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Abstract: Safety-critical control is a type of modern control task where potentially conflicting stability,
safety, and input constraints coexist. In this paper, the Prescribed-Time Zeroing Control Barrier
Function (PT-ZCBF) is introduced, which can be applied as a prescribed-time stability constraint
in safety-critical control tasks. Furthermore, we formulate a PT-ZCBF-based Quadratic Program
(QP), which is able to mediate the potentially conflicting constraints of safety-critical control. The
solution of the newly designed QP, acting as the control input of a safety-critical system, can drive
the closed-loop trajectories to converge in a user-defined prescribed time period while observing
the safety and input constraints. Finally, we use the Adaptive Cruise Control (ACC) problem as an
example of numerical simulation to evaluate the performance of the QP-based method.

Keywords: prescribed-time stability; safety-critical control; spatio-temporal constraints; QP-based
control; control affine system

1. Introduction

Safety-critical control is one of the most critical tasks in the research field of modern
control theory. A safety-critical control problem often consists of spatio-temporal constraints
and input constraints that are potentially conflicting [1]. Spatio-temporal constraints can be
understood as the combination of spatial and temporal constraints [2]. Spatial constraints
require the system states to converge in a surface or a point (stability constraint) while
maintaining in a safe set (safety constraint). In addition, temporal constraints require the
trajectories of the states to converge within a prescribed time period. Moreover, input
constraints, e.g., saturation of actuators, are also unavoidable in reality.

In practice, an effective and efficient method in solving safety-critical control problems
is to use Control Barrier Functions (CBFs) to describe spatio-temporal constraints [1].
The Zeroing Control Barrier Function (ZCBF) is a type of CBF that drives the value of
a function to zero when the states approach the boundary of its predefined desired set.
Using ZCBF-based methods, the system states can be rendered forward-invariant [2],
which is a significant criterion for safety in control theory. Furthermore, ZCBFs can also
be applied to describe stability constraints. In [3], it is shown that ZCBFs can guarantee
asymptotic convergence to desired sets. Despite the advantages of ZCBF, it cannot fulfill
the temporal specifications of safety-critical systems. As an alternative, the Finite-Time
(convergence) Control Barrier Function (FCBF) [4] is proposed to ensure finite-time stability
(FTS). Furthermore, fixed-time stability (FxTS) [5] control methods are also proposed,
where the time of convergence is determined by various parameters and is independent
of the initial condition [2]. Nevertheless, in the research field of safety-critical control,
it is necessary to design control inputs that drive the system state to converge within a
prescribed time period defined by the user, namely to achieve prescribed-time stability
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(PTS) [6–9] instead of FTS or FxTS. For instance, the space robot is required to catch
the expired inhabited spacecraft within a prescribed time period [10]. Inspired by the
advantages of ZCBF, we can extend its property of asymptotic stability (AS) to PTS via
time transformation techniques. Hence, it is necessary to propose the Prescribed-Time
(convergence) ZCBF (PT-ZCBF), which can be applied as a stability constraint function for
a safety-critical control system.

From another perspective, it is a challenging problem to describe and solve a safety-
critical control task under the coexistence of the prescribed-time stability constraint, safety
constraint, and input constraints [2]. For example, the proposed methods in [1,2,4] only
achieved exponential stability (ES), FTS, and FxTS, respectively, instead of PTS. In addition,
although the authors of [11] designed a PTS controller, it failed to take the input constraints
into consideration. A crucial approach of the current research is the application of a
Quadratic Program (QP) to describe these constraints, which could be conflicting since a
QP can find the optimal solutions to constrained optimization problems efficiently [1,12].
Therefore, in this paper, we aim at proposing a PT-ZCBF-based QP under safety and input
constraints to address safety-critical control tasks.

Take the trajectory planning of a robot as an example [13,14]. A finite amount of goal
sets with intersections are set up to constrain the trajectory of the robot. This is shown in
Figure 1. The robot goes from the point Start into the circle G1 within time T1. Then, it goes
from G1 into G2 within time T2, and so on. Thus, the robot follows this trajectory with a
prescribed time limit.

Start

G1

G2 G3

G4

End

Figure 1. Trajectory planning sketch.

In this paper, we propose the PT-ZCBF to characterize the practical requirement
that the system states converge within a prescribed time period, and obtain the control
strategy via PT-ZCBF-based Quadratic Programs. To the best of the authors’ knowledge, the
prescribed-time stability is realized in safety-critical control systems under safety and input
constraints for the first time. Specifically, a time transformation technique is utilized to
convert the normal ZCBF into the newly designed PT-ZCBF. This PT-ZCBF is incorporated
as the prescribed-time stability constraint in QP. By introducing slack variables, we ensure
the solvability of the QP such that the feasible control input always exists.

