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Abstract: Indoor localization is used to locate objects and people within buildings where outdoor
tracking tools and technologies cannot provide precise results. This paper aims to improve an-
alytics research, focusing on data collected through indoor localization methods. Smart devices
recurrently broadcast automatic connectivity requests. These packets are known as Wi-Fi probe
requests and can encapsulate various types of spatiotemporal information from the device carrier.
In addition, in this paper, we perform a comparison between the Prophet model and our implementa-
tion of the autoregressive moving average (ARMA) model. The Prophet model is an additive model
that requires no manual effort and can easily detect and handle outliers or missing data. In contrast,
the ARMA model may require more effort and deep statistical analysis but allows the user to tune it
and reach a more personalized result. Second, we attempted to understand human behaviour. We
used historical data from a live store in Dubai to forecast the use of two different models, which we
conclude by comparing. Subsequently, we mapped each probe request to the section of our place of
interest where it was captured. Finally, we performed pedestrian flow analysis by identifying the
most common paths followed inside our place of interest.

Keywords: indoor positioning; indoor localization; pedestrian flow analysis; ARMA model; Prophet
model

1. Introduction

GPS and satellite technologies are used for navigation purposes, but they are not
precise regarding multistorey buildings, airports, and other indoor spaces. Existing tech-
nologies have successfully solved the problem of outdoor localization, but indoor local-
ization is still a work in progress. Outdoor localization focuses on latitude and longitude,
but in indoor localization, we also need to consider the altitude, as indoor localization
includes multistorey buildings. Specifying the floor in a building is a difficult task and
requires precision and tremendous amounts of effort. For indoor positioning, we use
indoor localization methods. The focus of indoor localization is to estimate the crowd’s
position accurately without a breach of the privacy of any individual. We use the network
of many devices to locate people inside a building. Currently, many technologies such as
smartphones, Wi-Fi, Bluetooth antennas and beacons placed at specific distances are used
for indoor positioning. Many Wi-Fi-enabled devices are available, and a whole lot of data
is gathered from public Wi-Fi. To improve the user experience, Wi-Fi probe requests are
repeatedly broadcast. These probe requests consist of the device’s MAC address, as well as
the timestamp, latitude, and longitude of the known access point. Therefore, these probe
requests contain time and space information of the device.

There are many uses of indoor localization, for example, in fields such as augmented
reality and navigation in shopping malls, airports, and parking lots, tourist locations, hotels,
and amusement parks, among many others. Indoor localization helps these industries get
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an idea about customer preferences, and by tracking their movement, they can understand
which part of their physical space the customer is more interested in.

Despite the variety of applications, indoor localization has no fixed standards. Al-
though indoor localization has become easier, analytics of the results remains in the initial
stages. Therefore, the succinct contributions made by us in our manuscript include:

1. First, a detailed comparison was performed between the Prophet model developed
by Facebook and our implementation of the autoregressive moving average (ARMA)
model. The Prophet model is an additive model that requires no manual effort and
can easily detect and handle outliers or missing data. On the other hand, ARMA is
used to forecast time series values using autoregression (correlation between previous
values and future values) and the moving average (past forecasting error). The ARMA
model may require more effort and deep statistical analysis but allows the user to
tune it and reach a more personalized result by providing users with an option to
modify the parameters.

2. Second, we attempted to study human behaviour. Therefore, we performed business
analytics on the probe requests we captured using the devices in a particular place.
The obtained result consisted of raw data and the uncertainty radius of each captured
probe request. Our approach provided a detailed pedestrian flow analysis, which
helped discover the paths customers followed in the place where we had captured
the probe requests.

2. Related Works
2.1. Spatial Analytics

Wirz et al. [1] introduced mathematical methods for inferring and visualizing real-time
information based on the data collected through people’s mobile phones. This method was
tested by tracking the location of attendees of the 2011 Lord Mayors Show in London. GPS
and Wi-Fi/GSM fingerprinting were used to derive information regarding location. To
receive constant updates, a dedicated application was installed on the mobile phones of
attendees. Next, the user’s position at time t was determined using the most recent updates
on a time interval, then calculating his/her heading direction (θ), which is the angle between
the user’s most recent location updates. The information was visualized by applying kernel
density estimation. The result was a heat map that illustrated information such as crowd
movement, crowd pressure, and density distribution. Although this application provided
some important security aspects, the authors could only collect data from users who
willingly installed their application, reducing the volume of the data.

Sarshar H. and Matwin S. [2] presented a remote localization technique based on
Wi-Fi data and registered data. Access points that were operating in the vicinity of five
retail stores continuously recorded any received Wi-Fi signal from Wi-Fi-enabled devices.
The registered data were collected offline while the user was inside the range of any
of the access points and established a connection with a public network. All this was
achieved non-intrusively. For the validation of the method, the authors used real data from
five volunteers, then performed the K-sample Anderson–Darling test and two-class and
one-class classification to assess the quality of the data and the system. In the end, they
concluded that their method can confidently achieve a high accuracy score, mainly on a
considerably large volume of data, and that it can operate either alone or in collaboration
with other positioning methods.

