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Zusammenfassung

Das Interesse am automatisierten Fahren ist in den vergangenen Jahren rasant gestiegen.
Um die Akzeptanz in der Bevölkerung für automatisierte Fahrzeuge zu erlangen, spielt die
Sicherheit der Fahrzeuge eine elementare Rolle. Folglich verlangt die Zulassung solcher
Fahrzeuge das Ermitteln der Zuverlässigkeit dieser. Die Sicherheit beim menschlichen
Fahren wird hierbei oft als Vergleich herangezogen. Statistisch betrachtet passiert ein Un-
fall mit Todesfolge alle paar hundert Millionen Kilometer. Das Testen eines automatisierten
Fahrzeugs einschließlich eines Testfahrers über solch lange Distanzen erweist sich allerdings
als unmöglich. Aus diesem Grund sind für die Zulassung automatisierter Fahrzeuge neue
Validierungsmethoden notwendig. Viele neue Validierungsmethoden fokussieren sich auf
Teilfunktionen des automatisierten Fahrens, welche die Umfeldwahrnehmung, die Trajek-
torienplanung und die Ansteuerung der Aktuatoren umfassen.
Diese Arbeit konzentriert sich auf Validierungsansätze für die Umgebungswahrnehmung
von automatisierten Fahrzeugen. Eine zuverlässige Umgebungswahrnehmung ist uner-
lässlich, da sie die Eingangsdaten für alle nachfolgenden Funktionen liefert. Die Arbeit gibt
zunächst einen kurzen Überblick über die Validierung von automatisierten Fahrzeugen, die
Wahrnehmung von automatisierten Fahrzeugen, sowie die Validierung der Wahrnehmung.
Essentiell in der Umfeldwahrnehmung ist die Erkennung der anderen Objekte im Straßen-
verkehr. Wird ein Objekt nicht erkannt, kann dies mittelbar oder unmittelbar zu einem
Unfall führen. Daher ist die Objekterkennung ein elementarer Bestandteil der Umfeld-
wahrnehmung automatisierter Fahrzeuge. Basierend auf Sensoraufzeichnungen, unter an-
derem Kamerabildern, ermitteln Objekterkennungsalgorithmen Größe, Orientierung und
Position umliegender Objekte für jeden Zeitpunkt. Die Bewertung von Objekterken-
nungsalgorithmen setzt sich in der Regel aus zwei aufeinander folgenden Schritten zusam-
men. Der erste Schritt besteht aus der Assoziation der erkannten Objekte mit Referenzob-
jekten. Die Assoziation basiert auf einem Vergleich verschiedener Zustandsgrößen wie z.B.
der Position des Objektes relativ zum Ego-Fahrzeug. Die Bewertung des Objekterken-
nungsalgorithmus erfolgt durch einen zweiten Schritt, in dem die assoziierten Objekte
über den gesamten Datensatz akkumuliert werden. Mit Hilfe aktueller Bewertungsver-
fahren können Objekterkennungsalgorithmen relativ zueinander eingestuft und bewertet
werden. Bisherige Bewertungsverfahren erlauben jedoch keine Schlussfolgerung, ob eine
Umfeldwahrnehmung bestehend aus einem Set an Sensoren und Algorithmik für das au-
tomatisierte Fahren ausreichend ist. Diese Arbeit diskutiert mögliche Spezifikationen für
die Umgebungswahrnehmung und führt eine Untersuchung bestehender Assoziations- und
Bewertungsverfahren durch. Alle diskutierten Bewertungsansätze beruhen auf dem Vergle-
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ich mit einer Referenzwahrheit, was bei Aufzeichnungen in der Größenordnung von Hun-
derten von Millionen Kilometern unpraktikabel ist. Der letzte Teil der Arbeit beschäftigt
sich daher mit Methoden zur Zuverlässigkeitsanalyse der Umfeldwahrnehmung, die nicht
auf der Verwendung einer Referenzwahrheit beruhen. Wenn keine Referenzwahrheit für die
Ermittlung der Zuverlässigkeit benötigt würde, könnte die Zuverlässigkeit aus den Daten
einer Fahrzeugflotte ermittelt werden, ohne dabei auf das zeitintensive Labeling der Daten
und die Referenzsensorik angewiesen zu sein.
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Abstract

