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Abstract In a recent paper of the authors, a novel nodal-based floating frame of reference formulation (FFRF)
for solid finite elements has been proposed. The nodal-based approach bypasses the unhandy inertia shape
integrals ab initio, i.e. they neither arise in the derivation nor in the final equations of motion, leading to a
surprisingly simple derivation and computer implementation without a lumped mass approximation, which
is conventionally employed within commercial multibody codes. However, the nodal-based FFRF has so far
been presented without modal reduction, which is usually required for efficient simulations. Hence, the aim
of this follow-up paper is to bring the nodal-based FFRF into a suitable form, which allows the incorporation
of modal reduction techniques to reduce the overall system size down to the number of modes included in the
reduction basis, which further reduces the computational complexity significantly. Moreover, this exhibits a
way to calculate the so-called FFRF invariants, which are constant “ingredients” required to set up the FFRF
mass matrix and quadratic velocity vector, without integrals and without a lumped mass approximation.

1 Introduction

The floating frame of reference formulation (FFRF) is one of the most widely used methods to analyse
flexible multibody systems and is implemented in most commercial flexible multibody dynamics codes. The
formulation is applicable to flexible multibody systems subjected to large rigid body translations and rotations
but small strains and flexible deformations with respect to the floating frame, such as vehicles, aircraft, robots,
and machines.

The FFRF is conventionally derived from a continuummechanics point of view [10, 11, 14, 18, 19], which
yields so-called inertia shape integrals. These unhandy volume integrals depend not only on the degrees of
freedom (DOFs) but also on the finite element (FE) shape functions, which makes computer implementations
and the derivation of the conventional FFRF error-prone and laborious. Nevertheless, this circuitous approach
has become a standard in the multibody literature [17]. To circumvent the evaluation of these integrals, com-
mercial flexible multibody packages like ADAMS (MSC Software Corporation) or RecurDyn (FunctionBay,
Inc.) resort to a lumped mass approach according to [17], see [3, 13]. Within this approximative approach, a
so-called nodal mass (for translational DOFs) or a nodal inertia (for rotational DOFs) m j

n is assigned to each
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FE nodal DOF q j
fe. Hence, the kinetic energy T of each flexible body is in turn approximately calculated by

the sum of all N nodal DOF contributions according to particle dynamics theory, i.e. [13, 17]

T ≈ 1

2

N∑

j�1

q̇ j
fe m

j
n q̇

j
fe. (1)

Hence, all FFRF integrals are replaced and approximated by sums. This significant simplification enables
commercial multibody packages to calculate the so-called FFRF invariants, which are constant “ingredients”
required to set up the FFRF mass matrix and quadratic velocity vector—approximately. These invariants may
be found in the documentations of commercial multibody packages, see, for example, [3, 13].

In recent papers of the authors [20, 21], a novel nodal-based FFRF for solid FEs has been proposed.
This nodal-based approach bypasses the inertia shape integrals ab initio, i.e. the integrals arise neither in the
derivation nor in the final expression of the equations of motion (EOMs), leading to a surprisingly simple
derivation and computer implementation without a lumped mass approximation. The key idea is to treat a
flexible body as a collection of discrete points, i.e. the FE nodes, to describe the kinematics and to define the
system energies on a semi-discrete nodal-based level. In doing so, [20] presented a derivation via the absolute
coordinate formulation (ACF) (see [6] for early work on the ACF), and [21] an even more elegant and concise
way via Lagrange’s equation for a generalmechanical system,whereas [22] formed the basis of the nodal-based
treatment to derive the generalized component mode synthesis (GCMS) EOMs (see [5, 15] for early work on
the GCMS). However, the governing EOMs of the nodal-based FFRF have so far been presented without modal
reduction, i.e. the approximation of the flexible DOFs as a linear combination of component modes, which is
usually required to efficiently simulate flexible multibody systems, but is not trivial to incorporate, since the
so far presented equations involve undesired matrix operations during time integration with “large” matrices
depending on the DOFs. Hence, the aim of this follow-up paper is to bring the nodal-based FFRF into a suitable
form, which allows the incorporation of modal reduction techniques to reduce the overall system size down
to the number of modes included in the reduction basis and to render the aforementioned matrix operations
unnecessary, which further reduces the computational complexity significantly. This will reveal a possibility
to calculate the FFRF invariants without a lumped mass approximation and, of course, without inertia shape
integrals. Please note that the inertia shape integrals are replaced by matrix multiplications with the consistent
(constant) FE mass matrix, which itself could be considered as an inertia shape integral; however, this is no
burden, since the FE mass matrix can be exported from any FE package and is, furthermore, anyway required
to calculate the eigenmodes included in the reduction basis1.

The remainder of this paper is structured as follows: Sect. 2 provides a brief summary of the derivation of
the non-reduced nodal-based FFRF EOMs according to [21]. In Sects. 3 and 4, which is the main part and
the novelty of this paper, the modally reduced nodal-based FFRF is derived in 3D and 2D space, respectively.
Then, Sect. 5 shows the convergence of the modally reduced nodal-based FFRF to its non-reduced counterpart
and the dangers of the lumped mass approximation using a flexible slider–crank mechanism, which should
reinforce that the presented model order reduction and EOMs within this paper are reliable. Finally, the paper
is concluded in Sect. 6.

2 Non-reduced equations of motion of the nodal-based FFRF

As already mentioned in Sect. 1, two approaches have been presented so far to derive the nodal-based FFRF,
i.e. a direct derivation via Lagrange’s equation for a general mechanical system [21] and a derivation via the
ACF [20]. We briefly summarize the main steps required to obtain the nodal-based EOMs according to [21];
for the detailed steps, the reader is referred to the mentioned literature.

