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Abstract

This thesis aims to improve the understanding of thermoacoustic system behavior by employing
and extending network model analysis. The proposed methods and implementation approaches
enable (i) the introduction of an elaborate model for longitudinal wave propagation, (ii) the
determination of the adjoint system for a given network model, and (iii) the identification of
exceptional points, with minimum resources.

A wave-based numerical solution for a duct with varying cross-section and mean temperature
distribution is presented. With this approach, existing network libraries can be extended with
minor implementation effort, enabling more accurate modeling of thermoacoustic combustors
as both complex geometries and heat loss effects along the combustor can be taken into account.

Furthermore, the thesis introduces a novel approach to calculate the adjoint of a thermoacoustic
network model. This "Hybrid Adjoint" (HA) approach is based on the continuous adjoint (CA)
equations but is applied to the discretized system, similar to the discrete adjoint (DA) approach.
As such, hybrid adjoints combine the advantages and eliminate some of the disadvantages of
the CA and DA approaches: While it requires minimum implementation effort and applies to
any system that can be built using the original network model framework, it is also capable of
accurately displaying the adjoint eigenmodes regardless of the discretization of the direct equa-
tions. In an exemplary study, the HA approach is successfully applied to an annular combustor
to find the optimal parameters of two Helmholtz resonators.

An alternative, DA based approach to combine adjoint design with network model tools is intro-
duced and used to identify exceptional points in thermoacoustic systems. The identification al-
gorithm is based on an adjoint-enhanced optimization routine, which determines the parameters
of an eigenvalue problem for a given eigenvalue. By exploiting the topology of the state-space
network model, adjoint eigenvalue sensitivities may be calculated based on modifications to the
system matrix, thus eliminating the need to rebuild the network model after changing the model
parameters. With the proposed algorithm, the existence of an unstable exceptional point for a
physical parameter setting and a realistic flame model could be demonstrated for the first time
in the context of thermoacoustic combustion instabilities. Subsequent studies examine the ex-
ceptional points in more detail. Among others, they are found to significantly impair the quality
of surrogate models and the reliability of stability predictions.
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Kurzfassung

Diese Arbeit zielt darauf ab, das Verständnis thermoakustischen Systemverhaltens durch die
Erweiterung und Anwendung von Netzmodellanalyse zu verbessern. Die hier beschriebenen
Methoden und Implementierungsansätze ermöglichen (i) die Einführung eines erweiterten
Modells für die Ausbreitung longitudinaler akkustischer Wellen, (ii) die Bestimmung des ad-
jungierten Systems für ein gegebenes Netzwerkmodell und (iii) die Identifizierung von "Excep-
tional Points" mittels minimaler Ressourcen.

Für die Einführung des erweiterten Rohrleitung-Elements wird eine wellenbasierte numerische
Lösung vorgestellt, die Änderungen in Rohrquerschnitt und mittlerer Temperaturverteilung
berücksichtigt. Mit dem Ansatz können bestehende Netzwerkbibliotheken mit geringem Imple-
mentierungsaufwand erweitert werden. Das Element ermöglicht eine genauere Modellierung
von thermoakustischen Brennkammern, da sowohl komplexe Geometrien als auch Wärmever-
lusteffekte entlang der Brennkammer dargestellt werden können.

Darüber hinaus stellt die Dissertation einen neuartigen Ansatz zur Berechnung der Adjungierten
eines thermoakustischen Netzwerkmodells vorgestellt. Der so genannte Hybride Adjungierte
Ansatz (HA) basiert auf den kontinuierlichen adjungierten Gleichungen (CA), wird aber auf
Basis des diskretisierten Systems berechnet, ähnlich wie der diskrete adjungierte Ansatz (DA).
Die hybride Adjunktion vereint somit viele der Vorteile und eliminiert einige Nachteile der
CA- bzw. DA-Ansätze: Die Methode erfordert einen minimalen Implementierungsaufwand und
ist auf jedes System anwendbar ist, das mit dem ursprünglichen Netzwerkmodell dargestellt
werden kann. Darüber hinaus werden die adjungierten Eigenmoden unabhängig von der
Diskretisierung der direkten Gleichungen korrekt dargestellt. In einer beispielhaften Studie wird
der HA-Ansatz erfolgreich auf eine ringförmige Brennkammer angewandt, um die optimalen
Parameter für zwei Helmholtz-Resonatoren zu finden.

Eine alternative, vom DA Ansatz abgeleitete Mehtode zur Kombination von adjungiertem
Design mit Netzwerkmodellen wird zur Identifizierung von Defekten Eigenwerten in ther-
moakustischen Systemen vorgestellt und angewendet. Der Algorithmus basiert auf einer ad-
jungierten Optimierungsroutine, die die Parameter eines thermoakustischen Modells bestimmt,
für die ein vordefinierter Eigenwert resultiert. Durch die Ausnutzung der Topologie des
Zustandsraum-Netzwerkmodells können adjungierte Eigenwert-Sensitivitäten aus der modi-
fizierten Systemmatrix berechnet werden, wodurch die Notwendigkeit entfällt, das Netzwerk-
modell nach einer Änderung der Modellparameter neu aufzubauen. Mit dem beschriebenen
Algorithmus konnte erstmals die Existenz eines instabilen Exceptional Points in einem ther-
moakustischen System mit realistischem Flammenmodell nachgewiesen werden, dessen Pa-
rametereinstellung physikalisch realisierbar sind.
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Darauf aufbauende Studien widmen sich der näheren Analyse von Exceptional Points. Unter
anderem ergeben diese, dass die Qualität von Ersatzmodellen und die Zuverlässigkeit von Sta-
bilitätsvorhersagen erheblich durch die Präsenz von Exceptional Points beeinträchtigt wird.
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1 Introduction

The energy sector accounts for approximately 33 percent of the total German carbon dioxide
emissions [30]. In times where the repercussions of climate change have not only been predicted
for years, but have already manifested themselves in local droughts, wildfires, and floods, the
need for a quick transition to renewable energies becomes more and more urgent. However,
this transition is, among others, associated with one major challenge: The energy grid has to
account for strong fluctuations in the supply of renewable energy, as wind or solar power plants
are subject to local weather conditions. To counterbalance these fluctuations, gas turbines offer
the best compromise of operational flexibility and ecological compatibility. They enable fast
start-ups and shut-downs, and on-demand load changes, thus offering a quick response to the
unsteady power supply. At the same time, thanks to lean-premixed combustion technology,
gas turbines nowadays emit low levels of pollutants while being highly efficient. However,
engines operating under lean-premixed conditions become more susceptible to thermoacoustic
combustion instabilities.

Thermoacoustic instabilities result from a constructive coupling of pressure and heat release
fluctuations at the flame. They manifest themselves in amplified pressure oscillations, which
impair engine performance and emissions, decrease its lifetime or even cause structural dam-
age [66]. Late-stage adaptions in engine design to eliminate unexpected instabilities are pro-
hibitively expensive: Adaptions made to achieve linear stability over the entire operating regime
may involve extensive testing, curtailments in flexibility by avoiding specific operating con-
ditions, or the retrofitting of passive dampers such as Helmholtz resonators. It is, therefore,
paramount to predict and eliminate thermoacoustic instabilities during the early phases of the
engine design process.

There exist a range of modeling techniques for the prediction of unstable operating points,
which differ in their degree of abstraction. On the lower end, there are high-fidelity simulations
that depend on few assumptions and deliver the most accurate results. However, they are associ-
ated with increased computational cost and more elaborate model design processes, e.g. geom-
etry and mesh generation. The highest level of abstraction is employed by so-called low-order
models. These are highly flexible and cost-efficient but commonly consider the propagation of
acoustic waves along only one dimension, usually the axial or azimuthal direction.

Nevertheless, low-order models constitute a good trade-off between cost and prediction accu-
racy in early-stage engine design. In particular, low-order network models have proven to be
a valuable instrument for primary engine analyses. Moreover, they have been successfully ap-
plied to gain a fundamental understanding of the underlying physics that govern thermoacoustic
systems.
Thanks to their modular architecture, even complex geometry models can be built in a matter
of minutes, e.g. to assess the stability behavior for different parameter configurations.
Network tools calculate the system eigenvalues, which are composed of the eigenfrequency and
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Introduction

associated growth rate. Physically, a positive growth rate signifies that oscillations at the corre-
sponding frequency grow over time, rendering the system linearly unstable. Having identified
an unstable mode, the system parameters need to be adapted in order to stabilize the system.

However, thermoacoustic systems are highly sensitive to a large number of parameters, whose
effect may change for different eigenvalues and parameter configurations. Consequently, ad-
justing a parameter to stabilize one eigenvalue may, for instance, have a destabilizing effect on
a different eigenvalue. Therefore, finding a stable parameter setting via trial-and-error is both
time-consuming and expensive in terms of computational cost [39, 49].

In addition, the high eigenvalue sensitivity may cause an originally stable eigenvalue to become
unstable for minor variations of the system parameters. This is particularly problematic, as
parameters are always subject to uncertainties. More specifically, stochastic fluctuations causing
the operating conditions to deviate from the nominal condition may result in instability even
though the nominal system was predicted to be stable. The propagation of uncertainties must,
therefore, be included in the process of stability analysis.

Parameter sensitivities and the associated arising challenges may be enhanced by the presence of
so-called exceptional points (XPs). XPs are marked by the coalescence of multiple eigenvalues
and their associated eigenfunctions. At the XP, the eigenvalue is infinitely sensitive to parameter
changes [33]. This leads to particular system behaviors in the vicinity of the XP, including strong
veering of the eigenvalue trajectories [64]. Along these trajectories, the effect of individual
parameters on the stability of the eigenvalue may be subject to sudden changes: A parameter
that originally stabilizes the eigenvalue, may ultimately have a de-stabilizing effect. On the one
hand, this poses an additional challenge for the control of thermoacoustic instability and needs
to be taken into account accordingly. On the other hand, provided that the parameter setting at
the XP is known, the unusual physical behavior may even be exploited to stabilize the system.

When dealing with increased eigenvalue sensitivity and a large number of system parameters,
adjoint design offers a valuable solution to accelerate system analysis. Instead of finding the
effect a parameter has on the eigenvalue by applying a small change to it and subsequently
rerunning the calculation, adjoint design delivers eigenvalue sensitivities w.r.t. all parameters
in just one calculation [49, 51]. The runtime needed to calculate the adjoint sensitivity is com-
parable to the original system runtime. In contrast, approximating the sensitivity with a finite
difference approach would require at least one additional computation for each system parame-
ter. Thus, for the calculation of the adjoint eigenvalue sensitivity w.r.t. N parameters, the number
of computational runs reduces by N −1. Through these benefits, adjoint analysis has proven to
be highly efficient and accurate for the analysis and optimization of thermoacoustic systems.

The application of adjoint methods in thermoacoustics ranges from classical sensitivity analysis,
over efficient optimization routines, to the quantification of prediction uncertainties. There are
two ways of calculating the adjoint sensitivities. The first, called the continuous adjoint (CA),
is based on a set of adjoint equations, which need to be derived analytically from the direct
system. The resulting model is subsequently discretized and solved, equivalently to the original,
direct system. In order to implement the CA approach in an existing network framework the
respective adjoint equations need to be derived for each element or system which involves the
implementation of a completely new set of adjoint elements. The so-called discrete adjoint
(DA), on the other hand, is derived from the discretized form of the direct system. For this
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second approach, calculating the adjoint system merely requires the evaluation of the complex
conjugate system matrix, and does not involve any elaborate derivations. As such, the DA is
easier to implement and less error-prone than the CA. However, the analysis of the DA system
may be aggravated as the resulting adjoint eigenmodes often exhibit spurious oscillations at the
boundary and jump conditions [38]. The adjoint system obtained via the CA approach does
not suffer from this shortcoming. In addition, the system analysis via the CA approach offers
physical insight into the original system, since adjoint equations can be interpreted directly.

This publication-based thesis proposes new methods of extending thermoacoustic network mod-
els for efficient stability analysis. In a first study, a new element is added to the network li-
brary, which incorporates temperature and geometry variations along a duct element. Based on
a second extension of the same network tool, the thesis introduces a third way to perform ad-
joint analysis using thermoacoustic network models: hybrid adjoints (HA). This novel approach
combines the advantages of the CA and DA. More specifically, the HA is straightforward to im-
plement and does not require the derivation of the adjoint equations for each model element.
At the same time, the HA does not exhibit the spurious oscillations observed for the DA, thus
allowing for direct interpretation of the adjoint eigenmodes.

An alternative way of performing adjoint analysis is proposed in a study that aims to identify
and analyze exceptional points. The proposed algorithm to locate XPs reveals for the first time
the existence of physically viable, unstable XPs in the thermoacoustic spectrum. In subsequent
studies, XPs are identified as a source of unreliable model predictions and surrogate model
failure.
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2 Thermoacoustic Network Modeling

The simulation of thermoacoustic models using standard tools of computational fluid dynamics
(CFD) may get excessively expensive. On the one hand, acoustic waves extend over a large
domain in space and propagate with high velocities, which requires a high resolution in time
over a large domain. On the other hand, diffusive species and heat transport processes at the
flame happen on the smallest spatial dimensions, thus setting high demands on the mesh.

To reduce the computational cost, many models exploit the linear nature of the system acoustics
by applying a divide et impera approach. Here, the unsteady heat release at the flame is modeled
separately from the acoustics. The flame response to acoustic perturbations is then included via
a flame transfer function (FTF) for linear analysis, or a flame describing function (FDF) for
non-linear analysis.

In network models, the acoustics are additionally divided into various homogeneous "elements".
For each of these elements, the acoustic problem is reduced to a minimum and can be solved
analytically [20, 81].
Building the aggregated thermoacoustic model merely requires the interconnection of the cor-
responding elements, making low-order network models a powerful tool for the efficient sim-
ulation of thermoacoustic systems. The resulting model constitutes a series of "duct elements"
that are connected by a set of elements modeling geometrical and physical jump conditions
with reflection coefficients at the upstream and downstream end of the system, respectively
[16, 21, 36].

In this chapter, the basic concepts of thermoacoustic networks are explained. In particular, the
open-source tool taX is introduced, which was developed at TU Munich and is used throughout
the thesis.

2.1 The Acoustic Wave Equations

Low-order network models apply eigenvalue analysis to determine whether a system is linearly
stable or not. The equations of each element follow from the one-dimensional continuity, mo-
mentum, and energy equations for a perfect, inviscid gas:

∂ρ

∂t
+ ∂ρu

∂x
= 0, (2.1a)

ρ
∂u

∂t
+ρu

∂u

∂x
+ ∂p

∂x
= 0, (2.1b)

∂s

∂t
+u

∂s

∂x
= Rg q̇

p
, (2.1c)
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where ρ is the density, u the axial velocity, p the pressure, T the temperature, s the entropy, q̇
the heat flux, Rg the universal gas constant, t the time and x the axial coordinate.

All properties of the flow are assumed to be constant over the element cross-section. In order to
linearize the system, the flow is decomposed into a steady, time-averaged part (denoted¯) and a
small perturbation part (denoted ′ ). The linearized conservation equations are given by:

∂ρ′

∂t
+ ū

∂ρ′

∂x
+u′∂ρ̄

∂x
+ ρ̄ ∂u′

∂x
+ρ′∂ū

∂x
= 0, (2.2a)

ρ̄
∂u′

∂t
+ρ′ū

∂ū

∂x
+ ρ̄u′∂ū

∂x
+ ρ̄ū

∂u′

∂x
+ ∂p ′

∂x
= 0, (2.2b)

∂s′

∂t
+ ū

∂s′

∂x
=−

¯̇qRg

p̄

(
u′

ū
+ p ′

p̄

)
. (2.2c)

Following the approach laid out in Ref. [43] Eqs. (2.2) can be transformed into three coupled
differential equations in u′, p ′, and s′.

Commonly, the "duct" element is the only element with a significant axial extent while all other
elements are considered acoustically compact, i.e. the axial length of the element is small in
comparison to the acoustic wave length, resulting in a small Helmholtz number He = le /λ<< 1.
A compact element can be interpreted as a set of jump conditions from the previous element to
the next. By contrast, the acoustic waves propagate within the duct element, making the duct a
central element of every thermoacoustic model. At the same time, both the duct and the flame
element introduce a non-linearity to the eigenvalue problem. Consequently, their mathematical
description in thermoacoustic networks merits detailed analysis, which will be laid out hereafter.

For the straight duct with a constant cross-sectional area and homogeneous mean flow quantities
along the longitudinal axis, the system of equations Eqs. (2.2) reduces to:

∂p ′

∂t
+ ū

∂p ′

∂x
+γp̄

∂u′

∂x
= 0, (2.3a)

ρ̄
∂u′

∂t
+ ρ̄ū

∂u′

∂x
+ ∂p ′

∂x
= 0, (2.3b)

∂σ′

∂t
+ ū

∂σ′

∂x
= 0, (2.3c)

where ς′ =σ′/cp and cp is the heat capacity at constant pressure. The equations can be decou-
pled by introducing the characteristic wave amplitudes f , g , and ς:

∂

∂t

 f
g
ς

=
−(c̄ + ū) 0 0

0 (c̄ − ū) 0
0 0 −ū

 ∂

∂x

 f
g
ς

 . (2.4)

Equation (2.4) describes two plane waves f and g propagating in down- and upstream direction
with the velocities (c̄ + ū) and (c̄ − ū), respectively. In addition, an entropy wave ς propagates
downstream with mean flow velocity ū. Consequently, the causality of the system is implicitly
given by the traveling direction of the incident waves fu , gd , and ςu , which leave the duct with
a time delay corresponding to the duct length and the respective propagating velocity.
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2.2 The Network Model taX

Compact elements representing a discontinuity, such as "area" or "temperature jumps", are fully
described via their respective scattering matrix, which relates the upstream and downstream
characteristic wave amplitudes to each other:

gu

fd

ςd

=
S11 S12 S13

S21 S22 S23

S31 S32 S33

 fu

gd

ςu

 . (2.5)

Transforming the duct equations (Eq. (2.4)) into the Laplace domain leads to an equivalent
representation of the duct element:gu

fd

ςd

=
 0 e−sτg 0

e−sτ f 0 0
0 0 e−sτς


︸ ︷︷ ︸

S

 fu

gd

ςu

 . (2.6)

However, looking at the entries of the scattering matrix, it becomes clear that the presence of a
time delay leads to a non-linear terms in s in the system of equations.

A similar issue can be observed when introducing a flame into the model. A commonly used
model to represent the impact of the flame is the n-τ-model [11]. It assumes that the flame
response to a velocity perturbation at the root of the flame can be represented as a delayed
fluctuation in the heat release:

Q̇ ′ = nu′(t −τ). (2.7)

Eq. (2.7) can be solved analytically in the Laplace domain, yielding

Q̇ ′ = ne−sτu′(s). (2.8)

Again, the scattering matrix relating the characteristic wave amplitudes before and after the
flame can be found analytically, but including the resulting scattering matrix into the model
inevitably introduces non-linear terms in s.

Solving the non-linear eigenvalue problem requires iterative procedures which may not con-
verge to the correct solution and become costly for larger models. Furthermore, non-linear
eigenvalue solvers typically only find one eigenvalue at a time and, if the basin of attraction
is very small, individual eigenvalues may not be captured at all [60].

It is, therefore, useful to transform the non-linear eigenvalue problem into a linear one.

2.2 The Network Model taX

The network model taX, which was employed for thermoacoustic analysis throughout this the-
sis, is an open-source network model that was developed at the Technical University Munich
[16, 21, 36]. Unlike most other implementations of thermoacoustic network models, the taX
framework is based on a representation of the thermoacoustic system in the time domain as a
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state-space system. This means the system equations for each element in the network model
relate the input u and the output y in terms of the element matrices Ae , Be , Ce , and De , as

ẋe = Ae x +Be u, (2.9a)
y =Ce x +De u. (2.9b)

By interconnecting these matrices [18], the global system matrices are obtained:

ẋ = Ax +Bu, (2.10a)
y =C x +Du. (2.10b)

The linear eigenvalue problem is obtained by transforming (2.10b) into the frequency domain:

(A− sI )q = 0, (2.11)

where the Laplace variable s represents the system eigenvalue and q is the associated eigenfunc-
tion. The eigenvalue can be decomposed into a real and an imaginary part s = 2πi f +σ, where f
is the frequency and σ is the growth rate. A system is linearly unstable, if it features eigenvalues
with positive growth rate σ > 0. The linearity of the eigenvalue problem in Eq. (2.11) offers a
compelling advantage to frequency domain considerations. On the other hand, unlike frequency
domain models, the taX framework is not able to directly incorporate non-linear analytical ex-
pressions. This problem appears in particular for the duct element (c.f. Eq. (2.6)) and the flame
element.

For the duct element, a solution is readily found by spatially discretizing Eq. (2.4), which leads
to a system of the form

ẋ = Ax +Bu, (2.12)

where x is a vector containing the discretized wave amplitudes fi , gi and ςi .

For the n-τ flame element, a state-space representation can be retrieved by introducing the aux-
iliary state x̃, which is transported along the artificial θ-coordinate at speed 1. The boundaries
of x̃ determine the time delay of the flame response [15]:

∂x̃

∂t
+ ∂x̃

∂θ
= 0, (2.13a)

x̃(t )|θ=0 = u′(t ), (2.13b)
x̃(t )|θ=τ = u′(t −τ). (2.13c)

Subsequent spatial discretization of this artificial advection equation casts the flame model into a
state-space model. By increasing the resolution, the accuracy may be improved. This represents
a significant advantage to approximation schemes like a rational polynomial approximation of
the exponential function and, in contrast to other state-space approaches (c.f. [73]) preserves the
linearity of the model in the presence of a flame.

