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Abstract: Background: Kidney transplant recipients (KTRs) who have a highly impaired immune
response are in need of intensified and safe vaccination strategies to achieve seroconversion and
prevent severe disease. Methods: We searched the Web of Science Core Collection, the Cochrane
COVID-19 Study Register and the WHO COVID-19 global literature on coronavirus disease from
January 2020 to 22 July 2022 for prospective studies that assessed immunogenicity and efficacy
after three or more SARS-CoV-2 vaccine doses. Results: In 37 studies on 3429 patients, de novo
seroconversion after three and four vaccine doses ranged from 32 to 60% and 25 to 37%. Variant-
specific neutralization was 59 to 70% for Delta and 12 to 52% for Omicron. Severe disease after
infection was rarely reported but all concerned KTRs lacked immune responses after vaccination.
Studies investigating the clinical course of COVID-19 found remarkably higher rates of severe disease
than in the general population. Serious adverse events and acute graft rejections were very rare.
Substantial heterogeneity between the studies limited their comparability and summary. Conclusion:
Additional SARS-CoV-2 vaccine doses are potent and safe in general terms as well as regarding
transplant-specific outcomes whilst the Omicron wave remains a significant threat to KTRs without
adequate immune responses.

Keywords: SARS-CoV-2 vaccines; kidney transplant recipients; COVID-19; acute graft rejection

1. Introduction

Vaccination remains the most effective tool to prevent severe disease after infection
with SARS-CoV-2. The currently dominating variant of concern (VOC), Omicron (B.1.1.529),
and its sublineages have shown to be less dangerous than the Delta strain for the general
population with regard to severe disease [1,2]. Nevertheless, they continue to gain higher
transmissibility and evasiveness to antibodies induced by previous infection or vaccination.
Other preventive measures such as monoclonal antibodies have been developed to com-
plete prevention strategies in seronegative patients but can hardly keep up with the high
mutation rate of the virus [3,4]. For example, in the most recent preexposure prophylaxis
trials, cilgavimab–tixagevimab in various dosages has been shown to be less effective with
regard to the Omicron BA.4 strain, and its neutralization capacity against the Omicron BA.5
waned earlier than for other Omicron variants [5,6].

Kidney transplant recipients (KTRs) compose the largest group of people receiving
an organ transplant [7] and belong to the most vulnerable patients regarding severe disease
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and COVID-19-related complications, due to their reduced kidney function, comorbidities
and substantial immunosuppression.

Whilst pooled evidence exists for humoral and cellular responses to additional SARS-
CoV-2 vaccine doses in solid organ transplant recipients, these results are not transferable
to KTRs, who tend to be more immunocompromised than, for example, liver transplant
recipients [8]. Various approaches such as additional vaccine doses, different vaccination
strategies or a temporary reduction of immunosuppressive therapy have been under inves-
tigation. This systematic review of prospective studies aimed to evaluate the effectiveness
of additional SARS-CoV-2 vaccine doses regarding cellular, humoral and variant-specific
immunity and the incidence and severity of breakthrough infections, as well as general and
transplant-specific safety in KTRs.

2. Methods

This study was registered with PROSPERO (CRD42022315409) and is accessible at
Open Science Framework under “https://osf.io/nsyq4/ (accessed on 15 April 2023)”. The
reporting of this systematic review follows the PRISMA checklist [9].

2.1. Data Sources and Searches

We searched the Web of Science Core Collection, the Cochrane COVID-19 Study Reg-
ister and the WHO COVID-19 global literature on coronavirus disease up to 22 July 2022.
The search strategies can be found in the supplemental material. Language restrictions
were not applied.

