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Abstract: Objective: Machine learning (ML) approaches have the potential to uncover regular
patterns in multi-layered data. Here we applied self-organizing maps (SOMs) to detect such patterns
with the aim to better predict in-stent restenosis (ISR) at surveillance angiography 6 to 8 months
after percutaneous coronary intervention with stenting. Methods: In prospectively collected data
from 10,004 patients receiving percutaneous coronary intervention (PCI) for 15,004 lesions, we
applied SOMs to predict ISR angiographically 6–8 months after index procedure. SOM findings
were compared with results of conventional uni- and multivariate analyses. The predictive value of
both approaches was assessed after random splitting of patients into training and test sets (50:50).
Results: Conventional multivariate analyses revealed 10, mostly known, predictors for restenosis
after coronary stenting: balloon-to-vessel ratio, complex lesion morphology, diabetes mellitus, left
main stenting, stent type (bare metal vs. first vs. second generation drug eluting stent), stent length,
stenosis severity, vessel size reduction, and prior bypass surgery. The SOM approach identified all
these and nine further predictors, including chronic vessel occlusion, lesion length, and prior PCI.
Moreover, the SOM-based model performed well in predicting ISR (AUC under ROC: 0.728); however,
there was no meaningful advantage in predicting ISR at surveillance angiography in comparison
with the conventional multivariable model (0.726, p = 0.3). Conclusions: The agnostic SOM-based
approach identified—without clinical knowledge—even more contributors to restenosis risk. In
fact, SOMs applied to a large prospectively sampled cohort identified several novel predictors of
restenosis after PCI. However, as compared with established covariates, ML technologies did not
improve identification of patients at high risk for restenosis after PCI in a clinically relevant fashion.

Keywords: artificial intelligence; coronary artery disease; machine learning; percutaneous coronary
intervention; prediction; restenosis

1. Introduction

Machine learning (ML) approaches are an essential tool for solving complex prob-
lems. In medicine, ML implies the promise to transform the exponential increase of the
amount and complexity of data into clinically usable knowledge. In particular, unsuper-
vised ML has been increasingly used in recent years for in-depth phenotyping to identify
subgroups of patients with different clinical characteristics (e.g., high-risk patients) for
specific diseases who might particularly benefit from certain treatments [1–7]. Indeed,
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high-resolution 3D or 4D imaging, ‘omics’-technologies (genomics, transcriptomics, epige-
nomics, proteomics, metabolomics), and biometric sensor information may elaborate their
full potential in improving risk prediction, diagnostic accuracy, and personalized treatment
strategies only based on ML algorithms including most importantly unsupervised (cluster-
ing, dimensionality reduction) and supervised (classification, regression) strategies, but
also semi-supervised and reinforcement learning [8–12]. Thus, ML-based integration of big
data has been considered to be an essential step for improving quality and cost efficiency
of health care [13].

Self-organizing maps (SOMs) are a specific application of ML with superior visual-
ization capability helping to understand relationships in complex data. They have been
successfully applied for integrative analysis of heterogeneous biomedical datatypes [14–18].
However, SOM-based ML methods have been rarely used with the intention to better
understand factors contributing to adverse outcomes or to improve prediction of events
after medical interventions. In fact, there are only few studies testing SOM-based methods
in cardiology [19]. Particularly, it is unclear as to whether such analyses may successfully
compete with established predictors in clinical scenarios already covered by extensive
clinical experience.

Coronary artery disease (CAD) and acute myocardial infarction (MI) are multifac-
torial diseases influenced by lifestyle and genetic predisposition [20]. Our group con-
tributed before to the identification of novel CAD-relevant genes, biomarkers, and treat-
ment possibilities [21–28]. Treatment of flow-limiting coronary lesions with percutaneous
coronary intervention (PCI) is the current standard of care. After coronary artery stenting,
2–10% of patients develop restenosis at the initially treated lesion site [29]. In a prior ap-
proach, we described the incidence of restenosis in a study of 10,004 individuals undergoing
PCI using three consecutive generations of stents and discovered 10 individual predictors
for the risk of restenosis six months after PCI based on conventional data analysis [29].
Here we assessed whether SOMs can (re-)identify clinically established predictors and
might even extract additional factors contributing to restenosis risk after PCI.