The same approach may be applied to other, more complex time-delay transfer functions, in-
cluding FTFs that are based on the finite impulse response F =∑

k hk e−i k∆t (c.f. [67]).
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2.3 Thermoacoustic Network Models - A Literature Review

2.3 Thermoacoustic Network Models - A Literature Review

Since they are highly adaptive and efficient to use, low-order network models have been applied
in a large number of studies, be it to analyze the stability behavior of a specific model or to
shed light on observations that had thus far remained unexplained. The present literature review
introduces the most well-known, publicly available software frameworks. However, there are
numerous network model tools beyond those introduced herein (c.f.[3, 42]).

One of the first established network model frameworks is the Rolls-Royce/Cambridge LOTAN
tool, introduced by Dowling and Stow [14]. Similarly to taX, LOTAN is based on a plane
wave approach where the acoustic equations are expressed in terms of the characteristic wave
amplitudes, also referred to as Riemann invariants. However, the equations are solved in the
frequency domain as a non-linear eigenvalue problem, entailing the disadvantages mentioned
above. Among others, LOTAN has been used to obtain bifurcation diagrams of horizontal Rijke
tube [8] and to predict and analyze the modes of a full annular combustor while making use of
measured flame transfer functions [47].

A more recent but very similar model, called Oscilos [45], was developed at Imperial College,
London. It has, for instance, been used for the analysis of thermoacoustic limit cycles [44] or to
study the non-linear coupling of thermoacoustic modes in annular combustors [85].

In comparison to these two models, taX offers a range of benefits. As described in the previous
section, taX does not suffer from the shortcomings of a non-linear solver, but is able to cap-
ture all eigenvalues of the system by solving the linear eigenvalue problem. Moreover, since
it is based on the discretization of the linearized conservation equations, taX can also incor-
porate more elaborate physics, for example, mean flow effects or acoustic–vortex interactions.
However, these advantages come at a price: the discretization introduces multiple non-physical
eigenvalues and increases the numerical error, both of which need to be taken into account for
the analysis of the results. In addition, multiple degrees of freedom are added to the model. As a
result, the taX system matrices are comparatively large, especially for complex geometries like
annular combustors, whose modeling requires multiple duct and flame elements. A solution for
this last issue was proposed by Haeringer et al. [29], who derived Bloch wave boundary con-
ditions in time domain and used them to reduce the number of degrees of freedom of the taX
system.

In conclusion, while the LOTAN and Oscilos network model frameworks have played signif-
icant roles in analyzing thermoacoustic systems, the taX framework presents a very favorable
compromise of achievable model accuracy and complexity of the resulting numerical problem,
thus offering a promising framework for future research.
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3 Adjoint Design

The analysis of a thermoacoustic system by means of a thermoacoustic network model yields
the system eigenvalues, some of which may be found unstable, i.e. their growth rate is larger
than zero. In order to stabilize the system, the parameters have to be modified such that all eigen-
values become stable. One way of doing this is using a step-by-step Finite Difference approach,
where, to determine the influence of a single parameter, all eigenvalues are re-calculated after
applying a small change to the parameter. Hence, determining the most influential parameters
requires a rerun of the eigenvalue calculation of each parameter. This trial-and-error approach
is evidently costly in terms of time and computational resources when there is a large number
of parameters, thus calling for an alternative method.

With the adjoint method, the sensitivity of an eigenvalue with respect to all input parameters can
be simultaneously calculated in just one additional calculation, with a runtime of the same order
as the original simulation. For a large number of parameters (input quantities) and a small num-
ber of unstable eigenvalues (output quantities), which is commonly the case for thermoacoustic
problems, adjoint design is much more efficient than the finite difference approach.

This chapter presents the fundamental mathematical concept of adjoint equations. Furthermore,
the chapter summarizes and describes known applications of adjoint design in the field of ther-
moacoustics.

3.1 The adjoint formalism

The thermoacoustic network model introduced in the previous section is based on a state-space
formalism, which results in a linear eigenvalue problem. However, other network models and
Helmholtz solvers typically solve a non-linear eigenvalue problem. The following derivation of
adjoint methods is, therefore, based on the more general non-linear case given as

L{s, p}q = 0. (3.1)

The variable p represents the system parameters, s is the complex eigenvalue, and q is the
associated eigenfunction.

The adjoint function is defined by a bilinear form that states

〈q†,Lq〉−〈L†q†, q〉 = const , (3.2)

where q† is the adjoint eigenfunction and L† the adjoint operator. In this thesis, the inner product
between two functions f (x) and g (x) is defined as

〈 f |g 〉 =
∫

f ∗(x)g (x)d x. (3.3)
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Equivalently, the discrete bilinear form is given by the Hermitian inner product of two vectors
v1 and v2

〈v1|v2〉 = v H
1 v2, (3.4)

where v H
1 denotes the complex transpose of v1.

The adjoint system corresponding to Eq. (3.1) reads:

L†{s∗, p}q† = 0. (3.5)

The adjoint operator L†{s∗, p} can be derived in two ways:

1. L† is analytically derived from the continuous direct equations and Eq. (3.5) is numeri-
cally solved afterward (CA, Continuous Adjoints).

2. The adjoint equations are derived from the discretized form of the direct equations (3.1)
(DA, Discrete Adjoint). In this case, L† is not an operator, but a matrix.

In order to derive the CA equations, Eq. (3.2) is integrated by parts. The adjoint boundary
conditions are obtained by setting the boundary terms arising in the integration by parts to zero.

The derivation of the CA is cumbersome, error-prone, and needs to be carried out anew for
each new set of equations modeling a thermoacoustic system. However, the interpretation of
the continuous adjoint equations may offer additional insight into the system dynamics and
help improve understanding of the underlying physics.

In contrast, there is a general adjoint formulation for the DA. Pre-multiplying Eq. (3.1) by a test
function q† and using the corresponding definition of the inner product as defined in Eq. (3.4)
yields:

〈q†|L{s, p}q〉 (3.6a)

=q†H (
L{s, p}q

)
(3.6b)

=q H LH {s, p}q† (3.6c)

〈q|LH {s, p}q†〉. (3.6d)

If Eq. (3.6a) is satisfied for arbitrary vectors q , q† is called the left, or adjoint, eigenvector [38].
The direct and adjoint eigenvector form a bi-orthogonal basis [28, 46]:

〈q†
i |q j 〉 = 0, for i ̸= j . (3.7)

From Eq. (3.6d), the definition of the adjoint operator matrix L† follows as:

L†{s, p} = LH {s, p}. (3.8)

Since L† is explicitly given in terms of the direct operator matrix L, implementing the DA
approach is much more straightforward than the CA. However, the eigenfunctions calculated
via the DA approach may feature spurious oscillations at the boundaries (c.f. [38] Sec.IV B for a
detailed explanation). These non-physical oscillations are numerical artifacts that may severely
aggravate interpreting the results. An exemplary illustration is given in chapter Sec. 5.2.4.
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3.1.1 Calculation of the adjoint sensitivities

A compelling strength of adjoint methods is the efficient calculation of system sensitivities.
There are two types of sensitivities:

• The base state sensitivity, which describes the eigenvalue shift of the base system due to
small changes in the system parameters pi . By analyzing the base state sensitivity for the
most unstable eigenvalue, one can identify influential parameters and how to change them
in order to stabilize the system.

• The feedback sensitivity, where the system is perturbed by adding an external feedback
mechanism to the model equations, e.g. to model the impact of passive damping devices.
By analyzing the feedback sensitivity, the optimal configuration of the feedback mecha-
nism may be determined, yielding the most stabilizing effect.

For both the CA and the DA approach, the base state sensitivity can be derived by perturbing
the operator (or, in case of the DA, the operator matrix) L{s, p}, which results in a shift of the
eigenvalue s and the associated eigenfunction q

L{s, p} → L{s, p}+ϵδL{s, p}, (3.9a)
s → s +ϵδs, (3.9b)
q → q +ϵδq. (3.9c)

For non-degenerate eigenvalues, this modifies the general eigenvalue problem to(
L{s, p}+ϵδs

dL{s, p}

d s
+ϵδL{s, p}

)(
q +ϵδq

)+O
(
ϵ2)= 0. (3.10)

Considering only terms of order ϵ reduces Eq. (3.10) to

L{s, p}δq +δs
dL{s, p}

d s
q +δL{s, p}q = 0. (3.11)

For the DA framework, a general expression for the eigenvalue shift is obtained by using the
inner product (Eq. (3.4)) and pre-multiplying the equation by the adjoint eigenfunction q† (for
which 〈q†,La〉 = 0 for any vector a):

δs =−〈q†,δL{s, p}q〉
〈q†, dL{s,p}

d s q〉
. (3.12)

If p is a vector containing multiple system parameters, the sensitivity of the i th eigenvalue si

with respect to changes in the parameter p j can be determined by

δsi

δp j
=−

〈q†
i | ∂L
∂p j

qi 〉
〈q†

i | ∂L
∂si

qi 〉
. (3.13)

Calculating the base state sensitivity via the DA, hence, only requires the calculation of the
left eigenvector and the evaluation of Eq. (3.13), provided that the shift of the operator matrix
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due to changes in p j is known. Note, however, that this is typically not the case in a network
model, as the software interconnects the element matrices to a system matrix, whose parameter
dependencies are not known explicitly.

To derive the feedback sensitivities, the governing equations are disturbed by injecting small
feedback terms in the state variables. In the case of the Linear Euler Equations, a feedback
mechanism is introduced by adding a mass term per unit volume per unit time ϵδṁ, a force
term per unit volume ϵδ f , and a heat release rate term per unit volume per unit time ϵδq̇ [38]:

∂ρ′

∂t
+ ū

∂ρ′

∂x
+ ρ̄ ∂u′

∂x
= ϵδm, (3.14a)

ρ̄
∂u′

∂t
+ ρ̄ū

∂u′

∂x
+ ∂p ′

∂x
= ϵδ f , (3.14b)

∂p ′

∂t
+ ū

∂p ′

∂x
+γp̄

∂u′

∂x
= ϵδq̇ . (3.14c)

Again, the perturbation causes a shift in the operator (matrix) L{s, p}, the eigenvalue s, and the
eigenfunction q . The DA procedure to derive the eigenvalue sensitivity to a feedback mecha-
nism is, therefore, equivalent to the base state sensitivity. However, the operator shift δL caused
by external feedback is not trivially obtained and may require more extensive analysis.

3.2 Adjoints in Thermoacoustics - A Literature Review

The first appearance of the adjoint equations in literature is attributed to Lagrange in 1763.
He used the adjoint formalism to reduce the order of a linear, ordinary differential equation
and showed how this method may be applied to a range of problems such as fluid motion,
vibrating strings, and the calculation of planet movement. Since then, adjoint methods have been
applied in a large variety of scientific fields, among others to conduct sensitivity analysis, solve
optimization problems, or build surrogate models, e.g. to speed up uncertainty quantification.

The pioneering works of Tumin and Fedorov [84] and Hill [34] finally introduced adjoints in
the field of hydrodynamics. Both studies applied adjoint design for the analysis of boundary-
layer instability in the wake of a cylinder. Their work set the course for a number of subsequent
studies in hydrodynamic stability, the most important of which are summarized in [46].

The first study applying adjoint methods in the field of thermoacoustics was published by Ju-
niper [37] in 2011. In this study, the author assesses the optimal initial state which leads to the
onset of thermoacoustic instability in a Rijke tube. The analysis did not involve the eigenvalue
sensitivity but exploited the efficiency of adjoint sensitivity calculation within the optimization
routine.

The first demonstration of the efficiency of adjoint eigenvalue analysis in thermoacoustics was
presented by Magri and Juniper [51]. The study includes the derivation of both the continuous
and discrete adjoint sensitivities for a Rijke tube containing a hot wire. By analyzing the feed-
back sensitivities of the system, the authors identify the strongest stabilizing mechanism that
can be applied to the system. The theoretical predictions made in the study were experimentally
confirmed in Rigas et al. [69]. Subsequent studies extend the model used in [51]. Magri and
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Juniper introduce a more accurate representation of the electrically heated Rijke tube, including
a mean temperature jump at the heated mesh [50]. A compact diffusion flame is introduced in
[52] and [53]. The latter analyses reveal that external forcing has the strongest effect at the tip of
a flame. Furthermore, the stoichiometric mixture fraction, the width of the fuel injection slots,
and the heat release are found to be the most influential parameters on the eigenvalue.

The above studies demonstrated the adjoint derivations for the first-order eigenvalue drift due
to changes in the base state and open loop forcing. However, the considerations were limited to
the linear analysis of the simplistic Rijke tube. An extension to non-linear eigenvalue problems
and second-order terms in the eigenvalue drift is provided in [37, 48].

These primary studies inspired a series of applications of adjoint methods in thermoacoustics,
among others for the analysis of conical flames [62], axisymmetric, swirling M-flames [78],
and degenerate eigenvalues in annular combustors [54]. Finally, an extensive comparison of the
CA and DA approach applied to a Helmholtz solver can be found in [38]. The study finds that
the DA approach applied to a finite difference discretized model based on the strong form of
the direct equations leads to spurious oscillations in the adjoint eigenmodes at the boundary
conditions. These may be circumvented by using a finite element method for the discretization
of the direct equations or, alternatively, build the model based on the weak form of equations.

In addition to their applications in stability analysis, adjoint methods offer a similar, if not
more promising potential for thermoacoustic optimization problems. Thermoacoustic optimiza-
tion problems typically involve a large number of tuning parameters, thus gradient-enhanced
solvers may be greatly accelerated by embedding the adjoint sensitivity information. For ex-
ample, Caeiro et al. [7] performed adjoint-based shape optimization of a Helmholtz Resonator
to suppress thermoacoustic oscillations, Qadri et al. [68] efficiently identify the optimal place-
ment of ignition in an axisymmetric jet by exploiting adjoint gradient calculation, and Mensah
and Moeck [56] identified the optimal placement and combination of Helmholtz resonators to
dampen instabilities of a 2D configuration modeling an annular combustor.

The third major field of adjoint methods in thermoacoustics is the efficient resolution of un-
certainties in model predictions. Since thermoacoustic systems are highly sensitive to a large
number of system parameters, uncertainties in those parameters may greatly affect the quality
of model predictions. A first discussion of adjoint theory applied to uncertainty quantification
for an annular combustor is laid out in [48], where the adjoint framework is included into the Ac-
tive Subspace method. An alternative approach is given in [77], by using an adjoint Helmholtz
solver to quantify prediction uncertainties of a combustor model based on a second-order Taylor
expansion of the eigenvalue problem. Finally, the application of first- and second-order multi-
parameter adjoint perturbation theory for uncertainty quantification is proposed in [57]. In all
three studies, uncertainty quantification was achieved faster and more efficiently than in stan-
dard Monte Carlo simulation-based methods. A more comprehensive review of the applications
of adjoint methods can be found in [49].

In conclusion, the use of adjoint methods has been instrumental in analyzing, understanding,
and optimizing thermoacoustics systems. Future research may utilize the adjoint gradient to
accelerate and improve the training process of data-driven models such as Gaussian process
models or neural networks to efficiently predict the behavior of thermoacoustic systems.
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3.3 Adjoint Analysis of Thermoacoustic Network Models

Some of the aforementioned studies use a thermoacoustic network framework to describe the
direct eigenvalue problem. However, most of these are based on DA, i.e. the adjoint eigenvalue
sensitivity is calculated using the Hermitian of the system matrix resulting from the discretized
direct eigenvalue problem. A comprehensive introduction to the procedure is, for instance, laid
out in [79]. While the DA approach is straightforward and readily applicable to any numerical
model, it also entails some disadvantages (c.f. Sec. 3.1). In addition, although both the CA and
the HA approaches should, in principle, converge, various studies showed that convergence is
not guaranteed (e.g. [4, 25]).

As a result, there have been a number of studies dedicated to the integration of CA into existing
network frameworks.

An example of the CA approach applied to a network model is shown by Aguilar et al. [1].
The study introduces a wave-based adjoint network model for a simple system configuration,
where the (continuous) adjoint equations and jump conditions are derived for each element
of the thermoacoustic system. Having an explicit form of the adjoint equations may help to get
some additional insight into the underlying physics of the system. However, deriving the adjoint
equations anew for each new model is both error-prone and time-consuming.

Chapter "Contextualization of Papers", Sec. 5.2, therefore describes a novel approach to imple-
menting adjoint design in existing network frameworks.
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4 Exceptional Points

Highly sensitive eigenvalues may complicate the prediction and control of thermoacoustic in-
stability. More specifically, an eigenvalue that has been predicted stable may become unstable
for small changes in one or several parameters [39].

Parameter sensitivities and the resulting prediction uncertainties may even be enhanced for spe-
cific parameter settings, due to the existence of so-called exceptional points (XPs). The oc-
currence of XPs is associated with unusual physical behavior and has been studied in several
scientific fields such as mechanics, electromagnetism, and quantum physics [33]. In thermoa-
coustics, XPs have only recently become a topic of interest. However, understanding their im-
pact on thermoacoustic instability may be crucial to the design and control of thermoacoustic
systems.

This chapter introduces the mathematical concept of XPs and the associated characteristics, and
outlines their significance in thermoacoustic stability analysis.

4.1 Characteristics of Exceptional Points

Exceptional points occur when the characteristic equation resulting from the eigenvalue prob-
lem (Eq. (3.1)) has a multiple root solution in the eigenvalue s. Mathematically, this means that
the algebraic multiplicity a of the eigenvalue is larger than one, in which case s is called a de-
generate eigenvalue. XPs differ from other degenerate eigenvalues in the relationship between
their algebraic and geometric multiplicity. The geometric multiplicity g is the dimension of the
eigenspace of the eigenvalue s, i.e. the number of linearly independent eigenvectors associated
with s. In the case of an XP, the algebraic multiplicity is larger than the geometric multiplicity
a > g , as not only the eigenvalues but also their associated eigenfunctions coincide.

Exceptional points exhibit a set of characteristic features, which will be further explained
throughout this section:

1. At the XP two (or more) eigenvalues and their associated eigenfunctions coalesce.

2. In the immediate vicinity of a two-fold XP (i.e. a = 2) the system can be represented by
a two-dimensional problem. The dynamics of this reduced system are determined by the
two eigenvalues that coalesce at the XP.

3. At the XP, the bi-orthogonality of the direct and adjoint eigenvector does not hold.

4. The eigenvalue sensitivity at the exceptional point is infinitely large. As a result, eigen-
value trajectories are strongly deflected in the vicinity of exceptional points.
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5. Looping in the parameter space results in a half-circle of the eigenvalues. A complete
circle in the eigenvalue space requires two loops in the parameter space.

4.1.1 Model reduction at the XP

In the immediate vicinity of an exceptional point, the system can be locally described by a 2x2
matrix [40]. Examples of the reduction procedure are given in [9, 31]. For an exemplary generic,
two-dimensional system with a complex parameter δ

L(δ) =
[

1 δ

δ 1

]
, (4.1)

the characteristic equation det(L(δ)− sI ) = 0 yields the eigenvalues

s1 =
√

1+δ2, s2 =−
√

1+δ2. (4.2)

The associated eigenvectors read:

q1,2(δ) =
[ −δ

1±
p

1+δ2

]
. (4.3)

At the two XPs δ=±i both the eigenvalues and the eigenvectors coalesce:

s1,2 = 0, q1,2(δ) =
[±i

1

]
. (4.4)

This is called a "branch point singularity" and is a distinctive feature of the XP [32].

4.1.2 Bi-orthogonality at the XP

Recall from the previous chapter that direct (right) and adjoint (left) eigenvectors form a bi-
orthogonal basis (Eq. (3.7)). The identity holds for both eigenvalues at the XP, i.e. i → X P+ and
j → X P−. Consequently, at the XP

〈q†
X P |qX P 〉 = 0. (4.5)

This relation, known as self-orthogonality, is a characteristic property of the XP. It can easily be
checked for the two-dimensional example introduced above:

[
i 1

][
i
1

]
= 0,

[−i 1
][−i

1

]
= 0. (4.6)

4.1.3 Infinite sensitivity and mode veering at the XP

The perturbation expansion at an XP follows the fractional power series, known as Puiseux
series s = s0 +∑n

j=1 s j (ϵ j − ϵ0) j /a [40]. A first-order expansion close to a two-fold XP (a = 2,
g = 1) yields

s = s∗+ s1
p
ϵi −ϵi ,X P +O (ϵi −ϵi ,X P ), ϵi → ϵi ,X P , (4.7)
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Figure 4.1: Eigenvalue trajectories at and around the exceptional point.

where ϵi is i -th parameter, s∗ is the eigenvalue at the XP and s1 is a constant. The sensitivity of
the XP results as:

∂s

∂ϵi
= s1

2
p
ϵi −ϵi ,X P

+h.o.t . (4.8)

As ϵi → ϵi ,X P , the right side in Eq. (4.8) approaches infinity, thus indicating that the eigenvalue
sensitivity at the XP becomes infinite. In addition, the sensitivity undergoes a change of sign at
the exceptional point.

As a result, eigenvalues approaching an XP are subject to sudden shifts in sensitivity, entailing
strongly varying responses to parameter changes [64].