2.2. Study Selection

We included randomized controlled studies or prospective observational studies
reporting on at least 20 adult KTRs receiving a minimum of 3 SARS-CoV-2 vaccine doses
with either vaccines authorized for use by the European Medicines Agency (EMA) or
vaccines granted Emergency Use Listing by the World Health Organization (WHO). As of
22 February 2022 those were [10]:

• mRNA vaccines: BNT162b2 by BioNTech/ Pfizer (Mainz, Germany) mRNA-1273 by
Moderna (Cambridge, MA, United States of America);

• Non-replicating viral vector vaccines: ChAdOx1 by Oxford/AstraZeneca (Cambride,
United Kingdom), Ad26.COV2.S by Johnson & Johnson (New Jersey, United States
of America);

• Inactivated viral vaccines: Sinovac by Sinovac Biotech (Beijing, China), BBIBP-CorV
by Sinopharm (Beijing, China), BBV152 by Bharat Biotech (Hyderabad, India);

• Protein subunit viral vaccines: NVX-CoV2373 by Novavax (Gaithersburg, MA, United
States of America);

• The non-replicating viral vector vaccine rAd5 by Gamaleya (Moscow, Russia) despite
its pending approval due to its wide distribution.

Studies were considered eligible for inclusion if they reported one or more of the
following predefined main outcomes: SARS-CoV-2- infection, the composite endpoint
hospitalization or death, seroconversion, antibody titers and/or t-cell responses. Whenever
available, we extracted the following predefined additional outcomes: Serious adverse
events (SAE) and the development of de novo donor-specific antibodies (DSAs) as markers
of alloimmunization, as well as the incidence of acute graft rejection after COVID-19
vaccination. Furthermore, we assessed variant-specific neutralization capacity against the
delta and omicron VOC.

Five authors selected the studies on a web-based online platform (Rayyan [11]); each
study being assessed independently by two authors in a two-step approach. Conflicts were
resolved by group discussion involving a third author.

https://osf.io/nsyq4/
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2.3. Data Extraction and Risk of Bias Assessment

Study and population characteristics, as well as intervention-related information, were
extracted by two authors independently. We did not extract data on healthy controls; they
were scarce and not matched to our cohort of KTRs regarding age or clinical condition.

The risk of bias in each study was independently assessed on the outcome level by
two review authors and discussed until a consensus was reached. For observational studies
without a comparison, a tool for overall prognosis studies currently under development was
used (RoB-OPS [12]). The tool uses the following four domains: “participants”, “outcomes”,
“analysis” and “reporting bias”. For the risk of bias in non-randomized trials comparing
interventions, we used the ROBINS-I tool [13] and for randomized controlled trials (RCT)
we used the RoB2 tool [14].

2.4. Data Synthesis and Analysis

There was substantial clinical heterogeneity; some studies reported immunologic
outcomes only for participants with negative serostatus, co-interventions or relevant dis-
crepancies in immunosuppressive therapy. Methodological diversity existed in terms of
variances in study design, outcome definition and measurement. Thus, we did not pool
the outcome rates into a meta-analysis but we present the data descriptively in forest
plots without a combined effect estimate, or in table format. To explore the risk of bias
visually, we excluded all studies with high risk of bias as predefined in our study protocol
(Supplemental Figure S2). For the visualization of results, we used RStudio (R: version
4.2.1; Rstudio: version 2022.07.1; package: meta, version 5.2-0) [15,16]. More information
on the algorithms used can be found in the last chapter of the supplementary material.

For our prioritized outcomes, we assessed the certainty in the evidence using the
Grading of Recommendations Assessment, Development, and Evaluation (GRADE) ap-
proach [17], starting at a high certainty of evidence according to the guidelines for overall
prognosis studies [18]. The quality of evidence of each outcome was assessed using the
four domains “Risk of bias”, “Inconsistency”, “Indirectness” and “Imprecision”. Certainty
of evidence was rated according to limitations in these domains to very low, low, moderate
or high certainty of evidence. The summary of findings tables were produced with the
GRADEpro GDT software [19].

3. Results
3.1. Results of the Search

The literature search resulted in 1318 records after deduplication. After title and
abstract screening, we assessed 235 full texts for eligibility and included 37 published
studies into the review. At the time of our update search, 23 studies were ongoing or
completed without published data (Figure 1).

3.2. Description of Studies

From the included studies, 26 were from Europe, 6 from the USA, 3 from Israel and
Canada and 1 from Thailand and Uruguay, each. We identified 2 RCTs, 8 non-randomized
studies comparing interventions and 27 prognostic studies without a control arm. Twenty-
six studies investigated a study population containing seropositive KTRs after their previ-
ous vaccination series [20–46]. Eight studies included only seronegative KTRs [47–52] and
three studies included only KTRs with low or no previous seroconversion [53–55].

