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Abstract
Solving the inverse problem of identifying groundwater model parameters with mea-
surements is a computationally intensive task. Although model reduction methods
provide computational relief, the performance of many inversion methods depends
on the amount of often highly correlated measurements. We propose a measurement
reduction method that only incorporates essential measurement information in the
inversion process. The method decomposes the covariance matrix of the model out-
put and projects both measurements and model response on the eigenvector space
corresponding to the largest eigenvalues. We combine this measurement reduction
technique with two inversion methods, the Iterated Extended Kalman Filter (IEKF)
and the Sequential Monte Carlo (SMC) methods. The IEKF method linearizes the
relationship between measurements and parameters, and the cost of the required gra-
dient calculation increases with increase of the number of measurements. SMC is a
Bayesian updating approach that samples the posterior distribution through sequen-
tially sampling a set of intermediate measures and the number of sampling steps
increases with increase of the information content. We propose modified versions of
both algorithms that identify the underlying eigenspace and incorporate the reduced
information content in the inversion process. The performance of the modified IEKF
and SMC methods with measurement reduction is tested on a numerical example that
illustrates the computational benefit of the proposed approach as compared to the
standard IEKF and SMC methods with full measurement sets.
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1 Introduction

Aquifer parameters governing groundwater flow, such as the hydraulic conductivity,
are highly variable and heterogeneous. Knowledge of the spatial parameter distribu-
tion is essential for designing successful remediation systems and developing reliable
water supply resources. However, directly measuring these parameters at local scale
is practically impossible. Therefore, aquifer parameters are indirectly estimated using
hydraulic head measurements under different hydraulic stress conditions, such as
pumping tests. The measurements are related to the sought parameters through the
numerical solution of amathematicalmodel. The task of determining themodel param-
eters through comparing the model response with measurements of the underlying
physical system requires the solution of an inverse problem.

Groundwater inversion involves high-dimensional parameter spaces and sparse or
noisymeasurement data, and hence it is typically an ill-posed problem.Conventionally,
the parameter space is simplified by assuming the spatial distribution of parameters
to be zoned according to an interpretation of geologic information. However, such
interpretation is often subjective. Recently, Hydraulic Tomography (HT) techniques
have been developed to cast the model inversion problem in a probabilistic frame-
work that treats the model parameters as random fields. The verification of HT has
been demonstrated with sandbox experiments (Illman et al. 2010) and at a highly het-
erogeneous field site with abundance of hydraulic head measurements and validation
samples (Berg and Illman 2011). One HT approach is to formulate themodel inversion
in a probabilistic framework through Bayesian analysis (Ghosh et al. 2007). In this
context, the information contained in the measurement data is expressed by the likeli-
hood function, whereas any knowledge on the parameter values prior to conducting the
measurements is expressed by the prior distribution. The posterior distribution of the
parameter is obtained through Bayes’ rule as the normalized product of the prior distri-
bution and likelihood function, whereby the prior distribution acts as a regularizer. The
mathematical formulation for Bayesian inverse problems involving spatially variable
parameters is given in Stuart (2010). Bayesian analysis is flexible with respect to the
data types, it enables quantifying the uncertainty of the obtained parameter values and
it facilitates spatial modeling through random fields. For these reasons its application
is popular in HT problems (e.g. see Copty et al. 1993; Hachich and Vanmarcke 1983;
Kitanidis and Vomvoris 1983; McLaughlin and Townley 1996).

The normalizing constant in Bayesian analysis consists of a high dimensional
integral, which generally needs to be solved numerically. This leads to considerable
computational cost, especially in cases where the model is computationally intensive.
Analytical solutions are available forGaussian randomfields and linear inversionmod-
els (i.e., linear relationships betweenmeasurements andmodel parameters). Examples
of Bayesian analysis with linear inversion models are given in Woodbury and Ulrych
(2000) and Jiang and Woodbury (2006), where the moments of the random variables
are treated as hyperparameters. Also, quasi-linear approaches are available, as given
in Fienen et al. (2008). An extension of analytical solutions to nonlinear inversion
models with Gaussian prior fields is given by the Successive Linear Estimator (SLE)
method (Yeh and Zhang 1996). This approach iteratively linearizes the nonlinear rela-
tionship between hydraulic pressure head and the spatial distribution of hydraulic
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conductivity (Yeh and Liu 2000). Apart from hydraulic pressure head, other types of
data can be incorporated, such as flux measurements (Zha et al. 2014), or geological
data as prior information (Zhao et al. 2016). A method that is closely related to SLE is
the Extended Kalman Filter (EKF) (Jazwinski 2007), which is applicable for mildly
nonlinear problems. In contrast to the SLE, the measurement error, which is inherent
in all field measurements, is an explicit part of the formulation. An improvement for
nonlinear problems is the Iterated Extended Kalman Filter (IEKF) (Jazwinski 2007),
which also explictly accounts for measurement uncertainty. Similar to SLE, the IEKF
approach is based on a successive linearization of the model at a sequence of updated
estimates.

The linearization assumption in SLE and IEKF,which renders themethods effective
in problems where the hydraulic conductivity variance is small, leads to convergence
issues in inversion problems with large variance. This can be circumvented through
the application of sampling-based methods, which generate samples that follow the
true posterior distribution of the sought parameters and use the actual forward sim-
ulation model without linearization. Markov Chain Monte Carlo (MCMC) methods
are a popular group of algorithms for solving Bayesian inverse problems. A review
of MCMC methods for subsurface problems is given in Yustres et al. (2012). One of
the early applications of MCMC to hydraulic tomography is found in Oliver et al.
(1997). Efendiev et al. (2005) suggested to accelerate MCMC by using intermediate,
coarser-scaled models until the final model scale is evaluated. However, for MCMC
methods, it is difficult to assess if the resulting distributions are accurate. Moreover,
the sampling process may become computationally expensive as often large burn-in
periods are required to reach the stationary distribution of the Markov chain. Alter-
native approaches are Importance Sampling (IS, Li and Lin 2015), blocking Markov
ChainMonte Carlo (BMCMC, Fu and Gómez-Hernández 2009), Hybrid Nested Sam-
pling (HNS, Elsheikh et al. 2014) and Sequential Monte Carlo (SMC, Neal 2001;
Chopin 2002; Del Moral et al. 2006; Beskos et al. 2015). SMC generates samples
from a sequence of distributions that gradually approach the posterior distribution.
The method has found several applications in the subsurface inversion problem (e.g.
Chang et al. 2012; Field et al. 2016; Pasetto et al. 2012;Montzka et al. 2011; Schöniger
et al. 2012). Other sampling-based inversion methods include the Implicit sampling
method (Chorin et al. 2010; Morzfeld et al. 2015), which is a special case of chainless
sampling. In addition, the Ensemble Kalman Filter, which is a version of the Kalman
Filter where the covariance is evaluated based on samples, has found wide use in
different fields. It was first presented by Evensen (1994), and has found numerous
applications and modifications (Kovachki and Stuart 2019; Gu et al. 2007; Iglesias
et al. 2018).

