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Abstract
Conventional industrial robots are increasingly used for milling applications of large workpieces due to their workspace and 
their low investment costs in comparison to conventional machine tools. However, static deflections and dynamic instabilities 
during the milling process limit the efficiency and productivity of such robot-based milling systems. Since the pose-dependent 
dynamic properties of the industrial robot structures are notoriously difficult to model analytically, machine learning meth-
ods are recently gaining more and more popularity to derive system models from experimental data. In this publication, a 
modeling concept based on a modern information fusion scheme, fusing simulation and experimental data, is proposed. This 
approach provides a precise model of the robot’s pose-dependent structural dynamics and is validated for a one-dimensional 
variation of the robot pose. The results of two information fusion algorithms are compared with a conventional, data-driven 
approach and indicate a superior model accuracy regarding interpolation and extrapolation of the pose-dependent dynam-
ics. The proposed approach enables decreasing the necessary amount of experimental data needed to assess the vibrational 
properties of the robot for a desired pose. Additionally, the concept is able to predict the robot dynamics at poses where 
experimental data is very costly to gather.
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1  Introduction

In order to increase the economic efficiency of milling pro-
cesses in terms of investment, operating and maintenance 
costs, conventional industrial robots are an attractive alter-
native for machining of large workpieces [9, 26]. However, 
the low static and dynamic stiffness of industrial robots 
often lead to static displacements of the tool or to dynamic 
instabilities, also called chatter [1, 10, 21, 25]. The static 
displacements of the tool during the process result in devia-
tions from the target workpiece geometry, whereas dynamic 
instabilities result in an insufficient surface quality or might 
even lead to increased tool wear as well as failure of spindle 
components.

Thus, current research projects address the precise mod-
eling and the system identification of the static and dynamic 
structural behavior of milling robots. This allows to compen-
sate the estimated errors by choosing a compensated tool 
path or by choosing stable process parameters [22].

The dynamics of the robot structure are usually formu-
lated in the following, analytic form, depending on the gen-
eralized coordinates q⃗ , the velocities ̇⃗q and accelerations ̈⃗q 
[14]:

M represents the mass matrix, C the Coriolis matrix, N con-
tains gravitational terms and other generalized forces such 
as joint forces due to the internal joint stiffness and damp-
ing properties. � are the resulting generalized forces and 
moments. The efficient simulation of the dynamic behavior 
of such a rigid body model is provided by software pack-
ages, such as the Dynamics Animation and Robotics Toolkit 
(DART) [12] or the Rigid Body Dynamics Libary (RBDL) 
[4]. Nonetheless, the identification of the model param-
eters, such as the inertia, stiffness and damping terms of 
the joints, remain open issues. Consequently, an incorrect 

(1)M(q⃗) ̈⃗q + C(q⃗, ̇⃗q) ̇⃗q + N(q⃗, ̇⃗q) = 𝜏.
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parameterization can lead to a potentially inaccurate struc-
tural model. In comparison to conventional machine tools, 
where flexible multi-body simulations are used to model the 
position dependent dynamics [23], this is especially crucial 
for robotic milling processes of large workpieces, since the 
dynamic properties may vary significantly during the pro-
cess due to the highly nonlinear kinematic structure. Thus, 
modeling the pose-dependent properties of the robot’s struc-
ture is still an unsolved problem [2].

Nguyen et al. [15] propose a data-driven approach to 
model the position dependency of the modal parameters. 
This approach circumvents the issue of modeling the 
dynamic properties of a physics-based model accurately, but 
a large data set is needed to incorporate the full workspace 
into the data-driven model.

However, a rigid body simulation can still provide a rough 
estimate of the robot dynamics. Hence, taking knowledge 
from both information sources into account can alleviate the 
burden of gathering experimental data in the whole workspace 
and reduce the necessary amount of experiments. This paper 
introduces an approach to model and predict the pose-depend-
ent robot dynamics precisely by fusing simulation results with 
experimental data. The applicability of two information fusion 
algorithms is demonstrated in comparison to a conventional 
machine learning approach by inter- and extrapolating the 
dynamics at the tool center point (TCP) for a variation of the 
robot’s third axis. The concept serves as a feasibility study on 
how advanced algorithms from the field of machine learning 
can be fused with physical knowledge to increase the reli-
ability of robot based machining processes.