Let us consider a representative FE-discretized body of a 3D system with nn nodes and an attached
floating frame F , i.e. a body-fixed coordinate system; the origin of F is translated by qt ∈ R

3×1 with respect
to (w.r.t.) the origin of the global inertial frame F and their orientations are related by the rotation matrix
A � A(θ) ∈ R

3×3, where θ ∈ R
nr×1 denotes a proper rotational parametrization with nr rotational DOFs.

The first step is to split the global nodal displacements c ∈ R
3nn×1 into their translational (ct), rotational

(cr) and flexible (cf ) parts, i.e.

c � ct + cr + cf , (2)

1 The same holds for the (constant) FE stiffness matrix.
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and relate them to the FFRF generalized coordinates

q � [
qTt θT cTf

]T
, (3)

i.e.

c � Φ tqt + (Abd − Ibd)x + Abdcf , (4)

with

Φ t � [
I . . . I

]T ∈ R
3nn×3, (5)

Abd � diag(A, . . . , A) ∈ R
3nn×3nn , (6)

Ibd � diag(I, . . . , I) ∈ R
3nn×3nn , (7)

where I ∈ R
3×3 denotes the identity matrix and x ∈ R

3nn×1 as well as cf ∈ R
3nn×1 denote the undeformed

(reference) nodal coordinates and the flexible nodal displacements w.r.t. the floating frame, respectively. Dif-
ferentiating Eq. (4) w.r.t. time t (˙) and exploiting some inherent properties of the involved matrices as well as
some basic kinematic relationships, see [20, 21], yields

ċ � L(q)q̇, (8)

with

L � [
Φ t −Abd r̃ fG Abd

]
, (9)

where G ∈ R
3×nr is implicitly defined by the local angular velocity ω ∈ R

3×1 and rotational parametrization

as ω � Gθ̇ , and r̃ f comprises the nn skew-symmetric matrices2 r̃
(i)
f ∈ R

3×3 of all FE nodes associated with
the nodal position vectors

r (i)f � x(i) + c(i)f ∈ R
3×1 ⇔ r f � x + cf ∈ R

3nn×1 (10)

after elastic deformation, relative to the body frame, i.e.

r̃ f �

⎡

⎢⎢⎣

r̃
(1)
f
...

r̃
(nn)
f

⎤

⎥⎥⎦ ∈ R
3nn×3. (11)

The coordinate mappings, Eqs. (4) and (8), are required to derive the EOMs via Lagrange’s equation, i.e.

d

dt

(
∂T

∂ q̇T

)
− ∂T

∂qT︸ ︷︷ ︸
inertia

forces

+
∂V

∂qT︸︷︷︸
elastic

forces

+
∂λTg
∂qT︸ ︷︷ ︸

constraint

forces

� ∂W

∂qT︸︷︷︸
applied

forces

, (12)

since [20, 21]

T (ċ(q, q̇)) � 1

2
ċTMċ, (13)

V (q) � 1

2
cTf Kcf , (14)

W (c(q), t) � cT f , (15)

g(q, t) � 0, (16)

2 Note that the tilde operator (̃ ) converts any R3×1 vector in its associated skew-symmetric R3×3 matrix.
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with the kinetic energy T, the strain energy V, the work W done by applied nodal forces f , the holonomic
constraint equations g � 0, and the Lagrange multipliers λ. Note that M and K denote the constant mass and
stiffness matrix from the underlying linear FE model, respectively. It has been shown by [21] that combining
Eq. (4), Eq. (8) and Eqs. (12) to (16) and carrying out differentiation in a very elegant way yields

LTMLq̈ + LTML̇q̇ + ̂Kq + ̂J
T
λ � LT f , (17)

i.e. slightly rearranged,
⎡

⎢⎢⎣

ΦT
t MΦ t − AΦT

t M r̃ fG AΦT
t M

G
T
r̃
T
f M r̃ fG − G

T
r̃
T
f M

sym. M

⎤

⎥⎥⎦

⎡

⎢⎢⎣

q̈t

θ̈

c̈f

⎤

⎥⎥⎦ � −

⎡

⎢⎢⎣

0 0 0

0 0 0

0 0 K

⎤

⎥⎥⎦

⎡

⎢⎢⎣

qt

θ

cf

⎤

⎥⎥⎦

+

⎡

⎢⎢⎢⎣

−AΦT
t M

(
ω̃bdω̃bdr f + 2ω̃bd ċf − r̃ f Ġθ̇

)

G
T
r̃
T
f M

(
ω̃bdω̃bdr f + 2ω̃bd ċf − r̃ f Ġθ̇

)

−M
(
ω̃bdω̃bdr f + 2ω̃bd ċf − r̃ f Ġθ̇

)

⎤

⎥⎥⎥⎦

+

⎡

⎢⎢⎣

ΦT
t

−G
T
r̃
T
f A

T
bd

AT
bd

⎤

⎥⎥⎦ f − ∂ g
∂qT

λ, (18)

where

ω̃bd � diag(ω̃, . . . , ω̃) ∈ R
3nn×3nn . (19)

Please not that the nodal-based FFRF presented in here is valid if (see [20, 21] for further discussions) ...
• flexible deformations and strains with respect to each body frame are small3,
• the coordinates q are sorted alternating for x, y and z components of an underlying orthogonal coordinate
system,

• the mass matrix is invariant to rotations, i.e. M � AT
bdMAbd � M, which also implies that the matrices

Abd and M � M commute, which is, for example, the case for displacement-based FEs with identical
shape functions used to interpolate all coordinate directions such as, using ABAQUS (Dassault Systèmes)
terminology, C3D4, C3D8, C3D10, C3D20 elements.