Prasertsung P. and Horanont T [3] attempted to predict the density of people in a
real-world environment through the use of already existing Wi-Fi access points. Their goal
was to accurately count the number of users inside a coffee shop using filtering techniques.
The test was performed on a weekday when a mid-day discount was available. Probe
requests were sniffed through their laptop, which had the necessary software installed.
In the end, based on the data that they captured, they showed that during the hours of a
promotion day, there was an increase in customers in the coffee shop. A clear limitation of
their implementation was that they only considered the Wi-Fi access point of the store to
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filter the devices outside the store, as their method was not able to remove outside noise
or outliers.

Di Luzio et al. [4] presented the deanonymization of the provenance of people who
were participating in various large-scale events. This was possible by exploiting Wi-Fi
probe requests that people’s mobile phones periodically send to connect to a nearby Wi-Fi
network. The data were collected from nationwide scenarios (e.g., political party events),
international events (e.g., the resignation of the pope), and citywide scenarios (e.g., in
the train station of Rome). They focused their analysis on a user’s preferred network
list, which stores, among other information, the user’s last known APs. The authors
assumed that any recurrent connection to certain APs signifies the area where the user
lives. To achieve the goal, the geographical positions of all these APs were used. For high
accuracy, Wigle.net, one of the largest databases mapping APs to GPS coordinates, was used.
Through their analysis, they demonstrated the great potential of probe request analysis in
human-related phenomena, and, more importantly, they were able to accurately perform
deanonymization through the probes that they collected, which ended up matching even
ground truth information.

2.2. Pedestrian Flow Identification

Weppner et al. [5] presented a crowd monitoring method. Stationary scanners with
directional antennas were used to track the devices of people that had their Wi-Fi or
Bluetooth activated. The data came from an exhibition at the Frankfurt Motor Show, where
31 directional scanners were used for a period of 13 business days. In the end, to evaluate the
results, a video ground truth was performed for 7 of these days. There were two accuracy
levels based on which the location of a person was determined: either by assigning it to the
location of the best-matching sensor or by calculating the coordinates of the user’s device
through their algorithm. To estimate the location, two different localization algorithms
were used, among which one was based on received signal strength indicator (RSSI)
multilateration and the other of which was based on crowd-sourced RSSI fingerprinting.
In the evaluation, they argued that around 90% of visitors could be localized. Moreover,
they visualized these results on a heat map, where a high crowd density was marked as
red, while low density was marked as blue. In subsequent work, they evaluated detailed
crowd conditions such as crowd movement and common patterns.

Marini et al. [6] proposed a context-free semantic localization approach, which was able
to accurately recognize and then visualize indoor movements. Moreover, they focused on
spaces where every room had a very clear role and purpose for the people operating within
it. The goal was to be able to easily work with different underlying localization systems.
The approach was tested in a hospital, where a Bluetooth low-energy indoor localization
system was deployed. The way the system worked was that people inside the hospital
such as nurses and doctors carried a RadBeacon Dot, which is a Bluetooth low energy
(BLE)-based beacon that periodically broadcasts its signal. Moreover, Android smartphones
running a custom-developed application were anchored on the walls of each room and
continuously scanned the surrounding area to capture any BLE beacon. Using this data, the
authors represented the movement of people as a string of time-encoded characters, which
they visualized. They argued that this representation could facilitate the use of various
pattern-matching techniques for analysis, which could open new opportunities for research
on mobility and flow.

Fukuzaki et al. [7] developed a system that captured Wi-Fi probe requests. Moreover,
an authentic anonymous MAC address probe sensor (AMP sensor) was developed, which
collected the MAC addresses out of these captured packets and then uploaded them to
an analytical server. The goal was to analyze pedestrian flow through the installation of
multiple sensors to prevent any future disasters. To ensure anonymity, the proposed system
generates a secure hash value (AMAC) from the captured MAC address of the user. In
addition, the system performed two important functionalities: particle pedestrian flow
analysis and fluid pedestrian flow analysis. On the one hand, the former functionality
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meant that they were able to infer a person’s trip data based on their computed trajectory,
while the latter functionality focused on creating a complete graph by considering the data
of each installed sensor. Subsequently, various real-life experiments were conducted to test
their system considering a variety of analytics, such as variation of pedestrian flow, the
number of resident persons, and their resident time. In conclusion, they argued that while
they could analyze the tendency of the pedestrian flow to an extent, future work would be
necessary if more accurate results are required.

3. Data Collection & Models
3.1. Data Collection

We describe the data collection methods used in our study.

3.1.1. The Localization Method

Raspberry Pis were used as beacon devices. The devices had a range of 70 m, and the
ideal distance between the beacons was around 10 m to avoid increment in localization
uncertainty. For the data collection purposes, a smartphone equipped with a localiza-
tion method that follows a particle filter approach was used. After data collection, the
smartphone uses its unique user identifier to filter out the data that do not have a precise
location tagged. Afterward, all the received signals are plotted on a histogram for clustering
purposes using the K-nearest neighbor and elbow methods to identify an optimal number
of clusters. To strengthen the localization method, the initial localization model was used in
a simultaneous localization and mapping (SLAM)-like approach [8]. This helps to improve
the precision of data collection [9].