The included studies investigated five different vaccines (Cominarty®, Spikevax®,
Vaxzevria®, COVID-19 Vaccine Janssen® and Coronavac®). Twenty-two studies reported on
mRNA vaccines. One examined triple vaccination with viral vector vaccines [33], six studies
compared triple vaccination with an mRNA vaccine and heterologous (mRNA/viral vector)
vaccination [23,27,41,44,47,48] and two studies compared mRNA-1273 with BNT162b2 [26–53].
Only two of these nine studies were prospectively planned comparisons. Three studies
exclusively investigated co-interventions or specific immunosuppressive regimens and
their outcomes are reported separately. Of the remaining 34 studies, 19 reported transplant
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vintage, which was 6.7 years on average. More than 60% of KTRs received triple immuno-
suppressive therapy in 20 studies and less than 40% in 4 studies whilst no information was
given in 10 studies. Thirty-three studies investigated immunogenicity parameters. Four-
teen studies evaluated vaccine effectiveness reporting clinical outcomes after COVID-19
infection. Sixteen studies investigated safety outcomes including SAE, the development of
de novo DSAs or acute graft rejections. The summary of findings table gives an overview
of all investigated outcomes (Table 1). A summary of study characteristics can be found in
Supplemental Table S2.
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Figure 1. PRISMA flowchart: selection process for articles included in the systematic review.

Table 1. Summary of findings.

Outcome
No of Studies Study Design

Effect
Certainty of Evidence

No of Events No of Individuals Event Rate95 CI

De novo
Seroconversion up to

3 months after
3 vaccine doses

16

9 prospective
observational

studies, 6 NRSI,
1 RCT

686 1495 0.321 to 0.609 ⊕⊕## Low a,b,j

Total Seroconversion
up to 3 months after

3 vaccine doses
15

4 NRSI,
11 prospective
observational

studies

1255 1777 0.387 to 0.926 ⊕⊕## Low a,b,j

De novo
Seroconversion up to

3 months after
4 vaccine doses

4
2 NRSI,

2 prospective
observational studies

64 219 0.25 to 0.366 ⊕### Very low c,d,e,j

Total Seroconversion
up to 3 months after

4 vaccine doses
4

2 prospective
observational

studies
388 539 0.45 to 0.812 ⊕⊕## Low a,c,j

Neutralization against
Omicron VOC after

3 vaccine doses
4

prospective
observational

studies
50 142 0.118 to 0.704 ⊕### Very low c,f,e,j

Neutralization against
Delta VOC after
3 vaccine doses

4
prospective

observational
studies

101 171 0.51 to 0.63 ⊕⊕## Low c,e,j
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Table 1. Cont.

Outcome
No of Studies Study Design

Effect
Certainty of Evidence

No of Events No of Individuals Event Rate95 CI

Serious adverse events 9

1 RCT, 1, NRSI,
7 prospective
observational

studies

5 996 0 to 0.025 ⊕⊕## Low g,i,j

COVID-19-related
hospitalization or

death up to 6 months
6

1 RCT, 1NRSI,
4 prospective
observational

studies

4 564 0 to 0.018 ⊕### Very low g,h,i,j

Acute graft rejections 9

1 NRSI,
8 prospective
observational

studies

2 872 0 to 0.018 ⊕⊕## Low g,i,j

Development of de
novo donor-

specific antibodies
3

prospective
observational

studies
3 157 0 to 0.044 ⊕⊕## Low c,i,j

a downgraded one level because of inconsistency due to serious heterogeneity, b downgraded one level because of
imprecision due to wide confidence intervals, c downgraded one level because of risk of bias due to low number
of studies d downgraded one level because of risk of bias due to confounding, e downgraded one level because of
imprecision due to small information size and wide confidence intervals in most studies. f downgraded two levels
because of very serious heterogeneity g downgraded one level because of risk of bias due to limitations in outcome
definition and measurement, h downgraded one level because of risk of bias due to missing information on
selection bias, i downgraded one level due to small information size, j Started with high level of evidence according
to guidelines for overall prognosis studies. Certainty of evidence: ⊕### very low certainty of evidence, ⊕⊕##
low certainty of evidence.

