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Outcome research that supports guideline recommendations for primary and

secondary preventions largely depends on the data obtained from clinical trials

or selected hospital populations. The exponentially growing amount of real-world

medical data could enable fundamental improvements in cardiovascular disease

(CVD) prediction, prevention, and care. In this review we summarize how data

from health insurance claims (HIC) may improve our understanding of current

health provision and identify challenges of patient care by implementing the

perspective of patients (providing data and contributing to society), physicians

(identifying at-risk patients, optimizing diagnosis and therapy), health insurers

(preventive education and economic aspects), and policy makers (data-driven

legislation). HIC data has the potential to inform relevant aspects of the

healthcare systems. Although HIC data inherit limitations, large sample sizes

and long-term follow-up provides enormous predictive power. Herein, we

highlight the benefits and limitations of HIC data and provide examples from

the cardiovascular field, i.e. how HIC data is supporting healthcare, focusing on

the demographical and epidemiological di�erences, pharmacotherapy, healthcare

utilization, cost-e�ectiveness and outcomes of di�erent treatments. As an outlook

we discuss the potential of using HIC-based big data and modern artificial

intelligence (AI) algorithms to guide patient education and care, which could lead

to the development of a learning healthcare system and support a medically

relevant legislation in the future.

KEYWORDS

machine learning, healthcare research, health insurance claims, prediction, artificial

intelligence, big data, prevention

Introduction

The volume of data generated by healthcare systems has been growing exponentially

over the past decade. Introduction of electronic medical records and establishment of

smart devices in medicine will massively drive this development even further. In 2020, the

healthcare systems were estimated to globally generate 2.3 zettabytes (1 zettabyte= 1 trillion

gigabytes) of data, which will triple by 2025 (Jeffrey, 2022). A big part of medical patient

data is available in the form of health insurance claims (HIC). In many countries, HIC data

have already been used to infer health status at the population level resulting in new medical

findings (Raghupathi and Raghupathi, 2014). While randomized controlled trials (RCTs)
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GRAPHICAL ABSTRACT

Amount of data from individual treatment units. The volume of medical data in healthcare systems globally is continually expanding. While data

access to individual patient data is limited over time for individual treatment units, relevant data from all healthcare providers converge at health

insurance companies. However, access to insurance data for health services research is still constrained. We illustrate that utilizing this data can

significantly enhance risk prediction, prevention, and patient care.

are the unchallenged state-of-the-art strategy to obtain highest

quality insights for clinical decision making, insurance data can

be used to obtain information where RCTs are not feasible. An

important example is patient’s out-of-hospital life in between

healthcare utilizations, for which insurance claims data can

aggregate health care utilizations, including ambulatory care,

providing more complete insights about the patient’s health over

the course of time. Moreover, insurance claims data could help

to understand patient’s utilization of medication and other out-

of-hospital health related activities. This information could aid

in addressing the impending demographic shifts, such as an

aging population and an increase in comorbidities. A better

understanding of the health status could lead to a better treatment

whilst containing the costs of the health systems. However, the

utilization of HIC data to enhance healthcare is limited by various

infrastructural and legal barriers, including concerns surrounding

data security (Graphical Abstract).

Cardiovascular diseases (CVD) are the main causes of death

worldwide, and cause highest financial burden in most healthcare

systems (Eurostat Statistics Explained, 2022; Statistisches

Bundesamt, 2022; World Health Organization, 2022). HIC data

could help to better understand CVD risk factors and inform

guidelines to decrease morbidity and mortality. Furthermore, they

may identify opportunities of disease prevention or occurrence

of secondary events, and consequently improve cost-effectiveness

of the healthcare system. Finally, the usage of HIC data can

contribute significantly to the quality assessments of cardiac care

(Rumsfeld et al., 2016). Our review focuses on the analysis of

HIC data to provide information on individuals with CVD and

aims to emphasize the use of existing health data to improve

global health.

History, established principles and
current state of the art

Since the introduction of the world’s first “Bismarckian”

statutory health insurance (SHI) in 1883 many countries have

introduced mandatory SHI for most citizens. An important step

toward the use of the data from respective insurance claims

for statistical analysis was the establishment of coding systems.

