertices in the largest clique of a 
graph. A clique is a subset of a graph in which there is an edge be-
tween each pair of vertices [45]. 
Domination number of a graph is the number of vertices in the 
smallest dominating set of that graph. A dominating set of a graph is 
a subset of the graph such that every vertex outside this subset is a 
neighbor of at least one vertex within the subset [43]. 
Independence number is the number of vertices in the largest in-
dependent set of a graph. An independent set of a graph is a subset of 
vertices within which no pair of vertices is directly connected by an 
edge [45]. 
Chromatic number of a graph is the smallest number of colors 
needed to color the vertices of that graph such that the color of any 
two adjacent vertices is different [45]. 
Clustering coefficient in graph theory is a tool to indicate the ten-
dency of the nodes to cluster together. It can be defined either for 
each node individually (local clustering coefficient) or for the whole 
graph (global clustering coefficient). The local clustering coefficient 
of a specific node is the ratio of the actual number of edges between 
its neighbors and the maximal possibly number of edges between its 
neighbors. The global clustering coefficient is the ratio of the number 
of closed triplets over the total number of triplets in the network. A 
triplet is a set of three vertices, at least one of which is connected to 
the other two. If also the other two are connected to each other, the 
triplet is called a closed triplet. The global clustering coefficient is 
well-known to be a measure of the clustering in the network [46] 
S-metric of a graph is the product of the valencies of all vertices [44]. 

Maximum eigenvalue of adjacency matrix: the adjacency matrix 
of a graph is a square matrix whose size equals the number of 
vertices. Its ij-elements are the numbers of edges connecting the i-th 
and j-th vertex. For the simple undirected graphs corresponding to 
fiber networks the adjacency matrix is a symmetric matrix of zeros 
and ones where the diagonal elements are all zero. Thus the adja-
cency matrix has real eigenvalues. Its maximum eigenvalue is a 
frequently used descriptor to characterize graphs. [43] 
Maximum eigenvalue of Laplacian matrix: the Laplacian matrix 
equals the difference between the degree matrix and the adjacency 
matrix. The degree matrix of a graph is a square diagonal matrix 
whose ii-elements equal the valency of the i-th vertex. The number of 
subsets of the graph that are mutually not connected equals to the 
number of zero eigenvalues of the Laplacian matrix. Hence for a 
connected graph the Laplacian matrix has exactly one zero eigen-
value. [43] 
Algebraic connectivity is the second smallest eigenvalue of the 
Laplacian matrix and always positive. It is well-known to charac-
terize how well-connected a graph is. [45] 
Graph energy equals to the sum of all eigenvalues of the adjacency 
matrix [45]. 

3. Construction of representative volume elements 

To examine the respective importance of the various descriptors 
introduced in the previous section, we studied a large number of 
representative volume elements (RVEs) with fiber networks and exam-
ined how the descriptors of these fiber networks correlated with their 
mechanical properties. To minimize finite size effects in our RVEs, we 
developed an algorithm mimicking a periodic material structure. This 
algorithm placed around the main RVE some additional identical ghost 
RVEs (Fig. 1) that were taken into consideration only when in our main 
RVE descriptors had to be evaluated at nodes or fibers connected across 
the boundaries of our main RVE. In general, we focused on the con-
struction of isotropic networks. 

To study the correlation between network descriptors and network 
properties it is necessary to construct networks whose geometry com-
plies with certain predefined values or distributions of the descriptors of 
interest. To construct such networks we adopted the procedure 
described in the following subsections. 

3.1. Generation of initial network 

To construct tailor-made RVEs, we started from fiber networks with a 
random initial configuration. To speed up the stochastic optimization 
procedure used subsequently to transform this initial configuration into 
one exhibiting the desired values and distributions of the descriptors of 
interest, we ensured that already in the initial configuration some de-
scriptors of the network agreed with the desired ones, namely, its 
connectedness, valency distribution, maximum fiber length and node 
density. We chose these descriptors because it is easy to directly 
construct networks where these descriptors take on desired values and 
distributions so that it would be a waste of computational time to 
include these descriptors in the stochastic optimization algorithm 
described below. Rather this algorithms can then easily be constrained 
in such a way that it maintains over all iterations the initial values and 
distributions for these descriptors. To prescribe the above mentioned 
descriptors already in the otherwise random initial configuration we 
applied the following procedure. 

3.1.1. Node density, connectedness, maximal fiber length 
First, we defined a cubic domain of edge length LRVE for our RVE to 

be constructed. To keep finite size effects acceptably small, we generally 
imposed without loss of generality LRVE/3 as a hard constraint for the 
maximum fiber length (lmax). To keep this constraint already in the 
initial configuration and ensure a largely homogeneous initial configu-

Fig. 1. RVE (center) and surrounding ghost RVEs used to mimic a periodic 
material structure and to minimize finite size effects. 

I. Davoodi Kermani et al.                                                                                                                                                                                                                     



Computational Materials Science 199 (2021) 110711

4

ration, we uniformly divided the RVE into a set of 63 = 216 subdomains. 
In the next step, we computed the number of nodes Nnode = ρnodeL3

RVE 
corresponding to the desired node density and distributed them as 
equally as possible among the subdomains to ensure a largely homo-
geneous initial configuration (Fig. 2(b)). Note that an exactly equal 
distribution was not always possible given the predefined node density 
and number of subdomains, which could be achieved only if in certain 
cases some subdomains were assigned one node more than others. 

In the third step, we connected the nodes within each subdomain by 
a random polygon chain of initial fibers (Fig. 2(c)), which automatically 
complied with the given maximum length due to the above chosen edge 
length of the subdomains. 

In the fourth step, we interconnected in each subdomain one node 
with one node in a neighboring subdomain such that a connected 
network was achieved (Fig. 2(d)) and the added fibers did not violate the 
maximum length criterion. 

3.1.2. Valency distribution 
Let the valency of node i be vi and pv(vi) be the desired probability 

distribution. The maximum valency allowed is vmax, then the number of 
fibers in the network should be 

Nfiber = Nnode
/

2
∑vmax

k=1
pv(vk), (6) 

Having computed this quantity, fibers were randomly added be-
tween pairs of nodes in the network, checking each time whether the 
maximum length criterion was satisfied and also whether the respective 
addition of a fiber helped to bring the actual valency distribution closer 
to the desired one pv(vi). Only if so, fibers were actually added. Other-
wise another connection between a random pair of nodes was examined. 
To account for the periodic boundary conditions of our RVE, we allowed 
also connections from a node inside our RVE to a node in one of the 
neighboring ghost RVEs (Fig. 1). If such connections were established, 
the node in the ghost RVE was effectively replaced for all further con-
siderations of the network connectivity by its periodic counterpart 
within the RVE. 

3.2. Simulated annealing 

In the previous sections, we pointed out how to construct RVEs of 

connected fiber networks with a maximal fiber length and a prescribed 
node density and valency distribution. Here we point out how to 
transform these RVEs into a final configuration in which also the fiber 
length distribution and the direction cosine distribution match desired 
target distributions. To this end, we use the simulated annealing (SA) 
method [34,4]. SA is a (global) stochastic optimization method. The idea 
of the approach is to define a cost function 

E =
∑Nd

k=1
wk⋅Ek. (7)  

that becomes minimal if all Nd descriptors of interest of the RVE match 
their target values or distributions. Ek is the cost function (energy 
function) of the k-th descriptor and wk its scalar weight. For reasons 
discussed in more detail below, it turned out to be sufficient for our 
purposes to consider only two descriptors in (7), namely, the fiber length 
distribution and the direction cosine distribution. Following [4], we 
defined the cost function of the k-th descriptor via the Cramer-von Mises 
test, that is, 

Ek =
1

12Nk
+

∑Nk

i=1

[2i − 1
2Nk

− ck(xki)
]2
, (8) 

Here we assume that the k-th descriptor is a probability density 
distribution with Nk realizations xki across the whole network, ordered 
such that xk1 < xk2 < xk3 < …. For example, if the k-th descriptor is the 
fiber length distribution, Nk is the number of fibers in the network, and 
xki is the length of the i-th fiber. ck is the cumulative target distribution of 
the k-th descriptor. 

Once a cost function E has been defined that becomes minimal if the 
network has reached a state where the descriptors match their targets, 
one uses in SA a procedure of random evolution steps with the aim to 
decrease E down to its (ideally global) minimum. In our work we used 
two different types of evolution steps described in the following. 

Step type 1 applies a random displacement vector (with a constraint 
for its maximal absolute value) to a randomly selected vertex (node) 
in the network (Fig. 3(b)). 
Step type 2 deletes a pair of fibers and then adds a new one in such a 
way that the valency of all the affected nodes remains unaltered. For 
the configuration in Figs. 3(a), the two alternative ways to 

Fig. 2. Four steps to establish an initial random network in (a) a given RVE with (b) a desired node density, (c) maximum fiber length and (d) connectedness.  

Fig. 3. Herein, in each SA evolution step, the (a) current configuration is altered either by (b) the random displacement of some node or by (c,d) deleting and 
subsequently adding a pair of fibers in a way that keeps the valency of all nodes unaltered. 
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accomplish such a step (once a pair of fibers to be deleted has been 
chosen) are depicted in Fig. 3(c) and (d). For step type 2 we generally 
checked whether it altered the connectedness of the network and 
admitted only such steps of type 2 that did not. 

It is important to note that neither of the above two types of random 
steps changes the connectedness nor the valency nor the node density of 
the network (which we ensured to match their respective targets already 
in the initial configuration). However, other descriptors such as length 
and direction cosine between neighboring fibers change. After each 
random step, we computed ΔE, the change of the cost function E. Using a 
Metropolis algorithm as already [34], the probability to accept the step 
was computed in the i-th evolution step as 

pi
accept(ΔE) =

{
1 ΔE ≤ 0,
exp(−ΔE/Ti), ΔE > 0. (9) 

Here Ti is a temperature-like parameter. If the energy of a proposed 
random step decreases or at least not increases the cost function E, it is 
always accepted in the Metropolis algorithm. However, to avoid getting 
trapped in local minima, it is essential to endow the algorithm with the 
ability to perform at least with some likelihood also steps into an 
energetically unfavorable directions. This ability is ensured by the 
temperature parameter Ti. The higher Ti the more likely it is that the 
Metropolis algorithm every so often performs also energetically 

unfavorable steps. Typically, one starts with high Ti to give the algo-
rithm the chance to explore large parts of the state space and decreases 
Ti then with an increasing number of random evolution steps [47]. 
Different approaches are used in the literature for this so-called cooling 
schedule. We applied the power function 

Ti = T0⋅di−1
r , (10)  

with the initial temperature T0 and dr being the temperature decay-rate. 
SA is stopped if either a predefined maximal number of random evolu-
tion steps imax is reached or the cost function is lower than a predefined 
threshold Etarget . We used a combination of both conditions (for details 
see Fig. A.12). 

