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Abstract: As in manufacturing with its Industry 4.0 transformation, the enormous potential of
artificial intelligence (AI) is also being recognized in the construction industry. Specifically, the
equipment-intensive construction industry can benefit from using AI. AI applications can leverage
the data recorded by the numerous sensors on machines and mirror them in a digital twin. Analyzing
the digital twin can help optimize processes on the construction site and increase productivity. We
present a case from special foundation engineering: the machine production of bored piles. We
introduce a hierarchical classification for activity recognition and apply a hybrid deep learning
model based on convolutional and recurrent neural networks. Then, based on the results from the
activity detection, we use discrete-event simulation to predict construction progress. We highlight
the difficulty of defining the appropriate modeling granularity. While activity detection requires
equipment movement, simulation requires knowledge of the production flow. Therefore, we present
a flow-based production model that can be captured in a modularized process catalog. Overall, this
paper aims to illustrate modeling using digital-twin technologies to increase construction process
improvement in practice.

Keywords: digital twin in construction; heavy civil engineering equipment; process reference model;
discrete-event simulation; deep learning; activity recognition

1. Introduction

In Germany, the introduction of digitization in the manufacturing industry called
Industry 4.0 initiated the fourth industrial revolution [1]. Industry 4.0 includes the imple-
mentation of sensors and embedded systems on equipment to make equipment “smart”.
This digitization, also known as the Internet of Things (IoT), helps to interconnect decen-
tralized systems to form a “system of systems” (aka. a Cyber Physical System (CPS)) and
to link the real world to its digital representation (aka. a Digital Twin (DT)) [2].

Like the manufacturing industry, the construction industry can benefit from the appli-
cation of Industry 4.0 and its technologies, which is known as Construction 4.0 [3–5]. DTs
in Construction (DTC) are often equated with Building Information Modeling (BIM) but
missing feedback loops to the construction site [6]. In heavy civil engineering, research
is being conducted on DTCs using construction equipment for updating and optimizing
construction operations. Besides supporting data transformation, these DTCs use two
key technologies [7]: (1) data-driven discrete-event simulation (DES) to digitally represent
construction equipment operations and (2) artificial intelligence (AI) to analyze the DES
input data coming from the equipment.
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Different modeling approaches have shown how supervised machine learning (ML) can
help to analyze this input equipment data. An objective has been to automatically recog-
nize activities for equipment such as front-end loaders [8,9], hydraulic excavators [7,9–12],
compactors [12], and drill rigs [13,14]. Researchers have used different methods to collect
data, such as vision- or motion-based methods, and to analyze them, e.g., using logistic
regression, k-nearest neighbor, decision trees, support vector machines, or artificial neural
networks (ANN). As part of deep learning (DL), ANN fulfills the requirements for minimal
pre-processing as well as robustness to outliers and sensor noise and recognizes many
activities [9,12,14].

In all cases, classifying activities has been challenging, because no level of detail or
granularity is a priori defined. Literature is lacking in studies that focus on activity mod-
eling. The existing studies on activity recognition have aimed to improve DL techniques
instead of improving data acquisition. This paper aims to address activity modeling using
a real-world use case as an example to highlight the current challenges and then provide a
solution in the form of a productivity model. Our research questions (RQ) are as follows:

RQ1: What impact does production model granularity have on activity recognition?
RQ2: How does production model granularity affect the application of DTC?
RQ3: What is needed to adopt production models for DTCs in heavy civil engineering?

To answer these questions, we start by giving an overview of the current DTC ap-
proaches including the modeling part of data-driven DES and activity recognition. Our
overview’s focus is on equipment-intensive construction operations; however, we recog-
nized that there is much research into recognizing human activities [15]. Then, we present
a case study in special foundation engineering, namely, the machine production of bored
piles. This study underlines the challenges arising with activity recognition as well as the
possibilities and limitations of data-driven DES in heavy civil engineering. It discusses the
impact of process descriptions based on real-time data. As a basis for the adoption of DTC
applications, a flow-based production model is proposed.

2. Related Work
2.1. DTC and Data-Driven DES Modeling

DTs are platforms that offer promising opportunities for monitoring and prediction in
the construction industry [2]. While no universally agreed-upon definition exists of what a
DT is [6], in general, it is about the data flow between the real and virtual worlds [16].

To digitally represent construction equipment operations, data-driven DES is widely
reported in the literature, e.g., for tunneling [17], earthmoving [7], or pile drilling [18]. DES
models simplify construction systems by discretizing activities so that they are bounded by
start and end events. This enables investigations of the system’s behavior under different
parameters. To consider all the dynamics and uncertainties, a DES needs to be updated with
as-built data to support reliable decisions based on the results. Akhavian and Bezhadan [19]
identified three pieces of knowledge that can be extracted from the equipment: (1) state,
(2) operational logic, and (3) layout arrangement. The dynamic updating of DES requires the
pre-processing of data from the construction site, for which different statistical probability
distribution functions may be used (e.g., Exponential, Gamma, Lognormal, Normal, and
Weibull) and evaluated by goodness-of-fit tests (chi-Square test; Kolmogorov–Smirnov;
Anderson–Darling) [20].