The availability of measurements has been increasing, due to growing affordability
of instrumentation and advancements in storage and transfer technologies. Although
a large amount of data is beneficial for inversion problems, since their availability
generally reduces the inversion uncertainty, many algorithms are likely to become less
efficient with increasing observation data amount. This dilemma, most commonly
solved by choosing a subset of data either randomly or subjectively based on selected
measurements events, has also been tackled from different angles in a more systematic
manner. In surface water model calibration, using a representative short calibration
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period instead of applying the full available measurement period has been suggested
(Razavi and Tolson 2013). This is achieved by determining the period which has a
similar mean squared error as the full model period. Another method of reducing the
number of measurements with respect to time is limiting the measurements used for
inversion by a sliding window, thus ignoring the influence of measurements that range
further back in time than a certain threshold (Lamberti et al. 2017). However, the
selection of this threshold seems to be arbitrary and could ignore long-term effects. In
Mirhoseini et al. (2015), a method of sparsifying measurement correlation matrices
has been introduced, in order to decrease computing effort for regression techniques,
as well as to facilitate the data transfer between parallel computing units. Regression
has been conducted with a subset of principal components of the predictor variables,
obtained through a principal component analysis (PCA) (Huang and Antonelli 2001).
Within thiswork, the optimal compression ratiowith respect to reconstruction residuals
was also investigated. The works of Chen et al. (2017) and Schillings et al. (2019)
introduce Hessian information to improve the convergence of Monte Carlo-based
method in inversion problems with large measurement sets.

This paper proposes a method for compressing measurement data in the context of
groundwater inversion. For measurements with high correlation and therefore redun-
dancy, the proposed compression approach allows decreasing the computational effort
of model inversion. The proposed approach is similar to the method in Fischer et al.
(2017), but instead of applying PCA to the parameter space and reducing the number
of parameters, it is applied to the observation space to express themeasurements with a
reduced number of fixed measurement component terms, as in Rezaie et al. (2012). In
meteorological forecasting, PCA has been applied for measurement reduction in data
assimilation (Collard et al. 2010). Their work primarily concentrates on the removal
of measurement noise by decomposition and reconstruction of measurements using
PCA. The focus of this paper is the potential in computational gain of groundwater
inversion algorithms through measurement reduction. The method is combined with
two Bayesian inversion algorithms, the IEKF and SMC methods, and modified ver-
sions of these algorithms are proposed. The performance of the latter is investigated
with a numerical example and it is demonstrated that the proposedmodifications result
in a substantial decrease of the computational cost without significant loss of accuracy.

The paper is organized as follows: First, the theory behind groundwater inversion
based on Bayesian Analysis is presented. Then, a method of reducing the number of
measurements while keeping the contained information is introduced. The application
and the benefit of this measurement reduction method for two inversion algorithms,
the IEKF and SMC methods, is described next. Subsequently, we use a numerical
example of a theoretical aquifer to illustrate the behavior and accuracy of the modified
variants of IEKF and SMC. Finally, we discuss the observations and thoughts we
obtained from the numerical studies.
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2 General problem

2.1 Problem setting

We consider an aquifer�,� being a bounded subdomain ofRd , d ∈ N, with hydraulic
conductivity field K ∈ X , where X is a suitable space of functions defined over the
spatial domain �. We are interested in inferring the spatial distribution of K based
on measurements of the hydraulic head at certain spatial locations from a number of
pumping tests. The relationship between K and hydraulic head h j for the j-th pumping
test is given by the steady-state groundwater flow equation:

∇(K∇h j ) + Q jδ(x − xQ j ) = 0 , (1)

where Q j is the pumping/injection rate at location xQ j and δ is the Dirac function. At
the model boundary ∂�, the hydraulic head is set to constant value h1.

Equation (1) is typically solved with a numerical method, such as the finite element
(FE) method. After discretization into n elements, the FE method results in a system
of linear equations that takes the following form:

A(K)h j = b j . (2)

Here, K ∈ R
n denotes the hydraulic conductivity values at the finite elements and

h j ∈ R
nh is the hydraulic head values at the nodal points; A(K) is the stiffness matrix

that depends on the element conductivity values K, and b j is the force vector due to
the j-th pumping test. The hydraulic head values at the measurement locations can be
extracted as follows:

h j
m = ET

mh
j , (3)

whereEm = [e1, . . . , enm ], ei is the standard basis vector corresponding to the location
of the i-th measurement and nm is the number of measurements. The vector h collects
the hydraulic head values at all measurement locations and all pumping tests:

h = [h1m; . . . ;hp
m] , (4)

with p denoting the number of pumping tests. Through Eqs. (2)–(4), we obtain a
mapping G : Rn → R

m from the element hydraulic conductivitiesK to the hydraulic
heads at the measurement locations, where m = pnm denotes the total number of
measurement points from all pumping tests. The goal is to determine K based on
measurements d of h.

2.2 Random fields and Bayesian formulation

To approach the problem introduced in Sect. 2.1, i.e. determine K by means of mea-
surements of h, we move into a Bayesian probabilistic framework. The Bayesian

123



15 Page 6 of 29 GEM - International Journal on Geomathematics (2020) 11 :15

framework allows the construction of a stable solution of the inverse problem, through
introducing prior information onK. This prior information acts as a regularizer to the
generally ill-posed inversion problem. Additionally, the Bayesian approach enables
obtaining a probabilistic estimate of K, rather than a deterministic one, which allows
for quantifying the uncertainty of the estimate.