The remainder of the paper is organized as follows. The notations, preliminaries, and
the main problem of the paper are demonstrated in Section 2. Then, the main results and the
related proofs are illustrated in Section 3. Afterward, the Adaptive Cruise Control (ACC)
problem is applied as an example of numerical simulation to evaluate the performance of
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the newly designed QP-based method in Section 4. Finally, the paper is concluded with
possibilities for future research in Section 5.

2. Preliminaries and Problem Formulation
2.1. Notations

Let R denote the set of real numbers and R≥0 denote the set of non-negative real
numbers. Let ‖·‖ denote the Euclidean norm. We denote |x|S = infy∈S‖x− y‖ as the
distance of a point x ∈ Rn\S from a set S . Let Ck denote the set of k times continuously
differentiable functions. We denote the Lie derivative of a C1 function h : Rn → R in a
vector field direction f : Rn → R at x ∈ Rn as L f h(x) := ∂h

∂x f (x). We define the following
classes of functions [15].

Definition 1. A continuous function α : [0, a)→ [0, ∞) belongs to class K if α(0) = 0 and it is
strictly increasing.

Definition 2. The class K function α belongs to class K∞ if a = ∞ and α(r)→ ∞ when r → ∞.

Definition 3. A continuous function β : [0, a)× [0, ∞)→ [0, ∞) belongs to class KL, if β(r, s)
belongs to class K in relation to r for each s and β(r, s) is decreasing in relation to s for each r and
β(r, s)→ 0 when s→ ∞.

Definition 4. A continuous function α : (−b, a)→ (−∞, ∞) belongs to the extended class K for
a, b > 0 if α(0) = 0 and it is strictly increasing.

2.2. Preliminaries
2.2.1. Dynamic System

Consider a control affine system given by the differential equation

ẋ(t) = f (x(t)) + g(x(t))u, x(t0) = x0 (1)

with the state vector x ∈ Rn, and the input vector u ∈ Rm. The system vector fields
f : Rn → Rn and g : Rn → Rn×m are assumed Lipschitz continuous. We denote x(0) as the
initial values of the states at t = 0.

2.2.2. Goal Set and Safe Set

Define a set S ⊂ Rn, and its boundary and interior as

S ={x ∈ Rn : h(x) ≤ 0}, (2a)

Int(S) ={x ∈ Rn : h(x) < 0}, (2b)

∂S ={x ∈ Rn : h(x) = 0} (2c)

with the continuously differentiable function h : Rn → R .
We define the goal set

Sg = {x|hg(x) ≤ 0} (3)

and the safe set
Ss = {x|hs(x) ≤ 0}, (4)

where the functions hg, hs : Rn → R are defined by the user. We need the following
assumption for the theoretical analysis in Section 3.

Assumption 1 ([2] (Assumption 1)). The sets Ss ∩ Sg 6= ∅, and the functions hg, hs ∈ C1. The
goal set Sg is assumed to be compact. For the safe set Ss and goal set Sg, it is assumed that their
interiors are not empty. In addition, the function hg is proper in relation to the set Sg, i.e., a class
K∞ function αg exists, which satisfies hg(x) ≥ αg(|x|Sg), ∀x /∈ Sg.
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2.3. ZCBF and Its Properties

Garg et al. [2] use Nagumo’s Theorem on set invariance [16] to prove the safety
(forward invariance) of Ss for (1), where the following assumption in combination with the
conditions of ZCBF is required.

Assumption 2 ([2] (Assumption 2)). Consider the system (1). A control input u exists for all
x ∈ ∂Ss, which satisfies

L f hs(x) + Lghs(x)u < 0. (5)

Assumption 2 appears in [1,17]. Its rationality can be obtained in [2] (Section III).
Next, the definition of ZCBF is presented.

Definition 5 ([2] (Definition 1)). Consider the system (1) and a set S , which is defined in (2) with
a C1 function h. The function h is defined as a ZCBF on set E with S ⊆ E ⊂ Rn, if an extended
class K function α exists, which satisfies

inf
u∈U

[
L f h(x) + Lgh(x)u

]
≤ −α(h(x)), ∀x ∈ E (6)

Note that the function hs satisfies (5) if it is a ZCBF with respect to the system (1). A
special case of (6) is

inf
u∈U

[
L f h(x) + Lgh(x)u

]
≤ −ρh(x), (7)

where ρ ≥ 0, as discussed in [1] (Remark 6). We need (7) for the QP formulation in Section 3.
In addition to forward invariance [1], another important property of ZCBF-based

control is the ability to render the system states asymptotically stable. We now introduce a
lemma that summarizes both important characteristics of ZCBFs.