Finding a suitable (fit for purpose) level of modeling detail is challenging. For example,
Liu et al. [21] presented a data-driven Monte Carlo simulation framework to predict
equipment life-cycle costs. They used K-means clustering and expectation–maximization
to distinguish between the equipment within a fleet. Louis and Dunston [22] replicated
and modeled the discovered process as a Petri net in the DES model software jStrobe
(a STROBOSCOPE [23] development). Kim et al. [24] also presented an earthmoving
analysis but with the help of image recognition and using a process modeled in the DES
software WebCYLONE (a CYCLONE [25,26] development) to optimize resource allocation.
Kargul et al. [20] used the intralogistics DES software plant simulation [27] to model a
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Petri net. They considered three stages of construction progress (25%, 50%, and 75%
complete) to show the impact of data-driven modeling. Besides Petri nets, Fischer et al.
conducted data-driven DES on agent-based modeling (macro-simulation) to schedule
project interdependencies [28] and process modeling (micro-simulation) to investigate the
influence of material flow [29]. They introduced a DTC using both DES models for adaptive
planning to serve as a decision-making tool (Figure 1).
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Figure 1. Production feedback control system of DTC (adapted from Fischer et al. [29].)

Rashid and Louis [7] conducted a study to show data integration into a DES model.
Based on the activities recognized in their previous work [9], they calculated the activi-
ties’ duration, pre-processed it into distribution functions, and fit it using the chi-square
goodness-of-fit test.

Several studies show the importance of data-driven DES. A variety of different model-
ing levels have been considered depending on the modeling purpose. In combination with
data processing, frameworks exist to connect the DES model with the real equipment as
needed to create a true DTC.

2.2. Activity Recognition Modeling

Activity recognition helps to automatically detect the state data of equipment that can
be used to update DES models. It is a classification problem that can be addressed with
supervised ML. Supervised ML requires labels to train and test the algorithms. However,
defining the appropriate labels is a challenge. An early study facing the labeling problem
was conducted by Akhavian and Behzadan [8]. They classified activities at different levels
of detail (LoDs) to investigate the influence of the proposed labels. The number of LoDs
defines how often the labeling dataset is divided into classes. Similarly, it defines the
granularity at which the labels are described (Figure 2).
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and blue: LoD3) (adapted from [8,30]).

For example, LoD1 describes “engine on” or “engine off” whereas LoD2 divides “en-
gine on” into “idle” and “busy” [8]. Challenges arise with activities that have similar signal
patterns from vibration and angular velocity measurements, e.g., “scooping”, “dumping”,
and “moving”. Therefore, these authors combine specific activities, i.e., “moving and scoop-
ing” and “moving and dumping”, to increase the model’s performance. They concluded
that the less granular the LoD, the higher the model’s accuracy (ANN: 98.6, 81.3, and
86.1% for LoD3, LoD4, and LoD5). Rashid and Louis [11] confirmed this conclusion. They
investigated the use of flat classification up to nine LoDs, with nine being the number of
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activities to be recognized. Instead of relying on equipment vibrations, which can be highly
equipment-dependent and may also be influenced by external forces, they investigated the
recognition of the activity-specific equipment motions by placing Inertial Measurement
Units (IMUs) on equipment joints. Their results are slightly better (ANN: 100, 98, 97, 95,
and 92.1% for LoD2, LoD3, LoD4, LoD7, and LoD9) [11].

Harichandran et al. [30] extended this flat classification with a hierarchical classifi-
cation to increase performance (Figure 2). This is of interest in case the classes under
investigation have a specific hierarchy such that they can be grouped into metaclasses. The
use of a hierarchical approach makes it possible to exploit the tree structure of the classes
and thereby reduce the number of classes considered by a classifier. Instead of directly
classifying a high number of activities (flat classification on the operation level in Figure 2),
which may require highly complex models that need to detect subtle differences in the
data, local classifiers need to distinguish a much smaller number of classes (hierarchical
classification). A popular approach for hierarchical classification is the local classifier per
parent node approach. A separate multi-class classifier, which is specialized to distinguish
only between child nodes within a group, is trained for each subgroup. Use of this ap-
proach may result in an accuracy improvement of up to 15%. However, this result is only
comparable with the previous studies on the construction equipment to a limited extent,
as it refers to a case study analyzing the accelerometers of an automated construction
system. Furthermore, questions arise with the use of classifiers that are connected in a
series (hierarchical classification) regarding the decreased number of data points after each
classification, or the influence of errors carried with each classification.

Overall, Akhavian and Behzadan [8] and Harichandran et al. [30] conclude that
the choice of a classification depends on the type of equipment, its operation, and the
purpose of the data analysis. Their generalized framework focuses on the activity modeling
part including equipment states, operations, and hierarchical relationships. Furthermore,
the purpose of activity recognition must be clarified for operation recognition, e.g., fuel
consumption (LoD1), emission rate (LoD2), overall productivity (LoD3), and cycle time
(LoD4). They state that the data must include enough processed information depending on
the purpose.

To sum up, the claim that the research in the field of activity recognition in heavy civil
engineering does not focus on activity modeling is only partially true. Studies show that
model accuracy highly depends on the modeled granularity of the activities. Data-driven
classification approaches have been introduced to overcome this challenge. However,
the activity modeling frameworks that we were able to identify in the literature are too
shallow. The studies mentioned that activity modeling requires process knowledge, but a
conceptualization of the production system is missing.