The infinite sensitivity at the XP is paralleled by strong mode veering in its immediate vicinity.
As a result, eigenvalues approaching an XP are subject to sudden shifts in sensitivity, entailing
strongly varying responses to parameter changes [64]. Next to strong veering effects, two dis-
tinctly different trajectories emerge in close vicinity of the exceptional point. Heiss and Harney
[31] describe their behavior as follows:
"In one of the cases, the two levels avoid each other while their widths cross, in the other case,
the two levels cross while their widths avoid each other."
Figure 4.1 illustrates these two cases: For a thermoacoustic system the flame parameter τc is
varied where the outlet reflection coefficient R is set to (i) R = R∗, which corresponds to the
parameter setting at the XP (black trajectories), (ii) a value slightly smaller than R∗ (blue tra-
jectories) and (iii) a value slightly larger than R∗ (orange trajectories).
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Figure 4.2: Left: Circle in the parameter space δ with the exceptional point at δ = i at the

center; right: Eigenvalues s1 (squares) and s2 (circles) calculated for the parameter
values depicted on the left.

4.1.4 Parameter looping at the XP

A closed loop in the parameter space in close vicinity to an XP results in an open loop in the
eigenvalue. In other words, to get a closed loop in the eigenvalue, one has to perform two loops
in the parameter space. This behavior can be demonstrated by calculating the eigenvalues for
the parameters δ(ϕ) = i +e iϕ around the XP [9]. For the simple example above, the eigenvalues
s1,2 can be analytically determined as

s1,2 =±
√

1+ (i +e iϕ)2. (4.9)

The results are plotted in Fig. 4.2, illustrating the looping behavior around the XP.

4.2 Exceptional Points in Thermoacoustics

In the context of thermoacoustics, the effects of XPs have been observed in several studies with-
out drawing conclusions about their origin. For example, Sogaro et al. [79] observe noticeably
large eigenvalues sensitivities along with strong mode veering. Mensah et al. [58] were the
first to unequivocally identify an exceptional point in a thermoacoustic model. The publication
considers a simple system that is modeled by the Helmholtz equation, with the flame being
modeled as an n-τ transfer function. A global contour-integral-based method is used to identify
the exceptional point and lay out its effects on nearby eigenmodes. Subsequent studies [75, 80]
identified XPs as the root cause for parameter ranges with heightened sensitivity and the associ-
ated mode veering. In these primary studies, the occurrence of XPs in thermoacoustic systems
is connected to the coalescence of modes of different nature, i.e. acoustic and ITA modes. (For
further information about intrinsic thermoacoustic modes see, for example, [17, 35, 74]). How-
ever, as Orchini et al. [64] showed, XPs may also emerge from the coalescence of two acoustic
modes. The method to locate this kind of XP is based on the infinite sensitivity at the XP, and
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will be elucidated in detail in Sec. 5.3.2, together with a third approach that locates XPs by
means of higher-order perturbation theory [63]. Orchini et al. [64] further study the interplay
of thermoacoustic and ITA modes, finding that even stable XPs may influence the stability be-
havior of a system by introducing strong changes in the eigenvalues sensitivities. In [23], an
equivalent observation is made for the interplay of mode clusters, which were initially observed
in an annular combustor in [6].

The existence of XPs in thermoacoustic systems could also be observed experimentally:
Bourquard and Noiray [5] experimentally and analytically studied a tunable damping system
that features an XP for a specific setting of the purge mass flow, showing that stabilization is
most effective at the exceptional point. Finally, Ghani et al. [24] identify branch-switching at the
XP as the primary reason for observed sudden shifts in the stability of thermoacoustic systems.

The identification of XPs has greatly improved the fundamental understanding of thermoacous-
tic systems and the effects of mode interplay. However, there still remain a number of questions,
e.g. how do XPs affect the non-linear behavior of thermoacoustic systems and what are ways to
utilize XPs to optimize system behavior?
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5 Contextualization and Discussion of
Publications

The present chapter discusses the publications that constitute this thesis. The network model
introduced in Sec. 2.2 introduces a duct element, where the cross-sectional area and mean tem-
perature are uniform along the duct axis. In Low-order Network Model of a Duct with Non-
Uniform Cross-Section and Varying Mean Temperature in the Presence of Mean Flow (refer-
ence PAPER_DUCT [70]) a new version of the duct element is introduced, which is capable of
taking into account both temperature and geometry variations. The same network model tool
is used in A Hybrid Adjoint Network Model for Thermoacoustic Optimization (reference PA-
PER_HA [72]). The study proposes an alternative formalism of the adjoint method to those
introduced in Sec. 3.1, which can be easily integrated into any existing network model. An ap-
plication of adjoint analysis is presented in The Impact of Exceptional Points on the Reliability
of Thermoacoustic Stability Analysis (reference PAPER_XP [71]). In that study, the adjoint sen-
sitivity is used to accelerate the identification process of exceptional points. The study reveals
that XP may greatly affect uncertainty propagation and the quality of surrogate model predic-
tions. The proposed algorithm to identify exceptional points is applied in Interplay of Clusters
of Acoustic and Intrinsic Thermoacoustic Modes in Can-Annular Combustors (reference PA-
PER_ITA [23]). The study finds that mode veering in the vicinity of an XP strongly plays a
crucial role in understanding the trajectory behavior of acoustic and ITA clusters.

5.1 The Duct Element with Varying Cross-Section and Mean
Temperature Distribution

The geometry of combustors is commonly strongly simplified in thermoacoustic network mod-
els. The duct element, which is central to any model as it is the only element with axial extent
(c.f. Sec. 2.2), assumes that all mean properties are constant along the longitudinal duct axis.
Consequently, temperature variations resulting from heat transfer effects along the duct are un-
accounted for. In addition, the duct cross-section is considered constant, significantly limiting
the geometric complexity that can be represented by a simple model. Gradually changing cross-
sectional areas are modeled as a sequence of duct elements with constant cross-sections, con-
nected by area jumps. If one wants to include the impact of temperature variations, conventional
modeling additionally requires temperature jumps at the appropriate position.

For a given temperature distribution, e.g. obtained from a preliminary steady-state CFD simu-
lation, building a model this way entails a loss of information if the numerical resolution of the
CFD is not matched. However, preventing this might require an excessive number of elements,
resulting in an overly large and cluttered system.
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Consequently, the integration of an extended duct element, which is able to take both geometry
and temperature variations into account, may greatly accelerate the set-up of a new model and
at the same time improve the accuracy of the results. An exemplary network model employing
this element is illustrated in Fig. 5.1.
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Figure 5.1: Illustration of an exemplary network model including a duct with a variable cross-
sectional area and temperature profiles

In publication PAPER_DUCT, the process of designing and implementing such an element is
presented. The model is based on the quasi-one-dimensional, linearized Euler equations, which
read:

∂p ′

∂t
+ ū

∂p ′

∂x
+u′∂p̄

∂x
+ p̄γ

∂u′

∂x
+p ′γ

∂ū

∂x
+ u′γp̄

A

∂A

∂x
+ γūp ′

A

∂A

∂x
= 0, (5.1a)

∂u′

∂t
+u′∂ū

∂x
+ ū

∂u′

∂x
+ 1

ρ̄

∂p ′

∂x
+ p ′ū
γp̄

∂ū

∂x
− ūs′

cp

∂ū

∂x
= 0. (5.1b)

Subsequently, the system is cast to generalized coordinates following the procedure outlined in
[18]: [

p ′
ρ̄c

u′

]
=

[
1 1
1 −1

][
f
g

]
. (5.2)

The resulting system of partial differential equations is transformed into a state-space formalism
by discretizing the characteristic waves f and g in time using a third-order upwind scheme. The
resulting model equations differ from the standard duct element, as they introduce a coupling
between the f and g waves, which results from the change of impedance within the duct.

Comparisons with analytical solutions derived in [82, 83] and [43] show excellent agreement
with the network model results.

5.2 Hybrid Adjoints

There are several possibilities for the integration of adjoint methods into an existing thermoa-
coustic network tool.

1. A ready solution is offered by the discrete adjoint. By extending the software framework
by a single script, the adjoint sensitivities may be calculated for any kind of model, i.e. any
combination of network elements. Within the additional script, the program evaluates
the complex conjugate of the original system matrix in which the direct equations have
already been discretized for numerical solving.
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2. A more elaborate approach is given by the continuous adjoint. Here, the adjoint equations
need to be derived and implemented for each element.

For a more detailed explanation of the CA and DA approach, see Sec. 3.1.

For a network solver, the spurious oscillations observed in [38] occur not only at the boundary
conditions, but also at the interconnections of the network elements. Considering that a network
model is composed of multiple elements, these oscillations may significantly impair the quality
of the results and complicate the interpretation thereof. Ref. [38] shows that these oscillations
can be eliminated by (i) changing the discretization scheme or (ii) using the direct equations
in their weak form. However, both of these solutions would require substantial changes to an
existing network model, possibly entailing unwanted effects on the prediction quality.

By implementing the CA approach, the direct network solver does not have to be fundamentally
modified, yet spurious oscillations are entirely avoided. However, the CA requires the derivation
and implementation of the adjoint equations for each element, thus requiring comparably large
resources and an increased risk of erroneous results.

Publication PAPER-HA, introduces a hybrid approach that is both easy to implement and at the
same time eliminates spurious oscillations in the eigenmodes. The HA method is based on the
continuous adjoint equations but works within the framework of the network tool, where the
direct equations have already been discretized. It exploits the self-adjoint character of the duct
element to find a general transformation matrix for the remaining, compact network elements,
thus eliminating the need to derive the CA equations for each element.

5.2.1 Methodology of the HA approach

This section summarizes the derivations of the HA approach that is presented in PAPER_HA. A
more detailed derivation of the fundamental equations can be found in the original publication.

The adjoint duct equations are derived by creating a Lagrange functional of the Linearized
Euler equations (2.2). The resulting adjoint equations in terms of the adjoint characteristic wave
amplitudes f † and g † (neglecting entropy waves) read

∂

∂t

[
f †

g †

]
= ∂

∂x

[
c + ū 0

0 ū − c

][
f †

g †

]
. (5.3)

The system of equations is equivalent to the direct duct equations (2.4), demonstrating the self-
adjoint property of the duct. Hence, instead of implementing a new, adjoint duct element, the
adjoint system may be determined based on the direct duct element of the original network
software. The partial integration performed on the Lagrangian further provides the relationship
between direct and adjoint boundary terms at the up- and downstream ends of the duct at x = 0
and x = L: [

ρ̄g g †(c − ū)− ρ̄ f f †(c + ū)
]L

0
= 0. (5.4)

Equation (5.4) is central to the derivation of the HA. Based on the boundary terms, the pa-
per demonstrates how to derive a generalized transformation to calculate the adjoint scattering
matrix based on any original scattering matrix.
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The following illustrative example of two ducts that are connected via an area jump is used to
demonstrate the simplicity and viability of the HA approach (Fig 5.2):

fu

gu

fd

gd
Duct1 Duct2

Figure 5.2: Illustration of two duct elements connected by an area jump.

Since the area jump represents an acoustically compact discontinuity, both ducts feature bound-
ary terms from Eq. (5.4) at the position of the area jump. More specifically, the downstream
boundary conditions of the upstream duct and the upstream boundary conditions of the down-
stream duct yield:

gu g †
uρ̄u(cu − ūu)− fu f †

u ρ̄u(cu + ūu)−(
gd g †

d ρ̄d (cd − ūd )− fd f †
d ρ̄d (cd + ūd )

)
= 0. (5.5)

By inserting the relationship between the incoming and outgoing waves given by the scattering
matrix S (Eq. (2.5)) of the discontinuity, a general transformation formalism for the adjoint
scattering matrix is obtained:

S† = 1

det (S)

[ S22(c̄u+ūu )
(c̄u−ūu ) −S21ρ̄d (c̄d−ūd )

ρ̄u (c̄u−ūu )

−S12ρ̄u (c̄u+ūu )
ρ̄d (c̄d+ūd )

S11(c̄d−ūd )
(c̄d+ūd )

]
. (5.6)

With this identity, any scattering matrix of the form Eq. (2.5) can be cast into its correspond-
ing adjoint scattering matrix without deriving the adjoint equations. Consequently, the network
model tool only needs to be extended by one additional script, which calculates the adjoint scat-
tering matrix and reruns the system, using the same interconnection mechanism as for the direct
problem.

The calculation of base state and feedback sensitivities based on the HA approach follows from
the identity:

δs
∂L

∂s
+δξ∂L

∂ξ
= 0. (5.7)

The first term of the equation constitutes the normalization condition for the adjoint eigen-
modes:

∂L

∂s
= 0. (5.8)

Depending on the complexity of the system, the derivation, especially of the normalization
condition, may involve some more advanced derivations, yet the effort is still lower than the
CA.

Additional complexity is also introduced by the duct element with variable mean temperature
and cross-section (Sec. 5.1). As this element is neither compact nor self-adjoint, it has to be
considered separately for the implementation of HA. However, since the extended duct may
also be modeled as a sequence of ducts and compact area and/ or temperature jumps, it is
evident that it does not affect the calculation of the adjoint scattering matrix.
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5.2.2 Review of Aguilar et al.

As the HA is based on the CA equations and, consequently, entails the same numerical advan-
tages, this thesis emphasizes the advantages of the HA over the CA approach. This section,
therefore, takes a closer look into the implementation of the conventional CA approach, as pro-
posed by Aguilar et al. [1].

For comprehensibility, the simpler of the two cases introduced in the study will be summarized.
The thermoacoustic model comprises a duct with up- and downstream reflection coefficients
Ru and Rd , respectively, and a heating gauze located at axial position x = b. The LEEs (2.3)
produce the following fluctuation equations (where ū = 0):

ρ̄
∂u′

∂t
+ ∂p ′

∂x
= 0, (5.9a)

∂p ′

∂t
+γp̄

∂u′

∂x
= 0, (5.9b)

along with the jump conditions: [
p ′]b+

b− = 0, (5.10a)[
u′]b+

b− = γ−1

γp̄

∫ b+

b−
q ′d x. (5.10b)

The unsteady heat release at the gauze is modeled using the n-τ-model [11]. For the derivation
of the adjoint system, the equations and jump conditions are transformed into the frequency
domain using [·]′ = [̂·]e st , yielding the following:

E1 := sρ̄û + d p̂

d x
= 0, (5.11a)

E2 := sp̂ +γp̄
dû

d x
= 0, (5.11b)

and

J1 := [
p̂

]b+
b− = 0, (5.12a)

J2 := [û]b+
b− −βû(b−)e−sτ = 0, (5.12b)

where β is the interaction index in the flame model. In the next step, the Lagrangian functional
is created:

L := s −〈û†,E1〉−〈p̂†,E2〉−〈ĝ †, J1〉−〈ĥ†, J2〉. (5.13)

The variables ĝ †, ĥ† are the adjoint quantities corresponding to the direct jump conditions J1
and J2. Integration by parts of Eqs. (5.11) gives the adjoint set of equations:

− s∗ρ̄û† +γp̄
d p̂†

d x
= 0, (5.14a)

− s∗p̂† + dû†

d x
= 0. (5.14b)
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The boundary terms arising from the integration by parts provide the jump conditions:[
γp̄

γ−1
p̂†

]b+

b−
+βp̂†(b−)e−s∗τ = 0, (5.15a)[

û†
]b+

b− = 0. (5.15b)

With the adjoint equations and boundary conditions, one can build a network for the thermoa-
coustic system equivalently to the direct system (c.f. [81]).

5.2.3 Minimal example: Adjoint area jump

In this section, the usefulness of the HA is demonstrated by analyzing a simple system consist-
ing of a duct with an area change at axial position x = l . The mean flow is considered negligible,
and the speed of sound is constant (c̄u = c̄d ).

The jump conditions at the area change read:[
p ′]l+

l− = 0, (5.16a)[
Au′]l+

l− = 0, (5.16b)

where A is the duct Area and l− and l+ the axial positions immediately up- and downstream
of the jump. With α = A(l+)/A(l−) the following scattering matrix relates the f and g waves
before and after the are jump (e.g. [76]):

S =
( 2

α+1
α−1
α+1

−α−1
α+1

2α
α+1

)
. (5.17a)

To compare both approaches, the scattering matrix will first be derived using the standard CA
approach. The procedure can be summarized as follows:

1. Derivation of the adjoint duct equations and boundary conditions.

2. Insertion of the direct jump conditions into the adjoint boundary conditions.

3. Insertion of the adjoint characteristic wave amplitudes and solving for the scattering ma-
trix.

In contrast, the HA approach requires one single step to calculate the adjoint scattering matrix:
Inserting the elements of the direct scattering matrix in Eq. (5.17a) into the transformation
matrix given in Eq. (5.6).

Steps (1) and (2) are conducted according to the procedure outlined in Sec. 5.2.2, yielding the
following set of adjoint boundary conditions:[

û†
]l+

l−
= 0, (5.18a)[

Ap̂†
]l+

l−
= 0. (5.18b)
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Note that the adjoint boundary conditions according to [1] need to be derived anew as soon
as the direct jump conditions change, for instance, by inserting a temperature jump after the
area jump. The relationship between the primitive adjoint variables û†, p̂† and the adjoint wave
amplitudes f †, g †, which follows from diagonalizing the adjoint duct equations (5.3) reads:

û† = f † − g † (5.19a)

p̂† =
(

f † + g †
)

/c. (5.19b)

Replacing the primitive adjoint variables in the jump conditions and solving for f †
d and g †

u leads
to the following expression for the adjoint scattering matrix:

S† =
[ 2α

α+1
α−1
α+1

−α−1
α+1

2
α+1

]
(5.20)

The same result is obtained by the HA approach:

S† = 1

det (S)

[
S22 −S21

−S12 S11

]
=

[ 2α
α+1

α−1
α+1

−α−1
α+1

2
α+1

]
(5.21)

Evidently, both approaches yield the same scattering matrix for the adjoint area jump. However,
the HA eliminates the need to derive the adjoint equations, thus delivering more reliable results
more efficiently.

5.2.4 Comparison between CA, DA, and HA

In Fig. 5.3 the steps for the different adjoint approaches are summarized for a state-space net-
work model. Both the hybrid and the discrete adjoint make use of the steps already performed
by the direct network model. The HA uses the original scattering and discretized matrices but
needs to perform the interconnection of the adjoint elements in order to calculate the adjoint
eigenvalues and eigenvectors. The DA steps in after the interconnection of the direct matrices
and, therefore, avoids a second interconnection of the adjoint matrices. Here, the adjoint system
matrix is calculated by taking the conjugate transpose of the direct system matrix, also known
as the Hermitian. The Hermitian is readily obtained using a reverse routine-calling algorithm
[19, 46]). In contrast to the DA and HA approach, each step performed for the direct network
model has to be repeated for the CA approach, demonstrating again why the implementation of
the CA takes a comparably large effort. On the other hand, the derivation of the adjoint equa-
tions may offer some additional insight into the system dynamics, thus justifying the additional
steps for some specific purposes.

Regarding the implementation, the DA approach represents the most efficient method to cal-
culate the adjoint system for an existing network model. However, the eigenvectors calculated
from the DA method exhibit spurious oscillations at each boundary and jump condition of the
thermoacoustic network model. Hence, the eigenmodes of more elaborate models, for instance
annular combustors, are misrepresented at multiple locations, which significantly impairs the
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Figure 5.3: Comparison of CA, DA, and HA steps for an existing state-space network tool
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Figure 5.4: Spurious oscillations obtained when calculating the adjoint eigenvectors of the an-
nular combustor in PAPER_XP via the DA approach.

interpretability of the results. An example of this effect is illustrated in Fig. 5.4, which is ob-
tained for the annular combustor model studied in PAPER_HA. These oscillations are avoided
by both the HA and the CA approaches.

In addition, while determining the adjoint system may be straightforward using the DA ap-
proach, calculating the base state and feedback sensitivities requires the determination of the
shifted matrix δL, which may include a more extensive analysis [1].

The HA approach offers a ready solution for existing network models. Being easy to implement
for a generic network model, it avoids both spurious oscillations and excessive derivations.
However, normalizing the eigenfunctions according to Eq. (5.8) is not trivial and could pose a
significant challenge for models that include more complex flame functions.

An overview of the advantages and disadvantages of each method is given in table 5.1. There is
no general recommendation on which method is preferable, as different cases and objectives call
for different approaches. However, for an existing network model based on a finite difference
discretization, the HA method offers the best compromise between implementation effort and
the quality of the results.
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Advantages Disadvantages
CA Additional insight through adjoint equations. Effort for derivation and implementation.

DA
No derivation required.
Fast implementation.

Spurious oscillations for FD
discretization of the strong form of equations.
Calculation of feedback sensitivity not trivial.

HA
No derivation required.
Fast implementation. Normalization not trivial.

Table 5.1: Overview of the advantages and disadvantages of the CA, DA, and HA approaches.

5.3 Exceptional Points

Exceptional points in thermoacoustics were first investigated in [58]. However, the exceptional
points in previous studies either exhibited high, negative growth rates and had thus little ef-
fect on the system’s instability behavior, or were associated with nonphysical parameter values
like negative time lags at the flame. In PAPER_XP, the authors propose a new method to iden-
tify the parameter setting associated with an exceptional point in thermoacoustic systems. The
model used for the analysis includes a realistic FTF, which results from the flame impulse re-
sponse (FIR) model introduced by Komarek and Polifke [41] with the alternations proposed
by Guo et al.[27]. This constitutes a substantial improvement to previous studies of XPs in
thermoacoustic models, which were limited to simple configurations (e.g. a Rijke tube) and/or
a rudimentary n-τ flame model. Another novelty of the study is that, with the proposed algo-
rithm, the authors were able to identify a physically relevant, unstable XP for the first time in a
thermoacoustic system. Based on the XP identified, the influence of XPs on the uncertainty of
thermoacoustic network predictions is analyzed. The paper uses the network model introduced
in Sec. 2.2.