2. Methods

Detailed methods on coronary angiography evaluations, definitions, and the underly-
ing data set have been published before [29]. Clinical, angiographic, and procedural data
of patients with coronary artery disease receiving a coronary stent for de novo lesions were
analyzed. Patients undergoing angiographic surveillance at 6–8 months after successful
intervention were eligible for this study. Patients with cardiogenic shock, chronic renal
replacement therapy, or previous cardiac transplantation were excluded. Bare metal stents
(BMSs) were the sole type of stent approved for use from January 1998 to August 2002.
Thereafter, drug eluting stents (DESs) became available (details see [29]). Informed consent
was obtained from all subjects involved in the original study.

2.1. Machine Learning Analysis

Machine learning and statistical analyses were performed using Viscovery SOMine
7.2 by Viscovery Software GmbH (www.viscovery.net (accessed on 1 December 2022);
Vienna, Austria). The workflow outlines the multistep procedure with iterative optimiza-
tion on the clusters for identification of factors associated with restenosis (left side of
Figure 1). The performance test of the SOM-based model iteratively builds on the identified
19 factors compared to the conventional model built on 10 predictors (right side of Figure 1).
Self-organizing maps (SOMs) [30] were used to create an ordered representation for the
occurrence and severity of restenosis. The SOM method can be viewed as a non-parametric
regression technique that converts multidimensional data spaces into lower dimensional
abstractions. A SOM generates a non-linear representation of the data distribution and
orders records (in these cases, lesions) by the overall similarity of their attribute vector (in
this case, measured parameters related to restenosis severity). To this end, the neurons in
the underlying Kohonen network apply unsupervised, competitive learning (as opposed to

www.viscovery.net
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error-correction learning in standard neuronal networks) [30,31]. Lesions were ordered by
the presence/absence and grade of restenosis. Based on the created SOM model informed
by 5 items from surveillance angiography 6–8 months after index procedure, clusters were
generated using the SOM–Ward Cluster algorithm that applies the classical hierarchical
method of Ward [32] on top of the SOM topology.
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Figure 1. Workflow used in this study. The left branch (in light red) shows the Viscovery workflow
to identify predictors of restenosis: In the pre-processing steps, the attributes (measured parameters)
are thoroughly checked; feature selection and extraction takes place as well as outlier removal and
data transformation to have an optimal input for the SOM algorithm. In the clustering steps, the
attributes, which are used for SOM calculation, are defined and prioritized, the SOM is calculated,
and clusters on top of the map are identified by a SOM–Ward algorithm. By these steps, 19 factors of
restenosis were found. These 19 potential predictors were used as input to compare the predictive
power of the SOM-based model vs. the conventional model (right branch). The right branch (blue
and white) shows the comparison of predictions by the conventional model (white) and the SOM
model (light blue): Data had been randomly split into a training set, for identification of predicting
variables, and a test set. The models, based on predictors from the training set, were applied to the
test set and compared by using ROC curves.

Summary variables are presented as mean ± SD for quantitative variables and per-
centage for discrete variables. Comorbidities and clinical characteristics were compared
between the restenosis and control groups using the integrated two-sided t-test with a
confidence level of 95%. We applied a multivariable regression analysis on all attributes
of the ‘high restenosis’ cluster reporting a value of p < 0.05 at univariate analysis. We
used a 95% confidence interval (CI) and a stepwise approach to exclude attributes with a
significance >0.1 from the explanatory contribution estimate of the final model.