2.3. Production System Models

According to Koskela [31], production system models in the construction industry
reflect the transformation view (rather than the flow or value view) by modeling the
process of product transformation from inputs to outputs. A product is characterized
by, e.g., functionality, configuration, and geometry. According to the work breakdown
taxonomy, the processes are divided hierarchically into smaller subprocesses, which consist
of specific activities, e.g., resource assignment and sequencing of activities.

Activities are executed by the workers or equipment [31]. They may be value-adding
and non-value-adding, such as waiting, putting away, or moving material. Activities can
be broken down further, e.g., building a pile requires drilling holes, fabricating rebar cages,
placing concrete, and lifting equipment cylinders [32]. Besides transformation and value,
Koskela [33] emphasizes the flow between and within processes. A lean objective is to
increase workflow reliability.

Tommelein [34] emphasizes that production system models must address product
and process variability in order to lend themselves to improvement. This variability must
be understood in detail to reveal and eliminate waste. The seven wastes in the sense of
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lean are (1) overproduction, (2) defects, (3) transportation, (4) overprocessing, (5) inventory,
(6) waiting, and (7) motion [35]. So, while equipment-driven operations typically have been
designed around the optimization of equipment use, and the cost of equipment outweighs
other costs in their operation, factors other than equipment cost minimization play a role in
the overall process of optimization [36].

Different metrics exist to measure production flow. Kalsaas [37], for example, adapts
the Overall Equipment Efficiency (OEE) in equipment-intensive construction projects but
emphasizes that only using this metric is not sufficient. There is a need to consider the entire
production system. With respect to production system models, the products and processes
need to be investigated separately. Their variabilities and flow-based interdependencies
must be understood before trying to improve the system.

2.4. Research Gap and Objective

Frameworks for application DTCs in heavy civil engineering using data-driven DES
exist. However, only a few exist in combination with DL-based activity recognition. The
maximum number of activities so far is nine and the excavator is the most commonly
investigated equipment. The generalizability of the procedures used in existing studies to
more complex construction equipment can thus be questioned. Furthermore, most studies
in activity recognition found that their models’ accuracy decreases with the increase in
information about the production. The countermeasure has been to improve their proposed
DL models, e.g., by applying more complex ML algorithms, instead of improving their
classification models. A supposedly new method for modeling classification problems was
introduced (hierarchical classification), but the associated study failed to discuss the actual
granularity of modeling. It is commonly assumed that the more detailed the movements,
the more information one receives about the production system. However, from the
production system’s point of view, it is worthwhile to analyze idle times to optimize the
system. Thus, this paper first aims to fill the gap of the trade-off between the requirements
of the DES and the DL models by demonstrating the influence the granularity of activity
classification has on algorithm performance based on a real case study and, second, it
introduces a flow-based production model.

3. Methodology

We conducted two parameter studies on AI-based activity recognition and DES to
validate the proposed DTC (Figure 1). The input data are from a completed construction
project on special foundation engineering in Rosenheim, Germany. This project involved
the construction of a bypass road including two bridges near the German–Austrian border.
The project consists of 32 bridge piers, each including 5 to 17 large diameter bored piles
of the same type, and ranging from 26 m to 50 m in length. Due to challenging soil
conditions [38], the project owner mandated comprehensive process documentation from
the pile producer, BAUER Group. This documentation provided the data for our research.
We used three data sources:

1. Activity data: While producing the pile, workers manually recorded activities on site
with a tool provided by fielddata.io (a German start-up, now acquired by the BAUER
Group). They had a choice of 27 predefined activities. The tool was connected via the
equipment’s Wi-Fi to have the same time stamps as the sensor data.

2. Equipment sensor data: We used data from sensors already installed on the equip-
ment and sent via telematics to the proprietary platform every 1 Hz. Measurements
included pump pressure, rotary torque, winch forces, and mast inclination (Table 1
and Figure 3 (black circles)).
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Table 1. Sensor data available from the Kelly drill rig.

Sensor Unit Sensor Unit

Depth m Main winch rope speed cm/min
Torque of rotary drive kNm Pressure pump 1–4 bar
Speed of rotary drive Rpm Torque of Kelly bar %

Main winch rope force t Auxiliary winch rope force t
Crowd force t Crowd depth m

Casing length m Boring threshold m
Status rig - Torque steps -

Main winch gear mode - Inclination X, Y deg
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Figure 3. Rotary drilling rig at the test site of Bauer Group in Schrobenhausen, Germany (pictures
by Fischer, A.); components (number in white circle) and sensors (black circles): (1) under carriage;
(2) upper carriage (pressure pumps); (3) main winch (force, speed, and tool depth); (4) auxiliary
winch (force); (5) crowd winch (force); (6) kinematic system; (7) mast (inclination); (8) mast head;
(9) Kelly bar; (10) rotary drive (torque, speed); (11) bucket drill tool; (12) auger drill tool; (13) casing
string; and (14) casing shoes.

3. Production log: Every pile was documented in a handwritten report. This report
gave insight into the bored pile sequence and start and end times. Thus, the duration
of the following seven subprocesses is derived: (1) drill, (2) idle between drill and
reinforce, (3) reinforce, (4) idle between reinforce and install contractor pipe to fill
in concrete, (5) install contractor pipe, (6) idle between install contractor pipe and
concrete, and (7) concrete. Data from 232 bored piles were analyzed.

We used the activity and equipment sensor data to test and train the DL models for
automatic activity recognition. We used the production log input for the DES model.