3.3. Seroconversion

We identified 29 studies including 2834 KTRs with reports on seroconversion (Figure 2a).
De novo seroconversion ranged from 32 to 60% in 1515 KTRs after the 3rd and from 25 to
36% in 219 patients after the 4th vaccine dose (21 studies).

Studies reporting anti-S-IgG showed a tendency towards higher seroconversion rates
than studies reporting on anti-RBD (Figure 2c). Two of the three studies that used both
antibody assays achieved significantly higher results with the anti-S-IgG assay [20,29,32].

Primary vaccination with Coronavac® yielded low response rates ranging from 32%
for the vaccine booster with ChAdOx1 to 40% for the mRNA booster. No advantage was
seen for one vaccination strategy over the other. Nineteen studies reported seroconversion
in their whole transplanted cohort, regardless of previous humoral immune response, from
here referred to as total seroconversion. The total seroconversion rate after three vaccine
doses ranged between 39 and 92% for 1686 KTRs, being lowest for the triple vector vaccine
regimen [33] and highest for a study by Tauzin, 2022, reporting on 30 KTRs who were
more recently transplanted (median transplant vintage 24.48 months, IQR −4.8–275.16)
and considerably younger (median age 46 years, IQR 23–73) than in the other studies and
had partly received their previous vaccine doses before kidney transplantation (Figure 2b).
Without these studies, total seroconversion was 53 to 77%. After four vaccine doses, total
seroconversion ranged between 45 and 81% in 538 KTRs. Importantly, Roch, 2022, and
Midtvedt, 2022, included only KTRs with low or no seroconversion after their primary
vaccination series, whilst the other studies did not set limitations on study population
and thus yielded higher rates of 72 to 81%. Three studies reported stable or increasing
rates of seroconversion after an additional follow-up of three months [23,52,56] whereas
two studies [23,29] found decreasing or stable seroconversion rates after six months.

One RCT and four non-randomized studies of interventions compared de novo se-
roconversion with homologous vs. heterologous vaccine regimens in 345 previously
seronegative KTRs (Figure 2c). Overall, most estimates were imprecise although indi-
cated a slight tendency towards more events in the heterologous vaccine regimens. In
three non-randomized studies of interventions in 715 KTRs which compared total serocon-
version with homologous vs. heterologous vaccine regimens (Figure 2c), no superiority
could be shown for either vaccine strategy.
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Figure 2. Seroconversion and seroresponse after SARS-CoV-2 vaccination depicted as forest plots. (a) De
novo seroconversion after the third and fourth vaccine dose stratified according to vaccine type and
assay used to define seroconversion. (b) Total seroconversion (KTRs seropositive after last vaccine dose
including previously seroconverted KTRs) after three and four vaccine doses. (c) Studies comparing de
novo and total seroconversion in homologous (mRNA) and heterologous (mRNA/viral vector) vaccination
strategies. (d) Variant-specific neutralization after three and four vaccine doses. (e) T-cell responses strati-
fied according to assay after three and four vaccine doses. [20,22,23,25–29,31–34,37,39–44,46–49,51,54–57].
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3.4. Other Correlates of Protection

Variant-specific total neutralization was 58 to 70% against the Delta VOC after three and
four vaccine doses for 171 KTRs (Figure 2d). In contrast, four studies yielded consider-
ably lower neutralization rates against the Omicron VOC ranging from 11 to 52% for
142 patients. De novo neutralization rates were 35 to 36% for the Delta and 5 to 12% for the
Omicron VOC after three vaccine doses (Supplemental Tables S4 and S5).

Due to the high variance in reporting units of antibody titers and assays directed against
different spike domains, we refrained from direct comparisons and reported antibody titers
before and after the additional vaccine dose descriptively in Supplemental Table S3.

Six studies reported t-cell responses after three or four vaccine doses: three studies
measured t-cell responses with ELISpot, two used an interferon gamma release assay
(IGRA) and one used an activation-induced marker assay (AIM) (Figure 2e, Supplemental
Table S6). ELISpot analyses yielded much higher results than IGRA, limiting comparability.
Three studies examined t-cell responses in a subset of their original cohort; their sample
sizes are small and therefore possibly not representative of their population.