J. Clin. Med. 2023, 12, 2941 4 of 14

2.2. Conventional Data Analysis

Categorical data are presented as counts and proportions (%). Continuous data are pre-
sented as median and interquartile range (IQR, 25th; 75th centiles) or as mean ± standard
deviation (SD), as appropriate. Data distribution was tested for normality using the
Kolmogorov–Smirnov test. For patient-level data, the differences between groups were
checked for significance using Student’s t or Kruskal–Wallis tests (continuous data) or the
χ2 or Fisher exact tests where the expected cell value was <5 (categorical variables). For
lesion-level data, the differences between groups were checked for statistical significance us-
ing generalized estimating equations for non-normally distributed data in order to address
intra-patient correlation in patients who underwent multi-lesion interventions [33]. In a
multivariable regression analysis, all clinical, angiographic, and procedural features report-
ing a value of p < 0.05 at univariate analysis were included. Separate multivariable analyses
addressed predictors of restenosis in the cohort of patients receiving BMS, first-generation
DES, or second-generation DES, with assessment of the interaction between variables
included and treatment with various generations of DES (two-tailed value of p < 0.05 was
significant). The adjusted odds ratios (ORs) with 95% CI were used as summary statistics
and were derived from generalized estimating equation models [33]. The statistical soft-
ware package R V 4.0.2 (R Foundation for Statistical Computing, Vienna, Austria) was used
for analyses. The R package geepack_1.3.2 was used to perform multivariable analyses
accounting for the presence of patients with multi-lesion interventions.

2.3. Comparison of Models

Because we were encouraged to find the increased number of identified predictors by
the SOMs, we also wanted to investigate if the actual predictive power of the SOMs was
better than the one of the conventional model. Because we could not use new data, we used
the approach of splitting the data on 10,004 patients described before randomly into train-
ing and test sets (50:50). The training set was used to create two models: The conventional
model was built using the R package geepack_1.3.2 on the identified 10 predictors. For the
SOM-based model, the Viscovery(R) Predict-module was used, which starts with conven-
tional linear regression and then enhances prediction by SOM-based local regressions. The
test set of the split data was used to evaluate the conventional and the SOM-based model.
The continuous prediction results for predicted binary restenosis from both models were
compared to measured binary ‘restenosis’ at different prediction thresholds, and sensitivity
and specificity were calculated. The AUCs (area under the curve) for the resulting ROC
(receiver operating characteristics or relative operating characteristic) curves were deter-
mined by the R package pROC__1.17.0.1 for both models (which were each trained on 50%
of the full data set, i.e., about 5000 samples) [34,35]. Bootstrapping with 2000 iterations on
the remaining 5000-sample test set was used to determine the p-value comparing the AUCs
of both models.

3. Results
3.1. General Characteristics

The data set was already published, but we repeat it here for clarity. A total of
10,004 patients with 15,004 overall lesions underwent angiographic surveillance catheteri-
zation at 6–8 months follow-up. A total of 4649 patients were initially treated with BMS
(6521 lesions), while 5355 were treated with DES (8483 lesions). Follow-up angiography
was performed at a median of 199 days (182; 220) after the index procedure. Overall,
the proportion of lesions with restenosis was 30.1%, 14.6%, and 12.2% in patients treated
with BMS, first-generation DES, and second-generation DES, respectively. Baseline clin-
ical and procedural characteristics of patients with and without restenosis are shown in
Tables 1 and 2. Supplementary Table S2a,b displays respective patient characteristics for
the training and testing set.
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Table 1. Baseline clinical characteristics. Data are median (25th; 75th centiles) or number of patients
(%). BMI, body mass index; LVEF, left ventricular ejection fraction; NSTEMI, non-ST elevation
myocardial infarction; STEMI, ST elevation myocardial infarction.

Baseline Clinical Characteristics Angiographic Restenosis

Yes (n = 2643) No (n = 7361) p-Value

Age, years 65.8 (58.5; 73.1) 66.1 (57.8; 73.8) 0.58

Female gender, n (%) 606 (22.9) 1831 (24.8) 0.045

BMI (kg/m2) 26.8 (24.5; 29.4) 26.8 (24.5; 29.6) 0.96

Diabetes type 2, n (%) 758 (28.7) 1643 (22.3) <0.001

Insulin treated, n (%) 229 (8.6) 446 (6.0) <0.001

Current smoker, n (%) 567 (21.4) 1610 (21.8) 0.65

Arterial hypertension, n (%) 1817 (68.7) 4959 (67.3) 0.19

Hypercholesterolemia, n (%) 1612 (60.9) 4488 (60.9) 0.98

History of myocardial infarction, n (%) 649 (24.5) 1751 (23.7) 0.42

History of bypass surgery, n (%) 377 (14.2) 824 (11.2) <0.001

History of coronary angioplasty 518 (21.6) 1593 (19.6) 0.028

Clinical presentation, n (%)