Lemma 1 ([3] (Theorem S5)). Consider the control affine system (1). The set S with a C1 function
h is defined in (2). Then, any Lipschitz continuous controller u satisfying (6) for all x ∈ E will
cause the set S to become asymptotically stable and forward-invariant, namely

• if x(0) /∈ S , then x(t) converges to S when t→ ∞ (asymptotic stability);
• if x(0) ∈ S , then x(t) ∈ S , ∀t ≥ 0 (forward invariance).

Both properties are essential for the theoretical analysis in Section 3.

2.4. Prescribed-Time Stability and Time Transformation

Definition 6 ([11] (Definition 1)). The dynamical system (1) is called prescribed-time stable if
the states of (1) converge to a bounded set or a point in finite prescribed time T ∈ (0, ∞) defined by
the user.

In order to analyze prescribed-time stability, a commonly used technique is time
transformation, where a finite-time interval t ∈ [0, T) in domain t is converted into an
infinite-time interval s ∈ [0, ∞) in domain s [6,18,19]. We define the function λ : R≥0 →
R≥0 as

t = λ(s) (8)
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with s ∈ [0, ∞), t ∈ [0, T) such that

λ(0) = 0, (9a)

λ′(0) = 1, (9b)

s1 > s2 ≥ 0⇒ λ(s1) > λ(s2), (9c)

lim
s→∞

λ(s) = T, (9d)

lim
s→∞

λ′(s) = 0, (9e)

where λ′(s) := dλ(s)
ds . With (9a) and (9b), the mapping from the set s ∈ [0, ∞) to the set

t ∈ [0, T) is feasible. It can be implied from (9c) that the function λ is strictly increasing.
According to (9d) and (9e), we can conclude that the system (1) is prescribed-time stable in
domain t if it is asymptotically stable in domain s.

2.5. Problem Formulation

We define the main problem as follows.

Problem 1. Design a control input

u(t) ∈ U = {u ∈ Rm|umini ≤ ui ≤ umaxi , i = 1, 2, . . . , m} (10)

of the system (1), such that the trajectories of the closed-loop system converge to the goal set Sg in
user-defined prescribed time T. Meanwhile, the states x(t) should always remain in the safe set Ss
for all x0 ∈ Ss and t ≥ 0.

3. Main Results

We present the main results of this paper and the related proofs in this section. First,
we introduce our design of the Prescribed-Time (convergence) ZCBF (PT-ZCBF) via the
time transformation technique. Afterward, we propose the QP-based formulation, using
PT-ZCBF as a constraint function. We prove the feasibility of the QP and the continuity of
its solution under certain conditions, which are necessary to prove that Problem 1 can be
solved by the QP solution under certain conditions. All the main results in this section are
demonstrated under Assumptions 1 and 2.

3.1. PT-ZCBF and Its Properties

In this subsection, we propose the definition of PT-ZCBF, showing its property of
prescribed-time stability.

We define PT-ZCBF as follows.

Definition 7. Consider the system (1). Consider a set S with a C1 function h defined as in (2).
The function h is a PT-ZCBF on set E with S ⊆ E ⊂ Rn, if an extended class K function α exists,
which satisfies

inf
u∈U

[
L f h(x) + Lgh(x)u

]
≤ −α(h(x))

T
T − t

, ∀t ∈ [0, T), (11)

inf
u∈U

[
L f h(x) + Lgh(x)u

]
≤ −α(h(x)), ∀t ∈ [T, ∞). (12)

Furthermore, we introduce the Comparison Lemma, which is essential for the proof of
Theorem 1.

Lemma 2 ([20] (Lemma 4.4)). Consider the following scalar differential equation:

ż = −α(z), z(t0) = z0, (13)
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with the locally Lipschitz class K function α defined on [0, a). The solution z(t) of this differential
equation in time interval t ∈ [t0, ∞) is unique for all 0 ≤ z0 < a. In addition, the solution can be
described as

z(t) = σ(z0, t− t0) (14)

with a class KL function σ defined on [0, a)× [0, ∞).

Now, we are ready to present our first main result.

