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Abstract: Monitoring and assessing the severity of the pandemic situation is one of the key challenges
that public officials faced during the COVID-19 pandemic. Daily new infections may lead to flawed
assessments, as infected individuals lead to different constraints imposed on the health care system
amid varying pandemic determinants. On the other hand, hospitalisations or hospital bed occupancy
may lead to outdated assessments, as the corresponding data are only observable with considerable
delay. In this study, we introduce a hospital beds model, which relates the three quantities of daily
new infections, daily hospitalisation rates, and daily hospital bed occupancy in the context of the
COVID-19 pandemic. Using this model, we develop COVIX—a severity index that assesses the
impact of a pandemic in comparison to a specified reference date while taking infection and disease
risks into account. The developed methodology and its implications are illustrated on data for the
German federal state of Bavaria.

Keywords: COVID-19; pandemic assessment; hospitalisations

1. Introduction

More than two years after initial reports of the outbreak of a new coronavirus SARS-CoV-2
causing COVID-19 in Wuhan, China, the spread of the virus induced a global pandemic to
an extent only experienced during the outbreak of the Spanish flu. Regarding the spread
of the virus and the development of the pandemic, a clear distinction between the first
wave in early 2020 and subsequent waves can be made. Whereas the infection hit an im-
munologically naïve population during the first wave, pre-existing immunity, particularly
after a vaccine became available in late 2020, helped mitigate COVID-19 disease severity in
subsequent waves. Although later waves displayed a higher maximum amount of daily
new infections, this did not directly translate into a higher disease burden or higher number
of COVID-19-associated deaths.

Thus, even though the number of (daily) new infections can be easily communicated, it
has drawbacks. First, new infections are difficult to correctly determine, as their detection is
heavily influenced by the testing frequency and capacity and weekend and holiday effects,
and likely still only a fraction of the actual number of infections is detected [1,2]. Second,
it may be misleading to assess the severity of the pandemic based on new infections, as
they account for neither how many persons in a given population are at risk to develop a
severe disease nor the rate of pre-existing immunity due to vaccination or prior infection
or changes in disease severity of COVID-19 caused by virus variants. Finally, even more
sophisticated metrics determined from the number of new infections, such as the R-value,
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have their own set of problems such as time lag, non-standardised estimation procedures,
and inability to provide meaningful information for local outbreaks [3]. For these reasons
alone, it is essential to take into consideration additional disease-specific parameters when
analysing the pandemic situation (see, e.g., [4]). Moreover, even if the aforementioned
problems and inconsistencies were resolved, the new infections, as well as any metric
computed therefrom (including the methods proposed in [5–8]), can only measure the
spread of COVID-19, but not directly its impact, i.e., the constraints posed on the healthcare
system. This aspect has become increasingly important for lawmakers when they tried to
determine which measures were appropriate in response to another wave of COVID-19
infections in early 2022 under vastly different circumstances from previous waves due to the
spread of the Omicron variant of SARS-CoV-2 [9] as well as the progress of the vaccination
and booster vaccination campaigns. A more accurate metric for these constraints would
be either the number of hospitalised patients due to a COVID-19 infection or the reported
deaths linked to a COVID-19 infection, even though the accuracy of the latter is still heavily
discussed [10]. However, using only these metrics as basis for political decision-making not
only ignores the current dynamics of the spread of the pandemic but may lead to delayed
decisions, as data, particularly on deaths, are naturally lagging infection data by days or
even weeks.

Several metrics based on both infection data and hospitalisation data were proposed
in the academic literature. Ref. [11] defined and computed a pandemic vulnerability index
(“PVI”) which takes into account new infections, hospital bed and ventilation capacity, as
well as environmental and demographic information. However, the PVI is designed to
compare the pandemic situation between individual U.S. counties at the same point in
time and cannot be used to assess the overall severity of the pandemic situation. Ref. [12]
developed a similar index based on more sophisticated statistical and machine-learning
methods. Ref. [13] proposed the hospital occupancy mortality rate, ratio of total deaths to
hospital occupancy, and ratio of hospital occupancy to cases as three individual metrics to
assess the severity of the pandemic situation, but the authors did not include the disease
spread in their metric. Likewise, the metrics proposed by [14], the health sufficiency
indicator and the hospital potential occupancy ratio, can be used exclusively to assess
the capacity of hospitals to deal with a given pandemic situation. Hence, the academic
literature has not yet presented a severity index which can be continuously monitored and
compared over time while simultaneously capturing the pandemic’s spread and impact on
the healthcare system.