5.3.1 Discrete adjoints in state-space network models

The study proposes a general framework to calculate the adjoint eigenvalue sensitivity based
on the discrete adjoint approach. The DA is, in principle, straightforward to implement: the
adjoint system matrix is calculated as the Hermitian of the direct system matrix. However, the
evaluation of the eigenvalue drift of a generalized eigenvalue problem (3.1) for a change in any
parameter pi , which is given as

δs

δpi
=−

〈q†, ∂L{s,p}
∂pi

q〉
〈q†, ∂L{s,p}

∂s q〉
(5.22)

requires knowledge of the operator derivatives ∂L{s,p}
∂pi

and ∂L{s,p}
∂s .

In the case of a state-space model, the operator L is given as LSS{s, p} = A(p)− sI , thus the
derivative ∂L{s,p}

∂pi
is obtained from the system matrix A. In PAPER_XP, a preliminary analysis

reveals that, for the parameters used in the study, A can be split into various matrices A = A0 +
Ai (pi ), where the dependency of A on pi appears only in the corresponding matrix Ai (pi ). This
not only allows the computation of the adjoint eigenvalue sensitivities but also eliminates the
need to rebuild the system matrix by interconnecting the elements after changing the parameters.
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5.3.2 Identification of XPs

In this section, the method of identifying XPs introduced in PAPER_XP is shortly introduced
and differentiated from the methods proposed in [64] and [63].

5.3.2.1 Identifying XPs based on eigenvalue coalescence

In non-Hermitian system operators, exceptional points can be found for a specific configuration
in two real design parameters [9, 33]. Schaefer et al.(PAPER_XP) tune the time delay τc of the
flame model and the downstream reflection coefficient Rout to identify XPs. The time lag τc

can be interpreted as the time needed for an inertial wave to propagate from the swirl generator
to the flame base [2], whereas damping devices or the turbine working conditions determine the
value of Rout [65].

The algorithm to identify the values of τc and Rout at an XP is graphically illustrated in Fig. 5.5.
The solver requires two initial eigenvalues sA,0 and sB ,0 which coalesce at the sought after XP.

Choose initial eigenvalues
sA,0 and sB ,0

Calculate guessed location
of the XP

No

Yes

Calculate the eigenvalues
sA, j and sB , j

corresponding to the new
parameter set τc ,Rout

Define the objective function

Calculate the adjoint gradients
s∗g = sA+sB

2

J (τc ,Rout ) = (s(τc ,Rout )− s∗g )2

∂J
∂Rout

=−2(s − s∗)
〈q†| ∂L

∂Rout
q〉

〈qi †| ∂L
∂s q〉

|sA, j − sB , j | < tol

Check whether truncation
condition is satisfied

Check whether solution is actually
an exceptional point

Minimize the objective function

lim
Rout→Rout∗

∣∣∣ ∂s
∂Rout

∣∣∣−1 = 0

lim
τc→τc∗

∣∣∣ ∂s
∂τc

∣∣∣−1 = 0

Find parameter setting {τc ,Rout }
for which the eigenvalue s∗g is found

∂J
∂τc

=−2(s − s∗)
〈q†| ∂L

∂τc
q〉

〈qi †| ∂L
∂s q〉

Figure 5.5: Comparison of CA, DA, and HA steps for an existing state-space network tool

These may be selected at random or by pre-analyzing the thermoacoustic system. For instance,
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Figure 5.6: Illustration of two iterations of the outer loop: Red: Initial eigenvalues; blue: eigen-
values found in the second iteration, orange: guessed location of XP after two iter-
ations

the probability of finding an XP for a physically realistic parameter setting increases by select-
ing one mode of acoustic and one of intrinsic origin. After selecting the initial eigenvalues the
outer loop of the solver calculates the guessed location at the XP s∗g , which is approximated
as the arithmetic mean of sA,0 and sB ,0. Within the inner loop, an adjoint gradient optimiza-
tion routine finds the corresponding parameter setting {τc ,Rout } for which the system has an
eigenvalue at the guessed location s∗g . The outer loop uses the found parameters to calculate the
two eigenvalues closest to s∗g and determines how close these eigenvalues are to each other. If
the square of the Euclidean distance is below a pre-determined tolerance the loop is exited. In
this case, the algorithm checks, whether the solution found is an XP by calculating the inverse
sensibility - again using the DA formalism. This step is necessary as the solver may converge
towards a semi-simple eigenvalue, which is frequently observed in rationally symmetric com-
bustors. Failing the truncation criteria, a new guess for the estimate of the XP is calculated using
the updated eigenvalues sA, j and sB , j (where j counts the iterations of the outer loop).

A graphical illustration of how the XP is approached in the outer loop is given in Fig. 5.6.

5.3.2.2 Identifying XPs based on eigenvalue sensitivity

Orchini et al. [64] propose a different approach to identify XPs in thermoacoustic systems.
Their numerical solver uses a special feature of the XP: As a parameter ξ is changed such that
the eigenvalue s approaches an XP, the eigenvalue sensitivity becomes infinite, thus its inverse
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approaches zero:

lim
ξ→ξX P

∣∣∣∣∂s

∂ξ

∣∣∣∣−1

= 0. (5.23)

The study uses the discrete adjoint to calculate the eigenvalue sensitivity (c.f. Sec. 3.1), which
reads:

δs

δξ
=−

〈p̂†|∂L
∂ξ

p̂〉
〈p̂†|∂L

∂s p̂〉
, (5.24)

where p̂ and p̂† represent the direct and adjoint eigenvector of pressure fluctuations, respec-
tively, and L contains the discretized eigenvalue problem. This expression is valid for any non-
defective eigenvalue, i.e. for all eigenvalues except for the XP. Given that the bi-orthogonality
condition (Eq. (3.7)) no longer holds at the XP, the derivation of Eq. (5.24) as shown in [51], is
not applicable at the XP. However, the expression is valid in the immediate vicinity of the XP,
where the sensitivity of the eigenvalues is also extremely large.

The identification of XPs can, thus, be conducted using standard multi-parameter root-finding
algorithms. However, each iteration of the iterative scheme requires the solution of an eigen-
value problem and the evaluation of Eq. (5.24). Considering that the latter requires approx-
imately the same computational effort as the original eigenvalue problem, solving this root
problem may require substantial computational resources. In addition, for the algorithm to con-
verge towards an XP, a well-informed initial guess is required, which may be hard to identify in
the first place.

5.3.2.3 Identifying XPs using perturbation theory

In another study, Orchini et al. [63] propose to use higher-order adjoint perturbation theory to
locate XPs. The theory builds on the work of Mensah et al. [59] which the reader is referred to
for a detailed description of the method.

The dependence of eigenvalues on a parameter ϵ can be expressed through a power series ex-
pansion which, for semi-simple eigenvalues, takes the form

s(ϵ) ≈ s0 +
N∑

j=1
ϵ j s j , (5.25)

where ϵ is a perturbation parameter centered at a reference value ϵ0 = 0. The coefficients s j are
jth-order corrections and are generally given as

s j =− 〈p̂†
0|r j 〉

〈p̂†
0|∂L
∂s p̂0〉

. (5.26)

A general expression for r j at any order can be found in the appendix of [63] .

For eigenvalues in the vicinity of a singularity located at ϵ = ϵsng , the eigenvalue parameter
dependence takes the form

(ϵ−ϵsng )k . (5.27)

For an exceptional point, k is equal to 1/a, where a is the algebraic multiplicity of the eigen-
value at the EP.
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The values of ϵsng and the exponent k can be estimated from the coefficients s j of a power
series that is expanded close to the singularity:

ϵsng = ϵ0 +
s j s j−1

( j +1)s j+1s j−1 − j s2
j

, (5.28a)

k = ( j 2 −1)s j+1s j−1 − ( j s j )2

( j +1)s j+1s j−1 − j s2
j

. (5.28b)

This estimation converges to the closest singularity, with a radius of convergence defined as

Rc = |ϵsng −ϵ0|. (5.29)

To accurately locate an XP, an iterative scheme is proposed, following the steps

1. Evaluate the expansion coefficients s j of an eigenvalue up to about order N = 10 in
Eq. (5.26).

2. Estimate the closest singularity ϵsng using the results of step 1. at the highest available
order (Eq. (5.28a)).

3. Evaluate the radius of convergence in Eq. (5.29). If Rc is larger than a predefined thresh-
old, step 1. is repeated with the updated expansion point ϵ0 +ϵsng → ϵ0.

Once Rc falls below the predefined threshold, the expansion point coincides with the singular
parameter, where the error scales with the magnitude of the threshold.

With this method, the singularity parameter ϵsng will, in all likelihood, be a complex number.
The XP identified with the proposed method is, therefore, typically not physical but serves
theoretical research purposes. Furthermore, even though the corresponding parameter setting is
non-physical, the theoretical existence of an XP affects the (physical) eigenvalue trajectories in
its vicinity.

5.3.2.4 Comparison of identification methods

Each of the three methods for the location of XPs is based on a different mathematical ansatz,
which exploits different features of the XP. The method introduced in PAPER_XP utilizes the
nature of XPs originating from two eigenvalues coalescing. The method does not require inten-
sive preliminary analysis to determine a working initial guess: The two initial eigenvalues may
even be selected at random with a high likelihood of convergence. However, the method may
converge towards a semi-simple instead of a defective eigenvalue. Compared to the other two
schemes, the coalescence-based algorithm may first seem inefficient, as it uses an "outer loop"
where the guessed eigenvalue is updated and an "inner loop" where the objective function is
minimized. However, the minimization typically requires few iterations, as the routine provides
a well-informed initial guess for the optimization.

The sensitivity-based ansatz reduces the XP localization procedure to a root finding problem.
However, a good initial guess for the root solver requires a-priori information about the location
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5.3 Exceptional Points

of the XP, which is generally not available. As a result, finding an XP with this method requires
a lot of trial and error using different values for the initial guess.

A similar problem occurs when trying to locate the XP using perturbation theory. The estimation
of the parameters ϵsng and k (Eqs. (5.28)) is most accurate in close vicinity to an XP and, thus,
depends on an adequate initial guess. In addition, the estimation may as well converge towards
a pole singularity instead of the desired branch point singularity.

Both Schaefer et al. and Orchini et al. use the DA sensitivity to enhance the efficiency of the
solver. For two tuning parameters, the calculation of the adjoint sensitivity reduces the number
of resource-intensive operations in each iteration from three to two: one eigenvalue problem
and one evaluation of the eigenvalue sensitivities instead of three evaluations of the eigenvalue
problem. If a complex-valued parameter is selected, as it is in the perturbation-theory ansatz,
the advantages of adjoint methods vanish, and the solver may use a standard finite difference
scheme with a comparable resulting runtime. However, identifying realistic XPs is of great
interest, especially unstable ones that not only affect the trajectories of the eigenvalues nearby
but also have an impact on the dynamics of the system. The coalescence-based ansatz is the
only one with which such a physically viable, unstable XP could be identified.

In summary, both the sensitivity-based and the perturbation-theory-based approaches may of-
fer more profound insight into the stability behavior of thermoacoustic systems. With the
sensitivity-based method, one can even identify realistic XPs with physical parameter settings.
However, a well-informed initial guess is vital for both methods to converge. An analysis ap-
plying these methods is, therefore, recommendable for systems, where increased sensitivity or
strong mode veering already indicates the existence of an XP in close vicinity. In contrast, the
coalescence-based approach uses physical parameters and converges even for a random initial
guess. As such, it offers the highest probability of identifying an exceptional point, even for
largely unexplored models.

5.3.3 Uncertainty quantification and XPs

The identification method introduced in the previous section makes fast and reliable determina-
tion of the parameter setting associated with an XP possible. Subsequently, the respective sys-
tem may be analyzed in detail, shedding light on the impact of XPs on the thermoacoustic sys-
tem behavior. In PAPER_XP the identified unstable XP is analyzed to investigate its impact on
the process and results of uncertainty quantification. Uncertainties arise naturally, e.g. from the
experimental or computational determination of the FTF parameters. These parameters merely
constitute the best fit to the data and are based on general model assumptions. In addition,
stochastic fluctuations may cause the operational conditions to deviate from the nominal condi-
tion.

The propagation of input uncertainties to model predictions is most easily determined using
Monte Carlo methods. However, depending on the complexity of the thermoacoustic model, the
evaluation of the eigenvalue problem describing the thermoacoustic model may get computa-
tionally costly. As a result, Monte Carlo methods, which require numerous system evaluations
to ensure convergence, can become economically impracticable. By identifying an efficient
surrogate model that replicates the system response of the original system, the cost-intensive
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Figure 5.7: Comparison of frequency (left) and growth rate (right) predicted by the GP model
vs. by the high-fidelity model at the simple eigenvalue (first row) and at the XP
(second row)

evaluation of the high-fidelity model can be reduced by various orders of magnitude (c.f. for
example [10, 26]). The study employs the machine learning method called Gaussian Process
(GP) to study the potential impact of XPs on the quality of surrogate model predictions. The
training and modeling framework is adopted from Guo et al. [27] and can be referred to therein.

Two models are trained: One at the XP and one for a simple eigenvalue that is distant from the
XP. As a measure of prediction accuracy, the generalization error ϵ is evaluated based on leave-
one-out cross-validation [55]. A comparison of the generalization error for increasing numbers
of training samples shows that for the reference model at the simple eigenvalue, the GP model
trained with 40 or more training samples accurately predicts both frequency and growth rate.
In contrast, the XP surrogate model predictions do not converge towards the network model
predictions, even for increased numbers of samples. A comparison of the prediction quality
of the two GP models is given in Fig. 5.7. The predictions for frequency (left) and growth
rate (right) of the high-fidelity model are plotted over those of the GP models. For accurate
model predictions, the data points are distributed along the 45◦ line through the origin, which is
the case for the reference GP model (first row). For the GP model at the XP, the data is widely
distributed, indicating low prediction accuracy. The study finds three reasons, why the surrogate
model fails at the XP:

1. The algebraic multiplicity of the XP entails two eigenvalues for each parameter setting
close to the XP. The eigenvalues returned by the numeric solver can thus not be attributed
to one single eigenvalue trajectory, but two. As the GP model is not able to distinguish
between these two trajectories, it fails to capture the system dynamics of the high-fidelity
system.

2. The growth rate and frequency functions exhibit a second-order discontinuity at the XP
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which cannot be represented by the holomorphic ansatz function of the GP model.

3. The infinite sensitivity at the XP leads to large eigenvalue drifts in its immediate vicinity.
As a result, the training (and testing) data contain few eigenvalues that fall within this
region.

To improve the accuracy of the surrogate model predictions it is therefore advisable to

1. make sure that there is no mode switching in the training data, i.e. the training data repre-
sent just one eigenvalue along a single trajectory.

2. use an alternative ansatz function that is able to correctly represent a second-order dis-
continuity.

3. make sure that the training samples are adequately distributed not only in parameter space
but also in the resulting eigenvalue space.

In PAPER_XP, the uncertainty quantification is eventually performed using standard Monte
Carlo simulation. Since the underlying thermoacoustic system was of mediocre complexity,
the resulting computational cost was manageable. The resulting probability density functions
(PDFs) for frequency and growth rate are reproduced in Fig. 5.8. For the exceptional point,
the two eigenvalues that can be found for each parameter setting are reflected in two peaks in
the probability density functions of frequency and growth rate. As a result, the total variance
at the exceptional point is significantly larger than the variance at the simple eigenvalue. The
study concludes that exceptional points may interfere with classical methods of uncertainty
quantification, as results obtained from surrogate models may be unreliable. This is especially
critical because the effect of uncertainties is exacerbated in the vicinity of an exceptional point.
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Figure 5.8: Left: Locations of the XP and the simple reference eigenvalue, below the corre-
sponding joint PDF of frequency and growth rate. Isolines range from 10% (light)
to 90% (dark) of the maximum probability density. Right: Separate PDFs of fre-
quency and growth rate at the two eigenvalues.

5.3.4 Interplay of Clusters of Acoustic and ITA modes

The algorithm to identify XPs and the associated parameter settings was applied in PAPER_ITA.
The paper analyzes the behavior of acoustic and ITA clusters in a can-annular combustor for
varying parameter settings. To gain fundamental insight into the system behavior, the can-
annular combustor under investigation is reduced to a Rijke tube where two-dimensional ef-
fects of the can-can communication are represented by an equivalent reflection coefficient. This
ansatz, which was originally introduced in [22] is valid under specific assumptions that are
discussed in detail in the original publication.

5.3.4.1 Mode interplay in a generic Rijke tube

Before studying mode interaction in the can-annular combustor model, a primary study consid-
ers a classical Rijke tube to investigate the interplay of two solitary modes of ITA and acoustic
origin. A set of dimensionless numbers is introduced to obtain a generic description of the ther-
moacoustic model, allowing to draw general conclusions from the results. Subsequently, the
interplay of ITA and acoustic eigenmodes is studied by increasing the dimensionless propaga-
tion time downstream of the flame τ∗u for a set of fixed values of the dimensionless propagation
time upstream of the flame τ∗d .
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For small values of τ∗d and τ∗u , i.e. for short upstream and downstream lengths of the Rijke tube,
the acoustic and ITA modes do not interplay. As τ∗u is increased, the ITA mode converges to-
ward a value corresponding to a semi-anechoic system as limτd→∞ |Rd | ≈ 0.
A different behavior is observed for larger values of τ∗u . Instead of converging towards an effec-
tive semi-anechoic system behavior, the ITA mode switches nature and turns into an acoustic
mode, while the acoustic mode approaches the semi-anechoic eigenmode. For even larger values
of τ∗u , corresponding to a long upstream length of the Rijke tube, the presence of an exceptional
point becomes evident. The trajectories of both eigenmodes exhibit strong mode veering, first
converging towards each other and suddenly changing directions as they approach the XP.

5.3.4.2 Mode interplay in an annular combustor

Subsequently, the study is extended to an annular combustor model by including two-
dimensional effects which are modeled by the equivalent outlet reflection coefficient. The re-
sulting model is identical in its flame response and upstream conditions for all azimuthal modes,
differing only in their total downstream propagation time. As a result, all of these modes are lo-
cated on the eigenmode trajectory of varying τ∗d .
Again, the presence of an exceptional point is found to strongly affect the shape of these tra-
jectories, introducing strong veering. Based on these effects, the behavior of two seemingly
entangled clusters of acoustic and ITA modes could be interpreted and explained. Understand-
ing these effects potentially improves the process of engine design, allowing for small-scale
adaptions whose effect can be predicted a-priori.
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6 Model Order Reduction at the XP

In Sec. 4.1, the characteristics of the XP were introduced. In close vicinity of an XP, the system
can be reduced to an effective two-dimensional system. A description of the reduction process
for variations of a complex-valued parameter λ can be found in [31]. Cartarius et al. [9] de-
scribed a different approach, where two real-valued parameters γ and ζ are changed around the
XP. The parameter values at the XP are denoted γ0 and ζ0. According to [9], the elements of the
effective, two-dimensional matrix M have the form

Mi , j = a(0)
i , j +a(γ)

i , j (γ−γ0)+a(ζ)
i , j (ζ−ζ0), i , j ∈ 1,2. (6.1)

An expansion in the eigenvalues of M gives:

λ1 +λ2 = tr (M) = c1 + c2(γ−γ0)+ c3(ζ−ζ0), (6.2a)

(λ1 −λ2)2 = tr (M)2 −4det (M)

= c4 + c5(γ−γ0)+ c6(ζ−ζ0)+ c7(γ−γ0)2 + c8(ζ−ζ0)2 + c9(γ−γ0)(ζ−ζ0). (6.2b)

Cartarius et al. state that eigenvalues do not change under a similarity transformation of the
corresponding matrix and the explicit choice of the M is not relevant. Consequently, the repre-
sentation given in Eqs. (6.2) is preferable as it introduces fewer coefficients. In fact, the deter-
mination of the model parameters requires only 6 samples, 3 for the parameters in Eq. (6.2a)
and the same samples plus 3 additional ones for the parameters in Eq. (6.2b).

For the XP identified in PAPER_XP and reviewed in the previous section, a two-dimensional
system is obtained for variations of the parameters τc and Rout . The resulting eigenvalue pre-
dictions show excellent agreement with the high-fidelity model (Fig. 6.1) while reducing the
number of degrees of freedom from 427 to 2. The reduced model is only valid in close proxim-
ity to the XP and its accuracy decreases with increasing parameter distance to the XP (τc −τ∗c )
and (Rout −R∗

out ). However, for a maximum variation of 10% of τc and Rout around the XP,
the maximum deviation of predictions is still within 0.3% of the corresponding eigenvalue. It is,
therefore, possible to exploit the 2D model reduction for uncertainty analysis at the XP.

In PAPER_XP the uncertainty quantification was conducted by studying the influence of uncer-
tainties in 6 input parameters. A minor modification of Eq. (6.1) allows the introduction of N
parameters ξk that are varied around the XP:

Mi , j = a(0)
i , j +

N∑
k=1

a(xik )
i , j (ξk −ξk,0), i , j ∈ [1,2]. (6.3)
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Figure 6.1: Predictions of the 2D model (round markers) vs. predictions of the high-fidelity
model (cross markers).