The paper is structured as follows: the concept is moti-
vated in Sect. 2 on the basis of a comparative study of the 
vibrational properties determined by a rigid body simulation 
and the measured dynamic properties. Section 3 provides an 
overview on methods for information fusion and introduces 
the main concept of the proposed approach. The model setup 
and training processes of two information fusion algorithms 
and a conventional data-driven approach are presented in 
Sect. 4, followed by a discussion of the results in Sect. 5. 
Section 6 concludes this work by discussing the present lim-
its and gives an outlook on future research.

2 � Model analysis

In order to visualize the strength of the proposed 
approach, the dynamics of a KUKA Quantec Prime 240 
robot with a high-speed milling spindle were simulated 
and experimentally measured in dependence of the fre-
quency f ( 5 Hz ≤ f ≤ 30 Hz ) and the robot’s third axis �z,3 
( 70◦ ≤ �z,3 ≤ 120◦ ). In both cases, the vibrational behavior 
is represented by the frequency response function (FRF) 
H(f ,�z,3) at the spindle close to the TCP, resulting from 

an excitation in horizontal direction at the same point (see 
Fig. 1).

2.1 � Rigid body simulation

The rigid body simulation of the robot dynamics was car-
ried out using Matlab Simscape Multibody with estimated 
stiffness and damping properties of the joints and estimated 
mass and inertia properties of the bodies. The model pro-
vides three rotational degrees of freedom (DOFs) �x , �y 
and �z at each joint i with corresponding rotational stiffness 
and damping properties. Figure 2 illustrates the rigid body 
model. The model parameters are provided in the appendix.

The frequency response function H(f ,�z,3) is calculated 
from a linear state space model at a given axis angle of �z,3 . 
Figure 3 illustrates the frequency response function in the 
range 70◦ ≤ �z,3 ≤ 120◦ . The simulation was carried out in 
discrete steps of �sim�z,3 = 0.1◦ , resulting in 501 simulation 
samples with a frequency resolution of �simf = 0.01 Hz.

As illustrated in Fig. 3, it is clearly visible that the rigid 
body simulation captured two resonance frequencies:

–	 The first eigenfrequency starts at 7 Hz and increases with 
increasing axis angle �z,3 to 11 Hz.

Fig. 1   Pose variation of the third axis �z,3 for the data set generation. 
The excitation’s driving point is marked with an arrow

Fig. 2   Rigid body model with associated, rotational DOFs at each 
joint
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–	 The second eigenfrequency starts at 28 Hz and 
decreases with increasing axis angle �z,3 to 20 Hz.

The corresponding two mode shapes are illustrated in 
Fig. 4.

2.2 � Experimental data

Similar to the simulation, the FRF H(f ,�z,3) was meas-
ured experimentally at discrete axis configurations in the 
same range 70◦ ≤ �z,3 ≤ 120◦ via impact testing at the 
driving point illustrated in Fig. 1. The experiment was 
conducted in discrete steps �exp �z,3 = 2◦ , resulting in 
26 measurement samples with a frequency resolution of 
�exp f = 0.0455 Hz (visualized in Fig. 5).

In contrast to the rigid body simulation, the experi-
mentally captured dynamics include three resonance 
frequencies:

–	 The first eigenfrequency starts at 8 Hz and increases 
with increasing axis angle �z,3 to 10 Hz.

–	 The second eigenfrequency starts at 22 Hz and 
decreases with increasing axis angle �z,3 to 17 Hz.

–	 The third eigenfrequency starts at 25 Hz and decreases 
with increasing axis angle �z,3 to 19 Hz.

The shapes of the first modes of the used milling robot had 
been experimentally identified in previous works [21, 27]. 
The mode shapes which are assumed to correspond to the 
three measured modes in this publication are illustrated 
in Fig. 6.

The general pose-dependent behavior of the vibration 
modes is roughly captured in the rigid body simulation, as 
the general shape of the pose-dependencies are adequately 
captured: the pose-dependent behavior of the first mode 
is well captured in the simulation and the pose-dependent 
behavior of the second and third measured mode is roughly 
comparable to the behavior of the second simulated mode.
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Fig. 3   Simulated pose-dependent frequency response at the driving 
point; the amplitude H(f ,�z,3) is illustrated in color code

Fig. 4   Mode shapes of the two captured modes in the simulation for 
an axis angle of �z,3 = 90◦
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Fig. 5   Measured pose-dependent frequency response at the driving 
point; the amplitude H(f ,�z,3) is illustrated in color code

Fig. 6   Mode shapes of three experimentally captured modes for the 
depicted axis configuration (illustrations taken from [21])