The prior information is given in terms of a prior probability distribution that
expresses the observer’s belief on the distribution ofK prior to collecting the measure-
ments. In this context,K represents discrete instances of a spatially variable uncertain
quantity, i.e. the hydraulic conductivity field K , which is modeled probabilistically
by a random field. Here, we model the logarithm of K , log(K ), by a homogeneous
Gaussian random field. This implies that the marginal distribution of K , i.e. its distri-
bution at every point in space, is lognormal and hence it cannot take negative values.
The field log(K ) can be completely defined by its mean and auto-covariance func-
tion, which are chosen based on past geologic investigations and information from
literature. Taking log(K) to be the random variables corresponding to the midpoints
of each finite element, their prior distribution will be jointly Gaussian, with mean
values equal to the mean of the random field and covariance matrix evaluated based
on the auto-covariance function of the random field and the coordinates of the element
midpoints.

To decrease the dimensionality of the parameter space and thus further facilitate
the solution of the inverse problem, the random vector log(K) can be approximated
by a truncated Karhunen-Loève (KL) Expansion (Ghosal and Van der Vaart 2017),
expressed as:

log(K) ≈ μlog K +
k∑

i=1

√
λKL,ivKL,iθi , (5)

where μlog K is the mean vector of log(K) and the pairs {λKL,i , vKL,i } are the k
largest eigenvalues and corresponding eigenvectors of the covariancematrix of log(K).
The truncation order k is selected such that the vector log(K) is represented without
a significant loss of accuracy, in practice through requiring that the approximation
captures a significant portion of the total variance of log(K). The vector θ follows the
k-dimensional independent standard Gaussian distribution N (0, I).

The parametrization of Eq. (5) implies that the identification problem is now shifted
to the identification of the random variables in θ . This is done through Bayesian
updating, which applies Bayes’ rule to update the prior standard Gaussian density of
θ , denoted f ′(θ), to a posterior density:

f ′′(θ) = c−1
E L(θ) f ′(θ) . (6)

Here, L(θ) is the likelihood function that describes the measurement information and
cE is a normalizing constant that ensures that the posterior density f ′′(θ) integrates
to one:

cE =
∫

θ

L(θ) f ′(θ)dθ . (7)
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The likelihood function L(θ) is proportional to the probability of the measurements
d given a parameter state θ . The model outcome can be expressed as a function of the
vector θ as h = G̃(θ), where G̃ : Rk → R

m is the composition of operator G and
Eq. (5). The data vector d can then be expressed as a realization of G̃(θ) superimposed
by the outcome of an error term ε, i.e.

d = G̃(θ) + ε. (8)

The error ε models the discrepancy between measurements and model outcomes due
tomeasurement noise and/ormodel uncertainty.We assume that ε follows a zero-mean
Gaussian distribution with covariance matrix Cεε . As a consequence, the likelihood
function takes the following form:

L(θ) = exp(−�(θ)), (9)

where �(θ) is the so-called potential (or negative log-likelihood), defined as

�(θ) = 1

2
‖C− 1

2
εε (d − G̃(θ))‖2. (10)

The closer the model outputs to the measurements, the higher is the likelihood that
this model input θ is close to the true value of the parameter. The covariance matrix
Cεε of the error is chosen to reflect the measurement and/or model uncertainty. For
the case where ε models only measurement noise, it is often reasonable to assume
that errors at different locations are statistically independent. In such case, the matrix
Cεε is a diagonal matrix whose diagonal elements are the variances of the errors at
the measurement locations.

The Bayesian framework serves as a basis for a number of inversion algorithms.
These include approximation methods that attempt to approximate the posterior dis-
tribution and sampling-based approaches that generate samples from the posterior
usually based on MCMC methods. The performance of most inversion algorithms
deteriorates with increase of the dimension of the data d. This is related to the fact that
an increase in the data dimension usually implies a higher information content. This
results in a highly peaked likelihood, which hinders exploration of the high probabil-
ity mass area of the posterior distribution. Next, we discuss an approach to condense
the information contained in high-dimensional data vectors d. In the subsequent sec-
tions, we demonstrate how to incorporate this approach within an approximation and
a sampling method, namely the IEKF and SMC methods.

3 Coping with correlatedmeasurements

The measurements collected for an aquifer characterization effort are often numerous.
This is either owed to the small temporal interval necessary for determining the specific
storage of the aquifer or due to the small spatial interval, which can be necessary
to identify medium-scale heterogeneity. However, in practice, it is computationally
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impossible to incorporate large numbers of measurements in the inversion process.We
nowdiscuss an approach for reducing the number ofmeasurements,without neglecting
potentially important information.

We aim at reducing the number of measurements for the updating process by deter-
mining linear combinations thereof with high information content. We do this through
projecting themeasurements on the space defined by the eigenvectors of the covariance
matrix Chh = Cov(h,h) of the model response corresponding to the measurements
h = G̃(θ). The matrix Chh can be decomposed as:

Chh = VDVT , (11)

where V = [v1, . . . , vm] is an m×m matrix whose columns are the eigenvectors
of Chh and D = diag(λi ) is a diagonal matrix whose entries are the corresponding
eigenvalues of Chh . The matrix V is orthogonal, i.e. VTV = I where I is the m×m
identity matrix. Therefore, the columns of V imply orthogonal transformations in the
Euclidean space Rm . We define the transformation:

a = VTh . (12)

The components of a are uncorrelated, i.e. it holds

Cov(ai , a j ) = 0 for i �= j . (13)

The vector h can be expressed in the transformed coordinate system as:

h =
m∑

i=1

aivi = Va . (14)

The sum of the variances of each component of h can be expressed as the sum of the
eigenvalues, i.e.

m∑

i=1

Var(hi ) =
m∑

i=1

λi . (15)

We now sort the eigenvector matrix V and eigenvalue matrix D in order of decreasing
eigenvalue. h can be approximated by keeping only the first mr ordered components
in Eq. (14), which leads to

ĥ =
mr∑

i=1

aivi = Vrar . (16)

The total variance of the approximation in Eq. (16) reads:

m∑

i=1

Var(ĥi ) =
mr∑

i=1

λi . (17)
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Through Eqs. (15) and (17), we can choose the number of eigenvectors that reflect a
target percentage α of the variability in h. That is, we select mr such that

∑mr
i=1 λi∑m
i=1 λi

≥ α . (18)

We now formulate the Bayesian inversion problem in the transformed space defined
by the truncated eigenvector matrix Vr of dimensions m ×mr. To this end, we project
the data vector d on the truncated space, which gives

dr = VT
r d . (19)