Theorem 1. Consider the system (1). The set S with a C1 function h is defined as in (2). If
there exists an extended class K function α, such that the function h is a PT-ZCBF on set E with
S ⊆ E ⊂ Rn satisfying (11) and (12), then there exists a function σ(h0, t) such that

h(x(t)) ≤ σ(h0, t), ∀t ∈ [0, T), (15)

h(x(t)) ≤ 0, ∀t ∈ [T, ∞) (16)

for any given time limit T > 0, where the initial value h0 = h(x(0)), σ(h0, t) decreases strictly
in t for t ∈ [0, T), and lim

t→T
σ(h0, t) = 0 holds. Specifically, any Lipschitz continuous controller

u ∈ U of the system (1) satisfying (11) and (12) renders the trajectories of the closed-loop system (1)
to converge to the set S in user-defined prescribed time T, and then remain forward-invariant.

Using the time transformation technique and the Comparison Lemma, Theorem 1 can
be proven.

Proof. First, t ∈ [0, T) is considered.
From (11) and (1), we can derive

ḣ(x(t)) :=
dh(x(t))

dt
≤ −α(h(x(t)))

T
T − t

, ∀t ∈ [0, T). (17)

We use the time transformation candidate function

t = λ(s) , T(1− e−s/T) (18)

with the time constant T > 0 defined by the user. It is easy to prove that (18) satisfies (9).
The back-transformation of (18) is

s = λ−1(t) = T log
T

T − t
. (19)

It can be derived that
ds
dt

=
T

T − t
. (20)

Inserting (20) into (17), we can derive

ḣ(x(t)) :=
dh(x(t))

dt
≤ −α(h(x(t)))

ds
dt

, ∀t ∈ [0, T). (21)

Since we have

h′s(x(s)) :=
dhs(x(s))

ds
=

dh(x(t))
dt

dt
ds

, (22)

where we denote hs(x(s)) as the value of the function h(x(t)) in domain s, we can derive

h′s(x(s)) :=
dhs(x(s))

ds
≤ −α(hs(x(s))), ∀s ∈ [0, ∞). (23)

Next, we apply Lemma 2. In Lemma 2, let y denote hs(x(s)), and let t denote s with
t0 = s0 = 0. It can be concluded that a class KL function σs(h0, s) with

hs(x(s)) ≤ σs(h0, s), ∀s ∈ [0, ∞) (24)
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exists, where h0 is the initial value of the function h at t = s = 0. Applying the back-
transformation (19) to (24), we can prove (15). Based on the definition of the class KL
function, it can be concluded that σ(h0, t) decreases strictly with t for t ∈ [0, T), and

lim
t→T

σ(h0, t) = 0 (25)

holds. According to (6) in Definition 5, it is evident that hs(x) is a ZCBF in the s domain.
Thus, we can conclude according to Lemma 1 that any Lipschitz continuous controller
u ∈ U of (1) forces the closed-loop trajectories to converge in the set S in user-defined
time T.

Then, t ∈ [T, ∞) is considered. At t = T, we can conclude from (15) that

h(x(t = T)) ≤ 0 (26)

holds. According to (12), we can conclude that h is a ZCBF for t ∈ [T, ∞). Therefore, the set
S is forward-invariant for t ∈ [T, ∞). Hence, (16) is proven.

Thus, Theorem 1 is proven.

3.2. PT-ZCBF-Based QP

In this subsection, the PT-ZCBF-based QP and its feasibility are demonstrated, and it
is proven that Problem 1 can be solved by the QP solution under certain conditions. Define

z =

 u
δ1
δ2

 ∈ Rm+2, (27)

and the PT-ZCBF-based QP is defined as follows:

min
u,δ1,δ2

1
2

zT Hz (28a)

s.t. Auu ≤ bu (28b)

L f hg(x) + Lghg(x)u + γ1hg(x)
T

T − t
≤ δ1, t < T (28c)

L f hg(x) + Lghg(x)u + γ2hg(x) ≤ δ1, t ≥ T (28d)

L f hs(x) + Lghs(x)u ≤ −δ2hs(x). (28e)

The matrix H = diag{wu1, . . . , wum, w1, w2} is diagonal with weights wu1, . . . , wum, w1,
w2 > 0. The matrix Au ∈ R2m×m and the vector bu ∈ R2m define the input constraints.
T > 0 is the user-defined prescribed time of convergence, and the hyperparameters
γ1, γ2 > 0. According to Theorem 1, the constraints (28c) and (28d) are designed according
to the PT-ZCBF, which aim to ensure prescribed-time convergence. According to Lemma 1,
the constraint (28e) guarantees safety.

Parameters δ1, δ2 are relaxation parameters. With the relaxation parameters, the
feasibility of the QP (28) is guaranteed.