3.5. SARS-CoV-2 Infection

We identified 14 studies reporting on breakthrough infections after three or four
vaccine doses and sorted the studies according to the study period to show vaccine efficacy
for the individual SARS-CoV-2-waves (Figure 3c). In 659 KTRs the event rate ranged from
0 to 5% until the end of 2021 and in 891 KTRs from 5 to 25% when Omicron had become
the dominant variant. In nine studies reporting serological characteristics of the infected
KTRs the majority of them had no adequate seroresponse. KTRs were followed up for up
to six months in five studies, up to three months in five studies and up to one month in
four studies.

Four hospital admissions (three ICU admissions) or deaths occurred in 564 patients.
Remarkably, none of these patients had seroconverted after vaccination.

We found two studies reporting exclusively on the clinical course of COVID-19 in
KTRs during the Omicron wave. Malahe, 2022, reported on 45 infected KTRs (38 triple
vaccinated) with 9 (6 triple vaccinated) patients in need of hospital admission of whom
five were seronegative. In Wong, 2022, 7 out of 41 KTRs (23 had 3 vaccine doses) were
admitted to ICU, 16 needed ward-based care and 1 patient died (triple vaccinated). These
findings suggest that due to short follow-up in most studies reporting breakthrough
infections, the rate of severe disease might not have been captured adequately.

3.6. Serious Adverse Events

Nine studies reported on SAE in 996 patients; eight studies reported no SAE. All
five events that were possibly treatment-related were reported in BOOST-Tx 2021, without
any difference according to vaccine type (homologous mRNA vs. heterologous). Seija, 2022,
found recurrence of IgA-nephritis in one KTR after the 4th vaccine dose.

3.7. Development of Transplant-Specific Adverse Events

There were no reports of a decline in renal function after vaccination in general.
However, KTRs have frequent assessments of creatinine levels in their routine visits, so
even if data on renal function are not published, it can be assumed that a vaccination-
associated decline in kidney function would have been presented. De novo DSAs were
reported in 3 of 157 patients with an event rate from 0 to 0.5% (Figure 3d). In one study, the
KTR who developed de novo DSAs had not adhered to immunosuppressive therapy [22].
However, the low information size limits our certainty in this outcome. Acute graft rejection
after three or four vaccine doses was found in 0 to 0.2% in 10 studies on 981 KTRs. The
two events that occurred were reported in KTRs receiving four vaccine doses (primary
series with two doses of Coronavac and two booster doses of BNT162b2 each 30 days apart).



Vaccines 2023, 11, 863 8 of 15

Vaccines 2023, 11, x FOR PEER REVIEW 8 of 16 
 

 

vaccine doses. (e) T-cell responses stratified according to assay after three and four vaccine doses. 

[20,22,23,25–29,31–34,37,39–44,46–49,51,54–57] 

3.4. Other Correlates of Protection 

Variant-specific total neutralization was 58 to 70% against the Delta VOC after three 

and four vaccine doses for 171 KTRs (Figure 2d). In contrast, four studies yielded 

considerably lower neutralization rates against the Omicron VOC ranging from 11 to 52% 

for 142 patients. De novo neutralization rates were 35 to 36% for the Delta and 5 to 12% 

for the Omicron VOC after three vaccine doses (Supplemental Tables S4 and S5). 

Due to the high variance in reporting units of antibody titers and assays directed 

against different spike domains, we refrained from direct comparisons and reported 

antibody titers before and after the additional vaccine dose descriptively in Supplemental 

Table S3. 

Six studies reported t-cell responses after three or four vaccine doses: three studies 

measured t-cell responses with ELISpot, two used an interferon gamma release assay 

(IGRA) and one used an activation-induced marker assay (AIM) (Figure 2e, Supplemental 

Table S6). ELISpot analyses yielded much higher results than IGRA, limiting 

comparability. Three studies examined t-cell responses in a subset of their original cohort; 

their sample sizes are small and therefore possibly not representative of their population. 