Stable angina 1488 (56.3) 4071 (55.3) 0.37

NSTEMI 635 (24.0) 1978 (26.8) 0.004

STEMI 520 (19.6) 1312 (17.8) 0.034

Multivessel disease, n (%) <0.001

2 vessel disease 694 (26.3) 2327 (31.6)

3 vessel disease 1410 (53.3) 3005 (40.8)

LVEF, n (%) 57 (47; 63) 56 (46; 64) 0.89

Table 2. Procedural characteristics. Data are median (25th; 75th centiles) or number of lesions (%).

Procedural Characteristics Angiographic Restenosis

Yes (n = 3098) No (n = 11,906) p-Value

Target vessel, n (%)

Left main 71 (2.3) 473 (3.9) <0.001

Left anterior descending coronary artery 1310 (42.2) 5091 (42.7) 0.72

Left circumflex coronary artery 771 (24.8) 2646 (22.2) 0.001

Right coronary artery 850 (27.4) 3393 (28.5) 0.1

Bypass graft 96 (3.1) 303 (2.5) 0.12

Lesion-to-patient ratio 1.75 ± 0.95 1.41 ± 0.97 <0.001

Complex (type B2/C) lesion, n (%) 2595 (83.7) 8989 (75.5) <0.001

Chronic occlusion, n (%) 214 (6.9) 471 (3.9) <0.001

Lesion length, mm 13.6 (8.9; 20.1) 12.4 (8.5; 18.1) <0.001

Vessel size, mm 2.68 (2.36; 3.02) 2.86 (2.49; 3.27) <0.001

Initial diameter stenosis, (%) 69.0 (57.0; 85.8) 64.3 (54.0; 77.0) <0.001

Drug eluting stents implanted, n (%) 1130 (36.8) 7353 (61.7) <0.001

First generation 559 (18.4) 3255 (27.3)
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Table 2. Cont.

Procedural Characteristics Angiographic Restenosis

Second generation 571 (18.4) 4098 (34.4)

TIMI flow pre angiography

0 462 (14.9) 1001 (8.4) <0.001

1 170 (5.5) 439 (3.7) <0.001

2 382 (12.3) 1332 (11.2) 0.038

3 1941 (62.7) 8786 (73.8) <0.001

Maximal balloon diameter, mm 3.04 (2.66; 3.38) 3.16 (2.84; 3.58) <0.001

Maximal balloon pressure, atm 14 (12; 16) 14 (12; 16) <0.001

Balloon-to-vessel ratio 1.11 (1.05; 1.19) 1.10 (1.04; 1.17) <0.001

Stented length, mm 24 (18; 32) 20 (16; 28) <0.001

Final diameter stenosis, (%) 8.9 (4.5; 13.1) 8.7 (4.9; 13.1) 0.75

3.2. Identification of Clusters Based on SOM Analysis

In an unbiased approach for identification of potential predictors of restenosis, all
attributes of the full data set were used to build a SOM (Figure 1). In an iterative process,
the parameters retrieved at follow-up angiography, such as diameter stenosis (%), minimal
lumen diameter (mm), late lumen loss (as the difference between minimal lumen diameter
obtained at the end of the procedure and at follow-up angiography (mm)), as well as binary
variables, restenosis if diameter stenosis was 50% or greater, and high-grade restenosis
if diameter stenosis was 70% or greater, were assigned priority (Table 3) to order the
15,004 coronary lesions by similarity. SOM–Ward clustering then identified nine different
clusters (Figure 2); one of them was subsequently named the ’high restenosis’ cluster (as it
encompassed lesions with high-grade restenosis including all binary ‘restenosis’ lesions)
and compared against all others. Characteristics for individual clusters are provided in
Supplemental Table S1, topology according to Supplemental Figure S1.