In this study, we develop an alternative metric to fill this gap, namely the “COVID-
IndeX” (COVIX), which can be used to assess the severity of the pandemic situation in
comparison to a specified reference day that allowed us to take into account both infection
and hospitalisation data. Unlike other indices presented in the academic literature, we
illustrate that the COVIX is suitable to consistently assess the severity of the pandemic
situation despite changing determinants of the pandemic.

The remainder of this paper is structured as follows: In Section 2 we describe the
methodology employed in our research. Specifically, we first introduce a hospitals beds
model that relates daily new infections, daily hospitalisation rates, and daily hospital bed
occupancy in the context of the COVID-19 pandemic (Section 2.1), before motivating and
defining the severity index COVIX, which is based on this hospital beds model (Section 2.2).
Our methodology is applied on data from the German federal state of Bavaria in Section 3,
and the results of this application are discussed in Section 4. We conclude our research and
provide a brief outlook on potential future research in Section 5.

2. Methodology

In this section, we explain the methodology used in computing COVIX. At the core
of the construction of COVIX is the hospital beds model, which relates to three quantities:
daily new infections, hospitalisation rates, and hospital bed occupancy.
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2.1. Hospital Beds Model

Our hospital beds model groups every individual infected with COVID-19 into one of
three groups, depending on the course of their disease:

(i) Asymptomatic or mild disease course of COVID-19 without hospitalisation;
(ii) Moderately severe disease course with hospitalisation in a non-intensive care unit

(non-ICU);
(iii) Severe disease course with the necessity for treatment in an intensive care unit with or

without mechanical ventilation (ICU).

At each distinct time point t, a proportion kNptq of the (daily) new infected individuals
IDptq experiences a moderately severe course of the disease (i.e., course (ii)). Similarly,
a proportion kICUptq of the newly infected individuals IDptq experiences a severe course
of the disease (i.e., course (iii)). The remaining proportion p1´ kNptq ´ kICUptqq of IDptq
experiences an asymptomatic or mild course of the disease and does not enter the hospital
system. For both courses (ii) and (iii), 40% of the patients are hospitalised immediately
upon testing positive for COVID-19 and 15% are hospitalised with a delay of 1, 2, 3, or
4 days, respectively. This mechanism allows for slight mitigation of the regular drop that
is observed in the detected number of infections over the weekend. After entering the
hospital, a hospitalised patient with course (ii) of the disease stays in the non-ICU (state
HN

N ptq) for 10 days until being discharged. Every patient with course (iii) of the disease
initially stays in non-ICU (state H ICU

N1
ptq) for 3 days, then in ICU (state H ICU

ICU ptq) for 17 days,
and finally in non-ICU (state H ICU

N2
ptq) for 7 days until being discharged. In our study,

the time delay until hospitalisation as well as the duration of stay in non-ICU and ICU
were determined based on the combination of data provided by the Robert Koch-Institut
(RKI) [15] and empirical observations by hospital staff during early stages of the COVID-19
pandemic. Due to limited data availability, we made the simplifying assumption that these
quantities remain constant throughout the pandemic. This has the upside that changes
in the number of hospitalized patients can be directly linked to changes in either the
number of new infections or the hospitalisation rates. Further, as we do not have data
on the average duration of a hospital stay until a patient’s death, we did not differentiate
between the length of hospitalisation in case of death or recovery. Instead, we assumed
that the average duration of stay accounts for both options alike and specifically did not
differentiate between these two types of hospital discharges.