3.1.2. Uncertainty Radius

The smart device localization history and distance from the nearest access point were
the most important variables used to compute the uncertainty radius. Two thresholds were
set i.e., τd and τs, the former of which is the minimum estimated distance and the latter
of which is the maximum acceptable speed (in meters) in the environment. A distance of
0 to 2 m was suitable, as it does not contain many vague received signal strength values.
The speed threshold was set according to the localization environment. The depth (δ)
to which the localization history had to be checked was considered. Higher depth was
undesired, as older predictions lose their relevance over the time in the case of moving
objects. A matrix was created to store the calculated uncertainties and check the recorded
localization history. The localization history consists of the captured smart devices, which
were identified by their MAC addresses. Every localization prediction had a timestamp
and location. If any device had a recorded history, the elapsed time was calculated, and the
distance from the last prediction was used to calculate the speed (s). Uncertainty (ut) was
calculated as the sum of the distance (d) from the last detection and the maximum of all the
minimum estimated distances to the nearest access point and the distance threshold. The
computed uncertainty was returned and stored in the array only if the speed was within
the defined threshold. In case it was more than the defined threshold, the depth of checking
the localization history was decreased, and the last element of the array was removed.
The process was repeated until the older prediction was within the speed threshold. If no
prediction was obtained within the threshold and all the historical predictions had been
removed or the maximum depth had been reached, then the last value was treated as an
anomaly, and the minimum computed uncertainty from the list was returned [10].

3.2. Prophet Model

Developed by Facebook [11], an approach was proposed that uses a configurable
model with interpretable parameters. These parameters are adjusted by analysts with
knowledge of the domain but without in-depth knowledge of the model. The model is
based on the idea of a decomposable time series model [12]. The components of this model
are trend, seasonality, and holidays. The following equation combines all these components:
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y(t) = g(t) + s(t) + h(t) + εt

where g(t) denotes the trend function, which models non-periodic changes in the value of
the time series; s(t) denotes periodic changes, i.e., seasonality; and h(t) denotes irregular
period changes, i.e., holidays. The error term εt represents any individual changes [11].

This model presents some practical advantages as compared to the ARMA model. First,
it can accommodate seasonality with ease and for multiple periods. Second, this model
can handle missing data. Third, the parameters of this model can be easily interpreted
and adjusted.

3.2.1. Trend Model

The saturating growth model and the piecewise linear model are the two models that
are implemented for Facebook applications.The growth model shows how the population
has grown in past and how it is expected to continue growing. It follows a non-linear graph
that saturates at a certain capacity. The logistic growth model is used to model the growth
model. The most basic form of the logistic growth model is:

g(t) =
C

1 + ε−k(t−m)

where C represents the carrying capacity, k is the growth rate, and m is the offset parameter.
This equation does not capture two important aspects. The carrying capacity is not

constant, so it should be replaced with C(t). The growth rate also needs to be changed, as
it can be altered by new products.

To embody these changes, some change points are introduced when the growth rate
is allowed to change. First, an assumption is made regarding change points. At time sj,
when j = 1, . . . , S, there are S change points. A vector of rate adjustments is denoted by
δεRS, where δj is the change in rate occurring at time sj. The growth rate now becomes
k + Σj:t>sj δj, which incorporates the base rate (k) at any time (t), along with all adjustments
until that point [11]. It can be more cleanly represented as:

aj(t) =

{
1 i f t ≥ sj

0 0.3 otherwise

Therefore, the rate at time t is:
k + a(t)Tδ

The trend model can be more precisely written as:

g(t) = (k + a(t)Tδ)t + (m + a(t)Tγ)

3.2.2. Seasonality

The human behaviors represented by business time series are often subject to mul-
tiperiod seasonality. For example, school breaks or vacation can produce the effects that
repeat yearly. Similarly, a week of 5 working days can produce effects that repeat weekly.
To model these periodic effects, Fourier series [13] are used. For P representing the regular
period expected by the time series, the smooth seasonal effects can be approximated as:

s(t) = ΣN
n=1

(
an cos

(
2πnt

P

)
+ bn sin

(
2πnt

P

))
For yearly and weekly seasonality, N = 10 and N = 3 work well for the majority of

problems [11].

3.2.3. Holidays and Events

This model includes one more aspect, i.e., holidays, which are difficult to model using
a smooth cycle, as they don’t follow any definite pattern. Along with global holidays, the
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model also provides the ability to construct a custom list according to the country. The
union of all these lists is given to the forecasting problem. The effects of holidays are
assumed to be independent. For holiday i, let Di be the set of past and future dates for
that holiday. An indicator is added to identify whether a time (t) is during holiday i, and
each holiday is assigned a parameter (Ki) representing the corresponding change in the
forecast. The days around holidays are treated as holidays as well. Additional parameters
are included to account for these days [11].

3.2.4. Modeling

The model permits analysts to incorporate their own knowledge and improve the
model without understanding all the underlying statistics.

1. Capacities: The best possible capacities are specified by external data for the total
market size;

2. Change points: Knowledge about certain product changes is used to specify change-
point dates;

3. Holidays and seasonality: Knowledge of which holidays have the greatest impact on
the growth rate in which regions is used to prepare the mode;.

4. Smoothing parameters: A variety of smoothing models enable selection between more
global or locally smooth models.

In addition to these factors, the seasonality and holiday parameters provide the
opportunity to specify how much of the historical seasonal variation can be expected in the
future. Model fitting is further improved by modifying these parameters. The change points
are identified from the historical plotted data points, which also provides an overview of
factors such as growth, seasonality, and outliers.