4. Kelly Pile Production System

The Kelly drilling method used for pile production uses a rotary drill rig (“rig” in
short) with different attachment tools and additional equipment to drill piles up to 3 m in
diameter and more than 100 m deep [39] (Figure 3).

The application of activity recognition requires the subdivision of the production
process into recurring standard activities. Therefore, we next describe the most common
steps in the pile production process using the Kelly drilling method. We are aware that
these steps vary depending on the construction project. The results are based on interviews
conducted in previous work by the authors [36].
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Kelly pile production consists of three main steps: (1) drill, (2) reinforce, and
(3) concrete (Figure 4).
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Figure 4. Value stream map for pile production using the Kelly drilling method [36] (blue: production;
yellow: quality checks; green: procurement logistics; orange: disposal logistics) (CM: construction
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Once the rig and any needed auxiliary equipment such as drilling tools, casings, and
concrete delivery pipes are set up, the alternating steps of the drilling process start. The
equipment picks up the appropriate tool, e.g., an auger (Figure 3 middle), then slews
and positions itself toward the drilling attachment point. Lowered with the help of the
telescopic Kelly bar, the drilling tool drills as the rotary drive applies torque to the locked
Kelly. Once the tool is filled with soil cuttings, it is pulled out and emptied, usually in a
container, to ease soil removal from the site. In turn, a wheel loader takes the drill cuttings
to a disposal site for further processing. Casing sections prevent the hole from collapsing.
The rotary drive turns in casings separately and casings are manually fixed by workers
(Figure 3 right). The first casing has teeth for better progress in the soil. The deeper the
drilling tool, the lower the performance due to longer run-in/out times and higher surface
friction. Thus, casing oscillators are used when additional torque force is needed. For
reinforcement, the rebar cage is attached to the auxiliary cable of the rig and raised. The
rig swivels to the drilling attachment point to lower the reinforcement cage in the drilled
opening. Before concrete placement starts, the delivery pipes are assembled, lowered into
the drill hole, and joined together. Concrete is placed directly through the concrete mixer
discharge or a concrete pump/bucket (requiring additional steps). Casing and delivery
pipes are removed in alternation, often requiring extra power from a casing oscillator.

Nübel et al. [40] define three KPIs in pile production: (1) the pile length produced per
day (or piles per day); (2) variations in the planned vs. actual output (process quality); and
(3) the inclination of the piles (product quality). Pile production resembles a single-line
production system. It is characterized by the use of highly specialized equipment and
skilled operators [36]. Deep domain knowledge of geotechnical engineering and process
technology is required to handle the complexity of the production system.
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5. Activity Recognition
5.1. Deep Learning Models

Fischer et al. [29] showed three DL models for activity recognition: (1) activity recog-
nition via telematics data is a solid alternative to the existing motion-based method;
(2) recurrent neural network (RNN) models consisting of long-short term memory (LSTM)
consider temporal dependencies in the modeling, which is most suitable for this use case;
and (3) adding convolutional neural network (CNN) enables good feature extraction, out-
lier filtering, and smoothing method. Their proposed hybrid models on RNN and CNN, the
DeepConvLSTM, and the bidirectional variant DeepConvBiLSTM were also developed and
tested on the use case of Rosenheim. An average accuracy of up to 96.1% for 27 activities
was achieved.

However, the question arises on the generalization capability of the results. The dataset
was split randomly using the Scikit-Learn function in Python: 56% training, 14% validation,
and 30% test data. Regarding the relatively low frequency and slow state changes in the
equipment motions, two observable samples can be similar but are located once in the
training set and once in the test set. Studies on addressing this issue were conducted in
the previous work of Beiderwellen Bedrikow [41]. The dataset was, therefore, coherently
split by production days. The results based on this data splitting methodology led to a
decrease in the average accuracy of up to 51.9%. One reason for this result can be the
high complexity of the data modeling recognizing 27 activities. As mentioned, comparable
studies in the literature only examine activities of less than 10 (LoD9).

In this paper, we, therefore, investigate the influence on data modeling by hierarchical
classification according to Harichandran et al. [30]. Table 2 shows the DL models imple-
mented and tested by Beiderwellen Bedrikow [41]. The DL models were implemented
using the Tensorflow package in Python.

Table 2. Architecture of the DL models used for the parameter study.

MLP DeepConvLSTM DeepConvBiLSTM

Architecture 5xDense-Softmax 3xCNN–2xLSTM-Softmax 3xCNN–2xBiLSTM-Softmax
Temporal window no Overlapping sliding window Overlapping sliding window

Window size - 16 s 16 s

The baseline model extends an ANN with only one layer (based on previous work
from the authors [14,41]) to a multilayer perceptron (MLP) consisting of 5 dense layers
with 128 neurons each. While this model does not account for temporal dependencies, it
is used as a comparison to investigate the influence of temporal relationships in activity
recognition.

RNN is used to consider the temporal dependencies of the data, providing the outputs
of the previous layer and the outputs of its layer at the last time. One of the significant types
of RNNs is the LSTM network, which was also used by Rashid and Louis [11]. In addition
to the inputs that are present in simple RNNs, LSTMs have an additional long-term state,
which can store long-term dependencies [42].