Automated driving gained increasing interest in the past years. Although automated ve-
hicles are not available yet, accidents of vehicles with highly advanced driving assistance
systems start debates about automated vehicle safety in the media. To find acceptance in
society, the question about automated vehicle safety has to be answered before the release
of such vehicles. A benchmark for the safety of an automated vehicle is the human driver.
Statistically, a fatal accident happens every few hundred million kilometers in human driv-
ing. Driving an automated vehicle with a backup driver for these many kilometers to
ensure its safety is, however, infeasible. Thus, other validation approaches are required.
New validation approaches are often based on subfunctions of an automated vehicle which
are the perception of the environment, the path planning and the actuation of motors and
steering.
This work focuses on validation approaches for the environment perception of automated
vehicles. A reliable environment perception is essential as it provides the input to all sub-
sequent functions. The work first gives a brief overview of automated vehicle validation,
the perception of automated vehicles and the validation of the perception. The detection
of objects that participate in the traffic is essential for a safe navigation. Not detecting
an object can lead to an accident immediately or intermediately. Hence, the validation of
the environment perception often focuses on object detection. Object detection algorithms
provide object detections for every sensor recording, or frame, which is taken in equidistant
time intervals. The evaluation of object detection algorithms usually consists of two subse-
quent steps. The first step associates object detections with reference truth objects within
a single frame. The association is based on a comparison of different sensor parameters like
the position relative to the ego vehicle and its size. The second step accumulates the errors
from all frames of the entire dataset. The evaluation measure provides a value for the
performance of the object detection algorithm. Current evaluation measures mainly focus
on the improvement of the environment perception using object detection. However, it is
unclear what specifies an environment perception that is sufficient for automated driving.
This work discusses sufficient specifications for the environment perception and performs
an investigation of existing association and evaluation measures. All discussed evaluation
approaches rely on the generation of a reference truth which is impractical for recordings
in the order of hundreds of millions of kilometers. The last part of the thesis deals with
methods that may not rely on a reference truth. When no reference truth is needed, one
could circumvent the necessity for long tests with backup drivers.
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1 Introduction