3 Modally reduced nodal-based FFRF in 3D space

3.1 A suitable form of the nodal-based FFRF to enable a proper modal reduction

It is usually required to reduce the number of flexible DOFs due to limited computation resources or efficiency
reasons. The well-established component mode synthesis (CMS), where the flexible deformation is approxi-
mated by a linear combination of nm component modes, such as vibration eigenmodes and static modes, is a
widely used approach to do so, see, for example, the pioneering work of [1, 8, 9, 12, 16].

Within the CMS the flexible deformation is approximated by4

cf ≈ Ψ ζ with nm � dim(ζ ) � dim(cf ) � 3nn, (20)

where Ψ ∈ R
3nn×nm contains column-wise the modes included in the reduction basis, i.e. a low-dimensional

solution subspace, and ζ ∈ R
nm×1 are the associated modal coordinates. From Eqs. (3) and (20), it is obvious

to define a reduction matrix for all generalized coordinates, not only for cf , i.e.

q � H p ⇔
⎡

⎣
qt
θ
cf

⎤

⎦ �
⎡

⎣
I 0 0
0 Iθ 0
0 0 Ψ

⎤

⎦

⎡

⎣
q t
θ
ζ

⎤

⎦, (21)

3 This is, of course, the case for any linearly elastic flexible multibody formulation.
4 The equality sign is used in the following equations for the sake of simplicity even though the CMS introduces an approxi-

mation if dim(ζ ) < dim(cf ).
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where Iθ ∈ R
nr×nr is an identity matrix of proper size.

Substituting Eq. (21) into Eq. (18) and left-multiplying the result with HT yield
⎡

⎢⎢⎣

ΦT
t MΦ t − AΦT

t M r̃ fG AΦT
t M Ψ

G
T
r̃
T
f M r̃ fG − G

T
r̃
T
f M Ψ

sym. Ψ
T
M Ψ

⎤

⎥⎥⎦

⎡

⎢⎢⎣

q̈t

θ̈

ζ̈

⎤

⎥⎥⎦ � −

⎡

⎢⎢⎣

0 0 0

0 0 0

0 0 Ψ
T
K Ψ

⎤

⎥⎥⎦

⎡

⎢⎢⎣

qt

θ

ζ

⎤

⎥⎥⎦

+

⎡

⎢⎢⎢⎣

−AΦT
t M

(
ω̃bdω̃bdr f + 2ω̃bd ċf − r̃ f Ġθ̇

)

G
T
r̃
T
f M

(
ω̃bdω̃bdr f + 2ω̃bd ċf − r̃ f Ġθ̇

)

−Ψ
T
M

(
ω̃bdω̃bdr f + 2ω̃bd ċf − r̃ f Ġθ̇

)

⎤

⎥⎥⎥⎦

+

⎡

⎢⎢⎣

ΦT
t

−G
T
r̃
T
f A

T
bd

Ψ
T
AT
bd

⎤

⎥⎥⎦ f − ∂ g
∂ pT

λ, (22)

i.e. in a more convenient form for further considerations,
⎡

⎢⎢⎣

̂M tt ̂M tr ̂M tf

̂Mrr ̂Mrf

sym. ̂Mff

⎤

⎥⎥⎦

︸ ︷︷ ︸
FFRF mass

matrix

⎡

⎢⎢⎣

q̈t

θ̈

ζ̈

⎤

⎥⎥⎦ �

⎡

⎢⎢⎣

̂Qet

̂Qer

̂Qef

⎤

⎥⎥⎦

︸ ︷︷ ︸
elastic

forces

+

⎡

⎢⎢⎣

̂Qvt

̂Qvr

̂Qvf

⎤

⎥⎥⎦

︸ ︷︷ ︸
quadratic

vel. vector

+

⎡

⎢⎢⎣

̂Qat

̂Qar

̂Qaf

⎤

⎥⎥⎦

︸ ︷︷ ︸
applied

forces

+

⎡

⎢⎢⎣

̂Qct

̂Qcr

̂Qcf

⎤

⎥⎥⎦

︸ ︷︷ ︸
constraint

forces

, (23)

where, clearly,

̂Qe � −
⎡

⎣
0
0

Kψψζ

⎤

⎦, (24)

with the reduced FE stiffness matrix known from linear elastodynamics, i.e.

Kψψ � Ψ
T
K Ψ ∈ R

nm×nm . (25)

Nevertheless, the following problems still remain: (i) the EOMs contain the quantity c̃f , which has not been
defined in terms of Ψ and ζ , and (ii) the aim of a proper model reduction is to reduce the overall “size” of
the governing system of equations; however, Eq. (22) still contains operations with “large” R3nn×3nn matrices
depending on the DOFs. That is why the main purpose of this contribution is to rearrange Eq. (22) in a way,
such that all matrix terms of size 3nn are condensed to “small” constant terms in the order of nm. However, it
is mentioned beforehand that the derivations presented below do not introduce any further approximations or
simplifications besides the modal reduction, i.e. the following manipulations are exact.

To obtain the desired expression of c̃f in terms ofΨ and ζ , we resort to an equivalent expression of Eq. (20),
i.e.

cf �
nm∑

m�1

ψmζm ⇒ c̃f �
nm∑

m�1

ψ̃mζm, (26)

where ψm ∈ R
3nn×1 denotes the mth mode included in the reduction basis, ζm ∈ R

1×1 the corresponding

modal coordinate, and ψ̃m ∈ R
3nn×3 the corresponding matrix generated from ψm according to Eq. (11). The

right part of Eq. (26) may be written in matrix notation as

c̃f � Ψ̃ (ζ ⊗ I), (27)
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where

Ψ̃ �
[
ψ̃1 . . . ψ̃nm

]
∈ R

3nn×3nm , (28)

and ⊗ denotes Kronecker’s product.
The next step is to bring the quadratic velocity vector in a suitable form to avoid multiplications with

“large” matrices depending on the DOFs, i.e.