The proposed hybrid framework for human and construction machinery activity
recognition combines the short-time feature extraction capabilities of convolutional layers
with the long-time temporal dependencies modeling capabilities of LSTM layers. The
original architecture developed by Ordóñez and Roggen [43] consists of one input layer,
four convolutional layers, two LSTM layers, and one Softmax activation layer. A slightly
modified version of this architecture is used by Slaton et al. [12]. They add batch normaliza-
tion layers between the convolutional layers and a dropout layer between the convolutional
and recurrent layers.

The unidirectional model used in this paper is based on this modified architecture
with minor changes to reduce overfitting. In addition, we investigate the influence of
a bidirectional architecture, which processes the inputs in both directions. Bidirectional
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RNNs have numerous applications in the field of Natural Language Processing (NLP) [44].
Xu et al. [38] explored the use of bidirectional RNNs for human activity recognition, in
addition to its applications in NLP. The utilization of bidirectional layers results in a
slight improvement in accuracy. We replace the two LSTM layers from the unidirectional
architecture to two bidirectional LSTM layers. The window size of both time dependent
DL models is 16 s, as it achieves satisfactory results [14].

The neural network for all three models was trained for 100 epochs using early
stopping, a learning rate of 0.001, reducing the learning rate on plateaus, and a batch size
of 256, with the Adam optimizer.

We rely on the accuracy and F1 score of the model’s predictions to evaluate model
quality. When multiple classes are involved, the metrics for the complete dataset are
obtained by taking the average of the metrics for each class. The specific formulas for
calculating each metric are described in [45]. For ease of reading, we printed the results of
the DeepConvBiLSTM. The results of the other models are in Appendix A.

5.2. Hierarchical Classification Study

The following study is based on the hierarchical classification, according to Harichan-
dran et al. [30]. For each parent node (e.g., work) a classifier is trained, which can classify
among the child nodes (concrete, reinforce, and drill). Instead of twenty-seven activities
to be classified (flat classification), only up to seven activities need to be considered by
the classifier.

The division into individual groups is based on the division by the construction
company using the manual data collection app from the start-up company fielddata.io. The
classification is fundamentally oriented to the differentiation of the process steps to reveal
value-adding and non-value adding steps, e.g., to identify the delay of concrete trucks. We
identified three LoDs (Figure 5). In LoD1, a distinction is made only between work and idle.
Work class contains all activities in which the drill is actively involved. Its child nodes are
the main process steps of pile production: drill, reinforce, and concrete (compare Figure 4).
The parent node Idle distinguishes between downtime and secondary process time. These
subgroups form the second LoD (LoD2). Finally, the third LoD (LoD3) divides the rough
process steps into more detailed steps.
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Figure 5. Overview of the LoDs (white: LoD1; light blue: LoD2; and blue: LoD3). Figure 5. Overview of the LoDs (white: LoD1; light blue: LoD2; and blue: LoD3).
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5.2.1. LoD1—Work vs. Idle

Table 3 displays each class’s average F1 and F1 scores when the models are applied to
the test set. The baseline MLP and the two hybrid model variants have a similar average
F1 score of about 0.83. Among the individual labels, the work label consistently has the
highest F1 score of around 0.86 in all three cases. The F1 score for the idle label is 0.80 for
the MLP and DeepConvBiLSTM and 0.82 for the DeepConvLSTM.

Table 3. F1 scores for the selected activities.

Level of Detail (LoD) Parent Node MLP DeepConvLSTM DeepConvBiLSTM

LoD1 - 0.83 0.84 0.83

LoD2
Work 0.42 0.58 0.62
Idle 0.66 0.74 0.73

LoD3

Drill 0.59 0.85 0.85
Reinforce 0.68 0.68 0.68
Concrete 0.20 0.24 0.24

Idle 0.39 0.39 0.41

Figure 6 shows the confusion plot for the DeepConvBiLSTM model (the confusion
plots for the MLP and the DeepConvLSTM are shown in Appendix A). It reveals differences
in performance between the models. The MLP has an accuracy of 73% for the idle class and
70% for the work class, while the two hybrid models show an increase in accuracy. The
work class accuracy improves to 90% in the hybrid models, with only a slight increase for
the idle class.
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The hybrid models perform well in identifying the work class, with only 10% of
samples that belong to the work class classified as idle. However, the main challenge lies in
identifying the idle class as 25% of the samples idle class classified as work. One reason is
the limited number of samples in the dataset, i.e., less than a quarter of the total dataset.
Data augmentation methods can solve this imbalance of the datasets. Another reason is the
similarity of the classes, which makes classifying difficult.

5.2.2. LoD2—Process Steps

The second level of detail focuses on the activities within the work and idle groups.
On the one hand, the model for the work group is designed to handle the casing machine,
concrete, drill, and reinforce classes. On the other hand, the model for the idle group is
responsible for identifying the secondary process time and downtime activities.
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The F1 scores for each label and the average F1 score are shown in Table 2, while
Figure 7 displays the confusion matrices for the individual models’ predictions for the
DeepConvBiLSTM. The confusion plots for the MLP and the DeepConvLSTM can be found
in Appendix A.
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The models differ noticeably in performance. For example, the baseline MLP model
has an average F1 score of 0.42, with significant variations among the individual classes.
The class drill has a high F1 score of 0.89, with 99% of the samples labeled as drill being
correctly classified as such. However, the model tends to classify samples as drill, leading
to low F1 values for the concrete and reinforce classes.