3.3. Definition of RVE set used in our study 

As discussed already in [4], fiber length, valency and direction cosine 
distributions have been reported at several occasions to affect the me-
chanical properties of fiber networks. It appears mechanically plausible 
that also the number of fibers plays an important role. For a given 
valency distribution this number can be expressed equivalently by the 
node density. The primary objective of this study is identifying the de-
scriptors governing the mechanical behavior of fiber networks. There-
fore, we decided to construct for our study a large set of RVEs which 
sampled specifically variations with respect to the above four de-
scriptors, namely, valency distribution, fiber length distribution, direc-
tion cosine distribution and number of fibers in the RVE. 

To this end, we discretized the space of possible valency, fiber length, 
and direction cosine distributions by a set of trial distributions illus-
trated in Fig. 4. The algebraic formulae for these distributions denoted 
by Vi, Lj and Ck with i = 1,2,…,5, j = 1,2,…,6 and k = 1,2,…,5 are 
specified in Appendix B. The set of trial functions was defined heu-
ristically, though in a manner that allowed us to sample with a relatively 
small number of trial functions a large part of the possible shapes these 
functions typically take on in real physical systems. To this end, we 
included for each descriptor at least a constant, two linear and a 
quadratic trial function. Moreover, we allowed an independent variation 
of the number of fibers Fq with q = 1,2 between the two specific values 
F1 = 4000 and F2 = 8000. Note that we numbered the considered dis-
tributions such that the mean value of the respective descriptor increases 
monotonically with their subscript. For instance, L1 refers to the distri-
bution with the smallest average length and L6 to the distribution with 
largest one. 

Our definition of trial functions allowed us to define 300 types of 
different RVE, each characterized by a specific choice of the descriptors 
Vi,Lj,Ck,Fq. These different types of RVE are referred to in the following 
by the abbreviations V1L1C1F1,V2L1C1F1,…, V5L6C5F2, respectively. It is 
worth mentioning that SA did not converge satisfactorily for the com-
bination of V3,V4 and V5 with C1 and C4, suggesting that these types of 

Fig. 4. Trial (a) valency distributions V1,…,V5 (b) fiber length distributions L1,…, L6 and (c) direction cosine distributions C1,…,C5.  

Table 1 
Possible combinations of Vi, Lj and Ck.   

C1  C2  C3  C4  C5  

V1  ✓a ✓✓b ✓✓ ✓✓ ✓✓ 
V2  ✓ ✓ ✓ ✓ ✓ 
V3  — ✓ ✓ — ✓ 
V4  — ✓ ✓ — ✓ 
V5  — ✓ ✓ — ✓  

a ✓✓: L1,…,L6. 
b ✓: L2,…,L5. 

Table 2 
Values for parameters used in SA (see Section 3.2).  

Parameter Value 

T0  1 
dr  0.9 

imax  1,000,000 
Etarget for each descriptors  0.01 

Maximal displacement step size LRVE/20   
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RVE cannot exist due to a violation of intricate, problem-intrinsic geo-
metric constraints. Similarly, RVE with fiber length distributions of L1 
and L6 could be constructed only for V1 in combination with all 
considered direction cosine distributions except C1. RVE types that 
could be constructed with F1 could always be constructed also with F2. 
Hence, among the theoretically possible 300 different RVE types only 
168 could be constructed, which are summarized in Table 1. For each 
RVE type, 15 different random realizations were generated by the pro-
cedure described in Section 3. Thereby, we used the SA parameters from 
Table 2 for the construction of all the 2520 RVEs considered in our 
study. Fig. 5 illustrates the construction of one specific such RVE (of type 
V5L2C2F1). Starting from a random initial configuration, SA yields an 
RVE where the descriptors of interest closely match the prescribed target 
distributions. 

4. Results 

4.1. Descriptors governing mechanical properties 

To understand the influence of the descriptors of the network 
structure on the network’s mechanical properties, we discretized the 
network RVE generated as described in Section 3.3 by finite beam 

elements, to which we assigned a circular cross section with a diameter 
of LRVE/50, a Young’s modulus of Ef = 79 GPa and a Poisson’s ratio of 
νf = 0.44. These values are deliberately chosen to resemble those of 
nanoporous gold as a possible application case. Yet, the exact choice of 
these parameters is largely irrelevant for the following discussion as long 
as they enable in principle all relevant deformation modes of the 
network in a physically realistic range, which we confirmed to be the 
case. Fibers were discretized using beam finite elements based on the 
Timoshenko beam theory. At the intersection points of fibers, both 
translations and rotations were coupled, i.e., rigid joints were assumed. 
Applying periodic boundary conditions to our RVE according to [48], we 
computed their (effective, homogenized) Young’s modulus E and Pois-
son’s ratio ν by the method suggested in [28]. 

To investigate the effect of valency distribution, fiber length distri-
bution, direction cosine distribution and the number of fibers on me-
chanical properties, we divided the 2520 RVEs generated according to 
Section 3.3 into categories. ViLjCkFq denotes a category of an RVE where 
all the four descriptors match their respective target distributions. That 
is, the RVE category includes the 300 RVE types V1L1C1F1,V2L1C1F1,…, 
V5L6C5F2. Analogously, by leaving out one or several of the descriptors 
in the list, we denote an RVE category where only the listed descriptors 
were fixed to certain target distributions and the others were allowed to 

Fig. 5. (a) A random initial configuration is transformed by SA into an (b) RVE of type V5L2C2F1 where (c) valency, fiber length and direction cosine distributions 
closely match their respective target distributions. 
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vary freely among all distribution functions included in our study. For 
example, LjCk denotes a category of RVEs where the length distribution 
matches Lj and the direction cosine distribution Ck, whereas all the other 
descriptors may be arbitrary (within the set of distributions and values 
considered herein). As there are altogether 30 different RVE types of the 
category LjCk, denoted by L1C1,L1C2,L1C3, …, L6C5, our study includes 

for each of these RVE types 2520/30 = 84 realizations (in case all 
combinations of remaining descriptors be available for the subsets of 
this category). In the extreme case that all descriptors are allowed to 
vary freely among the distributions included in this study, we denote the 
respective RVE category (or type) by ‘–’, including all 2520 RVE 
generated in our study. As illustrated also in Fig. 6, there are altogether 

Fig. 6. For the 16 different RVE categories considered in this study, we computed for (a) the Young’s modulus and (b) the Poisson’s ratio the relative variances and 
maximal deviations from their mean values, averaged across all RVE types belonging to the respective RVE category. Apparently, fixing the four descriptors valency 
distribution, fiber length distribution, direction cosine distribution and the number of fibers reduced the statistical variance of the mechanical properties to 
nearly zero. 

Fig. 7. (a) Young’s modulus of a representative selection of RVE types normalized by the number of fibers Fq (and the homogenized mean Young’s modulus Eref =
27.3 MPa of the RVE type V2L3C2F1); (b) fixing more and more descriptors, the relative variance (σ2) of the Young’s modulus in the resulting RVE categories (boxes) 
decreases by the percentage indicated next to the lines that connect an RVE category with one that results from fixing a further descriptor. 
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16 RVE categories, which are listed on the very left of Fig. 6. For each 
RVE category, we computed for all RVE types belonging to it the mean 
values of Young’s modulus and Poisson’s ratio as well as the variances of 
these quantities (normalized by their respective mean value) (σ2). For 

each RVE category the average variance across all the RVE types 
belonging to it is plotted in Fig. 6. Moreover, we computed in each RVE 
category for each RVE type belonging to it for all samples the maximal 
absolute values of the relative deviations of Young’s modulus and 

Fig. 8. Young’s modulus monotonically increases with the mean valency and monotonically decreases with both mean fiber length and mean direction cosine for a 
number of representative RVE types. The Young’s modulus in (a)–(c) is normalized to the Young’s modulus of EV3L3C3F1 = 77.3 MPa and in (d)–(f) to Eref as 
defined above. 

Fig. 9. Mean values of (a) the normalized variance σ2 and (b) the maximal absolute value of the relative deviation Δmax averaged over all RVE types in the two RVE 
categories ‘–’ and ViLjCkFq. The mean values of these descriptors of all 2520 RVEs are as follows: Domination No.= 1.11e3, Independence No.= 1.84e3, Chromatic 
No.= 4.40, Clique No.= 3.06, Clustering Coefficient = 0.01, S-metric = 1.90e5, Energy of Graph = 5.41e3, Algebraic Connectivity = 0.16, Max. Eig. value of Adj. 
Mat.=4.12, Max. Eig. value of Lap. Mat = 8.65. 
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Poisson’s ratio from their mean values. This quantity Δmax was averaged 
for each RVE category and plotted in Fig. 6. 

In general, the larger σ2 and Δmax for a category, the less do the 
descriptors fixed for this specific RVE category determine the mechan-
ical properties of a network. By contrast, in the theoretical extreme case 
that σ2 and Δmax are zero, the descriptors fixed in the related RVE 
category fully determine the mechanical properties of the fiber network 
(at least in the theoretical case that for each RVE type an infinite number 
of realizations is included in the study). 

Fig. 6 reveals that for the RVEs in the category ‘–’, the relative 
variance of Young’s modulus across all the subset is as big as 188.9%. By 
contrast, if all the four descriptors valency distribution, fiber length 
distribution, direction cosine distribution and the number of fibers are 
fixed, that is, in the category ViLjCkFq, the relative variance of the 
Young’s modulus is as small as 0.5%. For Poisson’s ratio the relative 
variance in the category ViLjCkFq takes on the similarly low value of 
0.3%. However, for Poisson’s ratio the relative variance even in the 
category of RVE without any geometric constraints is only 2.6%. 
Together, this leads to the following main conclusions: Poisson’s ratio of 
(initially stress-free) isotropic random fiber network generally exhibits a 
relatively low statistical variance with a mean value of around 0.25. By 
contrast Young’s modulus strongly depends on the geometry of the fiber 
network. Nevertheless, the four descriptors valency distribution, fiber 
length distribution, direction cosine distribution and the number of fi-
bers together suppress around 99.5% the variance of the linear-elastic 
mechanical properties of fiber networks. 