Automated driving is gaining increasing attention in the automotive scene. Although no
fully automated vehicles are available yet, accidents that involve vehicles with advanced
driving assistance systems are thoroughly discussed in the media. Thus, the discussion
about the release of automated vehicles is commonly associated with safety arguments
which raise the question as to what specifies an automated vehicle to be safe enough to
operate on public roads. These questions have to be answered first to establish authority
requirements and to find acceptance in society for such vehicles.
A common statement is that automated vehicles are supposed to be safer than human
drivers [1, 2]. Arguments for automated driving are that perception sensors can have a
360° view of the surrounding area, an automated vehicle cannot be distracted and also
cannot be influenced by alcohol, fatigue, or drugs [3, 4].
Representative accident statistics about human driving are accessible. These statistics
are based on billions of kilometers of driving due to the immense number of vehicles that
are deployed worldwide. On average a fatal accident occurs every 6.6× 108 km of human
driving, resulting in an estimate for the rate of fatal accidents of 1.52× 10−9 km−1 [5, 6].
For automated driving similar amounts of data are not yet accessible. Driving that many
kilometers with a backup driver on the steering wheel to prove the safety of an automated
vehicle is infeasible [7]. In addition, currently accepted validation approaches are not
applicable to the environment perception of an automated vehicle.
New validation approaches for automated vehicles are often based on subfunctions which
are: The perception of the environment, the planning of the ego trajectory and the actu-
ation of the steering and the motors. This is summarized as sense, plan, act [8]. Sense,
which provides the input to the automated vehicle on which all subsequent functions are
based, is essential for its safety.
Consequently, an approach is required to assess the reliability of the environment percep-
tion of automated vehicles. A major task of the environment perception is the detection of
surrounding objects that participate in the traffic. Not detecting objects that are present or
detecting objects that are not present, also known as ghost objects, can result immediately
or intermediately in accidents.
Object detection algorithms are often based on neural networks. The interpretation of
individual components of neural networks is difficult and does not provide an interpretable
estimate of their reliability. Neural-network-based approaches are, therefore, often de-
scribed as black boxes [6, 9–11]. To make object detection algorithms comparable, an
evaluation based on the algorithm’s results is commonly performed [12–15]. Thus, object
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detection is implicitly associated with the testing and validation of the algorithms. How-
ever, while allowing a relative comparison between different object detection algorithms,
the utilized validation approaches do not answer the question of whether the reliability of
object detection is sufficient for automated driving.
This question includes three major challenges, which have to be addressed: The first
challenge deals with how to determine the reliability of the environment perception such
that the derived value allows the classification into a sufficient or an insufficient perception
for automated driving. While a comparison with human driving is intuitive on the vehicle
level by using the rate of accidents, an evaluation on the perception level is not as intuitive.
We address this challenge by investigating and categorizing existing validation measures.
Moreover, we investigate principles of human depth perception to make it comparable to
the environment perception of an automated vehicle.
The second challenge deals with the fact that object detection does not fully represent the
environment. First, object detection is usually limited by a predefined set of object classes.
Second, bounding boxes are commonly used to mark detected objects which only provide
very rough approximations of objects. Third, some components of the environment such
as guard railings and roads cannot be classified as objects. Nevertheless, it is important to
detect guard railings and roads as well. Thus, instead of evaluating the perception based
on object detection, we introduce an error definition for the frame-wise detection of the
area that is accessible by the ego vehicle.
The third challenge deals with the fact that too little data with reference truth exist: Using
humans as the benchmark, the rate of fatal accidents introduced by automated vehicles
and their environment perception should not exceed the rate of fatal accidents caused
by human driving. A statistical estimation of the perception-induced failure rate that
is in the order of the human-induced failure rate requires data for distances larger than
6.6× 108 km [5, 6]. Berk et al. [16] propose a method that exploits the sensor redundancy
in automated vehicles to obtain an estimate of the sensor reliabilities which has only been
tested with simulated data. We deploy the method with two real-world datasets and
compare the estimated reliability values with reference values. Furthermore, we extend
the method with a mathematical formalism to incorporate additional information from
object detection algorithms into the evaluation.
The work is structured in the following way:
The second chapter provides an overview of the reliability analysis in automated driving,
its environment perception and the validation of the perception. It starts with an overview
of concepts used for electronic components in the automotive industry and describes why
common validation approaches are not sufficient for automated driving before putting
more focus on vehicle perception. Finally, the chapter presents validation concepts for the
environment perception that are used throughout this work.
The third chapter deals with the evaluation of individual frames. This includes the associ-
ation between detections and reference objects or the association between detections from
multiple sensors. The association is the first part of the evaluation of the object-detection-
based environment perception. The chapter starts with a comparison of association mea-
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sures utilized in the object-detection-based environment perception for automated driving.
The chapter proceeds with a description of additional association measures. Subsequent
chapters partly rely on these association measures. Moreover, the chapter proposes an
alternative way to evaluate individual frames. Finally, the chapter analyzes human per-
ception, which is sufficient for the task of driving and quantifies the limitations of human
perception.
The fourth chapter deals with the evaluation of object detection algorithms based on
an entire dataset. The perception evaluation of the entire dataset is the second part of
the perception validation after the evaluation of every individual frame. Chapter four
first illustrates the difference between the scenario-based perception evaluation and the
stochastic perception evaluation. The chapter continues with a comparison of existing
evaluation measures, categorizing them as relative and absolute evaluation measures.
The fifth chapter focuses on the object-based environment perception evaluation without
a reference truth by deploying the model from [16]. The evaluation is performed on two
different datasets.
The sixth chapter provides a final discussion and a future outlook.
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2 Aspects of the perception of automated
vehicles and their reliability

2.1 Reliability requirements for the release of automated ve-
hicles

Automated vehicles will intensely rely on electronic components to navigate on public
roads. A safe automated vehicle requires these components to operate reliably.
ISO 26262 describes a validation standard for electric and electronic systems that run on
road vehicles. However, even if all components conform to ISO 26262 and operate according
to their definition without error, risks remain in automated driving [17].
Especially in perception, even though the sensor electronics operate reliably, some objects
may not be detected or the behavior of traffic participants is not properly estimated [18].
Hence, ISO 21448:2022 introduces the safety of intended functionality (SOTIF) and pro-
vides a validation scheme for the use of components that are not fully described by their
functional safety [18, 19].

2.2 Approval trap

Human driving is often taken as a benchmark for traffic safety. According to public road
statistics an accident with fatal consequences occurs every 6.6× 108 km on average [5, 6].
Driving an automated vehicle with a backup driver for such long distances in order to
validate the safety of the vehicle is infeasible [2, 4]. Without the release of automated
vehicles, the necessary amount of data will never be accessible. However, when driving
that many kilometers is required for the release, these vehicles will never be released. This
paradox is called the approval trap [20].