Both hybrid models show better overall performance, with the average F1 score in-
creasing to 0.58 for the DeepConvLSTM and 0.62 for the DeepConvBiLSTM. The confusion
matrices for these models show more entries concentrated on the secondary diagonal
compared to the MLP model. The concrete class has an improved accuracy of 87% and 89%
for the DeepConvLSTM and the DeepConvBiLSTM. The use of bidirectional LSTM layers
leads to an overall improvement in performance, as seen in the increase in F1 scores for all
classes, including casing machine and reinforce.

The second group at this level of detail is the idle group, which encompasses downtime
and secondary process related to drill and concrete. The differentiation between downtime
and secondary processes activities is addressed more effectively at a different level of
detail. The baseline MLP model correctly classifies 70% of the downtime class samples
and 63% of the secondary processes class samples, resulting in a mean F1 score of 0.66.
Accuracy improves to 75% and 73% for the two hybrid models, and the F1 score rises to
approximately 0.73.

5.2.3. LoD3—Detailed Process Steps

Classifying within the concrete superclass (LoD2) is challenging, as all three models
tend to predict the two most common activities, concrete and place pouring pipe (LoD3).

The performance of the three models is similar when classifying the reinforce process
step (LoD2), which includes install rebar cage and install cushion activities (LoD3). Only
the confusion matrices for MLP and DeepConvLSTM are presented since the models
barely differ. The average F1 value is 0.68 for MLP and DeepConvLSTM and 0.65 for
DeepConvBiLSTM. These activities can be performed by machine or crane, which makes it
difficult for the models to capture different behaviors for the same label. For example, if
crane installs a rebar cage, no equipment activity is detected, leading to misclassifications.

Investigation of the process step release shows that the baseline MLP model has an
average F1 score of 0.59. Among the six activities considered, three are recognized well,
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two moderately well, and one poorly. The place standpipe activity is classified the best,
with an F1 score of 0.89. The release activity is recognized with a score of 0.81 but is often
misclassified as pull. The screw in casing activity also has a high F1 score of 0.81.

In contrast, the pull activity has a low F1 score of 0.6 due to many false positives.
Finally, the empty activity has the second-worst F1 score of 0.43 and is often classified as
pull. The lower activity is not considered in the modeling, and no samples are correctly
classified.

Adopting the hybrid models results in a significant increase in the average F1-score
to 0.85 for both DeepConvLSTM and DeepConvBiLSTM. All individual labels show an
improvement in the F1 score. The F1 score for the place standpipe class increases to 0.93 with
improved accuracy and fewer false positives. Although the accuracy of the release class
decreases, the F1 score remains unchanged due to a decrease in false positives. The hybrid
models address the difficulty in classifying transitions between two successive activities
and improve the classification of the screw in casing and empty activities. The lower class,
which the MLP did not recognize, sees a drastic increase in recognition to 67% with the
hybrid models but still remains the worst recognized activity.

The F1 score for the baseline MLP and the two hybrid models is around 0.4, indicating
no advantage of using the hybrid models over the MLP. Only the activity refill water can be
accurately detected among the secondary processes, with an F1 score of 0.82 for all models.
Again, the choice of labels plays a significant role here. Figure 8 shows that activities such
as relocate, depth sensing, refuel, and other are not effectively differentiated as they describe
only the process and lack any indication of machine movement.
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5.3. Conclusion Regarding Activity Recognition

Compared to the flat classification study from Fischer et al. [14], the hierarchical
classification underperforms. The average accuracy of 27 activities is 52.0% instead of
96.1%. However, even though the results fit quite well for the drilling operation (84.8%),
the reinforce (67.5%), concrete (26.2%), and secondary processes (29.6%) super classes are
classified with a low accuracy. These results do not show that the flat classification is
recommended. As mentioned above, difficulties emerge due to generalization capabilities.

The results in this paper show the limitations of the labeling strategies: Selection of
labels poses a significant problem for activity recognition. Certain activities proved to
be very difficult to classify. Most misclassifications took place between specific activities.
Figure 9 shows the raw data. As a simple example, the activities concrete and wait for
concrete can be considered. All sensor signals are constant except for some existing noise
(Figure 9a,b). There is a difference compared to the behavior during drilling (Figure 9c).
In both activities (concrete and wait for concrete), the drilling rig just passively waits while
the process is performed by other equipment, such as concrete trucks, and workers. A
differentiation of the activities based on the equipment data is thus only barely possible.
However, if activities in which the equipment is actively involved (LoD3), such as release,
screw in casing, or empty, were considered, then satisfactory results were achieved in all cases.
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As shown in Figure 9, drill (LoD2) is described in every detail in lower, release, pull,
and empty (LoD3). Thus, LoD3 labels, such as install rebar cage or install cushion can be
improved when described in more detail.
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The root cause of these problems is that equipment behavior is not taken into account
in selecting the labeling strategy, which in this case, is based purely on the process steps and
on a process view, without considering the activity recognition technology to be used. As a
result, different labels are assigned in cases where the equipment does not exhibit different
behaviors. It can be pointed out that the basic equipment behavior must be considered
during the selection of the labels for automatic activity recognition.