3.5. SARS-CoV-2 Infection 

We identified 14 studies reporting on breakthrough infections after three or four 

vaccine doses and sorted the studies according to the study period to show vaccine 

efficacy for the individual SARS-CoV-2-waves (Figure 3c). In 659 KTRs the event rate 

ranged from 0 to 5% until the end of 2021 and in 891 KTRs from 5 to 25% when Omicron 

had become the dominant variant. In nine studies reporting serological characteristics of 

the infected KTRs the majority of them had no adequate seroresponse. KTRs were 

followed up for up to six months in five studies, up to three months in five studies and up 

to one month in four studies. 

 

Figure 3. Response and event rate for prioritized efficacy and safety outcomes depicted as forest plots.
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3.8. Co-Interventions and Subgroups

Four trials reported on seroconversion rate and safety investigating the reduction or
hold of mycophenolic acid (MPA) and one study investigated changes to MPA-free regimens
(Supplemental Table S7). Two of these four studies suggested a potential benefit regarding
seroconversion for the hold or reduction of MPA, after MPA hold for four to five weeks.
Three studies monitored the appearance of de novo DSAs; no events occurred. Importantly,
all of these studies were small scale and too heterogenous to allow comparability.

Three studies reported only on KTRs with three vaccine doses treated with Belatacept. De
novo seroconversion rates were severely impaired at 12 to 20% (Supplemental Figure S3).

Patients who did not seroconvert had a lower median transplant age than those who
seroconverted (Supplemental Table S8).

There was not enough information on immunosuppression, age, graft type, diabetic
status and transplantation number to compare outcomes between subgroups.

3.9. Risk of Bias

Regarding immunogenicity outcomes, a risk of bias occurred due to missing data or
in outcome measurement. In total, 4 out of 14 and 5 out of 15 studies reporting de novo
and total seroconversion after three vaccine doses were at a high risk of bias. From studies
of four vaccine doses, two out of four and one out of four studies were at a high risk of
bias, respectively. One of four studies investigating variant-specific neutralization after
three vaccine doses was at a high risk of bias and none after four vaccine doses. One of
six studies investigating t-cell responses was at a high risk of bias.
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From the 14 studies investigating COVID-19 disease after vaccination, 9 studies failed
to adequately define the outcome or did not report how infection was assessed. None of
these 14 studies performed routine SARS-CoV-2 testing and, thus, the risk of overseen
infections is high.

Five out of nine studies failed to assess SAE systematically or reported the occurrence
of SAE only narratively, without a definition or details on the outcome measurement.

Acute graft rejection was examined by nine studies. Four of these nine studies did
not report on outcome measurement and were therefore rated as at a high risk of bias in
this domain. None of the three studies reporting on the development of donor-specific
antibodies was at a high risk of bias.

The risk of bias of each study is depicted in detail in Supplemental Figure S1.

4. Discussion

This systematic review aimed to gather evidence on the immunogenicity, efficacy and
safety of additional SARS-CoV-2 vaccine doses in KTRs. Our findings on seroconversion
rates show that the probability of seroconversion decreases with the number of applied
vaccine doses. However, up to 60 and 30% of previously negative KTRs seroconvert after the
third and fourth vaccine doses and up to 80% of all vaccinated KTRs reach seroconversion
after three and four vaccine doses in general.

This may not hold true for KTRs with a primary vaccine series with Coronavac®,
for which lower immune responses have previously been reported [58,59]. More re-
cent transplantation was a risk factor for non-seroconversion. Our data suggest non-
inferior seroconversion in KTRs after the third heterologous vaccination as reported for
other populations [60].

Nevertheless, the prevalence of neutralizing antibodies against the Omicron VOC after
three vaccine doses was remarkably lower than in the general population, where 97% were
able to neutralize the virus after three vaccine doses [61]. It follows that, as the presence of
neutralizing antibodies correlates best with infection [62,63], KTRs need more vaccine doses
for sufficient protection, even though seroconversion is present. Due to the high method-
ological variance in investigating t-cell responses the results were highly heterogenous.
As cellular responses are generally robust in the healthy population, the impaired cellular
response in KTRs is likely provoked by MPA and other immunosuppressives affecting
lymphocytes and thus preventing the generation of a broad immune response [64–66].