Coding allows for an objective and universal labeling of clinical

information about patients. The most important coding tool

is “The International Statistical Classification of Diseases and

Related Health Problems” (ICD), which was officially introduced

as International List of Causes of Death (ILCD) in 1900 at

the “First International Conference for the Revision of the

Bertillon or International List of Causes of Death” (Hirsch et al.,

2016). Since then, it has been continuously developed from

a register of causes of death toward a register of diseases,

which are not necessarily leading to death but impairing health.

Currently, ICD-10 is used by over 100 countries, distinctly
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defining over 70,000 diseases and their subclasses (ICD Codes,

2022). ICD-11 has already been introduced at the beginning

of 2022 and is ought to be adapted by 2026. Other important

coding-systems concern the performed procedures and are used

for the reimbursement systems of health insurance companies,

namely the “Current Procedural Terminology” (CPT) in the

United States of America (USA) (Hirsch et al., 2015) or the

“Operationen- und Prozedurenschlüssel” (OPS) in Germany

(Bundesinstitut für Arzneimittel und Medizinprodukte, 2022). To

monitor international drug utilization the Anatomical Therapeutic

Chemical (ATC)—Classification in combination with the Defined

Daily Dose (DDD) are used (WHO Collaborating Centre for Drug

Statistics Methodology, 2022). This provides useful information

about the actual pharmaceutical therapy of each patient.

The analysis of medical statistics dates back to 1662 when John

Graunt wrote his work about “Natural and Political Observations

Made upon the Bills of Mortality” (Federal Institute for Drugs

Medical Devices, 2022). The analysis of insurance claims data for

clinical findings steadily grew over the last years (Sawicki et al.,

2020). Initially descriptive statistical methods were used, recently

more advanced statistical and machine learning (ML) approaches

have been employed in the clinical research (van der Galiën et al.,

2021). Furthermore, there is a massive interest in the integration of

multiple databases from different insurance providers (Riedel et al.,

2018; Sabaté et al., 2021) or with the clinical data (Jones et al., 2018).

Currently there is an ongoing discussion about the establishment

of a Health Research Data Center in Germany. The center is meant

to be a centralized platform for storing and sharing health-related

research data to facilitate research in the field (Swart et al., 2021),

to date, however it is still in the process of being established

(Bundesinstitut für Arzneimittel und Medizinprodukte, 2023). The

potential of large volume of insurance data has already drawn

the interest of various institutions and government organizations

including the European Union (EU) resulting in European funded

initiatives (Pastorino et al., 2019). In the following part, we will

highlight the main findings of HIC data analysis in CVD.

Current findings on cardiovascular
diseases from insurance data

The focus of statistical analysis of HIC data can mostly

be grouped into five different topics: (a) demographical and

epidemiological differences, (b) pharmacotherapy, (c) healthcare

utilization, (d) outcomes of different treatments, and (e) cost-

effectiveness.

Since HIC data contains information about sex, age, and other

demographics; differences in behavior and clinical outcomes of

different patient-groups have been evaluated according to these

factors. HIC data are well suited for assessing the effectiveness

of the actual pharmacotherapy because they capture data on the

medications that patients actually obtained from the pharmacy.

This information provides a blend of the medication prescribed by

physicians and the degree of patient adherence to the treatment.

Many studies indicated that there is a discrepancy between the

recommended, prescribed pharmaceutical therapy, and what is

actually received by the patient (Mangiapane and Busse, 2011;

Eindhoven et al., 2018a; Ulrich et al., 2019). Drug adherence is

extremely important after myocardial infarction (MI) and stenting

to prevent stent thrombosis or a progression of the coronary

artery disease (CAD). Sex-differences can be observed regarding

adherence to treatment. Analyses of HIC data from theNetherlands

and Germany showed that women seem to be less drug adherent to

their prescribed medicine after MI (Eindhoven et al., 2018b; Ulrich

et al., 2019). Data collected from French HIC showed that males

are on average a decade younger than female patients, at the time of

hospital-admission for MI (Blin et al., 2016). Regarding the impact

of age, HIC data from the Netherland showed that adherence to

optimal treatment decreases with an increase in age (Eindhoven

et al., 2018b; Beller et al., 2020). Furthermore, the adherence to

recommended drugs after MI decreases steadily over time (Ulrich

et al., 2019), whilst patients with Non ST-elevation myocardial

infarct (NSTEMI) were less frequently treated with the guideline

recommended medication to begin with (Eindhoven et al., 2018b).