The relationship between the reduced measurement components dr and the truncated
model ar reads

dr = VT
r G̃(θ) + VT

r ε = ar + εr . (20)

Themodified error εr is a linear transformationof aGaussian error and is therefore itself
Gaussian with zero mean and covariance matrix Cεrεr = VT

r CεεVr. The likelihood
function expressing the reduced information is given as

L r(θ) = exp(−�r(θ)) , (21)

where the reduced potential �r(θ) reads

�r(θ) = 1

2
‖C− 1

2
εrεr (dr − VT

r G̃(θ))‖2 . (22)

We remark that the measurement reduction approach presented in this section requires
the evaluation of the covariance matrix Chh . Exact evaluation of Chh is not possible,
as h depends on the input parameters θ through the solution of a finite element system.
Hence, Chh needs to be approximated. Optimally, the approximation should be based
on the posterior distributions of θ and therefore h, in order to accurately reflect the
variability of the measurements. The approach adopted to approximate Chh depends
on the algorithm used to solve the inversion problem and includes methods such as
sampling or first-order Taylor approximations. We note that, ifChh is estimated based
on samples from h, the projections a coincide with the principle components of these
samples and, hence, the approach is equivalent to a PCA of the model output.

In the following sections, we discuss two inversion algorithms for solving the
modified inversion problem of Eq. (20) that are based on extensions of the IEKF and
SMC methods.
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4 Iterated extended Kalman filter with reducedmeasurement
components

4.1 Iterated extended Kalman filter (IEKF)

The IEKF method is an approximation method for solving Bayesian inverse problems
that is based on an iterative linearization of the computational model and application
of the Kalman filter on the respective linearized system. This results in successive
estimates of the conditional mean and conditional covariance matrix of the parameters
given the data. We introduce the IEKF for solving the Bayesian inverse problem of
Eq (8). The conditional mean of the vector θ , containing the random variables in the
KL expansion of Eq. (5), μl

θ , is updated at iteration step l with the information from
the vector of measurements d by the following expression:

μl+1
θ = μ0

θ + Cl
θh(C

l
hh + Cεε)

−1
(
d − hl − Jl(μ0

θ − μl
θ )

)
, (23)

where hl is the output of the model with parameters μl
θ , i.e. h

l = G̃(μl
θ ), and Jl is

the sensitivity of the measurements with respect to the model parameters. The initial
value of the mean is taken as the prior mean μ0

θ = 0. The covariance matrix of
the linearized model outputs Cl

hh is calculated at each step l with Jl and the initial
parameter covariance matrix as:

Cl
hh = JlC0

θθJ
lT, (24)

where thematrixC0
θθ is set to the unconditional parameter covariancematrix,C0

θθ = I.
The cross-covariance between model response and parameters is obtained as:

Cl
hθ = ClT

θh = JlC0
θθ . (25)

The iterative updating process is continued until there is no significant change in the
estimate of μθ . Thereafter, the conditional covariance matrix of the parameters is
estimated as follows:

Cl+1
θθ = C0

θθ − Cl
θh(C

l
hh + Cεε)

−1Cl
hθ . (26)

Conventionally, the sensitivity Jl is obtained by the Adjoint State Method, e.g. Cao
et al. (2003). The (i, j) component of matrix Jl can be written as

J li j = ∂hli
∂θ j

= eTi A
−1

(
∂b(θ)

∂θ j
− ∂A(θ)

∂θ j
hl

)
. (27)

We define the adjoint vector λT
i = eTi A

−1. λi is obtained by solving the so-called
adjoint system, which is defined by:

A(θ)λi = ei . (28)
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The adjoint system needs to be solved once for each measurement, but only one time
for all parameters. This is advantageous for cases where the number of parameters
is significantly larger than the number of measurements. However, at large numbers
of pumping tests and corresponding measurements, a large number of adjoint sys-
tems needs be solved and hence, the sensitivity evaluation becomes computationally
expensive. After solving the adjoint system, the sensitivity of model response hli with
respect to parameter θ j is obtained as:

∂hli
∂θ j

= λT
i

(
∂b(θ)

∂θ j
− ∂A(θ)

∂θ j
hl

)
. (29)

The partial derivative of the stiffness matrix ∂A(θ)
∂θ j

is evaluated at the element level
using the expression for the element stiffness matrix and the KL expansion of Eq. (5);
the element matrices are then assembled to obtain the global derivative matrix. The
original IEKF algorithm is shown in Algorithm 1. We remark that the final estimate
of μθ obtained by the IEKF method is also a local mode of the posterior density of θ

(Jazwinski 2007).

Algorithm 1 IEKF
1: μ0

θ = 0 
 Prior mean parameter

2: C0
θθ = I 
 Prior parameter covariance matrix

3: l = −1 
 Iteration counter
4: do
5: l = l + 1 
 Iteration loop
6: hl = G̃(μl

θ ) 
 Model response

7: Jl = ∂hl
∂θ


 Sensitivity of model response with respect to parameters

8: Calculate cross-covariance Cl
hθ

with Eq. (25)

9: Calculate covariance of model response Cl
hh with Eq. (24)

10: Update mean estimate μl
θ with Eq. (23)

11: errθ = ||μl+1
θ

−μl
θ
||

||μl+1
θ

|| 
 Check for convergence

12: while errθ > δ

13: Update parameter covariance Cl
θθ with Eq. (26)

4.2 IEKF with reducedmeasurement components

The computational cost of the IEKF method scales linearly with the number of mea-
surements m. Assuming a direct solver for the sparse matrix in the adjoint system,
the cost per iteration is O(n2hm), where nh is the number of degrees of freedom in
the finite element system (Davis 2006). This is because at each iteration, m adjoint
systems need to be solved. To enhance its efficiency, we combine IEKF with the
measurement reduction approach, introduced in Sect. 3. That is, we decompose the
covariance matrix Chh and project the inversion problem on the space defined by the
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eigenvectorsVr corresponding to themr largest eigenvalues ofChh . As a first approx-
imation, we compute the covariance matrix through its first-order approximation at
the initial point C0

hh , following Eq. (24).
The sensitivity Jlr of the projected model responses alr = VT

r h
l is evaluated with the

adjoint method. Let us consider the case, where the data come from a single pumping
test. In such case, the modified adjoint system for evaluating Jlr reads:

A(θ)λr,i = Evi , (30)

withλT
r,i = vTi E

T,vi is the eigenvector corresponding to the i-th projected responsear,i
and E = [e1, . . . , em] collects the basis vectors corresponding to each measurement
location. The sensitivity is then obtained as:

∂alr,i
∂θ j

= λT
r,i

(
∂b(θ)

∂θ j
− ∂A(θ)

∂θ j
hl

)
. (31)

The cost of the Jacobian evaluation isO(n2hmr), which can be significantly lower than
for the case where all measurements are used, since usually mr � m.