6. Data-Driven DES
6.1. DES Model

The recognized activity data serve as input for the DES. This data-driven DES is the
complement of the DTC approach, using data to help inform decision-making for the
production system. In this paper, the DES model aims to forecast the construction project’s
end time. To investigate the impact of adapting the input data, we conducted three studies
with three different percentages of as-built data, i.e., 25%, 50%, and 75% of construction
progress. This work is based on the previous work of Fischer et al. [36] but here considers
the length of the piles by performing linear regression.

The DES model is implemented in Python. It is modeled as a simple Petri net, where
each of the seven subprocesses from the production log is depicted as a single station with a
defined duration or processing time characterized by a probability distribution (Figure 10).
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The processing time duration of each single station is calculated from the production
logs. The results are compared to the related bored pile length, as shown in Figure 11 for the
subprocess drill. The linear regressions and their residuals are calculated for each process
(Table 4). We assume a normal distribution of the residuals. However, it is important
to mention that the simulation only takes into account the working time, and the total
processing time should be interpreted in working time and not as calendar days.

In predicting the production time, the simulation randomly selects a duration that
matches the input parameters of the best-fitted distribution function. Performing sev-
eral runs, i.e., 10,000, and increasing the percentage of as-built data with construction
progress, increases the probability of a good prediction of the production time. The re-
sult is the cumulative duration of the pile production. This forecast is compared to the
real construction progress and varies due to the duration time randomly picked from the
specified distributions.
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Table 4. Parameters for the linear regression and residuals depending on the process.

Process Parameter 25% 50% 75%

Drill

Mu −5.33 × 10−12 7.21 × 10−12 −2.17 × 10−12

Sigma 7995.83 7787.97 7090.17

Slope 1211.12 1216.27 1173.93
Intercept −16,781.52 −17,638.90 −17,837.04

Idle 1

Mu 2.82 × 10−13 −7.37 × 10−13 −5.02 × 10−13

Sigma 3619.61 4555.91 5119.83

Slope −163.18 −26.71 −32.85
Intercept 12,496.47 7209.08 7381.52

Reinforce

Mu 7.84 × 10−15 −3.18 × 10−13 −6.27 × 10−13

Sigma 500.08 581.13 545.05

Slope 105.71 83.95 75.64
Intercept −2299.57 −1480.55 −1184.78

Idle 2

Mu 1.39 × 10−13 3.4 × 10−13 1.36 × 10−13

Sigma 762.92 1869.31 1636.55

Slope −45.05 −41.68 −20.96
Intercept 2596.29 2519.07 1639.18

Install contractor pipe

Mu −2.59 × 10−13 −3.72 × 10−13 −3.55 × 10−13

Sigma 785 × 10−1 691.22 650.05

Slope 72.25 58.94 56.68
Intercept −1039.17 −494.96 −301.61

Idle 3

Mu 6.27 × 10−14 −1.09 × 10−12 −3.35 × 10−13

Sigma 2238.13 2218.63 27,756.29

Slope −30.32 89.56 129.42
Intercept 3359.87 −266.50 −1134.46

Concrete

Mu 0 −1.11 × 10−12 −2.7 × 10−12

Sigma 1407.71 1534.68 1448.72

Slope 267.39 415.97 436.95
Intercept 1505.92 −3429.70 −4101.32

6.2. Forecast Study

Figure 12 shows the distributions for the expected construction time for the three
volumes of data considered, along with the actual duration of the pile production. Figure 13
shows their cumulative durations. The average predicted total durations are presented in
Table 5 as a function of the construction progress.

Table 5. Results of simulation study compared to actual duration of pile production.

Project Completion: Prediction of Total Pile Production:
Ratio of as-Built Data Mean Standard Deviation

25% 128.2 days (+7.76%) 1.4 days
50% 127.5 days (+7.14%) 1.2 days
75% 123.6 days (+3.86%) 0.8 days

100% 119.0 days -
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(CI: confidence interval).

As the construction process progresses, the amount of as-built data used as simulation
input could be increased (25%, 50%, to 75%). As a result, the distributions of the predictions
get closer to the actual duration. The results in Table 5 show that, at 25% construction
progress, the simulated data deviated only about 9 days from the as-built duration. At
50%, this deviation became smaller. At 75%, it decreased to about 5 days. Furthermore,
uncertainty decreases with continuous updating of the data. The standard deviation around
the mean of the predicted value decreased from 1.4 days at 25% of construction progress to
0.8 days at 75%.

6.3. Conclusion Regarding Data-Driven DES

Overall, the data-driven DES shows how one can use a DTC based on construction
equipment data. The simulation results support the observation that, as the amount of
information increases, the results improve and approach the real construction time. Since
the data comes from a real construction project, each pile’s actual processing time duration
and production steps vary. Statistics help to find dependencies, e.g., pile production time
depends on pile length. Due to uncertainty and variability in the production data it is
important to update the DES with as-built data in order to make reliable decisions.

However, the prediction overestimates the as-built duration. A reason may be the
increased throughput due to the learning curve. Fischer et al. [36] found out that it takes
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at least one week to create a team, and the more well-rehearsed the team is, the greater
their performance will be, e.g., in reducing the setup of the rig. Another reason for this may
be the distribution of the individual pile lengths over the construction project. In contrast
to the use case (Figure 14a), if piles were sorted by the ascending pile length (Figure 14b),
then the time required to construct the first 25% of them would be significantly less than
that required to construct the last 25%. Therefore, the simulation would underestimate the
as-built duration as the input data would constantly represent shorter piles.
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The DES model presented here is limited in regard to capturing specifics of the
construction process itself; it is a simple Petri net. A more detailed model is required to
question the current production flow, including material, equipment, or work shifts, and
investigate different impacts to optimize the process.