Fig. 7(a) analyzes specifically the effect of Fq by plotting for a 
representative selection of RVE types on the Young’s modulus 

normalized by the number of fibers. Apparently, this ratio is (except for 
minor supposedly mainly statistical deviations) constant for each RVE 
type. In other words, if the other descriptors are fixed, Young’s modulus 
is directly proportional to the number of fibers. This simple law can also 
be understood analytically. Imagine an RVE with a specific size and Fq 
fibers. The network in this RVE can be modeled as an elastic spring S. 
Increasing the number of fibers, for example, by a factor of two can be 
constructed as process where we add another random fiber network of 
the same type into the RVE so that the RVE volume is then occupied by 
two interpenetrating random fiber networks. As these are of the same 
type, they exhibit the same elastic properties. That is, the RVE harbours 
then two elastic springs of the kind of S that act in parallel, increasing 
Young’s modulus by a factor of two. By contrast, as both elastic systems 
of type S exhibit the same deformation behavior, Poisson’s ratio is not 
expected to change if the number of fibers increase by a factor of two. 
This explains the very low sensitivity of Poisson’s ratio to variations of 
number of fibers observed in our study. Of course, this illustrative 
explanation is applicable to any scaling factor for Fq, yielding directly 
the simple linear relation between Fq and Young’s modulus observed in 
Fig. 7(a). 

For the RVE category Fq, that is, the one with fixed number of fibers, 
Fig. 7(b) illustrates how fixing more and more descriptors suppresses in 
a step-wise manner nearly the whole variance of Young’s modulus. 
Apparently, the mechanically most important single descriptor in this 
process is the valency distribution, which alone reduces the variance of 
the mechanical properties by nearly 90% when fixed. In fact, this 
interpretation qualitatively still holds if we examine in Fig. 7(b) arbi-
trary transitions from one RVE category to another by fixing one addi-
tional descriptor. In every case, fixing the valency distribution reduces 

Fig. 10. Comparison of (a) normalized variance σ2 and (b) the maximal absolute value of the relative deviation Δmax for the first three geometric moment invariants 
I1, I2 and I3 of the RVEs in the two categories ’—’ and ViLjCkFq. 

Fig. 11. Comparison of (a) spatially average normalized variance σ2 and (b) the spatially averaged maximal absolute value of the relative deviation Δmax of cpore(r)
, cr−node(r) and cr−fiber(r) for RVEs of the categories ‘—’ and ViLjCkFq. 

I. Davoodi Kermani et al.                                                                                                                                                                                                                     



Computational Materials Science 199 (2021) 110711

10

the variance more than fixing any other descriptor. This justifies the 
conclusion that the valency distribution is generally more important 
than fiber length distribution and direction cosine distribution. 

In order to better understand the influence of the remaining de-
scriptors on the mechanical properties of fiber networks, Young’s 
modulus is plotted in Fig. 8(a)–(c) for a number of representative RVE 
types. 

Fig. 8 illustrates that changes in the valency distribution are asso-
ciated with changes of Young’s modulus by more than one order of 
magnitude whereas changes in the fiber length and direction cosine 
distributions typically have a much smaller effect. As the indices of the 
descriptor distributions increase with their mean values, Fig. 8(a)–(c) 
demonstrate for a representative selection of RVEs that Young’s 
modulus increases with the mean valency Vmean but decreases with mean 
fibers length Lmean and mean direction cosine Cmean. To quantify this 
dependence, Fig. 8(d)–(f) uses a special post-processing of the results of 
our computational study. Thereby, we first specified a certain descriptor 
of interest (either valency, fiber length or direction cosine distribution) 
for which we studied its relation to Young’s modulus. To do so, we 
selected from the 16 RVE categories listed in Fig. 6 the ones where the 
respective descriptor of interest was fixed. For example, if valency dis-
tribution is selected as the descriptor of interest, these are the eight 
categories Vi,ViLj,ViCk,ViFq,ViLjCk,ViLjFq,ViCkFq,ViLjCkFq. For each of 
these categories, we defined subcategories containing the RVE types 
where the descriptor of interest was varies across all its possible distri-
butions while all the other descriptors were kept constant at specific 
values. For example, the category ViFq was divided into a subcategory 
containing the RVE types V1F1,V2F1,V3F1,V4F1,V5F1 (varying the 
descriptor of interest Vi and keeping Fq constant at F1), and another 
subcategory with the RVE types V1F2,V2F2,V3F2,V4F2,V5F2 (varying 
the descriptor of interest Vi and keeping Fq constant at F2). For each 
subcategory we computed for all RVE realizations included in our study 
Young’s modulus normalized by the mean Young’s modulus within that 
category Eref as well as the mean value of the descriptor of interest. We 
excluded subcategories where not all RVE types were available because 
they could not be constructed (see Table 1). The results are depicted in 
Fig. 8(d)–(f), where the descriptor of interest was chosen to be the 
valency distribution, fiber length distribution and direction cosine dis-
tribution, respectively. Interestingly, Fig. 8(d) reveals a quadratic rela-
tion between the Young’s modulus and the mean value of the valency 
distribution. This relation is remarkably linear between the Young’s 
modulus and the mean values of the fiber length distribution and the 
direction cosine distribution (Fig. 8(e) and (f), respectively). The box 
plots illustrate the statistical deviations from the mentioned relationship 
in each of the above defined subcategories. The apparently very small 
size of the boxes reveals that the defined function almost completely 
characterizes the relation between the considered descriptors and 
Young’s modulus. This observation is remarkable because it means that 
in discussing the relation between microstructure and mechanical 
properties of the RVEs, one can focus not only on four key descriptors in 
the form of probability distributions but in fact largely on mean values. 
In other words, the linear mechanical properties of the RVEs are largely 
determined by the number of fibers (per volume) and the scalar mean 
values of the valency, fiber length and directioncosine distribution. 
From Fig. 8(d)–(f) it is also apparent that, as discussed already above, 
mean valency is of much higher importance than mean fiber length and 
mean direction cosine with respect to the resulting material stiffness. 
Fig. 8(e) and (f) cover a large part of the range within which fiber length 
and direction cosine can be varied in a physically and geometrically 
reasonable way. Yet, they display variations of Young’s modulus only by 

approximately a factor two and three, respectively. By contrast, in Fig. 8 
(d) we observe a factor of almost 70. Additionally, it is worth mentioning 
that the valency range up to slightly above five is well-suited for random 
fiber networks. However, for ordered ligament systems with hexagonal 
cells or tetrahedral cells even higher mean valencies may appear (for 
example six for a uniform cubic mesh and twelve for a uniform tetra-
hedral mesh), which underlines even more impact on Young’s modulus 
that can in principle be realized in networks of ligaments by varying the 
mean valency. 

As revealed already by Fig. 6, Poisson’s ratio is nearly constant across 
the different RVE types, which is why we omit a detailed discussion of its 
minor dependencies on the different descriptors. We note, however, that 
we have shown already above that Poisson’s ratio can be expected to be 
(nearly) independent on the number of fibers Fq. Given that Fq is 
generally responsible for a large part of the variations of the mechanical 
properties observed in this study, the insensitivity of Poisson’s ratio to it 
may explain why Poisson’s ratio generally exhibits only relatively small 
variations in the RVE studied herein. 

According to [49–51], the ratio of the fiber radius to the fiber length 
plays an important role for the mechanical properties and deformation 
of random fiber networks. In networks with higher values of this ratio, 
stretch is the dominant deformation mode which causes the network to 
deform affinely. In contrast, if the ratio is small, bending is the pre-
dominant deformation mode and the network deforms non-affinely. In 
order to analyse the dependence of our conclusions in this section on 
geometrical properties of the fibers such as their slenderness ratio, we 
repeated the studies discussed in this section with networks with a fiber 
diameter of LRVE/500. The results are presented in Appendix C. They 
exhibit some minor quantitative differences to the ones obtained with a 
fiber diameter of LRVE/50 but are qualitatively similar, underlining thus 
the robustness of our conclusions. 

4.2. Relation between morphological descriptors and graph descriptors 

In Section 4.1 we demonstrated that a set of four geometric de-
scriptors nearly fully determines the mechanical properties of random 
fiber networks. However, such networks can also be interpreted as 
mathematical graphs, the nodes forming the vertices of the graph and 
the fibers its edges. Mathematical graph theory provides a host of de-
scriptors for graphs. It is instructive to study the relation between such 
graph descriptors and the four geometric descriptors on which Section 
4.1 focuses. In this section we examine the graph descriptors introduced 
in Section 2. As classical graph theory works with finite rather than 
infinite graphs, most descriptors from graph theory cannot deal with the 
assumed periodicity of the considered RVEs. Therefore, we evaluated 
them only within the RVE, ignoring the fibers cutting through the 
boundaries of the RVE. 

In order to investigate the dispersion of graph descriptors, we eval-
uated the aforementioned statistical quantities σ2 and Δmax also for a 
host of graph descriptors and compared the results for the two extreme 
cases, the RVE category ‘–’ and the RVE category ViLjCkFq. The results 
are illustrated in Fig. 9. The ones related to ViLjCkFq are the mean values 
of the 168 types RVE belonging to the category. 

Fig. 9 reveals that fixing the four descriptors valency distribution, 
fiber length distribution, direction cosine distribution and number of 
fibers reduces σ2 and Δmax for all graph descriptors substantially. Except 
for the clustering coefficient, all graph descriptors seem to be almost 
fully determined in an implicit manner by fixing the four dominant 
morphological descriptors, underlining once more their key role in 
characterizing properties of the fiber network. 
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4.3. Role of other morphological descriptors 

We have established now that fiber length distribution, valency 
distribution, direction cosine distribution and number of fibers are the 
four morphological descriptors that nearly fully determine the me-
chanical properties (and indeed also graph properties) of fiber networks. 
In this section we analyze, to which extent they determine also the other 
morphological descriptors introduced in Section 2. The first three geo-
metric moment invariants, I1, I2 and I3 [42] are computed for the RVE 
types within the two RVE categories’—’ and ViLjCkFq. Analogously to 
the previous sections, the mean values of the normalized variance σ2 and 
the maximal absolute value of the relative deviation Δmax averaged over 
all RVE types in these two categories are plotted in Fig. 10. Apparently, 
fixing the four above identified morphological main descriptors de-
termines also the three first geometrical moment invariants nearly 
completely. Higher order moments exhibit very small values compared 
to the first three ones. They are typically considered as of minor 
importance compared to the first three ones and thus skipped here. 