The corresponding transformation equivalent to Eqs. (6.2) reads:

λ1 +λ2 = tr (M) = c1 + ck (ξk −ξk,0), (6.4a)

(λ1 −λ2)2 = tr (M)2 −4det (M)

= d1 +
N∑

k=1
ek (ξk −ξk,0)+ fk (ξk −ξk,0)2

+
N∑

k=1

N∑
m=k+1

gk,m(ξk −ξk,0)(ξm −ξm,0). (6.4b)

For 6 uncertain parameters, the reduced-order model introduces 35 new parameters whose de-
termination requires the evaluation of 28 samples.

A detailed description of the selected parameters and the assumed uncertainty distributions is
given in the original publication. The validation of the extended 2D model (Fig. 6.2), which
is conducted equivalently to the surrogate model validation in PAPER_XP, shows that the 2D
model accurately predicts both eigenvalues close to the XP for the specified range in uncertain
parameters.

Consequently, the 2D model may be employed to calculate the propagation of uncertainties
near the XP. Provided the existence of an XP is known a-priori, this may greatly reduce compu-
tational cost: Instead of evaluating the high-fidelity model for each data sample of the Monte-
Carlo Simulation, the eigenvalues are determined by evaluating Eqs. (6.4a) and (6.4b). An ex-
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Figure 6.2: Comparison of the predictions of frequency (left) and growth rate (right) of both
eigenvalues close to the XP obtained using the high-fidelity model and reduced-
order model at the XP.

emplary evaluation of the probability functions of eigenvalues following this procedure shows
excellent results (Fig. 6.3). Although the original, high-fidelity model was a comparably cheap
low-order model, the computation time for Monte-Carlo evaluations via the 2D model amounts
to only ∼ 1% of the computation time when using the high-fidelity model.
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7 Time-series Development at the XP

The reliable identification of XPs in thermoacoustic systems opens up new angles to analyze the
system dynamics. The impact of XPs in linear stability analysis has been found to be significant.
A logical next step to this analysis is the extension to the non-linear regime. In particular, the
influence of XPs on the development of velocity and pressure time series merits a closer look.

The non-linear flame response is commonly modeled by means of a Flame Describing Function
(FDF) [14, 61]. The FDF can be regarded as an FTF, that not only depends on the frequency but
also on the amplitude of input perturbations. FDF representation of flame dynamics relies on
weakly non-linear model assumptions as it ignores the effect of higher harmonics. Nevertheless,
embedding an FDF in low-order network models allows the prediction of non-linear phenomena
such as limit cycle oscillations and non-linear triggering [61].

In order to determine an XP for a non-linear flame model equivalently to the approach in PA-
PER_XP, the parameters of the flame describing function need to be parameterizable simi-
larly to the FTF model employed for the linear analysis. A suitable model was introduced by
Doehner et al. [12]. The study proposes a flame model which is based on the two ordinary dif-
ferential equations describing two coupled mass-spring-damper oscillators with a symmetric,
nonlinear damping term. The model equations read:

d 2x1

dτ2
=

(
1

δ
+2

)
u′−αd x1

dτ
−βd x1

dτ
x2

1 −x1 +δ(x2 −x1), (7.1a)

d 2x2

dτ2
=−αd x2

dτ
−βd x2

dτ
+ 2

ζ
(x2 −x1), (7.1b)

q ′

dτ
=−d x2

dτ
+ 2

ζ
(x2 −q ′), (7.1c)

where u′ represents the (input) velocity perturbations at the flame base and q ′ the resulting heat
release fluctuations. In the original study, the parameters α, β, γ, ζ are determined by finding
the best fit of the flame model to time series data stemming from high-fidelity CFD simulations.

In order to investigate the impact of XPs on non-linear dynamics, a suitable thermoacoustic
model has to be found. The requirements for the model can be summarized as follows:

• There should be no unstable eigenvalues, other than those associated with the XP: If there
are other unstable modes, these may significantly alter the dynamics of the system, thus
the effects of the XP cannot be identified beyond doubt.

• The growth rate of the XP should be close to zero: For highly stable systems, oscillations
are immediately damped. For highly unstable systems the dynamics develop very fast and
making it hard to discern particular effects.
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A suitable configuration is found by employing the method introduced in PAPER_XP for the
equivalent linear system (β= 0) and tuning the model and flame parameters. The values of the
flame parameters are of the same order as those identified in Doehner et al..

The resulting FDF is shown in Fig. 7.1.
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Figure 7.1: Gain (left) and phase (right) of the flame describing function obtained with the
Non-Linear Double Oscillator. Lighter shades of blue indicate increasing forcing
amplitudes.

Subsequently, the time series of the non-linear model is analyzed by numerically solving the
state space model. Due to the presence of two eigenvalues that are close to each other, the
velocity perturbations leading up to the limit cycle show an interference pattern between two
frequencies, also known as beating (Fig. 7.2).

The spectrum of the velocity perturbation time series shows that, once the limit cycle is reached,
one frequency dominates. On the contrary, for the oscillations leading up to the limit cycle,
the two frequencies associated with the limit cycle are equally pronounced in the frequency
spectrum.

Although the XP has an impact on the time series leading up to the limit cycle, the limit cycle
behavior in the vicinity of an XP does not show any anomaly.
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8 Summary of Papers

This chapter lists and summarizes the publications connected to the thesis. Furthermore, the
respective contribution of the authors to each paper is laid out. Note that the arrangement of
publications does not follow a chronological order, but instead emphasizes the advancements in
methodology.
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Summary of Papers

8.1 Low-order Network Model of a Duct with Non-Uniform
Cross-Section and Varying Mean Temperature in the
Presence of Mean Flow

The element equations and implementation strategy for a duct element, which models both tem-
perature and cross-section area changes along its longitudinal axis, are laid out (see Sec. 5.1).
The extended network tool is validated against analytical results.

Original Abstract: Stability analysis of thermoacoustic systems is often carried out with low-
order network models. This paper introduces a method to include a duct element with varying
cross-sectional area and an arbitrary mean temperature profile in a thermoacoustic network
model. Based on the quasi-one-dimensional form of the linearized Euler equations (LEEs) for
a perfect, inviscid gas, the system equations are formulated in a state-space framework in terms
of the Riemann invariants f and g . This approach is predicated on one additional assumption,
i.e. that the direct impact of entropy fluctuations on the acoustic waves inside the duct is small.
A comparison of model results with analytical analysis shows excellent agreement. Eigenval-
ues are predicted with good accuracy, even for coarse grids. Furthermore, the mode shapes
and frequency responses match those found in the literature, demonstrating the validity of the
approach.

Contribution according to Contributor Role Taxonomy scheme (CRediT):

Contribution Author
Conceptualization F. Schaefer, W. Polifke
Methodology F. Schaefer
Software F. Schaefer
Validation F. Schaefer, W. Polifke
Formal analysis F. Schaefer
Data Curation F. Schaefer
Writing - Original Draft F. Schaefer
Writing - Review Editing F. Schaefer, W. Polifke
Visualization F. Schaefer
Supervision W. Polifke

Status: Published in the Proceedings of the AIAA Propulsion and Energy Forum.

Review Process: Extended abstract peer-reviewed, Scopus-listed.

Reference: F. Schaefer and W. Polifke. Low-order network modeling of a duct with non-
uniform cross-section and arbitrary mean temperature gradient in the presence of mean flow.
In AIAA Propulsion and Energy Forum, AIAA 2019-4376, page 5, Indianapolis, Indiana, USA,
2019. doi: 10.2514/6.2019-4376.
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8.2 A Hybrid Adjoint Network Model for Thermoacoustic Optimization

8.2 A Hybrid Adjoint Network Model for Thermoacoustic
Optimization

A novel approach to calculate the adjoint system corresponding to a direct network model is
introduced (see Sec. 5.2). It combines the advantages of the flexible and straightforward DA
approach with the resourcefulness and superior interpretability of the CA approach.

Original Abstract: Exceptional points can be found for specific sets of parameters in thermoa-
coustic systems. At an exceptional point, two eigenvalues and their corresponding eigenfunc-
tions coalesce. Given that the sensitivity of these eigenvalues to parameter changes becomes
infinite at the exceptional point, their occurrence may greatly affect the outcome and reliabil-
ity of numerical stability analysis. We propose a new method to identify exceptional points in
thermoacoustic systems. By iteratively updating the system parameters, two initially selected
eigenvalues are shifted towards each other, ultimately colliding and generating the exceptional
point. Using this algorithm, we were able to identify for the first time a physically meaning-
ful exceptional point with positive growth rate in a thermoacoustic model. Furthermore, our
analysis goes beyond previous studies inasmuch as we employ a more realistic flame transfer
function to model flame dynamics. Building on these results, we analyze the effect of excep-
tional points on the reliability of thermoacoustic stability analysis. In the context of uncertainty
quantification, we show that surrogate modeling is not reliable in the vicinity of an exceptional
point, even when large sets of training samples are provided. The impact of exceptional points
on the propagation of input uncertainties is demonstrated via Monte Carlo computations. The
increased sensitivity associated with the exceptional point results in large variances for eigen-
value predictions, which needs to be taken into account for reliable stability analysis.

Contribution according to Contributor Role Taxonomy scheme (CRediT):

Contribution Author
Conceptualization F. Schaefer
Methodology F. Schaefer
Software F. Schaefer
Validation F. Schaefer
Formal analysis F. Schaefer
Data Curation F. Schaefer
Writing - Original Draft F. Schaefer
Writing - Review Editing F. Schaefer, L. Magri, W. Polifke
Visualization F. Schaefer
Supervision W. Polifke

Status Published in Journal of Engineering for Gas Turbines and Power.

Review Process: Peer-reviewed, Scopus-listed.

Reference: Schaefer, F., Magri, L., and Polifke, W. (January 3, 2022). "A Hybrid Adjoint Net-
work Model for Thermoacoustic Optimization." ASME. J. Eng. Gas Turbines Power. March
2022; 144(3): 031017. https://doi.org/10.1115/1.4051959
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8.3 The Impact of Exceptional Points on the Reliability of
Thermoacoustic Stability Analysis

Adjoint design is employed to enable efficient identification of XPs in thermoacoustic systems.
As a novelty, an unstable XP could be located for a physical parameter setting and a realistic
flame model. Subsequent analysis reveals that the quality of surrogate models and the reliability
of network predictions are significantly impaired in close vicinity of XPs (Sec. 5.3).

Original Abstract: Exceptional points can be found for specific sets of parameters in thermoa-
coustic systems. At an exceptional point, two eigenvalues and their corresponding eigenfunc-
tions coalesce. Given that the sensitivity of these eigenvalues to parameter changes becomes
infinite at the exceptional point, their occurrence may greatly affect the outcome and reliabil-
ity of numerical stability analysis. We propose a new method to identify exceptional points in
thermoacoustic systems. By iteratively updating the system parameters, two initially selected
eigenvalues are shifted towards each other, ultimately colliding and generating the exceptional
point. Using this algorithm, we were able to identify for the first time a physically meaning-
ful exceptional point with positive growth rate in a thermoacoustic model. Furthermore, our
analysis goes beyond previous studies inasmuch as we employ a more realistic flame transfer
function to model flame dynamics. Building on these results, we analyze the effect of excep-
tional points on the reliability of thermoacoustic stability analysis. In the context of uncertainty
quantification, we show that surrogate modeling is not reliable in the vicinity of an exceptional
point, even when large sets of training samples are provided. The impact of exceptional points
on the propagation of input uncertainties is demonstrated via Monte Carlo computations. The
increased sensitivity associated with the exceptional point results in large variances for eigen-
value predictions, which needs to be taken into account for reliable stability analysis.

Contribution according to Contributor Role Taxonomy scheme (CRediT):

Contribution Author
Conceptualization F. Schaefer, W. Polifke
Methodology F. Schaefer
Software F. Schaefer, S. Guo
Validation F. Schaefer
Formal analysis F. Schaefer
Data Curation F. Schaefer
Writing - Original Draft F. Schaefer
Writing - Review Editing F. Schaefer, S. Guo, W. Polifke
Visualization F. Schaefer, S. Guo
Supervision W. Polifke

Status: Published in Journal of Engineering for Gas Turbines and Power.

Review Process: Peer-reviewed, Scopus-listed.

Reference: Schaefer, F., Guo, S., and Polifke, W. (January 18, 2021). "The Impact of Excep-
tional Points on the Reliability of Thermoacoustic Stability Analysis." ASME. J. Eng. Gas
Turbines Power. February 2021; 143(2): 021010. https://doi.org/10.1115/1.4049351
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8.4 Interplay of Clusters of Acoustic and Intrinsic Thermoa-
coustic Modes in Can-Annular Combustors

The interplay of clusters containing multiple intrinsic thermoacoustic modes is studied. Excep-
tional points, which are identified using the algorithm introduced in Sec. 5.3.2, are found to
strongly influence the nature and trajectories of thermoacoustic modes.
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9 Conclusion and Outlook

The integration of adjoint methods into established network model frameworks contributes to a
better understanding and more efficient control of thermoacoustic instability phenomena.

The present thesis shows how adjoint methods may be implemented into an existing framework
without applying major changes to the base software. Adjoint functionalities, like displaying
the adjoint eigenmodes or calculating the eigenvalue shift, can be used to the full extent by
adding just one additional script to the software. Within this script, the scattering matrices of
the compact elements are calculated according to the derivations presented in this thesis. This
"hybrid adjoint" way thus utilizes the derivations and implementation of the original software,
making it far less error-prone and time-consuming than the classical "continuous adjoint", which
it is based on. The adjoint variables and sensitivities give additional insight into the physics of
thermoacoustic systems. Moreover, the calculation of the eigenvalue sensitivity with respect to
all variables enables the implementation of systematic optimization strategies with decreased
computational effort and improved gradient accuracy compared to conventional procedures.

Consequently, future research may use the accurate calculation of the eigenmodes to study
fundamental effects due to external feedback mechanisms or internal parametric settings on
the thermoacoustic system. Furthermore, next to helping control thermoacoustic instability, the
adjoint sensitivity may be used to (i) further optimize thermoacoustic systems regarding their
dynamical behavior, (ii) find efficient ways to assess the uncertainty of a system or (iii) enhance
the training process of data-driven models including deep neural networks.

The thesis further shows how adjoints may be applied to locate realistic parameter settings
associated with exceptional points. Based on the presented algorithm, it was found that

1. unstable exceptional points can be found in thermoacoustic systems for realistic parame-
ter settings,

2. exceptional points greatly affect the reliability of stability predictions,

3. classical surrogate models may not be able to represent the model behavior in the vicinity
of an XP, and

4. strong mode veering associated with an XP plays a decisive role in explaining the behav-
ior of seemingly entangled ITA and acoustic clusters.

In order to efficiently study uncertainty propagation at an XP, this thesis proposes an alternative
ansatz to classical surrogate modeling. By reducing the model to an effective 2x2 system, un-
certainty prediction via Monte Carlo simulation can be significantly reduced. This is possible,
as the dynamics at an XP are determined solely by the two eigenvalues coalescing at the XP.
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Furthermore, the linear analysis of XPs is extended to a non-linear analysis, using a parametric
flame describing function.

The proposed algorithm of XP identification facilitates further analysis of exceptional points
which, for instance, may be directed at studying dynamical parametric encircling of XPs, similar
to what has been presented in [13]. This will provide fundamental insight into the dynamics of
thermoacoustic systems.
Furthermore, the analysis of XPs by means of adjoint network models may help to further
improve the fundamental understanding of XPs in order to exploit the unusual physical behavior
for the optimization of thermoacoustic combustor design.
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Low-order Network Model of a Duct with Non-Uniform
Cross-Section and Varying Mean Temperature in the Presence

of Mean Flow

F. Schaefer∗ and W. Polifke †

Technical University of Munich, Faculty of Mechanical Engineering, D-85747 Garching, Germany

Stability analysis of thermoacoustic systems is often carried out with low-order network

models. This paper introduces a method to include a duct element with varying cross-sectional

area and an arbitrary mean temperature profile in a thermoacoustic network model. Based

on the quasi one-dimensional form of the linearized Euler equations (LEEs) for a perfect,

inviscid gas, the system equations are formulated in a state space framework in terms of the

Riemann invariants f and g. This approach is predicated on one additional assumption, i.e.

that the direct impact of entropy fluctuations on the acoustic waves inside the duct is small. A

comparison of model results with analytical analysis shows excellent agreement. Eigenvalues

are predicted with good accuracy, even for coarse grids. Furthermore, the mode shapes and

frequency responses match those found in the literature, demonstrating the validity of the

approach.

Introduction
Reliable prediction of unstable thermoacoustic behavior constitutes a major challenge in the design of combustion

systems such as gas turbine engines. Driven by a coupling of heat release fluctuations and pressure oscillations, such

instabilities manifest themselves as large-amplitude acoustic oscillations, which may reduce the operational flexibility of

the engine or even cause structural damage. In order to avoid or reduce the costs of iterative, full-scale CFD calculations,

primary engine design studies rely on low order models (LOM) to predict and eliminate thermoacoustic instabilities. This

includes reducing the describing model equations to a (quasi-) one-dimensional domain, thus significantly decreasing

the computational effort.

In network models, the system is decomposed into various subsystems, called elements. The complexity of each

element is adjusted according to the level of detail required by the respective physical mechanisms. The global system

dynamics can be obtained by interconnecting various elements, which are available in a network library. This architecture

allows for efficient modeling of a wide variety of systems by combining the respective characteristic elements. An

exemplary model of a combustion system is illustrated in Figure 1.
∗Research Assistant, Technical University of Munich, Thermo-Fluid Dynamics Group, schaefer@tfd.mw.tum.de.
†Professor, Technical University of Munich, Thermo-Fluid Dynamics Group, polifke@tum.de.
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Owing to its large number of applications in the field of thermoacoustics, duct elements with temperature gradient

and variable cross section have been the subject of analysis in numerous publications during the last decade. Sujith et.

al [1] derived an analytical solution for inhomogeneous, constant-area ducts in the absence of mean flow. This analysis

was extended to incorporate mean flow by Karthik et. al [2]. Cummings [3] and Li and Morgans [4] also derived

approximate analytical solutions for moderate Mach numbers using a WKB type approach. Analytical solutions have

also been derived for certain duct shapes with constant temperature, e.g. the exponential horn [5].

Based on the general assumption of an inviscid flow with perfect gas properties, this paper derives the basic equations

for a duct with both non-zero mean temperature gradient and non-uniform cross-sectional area in the presence of mean

flow. The model assumes that the impact of entropy fluctuations on the acoustic field can be neglected. This assumption

does not apply to systems where mean flow gradients and Mach numbers are large, e.g. as the flow enters a nozzle with

choked cross-section. However, for systems of moderate Mach number and mean flow gradients the presented approach

accurately resolves the acoustic field.

The model equations are incorporated as a new element into the low-order network model taX∗, introduced by

Emmert and Jaensch [6]. Analytical solutions derived in previous works are used to verify the model.

Using this extension of the network model, the system dynamics can be obtained given arbitrary profiles of both

mean temperature and cross-sectional area in the combustion chamber, thus accounting for heat transfer effects and a

large variety of chamber geometries. The respective profile can be entered by the user either as an explicit function

depending on the axial coordinate of the duct or by loading a data file that results from simulation or measurement.

Background
Network models often employ the traveling wave approach, i.e. the linearized Euler equations (LEEs) are solved

based on Riemann decomposition of the primitive variables. Wave propagation is thus described in terms of two

characteristic plane waves f (t − x/c) and g(t + x/c) propagating in the up- and downstream direction, respectively.

For the modeling of longitudinal acoustics, this requires a (quasi) one-dimensional flow, i.e. all physical quantities are

constant across the duct cross section and the fundamental mode is below the cut-off frequency. This representation
∗tool available at https://gitlab.lrz.de/tfd/tax

+_

u'
FTF

Q'
.

A(x),T(x)
f

g

Fig. 1 Illustration of an exemplary network model including a duct with variable cross-sectional area and
temperature profiles
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of the acoustic field offers several advantages. On the one hand, the causality of the system is implicitly given by the

direction of propagation of the input waves f at the entrance and g at the downstream end of the duct. On the other

hand, the reflection (r) and transmission (t) behavior for each element is directly captured by the so-called scattering

matrix, which relates the two traveling waves at downstream (d) and upstream (u) position:


gu

fd


=


ru td

tu rd

︸     ︷︷     ︸
S


fu

gd


(1)

For a duct element with constant cross-sectional area and temperature, the two plane waves travel independently within

the duct, i.e. they are decoupled (rd = 0, ru = 0).

However, if these waves are subject to a discontinuous change in the cross-sectional area, gas properties or, in

general, impedance, they are partially reflected and partially transmitted. For smooth changes, the acoustic field can

be seen as a superposition of reflected and transmitted waves caused by a multitude of infinitesimally discontinuous

changes [7]. Consequently, the two plane waves do not propagate independently but are coupled as each wave undergoes

continuously excited partial reflections.