We can rewrite the constraints (28b)–(28e) in the form of

A(x)z ≤ b(x), (29)

where

A(x) =

 Au 02m 02m
Lghg(x) −1 0
Lghs(x) 0 hs(x)

, (30)
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b(x) =



 bu
−L f hg(x)− γ1hg(x) T

T−t
−L f hs(x)

, t < T

 bu
−L f hg(x)− γ2hg(x)

−L f hs(x)

, t ≤ T

. (31)

The elements of the column vector 02m ∈ R2m are zeros. Furthermore, we define the functions

Gj(x, z) = Aj(x)z− bj(x) (32)

where Aj, bj denote the j-th row of A and b. Then, we can express the constraints of the
QP (28) as

Gj(x, z) ≤ 0, ∀j ≤ 2m + 2, j ∈ N+. (33)

Lemma 3. Parameters (u, δ1, δ2), which satisfy (28b)–(28e), always exist for all x. In other words,
the QP (28) is always feasible for all x.

Proof. Consider the cases of hs(x) < 0 and hs(x) = 0 separately.
First, the case hs(x) < 0 (x ∈ Int(Ss)) is to be considered. Because the set U is not

empty, there exists u = u ∈ U , which satisfies (28b). We define

δ2 = −
L f hS(x) + LghS(x)u

hs(x)
, (34)

which satisfies (28e) with equality. Finally, we choose

δ1 = L f hG(x) + LghG(x)u + γ1hg(x)
T

T − t
, t ∈ [0, T), (35)

and
δ1 = L f hG(x) + LghG(x)u + γ1hg(x), t ∈ [T, ∞), (36)

so that (28c) and (28d) are satisfied with equality. Therefore, in the first case, parameters
(u, δ1, δ2) exist, which satisfy (28b)–(28e).

Then, the case hs(x) = 0 (x ∈ ∂Ss) is to be considered. According to Assumption 2, it
can be concluded that u = u ∈ U satisfying (28b) exists. Because hs(x) = 0, any value of δ2
is possible. Therefore, δ2 = 0 can be chosen. As a result, we can choose

z =

 u
δ1
δ2

 =

 u
δ1
0

, (37)

which satisfies (28b)–(28e).
Therefore, the QP (28) is always feasible.

Remark 1. Due to the coexistence of multiple constraints that are potentially conflicting, we
must add slack variables (relaxation parameters) δ1 and δ2 to ensure the feasibility of the QP (28).
However, due to the slack variables δ1, the stability constraint, i.e., prescribed-time stability, may
not be perfectly guaranteed. When the input, stability, and safety constraints are not conflicting,
the solution of the QP will result in δ1 ≈ 0 if a weight w1 is chosen appropriately. As a result, a
sufficiently large weight w1 will result in a negligible value of δ1, which ensures the effectiveness of
the stability constraint. In short, the stability objective is a soft constraint because of the existence of
the relaxation parameter, and it is still effective if a sufficiently large weight w1 is chosen. Setting
δ1 = 0 will make the stability constraint a hard constraint, but the feasibility of the QP cannot be
guaranteed [21,22].
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In contrast, the safety constraint (28e) implies that the forward invariance of the safe set Ss can
never be violated according to Definition 5 and Assumption 2. Therefore, the safety constraint (28e)
is a hard constraint.

Next, we would like to prove that under certain assumptions, the solution of the
QP (28) solves Problem 1. That is, the solution of the QP (28) can render the trajectories of
the system (1) forward-invariant in the safe set Ss, and the system states will converge to the
goal set Sg in user-defined prescribed time T while satisfying the input constraints (28b).

According to [2], the authors’ idea to ensure safety is a combination of Nagumo’s
theorem [16] and Assumption 2. As the prerequisite for safety and stability, the continuity
of the solution z∗(x) of the QP (28) has to be ensured. Thus, we make the following
assumptions to prove that the solution z∗(x) of the QP (28) is continuous.

Assumption 3. At t = T, the solution z∗(x) of the QP (28) is continuous.

Let z∗ and λ∗ ∈ R2m+2
+ denote the optimal solution of the QP (28) and the correspond-

ing Lagrange multiplier.

Assumption 4 ([2] (Assumption 3)). The constraints (28b)–(28e) of the QP (28) satisfy strict
complementary slackness, which means that either λ∗j > 0 or Gj(x, z∗) < 0 holds for all x ∈
Int(Ss)\Sg and for each j ≤ 2m + 2, j ∈ N+.

Remark 2. For an explanation of complementary slackness, please refer to [2] (Section IV).

Assumption 5. The functions hg(x), hs(x) are at least three times continuously differentiable
in x.

Theorem 2. Under Assumptions 3–5, the solution z∗(·) of the QP (28) is continuous on Int(Ss)\Sg.