Having evaluated the matrix Jlr, the covariance of the projected model responses is
calculated through:

Cl
aa = JlrC

0
θθJ

lT
r . (32)

The cross-covariance between projected response and parameters is obtained as fol-
lows:

Cl
aθ = JlrC

0
θθ . (33)

We are then able to perform the updating by means of the reduced measurement
components dr as follows:

μl+1
θ = μ0

θ + Cl
θa(C

l
aa + VT

r CεεVr)
−1(dr − alr − Jlr(μ

0
θ − μl

θ )) . (34)

The parameter covariance matrix is updated through:

Cl+1
θθ = C0

θθ − Cl
θa(C

l
aa + VT

r CεεVr)
−1Cl

aθ . (35)

To encode the information relevant for updating the current state of the system, we
periodically update the projection based on updated estimates of the full covariance
matrix. This requires evaluating the Jacobian matrix of the original response, through
application of Eq. (27). To avoid a large number of Jacobian evaluations with the
original response variables, we only update the projection if the available eigenvector
matrix of the reduced measurement components is sufficiently non-orthogonal with
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respect to the current estimate of the covariance matrix Cl
aa . We assess this through

examining the off-diagonal terms of the following matrix:

D̂ = VT
aC

l
aaVa , (36)

where the eigenvector matrix Va is obtained by the eigendecomposition of Caa =
VaDVT

a . If the ratio of the norm of the off-diagonal terms ‖D̂ − diag(D̂)‖ divided by
the norm of the diagonal terms ‖diag(D̂)‖ surpasses a threshold value η, we estimate
the covariance of the original response and update the projection. On this occasion, an
updating step is performed with the full measurement set. The algorithm is terminated,
when the change between two solutions is smaller than a threshold, and a final updating
step is performed with all measurements. The modified IEKF method is shown in
Algorithm 2.

We remark that for the case where p pumping tests are performed, a total of p
adjoint systems need to be solved per eigenvector for evaluating the Jacobian matrix
at each iteration. Therefore, for large p, the computational cost for estimating the
Jacobian becomes considerable, even for cases where the number of measurements
are reduced significantly. This can be alleviated through decomposing the covariance
matrix of the model responses separately for each pumping test and aggregating the
resulting eigenvectors in Vr.

5 Sequential Monte Carlo with reducedmeasurement components

5.1 Sequential Monte Carlo (SMC)

SMCsamplers is a category ofmethods that generate samples from a target distribution
through sequentially sampling a set of intermediate distributions (Neal 2001; Chopin
2002;DelMoral et al. 2006).Consider a density sequence { fl (θ), l = 0, . . . , L},where
f0 is a density that can be easily sampled from, and fL is the target density. Each density
fl , l > 0, is knownup to a normalizing constant, i.e. fl (θ) = c−1

l ηl(θ), and supp( fl) ⊆
supp( fl−1). Assume that at step l−1, a set of samples (or particles) {θ j , j = 1, . . . , N }
is available that provide a sample approximation of fl−1. These samples are used to
construct a weighted sample approximation of fl through importance sampling:

fl(θ) ≈
N∑

j=1

w jδθ j (θ) , (37)

where δθ j is the Dirac mass at θ j and the weights w j are evaluated as:

Wj = ηl(θ j )

ηl−1(θ j )
, w j = Wj∑N

i=1 Wi
. (38)

To avoid degeneracy of the weights as we move towards the target distribution, the
weighted samples from fl are transformed to uniformly weighted samples through
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Algorithm 2 IEKF with reduced measurement components

1: μ0
θ = 0 
 Prior mean parameter

2: C0
θθ = I 
 Prior parameter covariance matrix

3: l = −1 
 Iteration counter
4: while l < lmax do 
 Limit number of maximum iterations
5: l = l + 1 
 Iteration loop
6: if l > 0 then

7: errθ = ||μl+1
θ

−μl
θ
||

||μl+1
θ

|| 
 Check for convergence

8: erro = ‖D̂−diag(D̂)‖
‖diag(D̂)‖ 
 Evaluate orthogonality error

9: if l = 0 or erro > η or errθ < δ then 
 Check whether to update the projection
10: hl = G̃(μl

θ ) 
 Model response

11: Jl = ∂hl
∂θ


 Full measurement set step

12: Calculate cross-covariance Cl
hθ

with Eq. (25)

13: Calculate covariance of model response Cl
hh with Eq. (24)

14: Update mean estimate μl
θ with Eq (23)

15: if errθ < δ then
16: Exit algorithm

17: Decompose matrix Cl
hh with Eq. (11)

18: Solve Eq. (18) → mr 
 Number of measurement terms
19: else 
 Reduced measurement components step
20: al = VT

r G̃(μl
θ ) 
 Projected model response

21: Jlr = ∂alr
∂θ


 Sensitivity of projected responses

22: Calculate cross-covariance Cl
aθ with Eq. (33)

23: Calculate covariance of projected response Cl
aa with Eq. (32)

24: Update mean estimate μl
θ with Eq (34)

25: Update parameter covariance Cl
θθ with Eq. (35)

a resample-move scheme. First, we resample the samples {θ j , j = 1, . . . , N } with
probability w j assigned to each sample. We then move the resulting samples through
applying a Markov move with a Markov kernel that is reversible with respect to fl .