3.3. The ARMA Model

In this model, the output variable depends linearly on its previous values and on a
stochastic term. Time series must be stationary to perform ARMA modeling. For a non-
stationary sequence, smoothing is performed before continuing with the forecasting [14].
The mathematical expressions of the autoregressive AR(p) model are described as follows:

3.3.1. Autoregressive Model

yt = c + ϕ1yt−1 + . . . + ϕpyt−p + εt, where yt is the stationary time series, c is a
constant, p is the order of the AR model, ϕj(j = 1, 2, . . . , p) are the parameters of the
autoregressive model, and εt (white noise) is the sequence of the distributed independent
random variables.At the same time, E(εt) = 0, Var(εt) = σ2

ε > 0 is also satisfied.

3.3.2. Moving Average Model

In this model, the future values are predicted by the linear combination of past and
present values. The mathematical expression of the moving average model MA(q) is
described as follows:

yt = Et + θ1εt−1 + · · ·+ θqεt−q

where yt is the stationary time series, q is the order of the MA model, θj(j = 1, 2, . . . , q)
are the parameters of the model, and εl (white noise error term) is the sequence of the
distributed independent random variables. At the same time, E(εl) = 0, Var(εl) = σ2

ε > 0
is also satisfied.
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3.3.3. Autoregressive Moving Average

The autoregressive moving average is the combination of the autoregressive model
and the moving average model. The mathematical expression of this stationary random
process is described as follows:

yt = ϕ1yt−1 + · · ·+ ϕpyt−p + cεt + θ1εt−1 + · · ·+ θqεt−q

where ϕ1, ϕ2, . . . , ϕp are the autoregressive model parameters, p is the order of the autore-
gressive model, θ1, θ2, . . . , θq are the moving average model parameters, q is the order of the
moving average model, c is a constant, and εt is a white noise sequence with yt distributed
independently and identically. At the same time, E(εt) = 0, Var(εt) = σ2

ε > 0 is also
satisfied. If p = q = 0, the model is reduced to yt = εt + c, which is a white noise sequence.

3.3.4. ARMA Modeling Procedure

The general application process is [15,16]:

1. To determine the order of the ARMA model, a three-step method is used. In the first
step, the autocorrelation function and partial differential coefficients are calculated.
Secondly, the Akaike information criterion and the Bayesian information criterion
(BIC) of various models with different values of p and q are compared. Model with
lower criterion values perform better. Lastly, to fix the model order, the final prediction
error (FPE) is used;

2. Parameter estimation was performed using a variety of methods including least
squares estimation, moment estimation, and direct estimation of the autocorrela-
tion function;

3. The randomness is verified by testing the residual sequence of the model using
white noise;

4. Continued testing is performed to establish an estimation model until an optimal
model is obtained;

5. The forecasting model is then applied to the optimal model.

3.3.5. Evaluation Metrics

The model was evaluated using a statistical comparison of model estimates or predic-
tions (Pi; i = 1, 2, . . . , n) against reliable and pairwise matched observations (Oi;
i = 1, 2, . . . , n). The average model estimation error is written as:

ēγ =

[
Σn

i=1wi|ei|γ

Σn
i=1wi

] 1
γ

where γ ≥ 1, and wi is a scaling assigned to each |ei|γ according to its influence on the
total error.

Mean absolute error, root mean squared error, and R squared (coefficient of determina-
tion) are used as evaluation metrics.

4. Conceptual Approach
4.1. System Architecture

The main components of the architecture (Figure 1) include:
The data collection and storage component comprises the necessary hardware for

the purpose of data collection and a database used to store real-time data.

1. Raspberry Pi machines are responsible for capturing the Wi-Fi probe requests from
customers’ smart devices;

2. Firebase is used to store the real-time data.

The analysis component is performed in Python and incorporates two distinct paths.
Polygon counter and pedestrian flow
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1. The path maps the captured probe requests to its corresponding machine by evaluat-
ing the possible uncertainty radius;

2. The obtained result is further used to identify the most common paths that the
customer followed inside the place of interest.

Visitor Forecasting

1. The captured are analyzed and manipulated to obtain the data in the required form
without any missing values or any other possible discrepancy;

2. The model is tested for various orders until the best model is obtained;
3. After obtaining the model, the forecasting model is applied.

Raspberry Pi 1 Raspberry Pi N

Firebase

Uncertainty
Estimation

Data Preprocessing

Order Testing

Model Evaluation

Forecasting

Polygon Counter

Pedestrian Flow

Pedestrian Flow
Identification

Visitor
Forecasting

Figure 1. Architecture of the system.

4.2. Data Description

A mall in Dubai was chosen for data collection. The collected data were uploaded to
Firebase, a real-time database in which all the captured data ae stored. The data stored
in Firebase include the hashed MAC address of the user, the latitude and longitude of his
position, uncertainty radius, and the timestamp of the captured probe request. The Hashed
MAC address distinguishes every unique user. The uncertainty radius represents how
far away the captured probe request was from the individual machine. The uncertainty
radius is important in polygon counter analysis, in which the possible uncertainty of each
captured request is considered. Another important aspect of the analysis is the geoJSON
file, which consists of the exact coordinates of each polygon inside the place of interest. The
captured information is used to map each probe request to the location where the probe
was captured. Table 1 depicts a sample dataset for polygon and pedestrian flow analysis.
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Table 1. A review of our data for polygon and pedestrian flow analysis.