438	 Production Engineering (2020) 14:435–444

1 3

Nonetheless, the simulation does not capture a third 
mode, but only predicts a second mode with a comparable 
pose-dependent behavior. It is assumed, that the simulation 
does not account for the mode which corresponds to the 
shape in Fig. 6b). The reasons for this issue are twofold:

–	 Inaccurate model parameterization Since the rigid body 
model is based on a large number of parameters, the 
identification procedure might have failed to estimate all 
physical parameters accurately. An inaccurate identifi-
cation of the mass, stiffness or damping parameters can 
lead to significantly different dynamic properties. For 
example, if damping parameters are assumed too high, a 
mode can be erroneously damped in the simulation.

–	 Unmodeled physical effects Although it is assumed that 
the measured mode shapes are representing rigid body 
modes, the simulation might not have taken all physical 
degrees of freedom into account. Additionally, the simu-
lation does not account for mode coupling, which can be 
a significant vibrational effect of industrial robots [25].

3 � Probabilistic information fusion

In order to cope with such issues where approximate models 
can be cheaply evaluated, but precise data is rare or costly to 
gather, modern machine learning algorithms are capable of 
fusing information from different data sets and information 
sources with different fidelity levels.

Hence, such algorithms are also referred to as multi-fidel-
ity information fusion algorithms [5, 16].

Meng et al. [13] proposed a deep learning approach, 
where two artificial neural networks are coupled hierarchi-
cally to fuse information from two data sets with a different 
fidelity level. An uncertainty estimation is included based on 
a Dropout approach [7]. Additionally, since the implemen-
tation of this approach makes use of automatic differentia-
tion methods, the training objective can also take physically 
motivated bounds in an analytic form into account, as previ-
ously published in [19, 20].

Similarly, the information fusion can be based on proba-
bilistic, Bayesian inference [3, 6, 11, 17, 18]. The approaches 
mainly make use of Gaussian and deep Gaussian process 
regression techniques and differ in the ability to fuse data 
with linear or nonlinear correlations. In contrast to deep 
learning-based approaches, Bayesian inference algorithms 
rely on a statistically well-founded theory. Thus, they pro-
vide a reliable uncertainty estimation.

Such a probabilistic information fusion scheme can 
be set up to infer the mapping between a simulation of 
the robot’s structural dynamics and the experimental 
data: The pose-dependent dynamic behavior can be eas-
ily approximated by a rigid body simulation. In contrast, 

experimental data, for example gathered via impact testing 
or automated shaker experiments, is costly to generate, but 
provides a precise representation of the pose-dependent 
dynamics. The approach presented in this paper addresses 
this issue by fusing the information of both sources using 
a multi-fidelity information fusion algorithm.

The setup of such a multi-fidelity information fusion 
scheme is described more formally in the following:

As previously introduced, the general objective is to find 
an unknown mapping � between an input space X  and an 
output space Y . The latter is assumed to be one-dimensional:

To find such a mapping, a training data set D is given, which 
consists of m input data samples x⃗ ∈ X  with corresponding 
output data y ∈ Y:

In the present case, the objective is to find a mapping 
between the input data x⃗ = [f 𝜙z,3]

T and the output data 
space y = H . For the depicted scenario, there are two infor-
mation sources, which provide information on this unknown 
relationship. The goal of the information fusion algorithm 
is to find a suitable mapping between the approximative but 
cheap data DLF (also called low fidelity data) and the precise 
but costly data DHF (also called high fidelity data).

If there is a linear relationship between the two fidelity 
levels, the relationship between low fidelity 𝜓LF(x⃗) and 
high fidelity 𝜓HF(x⃗) can be described with a constant scal-
ing factor �c and a bias term 𝛿(x⃗) [3]:

In case of a nonlinear relationship between the two fidelity 
levels, a constant scaling factor is not sufficient. Instead, the 
functional relationship between low and high fidelity data 
must incorporate a nonlinear transformation 𝜌nl(𝜓LF(x⃗), x⃗) 
[3]:

For the given scenario, the two nonlinear information fusion 
algorithms NARGP [17] and MFDGP [3] are used to infer 
the possibly nonlinear mapping between a simulation of the 
robot’s structural dynamics and the experimental data. Both 
approaches have a hierarchical, layer wise (deep) architec-
ture of Gaussian processes in common, where a separate 
Gaussian process is conditioned for each fidelity level. The 
approaches differ in terms of which data set is used to con-
dition each Gaussian process and in their specific training 
procedure.