Table 3. Parameters used for SOM generation and clustering uniquely identify a ‘high restenosis’
cluster as shown by the significance (p-value) of the differences in mean value to the remaining
clusters. The last column depicts the weights put on the different parameters during learning of
the SOM.

Parameter Name

Cluster ‘High Restenosis’ Other Clusters
p-Value Weight in

SOM OrderingMean Std. Deviation Mean Std.
Deviation

Lesion with restenosis 180d (%) 62 0.486 0 0 <0.001 0.2

Lesion with high-grade
restenosis 180d (%) 25 0.431 0 0 <0.001 0.6

Grade of stenosis 180d (%) 58.9 18.9 17.4 9.6 <0.001 1

Late lumen loss (mm) 1.546 0.564 0.282 0.376 <0.001 1

Minimal lumen diameter 180d
(mm) 1.124 0.575 2.457 0.541 <0.001 1
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parameters with subsequent SOM–Ward Clustering. Color coding from low (blue) to high (red)
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restenosis’ cluster is indicated by labeling (top left panel).

3.3. Description and Comparison of the ‘Restenosis’ Cluster

Expectedly, the ‘restenosis’ cluster shows significantly more lesions with restenosis, a
higher grade of stenosis after 6–8 months, larger lumen loss, and lower minimum lumen
diameter (Table 3). Visualization of the normalized difference of parameter values between
the ‘restenosis’ and the remaining clusters reveals a strong difference in a number of
parameters such as stent type, pre-procedure TIMI flow, pre-procedure minimum lumen
diameter, diameter stenosis, or lesion complexity, indicating that these parameters should
be tested for statistical significance and potential predictive value (Figure 3).J. Clin. Med. 2023, 12, x FOR PEER REVIEW 8 of 14 
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3.4. Identification of Potential Predictors of Restenosis

The data set had been previously analyzed by conventional multivariable analysis,
which allowed identification of 10 independent predictors of restenosis (Table 4, left column) [29].
SOM analysis was able to confirm all these predictors (Table 4, right column).

Table 4. Baseline and procedural characteristics assessed for significant association in both con-
ventional analysis and the SOM-based analysis. +: Attribute found as significant predictor; -: Not
found as significant predictor; NSTEMI, non-ST elevation myocardial infarction; NSTEACS (Unstable
Angina and NSTEMI); STEMI, ST elevation myocardial infarction; STAP, stable angina pectoris.

Conventional Analysis SOM-Based Analysis

DES1 vs. BMS + +

DES2 vs. DES1 + +

Diabetes + +

History Bypass + +

STEMI/NSTEMI -

CLIN_PRESENT: numeric by
severity: +

NSTEACS +

STEMI: +

STAP: +

Left main (LCA) + +

Complex lesion + +

Chronic occlusion - +

Lesion length (10 mm) - +

Vessel size reduction (−0.5 mm) + +

Stenosis severity (5% DS increase) + +

Balloon-to-vessel ratio (for 0.1 +) + +

Stented Length (+10 mm) + +

SOM analysis identified nine additional factors to be significantly associated with
an increased risk of restenosis after coronary stenting (Table 4, right column and Table 5).
These were chronic vessel occlusion, clinical presentation (ordered variable according to
severity: ST-segment elevation myocardial infarction, non-ST-segment elevation acute
coronary syndromes, stable angina pectoris), TIMI flow in the treated coronary vessel
before the PCI, a history of PCI, lesion length, final diameter stenosis achieved by PCI, age,
BMI, and hypercholesterolemia.

Table 5. Additional significant characteristics identified, not analyzed in the conventional model.

SOM-Based
Analysis

Age +

BMI +

Hypercholesterolemia +

History of PCI +

TIMI-flow pre PCI +

Stenosis post PCI +
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We assessed the multivariable significance of identified potentially predictive factors
and predictive power.

