

Experimental Investigation of CaO/Ca(OH)₂ for Thermochemical Energy Storage – Commissioning of a 0.5 kWh Experimental Set-Up

Leander Morgenstern¹, Elija Talebi¹, Stephan Gleis¹, Florian Kerscher¹, Hartmut Spliethoff¹ ¹Chair of Energy Systems, Technical University of Munich, Boltzmannstr. 15, 85748 Garching b. München, Germany

24th Fluidized Bed Conversion Conference Gothenburg, 9 May 2022

Agenda

Thermochemical Energy Storage – Basics and Mate	erial System
Material System – Challenges	
Reactor and System Design	
Commissioning – First Results	
Conclusion and Outlook	

Thermochemical Energy Storage

Basics an Storage System

Principle: Heat storage in reaction enthalpy of gas-solid reaction

State of the art: Long term storage < 150 °C

Goal: (scalable) heat storage > 150°C, here: 400 °C - 600 °C

Material System: Calcium Oxide - Calcium Hydroxide

Advantages^[1]:

- + Cheap, abundant, Non-toxic
- + Theoretically no losses during storage period
- + High storage density
- + Decoupling of capacity and power^[2,3]

Material System

Challenges:

- Powdery material
- Agglomeration (in fixed bed)^[4,5]
- Heat transfer (limits power)^[2]

\rightarrow Fluidized bed

- Mechanical material stability (limits process)^[5,6]
 - \rightarrow Particle degradation/breakage

Required process and analytic parameters include:

PSD, u₀, (Differential-)pressure, Temperature(-profile), Densities, Porosities ...

ТШП

Reactor System and Design

- Reaction zone:
 - 1,8 L at d_i = 80 mm
 - 1,8 kg/h steam, $u_0 = 0 30$ cm/s
 - 850 °C, 4 bar_a
- Analytics:
 - 4x Temp. inside of fluidized bed
 - Absolute pressure
 - Differential pressure
- Blowback Filter System
- Analytical Ports
 (e.g. heat transfer probe)

Commissioning Procedure

Parameters

$$T_{set,Hyd.} = 456 \ ^{\circ}\text{C}$$
 $p_{set} = 1.4 \ \text{bar}_{abs}$ $T_{set,Dehyd.} = 586 \ ^{\circ}\text{C}$ $\dot{m}_{H_20} = 1.4 \ \text{kg/h}$ $T_{set,Kalz.} = 750 \ ^{\circ}\text{C}$ $CaCO_3 - 800 \ \text{g}$

Apparent reaction equilibrium of CaO/Ca(OH)₂ according to Angerer et. $al^{[3]}$ and theoretical equilibrium according to Samms et. al. ^[8]

Commissioning – Results – Temperature

CaCO₃, Calc. in H₂O, T_{set,Hyd.} = 456 °C, T_{set,Dehyd.} = 586 °C, T_{set,Kalz.} = 750 °C, p_{set} = 1.4 bar, m_{H_2O} = 1.4 kg/h, u₀ = 18.2 - 21.5 cm/s (at T_{set})

- Full conversion in every cycle (TGA)
- Good fluidization quality
- Reproducible reaction conditions

T-31.1: 10 mm – 100 mm **T-31.2:** pos. T-31.1 + 80 mm **T-31.3:** pos. T-31.2 + 80 mm

Commissioning – Results – PSD

CaCO₃, Calc. in H₂O, T_{set,Hyd.} = 456 °C, T_{set,Dehyd.} = 586 °C, T_{set,Kalz.} = 750 °C, p_{set} = 1.4 bar, m_{H_2O} = 1.4 kg/h, u₀ = 18.2 - 21.5 cm/s (at T_{set})

- Particle breakage
- Loss of material from reaction zone
- Material in reaction zone still fluidizable
- No agglomeration in fluidized bed
- \rightarrow Quantification of breakage
- \rightarrow Handling of fines and Make-up

Conclusion

Challenges in thermochemical heat storage with CaO/Ca(OH)₂

- Poor heat conductivity limits power
- Particle breakage limits process

New experimental setup for long-term operation designed, built and commissioned successfully

1,8 L at d_i = 80 mm, 1,8 kg/h steam, u₀ = 0 - 30 cm/s, 850 °C, 4 bar_a, several temperature and (differential-)pressure measurements, analytical ports

Result

- Successful operation of 35.5 storage cycles, remaining material is fluidizable
- Handling of fines (discharge from fluidized bed, backflow to windbox)

Thank you for your attention!

Leander Morgenstern, M.Sc. leander.morgenstern@tum.de www.epe.ed.tum.de/en/es

Funded by the German Federal Ministry of Economic Affairs and Climate Actions (BMWK) under the funding code 03ET1599A.