In the following, the setup and the training processes of 
both information fusion algorithms NARGP and MFDGP 

(2)𝜓 ∶ x⃗ ∈ X ↦ y ∈ Y.

(3)D = {(x⃗1, y1)… (x⃗m, ym)}.

(4)𝜓HF(x⃗) = 𝜌c ⋅ 𝜓LF(x⃗) + 𝛿(x⃗).

(5)𝜓HF(x⃗) = 𝜌nl(𝜓LF(x⃗), x⃗) + 𝛿(x⃗).
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are described. For comparison, the setup and the training 
process of a conventional, Gaussian process model are also 
described. In Sect. 5, the performance of the information 
fusion approaches is assessed. The conventional Gaussian 
process regression model serves as a benchmark to illus-
trate the superior performance of the information fusion 
techniques.

4 � Model setup and training

To illustrate the performance of such a data-driven modeling 
approach, the data set DHF is divided into a training data 
set DHF,train and a test data set DHF,test . The training data 
set DHF,train consists of the first 70 % of the data regard-
ing the axis angle �z,3 , which corresponds approximately 
to the range of 70◦ ≤ �z,3 ≤ 105◦ , whereas the test data set 
DHF,test consists of all remaining data samples in the range 
105◦ < 𝜙z,3 ≤ 120◦ (illustrated in Fig. 7). DLF,train consists of 
12801 data points, while DHF,train only consists of 2622 data 
points. Both data sets are taken equally distributed from the 
data shown in Sect. 2.1.

In the following, it will be shown, that both information 
fusion algorithms are able to combine the information from 
both data sets DLF and DHF,train . The model setup and train-
ing process was conducted with the Python library Emukit 
[24].

As proposed by Perdikaris et al. [17], the most general 
NARGP model is based on two consecutive Gaussian pro-
cesses with a radial basis function kernel k(x⃗, x⃗�):

where k(x⃗, x⃗�) is the kernel to model the covariance between 
two data points x⃗ and x⃗′ , �2 is the variance and l the length 
scale of the kernel.

The MFDGP model incorporates a more complex kernel 
design. This layer-wise kernel design is described in [3]. The 

(6)k(x⃗, x⃗�) = 𝜎2
⋅ exp

�
−
‖x⃗ − x⃗�‖2

l2

�
,

radial basis function kernel was extended in such a way, that 
linear relationships between the low and high fidelity data 
are better addressed.

Although different kernel designs are possible, the model 
setup in this work follows the proposed kernel design of 
Perdikaris et al.  [17] and Cutajar et al. [3], since physical 
expert knowledge is deliberately not included by manual 
kernel shaping.

To speed up the training process, MFDGP relies on a 
sparse variational approximation method with 800 induc-
ing points and a mini-batch size of 50. Comparable to the 
approach of Cutajar et al. [3], the model training was con-
ducted consecutively: in the first step, the model was trained 
with a fixed variance, followed by a second training step 
which includes the model variance in the training process.

Table 1 summarizes the model and training parameters 
for the MFDGP model.

As previously mentioned, a conventional Gaussian pro-
cess regression model can serve as a reference benchmark. 
The model training was conducted using the Python library 
Gpy [8]. The Gaussian process regression model was set up 
with an additive standard radial basis function kernel and a 
bias kernel to shift the mean as follows:

In the following section, the training results are compared 
and the model performance of each algorithm is assessed.

5 � Results

The proposed information fusion approach can improve the 
model accuracy significantly in comparison to conventional 
machine learning approaches. Figure 8 shows the predic-
tion results for the training and the test data set. Since all 
three algorithms provide probabilistic models, the frequency 
response function H(f ,�z,3) is not only represented by the 
expected value �(f ,�z,3) , but also by an uncertainty estima-
tion based on the standard deviation �(f ,�z,3).

The model performance can be evaluated by consider-
ing the model’s capabilities to interpolate and extrapolate 
the dynamic properties of the robot: It can be observed, 
that the conventional Gaussian process model is capable to 
represent the robot dynamics for axis angles where exper-
imental data is nearby. As seen in Fig. 8a), the model 
is able to interpolate within the training data set (axis 
angles between 70◦ and 105◦ ), but the model’s accuracy 
quickly deteriorates with increasing axis angle in the test 
data set (from axis angle 105◦ onwards). Thus, a conven-
tional data-driven approach is unable to extrapolate the 
robot dynamics, which results in poor predictions of the 

(7)k(x⃗, x⃗�) = 𝜎2
⋅ exp

�
−
‖x⃗ − x⃗�‖2

l2

�
+ 1.