HashedMAC Geometry Radius

000d41df8ad6728f301da.. POINT(55.11857952229, 25.13185977061) 11.223525417245
007763f2e4d7343508163.. POINT(55.11846697934, 25.13179826293) 2.0478777459454
ff78d3800279f4e42bba5.. POINT(55.11854729100, 25.13183920911) 6.7372352781215
ff89ea5817925a291686b.. POINT(55.11856971633, 25.13184948218) 11.223525417245
ff8a383ce79e4d215e595.. POINT(55.11853687957, 25.13181656883) 5.683281756084303

4.3. Forecasting

The collected data had a series of discrepancies, which were removed before fore-
casting, as they can skew the model and produce unrealistic forecasts. The analysis was
performed on an hourly basis; therefore, the time zone and daylight saving were taken into
account. As the collected data span from October 2019 to December 2019, daylight saving
was considered. To fill in missing or incorrect values (ARMA needs continuous data for
better forecasting), a list for each day of the week was made, and any missing values were
filled in with the mean of all other valid values of that specific day. This ensured minimal
loss of information. Loss of information is a tradeoff for better performance of the ARMA
model; this tradeoff has a minimal impact on forecasting since artificial values are not
created arbitrarily but existing values are used to find the most suitable value. The modified
data are statistically decomposed, i.e., deconstruction of the data in the trend using seasonal
and residual components. Figure 2 shows an illustration of all the components. Every
peak in the graph shows the hour of a particular day with the highest number of probes
captured. The data trend is dependent on the number of probes captured on the next day.
The trend is upward if more probes were captured on the next day and vice versa. The
seasonality of the data stayed the same for the whole period of three months. Variation in
seasonality is expected over an extended period only. Spikes at random intervals in the
residual graph were considered noise.

Figure 2. Decomposition of data.
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Two methods were used to checking the stationarity of the time series:

1. In the first method, the data were visualized with two rolling statistics. In Figure 3,
blue represents the original data, while red and black indicate the rolling mean and
the rolling standard deviation, respectively. For the time series to be stationary,
both the rolling statistics should remain constant over time. Figure 3 shows that the
rolling statistics are parallel to the x- axis, and the varying upward and downward
movements are due to the varying number of probes observed within a day.

2. In the second method, the Dickey–Fuller test was used for more accurate assessment.
The null hypothesis (i.e., no statistical relationship is present between two sets of
observed data and measured phenomena for a given variable) was that the time series
is non-stationary. By running the Dickey–Fuller test, we obtained the following results:
(i) ADF statistic: −4.494521444852915, (ii) p-value: 0.00020117099690995828, (iii) Criti-
cal Values: 1%:−3.4333504627066542; 5%: −2.8628655035890977; 10%: −2.567475631233297

With a p-value this small with an ADF statistic smaller than the critical values at 1%,
5%, and 10%, the null hypothesis was rejected.

Figure 3. Verification of the stationarity of our data.

The stationarity of the data was checked using the Dickey–Fuller test. After ensuring
that the data were stationary, the order for the ARMA model was determined. Two distinct
approaches were followed:

In the first approach, autocorrelation function (ACF) and partial autocorrelation func-
tion (PACF) graphs were used. The ACF denotes the correlation between the series and
the past values, whereas the PACF denotes the correlation between the present value and
past value without considering any intermediate values. ACF was used to determine the
optimal number of MA terms, and PACF was used to determine the optimal number of
AR terms. ACF precisely shows the correlation between the observation at a current point
in time and the observations at all previous points in time. On the other hand, PACF, as
a subset of ACF, shows the correlation between observations made at two points in time
while accounting for any influence from other data points. The chosen AR and MA terms
also determine the order of the model.To choose the correct terms that should be used in
the model, Figure 4 was considered. The considered MA term was 6, and the AR term
was 2.
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The horizontal blue line represents the significant thresholds, whereas the vertical
lines represent the ACF and PACF values at a certain point in time. Vertical lines that
exceed the horizontal lines were considered significant. As shown in Figure 4, there are
six lines that exceed the blue horizontal lines before the first point inside the blue lines.
Therefore, the MA term considered was 6. According to the same principle, in the lower
plot of Figure 4, there are two vertical lines that are above the horizontal blue line before a
vertical line that passes under the significant bound for the first; therefore, the AR order
was fixed as 2.

In order to feel certain about our choice, we plotted ACF and PACF as line plots.
Figure 5 shows the line plot of ACF, and Figure 6 shows the line plot of PACF. In both
plots, the three horizontal dashed lines indicated the significance bound, and our line plot
is only considered significant when it reaches the upper bound for the first time. As shown
in Figure 5, the line reaches the upper bound for first time when the value is 6, assuring
that the value of the MA term is 6. Similarly, in Figure 6, the line descends and reaches the
upper bound when the value is 2, assuring that the value of the AR term is 2.

In the second approach, the model was fit 12 times with 12 different combinations of
AR and MA terms. Then, every model was examined with the AIC score, BIC score, and
fit time. The AIC (Akaike information criterion) and BIC (Bayesian information criterion)
indicate how the well the data fit the model. The lower the AIC and BIC values compared
to other models, the better the fit is. As shown in Table 2, the order (2, 0, 6) has the lowest
AIC and BIC scores, as well as a considerably short fit time. This result confirms that the
best order to use for our model is (2, 0, 6).

Figure 4. Autocorrelation and partial autocorrelation.
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Figure 5. Autocorrelation line plot.

Figure 6. Partial autocorrelation line plot.
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Table 2. Testing different orders for the ARMA model.