Furthermore, the pore-size distribution function ppore(r), the radial 
distribution function of the nodes pr−node(r) and the radial distribution 
function of the fibers pr−fiber(r) have been studied in this work. To 
determine the pore-size distribution function, we chose 1000 random 
points inside the void-phase of the RVE and computed their respective 
distance to the closest fiber. Then the probability distribution of dis-
tances was approximated in a discrete manner by dividing the occurring 
interval of 0 < r/LRVE < 0.12 into 24 bins with equal width. A similar 
calculation was performed for pr−node(r) and pr−fiber(r) by dividing the 
occurring interval 0 < r/LRVE < 2 into 25 equal-sized bins. For the 
computation of pr−fiber(r), fibers were divided into segments with a 
maximum length of 5%LRVE. In order to compute statistical quantities 
comparable to σ2 and Δmax above, we first converted the probability 
density functions (PDFs) ppore(r), pr−node(r) and pr−fiber(r) into associated 
cumulative (CDFs) distribution functions cpore(r), cr−node(r) and cr−fiber(r). 
For these, we calculated σ2 and Δmax separately in each bin used for the 
discretization of the distributions and introduced in general for the 
characterization of a CDF c(r) the averaged quantities 

σ2(c(r)) = 1
Lc

∫ r=Lc

r=0
σ2(c(r))dr, (11)  

Δmax(c(r)) =
1
Lc

∫ r=Lc

r=0
Δmax(c(r))dr. (12) 

Here, Lc = 0.12LRVE for c(r) = cpore(r) and Lc = 2LRVE for c(r) =
cr−node(r) and c(r) = cr−fiber(r). Fig. 11 compares σ2 and Δmax for the 
mentioned distribution functions for the RVEs in the categories ‘—’ and 
ViLjCkFq. Apparently also ppore(r), pr−node(r) and pr−fiber(r) are at least to a 
large extent implicitly determined by fixing the four morphological 
main descriptors identified above. 

5. Conclusions 

Studies of the mechanical properties of heterogeneous random media 
have attracted substantial interest over the last two decades. A key 
question in this area is which descriptors of the microstructure of such 
media determine to which extend their mechanical properties. Specif-
ically for networks of fibers or ligaments, this has remained unclear so 
far. Such networks play an important role in biophysics and soft matter 
physics but also in materials research, in particular with respect to 
nanoporous metals [52–56]. The microstructure of the latter differs from 
the fiber networks usually studied in biophysics by the fact that it is 
formed by a network of ligaments with a considerable thickness and 

variation in shape. Yet both fiber networks in biophysics and ligament 
networks as occurring in nanoporous metals appear to share important 
common properties. For example, in biophysics, it has been suggested 
that fiber length distribution, valency distribution and direction cosine 
distribution play important roles in the mechanical behavior of collagen 
fiber networks [4]. And also for nanoporous metals it has been found 
that characteristics such as node valency or ligament length have 
important effects on the macroscopic mechanical properties [57–60]. 
Yet, so far it remains unclear to which extend these findings in separate 
areas of materials science are related to each other and which other 
descriptors are important determinants of the mechanical properties. 

To answer these questions, we performed a large computational 
study including more than 2500 RVEs. Using simulated annealing [33], 
we constructed these RVEs sampling a large part of the physically 
reasonable configuration space. As expected, we observed in finite 
element models a large variance of Young’s modulus and Poisson’s ratio 
among these 2520 RVEs. However, we also observed that fixing four 
morphological key descriptors to specific values or probability distri-
butions reduced this variance by more than 99%. These four key de-
scriptors are the number of fibers per volume (i.e., the fiber density), the 
node valency distribution, the fiber length distribution, and the direc-
tion cosine distribution. We demonstrated that the four key descriptors 
did not only largely determine the mechanical properties but also a host 
of other morphological or graph-theory-based descriptors. We thus 
conclude that the number of fibers per volume, the node valency dis-
tribution, the fiber length distribution, and the direction cosine distri-
bution are the key properties of networks of (thin) fibers both with 
respect to mechanics and geometry. 

Remarkably, we observed that the number of fibers per volume is 
(nearly) linearly related to Young’s modulus of fiber networks, which we 
could also explain by a simple theoretical analysis. Interestingly, we 
observed that also the effect of valency, fiber length and direction cosine 
distribution on Young’s modulus can be captured to a very large extent 
by a simple linear or quadratic relationship between the mean values of 
these distributions and Young’s modulus. Thereby stiffness increases 
with mean valency and decreases with mean fiber length and mean di-
rection cosine. This finding is in excellent agreement with [61], where 
based on a different approach already previously a remarkably simple 
ascending relationship between mean valency and stiffness was reported 
specifically for nanoporous metals. 

Given that for valency, fiber length and direction cosine distribution 
apparently mainly the mean values matter for the stiffness of the 
network, one can summarized our study as follows: the mechanical 
properties of fiber networks are largely determined by four scalar de-
scriptors, which are the number of fibers per volume and the mean 
valency, mean fiber length and mean direction cosine. Among these four 
scalar descriptors the former two are by far dominant whereas the latter 
two are modulators of minor importance. Generally, we found that the 
dependence of Young’s modulus on the four key descriptors was much 
stronger than the dependence of Poisson’s ratio. 

The identification of four simple scalar descriptors for characterizing 
the mechanical properties of fiber networks can be expected to be an 
important step to understand the relation between microstructure and 
macroscopic mechanical properties of materials consisting of random 
fiber networks. It should, however, be kept in mind that this study has 
also certain limitations. First, it focuses on linear mechanical properties 
(Young’s modulus and Poisson’s ratio) of isotropic fiber networks only. 
A generalization to nonlinear anisotropic materials is a natural next step. 
Since the macroscopic material behavior is strongly influenced by 
microstructural defects [62–64], large deformation, plasticity and fail-
ure of random fiber networks is a promising area of future research. 
Second, our study largely relies on a computational approach. A 
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promising next step is underpinning its main findings by a careful 
theoretical analysis unraveling the rationale behind the role of the 
different descriptors. 
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Appendix A. Summary of simulated annealing method 

See Fig. A.12. 

Fig. A.12. Flow chart of the simulated annealing algorithm used herein.  
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Appendix B. Definition of considered distributions for valency, fiber length and direction cosine 

The probability distribution functions (PDFs) for the valency, fiber length and direction cosine used in this article are defined by algebraic 
equations in the following. 

B.1. Valency distributions 

V1(v) =
1

15(6− v), (B.1)  

V2(v) = − 1
35 v(v− 6) (B.2)  

V3(v) =
1
6, (B.3)  

V4(v) =
1

15(v− 1), (B.4)  

V5(v) =

⎧
⎨

⎩

0 v⩽3,

− 1
22(v − 3)(v − 9) 3 < v,

(B.5)  

where v (v = 1,2,…,6) represents the node valency. 

B.2. Fiber length distributions 

L1(l) =
4

0.34(
1
3 − l)3, (B.6)  

L2(l) = − 200
9 (l− 1

3), (B.7)  

L3(l) =
10
3 , (B.8)  

L4(l) = − 2000
9 (l− 1

3)(l−
1
30), (B.9)  

L5(l) =
200

9 (l− 1
30), (B.10)  

L6(l) =
4

0.34(l −
1
30)

3, (B.11)  

where l = r/LRVE is a normalized fiber length with ( 1
30⩽l⩽1

3). The minimum of l = 1
30 prevents having the fibers of very short length. 

B.3. Direction cosine distributions 

C1(c) =
1
2(1− c), (B.12)  

C2(c) =
{
−c −1⩽c⩽0,
c 0 < 1, (B.13)  

C3(c) =
1
2, (B.14)  

C4(c) =
3
4(1− c2), (B.15)  

C5(c) =
1
2(1+ c), (B.16)  

where c (−1⩽c ≤ 1) is the cosine of the angle between a pair of fibers adjacent to the same network node. 

I. Davoodi Kermani et al.                                                                                                                                                                                                                     



Computational Materials Science 199 (2021) 110711

14

Appendix C. Relation between morphological descriptors and mechanical properties of the networks with fiber diameter of LRVE/500 

The studies shown in Section 4.1 were performed also for networks with a fiber diameter of LRVE/500 (ten times smaller than the one used in 
Section 4.1). As shown in the following, this changes the results quantitatively, but not qualitatively, underlining the robustness of our conclusions. 

See Figs. C.13–C.15. 

Fig. C.13. For the 16 different RVE categories considered in this study, we computed for (a) Young’s modulus and (b) Poisson’s ratio the relative variances and 
maximal deviations from their mean values, averaged across all RVE types belonging to the respective RVE category. Apparently, fixing the four descriptors valency 
distribution, fiber length distribution, direction cosine distribution and number of fibers reduced the statistical variance of the mechanical properties nearly to zero. 

Fig. C.14. (a) Young’s modulus for a representative selection of RVE types normalized by the number of fibers Fq (and the homogenized mean Young’s modulus 
Eref = 9.4e3 MPa of the RVE type V3L3C3F1); (b) fixing more and more descriptors, the relative variance (σ2) of Young’s modulus in the resulting RVE categories 
(boxes) decreases by a percentage indicated next to the lines connecting an RVE category with one resulting from fixing one more descriptor, respectively. 
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A B S T R A C T

At the microscale, various materials from biological tissues to nanoporous metals are formed by networks of
ligaments. Here we propose a highly efficient simulated annealing (SA) framework for generating synthetic
representative volume elements (RVE) of such materials. It can produce RVE where the microstructural
characteristics both on the network level (e.g., node valency and ligament length) and on the level of individual
ligaments (e.g., curvature) can be predefined by the user via probability distributions. As an application
example of our framework, we generate a large variety of RVEs, analyze their mechanical properties by the
finite element method, and establish through this approach links between microstructural descriptors and
macromechanical properties of materials with ligamentous microstructures.

1. Introduction

Numerous natural and industrial materials exhibit a microstructure
that is essentially a network of ligaments. These ligaments can be
different kinds of bio-fibers [1–4] or metallic ligaments as arising in
nanoporous metals (NPMs) [5–8]. Therefore the generation, character-
ization, and analysis of fiber structures increasingly came into focus
in recent years [9–22]. Theoretical predictions of the macroscopic
properties of materials based on their microstructure are typically
possible only for materials with a relatively simple microstructure or
in the sense of general scaling relations. For complex microstructures,
the quantitative prediction of macroscopic mechanical properties is
typically possible only by computational modeling. Such computational
models analyze so-called representative volume elements (RVE). These are
(typically cubic) domains just large enough to represent the essential
macroscopic properties of a material of interest and at the same time,
small enough to keep computations affordable [23–29].

RVEs of ligamentous materials are composed by a number of lig-
aments (e.g., fibers) connected to each other at specific points called
junctions or nodes. In some cases, the ligaments may be arranged
following a specific (deterministic) structure and they may exhibit a
uniform shape (e.g., straight cylindrical fibers). However, in general,

< Corresponding author at: Institute for Computational Mechanics, School of Engineering and Design, Technical University of Munich, Boltzmannstrasse 15,
D-85748 Garching, Germany.