Derivation of the model equations
To determine the relationship between the two coupled waves f and g, the quasi-one dimensional mass, momentum

and energy conservation equations for a perfect, inviscid gas are considered [8]:

A
∂ρ

∂t
+
∂(ρuA)
∂x

= 0 (2)

ρ
∂u
∂t
+ ρu

∂u
∂x
+
∂p
∂x
= 0 (3)

∂s
∂t
+ u

∂s
∂x
=

Rq̇
p
, (4)

where ρ, u, p, s, R and A denote the density, axial velocity, pressure, specific entropy, the universal gas constant and

cross-sectional area, respectively, and q̇ represents the rate of heat release per unit of volume. By decomposing the

flow into a steady, time-averaged flow (denoted (̄)) and small perturbations (denoted ()′) the system can be linearized,

3

PAPER_DUCT

75



resulting in the LEEs:

∂ρ′

∂t
+ ū

∂ρ′

∂x
+ u′

∂ ρ̄

∂x
+ ρ̄

∂u′

∂x
+ ρ′

∂ū
∂x
+

u′ ρ̄
A
∂A
∂x
+

ūρ′

A
∂A
∂x
= 0 (5)

ρ̄
∂u′

∂t
+ ρ′ū

∂ū
∂x
+ ρ̄u′

∂ū
∂x
+ ρ̄ū

∂u′

∂x
+
∂p′

∂x
= 0 (6)

∂s′

∂t
+ ū

∂s′

∂x
+

R ¯̇q
p̄

(
u′

ū
+

p′

p̄

)
= 0. (7)

Using the ansatz described in [4], fluctuations of density ρ′ are expressed in terms of fluctuations of pressure p′ and

entropy s′, the speed of sound c, the mean density ρ̄ and the heat capacity at constant pressure cp = γR/(γ − 1) (γ

represents the ratio of specific heats):

ρ′ =
p′

c2 −
ρ̄

cp
s′. (8)

Note that cp is considered constant along the duct. Subsequently, by adding equations 5 and 7, the entropy fluctuations

can be eliminated from the mass conservation equation. The linearized mass and momentum equations can then be

expressed in terms of the acoustic pressure p′ and the acoustic velocity u′:

∂p′

∂t
+ ū

∂p′

∂x
+ u′

∂ p̄
∂x
+ p̄γ

∂u′

∂x
+ p′γ

∂ū
∂x
+

u′γ p̄
A

∂A
∂x
+
γūp′

A
∂A
∂x
= 0, (9)

∂u′

∂t
+ u′

∂ū
∂x
+ ū

∂u′

∂x
+

1
ρ̄

∂p′

∂x
+

p′ū
γ p̄

∂ū
∂x
− ūs′

cp

∂ū
∂x
= 0. (10)

The last term in equation (10)) describes the direct, local impact of entropy fluctuations on the acoustic wave field.

This term vanishes if there are no gradients in mean flow velocity ū. Furthermore, for moderate mean flow gradients

and Mach numbers and large frequencies, the entropy fluctuations s′ become insubstantial, as detailed in the Appendix.

The acoustic field can then be considered decoupled from the entropy, i.e. it is fully described by equations (9) and (10).

The energy equation (7) thus no longer needs to be considered as an additional model equation.

The system is transformed to generalized coordinates according to [9]


p′
ρ̄c

u′


=


1 1

1 −1




f

g


, (11)

with c =
√
γRT depending directly on the temperature T . The resulting two equations describe the acoustics of the duct

in terms of f and g. The mean field quantities p̄, ū and ρ̄ can be derived from the compressible Bernoulli equation and

4
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the ideal gas law, as shown in Appendix A of [4].

∂ f
∂t
= − (ū + c)

∂ f
∂x
− 1

2

(
1
ρ̄c

∂ p̄
dx
+

( ū
c
+ 1

) 1
ρ̄

∂ ρ̄c
dx
+

(
γ +

ū
c
+ 1

)
∂ū
dx
+ (c + γū)

1
A
∂A
dx

)

︸                                                                                   ︷︷                                                                                   ︸
ψ1

f (12)

− 1
2

(
− 1
ρ̄c

∂ p̄
dx
+

( ū
c
+ 1

) 1
ρ̄

∂ ρ̄c
dx
+

(
γ +

ū
c
− 1

)
∂ū
dx
+ (−c − γū)

1
A
∂A
dx

)

︸                                                                                       ︷︷                                                                                       ︸
ψ2

g,

∂g

∂t
= (−ū + c)

∂g

∂x
− 1

2

(
1
ρ̄c

∂ p̄
dx
+

( ū
c
− 1

) 1
ρ̄

∂ ρ̄c
dx
+

(
γ − ū

c
− 1

)
∂ū
dx
+ (c − γū)

1
A
∂A
dx

)

︸                                                                                   ︷︷                                                                                   ︸
ψ3

f (13)

− 1
2

(
− 1
ρ̄c

∂ p̄
dx
+

( ū
c
− 1

) 1
ρ̄

∂ ρ̄c
dx
+

(
γ − ū

c
+ 1

)
∂ū
dx
+ (−c + γū)

1
A
∂A
dx

)

︸                                                                                       ︷︷                                                                                       ︸
ψ4

g

The first term on the right-hand side of equations (12) and (13) is in line with the model equations obtained for a

simple duct (see [9]). However, for a variable cross-section with mean temperature gradient, both the mean axial velocity

ū(x) and the speed of sound c(x) depend on the axial coordinate x of the duct, which has to be taken into account for

the discretization of the system. The third term in equation (12) represents the influence of g on the evolution of f , and

the second term in equation (13) represents the influence of f on g. The coupling of the two waves by scattering at

mean flow gradients described at the beginning of this section is thus included and quantified in the model equations.

Implementation
The network model taX describes the acoustic system via a state space formalism. In the state space approach, a set

of ordinary differential equations that relate the input u and output y of a system is used to represent the system dynamics

Eẋ = Ax + Bu,

y = Cx + Du,

where x is the state vector and A, B,C, D and E the system matrices [9]. In contrast to stability analysis in the frequency

domain, the state-space formulation produces an easily solvable linear eigenvalue problem. In matrix form, equations

(12)-(13) read

∂

∂t


f

g


=


−(c + ū) 0

0 (c − ū)


∂

∂x


f

g


+


ψ1 ψ2

ψ3 ψ4




f

g


,
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where ψ1, ψ2, ψ3 and ψ4 represent the labeled terms on the right-hand side of equations (12)-(13). Although a third order

upwind scheme is used in taX, the discretization is demonstrated by way of example using a first order upwind scheme:

df j
dt
= −(cj + ū j )

f j − f j−1

∆x
+ ψ1, j f j + ψ2, jgj (14)

=

(−(cj + ū j )
∆x

+ ψ1, j

)
f j +

(cj + ū j )
∆x

f j−1 + ψ2, jgj,

dgj
dt
= (cj − u j )

gj+1 − gj
∆x

+ ψ3, j f j + ψ4, jgj (15)

=
(cj − ū j )
∆x

gj+1 +

(
(cj + ū j )
∆x

+ ψ4, j

)
gj + ψ3, j f j .

Note that g propagates in upstream direction and is discretized accordingly. The state space system is formalized with

the state and input vectors

xT =
[

f2 f3 · · · fn g1 g2 · · · gn−1

]
, u =


f1

gn


,

where n is the number of discretization points within the duct element. The system matrix can be assembled as

A = Acu + Aψ =


Acu, f f [0]

[0] Acu,gg


+


Aψ, f f Aψ, f g

Aψ,gf Aψ,gg


, (16)

where Acu, f f and Aψ, f f are given by

Acu, f f =
1
∆x



−(c2 + ū2) 0 0 0 · · · 0 0

(c3 + ū3) −(c3 + ū3) 0 0 · · · 0 0

0 (c4 + ū4) −(c4 + ū4) 0 · · · 0 0
... 0

. . .
. . . · · · ...

...

0 0 0 0 · · · cn + ūn −(cn + ūn)



, (17)
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Aψ, f f =



ψ1,2 0 0 0 · · · 0

0 ψ1,3 0 0 · · · 0

0 0 ψ1,4 0 · · · 0
...

... 0
. . . · · · ...

0 0 0 0 · · · ψ1,n



, (18)

and similarly for the other sub-matrices Acu,gg, Aψ,_g.

The global system dynamics is obtained by interconnecting the individual subsystems. In this context, the global

system matrices A, B,C, D and E are derived from the subsystem matrices (e.g. Aduct1, Bduct1,..). A more detailed

mathematical formulation can be found in [9]. Having determined the system matrices, the eigenvalues can be calculated

by solving the linear eigenvalue problem

(Es − A)x = 0. (19)

The system is stable if

Re(si) < 0 (20)

for all eigenvalues si . This linear eigenvalue problem can be solved using standard algorithms, enabling efficient

stability analysis, which represents a significant advantage of the state space approach over alternative methods. By

interconnecting different elements, as illustrated in Figure 1, systems of arbitrary topology can be modeled and

investigated regarding their stability behavior for specified parameter setups.

Results and Discussion
In order to verify the approach, the results of various taX models that include the new duct element are compared

with (semi-)analytical solutions taken from the literature. Since analytical solutions only exist for either cross-sectional

or temperature variations, the two effects are investigated separately.

Variable Cross-Section

The element is first evaluated for a duct with variable cross-sectional area. For this purpose, the case of an

"exponential horn" is examined. For this duct geometry, the profile of the cross-sectional area is specified explicitly as a

function of the axial coordinate of the duct as

A(x) = A(0) exp(2mx) (21)
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Fig. 2 Acoustic network system of an exponential horn
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Fig. 3 Pressure magnitude at the throat of an exponential horn for m = 1 and m = 2, taX (x) vs. analytical (-)
solution

where m is the mode number. Temkin [5] showed that an exact analytical solution for this case can be derived when the

mean flow through the duct is set to zero. The schematic structure of the taX model is illustrated in Figure 2. The system

is excited at the throat of the duct by a loudspeaker with constant forcing amplitude ε = 1m/s. The mouth of the horn is

considered an open end, its length is set to L = 1m. Gas properties along the duct remain constant. Figure 3 compares

the pressure magnitude at the throat of the exponential horn obtained by taX with the analytical solution for the first two

mode numbers. The results show excellent agreement between the numerical and the analytical solutions. A comparison

of the eigenvalues further shows that the model predicts the eigenfrequencies for both a closed and an open ended duct

with adequate accuracy with deviations around 1% for the first two eigenvalues using only n = 25 grid points.

Axial Temperature Gradient

By transforming the LEEs to the mean temperature space, Sujith et. al [1] were able to derive an analytically

solvable expression describing the acoustics in a duct with a linear temperature profile. However, the applicability of

that study is limited to flows with small Mach numbers, as mean flow effects are neglected. Li and Morgans [4] extended

this work to non-linear temperature profiles using an adapted WKB approximation. Since only Mach number terms of

higher order than M2 were neglected, the analysis is valid for low and moderate Mach number flows.

In this section the proposed model is validated against both of these analytical approaches. Table 1 lists the first

8
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Table 1 Comparison of the first four taX eigenfrequencies with analytical solution

T (x) = T1 + mx T1 [K] 500 700 900 1100
m[K/m] -50 -100 -150 -200

f0[1/s]
taX 23.54 25.04 26.33 27.48
analytical 23.61 25.15 26.48 27.67

f1[1/s]
taX 74.16 81.56 87.92 93.69
analytical 74.23 81.61 88 93.7

f2[1/s]
taX 124.02 136.69 147.67 157.47
analytical 124.15 136.8 147.74 157.51

f3[1/s]
taX 173.61 191.43 206.84 220.62
analytical 173.97 191.81 207.24 221.03

four eigenfrequencies for different linear temperature profiles obtained by the low-order network model and compares

them to the exact solution derived by Sujith et. al [1]. The model considers a duct of length L = 4m which is closed

at one and open at the other end. The temperature at the open end is fixed at T2 = 300K , whereas the temperature at

the duct entrance T1 and the slope of the linear temperature profile m are increased gradually. Due to the open-closed

boundary conditions, the fundamental mode f0 corresponds to a quarter wave and the first three harmonics f1, f2 and

f3 to a three-quarter, five-quarter and seven-quarter wave, respectively. The duct is discretized using a grid size of

n = 25, which corresponds to a resolution of only 10 grid points for the shortest wavelength ( f ≈ 200s−1) of the

constant-temperature reference case (T (x) = T2).

Table 1 confirms that the effect of the temperature profile on the eigenvalues is reliably captured by the proposed

network model approach. Despite the coarse resolution of the grid, the first four eigenfrequencies are calculated with a

maximum deviation of 0.7%.

To test the model for non-linear temperature profiles and to include the effect of mean flow, the frequency response

of the modeled system is compared to the analytical solution given by [4]. The non-linear temperature profile is given as

T (x) =
T1 − T2

2
sin

(
5π
4

x
L
+
π

4

)
+

T1 + T2
2

.

This function describes an initially rising and then gradually falling temperature curve, which corresponds roughly to a

temperature profile in combustion chambers. Figure 4 shows the predicted gain and phase of the normalized acoustic

pressure (a and c) and velocity (b and d) along the duct. The model parameters are set to L = 1m, γ = 1.4, R = 287,

M = 0, T1 = 1600, T2 = 800 and f = 1.5c0, where f is the frequency and c0 is the speed of sound at axial position

x = 0. The duct element is discretized using a uniform grid containing 100 grid points. The numerical and analytical

results are in good agreement with a maximum deviation of 3% in both gain and phase. It is thus concluded that the

model can make reliable predictions even for non-linear temperature profiles.

9
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Fig. 4 Frequency response with f = 1.5c0, M = 0 and a non-linear temperature profile along the duct.
Analytical (-) vs. taX (x) solution

In order to ensure the accuracy of the analytic solution, the effect of mean flow is investigated for a linear temperature

profile. The mean flow velocity is defined by the Mach number M = 0.2 at the entrance of the duct. Besides the

Mach number and the temperature profile, all model parameters are adopted from the non-linear case. The temperature

function is given by

T (x) = T1 − T1 − T2
L

x.

Figure 5 shows the frequency response for the linear temperature profile in the presence of mean flow. The numerical

solution matches the analytical prediction almost perfectly, deviating by a maximum of 0.46% in gain and 0.26% in

phase for a resolution of 80 grid points. The effect of mean temperature upon the acoustic field is thus adequately

resolved.

Conclusion
A method for integrating a duct element with variable cross-sectional area and mean temperature gradient into

a network model was presented. The comparison with analytical results has shown that the model predicts both

eigenfrequencies and the development of the acoustic quantities with satisfactory accuracy at low computational cost. In
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Fig. 5 Frequency response with f = 1.5c0, M = 0.2 and a linear temperature profile along the duct. Analytical
(-) vs. taX (x) solution

contrast to the analytical approaches, neither the temperature nor the cross-sectional area profiles are restricted to specific

functions. Furthermore, a change of one of these functions does not require a renewed analysis but is automatically

integrated into the model equations. Due to the network architecture, the duct element can also be used with arbitrary

boundary conditions and in combination with other, more complex elements, both of which would greatly complicate an

analytical analysis.

The consideration of temperature and area gradients allows more accurate modeling of a variety of systems as

it incorporates heat transfer effects and is able to represent geometrically complex burner systems. The introduced

element is thus a valuable extension to the existing network system, and may constitute an important feature for future

investigations.

Appendix

The influence of entropy wave generation on the acoustic field

By inserting Gibbs’ relation into the time-averaged energy equation, an expression for the time-averaged volumetric

heat flux ¯̇q can be found. All perturbations are assumed harmonic and can be expressed as y′ = ŷeiωt . The entropy
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wave ŝ can then be obtained by solving the following differential equation

ŝ +
ū

iω
dŝ
dx
=

ūcp
iω

(
(1 − M2)

1
ρ̄

d ρ̄
dx
+

M2

A
dA
dx

) (
p̂
p̄
+

û
ū

)
. (22)

The right-hand side of equation 22 represents the generation of entropy due to the interaction of the acoustic waves

with mean flow gradients. For low Mach number flows, terms of order M2 << 1 can be neglected. Furthermore, the

pressure perturbations of plane waves can be estimated as p̂ ∼ O( ρ̄cû), rendering pressure fluctuations in equation 22

negligible compared to velocity fluctuations [4]. The entropy wave equation is thus obtained as

ŝ +
ū

iω
dŝ
dx
≈ − cp

iω
1
T

dT
dx

û. (23)

For a duct with constant temperature and for sufficiently high frequencies with moderate temperature gradients, the

right-hand side of equation 23 is negligible. The resulting entropy wave is then described by

s′(x, t) = ŝ(x = 0)ei(ωt−kx) . (24)

Assuming that there is no entropy wave entering the system (s′(x = 0) = 0), entropy perturbations can be neglected

altogether, allowing us to proceed with the two-equations system.
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Interplay of Clusters of Acoustic
and Intrinsic Thermoacoustic
Modes in Can-Annular
Combustors
Thermoacoustic systems can exhibit self-excited instabilities of two nature, namely cavity
modes or intrinsic thermoacoustic (ITA) modes. In heavy-duty land-based gas turbines
with can-annular combustors, the cross-talk between cans causes the cavity modes of var-
ious azimuthal order to create clusters, i.e., ensembles of modes with close frequencies.
Similarly, in systems exhibiting rotational symmetry, ITA modes also have the peculiar
behavior of forming clusters. In the present study, we investigate how such clusters inter-
play when they are located in the same frequency range. We first consider a simple Rijke
tube configuration and derive a general analytical low-order network model using only
dimensionless numbers. We investigate the trajectories of the eigenmodes when changing
the downstream length and the flame position. In particular, we show that ITA and acous-
tic modes can switch nature and their trajectories are strongly influenced by the presence
of exceptional points. We then study a generic can-annular combustor. We show that
such configuration can be approximated by an equivalent Rijke tube. We demonstrate
that, in the absence of mean flow, the eigenvalues of the system necessarily lie on specific
trajectories imposed by the upstream conditions. [DOI: 10.1115/1.4055381]

1 Introduction and Motivation

Lean premixed combustion systems have been developed in
order to reduce emissions and address environmental issues.
Unfortunately, such technology is also more prone to combustion
instabilities [1,2]. The coupling between the unsteady heat release
of the flame and the acoustics of the system may result in a posi-
tive feedback loop leading to self-excited instabilities with grow-
ing pressure fluctuations. It is crucial to understand and mitigate
such phenomenon as repeated exposure to high level of pressure
can lead to catastrophic engine failure [3].

Since the Apollo program and the development of modern
rocket engines, thermoacoustic instabilities have been interpreted
as acoustic eigenmodes of the system driven by unsteady heat
release [4,5]. However, Hoeijmakers et al. [6,7], experimentally
and with a simple analytical model, showed evidence of thermoa-
coustic instabilities in an anechoic environment. This situation

was paradoxical and constituted a significant deviation from the
established interpretation. These observations were later con-
firmed with high-fidelity numerical simulations [8,9]. Bomberg
et al. [10] formally identified the so-called intrinsic thermoacous-
tic (ITA) feedback loop, a flame-flow-acoustic interaction intrinsic
to the flame and its immediate surrounding and not involving the
acoustics of the system, which allowed Emmert et al. [11] to jus-
tify the physical nature of the previous observations. Emmert
et al. [12] then demonstrated that the ITA feedback loop gives rise
to a new set of thermoacoustic modes of different nature also for
reflecting boundaries and identified such an ITA mode as the most
unstable mode in a longitudinal test-rig. Yong et al. [13] showed
that for a marginally stable ITA mode, the velocity fluctuations
and the gradient of pressure fluctuations change sign across the
flame, thus providing a simple identification criterion.

This new paradigm fundamentally changed the understanding
of thermoacoustic instabilities and shed a new light on inexplica-
ble phenomena reported in earlier studies, such as “the new set of
modes” described by Dowling and Stow [14], the “bulk mode”
highlighted by Eckstein and Sattelmayer [15,16], or the
“convective scaling” of thermoacoustic eigenfrequencies [17].
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Numerous studies then investigated the role of both types of ther-
moacoustic instabilities. Hosseini et al. investigated the interplay
between modes of ITA and acoustic origin and showed that, when
they are far away from one another, they do not influence each
other [18]. Mensah et al. [19] highlighted the presence of excep-
tional points in the spectrum due to the coalescence of modes of
ITA and acoustic origin. Silva et al. [20] and Orchini et al. [21]
further investigated the role of exceptional points in the interplay
between ITA and acoustic modes and highlighted characteristic
trajectories. Buschmann et al. [22,23] observed the existence of
ITA modes in an annular combustor and showed that they appear
in clusters, i.e., a collection of eigenmodes with close oscillation
frequencies but different growth rates. Fournier et al. [24] used a
low-order model to explain why the ITA clusters align around a
“pure ITA frequency,” i.e., the frequency of an ITA mode in an
anechoic environment.

Annular and can-annular combustors exhibit discrete rotational
symmetry and the azimuthal dimension leads to interesting new
properties. Numerical simulations [25,26] and experiments [27]
revealed that the full can-annular configuration gives rise to new
eigenmodes, with mode shapes involving multiple cans, that do
not exist in a single can approximation. Farisco et al. [28] numeri-
cally investigated the effect of the gap, demonstrated that the
cross-talk between cans cannot be ignored and estimated a trans-
mission coefficient. Ghirardo et al. [29] gave further proof using
two-dimensional Helmholtz simulations and experimental results.
They highlighted that modes of various azimuthal orders emerge
due to the weak coupling between cans and form clusters of
acoustic modes. Jegal et al. [30] and Moon et al. [31,32] used a
test-rig with two and four cans, respectively, to explore the effect
of can coupling on the stability of the burners. Because the
eigenmodes are closely spaced in clusters, mixed states, with sev-
eral distinct types of interaction patterns, were observed.