At any time t, the total number of patients in non-ICU (HNptq) and ICU (HICUptq)
can be obtained by summing over the corresponding states (see Figure 1 for a schematic
illustration of the model).
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Figure 1. Hospital beds model and its parameters.

2.2. Construction of the COVIX Index

For a given observation period, the construction of COVIX can be divided into three
steps: the estimation of the hospitalisation rates kNptq and kICUptq at a reference date tre f ,
the adjustment of the historically detected new infections according to their relevance
for hospitalisations in comparison to a reference date tre f , and normalisation to scale the
COVIX to a standardised value of 100% at tre f . To improve the clarity of presentation, we
only describe the objective of the fitting procedures in Step 1 and Step 2. A mathematical
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description of the fitting procedures as well as its implementation in Python can be found
in the supplementary material to this work.

Step 1: Using the hospital beds model from Section 2.1 and data on new infections and
hospitalisations, we obtain a least-squares estimate for the hospitalisation rates. By perform-
ing this estimation on a moving-window basis, we ensure that varying determinants, such
as changes in testing frequency, age structure of the infected individuals, vaccination rate,
as well as the circulating viral variant, are reflected in the estimate of the hospitalisation
rates (see Figure 2a).

Step 2: We keep the hospitalisation rates constant and at the level estimated in
Step 1 on the reference date tre f throughout the whole observation period, i.e., we set
kNptq “ kNptre f q and kICUptq “ kICUptre f q for all time points t in the observation period.
Given this parameter choice and the observed hospital bed occupancy, we estimate the
new infections that are implied by our model. Thus, the resulting estimates for the new
infections are obtained relative to the hospitalisation rates that were observed on the refer-
ence date tre f and the estimates are accordingly called “relative” new infections Irelpt, tre f q

(see Figure 2b). In particular, we can view the relative new infections Irelpt, tre f q as an
adjustment of the new infections IDptq, which accounts for changes in the hospitalisation
rates at time t in comparison to tre f .

Step 3: The COVIX at time point t with respect to tre f is finally defined by normalising
the relative new infections as the following. (Note that the hospital beds model is not a
perfect representation of reality. Therefore, the calibration of the relative infections may
yield Irelptre f , tre f q ‰ IDptre f q. That is why we normalise by Irelptre f , tre f q instead of IDptre f q

to ensure a consistent interpretation of COVIX.)

COVIXpt, tre f q :“
Irelpt, tre f q

Irelptre f , tre f q
.

Daily new infections
𝑰𝑫 𝒕

Daily hospitalisation rates
𝒌𝑵 𝒕 , 𝒌𝑰𝑪𝑼 𝒕

Daily hospital bed
occupancy

𝑯𝑵 𝒕 ,𝑯𝑰𝑪𝑼 𝒕
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(a) Fitting hospitalisation rates as in Step 1.
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(b) Fitting relative infections as in Step 2.

Figure 2. A conceptual comparison of the two quantities fitted in the construction of COVIX. In
both (a,b), the yellow-coloured quantity is fitted, whereas the white-colored quantities are given.

As opposed to Step 1, where we take the new infections and hospitalisation data as
given and estimate the hospitalisation rates implied by the hospital beds model, in Step 2,
we take the hospitalisation rates and hospitalisation data as given and estimate (relative)
new infections implied by the hospital beds model. This creates a new time series of daily
relative infections Irelpt, tre f q over the whole observation period. During the calibration of
the relative infections, we keep the hospitalisation rates constant at kNptre f q and kICUptre f q

throughout the whole observation period. Thus, the relative new infections Irelpt, tre f q
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are adjusted to the same relevance for the hospital system at time t as the new infections
IDptre f q at the reference date tre f . As this adjustment is done for every time point in the
observation period, we can now take any two time points t1, t2 and assess whether the
pandemic situation at t1 is more severe than at t2 (i.e., if Irelpt1, tre f q ą Irelpt2, tre f q) or less
severe (i.e., if Irelpt1, tre f q ă Irelpt2, tre f q). It is important to emphasize that the nominal
value of the “relative” (daily) new infections Irelpt, tre f q is only meaningful in comparison
to Irelptre f , tre f q, as Irelpt, tre f q by construction changes with the choice of different reference
dates tre f . Hence, the normalisation in Step 3 is required for improved interpretability.