Proof. According to [2] (Theorem 5), the QP (28) solution z∗(·) is continuous under the
assumptions above. Note that the Lie derivatives L f hg(x), Lghg(x), L f hs(x), Lghs(x) should
be at least twice continuously differentiable in x [23] (Theorem 2.1). Therefore, hs, hg
should be at least three times continuously differentiable in x, which corresponds to
Assumption 5.

Now, we are ready to show that the solution of the QP (28) solves Problem 1 under the
aforementioned assumptions.

Theorem 3. Under Assumptions 1–5, if the solution z∗(x) of the QP (28) given as

z∗(x) =

u∗(x)
δ∗1 (x)
δ∗2 (x)

 (38)

satisfies δ∗1 (x) ≤ 0, ∀x ∈ Ss, then u(x) = u∗(x) solves Problem 1 for all x(0) ∈ Ss.

Proof. This proof is based on [2] (Theorem 6).
First, we show that the closed-loop trajectories of (1) have the property of prescribed-

time stability with respect to Sg. From Theorem 2, it can be concluded that the closed-
loop system dynamics are continuous when we choose u(x) = u∗(x). Applying [24]
(Theorem 3.15.1) and using a Lyapunov function candidate

V(w) =
1
2
|w|2, (39)
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we can prove that w ≡ 0 is the unique solution of the equation

ẇ = φ(w) :=

− γ1
T

T − t
w, t < T

− γ2w, t ≥ T
(40)

for w(0) = 0 under Assumption 3. From the properties of the goal set function hg(x), we
have that

hg(x) = 0, ∀x ∈ ∂Sg, (41)

and that
hg(x) > 0, ∀x /∈ Sg, (42)

i.e., the goal set function hg(x) is positive definite with respect to the goal set Sg. Therefore,
per [24] (Theorem 3.18.1), with the function g defined as φ and the fact that

ḣg(x) ≤ φ(hg(x)), x /∈ Sg (43)

holds since δ∗1 (x) ≤ 0, the closed-loop system (1) has a unique solution. According to
Theorem 1, it can be concluded that the closed-loop trajectories of (1) with u(x) = u∗(x)
converge to the goal set Sg within user-defined prescribed time T for all x(0) ∈ Ss, and
then remain forward-invariant with respect to the goal set Sg.

Then, we show that the closed-loop trajectories have the property of safety, i.e., x(t) ∈
Ss for all t > 0 when we choose u(x) = u∗(x). Since the solution z∗(·) is continuous
under the assumptions above, the optimal control input u(x) = u∗(x) is also continuous.
Furthermore, a bounded safe set Ss results in bounded closed-loop trajectories. Thus, the
solution of the closed-loop system (1) is well-defined and unique [24] (Chapter 3). Since
hs is a ZCBF, it satisfies (5). Therefore, by Nagumo’s Theorem on set invariance [16], we
directly obtain the forward invariance (safety) of the safe set Ss.

Additionally, according to the input constraints (28b) and the solvability of the QP (28)
from Theorem 3, it can be concluded that the control input u(x) = u∗(x) satisfies the linear
input constraints (28b).

Therefore, the optimal control input u(x) = u∗(x) solves Problem 1 for all x(0) ∈ Ss
under the aforementioned assumptions.

In many engineering problems, the system vector fields and the control input are
assumed to be Lipschitz continuous. Next, we will show that under the following technical
assumption, Problem 1 can be solved by the solution of QP (28) [1,3].

Assumption 6. The system vector fields f , g in (1) and the solution z∗(x) of the QP (28) are
(locally) Lipschitz continuous.

Theorem 4. Denote

z∗(x) =

u∗(x)
δ∗1 (x)
δ∗2 (x)

 (44)

as the solution of the QP (28). Under Assumptions 1, 2, 3 and 6, Problem 1 can be solved by
u(x) = u∗(x) for all x(0) ∈ Ss.

Proof. According to Lemma 1, if the solution of the QP (28) is Lipschitz continuous for
all x(0) ∈ Ss, then the trajectory of the closed-loop system (1) will be forward-invariant in
safe set Ss under the safety constraint (28e). Furthermore, according to Theorem 1, under
the condition that the QP solution is Lipschitz continuous for all x(0) ∈ Ss, the system
states will be driven into the goal set Sg within user-defined prescribed time period T
under the stability constraint (28c), and then remain forward-invariant under the stability
constraint (28d). Moreover, the input constraint (28b) specifies the upper and lower bounds
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of control inputs as described in Problem 1. In addition, the QP (28) is always feasible
according to Lemma 3. Hence, Problem 1 can be solved by u∗ for all x(0) ∈ Ss.