Recent studies tackled the problem at a more fundamental level
using low-order network models. Fournier et al. [24] proposed the
modeling of the gap as a thin annulus and the method was applied
by Haeringer et al. [33] in a strategy to tune single-can test-rigs to
mimic full engines. Von Saldern et al. [34] proposed to model the
cross-talk between cans with the Rayleigh conductivity, which
relates the acoustic flux through the aperture to the pressure gradi-
ent between cans. Both modeling approaches were compared by
Fournier et al. [35] and an extension was given, using a flow
parameter in terms of a characteristic length, giving quantitatively
accurate results. Von Saldern et al. [36] derived an effective
impedance model for non-compact connections and analyzed the
role of liners in damping azimuthal thermoacoustic modes.
Orchini [37] and Pedergnana and Noiray [38] explored the effect
of mean flow and derived effective impedance models that show
explicit dependence on the grazing flow Mach number. Orchini
et al. [39] then showed that such an effect gives rise to new sets of
clusters of modes of aeroacoustic origin due to the coupling with
the response of the shear layer in the apertures.

Both phenomena of ITA clusters in annular configuration and
acoustic clusters in can-annular configurations are fairly well
understood taken individually. In the present study, we want to
investigate the interplay between clusters of acoustic and ITA
modes in a can-annular combustor when they are located in the
same frequency range. The motivation of our study is illustrated
by Fig. 1, which shows the spectrum of two generic can-annular
combustors obtained with FEM Helmholtz computations using
COMSOL MULTIPHYSICS. The geometrical and thermodynamic param-
eters are given in Table 1 and both configurations are investigated
more in-depth in Sec. 4. For Configuration A, the ITA and acous-
tic clusters are distinct and identifiable. In Configuration B, the
flame position differs by only 15% but the total length of the com-
bustor is kept constant. In this scenario, the clusters cannot be dis-
tinguished from one another and seem to be entangled. The paper
aims at explaining such drastic change in the spectrum and giving
more insight on the ITA and acoustic trajectories in can-annular
combustors.

Fournier et al. [24] and Haeringer et al. [33] showed that, under
some assumptions discussed later in the paper, a can-annular com-
bustor can be fairly well represented by an equivalent Rijke tube.
The latter is one of the simplest thermoacoustic system and has
been extensively studied for decades. This allows us to gain
insight at a more fundamental level. Therefore, the paper struc-
tures as follows: in Sec. 2, we first consider a simple Rijke tube
and analytically derive the dispersion relation. The problem
remains generally applicable to configurations of arbitrary geo-
metrical and thermodynamic parameters thanks to the use of
Buckingham P theorem and dimensionless numbers. In Sec. 3,
we then investigate the influence of the length of the Rijke tube
and the flame position inside it on both ITA and acoustic modes.
In Sec. 4, the results are transposed to two generic can-annular
combustors and allow us to explain the spectrum observed in
Fig. 1. Finally, the modeling assumptions and the limits of validity
are discussed.

2 Network Model of a Generic Rijke Tube

Configuration

2.1 Case and Flow Description. The system considered is a
generic Rijke tube, as depicted in Fig. 2. Ducts of length Lu and
Ld are placed upstream and downstream of the flame, respectively.
The acoustic boundaries are defined by the reflection coefficients
Ri and Ro at the inlet and outlet, respectively. We assume zero

Fig. 1 Spectrum of two generic can-annular combustors
obtained with FEM computations. Parameters are given in
Table 1. For Configuration A (blue circles), the ITA and acoustic
clusters are distinct and identifiable. Two modes are offset from
their respective clusters, which is explained later in the paper.
In Configuration B (orange diamonds), the flame position inside
the combustor is changed but the total length is kept constant.
The clusters become entangled and cannot be distinguished
from one another.

Table 1 Geometrical and thermodynamic parameters of a
generic can-annular combustor such as presented in Ref. [33].
The FTF parameters are adapted from Ref. [40].

Configuration A Configuration B

N 10 10
H (m) 0.15 0.15
L�g 0.25 0.25
n 1.2 1.2
sF (s) 3:5� 10�3 3:5� 10�3

Lu (m) 0.5 0.8
Ld (m) 1.5 1.2
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mean flow when modeling the thermoacoustic behavior of the sys-
tem, in particular wave propagation in the ducts. The model is
based on a network approach. Recall the definition of the charac-
teristic wave amplitudes

f � 1

2

p0

�qc
þ u0

� �
; g � 1

2

p0

�qc
� u0

� �
(1)

In the ducts, we assume that only one-dimensional (1D) planar
acoustic waves propagate. The f and g waves in the system relate
as follows:

fu

gu

� �
¼ e�ssu 0

0 essu

� �
fi

gi

� �
;

fo
go

� �
¼ e�ssd 0

0 essd

� �
fd

gd

� �
(2)

The term e6ss represents the phase change resulting from the acous-
tic propagation of the wave and s is the time it takes to travel. su ¼
Lu=cu and sd ¼ Ld=cd are the propagation times upstream and
downstream the flame respectively, cu and cd are the speed of sound
in the respective regions, and s ¼ rþ ix is the Laplace variable,
with r the growth rate and x the angular frequency.

The acoustic boundary conditions of the system are defined
using reflection coefficients. The latter write as follows:

Ri ¼
fi

gi
; Ro ¼

go

fo
(3)

2.2 Flame and Unsteady Heat Release Model. The acoustic
flame model is derived using the linearized Rankine Hugoniot
jump equations for a compact heat source at rest with unsteady
heat release fluctuations [11,41]

p0d
�qdcd

¼ n
p0u

�qucu

u0d ¼ u0u þ h _q0

8><
>: (4)

where n ¼ �qucu=�qdcd is the ratio of specific impedances, h ¼
Td � Tuð Þ=Tu the normalized temperature ratio and _q0 ¼ _Q

0
�uu=

�_Q
the normalized global heat release fluctuations of the flame.

A flame transfer function (FTF) is used to relate the unsteady
heat release fluctuations _q0 to the acoustic velocity fluctuations
upstream the flame u0u. For this study, the famous n� s model
from Crocco is used [42]

_q0

u0u
¼ F sð Þ ¼ ne�ssF (5)

with n and sF the gain and time delay of the flame respectively.
Such a simple model captures the essential aspects of a generic
flame and is convenient to use in the context of low-order models
as it allows to derive analytical solutions.

Writing Eq. (4) with the characteristic wave amplitudes f and g
and inserting Eq. (5) leads to the flame transfer matrix:

fd
gd

� �
¼ T a sð Þ T b sð Þ
T b sð Þ T a sð Þ

� �
fu
gu

� �
(6)

The matrix is symmetric, with T a sð Þ ¼ 1
2

nþ 1þ nhe�ssFð Þ and
T b sð Þ ¼ 1

2
n� 1� nhe�ssFð Þ.

2.3 Dimensionless Nonlinear Eigenvalue Problem. Com-
bining Eqs. (2), (3), and (6), the governing equations of the system
can be cast in the matrix form:

1 �Ri 0 0

0 0 �Ro 1

T a sð Þe�s suþsdð Þ T b sð Þes su�sdð Þ �1 0

T b sð Þe�s su�sdð Þ T a sð Þes suþsdð Þ 0 �1

2
666664

3
777775

fi

gi

fo

go

2
666664

3
777775
¼

0

0

0

0

2
666664

3
777775
(7)

The four governing equations describing the system involve the
following parameters: the Laplace variable s, the propagation
times su and sd, the ratio of specific impedances n, the temperature
ratio h, the reflection coefficients Ri and Ro, the time delay of the
flame sF and its gain n. Among these nine parameters, five are
already dimensionless: n, n, h, Ri and Ro. The remaining four
parameters admit a basis of one fundamental dimension, time.
Applying Buckingham P theorem [43,44], we define the follow-
ing dimensionless numbers:

s� ¼ ssF; s�u ¼
su

sF
; s�d ¼

sd

sF
(8)

The system is therefore fully described using eight independent
dimensionless numbers. The nondimensionalization of the prob-
lem allows us to generalize the results to configurations of arbi-
trary geometrical and thermodynamic parameters, and therefore
allows us to draw general conclusions. This approach has success-
fully been applied in thermoacoustics [29,35,44].

Mathematically, Eq. (7) has nontrivial solutions if the determi-
nant of the matrix is null. Solving for the determinant and using
the dimensionless numbers defined in Eq. (8) leads to the disper-
sion relation:

D s�ð Þ ¼ nþ 1þ nhe�s�
� �

1� RiRoe�2s� s�uþs�dð Þ
� 	

þ n� 1� nhe�s�
� �

Rie
�2s�s�u � Roe�2s�s�d

� �
¼ 0 (9)

Equation (9) is nonlinear in s� and can generally not be solved
analytically. Instead, we solve it numerically using taX,2 the
open-source MATLAB package developed by the TFD group to
build and solve low-order thermoacoustic network models [45].
taX transforms Eq. (9) into a linear eigenvalue problem, thus
facilitating the use of direct solvers to easily find all eigenmodes,
in particular ITA modes, which remain difficult to find with itera-
tive methods due to their small basin of attraction [22,46].

2.4 Interesting Special Cases. Although Eq. (9) is nonlinear
in s�, in some cases, it can be solved analytically. We discuss here
three interesting limit cases. In the following, we assume the
reflection coefficients Ri and Ro to be real-valued and independent
of frequency.

� For the case of a very weak flame (i.e., n � 0), the dispersion
relation reduces to 1� RiRoe�2s� s�uþs�dð Þ ¼ 0 and we recover
the classical solution for an acoustic mode in a duct [7,47]:

Fig. 2 Schematic of a generic Rijke tube of length Lu upstream
the flame, Ld downstream the flame. The acoustic boundaries
are defined by the reflection coefficients Ri and Ro at the inlet
and outlet respectively. 2https://gitlab.lrz.de/tfd/tax
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St ¼ �sF ¼
j

4 s�u þ s�dð Þ
rsF ¼

1

2 s�u þ s�dð Þ
ln RiRo �1ð Þj
� 	 ; j 2N

8>>><
>>>:

(10)

where the Strouhal number St is the dimensionless frequency.
� In the case of anechoic boundaries Ri ¼ Ro ¼ 0, Eq. (9)

becomes nþ 1þ nhe�s� ¼ 0. The acoustic modes disappear
and only the pure ITA modes remain, i.e., ITA modes in an
anechoic environment. This was extensively discussed in
previous studies [7,11] and the eigenfrequencies are given
by:

St ¼ �sF ¼
2jþ 1ð Þ

2

rsF ¼ ln
nh

1þ n

� � ; j 2N

8>><
>>:

(11)

� A third remarkable case arises when the boundaries are iden-
tical Ri¼Ro, and when the flame is placed in the Rijke tube
specifically such as the propagation times in the upstream
and downstream ducts are identical s�u ¼ s�d . In this configu-
ration, the dispersion relation becomes:

nþ 1þ nhe�s�
� �

1� RiRoe�2s� s�uþs�dð Þ
� 	

¼ 0 (12)

The dispersion relation is factored in two terms. The first term
corresponds to the dispersion relation in an anechoic environ-
ment, leading to pure ITA modes, and the second term is the
dispersion relation for a pure acoustic system. Although a
flame is present and the acoustic boundaries are not anechoic,
the eigenvalues of the thermoacoustic system correspond
exactly to the pure ITA and acoustic modes defined by Eqs.
(10) and (11). Such a result can be explained using phasor
analysis, which has already been used in thermoacoustics
[13,16,17,24,48–50]. For example, if we consider the case of
fully reflecting boundaries Ri ¼ Ro ¼ 61, the acoustic mode
is marginally stable, thus simplifying the phasor analysis with
arrows of fixed length. At the inlet and the outlet, to satisfy the
boundary conditions, the phasor f and g have opposite direc-
tions (case Open–Open) or the same direction (case Closed
–Closed) respectively. Traveling from the boundaries to the
flame, from both upstream and downstream sides, the phasors
rotate by an identical angle xsu ¼ xsd ¼ p=2. The flame is
located at a velocity node or a pressure node, respectively.
The eigenmodes are simply the half-wave modes for a simple
acoustic system with a temperature jump.

3 Interplay of Intrinsic Thermoacoustic and Acoustic

Eigenmodes

In this section, we investigate the impact on the eigenmodes of
the length of the Rijke tube and the position of the flame inside it.
We consider here only the case Open–Open Ri ¼ Ro ¼ �1. The
FTF parameters n and sF are kept constant, as well as the flame
thermodynamic parameters h, n.

3.1 Short Upstream Length. In this case, we consider a short
upstream length, the dimensionless upstream propagation time is
small s�u¼ 0.1. We change the downstream length, i.e., we vary
the downstream dimensionless propagation time s�d from 0 to 2,
all other parameters being held constant. We consider only the
fundamental acoustic and ITA thermoacoustic modes and disre-
gard all the higher-order modes.

Figure 3 depicts the trajectories in the complex plane of both
eigenmodes. When increasing the downstream length, the fre-
quency of the acoustic mode decreases, as expected. For the ITA

mode, when s�d is small, the acoustic mode is far away and the two
modes do not interplay. Therefore, its growth rate changes but the
frequency remains constant and equal to the pure ITA frequency
St ¼ �sF ¼ 1=2 [20,21,51]. When increasing s�d , the ITA mode
eventually converges to a special point, indicated by the cross in
Fig. 3. The point can clearly be identified: the system behaves
exactly as if, just after the flame, the duct Ld and the outlet bound-
ary are replaced by a non-reflecting boundary, i.e., R¼ 0, while
the upstream condition remains unchanged (Ri ¼ �1). The flame
is placed in an effective semi-anechoic environment. This can be
explained by the fact that Rd ¼ gd=fd ¼ Roe�2s�s�d , and for positive
growth rate, when s�d increases, limsd!1 jRdj ¼ jRoje�rsd � 0. In
other words, the longer the downstream duct, the weaker the
effective reflection coefficient for an unstable mode. The system
downstream of the flame is equivalent to a non-reflecting
boundary.

The red circles mark the setup where s�d ¼ s�u. For this specific
scenario, the two modes are decoupled as shown by Eq. (12).
Here, the acoustic mode is outside of the frequency range of inter-
est and therefore not shown in Fig. 3. However, the ITA mode is
indeed present and verifies the analytical expression Eq. (11).

Figure 4 shows similar results for a different upstream configu-
ration. In this case, the upstream length is such that s�u ¼ 0:2, and
all other parameters are kept constant and identical to the previous
case. We vary the downstream length, i.e., s�d increases from 0 to
2. Similarly to the previous case, when s�d remains small, the ITA
and acoustic modes are far away from each other and do not inter-
play: the ITA mode has a constant pure ITA frequency St¼ 1/2,
and its growth rate changes. However, for larger downstream
lengths, the ITA mode does not converge to the semi-anechoic
mode, but passes around it and keeps decreasing in frequency: it
turns into the acoustic mode. Conversely, the mode initially clas-
sified as acoustic, when s�d is small, first decreases in frequency
but then converges to the semi-anechoic eigenmode. It is high-
lighted that the two modes can switch nature, as previously
reported [18,34,47]. However, we will not discuss how the
eigenmodes can be classified as ITA and acoustic and when pre-
cisely the modes switch nature as this question is out of the scope
of this study and already discussed by Yong et al. [50].

Fig. 3 Trajectories of the eigenmodes in the complex plane for
a short upstream, s�u 5 0:1 fixed. When increasing s�d , i.e.,
increasing the downstream length, as expected, the frequency
of the acoustic mode decreases. On the other hand, the ITA is
around its pure ITA frequency St 5 1/2 but its growth rate
changes. Eventually, the ITA mode converges to the semi-
anechoic configuration identified by the cross. The circle indi-
cates when s�d 5 s�u , i.e., when the modes are fully decoupled
according to Eq. (12). However, note that the acoustic mode is
outside of the frequency range of interest and therefore not
visible.
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3.2 Long Upstream Length: The Impact of an Exceptional
Point on the Acoustic and Intrinsic Thermoacoustic Trajecto-
ries. We now investigate the trajectories when the dimensionless
upstream propagation time is large s�u ¼ 0:45. All other parame-
ters are kept constant and equal to the case described in Sec. 3.1.
The downstream length is again varied such that s�d increases from
0 to 2. Figure 5 shows the trajectories of the eigenmodes in the
complex plane. When increasing s�d, the two eigenmodes first con-
verge toward each other before changing directions, which sug-
gests the presence of an exceptional point (XP) in the vicinity of
the parameter space. The circles indicate when the propagation
times are identical s�d ¼ s�u: the eigenmodes satisfy the pure ITA
and acoustic modes defined by Eqs. (10) and (11).

Exceptional points are found in various disciplines, including
thermoacoustics [19,20]. At an exceptional point, at least two
eigenvalues and their respective eigenfunctions coalesce, and the
eigenvalue sensitivity with respect to changes in parameters
becomes infinite. Recall that the eigenvalues are the solution of
the dispersion relation:

D s�; s�d; n
� �

¼ 0 (13)

Eigenvalues can be classified according to their algebraic and geo-
metric multiplicity, am and gm respectively. The algebraic multi-
plicity quantifies the multiplicity of the eigenvalue as a root of the
dispersion relation Eq. (13). The geometric multiplicity is the
dimension of the associated eigenspace, i.e., the number of line-
arly independent eigenvectors. Eigenvalues can be simple
(am ¼ gm ¼ 1), semi-simple (am ¼ gm > 1) or defective
(am> gm). Defective eigenvalues that are branch-point singular-
ities are called exceptional points (XPs). In the context of ther-
moacoustics, XPs are primarily attributed to the interplay between
intrinsic thermoacoustic modes (ITA) and acoustic modes, i.e.,
thermoacoustic modes of different natures [19]. Previous studies
have investigated XPs associated with the parameters (n; sF)
[19,44], or (sc; Ro), where sc is the time-delay of a realistic flame
impulse response [52]. Indeed, for the modes to coalesce, they
need to have the same frequency, mainly driven by sF or sc for an

ITA mode, and the same growth rate, mainly driven by the gain
(strength of the flame n) or losses (Ro 6¼ 61).

In the present study, the approach is different because the time-
delay of the flame sF is fixed, which in turn settles the value of the
pure ITA frequency (solution of Eq. (11)). By changing s�d , we
allow the acoustic mode to move in the complex plane and be in
the same frequency range as the ITA mode. For the modes to coa-
lesce, their growth rates must also be equal, which is obtained by
changing the strength of the flame n. According to Mensah et al.
[19], for an ITA and acoustic mode to coalesce, the following
relations need to be satisfied:

@D s�; s�d; nð Þ
@s�

¼ 0 ð14Þ

@2D s�; s�d; nð Þ
@s�2

6¼ 0 ð15Þ

8>>><
>>>:

The solution of the complex-valued Eqs. (13) and (14) is the set
of parameters (s�d;XP, nXP) and the defective eigenvalue s�XP. We
highlight here one special configuration where an easy analytical
solution is found. For the special case where s�d ¼ s�u ¼ 1=2, fol-
lowing Eqs. (10) and (11), the ITA and the acoustic mode share
the same frequency St¼ 1/2. For the modes to coalesce, they need
also to have the same growth rate. The acoustic mode is margin-
ally stable. For the ITA mode to also be marginally stable, the
gain of the flame response must be nXP ¼ 1þ nð Þ=h. It is straight
forward to demonstrate that the eigenvalue s�XP ¼ ip and the set of
parameters (s�d;XP ¼ 1=2, nXP) satisfy Eqs. (13) and (14).

However, in general, the XP cannot be found analytically, and
even finding it numerically remains challenging. For the configu-
ration s�u ¼ 0:45 depicted in Fig. 5, the method introduced by
Schaefer et al. [52] is applied to identify the exceptional point.
Results are shown in Fig. 6. Colors indicate isolines of flame
strength n, along which the downstream propagation time s�d
varies. We observe strong mode veering, a manifestation of
avoided crossing of two eigenvalues [20,21,44,53]. The presence
of the XP induces the eigenvalues to strongly veer, resulting in the
characteristic trajectories observed in Fig. 5. This also explains
why modes can switch nature, i.e., the mode of acoustic nature
when s�d is small becomes ITA for large values of s�d , and vice
versa.

Fig. 4 Trajectories of the eigenmodes in the complex plane for
a longer upstream length s�u 5 0:2 fixed. For small values of s�d ,
the ITA mode has once more its frequency near the pure ITA fre-
quency St 5 1/2, and its growth rate increases with s�d . However,
the ITA mode does not converge to the semi-anechoic point,
identified by the cross, but passes around it while its frequency
keeps decreasing. Conversely, the acoustic mode first
decreases in frequency but then converges to the semi-
anechoic eigenmode. The two eigenmodes switch nature. The
circle indicates when s�d 5 s�u and the ITA mode is a solution of
Eq. (11).

Fig. 5 Trajectories of the eigenmodes for the upstream config-
uration s�u 5 0:45. When increasing s�d , the modes first converge
toward each other before changing direction, suggesting the
presence of an exceptional point. The circles indicate when
s�d 5 s�u , the acoustic and ITA modes are effectively decoupled
and are solutions of Eqs. (10) and (11). Similarly to the results
shown in Fig. 4, the eigenmodes also switch nature.
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4 Application to Can-Annular Combustors

In this section, we want to extend the model to can-annular con-
figurations. We first describe a typical can-annular combustor. We
then show how such a system can be reduced to a simple Rijke
tube, thus allowing us to transpose the methods and results of
Secs. 2 and 3. Finally, we discuss the assumptions and limitations
of our modeling approach.