3. Results

In this section, we illustrate the methodology presented in Section 2 on infections and
hospitalisation data from the German federal state of Bavaria.

We use the infections data from the publicly available database of the German
Robert Koch-Institut (RKI) [16] (see Figure 3a). We used daily new infections data from
1 March 2020 to 15 November 2022. The hospitalisation data were aggregated from the
“Sonderlage” module of the IVENA eHealth system (IVENA) for Mittelfranken [17–19]
and Munich [20–22]. For our analysis, we used data on daily hospital bed occupancy from
1 April 2020 to 15 November 2022 (see Figure 3b).

(a) Infections data. (b) Hospitalization data.

Figure 3. Time series of infections and hospitalisation data. (a) The grey line indicates the new
infections, as reported by the RKI. The blue line indicates the 7-day moving average of the new
infections. (b) The green line indicates the hospitalised COVID-19 patients in non-ICU on any given
date, whereas the red line indicates the hospitalised COVID-19 patients in the ICU.

Matching the underlying data, we choose an observation period from t0 “ 1 April 2022
to t1 “ 15 November 2022 and subsequently go through the three steps in the construction
of COVIX.

Step 1: Estimation of Hospitalisation Rates kNptq and kICUptq

Step 2: Estimation of Relative Infections Irelpt, tre f q

Given the estimates for the hospitalisation rates in Figure 4, we chose two reference
dates, tre f = 21 December 2020, from the week when COVID-19-associated deaths reached
their peak in Bavaria and Germany [23], as well as tre f = 31 January 2022, as a more recent
reference date when the prevalence of the Omicron sub-types first reached 99% of the
evaluated samples in Germany [24], and compute the corresponding relative infections Irel .
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Figure 4. Estimated daily hospitalisation rates. The lines indicate the estimate of the hospitalisation
rate for a moderately severe disease course (green) and a severe disease course (red). Estimates are
based on a 7-day moving window and displayed with logarithmic scaling.

For tre f = 21 December 2020, the relative new infections Irelpt, tre f q are mostly close to
or lower than the new infections IDptq, except for a short period in early 2020. Noticeably,
from October 2021 onward, we observe that Irelpt, tre f q is significantly lower than IDptq.
This implies that new infections IDptq from October 2021 onward overstate their additional
burden to the hospital system in comparison to IDptre f q. In contrast, for tre f = 31 January
2022, the relative new infections Irelpt, tre f q are significantly larger than the new infections
IDptq over the whole course of the pandemic, except for time points close to and after tre f .
This implies that the new infections IDptq over the course of the pandemic understate their
additional burden on the healthcare system in comparison to IDptre f q.

The obvious main difference between the relative new infections Irelpt, tre f q computed
with respect to tre f = 21 December 2020 and tre f = 31 January 2022 is the order of magnitude
of Irel . This can be explained by the difference in the hospitalisation rates at the two
different reference dates: From 21 December 2020 to 31 January 2022, the estimate for
kNptre f q decreased from 7.85% to 0.77%, i.e., by a factor of 10.19ˆ, while the estimate for
kICUptre f q decreased from 1.21% to 0.12%, i.e., by a factor of 10.03ˆ. Under the assumption
of constant hospitalisation rates as on the reference date, the relative infections Irelpt, tre f q

are estimated such that the hospital beds model best explains the observed hospital bed
occupancy. Hence, variations in the actual hospitalisation rates on different reference dates
lead to similar variations in the computed relative infections Irel , as observed in Figure 5.

(a) tre f = 21 December 2020. (b) tre f = 31 January 2022.

Figure 5. Estimates of relative new infections Irelpt, trefq. The grey line indicates the daily new
infections, the dashed red line indicates the chosen reference date, and the green line indicates relative
new infections corresponding to this reference date. (a): Reference date tre f = 21 December 2020.
(b): Reference date tre f = 31 January 2022.