Co-interventions such as the reduction of MPA peri-vaccination were insufficiently
comparable to allow a conclusion. Larger, well-designed trials, for example CPAT-ISR,
currently investigate this promising strategy to increase vaccine efficacy [67].

The rate of hospital admission and death in the studies that reported breakthrough
infections in this review is low, which is explainable by the very short follow-up periods
in most studies that reported primarily on immunogenicity outcomes. Two studies in
our review reporting on the clinical course of Omicron infections in KTRs found alarm-
ing hospital admission rates between 16 and 50%. Further studies in KTRs [68,69] and
other solid organ transplant recipients (SOTRs) support similar event rates, for example,
a hospital admission rate of 16% was found for lung-transplanted patients in a nationwide
German study [70,71]. As in our analysis the few participants with severe disease had low
or absent immune responses, additional vaccine doses can provide efficient [72] protection
from severe disease once a sufficient serologic response is reached. Recent studies confirm
these findings [73,74].

The safety profile observed in clinical trials investigating three or more vaccine doses
in the general population is consistent with our observations in KTRs [75–78].

Considering the development of de novo DSAs, our evidence is limited by the scarcity
of information. Two events occurred, unrelated to the reduction of immunosuppression,
in a study with 150 patients, but only two acute graft rejections were observed in a study
with nearly one thousand patients [41]. This event rate is comparable to the occurrence of
acute graft rejections reported in a systematic review and meta-analysis of the immuno-
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logic sequelae in SOTRs published before the COVID-19 pandemic [79]. One prospective
observational study investigating the development of de novo DSAs in 150 KTRs and heart
transplant recipients found that eight patients developed DSAs after their primary vaccine
series but all of them had stable graft function [80].

A meta-analysis comparing rejections in SOTRs after SARS-CoV-2 vaccination vs.
infection found six events post-vaccination and thirty events post-infection [81]. This
underlines that the benefit of additional SARS-CoV-2 vaccine doses to prevent severe
COVID-19 disease outweighs the risk of vaccine-induced graft rejection, with respect to the
current variant.

Since new Omicron-specific vaccines contain the same mRNA platform with a few
nucleotides exchanged [82], their safety profile is expected to be similar.

5. Limitations

Our study aimed to give a broad outline of important aspects of COVID-19 vaccination
in KTRs rather than reporting on immunogenicity alone and is, to our knowledge, unique in
this respect. However, it has several limitations. Firstly, the predefined outcomes relevant
for inclusion in our systematic review focused on immunogenicity and breakthrough
infections, which lowered the reporting on other outcomes, especially for the development
of de novo DSAs. Furthermore, our confidence in the evidence of several outcomes is
limited due to heterogeneity in study design and the lack of standardized assays used for
outcome measurement. This relates particularly to the t-cell responses after vaccination, for
which we cannot draw consistent conclusions due to the large number of different tests.

The investigation of predefined subgroups was not adequately possible, since infor-
mation on immunosuppression regimens in context with positive or negative seroresponse
hardly existed.

6. Future Directions

Our systematic review provides an evidence-based framework to guide clinical deci-
sion making, health care policies and future research in organ transplantation. Continued
research is needed for alternative approaches to ensure the establishment of an effective
immune response in KTRs, for example by the reduction of immunosuppression during
vaccination or examination of the efficiency of the variant-adapted vaccines. Preexposure
prophylaxis with monoclonal antibodies should still be considered an alternative worth
investigating for seronegative KTRs.

7. Conclusions

Overall, our systematic review highlights the importance and effectiveness of three
and four SARS-CoV-2 vaccine doses for the induction of humoral responses and prevention
of severe disease. Nevertheless, protection against infection was impaired during the
Omicron VOC. In KTRs vaccinated thrice, Omicron-specific neutralization was low and,
thus, more vaccine doses are required to induce protective levels. The benevolent safety
profile, which also applies to transplant-specific outcomes, permits this strategy.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/vaccines11040863/s1. Changes to the protocol. Supplemental
Figures S1–S3, Supplemental Tables S1–S8, PRISMA checklist.
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