4.1 Case Description and Low-Order Modeling. The
generic combustor consists of N identical cans placed in an annu-
lar arrangement. Upstream the cans, we neglect the impact of the
plenum, as it often shows little influence [33]. The cans are acous-
tically decoupled and the inlet reflection coefficient is set to
Ri ¼ �1. At the outlet of the cans, a turbine is placed to extract
energy from the fluid. The acoustic response of the turbine stage
is modeled by a reflection coefficient with a fixed gain and a zero
phase response [54], we choose Ro¼ 1 as losses have little quanti-
tative impact [55]. The Mach number is low, typically below 0.2
[27,29]. Consequently, we assume zero mean flow when modeling
the thermoacoustic behavior of the cans. Finally, entropy waves
are assumed to have a negligible effect and are not taken into
account [29,56].

Figure 7 depicts a unit-cell of the investigated can-annular com-
bustor. Following previous studies [29,35], we consider cans of
width H and a gap of size Lg, leading to the coupling strength
between cans L�g ¼ Lg=H. The flame is placed inside the can at a
distance Lu and Ld from the inlet and outlet, respectively. Two
cases are investigated: Configuration A has a shorter upstream

duct than Configuration B, however, the total length of the com-
bustor Lu þ Ld is kept constant. The modeling of the flame is iden-
tical to Sec. 2.2. For the sake of simplicity, we consider a simple
n� s model adapted from Ref. [40], but results could be easily
extended to realistic flames, since distributed time delay models
are nothing more but a collection of individual n� s models [48].
The geometrical and thermodynamic parameters, inspired from a
realistic combustor such as presented in Ref. [33], are given in
Table 1.

4.2 Bloch Theory. As the cans are geometrically identical,
the system exhibits discrete rotational symmetry. Applying Bloch
theory [57], which is now well established in thermoacoustics
[24,29,33–35,58,59], the acoustic pressure in the frequency
domain can be written as

p̂ xð Þ ¼ w xð Þeimu; m ¼
�N

2
þ 1;…;

N

2
N even

�N � 1

2
;…;

N � 1

2
N odd

8><
>: (16)

where u is the azimuthal coordinate around the axis of rotational
symmetry, m is the Bloch wave number, identical to the azimuthal
order [29] and w xð Þ a function identical in all unit-cells and 2p=N
periodic in u.

The eigenmodes are classified into three groups: axial or push-
push (m¼ 0), push-pull (m ¼ N=2), and azimuthal modes (all
other values of m). We additionally assume reflection symmetry
along the planes u ¼ const: that pass through the center of the
cell (no mean flow in the azimuthal direction): the azimuthal
modes come in degenerate pairs which differ only by their spin-
ning direction. From the study of a single unit-cell, the behavior
of the full system is preserved by considering all azimuthal mode
orders m. We reduce the can-annular system to a single unit-cell
and apply Bloch boundaries in the gap region.

4.3 Equivalent Rijke Tube Model. Previous studies
[24,33–35] showed the possibility of transforming a can-annular
configuration into an equivalent longitudinal combustor, where all
the two-dimensional effects of can-to-can communication in the
cross-talk area are lumped into an equivalent outlet reflection
coefficient Rm. Using the characteristic length model introduced
by Fournier et al. [35], the equivalent reflection coefficient writes

Rm ¼ 1�
2 sin2 pm

N

� �

iSt
pL�char;ms�c

L�g
þ sin2 pm

N

� � (17)

with L�g ¼ Lg=H the coupling strength between the cans due to the
size of the gap, L�char;m ¼ Lchar;m=H the dimensionless characteris-
tic length that models the inertia of the volume of fluid, and s�c ¼
H= cdsFð Þ the dimensionless propagation time in the azimuthal
direction. The axial mode is a special case because the equivalent
reflection coefficient is simply Rm¼0 ¼ 1: the push-push mode is
not affected by the acoustic communication with neighboring
cans, i.e., the eigenmode is exactly the same as in the single can
system. For all the other azimuthal mode orders, the gain of the
equivalent reflection coefficient Rm is unity, however, its phase
response is not trivial, as shown in Fig. 8. Starting from p, the
phase monotonically decreases and converges toward zero as the
frequency increases. The characteristic length model shows per-
fect agreement with the FEM Helmholtz reference obtained with
COMSOL MULTIPHYSICS. For low frequencies St< 1, the phase
response of the gap can be approximated by the tangent at the ori-
gin, indicated by the dashed lines in Fig. 8. Since the phase
depends linearly on the frequency St, following the approach of
Fournier et al. [24], the equivalent reflection coefficient Rm can
therefore be replaced by a duct of length Lm terminated by a fully

Fig. 6 Identification of an exceptional point for the upstream
case s�u 5 0:45. Colors indicate isolines of flame strength n.
When varying the dimensionless downstream propagation time
s�d from 0.42 to 0.48, the XP causes the eigenmodes to strongly
veer, leading to the characteristic trajectories observed in
Fig. 5.

Fig. 7 Unit-cell of a generic can-annular combustor. The flame
is placed at a distance Lu and Ld from the inlet and the outlet,
respectively. The can is decoupled from the plenum at the inlet
and closed at the outlet. However, acoustic communication
with the neighboring cans is possible through the gap Lg.
Parameters are given in Table 1.
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reflecting open end as shown in Fig. 9. This equivalent duct of
length Lm induces an additional propagation time s�m ¼
Lm= cdsFð Þ downstream of the cans that writes:

Lm ¼
L�char;mH

2L�g sin2 pm

N

� � ; s�m ¼
L�char;ms�c

2L�g sin2 pm

N

� � (18)

For a given geometry, the higher the azimuthal order, the shorter
the equivalent duct. The full configuration is, therefore, reduced
to a simple Rijke tube, whose downstream length varies with the
azimuthal order m, representing the fact that the acoustic response
of the gap is mode order dependent. In consequence, the method-
ology and analysis introduced in Secs. 2 and 3 can be used to
understand the spectrum of the can-annular configurations. Note
however that this does not apply to the axial mode, which is sim-
ply obtained by solving the single can combustor.

4.4 Clusters of Eigenmodes and Their Trajectories. Fig-
ures 10 and 11 show the spectrum of the can-annular combustor
of Configurations A and B, respectively. Following the methodol-
ogy introduced in Sec. 3, since the upstream condition is, in both
cases, fixed, the trajectories when varying the downstream length
are obtained. The circles indicate the eigenvalues computed with
the reference FEM Helmholtz simulations, while the crosses are
the results from the equivalent Rijke tube model described in Sec.

4.3. The latter shows excellent agreement with the reference. A
small discrepancy is observed for the first azimuthal order m¼ 1.
This is explained by the fact that the approximation of a linear
phase response of the gap is valid only for low frequencies, as
shown in Fig. 8, and the low azimuthal orders are the first to devi-
ate from this approximation.

For Configuration A, s�u ¼ 0:251 and the trajectories obtained
resemble those shown in Fig. 4. For Configuration B, s�u ¼ 0:402
and the trajectories are similar to Fig. 5. In particular, an

Fig. 8 For the considered generic can-annular configuration,
the phase response of the gap obtained with FEM Helmholtz
computations (full lines) is shown as a function of the dimen-
sionless frequency St. The 1D model based on a characteristic
length (crosses) shows perfect agreement with the reference.
The phase response of the gap for the axial mode is trivially
null. For all other azimuthal orders, starting from p, the phase
monotonically decreases toward zero. For low frequencies
St < 1, the phase response of the gap can be approximated by
the tangent at the origin (dashed line). The higher the azimuthal
order m, the wider the frequency range over which this approxi-
mation holds.

Fig. 9 Equivalent Rijke tube with fully reflecting boundaries.
The equivalent length Lm varies with the azimuthal order of the
mode considered and models the behavior of the acoustic com-
munication through the gap. The larger the azimuthal order, the
shorter Lm.

Fig. 10 Eigenvalues of the can-annular Configuration A as pre-
dicted by FEM Helmholtz simulations (circles) compared to the
equivalent Rijke tube model (crosses). The latter shows excel-
lent agreement with the reference. Colors indicate the azimuthal
order as defined in Fig. 8. Except for the axial mode, all the
eigenvalues are located on the trajectories obtained when vary-
ing s�d . Their position on the trajectory depends on the mode
order through the additional equivalent length Lm. Note that
modes m 5 4 and m 5 5 almost coincide. The ITA and acoustic
clusters are distinct.

Fig. 11 Eigenvalues of the can-annular Configuration B as pre-
dicted by FEM Helmholtz simulations (circles) compared to the
equivalent Rijke tube model (crosses). The latter shows excel-
lent agreement with the reference. Colors indicate the azimuthal
order as defined in Fig. 8. All azimuthal eigenmodes are located
on the trajectories obtained when varying s�d and their exact
position on it depends on the mode order through the addi-
tional equivalent length Lm. Note that modes m 5 4 and m 5 5
almost coincide. For this configuration, the presence of an XP
makes the eigenmodes strongly veer.
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exceptional point forces the trajectories to veer in order to avoid
crossing. It is highlighted that, for both configurations, all the
other eigenvalues are located on the trajectories (except for the
special case of the axial mode m¼ 0, which behaves differently
from the rest of the cluster due to its different boundary condi-
tions). Indeed, for all the azimuthal orders, the Rijke tube models
are identical, in particular, they share the same flame response and
upstream conditions. However, they differ by their total down-
stream propagation times, which is s�t ¼ s�d þ s�m, where s�d is here
a constant fixed by the can length Ld, whereas s�m, due to the effec-
tive length Lm added to model the behavior of the gap, shows an
explicit dependence on the azimuthal mode order. This fully
explains the presence of all the eigenmodes on these trajectories.
Their exact position is, however, determined by the total down-
stream propagation time s�t . Following Eq. (18), low azimuthal
order modes are associated to large values of s�m, leading to a
larger total downstream propagation time s�t as observed in Figs.
10 and 11. In summary, the upstream conditions impose the
eigenmodes to follow specific trajectories, while their exact posi-
tion is fixed by the downstream conditions. This helps us to better
understand the spectrum observed initially in Fig. 1. For Configu-
ration A, the clusters are well separated, they do not interplay and
can easily be identified. For Configuration B, the presence of an
exceptional point plays a decisive role in shaping the trajectories
(with a characteristic veer where the modes seem to repel each
other), and, consequently, the spectrum of the considered system.
Although the clusters seem entangled, we can now easily under-
stand the trajectories the eigenmodes will follow when changing
parameters.

This new insight could be exploited for early stage designs of
new can-annular engines. Assuming that the design of the burners
is fixed and that the flame response is known for a given amount
of operating conditions, it may be possible to investigate the role
of the upstream and downstream geometry on the thermoacoustic
spectrum. The choice of the upstream can length Lu will impose
the trajectories in the complex plane on which the eigenmodes are
necessarily located. Finally, choosing the downstream length and
the gap parameters will then govern their exact position on these
trajectories. Note that changing the downstream parameters
affects the system and the modes location in different ways. For
example, changing the downstream length Ld induces a change in
the total downstream length that is identical for all mode orders:
all the modes are translated along the trajectories. Conversely, the
impact of a modification in the geometry of the cross-talk area
(width of the can or coupling strength) is different for each azi-
muthal order, since s�m shows an explicit dependence to the mode
order as shown in Eq. (18). Note also that changing the size of the
gap or the width of the can have antagonist effects. Indeed, the
larger the gap, ceteris paribus, the smaller the equivalent length,
and the closer the eigenvalues along the trajectories. Modes of
higher azimuthal order are closest within a cluster. Conversely,
increasing the width of the can increases the effective length Lm,
leading to a wider spread of the clusters.

This could be used to develop strategies to stabilize an engine.
Note that when we refer here to variations of Lu and Ld, we do not
necessarily mean a drastic change of geometry, which is out of the
question for later stages in the design. Instead, we refer to Lu and
Ld as parameters indicating the effect of acoustic transport times
upstream and downstream of the flame, which may be emulated
by tuning the flow circuits belonging to the combustion chamber.
For example, in the Configuration A shown in Fig. 10, the modes
of azimuthal order m ¼ 1; 2; 3; 4; and 5 on the lower branch are
unstable. Changing the cross-talk area, by either changing the can
width or gap size, will have a marginal effect on stabilizing the
cluster: Lm is already very short for the highest azimuthal order
and, no matter the cross-talk design, s�t cannot be smaller than
s�t ¼ s�d ¼ 0:49, which would still be unstable. However, reducing
the downstream length of the can Ld would translate all eigenmo-
des along the trajectory (in the direction of smaller s�t ) and have a
stabilizing effect on the entire cluster. Note, however, that a

change in Ld will also have an impact on the axial modes m¼ 0
and their trajectories should also be considered for a robust
design. Similarly, for Configuration B, as shown in Fig. 11, the
eigenmodes associated to the azimuthal order m¼ 1 on the lower
branch and m¼ 4 and m¼ 5 on the upper branch are unstable.
Increasing the can length Ld would translate all the eigenvalues
along the trajectories in the direction of higher s�t , thus stabiliz-
ing the two unstable modes of the upper branch. However, it
will further destabilize the azimuthal mode m¼ 1 and will
impact the stability of the axial modes m¼ 0 as well. Conversely,
reducing the coupling strength of the gap L�g would tend to
increase s�m, which would also have a stabilizing effect on the
two unstable modes of the upper branch (s�m small for high azi-
muthal order). Note, however, the axial modes m¼ 0 would
remain unaffected since the cross-talk area with the neighboring
cans has no impact on them. The above analysis is an example of
what the present work offers, which could be of help to develop
new strategies for designing stable can-annular combustors dur-
ing early stage studies. For a complete robust design, clusters of
harmonics should also be considered as they may be the most
unstable modes.

4.5 Modeling Assumptions and Limits of Validity. In this
section, we want to put our results in perspective and briefly dis-
cuss the main modeling assumptions and the limits of validity of
our models. In Sec. 4.3, we showed the possibility to replace the
complex-valued reflection coefficient Rm by an effective duct
length Lm. The main advantage of this approach is to model a
complex system—a cross-talk area in can-annular combustor—
with a very simple element, i.e., a duct, which gives good insight
and helps the fundamental understanding of the underlying
physics. As shown in Fig. 8, for higher azimuthal order m, this
modeling assumption is valid over a large frequency range, even
for frequencies St > 3. On the other hand, for lower azimuthal
order, in particular for m¼ 1, the range of validity is much nar-
rower, up to St< 1 in our case. However, since we assumed a
purely reactive coupling, the error made only affects the phase
response of the gap. Consequently, as shown in Figs. 10 and 11,
the eigenmodes obtained with the equivalent Rijke tube models
are indeed located on the trajectories, but their exact positions are
mispredicted. In conclusion, for understanding or when consider-
ing only the clusters associated with the fundamental modes, the
equivalent Rijke tube model can be used. However, when consid-
ering clusters of harmonics or to ensure quantitatively accurate
results, the characteristic length model of Fournier et al. [35]
should be preferred.

In Sec. 4.4, we showed that all the eigenmodes (except the spe-
cial case m¼ 0) necessarily lie on the same trajectory. This result
comes from two main assumptions. First of all, the plenum was
considered perfectly decoupled. However, if the plenum is taken
into account and modeled as a thin annulus [24,60], it will also
introduce an equivalent length Lm at the inlet that changes with
the azimuthal order. Consequently, for each azimuthal order, the
upstream condition will be different and each eigenmode will fol-
low its own trajectory. The second reason is the fact that the
cross-talk area, modeled with a characteristic length model, is
purely reactive. For each azimuthal order, the gap introduces a
different phase shift, but there is no amplification or damping.
However, recent studies by Pedergnana and Noiray [38] and
Orchini et al. [39] showed that, when accounting for mean flow
effects, the effective coupling impedance exhibit resistive effects.
In particular, as shown in Fig. 5 in [39], the magnitude of the
equivalent reflection coefficient is mode order dependent, i.e.,
depending on the azimuthal order considered, the gap will intro-
duce different amplification or damping. This effect causes the
mode to follow distinct trajectories. Finally, and more generally,
the 1D low-order modeling approach is inherently limited by two
factors: the gap needs to be acoustically compact (or its finite
extension modeled as in Ref. [36]) and only plane waves propa-
gate in the cans, all other modes being cut-off. These two factors
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were already discussed by Fournier et al. [35] and will also limit
the number of clusters that can be properly captured with a 1D
approach.

5 Summary and Conclusion

Starting from the observation that two similar can-annular con-
figurations can lead to drastically different spectra, we investi-
gated the interplay of acoustic and ITA clusters when they are in
the same frequency range. To simplify the problem, we first con-
sidered a Rijke tube, which is one of the simplest thermoacoustic
system and a fair approximation of can-annular combustors
[24,33], and we derived an analytical low-order network model.
Buckingham P theorem allowed us to define dimensionless num-
bers so that the problem remains generally applicable to configu-
ration of arbitrary parameters. We then investigated the interplay
between the acoustic and ITA modes. In particular, for a given
flame response, the impact on the eigenmodes of the downstream
duct length and the flame position inside the system was analyzed.

For short upstream configurations, when increasing the down-
stream length, the frequency of the acoustic mode decreases
whereas the ITA mode converges to a point identified as the
eigenvalue of the semi-anechoic system. Conversely, for longer
upstream configurations, the eigenmodes follow more peculiar tra-
jectories and can, for example, switch nature, which confirmed
previous observations [18,34,47]. In particular, the role of excep-
tional points in the complex plane was highlighted since it causes
the eigenvalues to strongly veer, leading to characteristic
trajectories.

We then considered two generic can-annular configurations.
Using Bloch theory, we exploited the discrete rotational symmetry
to reduce the study to a single unit-cell while preserving the
dynamics of the full system. We confirmed the possibility to
approximate the systems by a simple Rijke tube where the behavior
of the gap was simply lumped into an additional effective length.
Such modeling allowed us to explain the spectra of both systems.
In particular, we showed that, in the absence of mean flow, the
eigenmodes necessarily follow specific trajectories, imposed by the
upstream conditions, and their exact position along the latter is
determined by the gap and downstream parameters. We highlighted
that, when ITA and acoustic clusters do not interplay, they are well
distinct and identifiable, as exemplified in Configuration A (see
Fig. 10). However, the presence of an exceptional point in the com-
plex plane strongly influences the trajectories, as already reported
by Silva et al. [44] and Mensah et al. [19]. ITA and acoustic clus-
ters can also be entangled, as illustrated in Fig. 11 with Configura-
tion B. New insight is gained when considering the trajectories the
modes follow. In that sense, we confirmed the conclusion of
Orchini et al. [21] who showed that the interaction between acous-
tic modes, ITA modes and exceptional points is essential to predict
the stability in (can-)annular combustors.

The proposed framework may be of great utility for the design
of can-annular combustors. This is exemplified by the two cases
under investigation at the end of Sec. 4.4. The assumptions made
by the proposed modeling strategy, as well as the limits of valid-
ity, are explicitly discussed in Sec. 4.5.

In this study, we considered a perfectly symmetric can-annular
configuration. Symmetry breaking, due to, for example, geometri-
cal imperfections, flow asymmetry, or nonlinear response of the
flames, plays a major role in annular cavities because the degener-
ate pairs of azimuthal eigenmodes split into two distinct modes
[61]. In can-annular configurations, it would double the number of
modes in the acoustic and ITA clusters and could potentially
affect their trajectories or lead to peculiar behaviors such as mode
localization. This effect should be investigated in future studies.
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Nomenclature

Roman

cu; cd ¼ speed of sound upstream/downstream (m s–1)
F ¼ flame transfer function

f ; g ¼ characteristic wave amplitudes (m s–1)
H ¼ width of a can (m)
Lg ¼ size of the gap (m)
Lm ¼ equivalent length (m)

Lu; Ld ¼ length of the upstream/downstream duct (m)
L�g ¼ coupling strength, L�g ¼ Lg=H
m ¼ Bloch wave number
n ¼ interaction index of the flame
N ¼ number of cans
p0 ¼ acoustic pressure (Pa)
_q0 ¼ normalized heat release fluctuations

Ri; Ro ¼ reflection coefficient at the inlet/outlet
Rm ¼ equivalent reflection coefficient

s ¼ Laplace variable, s ¼ rþ ix (rad s1)
s� ¼ dimensionless Laplace variable, s� ¼ ssF

St ¼ Strouhal number, St ¼ �sF

Tu; Td ¼ upstream/downstream temperature (K)
u0 ¼ acoustic velocity (m s–1)

Greek Symbols

h ¼ normalized temperature ratio, h ¼ Td=Tu � 1
� ¼ frequency (Hz)
n ¼ ratio of specific impedances, n ¼ �qucu=�qdcd

�qu; �qd ¼ upstream/downstream mean density (kg m–3)
r ¼ growth rate (s–1)

sF ¼ time delay of the flame (s)
su; sd ¼ upstream/downstream propagation time, si ¼ Li=ci (s)

s�m ¼ dimensionless equivalent propagation time
s�t ¼ total dimensionless propagation time, s�t ¼ s�d þ s�m

s�u; s�d ¼ dimensionless upstream/downstream propagation time,
s�i ¼ si=sF

x ¼ angular frequency, x ¼ 2p� (rad s–1)

Abbreviations

FTF ¼ flame transfer function
XP ¼ exceptional point
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