E-mail address: iman.davoodi@tum.de (I. Davoodi Kermani).

both shape and arrangement of the ligaments are random [30–32]. So
far, computational studies of ligamentous RVE are largely limited to lig-
ament arrangements that are either fully structured [33–36] or exhibit
only slight random perturbations of very specific properties [37–42].
Comprehensive studies beyond this scope remain still wanting because
they require efficient algorithms for the generation of RVEs with gen-
eral ligamentous random microstructures. To overcome this limitation
at least in parts, we recently proposed an algorithm that was able
to generate (nearly) arbitrary RVE with ligamentous microstructure
with the only major limitation that the individual ligaments were
cylindrical [28].

In this paper, we propose an extension of [28]. This extension
enables the generation of RVE with a microstructure where not only
the network structure formed by the ligaments is arbitrary but also the
shape of the individual ligaments. To achieve this, we present a two-
stage approach. During the first stage, a random network of ligaments is
generated by so-called simulated annealing (SA) [10,43–46]. During the
second stage of our framework, the individual ligaments are assigned
shapes following user-defined random distributions. Specifically, we
use the ligament thickness and curvature as primary descriptors of their
shape. Our two-stage approach for generating ligamentous RVE can
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be understood as a divide-and-conquer approach gradually adding up
geometrical complexities of the final microstructure. This divide-and-
conquer approach is computationally highly efficient. It provides for
the first time a framework to produce random ligament networks which
conform to specific predefined microstructural descriptors both on the
network and the ligament level. The RVEs generated with our method
are homogeneous, isotropic, fully periodic and connected network of
ligaments. This means in particular, the ligament phase is continuous
within a single RVE and, if we repeat that RVE in one of the three
directions aligned with its edges, the resulting larger material volume
has still a continuous ligament phase.

To demonstrate the advantages of our new approach, we employed
it to generate a large variety of different RVEs with systematic vari-
ations of their key microstructural descriptors. Subsequently, we em-
ployed the finite element method (FEM) to study the macroscopic
mechanical behavior of the generated RVEs [47,48]. This provided
important insights into the relation between the macroscopic properties
and microstructure.

This article is organized as follows: In Section 2, we present the
mathematical definition of the microstructural descriptors used in this
study. The novel two-stage approach for generating tailor-made liga-
mentous RVEs is introduced step by step in Section 3. The numerical
examples are presented in Section 4. Finally, the article closes with the
conclusions in Section 5.

2. Descriptors of ligamentous microstructures

Microstructures can in general be characterized by a number of so-
called descriptors. These descriptors are measure of certain geometric
properties of the microstructure. In a porous material, such descriptors
can, for example, be the solid and void volume fractions or the average
pore size or also the statistical distribution of pore sizes. A ligamentous
microstructure contains a number of ligaments connected at specific
points called nodes or junctions. In other words, nodes and ligaments
are the key constituents of a ligamentous RVE. Hence, to characterize a
ligamentous RVE, one needs descriptors characterizing the geometry of
ligaments and junctions in some sense. Generally, one can distinguish
between descriptors at the network level and descriptors at the compo-
nent (ligament or node) level as discussed in more detail in Sections 2.1
and 2.2. Herein, the superscript i denotes descriptors related to the ith
junction or the ith ligament.

2.1. Network level descriptors

The network level descriptors are the descriptors which define
the network’s morphology independent of its components’ shape. This
means, they define the position of the junctions in space and their
connectivity, that is, which junction is connected to which other junc-
tion by a ligament. In the first stage of the method developed herein,
we focus on network level descriptors only. As demonstrated by [28],
among the numerous theoretically possible network descriptors, only
the following four are important for the mechanical behavior of the
network (and thus considered in this article).

Junction valency distribution V is the probability distribution of
the junction valencies in the network. The valency of the ith
junction vi is the number of ligaments connected to this junc-
tion.

Adjacent junctions’ distance distribution L is the probability dis-
tribution of the euclidean distance between all pairs of adjacent
junctions. In a ligamentous network, two junctions are called
adjacent if and only if they are connected to each other directly
by a single ligament. In a network with straight ligaments,
the distance between adjacent junctions equals the length of
corresponding ligament. By contrast, if a ligament is curved, its
length is larger than the euclidean distance between the two
junctions it connects. In general the distance between the two
junctions connected by the ith ligament is denoted as li.

Direction cosine distribution C : assume junction i has the valency
vi. Then we can define pairs of ligaments mutually connected
at this junction. For example, if vi = 3, three such pairs can be
defined, formed by the first and second ligament, the first and
third ligament, and the second and third ligament, respectively.
For each ligament we can define a straight line between the
two junctions it connects. Then, for each pair of ligaments, one
can compute the cosine of the angle between these two lines.
This can be done for all junctions in the network. The set of
all cosines computed this way yields a specific distribution. This
distribution is called the direction cosine distribution C of the
network.

Compactness of the network is determined by Nj , the mean number
of junctions per unit volume of the RVE, and Nl, the mean
number of ligaments per unit volume of the RVE. For an RVE
with edge length of lRV E and nj junctions, the following relation
exists

Nl =
1

2 ù (lRV E )3

nj…
i=1

vi. (1)

That is, Nj and Nl are not independent and we need only one
of both to specify the compactness of the network.

2.2. Component level descriptors

The component level descriptors are the descriptors which define
the geometry of individual network components (i.e. junctions and
ligaments) and are used in the second stage of our suggested approach.
A large variety of component level descriptors could in principle be
defined. As the main focus of this article is a proof of concept how
RVE can be generated in a two-stage procedure distinguishing between
network and component level descriptors, we limit the scope of this
article to three particularly prominent component level descriptors. We
note, however, that the addition of further component level descriptors
into our framework would be straightforward. The definitions of the
following three component level descriptors are also illustrated in Fig. 1
for a specific ligament.

Junction’s radius distribution rj is the probability distribution gov-
erning the radius of all the junctions in the RVE. That is,
the junctions are modeled as spheres where the radius of ith
junction is indicated by rij , which can be considered a random
variable drawn from the distribution rj .

Ligament’s cross-section radius rl is considered to be variable along
the ligament. For the ith ligament we define a local coordinate
system whose first axis, the xi-axis, connects the start and end
point of the ligament by a straight line. Then the variation of
the cross-section radius along the ith ligament can be described
by ril

�
xi
�
(Fig. 1). This function can be expressed as a sum of

polynomials

ril
�
xi
�
=

kmax…
k=0

dik
�
xi
�k , 0 f xi f li, (2)

where li is the euclidean distance between the start point and
end point of the ith ligament. In case the function ril

�
xi
�
is

known – for example from experimental imaging data – the
coefficients dik directly result from a Taylor series

dik =
ril
(k) (0)
k! , (3)

where ril
(k) (0) is the kth derivative of ril

�
xi
�
at xi = 0. To

generate synthetic RVE, the function ril
�
xi
�
can be defined

by selecting coefficients dik according to certain criteria. This
selection can be deterministic or stochastic according to certain
predefined random distributions.
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Fig. 1. (a) 2D and (b) 3D view of ith ligament (blue) and its adjacent junctions (red).

Ligament’s curvature  : assume a local xi*yi*zi-coordinate system
attached to the ith ligament where the xi-axis is defined as
pointed out above. In general ligaments may exhibit a curved
shape. Herein, we consider for simplicity only ligaments with a
non-zero curvature in the xi*yi-plane. In this case, the shape of
the ligament can be modeled by a function yi(xi) (Fig. 1), which
can in general be expressed by a Fourier series:

yi
�
xi
�
=

ai0
2 +

fmax…
n=1

4
ain cos

0
⇡nxi
li

1
+ bin sin

0
⇡nxi
li

15
, (4)

where

ain =
2
li  

li

0
yi
�
xi
�
cos

0
⇡nxi
li

1
dxi, (5a)

bin =
2
li  

li

0
yi
�
xi
�
sin

0
⇡nxi
li

1
dxi. (5b)

If yi
�
xi
�
is given, the coefficients ain and bin can be calculated

from Eqs. (5a) and (5b). Conversely, defining the coefficients ain
and bin during the RVE generation allows the generation of arbi-
trary ligament shapes (if a sufficient number n of Fourier modes
is included and under the limitation of non-zero curvature in the
xi*yi-plane only). Given yi

�
xi
�
, the ligament’s curvature can be

computed as

i �xi� =

ÛÛÛÛ
d2yi

(dxi)2
ÛÛÛÛ

4
1 +

⇠
dyi
dxi

⇡25 3
2

. (6)

3. RVE generating methodology

Due to the stochastic microstructure of typical ligamentous mate-
rials, it is not possible to define a unique unit cell for them. Rather
an RVE with a stochastic structure is required that is large enough to
represent the essential properties of the material with sufficiently low
random variations. Here, we propose a two-stage approach to generate
ligamentous RVE whose microstructure can be tailored by pre-defining
certain characteristic descriptors. In Section 3.1 we briefly introduced
simulated annealing (SA), the general concept on which our approach
relies. Subsequently, in Section 3.2 we point out in detail how SA can
be used in the first stage of our approach to generate a ligamentous RVE
considering the descriptors of network level. In Section 3.3 we explain
how in the second stage we can assign the descriptors of component
level to the overall network structure generated in the first stage.

3.1. Simulated annealing method

Simulated annealing (SA) is a numerical optimization method for
creating complex random structures according to certain predefined
criteria. The method’s name refers to annealing in metallurgy which en-
tails systematic heating and gradual cooling to achieve desired changes
of a material’s microstructure via stochastic, thermally driven rear-
rangement. SA starts with a certain random structure and optimizes
that structure step by step until the optimal agreement with the prede-
fined criteria is achieved. The intermediate steps are stochastic, which
endows SA with a relatively high ability to find global optima rather
than getting trapped in local optima. That is, the intermediate steps of
SA are not strictly seeking to further optimize the structure but also
allow transient worsening with a certain likelihood that is governed
by a temperature-like variable. Initially, this temperature-like variable
is chosen high and then gradually decreased. In this way, SA initially
can explore large parts of the parameter space whereas in the later
stage it increasingly seeks straightforward optimization, finally yielding
a converged solution.