Order AIC BIC Fit Time

(2, 0, 5) 25,579.120 25,630.422 2.197 s
(0, 0, 0) 29,396.626 29,408.026 0.002 s
(1, 0, 0) 26,266.725 26,283.826 0.046 s
(0, 0, 1) 27,668.724 27,685.825 0.134 s
(1, 0, 5) 26,131.341 26,176.943 0.695 s
(3, 0, 5) nan nan nan seconds
(2, 0, 4) 25,669.154 25,714.757 1.808 s
(2, 0, 6) 25,564.512 25,621.515 2.680 s
(3, 0, 7) 25,566.478 25,634.882 3.281 s
(1, 0, 6) 26,208.346 26,259.649 1.003 s
(3, 0, 6) nan nan nan seconds
(2, 0, 7) 25,565.527 25,628.230 1.630 s

4.4. Polygon Counter

The next task involved the mapping of probes to the section where they were captured.
The main motive for doing so was to determine which section gathers the most probe
requests. The store was divided into a number of polygons, and each polygon represented
a different section of the store. Figure 7 shows the layout, along with the polygons for the
store, which were taken into account. The areas with products were named using letters
A to M, and other areas such as entrances, changing rooms, and the cash counter were
represented as Entrance A, Entrance B, Changing Room, and PoS, respectively.

Figure 7. Polygons of the store.

Analysis was performed on a common day by plotting each probe request captured
in the store. Figure 8 shows the probe requests distributed in various polygons. It was
observed that many probe requests are concentrated in the center, along with a significant
number in other sections. The first observation was that customers prefer entering the store
from Entrance B instead of Entrance A.
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Figure 8. Mapping of probe requests for a common day.

The aim was to find the polygon where the customers showed the most interest. Two
different approaches were followed, then evaluated and compared. The approaches were
as follows:

• In the first approach, every probe request was mapped to the polygon where it was
captured, increasing the polygon count by one;

• In the second approach, only probe requests within a small uncertainty radius were
considered. In this approach, the polygon count was increased when a probe request
was captured within a given polygon an when the uncertainty radius of a different
probe request intersected. The uncertainty radius of each probe request was checked,
and the probes with a high uncertainty radius were removed, as such probes led to
inaccurate results.

As shown by the plot in Figure 9, for the probes with an uncertainty radius of more
than 5 m, it was observed that many of the probe requests that were captured in polygons
A, B, and C and in the changing room were uncertain, as many of the captured probe
requests either fell outside the store or in a different polygon of the store. For this reason,
the uncertainty radius was reduced to 4 m; then, the probe requests were mapped.

Figure 10 illustrates the second approach in more detail, in which probe requests
captured with an uncertainty radius of less than 4 m are plotted. It was observed that
majority of probe requests were captured around the center of the store and the surrounding
polygons. Around each of the probe requests, a green uncertainty circle was created, and its
size was based upon the radius of each probe request. The polygon count was increased not
only by considering the position of each point but also based on when the uncertainty circle
of a point outside of the polygon intersects with the polygon of concern. This implies that
every probe, depending on the size of its circle, might be considered for multiple polygons.
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Figure 9. Proberequests with an uncertainty radius greater than 5 m.

Figure 10. Probe requests with an uncertainty radius less than 4 m with their uncertainty circles

4.5. Pedestrian Flow

The last task was to identify the most common paths that customers take while inside
the store. Initially, the path that each customer followed was determined; then, the same
paths were summed to obtained the result. To accomplish this task, every polygon in which
each unique probe was captured was determined. It was observed that as the store is not
very large, the majority of the captured probes were in only one or two polygons. The
main reason for this was the time gap between Wi-Fi probe requests. Usually, one probe
request was followed by another after 5 to 10 min, and during this interval, most of the
customers had already finished their business and were never captured again. There were
rare exceptions of the capture of an individual more than once. Most such instances were
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employees of the store, with multiple captures during the day. These exceptions were not
taken into consideration, and the focus was on customers that were captured twice.

Every month was examined separately because comparison was desired between two
months, in addition to providing important information such as the common patterns
repeated or changed in the following month. Another reason for separate examination
was related to the data available for each month. For some days in the months of October
and November, no data were received due to faulty machines. Therefore, there were fewer
common patterns for these months compared to December.

5. Results

In this section, the observations of pedestrian flow analysis are presented. Fewer data
were available for the months of October and November; therefore, fewer common paths
were observed compared to the month of December. Moreover, in the month of November,
despite having more faulty or missing dates, the same number of paths was produced as
for the month of October but with fewer occurrences. Owing to the fewer occurrences,
there was a lack of confidence to back up these results; therefore, the validity was checked
by comparing the results with the common paths observed in other months.

As discussed earlier, the most common paths were the addition of the paths of cus-
tomers who were captured in two polygons. The results for the months of October and
November are shown in Table 3 and Table 4 respectively.

Table 3. Preferred paths for the month of October.

Path Count

DH 38
HM 30
FD 25

MEntrance B 24
DM 23

Table 4. Preferred paths for the month of November.