Fig. 7   Division into training and test data sets
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robot dynamics for workspace regions, where no experi-
mental data has been gathered by an end user. The model 
takes this issue into account by increasing the uncertainty 
�GP(f ,�z,3) , as the expected value �GP(f ,�z,3) tends to a 
mean value (see Fig. 8d).

The MFDGP model can extrapolate the dynamics better 
that the conventional Gaussian process regression model 
(see Fig. 8b). Nonetheless, similar issues arise: the MFDGP 
model lacks a precise extrapolation of the frequency 
response, while the uncertainty increases with increasing 
axis angle in the test data set from axis angle 105◦ onwards 
(see Fig. 8e).
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Fig. 8   The model prediction using the expected value �(x⃗) and the uncertainty estimation using the standard deviation 𝜎(x⃗) for all three 
algorithms: the conventional Gaussian process (GP), the MFDGP algorithm and the NARGP algorithm; the start of the test data set at 
�z,3 = 105◦ is marked with a white, dashed line

Table 1   MFDGP model and training parameters

Parameter Value

Training step 1: fixed variance
  Algorithm Adam

  Learning rate 0.01
  Iterations 20,000

Training step 2: variable variance
  Algorithm Adam

  Learning rate 0.001
  Iterations 15,000
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In contrast, the trained NARGP model is able to extrap-
olate the pose-dependent dynamic behavior (see Fig. 8c). 
Since the amplitudes of the measured frequency response 
functions vary especially at the resonance frequencies due to 
a nonlinear structural dynamic behavior, the NARGP model 
is able to incorporate this knowledge implicitly in its uncer-
tainty �NARGP(f ,�z,3) (see Fig. 8f).

In the following, the model accuracy is assessed in detail. 
Figure 9 illustrates the accuracy of a NARGP model for the 
training as well as the test data. Additionally, the simulation 
accuracy is illustrated as a benchmark. As indicated by the 
black dots, the NARGP model performs very well on the 
training data set. Additionally, it is visible that the model 
also performs well on the test data set (indicated by the blue 
dots), whereas the rigid body simulation accuracy is sig-
nificantly worse, since it does not incorporate all vibrational 
modes. Furthermore, the NARGP model’s standard devia-
tion provides a comprehensible uncertainty quantification.

Table 2 summarizes the model performance by quantify-
ing the prediction accuracy of the rigid body simulation and 
the three models, pointing out the significantly more accu-
rate prediction of the NARGP information fusion scheme in 
regard to the coefficient of determination R2 and the root-
mean-square error RSME.

In order to assess the interpolation capabilities and the 
efficiency of the depicted approach using the NARGP 

algorithm, the model performance is evaluated by gradu-
ally reducing the number of experiments used in the training 
data set. For each assessment i ∈ {1, 2, 3, 4} , only every ith 
experiment of the whole data set was used for training as 
high fidelity data. On the contrary, the complete simulation 
data was used as the low fidelity data set for each training.

The results, illustrated in Fig. 10, indicate that the pre-
diction accuracy decreases with fewer experiments used for 
training, especially regarding the second and third measured 
eigenfrequency. Nonetheless, the prediction remains highly 
accurate, even when the number of considered experiments 
is reduced from 26 to 9 measured frequency response func-
tions (i.e. a reduction of over 65%).

6 � Conclusion

In this paper, an approach to improve the modeling accu-
racy of structural dynamics models of milling robots was 
presented. This approach is based on an information fusion 
algorithm to combine physics-based rigid body simulation 
models with experimental data. The results show, that it out-
performs both, the rigid body simulation and conventional 
machine learning approaches in estimating and extrapolating 
the pose-dependent robot dynamics. It is worth mentioning 
that the presented approach is not only limited to model the 
pose-dependent of dynamic properties of industrial robots 
such as milling robots, but could also be used to model the 
position-dependent dynamics of conventional machine tools.