To directly compare the association strength of potential predictive factors with resteno-
sis and the variability of restenosis explained by these factors, a multivariable regression
analysis was performed. The largest explanatory power was provided by stent type (bare
metal stent) and pre-procedure vessel size with regression coefficients of 0.22 and −0.13,
respectively. In addition to the factors of the initial trial, relevant explanatory power for
‘number of vessels affected’, ‘grade of stenosis post-procedure’, ‘history of bypass surgery’,
‘balloon pressure’, and ‘TIMI flow pre-procedure’ (Table 6) were identified.

Table 6. Predictive regression models. In bold are parameters with significant effect in the multi-
variable analysis of Cassese et al. Regression coefficients are given for the classical model and the
SOM-based model. p-values are for the SOM-based analysis.

Pearson
Correlation
Coefficient

Regression
Coefficient
Classical

Model

Regression
Coefficient

SOM-Based
Model

p-Value

Total Stented Length 0.0923 0.02101 0.0853 <0.0001

Reference pre Vessel size −0.1324 −0.8731 −0.1389 <0.0001

Stent Type: BMS 0.2063 1.1673 0.2284 <0.0001

Stenosis post PCI −0.0062 0.0539 <0.0001

Diabetes 0.0579 0.2400 0.0441 <0.0001

Stent Type: DES1 −0.0863 0.0509 <0.0001

Lesion Complexity (integer) 0.0994 0.3727 0.0262 <0.0001

Balloon-to-Vessel Ratio 0.0519 −0.4005 −0.0356 <0.0001

Clinical presentation 0.0508 0.0335 <0.0001

History of CABG 0.041 0.5709 0.048 <0.0001

Grade of Stenosis pre 0.1083 0.0056 0.0283 0.0003

Hypercholesterolemia −0.0102 - -

Lesion length 0.0605 - -

History of PCI −0.0235 −0.0166 0.037

Balloon Pressure −0.0488 0.0141 0.0382

Vessel: LCA −0.0364 0.1053 - -

TIMI Flow pre −0.1066 −0.0087 0.049

Age −0.0136 −0.0120 0.0619

BMI 0.0041 - -

Chronic occlusion 0.0573 0.0308 0.0617

We compared the predictive power of conventional and SOM-based models.
In order to compare the predictive power of the conventional multivariable model and

a SOM-based prediction model, we randomly split the samples into training and testing
data sets (50:50). The training set was used to build new models (Figure 1). On the testing
set, the predictive power of the models was assessed. ROC analysis of the SOM-based
prediction model was comparable to the multivariable model in predicting in-stent stenosis
(AUC: 0.728 vs. 0.726, p = 0.3, bootstrapping 2000 iterations) [34,35].
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4. Discussion

In prospectively collected clinical data of 10,004 CAD patients undergoing routine
angiographic assessment for restenosis, an agnostic machine learning algorithm identified
all relevant predictors of restenosis 6 to 8 months after coronary stenting. Specifically, in
comparison with a conventional multivariable analysis [29], 10 previously identified pre-
and peri-interventional factors influencing restenosis risk were found by self-organizing
maps (SOMs), supporting the sensitivity of the analytic tool. Moreover, nine additional
predictors were identified by SOMs.

In an extensively studied clinical setting, machine learning detected key factors rel-
evant for a specific outcome (in this case, restenosis at repeat coronary angiography
6–8 months after PCI with stenting) equal to established methods without input from
prior knowledge. In fact, this report demonstrates the reliability of SOMs to identify pre-
dictors of failure after coronary stenting, without performing a multivariate regression
analysis including clinical, angiographic, and procedural features showing a significant
difference between groups at univariate analysis. In line with this consideration, SOMs
represent a sensitive analytic tool providing information independent from bias due to the
artificial selection of variables to be entered in a multivariable model.