Path Count

HM 15
HK 14
KM 12
ML 11

In order to better understand the result, a pedestrian flow of the data was created
(Figures 11 and 12). In the figure, the data for each month were used as input for the
creation of one large pedestrian flow consisting of all the common paths found in the
original analysis. This resulted in the creation of a more complete path that a customer
would have followed while inside the store. It was observed that as in the figure with a
smaller path from one vertical green line to another, all these connected to form the whole
pedestrian flow. The thickness of the flow from one polygon to another depends on the
number of small paths recorded. For example, Figure 11 shows that path DH has the
thickest flow, as it was captured 38 times, which is more than any other path for the month
of October. Similarly, in Figure 12, the thickest flow is for HM, although its thickness is
smaller in scale, as it does not differ considerably from other paths.
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Figure 11. Customer flow for the month of October.

Figure 12. Customer flow for the month of November.

The first observation was that there is a repeated occurrence of polygons H and M,
which can be explained by the fact that M is near Entrance B and, as it was observed
that customers prefer Entrance B over Entrance A, they are bound to pass through this
polygon as well. It was also inferred that H, which is in the middle of the store, was also
visited by several customers. As observed in Figure 11, after passing these two initial
polygons, customers moved towards polygons D and F. This created a common path for
the month of October, i.e., Entrance BMHDF. Similarly, for the month of November, the
final common path was LMKH (or MLKH), as observed in Figure 12. For the month of
December (Figure 13), more paths were observed, as more data were collected for every
day of the month. The results for this month are shown in Table 5.

Figure 13. Customer flow for the month of December.
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Table 5. Preferred paths for the month of December.

Path Count

HF 39
MK 37
HG 34
HM 32

MEntrance B 32
FM 30
IL 30

DH 30
HI 29
IM 28
EH 27

Repeated occurrence of important polygons H and M was observed, while other
polygons, such as E and I, were captured for the first time as part of the path. The occurrence
of the new polygons could be the result of either having more data or of greater interest
shown by customers in these sections in comparison to previous months. Furthermore,
more final common paths are those which a customer could have followed while moving
through the left side of the store. The final path is LIGF.

Finally, it was concluded that majority of the customers preferred to enter through
Entrance B and move around the central and left side sections of the store. The most
common final paths after the three-month analysis are as follows:

• Entrance BMIHD;
• MKHF;
• MLKH;
• LIGF;
• MHED.

In conclusion, we proved that the most common paths that the customers preferred
while inside the store can be constructed. The customers considered in the analysis were
those customers who were captured twice during their time inside the store. Moreover,
the results seem to be in line with the polygon counter analysis, which is presented in the
following section.

6. Discussion

In this section, the forecasting results are presented, and the two models used for
forecasting are compared.

6.1. Forecasting

Figure 14 shows results that were observed by implementing the Prophet model.
Valuable results were obtained with respect to analytics such as underlying trends of the
data in both weekly and daily duration. The first observation was that the trend of the
data had a downward movement initially but started trending upwards as December
approached. This may have occurred for various reasons, the most important being the
Christmas period. It was clear from the daily trend that the store was most crowded at
9 A.M., which is also its opening time. This makes sense, as the store is part of the hotel,
and most people might prefer to shop early in the morning before the start of their day. The
trend then falls steadily until the store’s closing time at 8 P.M.
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Figure 14. Data components using the Prophet model.

Another advantage of Prophet implementation is how easy it was to plot interactive
graphs such as that shown in Figure 15. In this graph, a forecast can be achieved by
specifying the data or part of the data in two distinct places. In the upper left corner, data,
weekly, monthly, yearly, or all of the above can be observed, while the lower bar specifies
which part of the data is of interest. All these features would be of great help when a
particular time period of data is inspected.

Figure 15. Prophet interactive plot.
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The results of the models used in the present study are compared next. The real values
are plotted against the predicted values for the ARMA model and the Prophet model in
Figures 16 and 17, respectively. The real values, i.e., captured probe requests from beacons,
are indicated in blue, while the predictions are indicated in orange. This graph was plotted
after the training period of 3 months which, as discussed earlier. This graph was plotted
for a duration of 40 h, from 6 P.M. on 27 December to 6 A.M. on 29 December.

Figure 16. Predictions of the ARMA model.

Figure 17. Predictions of the Prophet model.

Figure 16 shows that the ARMA model follows a sigmoid curve and was able to
predict the hours when no probe requests were captured, while the Prophet model attempts
to capture spikes in the original data.

Tables 6 and 7 show the performance of the approaches based upon evaluation metrics
MAE, MSE, RMSE, and R2. The two approaches are close to each other in terms of all
evaluation metrics. The values suggest that the approaches fit well with the data and that
the predictions are also quite accurate. The data also show that the Prophet model was
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quite accurate and easy to implement but that similar results can be obtained by performing
statistical analysis using the ARMA model. Although the ARMA model was not easy to
use, it provides an opportunity to tackle complex cases by deepening the analysis, which
was not possible using the Prophet model.

Table 6. Evaluation metrics for the ARMA model.

Evaluation Metric Value

MAE 50.87070012059289
MSE 4843.434247281739

RMSE 69.59478606391242
R2 0.8763698350227241

Table 7. Evaluation metrics for the Prophet model

Evaluation Metric Value

MAE 53.023252192213384
MSE 3880.3035389025126

RMSE 62.292082473637954
R2 0.9009540457897911

6.2. Polygon Counter

Polygon counter analysis was implemented separately for the months of October,
November, and December, with each month showing distinct features. Even with a small
number of probe requests, the majority of the polygons have an increased counter, as shown
in Figure 18b as compared to the polygons in Figure 18a. This was a result of considering
the uncertainty radius. The polygons with the fewest probes are those that captured mostly
uncertain probe requests.