To measure optimality of a given configuration, SA requires a cost
function, which is often also referred to as energy function (noting that
annealing in metallurgy seeks to minimize free energy). In short, the
application of SA requires the definition of the following:

(1) Initial configuration and constraints of the optimization problem;
(2) Perturbation mechanism defining how the solution at the (i+1)-th

iteration is obtained from the solution at the ith iteration. The
perturbation mechanism has to be compatible with the problem
constraints;

(3) Energy functionmeasuring the optimality of a given configuration
by a scalar value;

(4) Cooling schedule determining how the probability of accepting it-
erations decreasing the optimality of the configuration changes;

(5) Cut-off criterion terminating SA (e.g., when a maximal number
of iterations is reached or when the cost function is acceptably
small).

The following subsection explains how SA is applied herein to
generate ligamentous RVE.

3.2. RVE generation at network level

In Section 2, we categorized the RVE descriptors into the two groups
of network level descriptors and component level descriptors. Our
suggested RVE generating algorithm also uses a similar classification
and generates the RVE at two stages. In the first stage, it generates
the overall network structure (defined by the position, valency, and
connectivity of the junctions) without taking into consideration the
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Fig. 2. (a) Discretization of a continuous probability distribution using Nr bins to each of which we assign a likelihood representative of the likelihood of the continuous distribution
in the domain of that bin; (b) Local coordinate system (xi , yi , zi) of ith ligament and global coordinate systems (X, Y ,Z).

shape of junctions or ligaments. To generate the network structure, we
use the method previously introduced in [28]. That is, we generate
a (fully connected) random initial network consisting of a number of
junctions that exactly matches a predefined target value. Moreover,
each junction is randomly assigned a valency according to a predefined
target valency distribution. During the subsequent SA, the number of
junctions as well as the junction valency distribution are kept constant
to ensure that both descriptors match their targets in each SA step.
Hence, during the SA the network structure need only be rearranged
such that it matches as well as possible target distributions predefined
for the adjacent junctions’ distance and the direction cosine, the other
two key descriptors at network level. To this end, a cost function
(energy function) is defined that penalizes deviations of the current
values of these descriptors from their respective predefined targets. For
more details, the reader is referred to [28].

3.3. RVE generation at component level

After we have generated an overall network structure in the first
stage, we assign in the second stage of our framework to each ligament
and junction a specific shape using the above introduced component
level descriptors.

3.3.1. Radius of junctions
The junctions are modeled as spheres with a radius of rij . This

radius is considered a random variable drawn from some predefined
continuous distribution Rj allowing junction radii in the range rmin f
rij < rmax. For our numerical implementation, we first discretize the
distribution Rj . To this end, we uniformly divide the interval [rmin, rmax]
into Nr bins. Each bin is represented by the radius value in its center.
This discrete radius value is assigned a likelihood proportional to
the value of Rj at this center (normalized such that the sum of the
likelihoods of all bins equals one). This discretization is illustrated
in Fig. 2-(a). Given a total number of Nj junctions (predefined as a
network level descriptor), each bin is randomly assigned a number of
junctions in the network that is proportional to its discrete likelihood.
The respective junctions are assigned the radius value at the center of
their respective bin. This way, we have created a set of junctions with
a radius distribution following a predefined distribution Rj .

3.3.2. Radius of ligaments
After assigning shapes to the junctions, we can shape the ligaments

by applying the Eq. (2). Each ligament is shaped independently, which
allows efficient parallel computing in case of large RVE. As boundary
conditions we impose that the radius of a ligament at its two ends
must be equal to the radius of the respective junctions at these ends.
If we choose ril

�
xi
�
in Eq. (2) as a linear function this automatically

determined the two available polynomial coefficients di0 and di1. By
contrast, if one decides to generate RVE with ligaments where the
radius of the ligaments varies along the ligaments according to a higher
order polynomial function, further coefficients have to be chosen. These
can either be chosen deterministically or by a method similar to the
one described in Section 3.3.1 for the junction radius based on some
predefined distributions.

3.3.3. Curvature of ligaments
Our RVE are endowed with a fixed global coordinate system

(X, Y ,Z) whose axes are aligned with the edges of our RVE and whose
origin is located in one of the corners of the RVE. From this global
coordinate system, we create for each ith ligament a local one in three
steps: first, we compute an intermediate coordinate system (Xi, Y i,Zi)
resulting from the (X, Y ,Z) system by rotation with a random angle
✓i around the X-axis. In the second step, we compute the Euler angle
between the Xi-axis and the line that connects the two junctions
confining the ith ligament. In the third step, we rotate the whole
intermediate system (Xi, Y i,Zi) by that Euler angle and translate its
origin into the center of one of the two junctions confining the ith
ligament. This rotation yields us a local coordinate system (xi, yi, zi)
whose xi-axis connects the two junctions of the ith ligament. Drawing
the random angle ✓i from a uniform distribution in the range [0, 2⇡]
ensures that the directions of the yi-axes are uniformly distributed in
the plane perpendicular to the xi-axis. The local coordinate system
(xi, yi, zi) is illustrated in Fig. 2-(b). Within this system, the curvature
of the ligament is defined according to (4).

4. Numerical examples

4.1. Generations of sample RVE

The whole above described two-stage workflow for generating RVE
is summarized in Fig. 3. We used this workflow to generate a large
number of RVEs sampling the configurational space by systematic
variations of the descriptors both at the network and component level
within the physically reasonable bounds.
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Fig. 3. Workflow of the suggested two-stage ligamentous network generating approach. At the first stage, it generates the network structure based on predefined network descriptors.
At the second stage, it adds the junction’s and ligament’s geometry to the product of stage one. A sample realization of a generated RVE at the first stage and second stage of
this approach is also presented.

Fig. 4. Target distributions of (a) junction valency V , (b) adjacent junctions’ distance L and (c) direction cosine C.

4.1.1. Descriptors at network level
For the three network descriptors junction valency (V ), adjacent

junctions’ distance (L), and direction cosine (C), one uniform probabil-
ity distribution (U) and one linearly ascending probability distribution
(LA) were sampled as target distributions for the RVE generation
(Fig. 4) for a total number of ligaments of 2000 (Nl = 2000). These
variations result in 23 = 8 different network morphologies referred to
in the following as NM1, . . . , NM8. Their specifications are listed in
Table 1.

4.1.2. Descriptors at component level
At component level, target descriptors for the RVE generation were

defined in the following way.

(1) Junctions’ radii: First, we studied the case that all junctions had
the same radius. In this case, we studied the radii rj_lRV E =
0.005, 0.01, 0.015, 0.02. Second, we studied the case of junction
radii uniformly distributed in the interval [0.005, 0.02]_lRV E .
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Table 1
Selection of junction valency distribution V , adja-
cent junctions’ distance distribution L and direction
cosine distribution C for different network morpholo-
gies (NMs) (U : uniform probability distribution; LA:
linearly ascending probability distribution).
Label V L C

NM1 U U U
NM2 U U LA
NM3 U LA U
NM4 U LA LA
NM5 LA U U
NM6 LA U LA
NM7 LA LA U
NM8 LA LA LA

Table 2
For ligaments confined by two junctions of equal radius rj the following parameters for
Eq. (7) were tested. The 5th column lists the ligament radii at the ligament center and
the 6th one Vrel , the ratio of the ligament volume compared to the case of a ligament
with equal radius at the two ends but cylindrical shape.
Label di

2 di
1 di

0 ril(l
i_2)_rj Vrel

Convex II *4rj_(li)2 4rj_li rj 2 43_15
Convex I *2rj_(li)2 2rj_li rj 3_2 9_5
Cylindrical 0 0 rj 1 1
Concave I 4rj_3(li)2 *4rj_3li rj 2_3 83_135
Concave II 2rj_(li)2 *2rj_li rj 1_2 7_15

Table 3
For ligaments confined by two junctions of in general
different radius, the following parameters for Eq. (7)
were tested where �ril is the absolute value of the
difference between the radii of the two junctions
confining the ligament.
Label di

2 di
1 di

0

Convex *�ril_(l
i)2 2�ril_l

i ril(0)
Conical 0 �ril_l

i ril(0)
Concave �ril_(l

i)2 0 ril(0)

(2) Ligaments’ cross-sections radius: setting kmax = 2, we included
in the Taylor series in Eq. (2) terms up to the second order, that
is,

ril
�
xi
�
= di2

�
xi
�2 + di1x

i + di0. (7)

For each ligament, we assigned a desired value to the coefficient
di2 then the two other coefficients di1 and di0 were determined
by the constraint that the ligament radius at both ends had
to be equal to the radius of the respective junction. Note that
di2 < 0 yields a convex ligament shape, di2 > 0 a concave shape,
and di2 = 0 ligaments with a linear transition between the two
adjacent junctions.
For the RVE where all junctions had an equal radius, we studied
five different values for di2 as defined in Table 2. In the case of
networks with variable junction radii, the three different sets of
coefficients defined in Table 3 were used.

(3) Ligaments’ curvature: for simplicity, we focused on fibers with
sinusoidal curvature only. That is, in Eq. (4) we set fmax = 1 and
ain = 0 yielding the simplified version

yi
�
xi
�
= bi1 sin

�
⇡xi_li

�
. (8)

with bi1 the only free parameter for each ligament. In
our study, we examined RVE with the specific values bi1 =
0.03, 0.06, … , 0.15.

A schematic two-dimensional illustration of the different ligament
shapes generated in the above way and tested in our study is presented
in Fig. 5.

4.2. Finite element analysis

To determine the mechanical properties of the RVE generated as
described in Section 4.1, we used a previously established and validated
analysis pipeline based on the finite element (FE) software Abaqus,
which translates the RVE geometries into finite element models using
beam elements of type B31 [38,41]. So far, this pipeline had been
applied only to unit cells with cubic boundaries, such as diamond
or fcc (face-centered cubic) cells that allowed to generate larger mi-
crostructures with multiple copies of the unit cell and subsequent
randomization. By contrast, for this work, a Python interface was
written that reads the nodes and topology information along with the
microstructure descriptors from the output of the simulated annealing
code described in Section 3. Instead of applying a distortion of the
connection between two junctions for generating curved ligaments as
proposed in [38,39], a meshing subroutine generated FE nodes along
the curved path defined by Eq. (8).

Commonly, models with variable ligament radius and curved lig-
ament axis are meshed with 20 beam elements per ligament [38,39,
41,48]. Because of the larger number of ligaments modeled in the
RVE, here each ligament is discretized with 10 finite beam elements,
as an acceptable trade-off between computational cost and accuracy.
The mesh study provided in Appendix A demonstrates that this leads
to a negligible increase in macroscopic stiffness of 1.5%. For each
element, the radius at its center was calculated according to Eq. (7)
and assigned as element radius. For simplicity, the nodal correction
proposed in [48], which requires 20 elements per ligament, was not
applied in this work. This as well as neglecting contact interactions
lead to a systematic underestimation of the stiffness of the RVE. This
underestimation affected all RVE in a similar manner and, therefore did
not pose a major obstacle in determining the relation between specific
microstructural descriptors and the RVE stiffness.