̂Qv �

⎡

⎢⎢⎢⎣

A
(
ω̃ΦT

t M r̃ fω + 2ΦT
t M

˙̃cfω + ΦT
t M r̃ f Ġθ̇

)

−G
T
(
ω̃ r̃

T
f M r̃ fω + 2̃r

T
f M

˙̃cfω + r̃
T
f M r̃ f Ġθ̇

)

(Iζ ⊗ ω)TΨ̃
T
M r̃ fω + 2Ψ

T
M ˙̃cfω + Ψ

T
M r̃ f Ġθ̇

⎤

⎥⎥⎥⎦. (29)

Equation (29) follows from the commutativity and anticommutativity properties of the involved matrices
derived in [20, 21], i.e.

ω̃bdM � M ω̃bd, (30)

ΦT
t ω̃bd � ω̃ΦT

t , (31)

ω̃bdr f � −r̃ fω, (32)

and since

r̃
T
f M ω̃bdω̃bdr f � −ω̃ r̃

T
f M r̃ fω, (33)

which follows from the generic R3×1 vector identity z̃T ỹ z̃ y � ỹ z̃T̃ z y, see [19], and from the fact that the
consistent FEmassmatrix is composed out ofmi j I-blocks, wheremi j are scalars. Furthermore, the relationship

ω̃bdΨ � −Ψ̃ (Iζ ⊗ ω) (34)

with an identity matrix Iζ ∈ R
nm×nm of proper size, which follows from the anticommutativity of the cross

product in combination with the fact that ω̃bd is a skew symmetric matrix, see Eq. (19), i.e.

ω̃
T
bd � −ω̃bd, (35)

has been used to obtain Eq. (29). Note that Eq. (32) is valid for any R
3nn×1 block nodal vector, such as c, x,

cf , . . . ∈ R
3nn×1, not only for r f .

3.2 Nodal-based FFRF invariants without a lumped mass approximation

It may be shown, via the definition of the total mass and of the FE mass matrix, that the total mass of the
body m is calculated from the quantities arising in the rearranged modally reduced nodal-based FFRF as (see
Appx. A)

m I � ΦT
t MΦ t ∈ R

3×3. (36)

Likewise, the definition of the centre of mass and that of the FE mass matrix yield the centre of mass position
of the undeformed body χu w.r.t. the floating frame and the associated skew-symmetric matrix χ̃u as (see
Appx. A)

χu � 1

m
ΦT

t M x ∈ R
3×1, (37)

χ̃u � 1

m
ΦT

t M x̃ ∈ R
3×3. (38)

In addition, the definition of the inertia tensor and of the FE mass matrix yields the inertia tensor of the
undeformed body Θu expressed in the floating frame, which is given by (see Appx. A)

Θu � x̃
T
M x̃ ∈ R

3×3. (39)
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Furthermore, let us define the following reduced and constant “inertia-like” matrices:

Mψψ � Ψ
T
M Ψ ∈ R

nm×nm , (40)

Mψ̃ψ � Ψ̃
T
M Ψ ∈ R

3nm×nm , (41)

Mψ̃ψ̃ � Ψ̃
T
M Ψ̃ ∈ R

3nm×3nm , (42)

Mφψ � ΦT
t M Ψ ∈ R

3×nm , (43)

Mφψ̃ � ΦT
t M Ψ̃ ∈ R

3×3nm , (44)

Mx̃ψ � x̃
T
M Ψ ∈ R

3×nm , (45)

Mx̃ψ̃ � x̃
T
M Ψ̃ ∈ R

3×3nm , (46)

where the first matrix (Eq. (40)) is the reduced FE mass matrix known from linear elastodynamics. These
constant matrices from Eqs. (36) to (46) represent the nodal-based FFRF invariants without integrals and
without a lumpedmass approach, which is usually employed by commercialmultibody codes, see, for example,
[3, 13].

3.3 Nodal-based modally reduced FFRF mass matrix and quadratic velocity vector

We may now express the sub-matrices ̂M tt , ̂M tr , ̂M tf , ̂Mrr, ̂Mrf , and ̂Mff of the FFRF mass matrix, see
Eqs. (22) to (23), as well as the terms of the rearranged quadratic velocity vector, see Eq. (29), in terms of the
constant and reduced matrices—the nodal-based FFRF invariants—defined in Eqs. (36) to (46) and in terms
of the reduced DOFs in order to avoid the undesired “large” matrix operations during time integration. Hence,
using Eqs. (10) to (11), Eq. (20) and Eq. (27), the nodal-based FFRF mass sub-matrices read

̂M tt � m I, (47)

̂Mff � Mψψ, (48)

̂M tf � AMφψ, (49)

̂M tr � −A
[
mχ̃u + Mφψ̃ (ζ ⊗ I)

]
G, (50)

̂Mrf � −G
T
[
Mx̃ψ + (ζ ⊗ I)TMψ̃ψ

]
, (51)

̂Mrr � G
T
[
Θu + Mx̃ψ̃ (ζ ⊗ I) + (ζ ⊗ I)TM

T
x̃ψ̃ + (ζ ⊗ I)TMψ̃ψ̃ (ζ ⊗ I)

]
G, (52)

see also Eqs. (22) to (23) and Eqs. (36) to (46).
Furthermore, the translational, rotational and flexible parts of the quadratic velocity vector, see Eq. (29),

may be expressed as

̂Qvt �Aω̃
[
mχ̃u + Mφψ̃ (ζ ⊗ I)