For both cases, tre f = 21 December 2020 and tre f = 31 January 2022, six major peaks of
the relative new infections Irelpt, tre f q can be identified: April 2020, December 2020, April
2021, December 2021, March 2022, and October 2022. For both reference dates, the peak in
December 2021 is the largest, closely followed by March 2022 and December 2020, whereas
April 2020, July 2022, and April 2021 follow afterward. Thus, comparing the values of
Irelpt, tre f q over the pandemic leads to a consistent assessment of the severity of the pan-
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demic situation.

Step 3: Normalisation with respect to tre f

For ease of presentation, we continue our analysis with tre f = 21 December 2020 only,
when deaths due to COVID-19 had reached their peak level in Bavaria and Germany. At
this time point, the original SARS-CoV-2 EU-1 strain was still dominant in Germany and
the vaccination campaign had not yet started.

The COVIX is a normalised version of the relative infections Irel and therefore the
implications from Figure 6 are the same as from Figure 5a,b. However, the COVIX allows us
to express these implications in percentage points, which makes the COVIX more accessible
as a metric for assessing the severity of the pandemic situation. For example, according to
the COVIX with reference date tre f = 21 December 2020, we can argue that the pandemic
situation at t = 15 November 2022 is approximately 17.13% as severe as it was at tre f .

Figure 6. COVIXpt, trefq with tref “ 21 December 2020. The dashed red line indicates the chosen
reference date. The multi-coloured line indicates the COVIX value at any given date. The colour of
the line indicates whether the COVIX is above 60% (red), between 60% and 30% (yellow), or below
30% (green).

4. Discussion

Figure 4 illustrates that both hospitalisation rates kNptq and kICUptq changed signif-
icantly over the course of the pandemic. This makes it especially difficult to assess the
severity of the pandemic situation based solely on the new infections IDptq alone, as the
same number of new infections at different time points lead to significantly different con-
straints imposed on the hospital system. In particular, the impact of changing determinants
of the pandemic (e.g., age structure of infected individuals, testing frequency, pre-existing
immunity, viral variant) is implicitly reflected in the changes of the estimated hospitalisa-
tion rates. Moreover, the COVIX displays the same qualitative behaviour as the relative
new infections, as all other things being equal, the COVIX increases (decreases) when daily
new infections, hospitalisation rates, or both increase (decrease). Further, from a historic
perspective, high COVIX values correspond to high observed hospital bed occupancy and
therefore correctly identify periods of high added burden to the healthcare system due to
COVID-19 patients. Hence, when continuously monitored over time, COVIX serves as an
effective tool in assessing the severity of the pandemic.

Although these are compelling strengths of COVIX, we would also like to discuss
some weaknesses of our methodology. The intention of COVIX is to project changes in
hospitalisation rates and new infections into a single severity index. On the one hand, this
projection provides an unambiguous answer to when the pandemic situation improves or
worsens—even when hospitalisation rates and new infections change in opposite directions.
On the other hand, this dilutes granular information that could be extracted from tracking
both of these metrics individually. Note, however, that analogous trade-offs need to be
made by any such severity index with a similar objective. Furthermore, it is challenging to
extrapolate the values of COVIX into the future. For a fixed reference date tre f , COVIX is
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proportional to the (relative) new infections Irelpt, tre f q and therefore its forecasts encounter
similar challenges as forecasts of new infections IDptq (see, e.g., [25,26]).

As suggested by the colour scheme in Figure 6, we propose to use the COVIX as an
early-warning mechanism, which follows a traffic light system. Specifically, we propose
the following approach:

(i) In collaboration with medical practitioners, epidemiologists, and public officials, iden-
tify a historic reference date tre f , which represents a threshold moment with respect to
the dynamics and consequences of the pandemic that should not be overstepped (e.g.,
tre f could correspond to a hospital overload).