The microstructure generated by the simulated annealing algorithm
is not a solid cube. Instead of the common approach of creating periodic
boundary conditions using ordered node sets for faces, edges, and cor-
ners, we hence applied periodic boundary conditions to individual FE
nodes and their periodic counterparts in one, two, or three coordinate
directions. Depending on the number of nodes to be coupled per node
set, a suitable periodic boundary condition was written that ensured
that degrees of freedom were not eliminated more than once through
the coupling equations. Macroscopic displacement boundary conditions
were applied through dummy nodes, which allowed loading of the
RVE by arbitrary normal and shear strains. Some examples of loaded
RVEs are shown in Fig. 6 for an increasing number of ligaments Nl.
The examples demonstrate that the stress was distributed well within
the RVE and across the boundaries. Because the simulated annealing
code created also dangling ligaments with a valency of vi = 1 at one
end, some ligaments were unstressed (blue) over their whole length.
Other ligaments that visually appeared to be dangling or disconnected,
preferably located at the boundaries, showed non-zero stress due to
the applied periodic boundary conditions. The resulting stress state
of the RVE was computed from the reaction forces in the dummy-
nodes assuming small deformations. For computing the constants of
the elasticity tensor, three independent normal and shear deformations
were analyzed with strains of 0.1%. Young’s moduli Ei are determined
from predefined normal strains ✏i and resulting stress �i of the uniaxi-
ally deformed RVE by Ei = �i_✏i. Poisson’s ratios ⌫ij are determined
from predefined normal strains ✏i and resulting lateral strains ✏j by
⌫ij = *✏j_✏i with i ë j. The shear moduli are determined from simple
shear deformations �ij = ✏ij + ✏ji = 0.1% and the resulting shear stress
⌧ij by Gij = ⌧ij_�ij .

Averaged values of the elastic constants were computed from all
loading directions by assuming cubic symmetry. Too small number of
ligaments Nl can lead to two problems: first, the mechanical properties
of the examined microstructure may be subject to large stochastic
variations (i.e., the examined volume element is not yet statistically
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Fig. 5. In our study we examined 48 different types of ligament shapes for networks with (a) uniform and (b) nonuniform radii of the junctions. Note that for clarity of the
illustration, the horizontal and vertical scales are not equal so that angle in this illustration do not agree with the ones of the actual ligaments.

Fig. 6. Examples of FE beam models created from the output of our two-stage simulated annealing approach with an increasing number of ligaments (a) Nl = 135, (b) Nl = 540,
(c) Nl = 2160, (d) Nl = 8640.

representative); second, an apparent anisotropy may be observed (as
a statistical artifact). To ensure that Nl = 540 was sufficiently high
to represent truly isotropic representative volume elements, we first
performed a parameter study whose results are shown in Fig. 7. In
this study, we generated RVEs with different numbers of ligaments
Nl. Each RVE had the same solid fraction of ' = 0.28. For each
value of Nl we generated 10 different RVEs (with the same statistical
distributions for the key microstructural descriptors). For each RVE we

calculated the elastic constants from our finite element simulations. For
numbers of ligaments Nl g 540, the scatter of the calculated elastic
constants E, G, and ⌫ was negligibly small. Moreover, G agreed very
well with the value Giso = E_[2(1+ ⌫)] expected for isotropic materials.
We thus concluded that a number of ligaments of Nl g 540 was
sufficient for our purposes. That is, Nl g 540 ensures that the volume
elements are mechanically representative. Our volume elements are
also representative in a geometric sense because in our RVE with Nl g
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Fig. 7. Scatter in the determined elastic properties for varying number of ligaments Nl : (a) Young’s modulus E, shear modulus G, and Giso = E_[2(1 + ⌫)]; (b) Poisson’s ratio ⌫.

540 the mesh size of the network is much smaller than edge length of
the RVE.

We note that in the current model for simplicity the interference
and contact mechanics of ligaments was not taken into consideration.
According to [49], this simplification has only a minor effect for solid
volume fractions up to 20%. For higher volume fractions, the results
reported herein still allow us to understand general trends in the rela-
tion between microstructural descriptors and macroscopic properties,
though their quantitative accuracy will be increasingly compromised
as the volume fraction increased.

4.3. Interpretation of results of the finite element analysis

In porous structures, it is very common to model the macroscopic
Young’s modulus E as a function of the solid volume fraction ' which
is the relative volume of the solid phase (i.e. ligament phase) to the
volume of the RVE [38,39,41,50,51]. This goes back to the famous
Gibson-Ashby model [52]
E
Eb

= CE'm, (9)

where E and Eb are the macroscopic elasticity of network and bulk
solid phase respectively, and CE is the leading constant. Accord-
ing to [53], the exponent m in Eq. (9) is 1 for networks with a
tension/compression-dominated behavior and it is 2 if the main defor-
mation mode of the ligaments is bending.

Under the assumption that the ligaments in the random network
deform dominantly by bending [38], it is expected at the first glance
that Young’s modulus follows the Gibson-Ashby scaling law (9), i.e. the
macroscopic modulus should be constant for unchanged solid fraction.
However, as can be seen from Fig. 7, in our networks Young’s modulus
and shear modulus decreased with increasing number of ligaments,
even when the solid volume fraction ' was kept constant. This is
because CE in (9) is only constant as long as the network architecture is
constant. This, however, was not the case in parameter study illustrated
in Fig. 7. Generally, this observation indicates that further descriptors
beyond the solid volume fraction ' need to be taken into account to
interpret the results of a mechanical analysis of our RVE. To overcome
this problem, [41] proposed a multiplicative decomposition of the form

E
Eb

= ÇE0(') � ÇEC (vi), (10)

where the functions ÇE0 and ÇEC define the dependencies of the solid
fraction ' and of the connectivity, respectively. This concept can be
further generalized to a relation of the type
E
Eb

= f1(P1) � f2(P2) � ..., (11)

with some functions fi each depending on some specific microstruc-
tural descriptor Pi. Herein, we used such generalized Gibson-Ashby
scaling relations to interpret the results of the finite element analyses
performed.

4.4. Mechanical properties of sample RVE

4.4.1. Networks with junctions of equal size
First, we studied networks where all the junctions had the same

radius. Combining all the aforementioned values of descriptors at net-
work and component level, this lead to 960 different types of RVE: (8
network morphologies) ù (5 ligament shapes) ù (6 degrees of curva-
ture) ù (4 junction sizes). For each of these RVE types, we generated 5
different realizations. Hence, 4800 sample RVE were generated, among
which 4220 RVE were acceptable from a physical point of view (RVE
with ' > 1 were discarded as physically meaningless). The averaged
values of the mechanical properties for these different realizations were
used for further discussion.

The relation between the macroscopic Young’s modulus E and
Poisson’s ratio ⌫ on the one hand and the junction radius on the other
hand is plotted in Fig. 8 (normalized by the Young’s modulus of the bulk
solid phase Eb = 80 GPa and its Poisson’s ratio ⌫b = 0.42, respectively).
In this figure, only the results of straight ligaments with a constant
cross-section radius are plotted. Note that in this case all the ligaments
within the network had the same cross-section radius, which is the
respective junction radius rj . The plots for different ligament shapes
and curvatures are presented in Appendix B. To identify deviations
from the original Gibson-Ashby scaling law in Eq. (9), the macroscopic
Young’s modulus is normalized by Eb'2. The results presented in Fig. 8-
(a) underline that, as already discussed above, Young’s modulus is not
exclusively governed by the solid volume fraction (as in the Gibson-
Ashby theory) but strongly depends also on the network morphology.
However, for a specific network morphology, Eq. (9) appears to form a
reasonable approximation, given that for many morphologies the nor-
malized Young’s modulus is a largely constant function of the ligament
radius. According to Fig. 8-(b), also Poisson’s ratio only weekly depends
on the junction radius.

Fig. 9 shows the scaled Young’s modulus and Poisson’s ratio of
RVE with the network morphology NM1 and rj_lRV E = 0.005 for
all considered values of b1 and di2. It illustrates how the RVE prop-
erties change with the ligament curvature and shape. As expected,
the scaled Young’s modulus decreases with increasing curvature of the
ligament axis although an increasing curvature is associated with an
increasing volume fraction. This means that the stiffness loss due to
curved ligaments dominates the change in the macroscopic properties.
For RVE with constant ligament curvature, Young’s modulus increases
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Fig. 8. (a) Scaled Young’s modulus and (b) Poisson’s ratio versus radius of junctions in the RVEs with different network morphologies and straight cylindrical ligaments. Results
for the uniform valency distribution are in red, for the linearly ascending distribution in blue. Uniform and linearly ascending distributions of L are distinguished by dotted and
dashed lines, respectively. Circle and square markers denote a uniform and linearly ascending distribution of C, respectively.

Fig. 9. (a) Scaled Young’s modulus and (b) Poisson’s ratio of RVE with network morphology NM1 (uniform valency, adjacent junctions’ distance, and direction cosine distributions)
and rj_lRV E = 0.005 with various ligament convexities and curvatures.

when the ligament shape change from concave to convex (particularly
clearly visible from Figs. B.13 and B.14 where the results are shown
with a different scaling of the vertical axis). Both observations are
in agreement with findings in [39,48] obtained for the special case
of diamond structures (vi = 4). Poisson’s ratio, shown in Fig. 9-(b),
exhibits a qualitatively similar behavior.

4.4.2. Networks with uniform junction size distribution
Considering for junction sizes uniformly distributed in the interval

[0.005, 0.02]_lRV E five networks for each possible combination of the
descriptors V , L, C, di2, b1 (within the above specific bounds and
distributions) resulted in 720 RVE. In analogy to Section 4.4.1, the
averaged values of the mechanical properties of the 5 realizations of
each network type are presented in Fig. 10. Again, the variation of the
mechanical properties due to variations of descriptors at the component
and at the network level were found to be largely independent. There-
fore, in Fig. 10, we categorized all the sample RVEs into three groups
(convex, conical and concave) and normalized Young’s modulus and
Poisson’s ratio by the reference values Eref and ⌫ref of an RVE with

the same network morphology NMi, straight ligaments (b1 = 0) and
conical shape (di2 = 0).