Interestingly, despite the SOMs being useful to identify all predictors of failure after
coronary stenting by gathering unbiased information from divergent data sources, i.e., clini-
cal factors (e.g., BMI), as well as anatomical and procedural parameters (e.g., lesion length),
the informative value of these additional predictors is open to question. For example, the
TIMI flow in the treated coronary vessel before the PCI and non-ST-segment elevation acute
coronary syndromes, i.e., two of the additional predictors of failure after coronary stenting
that emerged through SOMs, refer to rather similar aspects of the clinical presentation.
Similarly, the final diameter stenosis achieved by PCI, an additional predictor of failure
after coronary stenting derived from SOMs, is clearly associated with the stenosis severity
at the baseline, which was identified as predictive of restenosis at repeat angiography in
a common multivariable model. In other words, by increasing the number of predictors,
possibly we do not add substantial information to clinical decision making. This could
be due to the fact that the individual variables are to some extent collinear. In addition to
examining this issue in future work, the conclusion for clinical decision making might be
to focus on a significant group of predictors.

4.1. Differences between Both Approaches

One specific strength of the SOM implementation over conventional analysis is the
handling of missing values. The importance and impact of missing values is not adequately
assessed in several risk prediction models [36–38]. In Viscovery, the tool used in this study,
individuals are grouped according to similarity based on the availability of parameters.
Non-availability of a single value does not limit the overall ordinance [31].

In contrast to machine learning algorithms in general, such tool comes with the ad-
vantage that models created are transparent and interpretable as they provide results
(characteristics can directly be retrieved) for each respective group of patients. This refers
to the inherent complexity in how the risk factor variables are interacting and their inde-
pendent effects on the outcome. The visual approach illustrates the importance of network
connections between risk factors and enables an intuitive access to the complex dependen-
cies, which is not possible by conventional analysis alone and has been successfully applied
in the field of heart failure and COPD before [15,39,40].

In perspective, additive ‘omics’ (e.g., genomics, transcriptomics, epigenomics, pro-
teomics, metabolomics) information has the potential to increase precision and predictive
efficiency for risk stratification. Cumulating evidence suggests that genetic background
may guide personalized medicine for selecting effective treatments and preventive strate-
gies particularly at young ages [41]. Other omics are driven by genetics and are also affected
by environmental stimuli and risk factors. They might qualify for a better differentiation of
diseased and healthy status during the aging process [42]. Continuously integrating these
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growing big data can only be tackled by ML approaches [13]. In the patient admission
routine, the ML model can be used to assign new patients to a specific cluster linked to
determined treatment.

Identification of patients at risk is a core element in medical practice, but risk strat-
ification in current clinical practice is often limited by hypothesis-driven selection of a
few factors [43]. A study of 263 patients from the Grupo de Analisis de la Cardiopatia
Isquemica Aguda-3 trial undergoing PCI already demonstrated the superior discriminatory
power of ML approaches over current discriminators to identify patients at risk for stent
restenosis [19]. Our study is in line with these findings and demonstrates that the prognos-
tic resolution of relevant predictors can be refined using the intriguing pattern recognition
capability of ML models previously trained on big data to subsequently identify patients at
risk for restenosis after PCI. This might imply translation to clinical decision support and
implementation into clinical routine.

4.2. Limitations

This study has several limitations due to the purpose of providing a one-to-one com-
parison of two different analysis approaches for the identification of baseline characteristics
associated with restenosis. First, this is a post hoc analysis of prospectively collected data
and must be considered as hypothesis generating. Second, the population enrolled in the
original trial was somewhat selected. The study cohort was treated with bare metal stents
and first-generation drug eluting stents, neither type of stent being in accordance with
current guideline recommendations. Furthermore, the results are based only on patients
who received surveillance coronary angiography after stent implantation and therefore may
not be generalized. Third, for comparative reasons in this study, the number of attributes is
limited by the original study. External validation was not possible based on the specificity
of cohort size and characteristics. Fourth, collinearity of individual variables was not
tested before clustering in this hypothesis-generating work. However, the ML approach
is applicable to an unlimited number of attributes and records, but even restricted to the
original data and attribute set uncovered more predictors in this specific analysis.

5. Conclusions

In conclusion, this study demonstrates the potential of an ML approach based on
self-organizing maps (SOMine) to improve the identification of predictive risk factors in
various clinical conditions as well as future risk prediction methods and algorithms [44].
Specifically, additional predictors of restenosis risk after coronary stenting as well as
high-risk patients could be reliably identified. From a clinical perspective, these patients
will particularly benefit from a personalized therapy approach in the future.
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