In the context of the Bayesian inversion problem of Eq. (8), the density f0(θ) is the
prior density f ′(θ) and the target density fL(θ) is the posterior density f ′′(θ) with
unnormalized form ηL(θ) = L(θ) f0(θ). The choice of the intermediate densities
should be such that each density fl−1 provides a good proposal density for sampling
from fl . A standard choice is to introduce a set of tempering parameters {βl , l =
0, . . . , L} such that 0 = β0 < . . . < βL = 1, and define each density fl as Neal
(2001):

fl(θ) ∝ L(θ)βl f0(θ) = exp (−βl�(θ)) f0(θ) . (39)

Following Eq. (39), the unnormalized weights Wj take the form:

Wj = L(θ j )
βl−βl−1 = exp

(−(βl − βl−1)�(θ j )
)

. (40)
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To ensure that each pair of densities fl−1 and fl do not vary significantly from one
another, each tempering parameter βl can be chosen adaptively such that the effective
sample size ESS takes a target value (Jasra et al. 2011). ESS is defined by:

ESS =
(∑N

j=1 Wj

)2

∑N
j=1 W

2
j

. (41)

That is, at each iteration l, the following optimization problem is solved:

βl = argmin
β∈(βl−1,1)

(ESS(β) − τ)2 , (42)

where τ > 0 is a target value. We remark that the solution of the optimization problem
of Eq. (42) does not require additional model evaluations. Therefore, the contribution
to the overall computational time is negligible.

For application of SMC in high-dimensional parameter spaces, it is essential to
perform the move step with a Markov kernel whose acceptance probability does not
degenerate with increase of the parameter dimension. Here, we apply the precondi-
tionedCrank-Nicolson (pCN)-Metropolis-Hastings algorithm (Cotter et al. 2013). The
pCN algorithm for sampling from fl generates each proposed state ν from a proposal
that is reversible with respect to the prior f0. For the present case, where the prior is
independent standard normal, N (0, I), the proposal is given by

ν =
√
1 − b2θ + bξ , ξ ∼ N (0, I) , (43)

where θ denotes the current state. The candidate is accepted with probability α(θ , ν)

given by:

α(θ , ν) = min

{
1,

L(ν)βl

L(θ)βl

}
= min {1, exp [βl(�(θ) − �(ν))]} . (44)

The parameter b ∈ [0, 1] controls the variance of the proposal distribution; (1−b2)−1

is the correlation coefficient between candidate and current states (Papaioannou et al.
2015). We choose the parameter b adaptively to ensure a target acceptance probability
close to 0.4.Details on the implementation of the adaptive version of the pCNalgorithm
can be found in Papaioannou et al. (2015) and Papaioannou et al. (2016).

The SMC algorithm for sampling the from the posterior distribution of the inverse
problem of Eq. (8) is summarized in Algorithm 3.

5.2 SMCwith reducedmeasurement components

In problems where the variance of the error in Eq. (8) is small or where the number
of measurements is high, the computational cost of SMC is high because a large
number of intermediate sampling steps is required to reach the posterior distribution.
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Algorithm 3 SMC
1: l = 0 
 Iteration counter
2: β0 = 0
3: θ0 ∼ N (0, I) 
 Generate N standard normal random samples
4: Evaluate the model: hl = G̃(θ l )

5: do
6: l = l + 1
7: Solve Eq. (42) → βl
8: Evaluate the weights Wl through Eq. (40) and normalize them → wl

9: Resample {θ l−1,wl }
10: Move the samples by a pCN move [Eqs. (43)–(44)] to get samples θ l

11: while βl < 1

To improve the performance of SMC for such problems, we combine the method with
the measurement reduction of Sect. 3. We first estimate the covariance matrix C0

hh
using the samples from the prior distribution at the initial step of the SMC method.
The estimate of the covariance matrix is as follows:

C0
hh = 1

N − 1

N∑

i=1

(
hi − μ0

h

) (
hi − μ0

h

)T
, μ0

h = 1

N

N∑

i=1

hi , (45)

where hi is the output of the model with parameters θ i , i.e. hi = G̃(θ i ), and θ i ∼
N (0, I). The matrix C0

hh is decomposed to obtain the projection V0
r . SMC is then

applied to obtain samples from the posterior associated with the reduced measurement
components:

f ′′
r (θ) ∝ L0

r (θ) f ′(θ) . (46)

The unnormalized weights with the reduced measurement components are evaluated
as follows:

Wj = exp
(
−(βl − βl−1)�

0
r (θ j )

)
, (47)

where �0
r (θ) is the reduced potential given in Eq. (22) with Vr set to V0

r . Moreover,
the acceptance probability of the pCN algorithm is given by:

α(θ , ν) = min
{
1, exp

[
βl(�

0
r (θ) − �0

r (ν))
]}

. (48)

The SMC algorithm with reduced measurement components is presented in Algo-
rithm 4.

We remark that in contrast to the IEKF approach with reduced measurement com-
ponents, we do not update the estimate of the covariance matrix in the modified SMC
approach. That is, we only estimate Chh once with samples from the prior distribu-
tion of θ . An alternative approach would be to update the estimate of the covariance
matrix with samples from the posterior distribution based on the first projection and
apply a bridging step (e.g. see Gelman and Meng 1998) to obtain samples from the
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next posterior distribution based on the new projection. We tested this procedure and
observed that the additional bridging step may result in an increase of the total num-
ber of sampling steps and, hence, in an increased computational cost of the method,
without a significant improvement of the obtained parameter estimate.

Algorithm 4 SMC with reduced measurement components
1: l = 0 
 Iteration counter
2: β0 = 0
3: θ0 ∼ N (0, I) 
 Generate N standard normal random samples
4: Evaluate the model: h0 = G̃(θ0)

5: Estimate the model response covariance C0
hh with Eq. (45)

6: Decompose matrix C0
hh to obtain V0

r
7: do
8: l = l + 1
9: Solve Eq. (42) → βl (with weights Wj evaluated with Eq. (47))

10: Evaluate weights Wl through Eq. (47) and normalize them → wl

11: Resample {θ l−1,wl }
12: Move the samples by a pCN move [Eqs. (43) and (48)] to get samples θ l

13: while βl < 1

6 Numerical experiments

6.1 Model and parameters

We investigate the performance of the proposed algorithms with a numerical example.
A hypothetical aquifer is simulated by a two-dimensional finite element groundwater
model. The model specifications are taken from a numerical experiment presented in
Huang et al. (2011), which is based on an actual field experiment. The model has a
grid with 21 by 21 elements with a cell size of 1 by 1 meter (m).