Fig. 10 reveals that both Young’s modulus and Poisson’s ratio de-
crease with increasing (the absolute value of) the curvature of the
ligament. Young’s modulus clearly increases with ligament convexity.
This is in agreement with previous studies for the special case of
diamond structures (vi = 4) with cylindrical ligaments [38,39], where
a different approach for the randomization of the ligament axis was
used. Poisson’s ratio is almost independent of the ligaments’ convexity.
This can be interpreted such that the lateral expansion of the network
is mainly controlled by the network architecture rather than the shape
of the individual ligaments.

4.4.3. Scaling law for the Young’s modulus
The interpretation of experimental results and the prediction of

mechanical properties of open pore foams and nanoporous metals is
often based on the Gibson-Ashy scaling laws, where the focus is on the
volume fraction ' [52]. The literature provides various modifications
of Gibson-Ashy scaling laws, taking additional effects into account, see
e.g. [54]. Therein, a comparably simple network structure is assumed,
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Fig. 10. Macroscopic normalized (a) Young’s modulus and (b) Poisson’s ratio of the RVE with different descriptors at network and component levels where the junction radii
within the network were distributed uniformly in the interval [0.005, 0.02]_lRV E .

in which the individual ligaments undergo bending deformation. In our
case, the network structure is not fixed but a result of the choice of
descriptors. This is demonstrated in Fig. 7, where the solid fraction
is kept constant and, nevertheless, the macroscopic moduli drop dra-
matically with increasing number of ligaments and junctions. In the
general case considered in this work, the network structure is not fixed
and each descriptor may change the Young’s modulus beyond its effect
on the solid fraction. The investigation of this in detail is difficult,
because it is usually not possible to generate various configurations of
a fiber network in which a group of descriptors (either on the network
level or on the component level) are kept constant while one or a few
others are varied. Our novel two-stage simulated annealing algorithm
for generating RVE with tailor-made descriptors can overcome exactly
this key problem. It allows us to vary a single descriptor – while
keeping all the others constant – and study how variations of this
descriptor affect Young’s modulus. To underline how this focus changes
the situation compared to the situation classically studied with Gibson-
Ashby relations (where the network morphology is kept constant while
the solid volume fraction is varied) we present our results as graphs
revealing the relation between Young’s modulus and the solid volume
fraction. The latter, however, is now defined as a parameter whose
changes are driven by changes of one of the RVE descriptors. For
example, 'b denotes the solid volume fraction in cases where the
ligament curvature parameter in Eq. (8) is varied and all the other
descriptors of the RVE are kept constant. Analogously, 'd , 'r, and 'L
denote the solid volume fraction if the ligament convexity parameter in
(7) or the junction radius or distance between neighboring junctions are
changed while keeping all the other descriptors constant, respectively.

If we plot Young’s modulus against 'b, 'd , and 'r, we do not nec-
essarily expect any longer a quadratic dependence on the solid volume
fraction because now we consider changes of the solid volume fraction
associated with simultaneous changes of one other characteristic of
the microstructure. This is indeed what Fig. 11 shows for the network
morphology NM1. In Fig. 11-(a), the macroscopic Young’s modulus
was normalized by the Young’s modulus Eref of RVE with straight
cylindrical ligaments and a junction radius equal to 5 � 10*3lRV E . In
Fig. 11-(b), the macroscopic Young’s modulus of the network with
straight conical ligaments was chosen as Eref . The normalized Young’s
modulus increases with 'r and 'd but decreases with 'b. This is in
line with the above discussion of Figs. 8 and 9. That is, increasing the
descriptors rj and di2 increases the ligament cross-sections at junctions
and along the ligament axis, respectively, and thus increases the solid

volume fraction as well as the macroscopic stiffness. By contrast, the
descriptor b1 increases the curvature of the ligament axis. This also
leads to a volume increase but at the same time to a softening of the
network structure. Among the curves plotted in Fig. 11, E('r) and
E('d ) agree well with the quadratic slope (m = 2) expected from the
classical Gibson-Ashby law. This is the case because variations of the
junction radius or also the ligament convexity alter the amount of solid
volume but not the overall architecture of the network so that we
arrive at a situation largely comparable to the one studied by Gibson
and Ashby. Deviations from their theory for larger values of the solid
volume fraction can be explained by the transition from an Euler–
Bernoulli type to a Timoshekno type bending behavior of the ligaments
as already discussed in [38].

The situation is very different for E('b). Variations of the ligament
curvature fundamentally change the type of microstructure. Therefore,
the Gibson-Ashby theory is no longer applicable. Rather we observe a
negative slope which is due to the softening of the ligament stiffness
with increasing curvature of the ligament axis. Using the solid volume
fraction as a common basis allows comparing our results with previous
results reported by [39]. There, the effect of random perturbations of a
regular diamond microstructure on the macroscopic mechanical prop-
erties was studied. In particular, the effect of the out-of-axis distortion
A with 0 f A f 0.5 was examined. The results of [39] are included
in Fig. 11-(a) for r_l = 0.087. Apparently, they reveal a negative
slope close to the one we found for E('b) in the asymptotic limit. Of
note, however, our data start out from an undistorted axis, which may
explain the significantly higher slope for small solid volume fractions.

For the RVE with uniformly distributed junction radii, Young’s
modulus versus volume fraction is plotted in Fig. 11-(b). Because the
junction radii were statistically distributed, 'r could not directly be
controlled for this plot. We note, however, that E('d ) is again in
excellent agreement with the Gibson-Ashby scaling law and that E('b)
is again in excellent agreement with previously reported results of [39]
and qualitatively very similar to the relation found in Fig. 11-(a).

The results reported in Fig. 11 suggest that stiffness of nanoporous
materials may be captured by a generalized Gibson-Ashby law of the
type

E = CEfr('r)fb('b)fd ('d )fL('L). (12)

However, noting in particular E('b) in Fig. 11, one may assume
that the functions fr, fb, fd , and fL are not necessarily simple power
laws. Determining them would require many more samples and a
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Fig. 11. Normalized macroscopic Young’s modulus of RVE with the network morphology of NM1 versus solid volume fraction ' in case the junctions have (a) an equal radius
or (b) a uniformly distributed radius. The dashed lines indicate slopes m in the log–log plot.

careful study of possible interactions between the variations of different
descriptors. This is beyond the main objective of this paper which is
simply introducing a new two-stage algorithm for the generation of RVE
with ligament microstructure. The specific example and discussion in
Section 4.4.3 underline, however, the great potential, which this algo-
rithm offers for future computational studies of the micromechanics of
nanoporous materials.

5. Conclusion

In this paper, we proposed a two-stage simulated annealing al-
gorithm to generate networks of ligaments, where both the geomet-
ric properties of the network structure and of the ligaments can be
tightly controlled by prescribed descriptors. The first stage relies on
the approach previously developed in [28] for generating the network
architecture (determined by the number of ligaments, the junction va-
lency distribution, the adjacent junctions’ distance distribution, and the
direction cosine distribution). In the second stage, the geometry of the
ligaments is formed based on ligament level descriptors such as the ra-
dius of the junctions, and the convexity and curvature of the ligaments.
Our algorithm ensures that the generated networks are fully connected,
homogeneous, and isometric. Our approach is computationally efficient
at both stages and the second stage is even trivial to parallelize. We
introduced it on the basis of a certain set of widely used descriptors
of the network architecture and ligament geometry. However, this set
could easily be extended by further descriptors without altering the
major structure of the algorithm.

To demonstrate the potential of our new algorithm, we gener-
ated 5000 RVEs covering a large range of different microstructures.
Computing their mechanical properties by finite element analyses, we
performed a systematic study of the relation between microstructure
and mechanical properties in ligamentous RVEs. We found that the
Gibson-Ashby scaling law cannot easily be applied to cases where a
variation of the solid volume fraction is associated with a change of the
ligament network architecture itself. Rather, our results suggest that in
such cases a sort of generalized Gibson-Ashby law following the concept
of (12) may be required. The development and discussion of such a law
in a very general sense may be a promising avenue of future research.
The results of our analysis are consistent with previous studies [38,39]
but significantly go beyond them because our new algorithm can tightly
control variations of each single microstructural descriptor in the RVE
generation process so that the role of each descriptor can be examined

in a unprecedentedly systematic way. This underlines the potential of
our new algorithm that can be hoped to become a valuable tool in
future computational studies of nanoporous materials, which are a class
of materials that has attracted fast rising attention over the last decade.
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Fig. A.12. (a) Young’s modulus and (b) Poisson’s ratio of the RVEs of NM8 with uniform junction size distribution and curved conical ligaments where b1 = 0.15. The average
values corresponding to 20 elements per ligament are chosen as reference values.

Fig. B.13. Macroscopic (a) Young’s modulus and (b) Poisson’s ratio of RVEs with different ligament convexities (constant junction radius across RVE and straight ligaments).
Eref and ⌫ref are respectively Young’s modulus and Poisson’s ratio of the RVE with the network morphology NM1, straight cylindrical ligaments and a junction radius equal to
5lRV E_1000.

Appendix A. Mesh study of finite element analysis

To study the dependency of macroscopic mechanical properties on
the number of elements per ligament, we performed a mesh study
for the networks of NM1 with uniform junction size distribution and
curved conical ligaments where b1 = 0.15 (see Section 4.4.2). To this
end, for each of 5 RVE samples, we repeated the finite element calcula-
tions for 5, 10, 15 and 20 elements per ligament and the corresponding
Young’s modulus and Poisson’s ratio are presented in Fig. A.12. This fig-
ure confirms that the accuracy of results does not change significantly
by increasing the number of elements to more than 10 per ligament.
By increasing the number of elements per ligament from 10 to 20, the
Young’s modulus decreases by only about 1.5%, which is negligible
compared to other simplifications in modeling. Therefore, 10 elements

per ligament as used in this work for the calculation of the mechanical
properties ensures sufficient accuracy.

Appendix B. Mechanical properties of various network morpholo-
gies with curved ligaments of variable thickness

Fig. 8 presents data for networks with straight ligaments and con-
stant thickness. In this appendix we present further data for networks
with more general ligament geometries (but constant junction radius)
and all the 8 network morphologies listed in Table 2. The macroscopic
mechanical properties for the networks with different ligament convexi-
ties and different ligament curvatures are plotted in Figs. B.13 and B.14,
respectively. To draw the box plots presented in these figures, the data
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Fig. B.14. Macroscopic (a) Young’s modulus and (b) Poisson’s ratio of RVEs with different ligament curvatures (constant junction radius across RVE and cylindrical ligaments).
Eref and ⌫ref are respectively Young’s modulus and Poisson’s ratio of the RVE with the network morphology NM1, straight cylindrical ligaments and a junction radius equal to
5lRV E_1000.

for all network morphologies (NMs) are categorized into four categories
based on their junctions’ radius.
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