]
ω + 2AMφψ̃

(
ζ̇ ⊗ I

)
ω

+ A
[
mχ̃u + Mφψ̃ (ζ ⊗ I)

]
Ġθ̇

︸ ︷︷ ︸
�0, if Euler parameters are used

, (53)

̂Qvr � − G
T
ω̃

[
Θu + Mx̃ψ̃ (ζ ⊗ I) + (ζ ⊗ I)TM

T
x̃ψ̃ + (ζ ⊗ I)TMψ̃ψ̃ (ζ ⊗ I)

]
ω

− 2G
T
[
Mx̃ψ̃

(
ζ̇ ⊗ I

)
+ (ζ ⊗ I)TMψ̃ψ̃

(
ζ̇ ⊗ I

)]
ω

− G
T
[
Θu + Mx̃ψ̃ (ζ ⊗ I) + (ζ ⊗ I)TM

T
x̃ψ̃ + (ζ ⊗ I)TMψ̃ψ̃ (ζ ⊗ I)

]
Ġθ̇ ,

︸ ︷︷ ︸
�0, if Euler parameters are used

(54)
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̂Qvf �(Iζ ⊗ ω)T
[
M

T
x̃ψ̃ + Mψ̃ψ̃ (ζ ⊗ I)

]
ω + 2M

T
ψ̃ψ (ζ̇ ⊗ I)ω

+
[
M

T
x̃ψ + M

T
ψ̃ψ (ζ ⊗ I)

]
Ġθ̇

︸ ︷︷ ︸
�0, if Euler parameters are used

, (55)

where Eqs. (10) to (11), Eqs. (20), (27), and
˙̃cf � Ψ̃ (ζ̇ ⊗ I), (56)

since Ψ̃ , I � const., have been used. Note that Ġθ̇ � 0 if Euler parameters are used for the rotational
parametrization, see, for example, [17].

3.4 Nodal-based modally reduced FFRF applied generalized forces

The last step is to bring the applied forces in a slightly more efficient form. The applied nodal forces f � f (t)
are known functions of time. Furthermore, forces are only applied to specific nodes of the discretized body.
Hence, it is possible to express the nodal forces as “small” sums—compared to the unreduced model size of
3nn—as

̂Qat �
nn∑

i � 1
f (i) 	� 0

f (i), (57)

̂Qar � G
T

nn∑

i � 1
f (i) 	� 0

[
x̃
(i)

+
nm∑

m�1

ψ̃
(i)

m ζm

]
AT f (i), (58)

̂Qaf �
nn∑

i � 1
f (i) 	� 0

⎡

⎢⎢⎣

ψ
(i)T

1
...

ψ
(i)T

nm

⎤

⎥⎥⎦AT f (i), (59)

see Eqs. (5) to (6), Eqs. (10) to (11), Eq. (20), Eqs. (22) to (23) and Eq. (26). Furthermore, the fact that the
transposed of a skew-symmetric matrix is its negative has been used.

Note that ̂Qat � f res is the resultant of all nodal forces, and AT f (i) � f
(i)

is the applied force on node i
expressed in the body frame.

3.5 From 3D to 2D spaces

The 2D modally reduced nodal-based FFRF is obtained in analogy to the 3D case shown in this section, but in
a much more straightforward fashion, since the unreduced 2D FFRF, originally derived in [21], neither involve
the quantity c̃f nor operations with “large” matrices depending on the DOFs; the modally reduced nodal-based
FFRF in 2D space is the topic of Sect. 4.

4 Modally reduced nodal-based FFRF in 2D space

The non-reduced 2D FFRF is derived in a similar fashion as outlined for the 3D case in Sect. 2. For clarity,
the quantities are underlined in the planar case, leading to the EOMs [21]

⎡

⎢⎢⎣

ΦT
t M Φ t θAΦT

t M r f AΦT
t M

rTf M r f rTf ĨbdM

sym. M

⎤

⎥⎥⎦

⎡

⎢⎢⎣

q̈
t

θ̈

c̈f

⎤

⎥⎥⎦ � −

⎡

⎢⎢⎣

0 0 0

0 0 0

0 0 K

⎤

⎥⎥⎦

⎡

⎢⎢⎣

q
t

θ

cf

⎤

⎥⎥⎦
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+

⎡

⎢⎢⎢⎣

θAΦT
t M

(
Ĩbdr f θ̇

2 − 2ċf θ̇
)

rTf M
(
Ĩbdr f θ̇

2 − 2ċf θ̇
)

Ĩ
T
bdM

(
Ĩbdr f θ̇

2 − 2ċf θ̇
)

⎤

⎥⎥⎥⎦ +

⎡

⎢⎢⎣

ΦT
t

rTf θAT
bd

AT
bd

⎤

⎥⎥⎦ f − ∂ g
∂qT

λ, (60)

with θ denoting the only (scalar) rotational parameter in 2D,

θA � ∂A
∂θ

� −A Ĩ with Ĩ � − Ĩ
T �

[
0 1

−1 0

]
, (61)

and the corresponding block diagonal matrices θAbd, Ĩbd. Note that underlined quantities represent the associ-
ated 2D counterparts of the quantities defined for the 3D case and are, therefore, different in size. Employing
a (flexible) coordinate reduction according to Eq. (21) yields

⎡

⎢⎢⎣

ΦT
t M Φ t θAΦT

t M r f AΦT
t M Ψ

rTf M r f rTf ĨbdM Ψ

sym. Ψ
T
M Ψ

⎤

⎥⎥⎦

⎡

⎢⎢⎣

q̈
t

θ̈

ζ̈

⎤

⎥⎥⎦ � −

⎡

⎢⎢⎣

0 0 0

0 0 0

0 0 Ψ
T
K Ψ

⎤

⎥⎥⎦

⎡

⎢⎢⎣

q
t

θ

ζ

⎤

⎥⎥⎦

+

⎡

⎢⎢⎢⎣

θAΦT
t M

(
Ĩbdr f θ̇

2 − 2ċf θ̇
)

rTf M
(
Ĩbdr f θ̇

2 − 2ċf θ̇
)