Remark 3. According to [1] (Theorem 3), if we ignore the input constraints (28b), we can prove the
Lipschitz continuity of the solution of QP (28) for x ∈ Int(Ss) under the assumptions that the QP
solution is locally Lipschitz continuous at t = T, and that the functions f , g in (1), the gradients of
hs, hg are locally Lipschitz continuous, and that the relative degree one condition holds. However, the
Lipschitz continuity of the QP solution with input constraints (28b) is not currently guaranteed.

Remark 4. The newly designed QP (28) can find the optimal control input of a control affine
system (1) under the prescribed-time stability constraint, safety constraint, and input constraints
of a typical safety-critical system, which is different from the function of the controllers designed
in [1,2]. We learn from the ideas of proofs in [1,2], but for our newly designed QP (28), it is proven
that the control goal of PTS is achieved. Although we are inspired by the ideas in previous research,
the prescribed-time stability constraint in our QP (28) is based on PT-ZCBF, which is different from
the stability constraints in [1,2]. Then, the resulted closed-loop trajectories of the safety-critical
system will be prescribed-time stable under safety and input constraints.

4. A Numerical Case Study

In this section, the Adaptive Cruise Control (ACC) problem [1] (Section V.A) is adopted
to show the effectiveness of the designed method. The objective of our problem is to track
the expected speed of the following vehicle while keeping a safe distance from the leading
vehicle. QP (28) is applied to find the control input that solves the ACC problem. The
MATLAB solver ode4 with a fixed step size is applied in our program. The MATLAB function
quadprog is applied to find the QP solution at every time step.

4.1. Introduction of the ACC Problem

The ACC problem contains a following vehicle and a leading vehicle. The following
vehicle possesses the ACC system, which aims to converge to a prescribed driving speed
(stability constraint, soft constraint). Furthermore, the following vehicle needs to keep a
safe distance behind the leading vehicle (safety constraint, hard constraint). Therefore,
the following vehicle’s speed has to be reduced to observe the safety constraint when the
distance between the two vehicles decreases. We assume that both vehicles are modeled as
mass points, and they travel in a one-dimensional coordinate.

The system equation of the ACC problem is [1]

ẋ = f (x) + g(x)u. (45)

By choosing the system vector fields properly, we can derive

ẋ =

−Fr/M
aL

x2 − x1


︸ ︷︷ ︸

f (x)

+

1/M
0
0


︸ ︷︷ ︸

g(x)

u. (46)

In the system equations,

x =

x1
x2
x3

 =

v f
vl
D

 (47)

are the system states, where we define v f as the following vehicle speed (in m/s), vl
as the leading vehicle speed (in m/s), and D as the space between both vehicles (in m).
u ∈ [−umax, umax] is the control input, whose physical significance is the driving wheel
force (in N) of the following vehicle supplied from the powertrain system. M is defined as
the mass of the following vehicle (in kg); Fr(x) = f0 + f1v + f2v2

f is the resistance (in N),
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where the constants f0, f1, and f2 are chosen empirically. We define aL ∈ [−al g, al g] as the
acceleration (or deceleration) of the leading vehicle (in m/s2).

Furthermore, we have to define the goal set function hg(x) and safe set function hs(x)
in our QP (28). We set

hg(x) = (x1 − vd)
2, (48)

and
hs(x) = τdx1 − x3, (49)

with vd being the prescribed velocity defined by the user and τd the desired time headway.
Next, we choose the model parameters according to the physical systems in reality.

We set the desired velocity vd = 22 m/s, the desired time headway τd = 1.82 s, the mass
of the following vehicle M = 1650 kg, the gravitational acceleration g = 9.81 m/s2, the
maximum available control effort (driving wheel force) umax = 0.25Mg, the constants in
the expression of aerodynamic drag force f0 = 0.1 N, f1 = 5 Ns/m, f2 = 0.25 Ns2/m2, and
the leading vehicle acceleration parameter al = 0.3. Then, we define the initial condition
of the dynamic system: vl(0) = 10 m/s, v f (0) ∈ [14, 30] m/s, D(0) = 150 m. We choose
T = 5 s.

To achieve better performance for our control system in the ACC problem, we slightly
change the QP (28) such that the stability constraints are forced to be invalid when the
value of the safe set function hs(x(t)) approximates zero (when hs(x(t)) > −10), which
can result in better obedience to the safety constraints. We implement the QP (28) with

H = diag
{

2
M2 , 100, 400

}
, Au =

(
1 0 0
−1 0 0

)
, bu =

(
umax
umax

)
, γ1 = 1000, γ2 = 1000, T = 5,

and hg(x), hs(x) defined in (48), (49).