Bundesministerium für Wirtschaft und Klimaschutz

Supported by:

ENERGY SERVICES

Experimental setup ready for operation

Sources

- [1] P. Pardo, A. Deydier, Z. Anxionnaz-Minvielle, S. Rougé, M. Cabassud, P. Cognet, A Review on High Temperature Thermochemical Heat Energy Storage, Renewable and Sustainable Energy Reviews 32 (2014) 591–610.
- [2] M. Angerer, M. Djukow, K. Riedl, S. Gleis, H. Spliethoff, Simulation of Cogeneration-Combined Cycle Plant Flexibilization by Thermochemical Energy Storage, Journal of Energy Resources Technology 140 (2018) 40.
- [3] M. Angerer, M. Becker, S. Härzschel, K. Kröper, S. Gleis, A. Vandersickel, H. Spliethoff, Design of a MW-scale Thermo-Chemical Energy Storage Reactor, Energy Reports 4 (2018) 507–519.
- [4] F. Schaube, Untersuchungen zur Nutzung des CaO/Ca(OH)2-Reaktionssystems für die Thermochemische Wärmespeicherung, Zugl.: Stuttgart, Univ., Diss., 2013, 1. Aufl. ed., Verfahrenstechnik, Dr. Hut, München, 2013.
- [5] M. Becker, Thermochemische Energiespeicherung mit Calcium-Oxid und -Hydroxid: Entwicklung eines Reaktorkonzeptes, Dissertation, ISBN 978-3-8439-4729-9, Fakultät für Maschinenwesen, München, 2020.
- [6] S. Gleis, A. Vandersickel, M. Angerer, M. Becker, S. Härzschel, P. Ostermeier, M. Würth, H. Spliethoff, Vorhabenbezeichnung: Thermochemischer Energiespeicher für thermische Kraftwerke und industrielle Wärme Abschlussbericht Laufzeit des Vorhabens: 01.01.2014-30.06.2018: Förderkennzeichen: 03ET7025, München, 2018.
- [7] E.Talebi, L. Morenstern, M. Würth, F. Kerscher, H. Spliethoff, Effect of Multiple Storage Cycles on Heat Transfer in Bubbling Fluidized Beds for Thermochemical Energy Storage, Fluidized Bed Conversion 24, Conference, Gothenburg, 2022
- [8] SAMMS, J. A. C.; EVANS, B. E. Thermal Dissociation of Ca(OH)2 at Elevated Pressures. *Journal of Applied Chemistry*, 1968, 18. Jg., Nr. 1, S. 5-8.

Comparison of Materials for Heat storage

		kWh/kg	kWh/m ³	factor	€/kWh (material)
	hot water*	0.06	58	1	0.025
	sand sensible**	0.06	89***	1.5	0.25
	molten salt sensible**	0.10	190	3.2	5 - 10
	molten salt latent	0.06	100	2	10 - 15
	CaO/Ca(OH) ₂ thermochemical	0.40	385/330***	6.6/5.7	0.15
	hardcoal	6.9	2775	56	0.007

* average temperature difference = 50 K, ** average temperature difference = 250 K, *** related to achievable technical bulk densities

Chemical Equilibrium CaCO₃/CaO/Ca(OH)₂

[4] Lukas Winklbauer (2018): Untersuchung der Reaktionskinetik des Systems CaCO3 / CaO / CO2. BA 2018/08. experimentell. Lehrstuhl für Energiesysteme, Technische Universität München. München.

[8] I. Barin, G. Platzki, Thermochemical data of pure substances, VCH, Weinheim, New York, 1995. Aus: Abschlussbericht TcET, 2018

Full experimental Setup

Chair of Energy Systems | Leander Morgenstern | 9 May 2022 | FBC24, Gothenburg

ТШ

Process parameters

CaCO₃, Calc. in H₂O, $T_{set,Hyd.} = 456$ °C, $T_{set,Dehyd.} = 586$ °C, $T_{set,Kalz.} = 750$ °C, $p_{set} = 1.4$ bar_{abs}, $m_{H_20} = 1.4$ kg/h, $u_0 = 18.2 - 21.5$ cm/s (at T_{set})

T-31.1: 10 mm – 100 mm **T-31.2:** pos. T-31.1 + 80 mm **T-31.3:** pos. T-31.2 + 80 mm

Chair of Energy Systems | Leander Morgenstern | 9 May 2022 | FBC24, Gothenburg

Good fluidization quality (T31.1 and 31.2 identical) Reaction temp. equals T

Reaction temp. equals T_{app. GGW, [4]}

6

Temperatures

Calcination

700

600

500

400

4

Reaction plateaus

ပ

Temperatur in

 from C33.5 on T-31.1 und T-31.2 start to separate (here loss of material in FB)

8

- \rightarrow Hight measurement via thermocouples
- → Material loss

C1.0-1.5

CaCO₃, Kalz. in H₂O, T_{set,Hyd.} = 456 °C, T_{set,Dehyd.} = 586 °C, T_{set,Kalz.} = 750 °C, p_{set} = 1.4 bar_{abs}, m_{H_20} = 1.4 kg/h, u₀ = 18.2 - 21.5 cm/s (bei T_{set})

End of Reaction

T-30

T-31.1

T-31.2 T-31.3

T31.1 at 53 mm

Time in h

T-31.1: 10 mm – 100 mm **T-31.2:** pos. T-31.1 + 80 mm **T-31.3:** pos. T-31.2 + 80 mm

[4] Angerer, Michael et al. (2018): Design of a MW-scale thermo-chemical energy storage reactor. In: *Energy Reports* 4, S. 507–519. DOI: 10.1016/j.egyr.2018.07.005.

Chair of Energy Systems | Leander Morgenstern | 9 May 2022 | FBC24, Gothenburg

Emergency Shutdown

Time in h

10