7. Discussion

The methodology used in this paper shows the impact that production model gran-
ularity has on DTC applications. We next discuss the findings in relation to the research
questions.

RQ1: What impact does production model granularity have on activity recognition?

We investigated a specific use case, namely, the Kelly pile production. The hierarchical
classification study of activity recognition shows the conflict between the granularity of the
training and the test data. Related literature has shown that the model’s accuracy decreases
with an increase in the labels’ granularity. They conclude that they have an insufficient
knowledge about the production system itself. In this paper, although the given labels are
based on deep expert knowledge, the results are not satisfactory either. They show that the
granularity of the activity description must refer to equipment motions, which defines the
requirement for a deep understanding of the production system. For example, activities
where equipment is not involved cannot be distinguished sufficiently, e.g., Concrete vs.
Waiting for concrete.

RQ2: How does production model granularity affect the application of DTC?

In our DTC approach, the activity recognition aims to feed the DES with as-built
data. A data-driven simulation study shows how this DTC enables construction forecasts.
Challenges arise on the assumed granularity of the production system model. We used
a simple Petri net without interdependencies throughout the production flow. On the
contrary, we integrated the recognized idle times. Thus, we cannot make any statement
on the influence that material flow, such as soil disposal or concrete delivery, or operation
variabilities, such as tool change or casing screw, have on the production system. However,
these influences are essential for its optimization.

RQ3: What is needed to adopt production models for DTCs in heavy civil engineering?

Based on the previous RQs, we propose that DTCs require a production model that
reflects the system’s specific components (Figure 15).
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Figure 15. Activity diagram of the Kelly pile production system and its flows (material supply
(green)/removal (orange), information (yellow)) focusing on the process step ‘Drill’ (blue).

The two components of the DTC, activity recognition and the data-driven DES, serve
different purposes: Whereas activity recognition analyzes sensor data, requiring equipment
motion steps, the DES analyzes performance requiring value-adding and non-value-adding
subprocesses. Although these components have specific requirements, they pursue the
same purpose: making the production flow reliable. This reliability is focused on making
the production flow, or the sequence of its processes, visible and understandable to models.
The next step is then to scale these models toward a catalog of production models (Figure 16).
Nübel describes this scaling process generically in an evolution, such as power lines.
Considering a top-down planning approach, project planning starts by adapting a reference
project, deriving the flow-based production model, and modifying it with time. This
evolution leads to an enlarged database capturing different variants of the models.
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8. Conclusions 

This paper focused on digital-twin integration research in the equipment-intensive 

construction industry. While other studies investigated excavators, we gave insights into 

the Kelly drill rig for pile production, which is more complex equipment regarding pro-

duction requirements and data analytics (more than ten labels and features). Based on two 

studies, one on activity recognition and one on data-driven DES, the different require-

ments for the model’s granularity are presented. On the other hand, activity recognition 

modeling needs to be more related to the equipment’s motions than the process level. On 

the other hand, DES models can help to rethink the given production system if they rep-

resent its flow. These results reveal the gap among the different roles of a DTC and con-

tribute to a flow-based technology production model that combines both a data-driven 

and a production-driven perspective. The objective is to maintain a modularized catalog 

of these models. Future research will evaluate the proposed methodology, e.g., to consider 

deviation detection and bottleneck identification in construction operations (as proposed 

by Rashid and Louis [7]). The proposed DTC needs to be implemented in an application 

including dynamic data transmission and integration from the drilling rig to the DES and 

back. Overall, the results need to be validated on an on-going construction project to show 

the practicability of DTCs. In addition, the fusion of sensor data and image data, or the 

rules of state transitions, must be considered to overcome the limitations that arise during 

activities where the equipment is not constantly involved in the production process, e.g., 

with concrete. 
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Figure 16. Nübel’s catalog of construction processes (UC: use case; LoD: level of detail).

8. Conclusions

This paper focused on digital-twin integration research in the equipment-intensive
construction industry. While other studies investigated excavators, we gave insights into the
Kelly drill rig for pile production, which is more complex equipment regarding production
requirements and data analytics (more than ten labels and features). Based on two studies,
one on activity recognition and one on data-driven DES, the different requirements for the
model’s granularity are presented. On the other hand, activity recognition modeling needs
to be more related to the equipment’s motions than the process level. On the other hand,
DES models can help to rethink the given production system if they represent its flow. These
results reveal the gap among the different roles of a DTC and contribute to a flow-based
technology production model that combines both a data-driven and a production-driven
perspective. The objective is to maintain a modularized catalog of these models. Future
research will evaluate the proposed methodology, e.g., to consider deviation detection and
bottleneck identification in construction operations (as proposed by Rashid and Louis [7]).
The proposed DTC needs to be implemented in an application including dynamic data
transmission and integration from the drilling rig to the DES and back. Overall, the results
need to be validated on an on-going construction project to show the practicability of DTCs.
In addition, the fusion of sensor data and image data, or the rules of state transitions, must
be considered to overcome the limitations that arise during activities where the equipment
is not constantly involved in the production process, e.g., with concrete.
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