4.2. Simulation Results without Disturbances

Now, we are ready to present the simulation results. Figure 2 shows the tracking
performance of the following vehicle with the control input computed from QP (28).
The solid lines in different colors represent the following vehicle speeds for different
initial conditions v f (0) ∈ [14, 30] m/s. Figure 3 illustrates the dynamics of the safe set
function hs(x(t)) with the same initial conditions. Figure 4 shows the dynamics of the
computed control input u(t) (driving wheel force of the following vehicle supplied from
the powertrain system).

Figure 2. Tracking performance for different initial following speeds v f (0) ∈ [14, 30] m/s with
T = 5 s.
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Figure 3. Dynamics of the safe set function hs(x(t)) for different initial following speeds v f (0) ∈
[14, 30] m/s with T = 5 s.

Figure 4. Dynamics of the computed u(t) for different initial following speeds v f (0) ∈ [14, 30] m/s
with T = 5 s.

4.3. Simulation Results with Disturbances

We now examine the robustness of the proposed approach against disturbances.
Suppose that the system equations with disturbances can be written as

ẋ = f (x) + gu + z(x), (50)

where f (x) and g are given in (46), and we consider the Lipschitz continuous disturbance

z(x) =

Cδ
M

∣∣∣v f − vd

∣∣∣
0
0

, (51)

where Cδ is the disturbance constant. In our simulation program, we set Cδ ∈ [0, 40] kg/s,
the initial velocity of the following vehicle v f (0) = 30 m/s, and we slightly modify the
proposed QP (28) such that the stability constraints are set to be invalid when the value
of the safe set function hs(x(t)) approximates zero (when hs(x(t)) > −20). Figures 5–7
illustrate the tracking performance, dynamics of the safe set function hs(x(t)), and control
input u(t), respectively.
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Figure 5. Tracking performance with disturbances for Cδ ∈ [0, 40] kg/s (red to blue) and
v f (0) = 30 m/s.

Figure 6. Dynamics of the safe set function hs(x(t)) with disturbances for Cδ ∈ [0, 40] kg/s (red to
blue) and v f (0) = 30 m/s.

Figure 7. Dynamics of the control input u(t) with disturbances for Cδ ∈ [0, 40] kg/s (red to blue) and
v f (0) = 30 m/s.

4.4. Conclusions of Simulation Results

It can be concluded that the desired velocity vd of the following vehicle can be reached
in a user-defined prescribed time T = 5 s without violating the input constraints when the
trajectories of the system states are away from the boundaries of the safe set, namely when
the value of the function hs(x(t)) is much smaller than zero. Furthermore, the velocity of
the following vehicle will be decreased to satisfy the safety constraint if the system states
are near the safe set boundaries, namely if hs(x(t)) approaches zero.

We can see that there are slight oscillations in our simulation results, especially in
Figure 4. One of the reasons lies in the fact that the computed control input varies when
the value of the safe set function hs(x(t)) approaches the predefined value from above and
below. Furthermore, there are small simulation errors in the solver ode4. For example, in
Figure 2, the speed of the following vehicle oscillates between 21.95 m/s and 22.05 m/s in a
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steady state. Theoretically, many control techniques can be applied to reduce the oscillation
(e.g., a dead-zone controller [25]). However, the oscillation of the vehicle speed with an
amplitude of 0.1 m/s may not cause any serious problems in reality.

5. Conclusions

We presented the definition and properties of PT-ZCBF, which can describe the
prescribed-time stability constraint of safety-critical systems. We combined the input,
safety, and stability constraints of safety-critical systems in a PT-ZCBF-based QP formu-
lation, which is able to find the optimal control input under the designated constraints.
We discussed its feasibility and how it can solve the main problem under certain mild
assumptions. Finally, we applied the proposed QP to the ACC problem as a numerical
simulation example. The simulation results showed that the proposed approach can solve
the ACC problem with satisfaction. Compared to previous works, a QP-based method
combining the prescribed-time stability constraint, safety constraint, and input constraints
is proposed in this paper for the first time.

In the future, we would like to search for a method to reduce the oscillation behaviors
of the proposed method in numerical case studies. In addition, we are interested in different
methods to solve the prescribed-time stability problem, e.g., the Control Lyapunov Function
method introduced in [11]. We want to modify the stability constraints of the proposed
QP according to different PTS methods, use the modified QP in numerical case studies,
and compare the results using the QP with different PTS methods. Furthermore, we would
like to study the applicability of the proposed approach to more numerical examples and
large-scale systems [26,27], and then apply the methods to practical experimental studies.
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