Nevertheless, the overall usage according to the current guidelines

is increasing over the last years (Koopman et al., 2013; Blin et al.,

2016).

Information can also be gained about prescription and usage

patterns of specific medications in pharmacotherapy. Looking at

anticoagulation, for example, the overall discontinuation rates of

vitamin K antagonists and new oral anticoagulants are comparable

over the first year of therapy (Hohnloser et al., 2019), and the

highest persistence rate was seen for apixaban (Sabaté et al.,

2021). Statins are another drug class with common non-adherence.

Here the discontinuation of therapy could be associated with the

patients socio-economic status and their utilization of follow-up

appointments with physicians (Hickson et al., 2017).

HIC data has been used to evaluate the adaption of new

guidelines. For example, Shafazand et al. (2010) highlighted that

only small differences in prescribing practices were seen before

and after the publication of the ACC/AHA guidelines (2005) for

the treatment of heart failure (HF). However, it is important to

consider the potential limitations of routine data when interpreting

the results of studies that use these data sources to assess guideline

concordance. Routine data often lack essential clinical findings,

such as laboratory values or physiological parameters like blood

pressure or heart frequency, which are important for assessing the

quality of care provided to patients.

Every health care utilization is documented in HIC data, if

it is reimbursed by the insurer. Therefore, it can be used to

analyze the impact of different health care utilizations on the

patient’s course of disease. German HIC data were used to show

that patients visit a general practitioner (GP) or cardiologist at

least once a year after MI (Ulrich et al., 2019). Radzimanowski

et al. (2017) showed that mortality was three times higher in

patients without cardiology care, however sole contact with a

cardiologist without visiting a general practitioner (GP) /internist

was insufficient to increase the survival rates. However, it also

implied that an increased number of visits to the same kind of

physician did not account for survival benefit of patients with

cardiology care.

HIC data also offers the opportunity to compare the effect of
different medical treatments and interventions on certain clinical
outcomes and adverse events. Several studies could underline the
superiority of drug-eluting stents (DES) and coronary artery bypass

grafts (CABG) over bare metal stents (BMS) associated with the
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occurrence of major adverse cardiac and cerebrovascular events

(MACCE) (Jeschke et al., 2017; Nestler et al., 2022). With regard to

predicting treatment success in terms of individual risk, Barth et al.

(2018) highlighted that recognition of the number of comorbidities

in a high-risk patient population undergoing transcatheter aortic

valve implantation (TAVI) improved outcome prediction.

It has already been reported before that a small group

of patients disproportionately consume a large proportion of

healthcare resources (Kim and Park, 2019). HIC data can help to

determine the characteristics of these patients, including specific

treatments and circumstances that contribute to this significant

imbalance in expenses. Furthermore, HIC data demonstrated

that cost-effectiveness strongly depends on timing and situation.

In patients with heart failure, end-of-life care is significantly

more costly compared to the treatment for those who survive

their hospital stay (Obi et al., 2017). Among other procedures,

percutaneous coronary intervention (PCI) has been shown to be

cost-effective across different ages (Liao et al., 2021), with an

advantage of DES over BMS (Cheng et al., 2019). In the early days of

catheter ablation, the cost-effectiveness of treating atrial fibrillation

(AF) was questioned by van Brabandt et al. (2013) who suggested it

to be reserved for carefully selected patients.

Regarding peripheral artery disease (PAD) the analysis of

German HIC data revealed a significant increase in the diagnosis

and associated costs for the German healthcare system (Malyar

et al., 2013). However, a subsequent study using the same data

found no significant improvement in clinical outcome for PAD

patients when compared to historical data. This study attributed the

lack of improvement to low rates of follow-up diagnostics and poor

adherence to guidelines (Reinecke et al., 2015). Another subsequent

study, which also utilized German HIC data, revealed that this was

particularly the case for women, despite their superior overall and

amputation-free survival rates (Makowski et al., 2022).