Ψ
T
Ĩ
T
bdM

(
Ĩbdr f θ̇

2 − 2ċf θ̇
)

⎤

⎥⎥⎥⎦ +

⎡

⎢⎢⎣

ΦT
t

rTf θAT
bd

Ψ
T
AT
bd

⎤

⎥⎥⎦ f − ∂ g
∂ pT

λ. (62)

In line with Eq. (23) and Sect. 3, we obtain—in a straightforward manner since the 2D equations are simpler
and do neither involve the quantity c̃f nor “large” matrices depending on the DOFs,

̂M tt � m I, (63)

̂Mff � Mψψ, (64)

̂M tf � A Mφψ, (65)

̂Mrf � −mT
ψ̃x + ζTMψ̃ψ , (66)

̂M tr � θA
(
mχ

u
+ Mφψζ

)
, (67)

M̂ rr � Θu + 2mT
ψxζ + ζTMψψζ , (68)

and

̂Q
v

�

⎡

⎢⎢⎢⎣

A
(
mχ

u
+ Mφψζ

)
θ̇
2 − 2 θA Mφψ ζ̇ θ̇

ζTMψ̃ψζ θ̇
2 − 2

(
mT

ψx + ζTMψψ

)
ζ̇ θ̇

(
mψx + Mψψζ

)
θ̇
2 − 2Mψ̃ψ ζ̇ θ̇

⎤

⎥⎥⎥⎦, (69)

with

m I � ΦT
t M Φ t ∈ R

2×2, (70)

χ
u

� 1

m
ΦT

t M x ∈ R
2×1, (71)

Θu � xTM x ∈ R
1×1, (72)

Mψψ � Ψ
T
M Ψ ∈ R

nm×nm , (73)

Mψ̃ψ � Ψ
T
ĨbdM Ψ ∈ R

nm×nm , (74)
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Mφψ � ΦT
t M Ψ ∈ R

2×nm , (75)

mψx � Ψ
T
M x ∈ R

nm×1, (76)

mψ̃x � Ψ
T
ĨbdM x ∈ R

nm×1, (77)

since

M
T � M, (78)

M Ĩbd � ĨbdM, (79)

x(i)
T
Ĩ x(i) � 0. (80)

Furthermore, Eq. (61) and the fact that Ĩ is an orthogonal matrix have been used to obtain Eq. (69). Note that
the tilde operator has a different “meaning” in 2D, see Eq. (61). This depicts how to calculate the nodal-based
FFRF invariants for 2D problems, i.e. without integrals and without a lumped mass approximation.

The elastic forces have exactly the same form as in the 3D case, but involve, of course, the 2D stiffness
and modal matrix, see Eqs. (24) to (25).

Likewise, the applied forces may be also written as “small” sums in line with the 3D case, where ̂Q
at
and

̂Q
af
have again exactly the same form but involve the 2D rotation matrix, modes, and nodal force vectors, see

Eqs. (57) and (59). Finally,

Q̂
ar

�
nn∑

i � 1
f (i) 	� 0

[
x(i)

T
+

nm∑

m�1

ψ
(i)T

m
ζm

]

θAT f (i), (81)

see Eqs. (58) and (62).

5 Numerical example

5.1 Slider–crank mechanism

It has been shown by [20] that the non-reduced nodal-based FFRF and the conventional FFRF—the inertia
shape integral formulation—can be derived from one another without any approximations, which confirms
the validity of the nodal-based framework and derivations presented in [20, 21]. The following comparison
between the modally reduced and non-reduced nodal-based FFRF should reinforce that the presented model
order reduction and EOMs within this paper are equally reliable.

The underlying FE models of the flexible bodies with their floating frames are displayed in Fig. 1a. The
bodies (con rod/crank) were discretized with 136/104 quadratic hexahedral elements yielding 935/665 nodes
in total; their dimensions are listed in Table 1 and their mechanical properties are as follows:

• Rayleigh damping matrix5, D � 10−4 · M + 10−5 · K Nsm−1

• Young’s modulus, E � 70GPa
• Poisson’s ratio, ν � 0.3
• density, ρ � 2710 kgm−3

The flexible bodies are connected to other components via standard interpolation constraint elements (RBE3s),
since the definition of constraints is not influenced by the modal reduction approach. Using this kind of
multipoint constraints (MPCs), the average of the nodal displacements of the edge nodes of the bearing bolts
and holes define the motion of a reference point, which is located at each centre of the corresponding circle
(edge). These reference points are then constrained via spherical joints (six in total, i.e. one for each MPC or
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(b)(a)

Fig. 1 Flexible multibody system employed in the numerical example: a The meshed con rod (left) and the meshed crank (right)
are shown with their local floating frames and their dimensions are listed in Table 1. b The assembled system consists out of the
flexible con rod, the flexible crank, and the rigid piston; a drive torque is applied to the floating frame of the crank (red arrows).
Please note the simplified visualization of sub-figure (b), where only the corner nodes of the elements are connected with flat
surfaces

Table 1 Dimensions of the flexible bodies (see Fig. 1a) employed in the numerical example

Dimension in m Crank Con rod

Length 0.05 0.1
Width 0.02 0.02
Depth 0.01 0.01
Bearing distance 0.03 0.08
Bearing diameter 0.01 0.01
Fillet radius 0.01 0.01

two for each connection between two bodies) to connect the bodies to each other or to the ground. The node
sets included for the two MPCs used to connect the crank to the ground are shown in Fig. 1b6 (grey cubes).