Nonetheless, there are open issues which need to be 
addressed in future research:

–	 Economic utilization of the prediction uncertainty An 
essential advantage of Bayesian approaches, such as the 
used deep Gaussian processes, is the well-founded incor-
poration of a statistically motivated model uncertainty. It 
remains an open issue how the prediction uncertainty can 
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Table 2   Model performance evaluation

Approach R
2 RMSE

Training and test data
 Simulation 0.34462 0.040286
 GP 0.94341 0.004157
 NARGP 0.99249 0.000938
 MFDGP 0.93175 0.029387

Only test data
 Simulation 0.35282 0.062790
 GP 0.78473 0.01432
 NARGP 0.98197 0.000497
 MFDGP 0.75790 0.106640
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be incorporated into the robust design and parametriza-
tion of robotic milling processes.

–	 Computational complexity As of now, the power of 
this approach has only been illustrated regarding a one-
dimensional robot work space (as a variation of the third 

axis). In order to make use of such models in industrial 
applications, the depicted approach needs to be extended 
to more degrees of freedom, which results in significantly 
larger data sets. Nonetheless, the computational com-
plexity of the given algorithm scales nonlinearly with 
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Fig. 10   Assessment of the NARGP model performance by reducing the number of experiments in the high fidelity data set. The used experi-
ments are marked with white, dashed lines
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the number of training samples (see [3]). Thus, it is nec-
essary to examine other feature space representations. 
In addition, reducing the computational complexity also 
enables more sophisticated validation schemes, such as 
cross validation, which is favorable when the approach 
is extensively used in larger workspace areas.

–	 Nonlinear simulation model The depicted approach has 
been illustrated using a linear, pose-dependent state 
space model of the robot’s structural dynamics. Since 
the information fusion heavily relies on an accurate esti-
mation of the most important vibrational properties, the 
physics-based model should also incorporate nonlinear 
effects.
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Appendix

Mass and inertia properties in [x, y, z]

Parameter Value Unit

Mass of base 82.3950000000 kg
Center of base [−0.004506000, 0.000002000, 0.092993000] m
Moments of inertia of base [3.7240884840, 3.9490065970, 6.8761129230] kg · m2

Mass of shoulder 231.8910000000 kg
Center of shoulder [−0.0143440000, 0.0188780000, 0.2622950000] m
Moments of inertia of shoulder [7.6416913860, 17.2508730530, 14.4043881140] kg · m2

Mass of bicep 239.748 kg
Center of bicep [0.4324000000,−0.0018890000, 0.2481170000] m
Moments of inertia of bicep [3.6204536900, 38.3609963770, 38.3764146450] kg · m2

Mass of elbow 163.9880000000 kg
Center of elbow [0.0248650000, 0.1558280000,−0.1796220000] m
Moments of inertia of elbow [16.8260426100, 2.3710703450, 16.5413372330] kg · m2

Mass of forearm 39.7430000000 kg
Center of forearm [−0.0013410000, 0.0000000000, 0.1220490000] m
Moments of inertia of forearm [0.4256140500, 0.4198806530, 0.0971138130] kg · m2

Mass of wrist 31.0220000000 kg
Center of wrist [0.000000000, 0.0540810000,−0.0375520000] m
Moments of inertia of wrist [0.4758308100, 0.3952674750, 0.2490081860] kg · m2

Mass of palm 78.0020000000 kg
Center of palm [−0.0659490000, 0.0000000000, 0.1573850000] m
Moments of inertia of palm [0.7658796760, 1.4016328790, 1.2958580130] kg · m2

http://creativecommons.org/licenses/by/4.0/
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Rotational joint stiffness for [x, y, z]

Parameter Value Unit

Joint base—shoulder [16028000, 16028000, 5823000] N⋅m

rad

Joint shoulder—bicep [9566000, 4255000, 11361000] N⋅m

rad

Joint bicep—elbow [3766000, 2717000, 13247000] N⋅m

rad

Joint elbow—forearm [3246000, 3246000, 1056000] N⋅m

rad

Joint forearm—wrist [2528000, 2528000, 1203000] N⋅m

rad

Joint wrist—palm [2191000, 2191000, 454000] N⋅m

rad

Rotational joint damping for [x, y, z]

Parameter Value Unit

Joint base—shoulder [16028000, 16028000, 5823000] N⋅m

rad

Joint shoulder—bicep [9566000, 4255000, 11361000] N⋅m

rad

Joint bicep—elbow [3766000, 2717000, 13247000] N⋅m

rad

Joint elbow—forearm [3246000, 3246000, 1056000] N⋅m

rad

Joint forearm—wrist [2528000, 2528000, 1203000] N⋅m

rad

Joint wrist—palm [2191000, 2191000, 454000] N⋅m

rad
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