The prior distribution of the log-hydraulic conductivity log(K) is modeled by a
Gaussian random field with mean value of −6.2 and variance of 1.6. The spatial
correlation structure is assumed to be exponential, hence the correlation ρi j between
the conductivity in element i and j is given by:

ρi j = exp

(
−�xi j

λ

)
, (49)

where �xi j is the Euclidean distance between the midpoints of elements i and j and
λ is the correlation length, which is set to 5 m in this example. The conductivities at
the elements log(K) are modeled with a truncated KL expansion [cf. Eq. (5)], and
we choose the truncation order k to ensure that 99% of the prior parameter variability
is represented. This leads to k = 236 instead of n = 441 estimation parameters. 10
monitoring wells are placed in the model, the locations within the model are similar
to the real field setup. A total of 7 hydraulic pumping tests is simulated with these
wells, and, without consideration of the drawdown at the respective pumping well, a
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Fig. 1 Model mesh, monitoring
and pumping wells

total of 70 steady state measurements are generated. The pumping rate for each test
is set to 1. An overview of the mesh and the locations of pumping and monitoring
wells is shown in Fig. 1. The true parameter values are generated by sampling from
the prior distribution of log(K). The observations d are given by the model evaluation
of the true parameter superimposed by a realization of a Gaussian measurement noise
ε ∼ N (0, σ I), with noise level of σ = 0.05. The realization of the log(K) field is
shown in Fig. 2a.

To assess the quality of the results, we use two metrics. The first is the so-called
relative error, related to the estimation parameters, which we define by:

RelErr = ||D1/2
KL (μθ − θ true)||1
||D1/2

KL θ true||1
, (50)

where DKL is the diagonal matrix of the eigenvalues in the KL expansion, μθ is the
estimate of the posterior mean of the random variables obtained by the respective
method and θ true are the true variables. The second metric we introduce is the relative
misfit between model output and measurements:

RelMisfit = ||C−1/2
εε (d − G̃(μθ ))||22

||C−1/2
εε d||22

. (51)

For the SMC, the statistics of the errors are evaluated based on 50 independent simu-
lation runs.
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Fig. 2 log(K) fields. The black dots represent the measurement locations

6.2 IEKF

6.2.1 IEKF with all measurements

As a base case, the complete set of 70 measurements from the numerical model are
used for inversion. The convergence threshold δ is set to 0.001. The posterior of log(K)

is shown in Fig. 2b and the match of the model outputs to the measurements is shown
in Fig. 3a. By observation, IEKF is clearly capable of identifying the high and low K
regions in-between the monitoring wells. As shown in Table 1, the minimum relative
error achieved is 0.8731 and the final relative misfit is 3.6 × 10−5. For obtaining this
result, one gradient calculation per iteration and the solution of one adjoint system
per measurement including the subsequent vector-matrix calculations on the element
level were required. This results in 70︸︷︷︸

measurements

× 8︸︷︷︸
i terations

= 560 adjoint system

evaluations.
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Fig. 3 Model output versus measurements

6.2.2 IEKF with reducedmeasurement components

We now conduct the inversion with Algorithm 2. To obtain the projection, we separate
the calculation and eigendecomposition of the observation covariance matrix for each
of the 7 pumping tests. This is computationally favorable, since it decouples the cal-
culation of the Jacobian matrix with respect to the eigenmodes and therefore avoids
the solution of several adjoint systems per output sensitivity. The estimated mean of
log(K), μθ , is shown in Fig. 2c and the match of the model outputs G̃(μθ ) to the
measurements d is shown in Fig. 3b. The accuracy of the result decreases slightly
compared to the solution in Fig. 2b, but the general features of the low and high K
regions match well with the true solution. The input parameters defined for this algo-
rithm and the obtained outputs are given in Table 1. It is worth pointing out the total
computational effort. A total of

12 × 6︸ ︷︷ ︸
Eigenmodes
per iteration

using measurement reduction

+ 2︸︷︷︸
Complete
covariance
matrix

calculations

× 70︸︷︷︸
Measurements

= 212

adjoint system evaluations was required, which is about 38 % of the effort of the case
presented in Sect. 6.2.1, while losing accuracy with an increase of the relative error
by about 1 %. The relative misfit increases from 3.6 × 10−5 to 8.0 × 10−4, which is
also apparent when comparing Figs. 3a, b.

We remark that the IEKF approach with reduced measurement components has an
additional computational cost due to the eigenmode decomposition of up to O(m3)
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Table 1 In- and output parameters of the cases presented in Sects. 6.2.1 and 6.2.2

Case Input Output

α η δ Number of
iterations

Total covariance
matrix calculations

Final number
of eigenmodes

Final relative
error

Final relative
misfit

IEKF—all
measurements

– – 0.001 8 8 70 0.837 3.6 × 10−5

IEKF—reduced
measurement
components

0.95 0.05 0.001 8 2 12 0.846 8.0 × 10−4

Fig. 4 IEKF with reduced measurement components: Variation of α, η = 0.05

(Parlett 2000) per decomposition step, whereas the Jacobian calculation has complex-
ity ofO(n2hmr). That is, the additional cost of the eigenmode decomposition becomes
important in cases wherem � nh , (at least> n2h). This will hardly occur in problems
that involve computationally intensive models (i.e. where nh is large). In the problem
at hand, it is m = 70 and nh = 484 and, hence, this additional cost is negligible.

We conduct a parameter study to explore the influence of α through varying α

between 0.75 and 0.99. The results, as presented in Fig. 4, show that the number of
model evaluations increases with increasing α, since the number of final eigenmodes
increases from 7 to 32, but, as expected, the model error is reduced from 3% to a
minimum of 0.1% compared to the base case with all measurements.

6.3 SMC

The performance of the SMC algorithm is tested with the numerical example intro-
duced in Sect. 6.1. Besides the relative error and the relative misfit, the number of
sampling levels (tempering steps) is reported as a measure of the computational effort
of the method. For all the study cases, except the study of the influence of number
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Table 2 In- and output parameters of the cases presented in Sects. 6.3.1 to 6.3.3

Case Input Output

α Number of samples
per level

Average number
of levels

Average number
of eigenmodes

Final relative
error

Final relative
misfit

SMC—all
measurements

1 2000 39.6 70 1.194 1.4 × 10−3

SMC with reduced
measurements

0.95 2000 35.5 13.8 1.210 5.8 × 10−3

Fig. 5 log(K) fields, averaged from 50 independent simulation runs. The black dots represent the measure-
ment locations

of samples [c.f. Sect. 6.3.3], the number of samples generated per level, N , is set to
2000 and the target effective sample size, is set to N

2 = 1000. The important input and
output parameters are shown in Table 2.