Note that in order to attach the floating frames to the flexible bodies in the non-reduced formulation,
Tisserand constraints, i.e.

ΦT
t M cf � 0, (82)

x̃
T
M cf � 0, (83)

are used, and in the modally reduced formulation, the rigid body modes are excluded from the reduction basis.

The rigid piston (see grey cylinder in Fig. 1b) is simply modelled as a point mass of 0.1 kg, which is
constrained to move along a straight line.

A drive torque (see red arrows in Fig. 1b) of 2.5 Nm is then applied to the floating frame of the crank for
the first 0.025 s; after that time, the torque drops to zero. No gravity is considered during the simulation.

The proposed formulation, with and without modal reduction, has been implemented in the open source
flexible multibody research code EXUDYN; the code itself as well as the slider–crank example presented in
this paper may be downloaded from GitHub (https://github.com/jgerstmayr/EXUDYN), where the interested
reader can find the thorough model set-up.

The system is integrated with Newmark’s method, where the constraints are fulfilled on the velocity level
(index two), and the step size is h � 2.5 × 10−5 s; see the documentation of EXUDYN [4] for further

5 Note that structural damping is merely included to reduce superimposed high-frequency oscillations in the flexible deforma-
tions for better comparisons (see Fig. 2c); it was chosen as small as possible, but large enough to just suppress the aforementioned
oscillations.

6 Note that the other MPCs are not shown in the figure.

https://github.com/jgerstmayr/EXUDYN
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information. The simulation time is 0.07 s, which corresponds to almost 6 crank revolutions; see Fig. 2a and
b for a better understanding of the piston’s translational displacement magnitude qt,p and the angular velocity
magnitude ωc of the crank’s floating frame.

Figure 2c depicts the flexible nodal displacement magnitude c(190)f,r of the con rod’s mid node (x(190)r �
[0 40 5]T mm, see Fig. 1a and Table 1). The figure shows the convergence of the modally reduced nodal-
based FFRF to the non-reduced version with an increasing number of flexible modes included in the reduction
basis. It can be seen that already the first eight eigenmodes (see Table 2) capture the deformation behaviour
qualitatively; however, the magnitude of the deformation is smaller, as expected, due to the incomplete solution
basis, which makes the problem stiffer than the non-reduced one. Figure 2c also illustrates that the deformation
increases if more modes are included in the reduction basis, and that the reduced formulation will eventually
converge to the non-reduced one. It shall be noted, however, that a better convergence may be obtained using,
for example, Hurty/Craig–Bampton modes, since only free vibration modes are included in the reduction
basis in this example, and it is well known that free modes are a poor choice for constrained systems and
add artificial stiffness to the problem. Nevertheless, the example serves its purpose, i.e. the validation of the
algebraic manipulations required to derive the FFRF invariants without a lumped mass approach.

Figure 2 also shows that the rigid body motion is less affected by the number of modes included in the
reduction basis than the flexible deformation (compare Figs. 2a and b with Fig. 2c).

Note that the paper is mainly devoted to the novel derivation of the modally reduced FFRF without inertia
shape integrals and without a lumped mass approach; a thorough analysis of the differences between the
lumped and consistent mass approach, as well as the investigation of various benchmark examples is the scope
of future research. Nevertheless, a brief presentation of the dangers of the lumped mass approach is illustrated
in Sect. 5.2.

5.2 A short note on the consequences of a lumped mass approach

There are several lumping techniques available, such as nodal quadrature, row-sum lumping, or the so-called
special lumping technique, where only the latter ensures that the arising lumped FE mass matrix is positive
definite for any element type [2], which is important since negative nodal masses are physically absurd and
their presence may lead to numerical troubles7. The special lumping technique [7] also yields, by construction,
the correct total mass of the underlying body; the method is usually defined on an element level; however,
we use a global equivalent, which enables us to calculate the global lumped FE mass matrix from the global
consistent FE mass matrix as follows:

M lump � μ diag
(
diag

(
M

))
such that m � mlump, (84)

where diag
(
diag

(
M

))
is a diagonal matrix with the diagonal elements of M. The scaling parameter μ follows

from the requirement of equal total masses m � mlump, i.e.

m � φT
tlMφtl

!�mlump � φT
tlM lumpφtl

(84)⇒ μ � φT
tlMφtl

φT
tldiag

(
diag

(
M

))
φtl

, (85)

where

φtl � [
eTl eTl . . . eTl

]T
with l � 1, 2, 3, (86)

is a rigid body translation mode in any coordinate direction, i.e. any column of Φ t , see Eq. (5).
We can now compare characteristic quantities to identify the influence of the lumped mass approach. The

rigid body motion is characterized by the total mass m, the local position of the centre of mass χu, and the
local inertia tensor Θu, and the mass and stiffness distribution of the flexible bodies can be characterized by
the eigenfrequencies ωm . Hence, the percentage error e% of these characteristic quantities are compared for
the con rod (see Fig. 1a).

The eigenfrequencies are obtained via the generalized eigenvalue problem, i.e.

ω2
mM ψm � K ψm, (87)

7 For example, calculating the eigenfrequencies of the con rod with the lumped FEmass matrix generated via row-sum lumping
leads to wrong frequencies by orders of magnitude.
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(a)

(b)

(c)

Fig. 2 Time histories of representative quantities associated with the slider–crank mechanism; calculated with an increasing
number of flexible modes included in the reduction basis (CMS-8, CMS-16, CMS-256) and without modal reduction (FFRF-full)

and the deviations between the frequencies obtained with the consistent and lumped FE mass matrix, see
Eqs. (84) to (85), are depicted in Fig. 3 for the first 50 flexible modes; the model assurance criterion (MAC)
was used to ensure that the frequencies of corresponding modes are compared.