Geographic information derived from insurance data can

point out disparities in health care utilization at a more

granular level, including small-area variations. By analyzing this

data, policymakers and healthcare providers can gain a more

comprehensive understanding of the impact of health initiatives

on specific populations and geographic regions. The analysis of

HIC data can highlight the need for targeted investments in

healthcare facilities or resources in areas with lower levels of

healthcare utilization. Similarly, inspired by the work of Wennberg

and others (Wennberg, 2010), it can help to identify regions where

overutilization of certain healthcare services may be driving up

costs unnecessarily, thereby allowing for more efficient allocation

of resources.

Advantages and challenges of using
health insurance claims data

Working with HIC data provides important and copious

patient information which cannot easily be obtained using RCTs.

While RCTs are often restricted to highly selective cohorts of

patients depending on their willingness to give consent or the

location of inclusion. Analyzing HIC data offers an overview of all

the treated individuals. With millions of patients, HIC data provide

a huge study population in which specific subgroups can be studied.

In addition, long follow-up periods without missing data due to

dropouts are possible if patients remain in the same insurance

company. This combination leads to large patient cohorts with

long follow-up periods and providing the corresponding study with

a high predictive power. Hybrid forms of investigations, utilizing

both randomized controlled trial (RCT) methodology and registry

data, have been conducted using the SWEDEHEART CR registry

as a foundation (Hofmann et al., 2017). These investigations have

leveraged the strengths of RCTs, such as the ability to provide a high

level of evidence for causal inferences, with the benefits of registry

data, including pre-existing infrastructure for patient recruitment

and follow-up.

However, HIC data incorporate several limitations. It contains

limited in-depth information on individual patients, thereby

limiting the number of questions to be addressed. Further, it can be

affected by misinterpretation of the given information. However,

most information is found in the form of codes regarding the

diseases via ICD codes, procedure numbers, and ATCs. For this

reason, HIC data are mainly objective. The codes are thoroughly

checked by the insurance companies since they provide the

basis for reimbursement. However, it is important to critically

examine the reliability of these codes. Above all, the assumption

of causalities must be made with extreme caution. For instance

ICD-Codes may not always accurately reflect the reasons behind

drug prescriptions (Gothe, 2008). Furthermore, coding inaccuracy

cannot be completely prevented. An accuracy of over 70% for

diagnosing acute myocardial infarction (AMI) was shown in

Korean HIC data based on ICD-10 codes (Kimm et al., 2012). The

diagnoses listed in Medicare even have a positive predictive value

of 94% in the USA (Kiyota et al., 2004). Even though the accuracy

of coding in most health systems can be accepted as quite accurate,

it is essential to carry out validation on provided codes. For certain

diagnoses, this can be achieved by combining the ICD codes with

the procedural codes. By that way a diagnosis that demands a

certain procedure, (for e.g., AMI and stenting or CABG) can be

interpreted correctly. An indirect validation could be a change of

medication at the occurrence or aggravation of a certain disease.

To ensure that secondary data from HIC are analyzed using

rigorous and transparent methods, and to promote accuracy,

reliability, and reproducibility of research results, guidelines such as

RECORD (Nicholls et al., 2016), the Good Practice Secondary Data

Analysis (Swart et al., 2015) or STROSA (Swart et al., 2016) must

be followed. These guidelines help researchers identify potential

sources of bias and confounding, minimize the impact of these

factors on results, and present their methods and results clearly and

transparently. They also ensure the secure handling of secondary

data in the context of health research.

Depending on the country and type of health insurance,

certain insurance populations might not accurately represent

the general population of the country regarding social status,

sex, and age (Barth et al., 2018; van der Galiën et al., 2021).

Therefore, validation studies have been performed for different

HIC datasets. For the German population, it was shown that
there are differences between STH and privately insured patients,
especially with regard to socio-economic status, while gender and
age are largely identical (Jaunzeme et al., 2013; Epping et al.,

2021). Validation studies from the United Kingdom (UK) and

the Netherlands have substantiated the insured population to be
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representative to their general population and showed sufficient

data accuracy (Aylin et al., 2007; Eindhoven et al., 2018a). Jaunzeme

et al. (2013) suggested that validity of STH data is not primarily

based on their representativeness but on the condition that the

relevant characteristics are sufficiently represented in these data in

order to carry out a stratification.