(ii) In collaboration with medical practitioners, epidemiologists, and public officials,
identify two additional reference dates ty and tg, which define the following traffic
lights at a given time t:

Red—COVIXpt, tre f q ą COVIXpty, tre f q:
Major preventive measures have to be taken to prevent overstepping the severity
at tre f .
Yellow—COVIXpty, tre f q ě COVIXpt, tre f q ą COVIXptg, tre f q:
All authors have read and agreed to the published version of the manuscript. Minor
preventive measures have to be taken to prevent overstepping the severity at tre f .
Green—COVIXptg, tre f q ě COVIXpt, tre f q:
No preventive measures have to be taken to prevent overstepping the severity at tre f .

(iii) For each traffic light, define a set of measures to be taken, depending on the traffic
light displayed by the COVIX.

(iv) Compute and monitor the COVIXpt, tre f q daily, act according to the methodologies
defined in (iii), and update the reference dates and measures when necessary.

We did not determine the colouring in Figure 6 using specific reference dates ty and
tg. Instead, we used equivalent, fixed threshold values of 30% and 60%. These specific
threshold values for the COVIX are arbitrary and carry little meaning on their own, as
they have completely different implications for the COVIX computed with respect to
different reference dates tre f . Hence, both tre f as well as ty and tg (or the corresponding
threshold values) should be chosen according to a sound medical, epidemiological, and
administrative rationale. In contrast to other traffic light systems, such as the “COVID-19
Protection Framework” [27] implemented by the New Zealand government or the system
implemented by the European Centre for Disease Prevention and Control [28], the above
approach would yield a fully transparent choice of preventive measures that are only
guided by a single factor, rather than relying on multiple factors that may display conflicting
signals. An alternative application of our methodology would be the assessment of the
effectiveness of disease preventive measures as indicated by changes in the COVIX. Similar
studies have been conducted in, e.g., [29–31], but have largely focussed on the impact of
measures on the pandemic’s spread and associated deaths, rather than the pandemic’s
overall impact on the healthcare system. As COVIX additionally captures this impact, it
is ideally suited to complement the already existing analyses in this regard. Moreover, as
a severity index, COVIX can either signal an increase or decrease in the severity of the
COVID-19 pandemic. Thus, it could also be used as a risk measure for companies whose
cash flows depend on the current state of the pandemic. Finally, it should be noted that the
proposed concepts and applications are not limited to the COVID-19 pandemic, but can
also be applied to any other pandemic as long as the corresponding data are available.

5. Conclusions

In this paper, we introduced a model that relates three quantities: (daily) new infec-
tions, hospitalisation rates, and hospital bed occupancy. Based on this model, we have
presented the concept of relative infections, which allows for an accurate comparison of
the pandemic situation at different time points of the pandemic, by taking into account
both infections data and hospitalisation data. Based on this relative infection activity, we
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defined the COVIX, an index that shows the severity of the pandemic situation compared
to a suitable reference date. This reference date is variable and can be set according to
the goal of the analysis or relative to which parameter or countermeasures one wants to
use to analyse the current situation. Moreover, the COVIX can be tracked over time and
potentially serve as an effective tool for managing countermeasures in the COVID-19 and
any future pandemic. Considering the COVIX in retrospect, it correctly indicated the most
critical periods in early April 2020 and the most critical periods starting in October 2020
and November 2021. It also identified the waning pandemic threat in May 2020 and 2021
and indicates that the severity of the pandemic will remain controlled with the appearance
of the Omicron variant at the end of 2021 despite an infection incidence that has not been
seen before.

To further test and challenge our methodology, future studies should compute and
compare COVIX on data from different regions or with varying levels of granularity.
In particular, the results of such a study could be used to evaluate the effectiveness of
prevention measures taken by policy-makers. Moreover, it would be interesting to extend
our methodology by incorporating more disease-specific information into the hospital beds
model, such as seasonality effects, data on patient ages, or data on vaccinations. We leave
these points open for future research.

Supplementary Materials: The datasets and Python code used for our analysis as well as a detailed
mathematical description of our methodology can be downloaded as supporting information at:
https://www.mdpi.com/article/10.3390/app13074554/s1.
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