Figure 3 reveals that the error grows with increasing frequency; the “zigzag” behaviour can be attributed to
the types of the modes (bending, torsion, axial), see also Table 2. For example, the error of the second torsion
frequency is higher than the error of the first torsion frequency, but the errors of the first x− and z−bending
frequencies (mode number 1 and 2) are smaller than the error of the first torsion frequency (mode number 3);
within each mode type, the deviation increases monotonically.
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Fig. 3 Percentage error e% between the eigenfrequencies of the flexible modes calculated with the consistent and lumped FE
mass matrix, see Eqs. (84) to (85)

Table 2 First ten flexible eigenmodes of the con rod calculated with the consistent FE mass matrix

Mode number fm in kHz Type

1 5.931 Bending (x)
2 10.572 Bending (z)
3 13.006 Torsion
4 14.286 Bending (x)
5 22.263 Bending (z)
6 24.315 Bending (x)
7 24.728 Torsion
8 28.365 Axial
9 34.799 Bending (z)
10 35.346 Torsion

Table 3 Percentage error e% between the total mass m, the centre of mass position χu, and the inertia tensor Θu calculated with
the consistent and lumped FE mass matrix, see Eqs. (36) to (39) and Eqs. (84) to (85)

e%(m) ≈ −4.024 × 10−14 %
e%(χu) ≈ [−3.105 × 100 − 4.871 × 10−7 1.185 × 10−7

]T %

e%(Θu) ≈
⎡

⎣
−2.718 × 10−1 5.687 × 101 − 3.073 × 100

5.687 × 101 − 7.151 × 100 − 2.804 × 10−7

−3.073 × 100 − 2.804 × 10−7 − 2.601 × 10−1

⎤

⎦%

Table 3 shows the errors of the rigid body inertia quantities, see Eqs. (36) to (39), between the lumped and
consistent mass approach, see Eqs. (84) to (85). The total mass is, by construction of the lumped mass matrix,
the same in both cases, as already mentioned; hence, the error is zero within machine precision. The largest
error in the centre of mass position is approximately three percent, and the significant errors in the inertia
tensor components are approximately three, seven, and 57 percent. The large errors here can be attributed to
the relatively coarse mesh employed for the simulations8.

6 Conclusions

The present paper extended the recently developed nodal-based floating frame of reference formulation, which
avoids inertia shape integrals and does not rely on a lumpedmass approximation, by the propermodal reduction
to reduce the overall system size down to order of the number of modes included in the reduction basis.
The presented inertia-integral-free modally reduced nodal-based equations are now given in a similar form as
implemented by commercial flexiblemultibody packages, i.e. in terms of so-called floating frame invariants, but
without the necessity of a lumpedmass approximation. The invariants can now be calculated directly—without
approximations—by simple (offline) matrix multiplications between the modal reduction matrix, the nodal

8 One can simply imagine, as an extreme and theoretical example, the polar moment of inertia of a solid versus a thin-walled
hollow square in 2D space; the consistent mass approach represents the solid square and the lumped mass approach the hollow
one—the inertias in this case differ by a factor of three if discretized with one linear four-noded quadrilateral.
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coordinate vector, and the consistent finite element mass matrix prior time integration. The derived equations
are given in a simple and explicit form ready for computer implementations for 2D and 3D spaces.
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Appendix A Rigid body inertia quantities extracted from the FE mass matrix

To describe the dynamics of a rigid body, we need three constant inertia quantities, i.e. the total mass

m �
∫

V
ρdV, (88)

the position of the centre of mass w.r.t. the body frame

χu � 1

m

∫

V
ρχdV, (89)

and the inertia tensor w.r.t. the body frame

Θu �
∫

V
ρχ̃

T
χ̃dV, (90)

with the density ρ, the volume V , and the continuous position χ of a material point of the body w.r.t. the
floating frame. This section briefly shows that all three quantities may be calculated with the consistent FE
mass matrix M and the vector of nodal coordinates x.

To do so, we first recall the expression of the FE mass matrix

M �
∫

V
ρS

T
S dV, (91)

with the global FE shape function matrix

S �
[
S
(1)

I . . . S
(nn) I

]
∈ R

3×3nn , (92)

where partition of unity holds, i.e.
nn∑

i�1

S
(i) ≡ 1

(5)⇒
(92)

SΦ t ≡ I . (93)

Since the same shape functions are used to interpolate the nodal coordinates,

χ � S x (94)

holds, and since S is composed out of S
(i)
I-blocks,

χ̃ � S x̃. (95)

Given this information and the fact that

x, Φ t � const., (96)

and can therefore be brought inside the integrals, it is easy to show that

ΦT
t MΦ t

(91)� ΦT
t

∫

V
ρS

T
S dV Φ t (97)

http://creativecommons.org/licenses/by/4.0/


850 A. Zwölfer, J. Gerstmayr

(96)�
∫

V
ρΦT

t S
T
SΦ t dV (98)

(93)�
∫

V
ρ dV I (99)

(88)� m I, (100)

and

ΦT
t Mx

(91)� ΦT
t

∫

V
ρS

T
SdV x (101)

(96)�
∫

V
ρΦT

t S
T
Sx dV (102)

(93)�
(94)

∫

V
ρχ dV (103)

(89)� mχu, (104)

and

x̃
T
M x̃

(91)� x̃
T
∫

V
ρS

T
S dV x̃ (105)

(96)�
∫

V
ρ x̃

T
S
T
S x̃ dV (106)

(95)�
∫

V
ρχ̃

T
χ̃ dV (107)

(90)� Θu. (108)
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