October Counter:

As shown in Figure 18a, the normal approach was used, in which the counter of a
polygon is increased only when a probe request is captured within the polygon. On the
other hand, as shown in Figure 18b, probe requests with an uncertainty radius smaller
than 4 m were also considered. When uncertainty was not considered, it was observed that
H was the polygon with the most captured probe requests and with a clear gap relative
to the polygon with the second most captured probe requests, i.e., polygon D. This was
validated by the fact that H was the polygon with most occurrences in the most common
path, as discussed earlier. On the other hand, Entrance A and Entrance B, along with
the PoS, changing room, and polygon J, are the polygons with the fewest captured probe
requests. As previously observed, Entrance A was not preferred by most of the customers,
and Entrance B is the first polygon that customers pass through as they enter the store.

As shown in Figure 18b, H remains one of the polygons with the most captured probe
requests, whereas all other polygons have changed. This is validated by the fact that during
the analysis for the month of October, polygons A, B, and D had some captured requests
with an uncertainty radius of more than 7 m. Thus, when an uncertainty radius of less
than 4 m is considered, A and B are among the polygons with the fewest captured probe
requests. Furthermore, Entrances A and B and the changing room are the polygons with
the fewest captured probes.

November Counter:

The least amount of data was available in November because for the initial 9 days, the
beacons were not fully functional. Polygons H, D, A, and M recur in the list of polygons
with the highest number of probe requests captured when the uncertainty radius was not
considered, and the polygons with the fewest captured probe requests were Entrance A,
Entrance B, PoS, and J (Figure 19). When the uncertainty radius was considered, polygons A,
C, D, and M were no longer among the polygons with the most captured probes; specifically,



Sensors 2023, 23, 4301 22 of 26

A and C were among the polygons with the lowest values. Polygon H was still in the top
position, while polygons L and J, and PoS were at the top of the list, despite having had
only a small number of captured probe requests in the previous month.

December Counter:

Data for all the days were present, resulting in every polygon having the highest
number of captured probe requests (Figure 20). Repeated occurrence of polygons A, H, and
D in the list of polygons with the most captured probe requests was observed, and new
polygons such as F and I were also included in this list. On the other hand, Entrance A,
Entrance B, J, and PoS were once again in the list of polygons with the lowest number of
captures. Considering the uncertainty radius, it was noticed that H remained in the top
places, along with polygon L, but polygon A fell to the bottom of the list.

(a)

(b)

Figure 18. Polygon counter for the month of October. (a) Polygon counter without considering the
uncertainty. (b) Polygon counter considering the uncertainty radius.
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(a)

(b)

Figure 19. Polygon counter for the month of November. (a) Polygon counter without considering the
uncertainty. (b) Polygon counter considering the uncertainty radius.

A different result was obtained from the overall polygon counter analysis when
the uncertainty radius was considered. The results were similar for every month under
examination. It was also observed that not considering radius was not the ideal approach
and could lead to inaccurate and unsafe results.
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(a)

(b)

Figure 20. Polygon counter for the month of December. (a) Polygon counter without considering the
uncertainty. (b) Polygon counter considering the uncertainty radius.

7. Conclusions

We have presented a comparison between two forecasting models and performed
polygon counter and pedestrian flow analysis based on spatial data. These data were
collected by capturing Wi-Fi probe requests from the smart devices of customers and a
variety of spatiotemporal information that is useful for investigating customer behavior.
Our data were collected through Raspberry Pi machines installed in the store, and the
collected data were stored in real time in an online database.

The first part of the implementation is polygon counter and pedestrian flow analysis.
By checking the coordinates of each captured probe request, we mapped each request to the
respective polygon where it was captured. However, not considering the uncertainty radius
might lead to inaccurate results; therefore, we decided to consider the uncertainty radius
for each probe by creating an uncertainty circle around each probe. In this approach, we
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increased the counter of a polygon not only when a probe request was captured within that
polygon but also when the circle intersected any polygon. As a result of polygon counter
analysis, we found the pedestrian flow of each customer. Then, a list was prepared with
the preferred paths that customers followed based on the most repeated customer paths.

The second part of our implementation was comparing two distinct forecasting models,
i.e., ARMA and Prophet. The Prophet model followed a straightforward approach and
was easy to implement, whereas the ARMA model required statistical analysis to tune it
accordingly. We considered the error in the polygon counter analysis to avoid inaccurate
results. The pedestrian analysis resembled a polygon counter, as the polygons with most
occurrences were repeated in most common paths. We also observed that despite their
different implementations, both the forecasting models could produce accurate predictions.
A more extended period of data would be required to check monthly or yearly seasonality.

Due to the unavailability of ground truth, there is uncertainty regarding the validity of
our pedestrian flow analysis results. As the relevant store is in Dubai, we could not acquire
the ground truth. Additionally, to examine the seasonality, data would need to be collected
for the whole year. These points form the basis for our future research.
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Abbreviations
The following abbreviations are used in this manuscript:

ACF Autocorrelation function
ARMA Autoregressive moving average
BLE Bluetooth low energy
FPE Final prediction error
GPS Global positioning system
IoT Internet of Things
MAE Mean absolute error
MSE Mean squared error
PACF Partial autocorrelation function
R2 Coefficient of determination or R-squared
RMSE Root mean squared error
RSSI Received signal strength indicator
SLAM Simultaneous localization and mapping
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