2.3 Functional approach

The aim of the validation is to ensure vehicle safety while being economically feasible.
Regular validation approaches in the automobile industry are not suitable for automated
driving. Proven validation approaches in particular for automated vehicles do not yet exist
and “driving to safety” is impractical. Thus, new validation schemes together with a proof
of concept are necessary before the release of automated vehicles [4, 20].
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New validation approaches for automated vehicles often focus on individual or a combi-
nation of the three functions described by sense, plan and act [13, 18, 21, 22]. Under the
assumption of independence between failure rates of the individual functions, the failure
rate of the automated vehicle is evaluated as λsys = λsense + λplan + λact [8].
With respect to the validation of automated vehicles, one has to be aware that every
function of the automated vehicle has to be more reliable than the entire system as all
function failure rates add to the failure rate of the system. Hence, the statistical approach
of “driving to safety” for validating an individual function will require even more kilometers
for the result to be significant.
The focus of this work is lying on the validation of sense which corresponds to the environ-
ment perception of the vehicle. As sense provides the input to the subsequent functions,
its reliability is essential.

2.4 Automated vehicle perception

The intention of the environment perception is to provide a digital representation of the
vehicle’s surroundings. A digital representation is required to plan the trajectory of the
automated vehicle.
This includes but is not limited to lane detections, traffic light detections, traffic sign
detections and the detection of other traffic participants like pedestrians and other vehicles
[18, 23]. Other environment models are based on a free space representation which describes
the area that can be accessed by the ego-vehicle [24–26].
Perception sensors used for generating a digital representation include cameras, RAdio
Detection And Ranging (RADAR) sensors, Light Detection And Ranging (LiDAR) scan-
ners [23]. All three sensor types operate in different ranges of the electromagnetic spectrum.
The following section introduces the data obtained from the three different types of per-
ception sensors. For illustrating the data obtained from any of the three different types of
perception sensors in the following subsections, a frame of the nuScenes dataset is used [27].
A comparison of perception sensors can be found in [23].

2.4.1 Camera

Cameras are passive sensors that receive the light emitted and reflected by surrounding
objects. Cameras operate in the human visible range of the electromagnetic spectrum and
provide highly resolved RGB images of the environment. As a result, camera images are
relatively easy to interpret. One main advantage of cameras is their cheap production costs.
This allows the utilization of many cameras to obtain a 360° view around an automated
vehicle.
In comparison to other sensors, cameras do not provide distance measurements which
makes an estimation of the positions of surrounding objects challenging [12]. However,
systems of multiple cameras and systems of non-stationary cameras allow distance estima-
tions of objects in the surrounding environment [28–30].
The perception of cameras has a strong dependence on weather conditions and is crucially
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(a) Front camera image (b) Rear camera image

Figure 2.1: Front and rear camera images from a frame of the nuScenes dataset with
annotated bounding boxes [27]. The bounding boxes provide an approximation of the real-
world objects.

limited in rainy, snowy and foggy situations and bad light conditions, e.g., at night and
dawn. Cameras that operate in the infrared range of the electromagnetic spectrum can
provide higher contrast in bad light conditions. Especially for the detection of warm bodies
of humans and animals infrared cameras can be beneficial [23].
Figure 2.1 shows the camera images of a frame taken from the nuScenes dataset [27]. The
camera images were taken during clear weather conditions.
In summary, cameras offer a low-cost sensor with a high resolution that highly correlates
with human perception resulting in an easy interpretation of the recordings. However,
cameras do not provide an explicit distance measurement and their perception strongly
depends on the weather conditions.