6.3.1 SMC with all measurements

As a base case, the SMCwas run for all 70measurements. Figure 5a shows the average
SMC result of all 50 independent simulation runs and Fig. 6a the model output using
the average result. The average relative error obtained is 1.194, which is significantly
larger than the corresponding IEKF result using all measurements. The relative misfit
of the SMC solution is two magnitudes larger than the relative misfit of the IEKF
solution. The number of levels averages to 39.6.

6.3.2 SMC with reducedmeasurement components

Figures 5b and 6b show the solution applying Algorithm 4 with α set to 0.95. The
relative error is 1% higher, and the relative misfit is increases from 1.4 × 10−3 to
5.8 × 10−3. The inversion is about 10 % faster.
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Fig. 6 Model output versus measurements

Fig. 7 log(K) fields with small variance. The black dots represent the measurement locations

6.3.3 Parameter study

Weconducted a parameter study to evaluate the influence of themost important param-
eters in Algorithm 4. It was performed with a Monte Carlo realization with smaller
parameter variance (0.1 instead of 1.6) to limit the computation time for the different
cases. A reference solution with IEKF was generated and is presented in Fig. 7a. The
corresponding SMC solution is presented in Fig. 7b.

In order to focus the investigation on the influence of the number of samples, instead
of obtaining the observation covariance through sampling, SMCwas runwith constant
model output eigenmodes obtained from the IEKF solution. Hence, the sampling
error in the estimation of the reduced measurement components is eliminated. The
model output truncation was chosen such that 99% of the model output variability was
preserved (i.e., α = 0.99). As presented in Fig. 8, increasing the number of samples
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Fig. 8 Relative error and relative misfit versus number of samples per level

Fig. 9 Influence of truncation threshold α
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results in a better estimate, since the relative error decreases on average. However,
one observes that the variability of the error remains constant as the samples per level
increase further than 1500. The average relative misfit and its variability decrease until
the number of samples per level reach 1500. Using larger sample sets, the estimate
and variability of the relative misfit remain constant.

Furthermore, we vary the threshold α which is used to determine the number of
eigenmodes in the projection. The relative error, the relative misfit and the number of
levels over the different α are presented in Fig. 9. Using more eigenmodes decreases
the relativemisfit, but increases the variability of the relative error. This is related to the
MCMC algorithm employed within each sampling step of the SMC approach. As the
number of levels grows, the subsequentMCMC steps result in progressively correlated
samples, which increases the variance of the posterior estimates based on the samples
in the final level. Therefore, using less eigenmodes improves the solution, since it
results in less tempering steps, and hence in a reduced uncertainty of the parameter
estimates.

7 Concluding remarks

This paper presents amethod that compressesmeasurement information frompumping
tests and therefore accelerates groundwater parameter inversions. The method decom-
poses the model output covariance matrix and projects the measurements and model
outputs on the eigenvector space corresponding to the largest eigenvalues. Therefore,
it incorporates only essential information in the inversion process. Themethod is com-
bined with the IEKF and SMC algorithms and modified versions of the algorithms are
proposed that include reduced measurement information. The IEKF algorithm, which
linearizes the relationship between measurement perturbation and parameters, relies
on repeated evaluations of the sensitivity (Jacobian) matrix. The computational effort
for evaluating the sensitivity matrix increases linearly with increase of the number of
measurements. SMC, a sampling-based inversion method with importance sampling
and move steps, yields samples from the posterior distribution of the parameters. The
width of the likelihood function, describing the measurement information, decreases
with increase of the measurement dimension, which leads to an increase of the number
of sampling steps. Hence, a measurement reduction has potential for improvement of
both inversion methods. As demonstrated by a numerical example, the inversion is
generally faster than using all measurements with negligible loss of solution accuracy,
provided that the parameters of the proposed algorithms are carefully chosen.

The benefit of the proposed approach increases with increase of both the size of the
computational model and the number of measurements. For the IEKF method, this is
because the computational cost per adjoint system evaluation isO(n2hm), where nh is
the number of degrees of freedom of the computational model and m is the number
of measurements. We note that the computational cost per eigenmode decomposition
is up to O(m3), so the computational benefit of the measurement reduction is more
pronounced in cases wherem � nh . For large-scale inversion problems (large nh) we
expect that the additional computational cost of the eigendecomposition will be small
compared to the computational gain. Another crucial aspect for an improved inversion
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process is the structure that governs the eigendecomposition. The standard approach
is to collect the full model response dataset, form a covariance matrix, and then per-
form the decomposition. This implies that each eigenvector contains information on
all pumping tests together. When the IEKF method is applied with relatively large
numbers of pumping tests and small numbers of data per pumping test, the eigende-
composition should be conducted separately for each pumping test, as this decreases
the cost required for evaluating the sensitivity matrix of the projected responses.

Another aspect we address in the paper is the frequency of the covariance calcu-
lations for obtaining an optimal measurement reduction. Since the prior distribution
of the model parameters can differ considerably from their posterior distribution, the
measurement reduction based on the prior distributionmight not reflect the true behav-
ior of the measurement correlation. Therefore, in the modified IEKF algorithm, we
propose to update the response covariance matrix frequently throughout the inversion
process, whenever the projection becomes too inaccurate (see Algorithm 2). Regard-
ing the modified SMC algorithm, we observed that updating the covariance matrix
leads to additional sampling steps and, hence, increased computational costs com-
pared to the standard SMC algorithm. Hence, we recommend to form the observation
covariance matrix with samples from the prior conductivity distribution and employ
this first estimate in the updating process (see Algorithm 4).

Comparing the computational cost of the two inversion methods in the worked
numerical example, we observe that the IEKF, although being a linearization method,
performed significantly better than the SMC approach. In particular, the high vari-
ance of the estimated K field did not seem to impose a large problem for the IEKF
approach, which obtained an accurate parameter estimate in a small number of iter-
ations. In contrast, the SMC method required more sampling iterations and resulted
in parameter estimates with significant associated uncertainty. The modified SMC
method could be improved by changing the move step through the implementation of
a more efficient MCMC algorithm, e.g. which includes gradient information (Roberts
et al. 1996; Cui et al. 2016; Rudolf and Sprungk 2018). This could potentially decrease
the required samples per level to obtain an accurate approximation of the posterior.
Another sampling-based inversion method worth investigating in this context is the
ensembleKalman filter. Thismethod has recently found popularity inBayesian inverse
problems and its performance can potentially profit from a reduced measurement set.
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