Using real world patient data comes with the challenge of data

privacy. Since the Health Insurance Portability and Accountability

Act of (HIPAA, 1996), limits the use of patients’ personal medical

information for researchers in the USA (CDC Centers for Disease

Control Prevention, 2022). After the enforcement of HIPAA health

care providers and other organizations, holding sensible patient

data, are obligated to ensure the safety and prevent misuse. This

resulted in new necessary provisions such as informed patient

consent, which from then on were deemed necessary for the use

of patient-related data in research. While that way patient data is

protected, it has been shown that a change of the study population

due to selection bias is an unwanted side effect (Armstrong

et al., 2005). Bypassing informed consent, de-identified patient

data are still accessible for research purposes without the need

for consent. It has been shown though, that anonymous data

can lead to research errors and a decreased amplitude of studies

(Wilson, 2006). The General Data Protection Regulation (GDPR)

was implemented in the EU and UK in 2018. This privacy law

mandates that all organizations within the EU and UK adhere to

fundamental data protection principles and safeguard individuals’

privacy rights. While HIPAA still permits some degree of patient

health information disclosure, the EU law is even more restrictive.

Although the protection of patient data is necessary, current data

protection laws lead to an increase in the cost and time required to

comply with and conduct studies, as well as a loss of information

that could be used for the benefit of the population (Wolf and

Bennett, 2006).

Future directions

Most findings fromHIC data are based on descriptive statistics,

and there is an urgent need to develop, extend and implement

software tools and frameworks to analyze the vast quantities of

data available. These tools should be able to address multiple

questions providing deep insights from the data as compared to

the traditional statistical methods such as simple linear regression,

which based on linear relationships. Modern AI models can be

used to discover more complex relationships. Moreover, HIC data

should be used to develop predictive ML-models suggesting health

status of the patients. Only a few supervised and unsupervised ML-

based approaches have been applied to insurance data (Davenport

and Kalakota, 2019; Thesmar et al., 2019; Kaushik et al., 2022), these

techniques include decision-tree learning and natural language

processing (NLP). However, other ML-based techniques are

scarcely applied (Rumsfeld et al., 2016). Using the state of art ML

techniques on clinical data combined with HIC data might provide

a deeper understanding of the patient’s behavior, and improve risk

stratification (van der Galiën et al., 2021). Despite the potential

benefits of using ML models, caution needs to be applied; training

datasets must be adequately defined, unbiased for sex, ethnicity,

social and cultural biases. It is crucial to applyML-based techniques

that can accurately predict outcomes in a diverse population

(Zou and Schiebinger, 2018). Furthermore, the representativeness

of the sample population and potential systematic biases that could

impact the model predictions should be made transparent (Ibrahim

et al., 2020).

Even though the potential of HIC data is enormous, the

findings from the HIC-data have been hardly considered in clinical

guidelines and/or clinical practice (Rumsfeld et al., 2016). The

coordination between GPs, specialists and hospital doctors could

be improved by providing access to all relevant data, including

patient’s behavior outside the hospital, knowledge of risk factors, a

better understanding of needs and specific care requirements. This

would enhance patient care outcomes and facilitate monitoring and

tracking of patient progress (Eindhoven et al., 2018a).

Conclusion

Taken together, HIC data are stable and valid data that

have been used for the gain of clinical information for decades.

Nevertheless, the utilization of HIC data needs to be aligned with

appropriate methods and can be improved in terms of analysis and

implementation of their findings in clinical practices. An important

challenge while using patient data is protection of privacy, which

in its current form leads to loss of critical information that

might help to complete the clinical picture of patients in hospital

and therefore, provide important insights for the treatment of

the general population. Using real world big data could create

a learning healthcare system, improving cost-effectiveness and

patients’ outcome. A healthcare system has the potential to provide

relevant information, supporting prediction accuracy, decision and

policy making. Data driven health policy might aid to educate

individuals and prevent diseases. Furthermore, it would facilitate

to unburden the increasingly scarce health care resources.
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