2.4.2 LiDAR

LiDAR sensors are active sensors and are based on the time-of-flight principle: they send
out laser pulses and measure the time difference between the emission of the laser pulse
and the measured reflection of the laser pulse at a surrounding object. Using the speed of
light, the distance to the surrounding object can be evaluated.
A LiDAR scanner repeats the process for different azimuth and horizontal angles to obtain
a 2D or 3D representation of the environment. Recordings at different angles are obtained
from multiple laser diodes that are aligned on a rotating axis which orients the laser diodes
in different directions [23].
An example of a present-day LiDAR is the Puck LITE from Velodyne which has 16 lasers
diodes or channels, scanning an azimuth range from −15° to 15°. Its axis rotates at a
rate of 5 Hz to 20 Hz allowing it to take approximately 300000 distance measurements per
second with a 360° field of view (FOV) [31].
Disadvantages of LiDAR scanners that are based on the physically rotating parts are
that they are relatively expensive and that they are affected by vehicle vibrations [32].
Currently, solid-state LiDAR scanners are on the rise to overcome the problem of moving
parts. So far, the issue with solid-state LiDARs was their limited FOV and the limited
number of measurements per unit time as sensors with only a few hundred pixels were
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Figure 2.2: LiDAR data of the nuScenes dataset [27]. The height of the data is indicated
by the colormap. Camera images of the scene are shown in Figure 2.1.

realized. Recent developments in solid-state LiDAR scanners immensely increased the
number of measurements per unit time [33].
LiDARs used in automated driving commonly operate in the infrared range of the electro-
magnetic spectrum at wavelengths close to 905 nm or 1550 nm [23, 31]. 905 nm LiDARs
require less energy compared to 1550 nm LiDARs as 1550 nm light is absorbed by water in
the atmosphere. 1550 nm LiDARs, however, have a safety advantage over 905 nm LiDARs
as their light is absorbed by the liquid of the human eye due to the higher absorption by
water [23].
The high absorption by water also results in a bad performance in rain. In general, the
performance of LiDAR sensors strongly decreases in harsh weather conditions [23, 34].
Besides absorption of the laser beam, rain and snow lead to false positives due to reflections
at close distances. Moreover, water and dust dispersed by other vehicles can lead to false
positives.
In addition, LiDAR detections depend on the reflectivity of objects. Objects that absorb
most of the laser light rather than reflecting it cannot be detected by the sensor. Mirroring
of the infrared laser light, also known as specular reflection or regular reflection in com-
parison to diffuse reflection, can lead to False Positive (FP) detections [35]. Furthermore,
LiDAR sensors cannot detect transparent objects which can refract the laser, leading to
the detection of the object beyond the transparent object [35].
Figure 2.2 illustrates the LiDAR data of a single frame taken from the nuScenes dataset [27].
The height of the LiDAR measurements is indicated by the underlying colormap. Camera
images of the frame are shown in Figure 2.1.
In summary, due to the great resolution of LiDAR sensors, they play a key role in many
automated driving applications and in research about automated driving perception. High
resolving LiDAR sensors are also often used as reference sensors. However, despite their
high resolution some optical challenges remain besides their high production costs.
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2.4.3 RADAR

RADAR operates in the GHz frequency range of the electromagnetic spectrum. Radar
systems for vehicle assistance systems and for automated driving work at frequencies of
24/77/79GHz [23].
Like LiDAR, RADAR sensors are active sensors that send out radio signals and receive the
signal echoes of surrounding objects [23, 36]. The distance to the surrounding object can
be evaluated using the time of flight of the signal emitted by the transmitting antenna.
In order to achieve an estimation of the distance using the time of flight of the signal,
the emitted signal is altered over time either by emitting radio frequent pulses or using a
frequency modulated (FM) signal over time. RADAR with multiple-input, multiple-output
(MIMO) waveforms are common in the field of automated driving [37]. MIMO sensors have
multiple transmitting and receiving antennas which allows an angular resolution besides
the measurement of the distance and the relative speed [37, 38].
RADAR operates at frequencies that allow to measure changes in the frequency due to
the Doppler effect. Objects that move relative to the ego vehicle alter the frequency of
the radio signal when being reflected. The shift in the frequency provides a relative speed
estimate along the radial axis between RADAR sensor and the detected object.
The emitted radio signal of RADAR sensors gets reflected by the street. This allows
RADAR sensors to perceive signals of vehicles beyond the vehicles that are right in front
of the ego vehicle. Moreover, the emitted radio signal by RADAR sensors is insensitive to
harsh weather conditions and allows the detection at far distances.
The angular resolution of RADAR sensors, however, is limited. For a single-input, multiple-
output (SIMO) RADAR sensor with four receiver antennas the angular resolution is about
30° and one with eight receiver antennas about 15° [39]. Antennas are half the wave-
length apart from each other [38]. In case of a 77 GHz RADAR half the wavelength is
approximately λ/2 ≈ 2 mm.
Figure 2.3 demonstrates the preprocessed RADAR data obtained from the nuScenes dataset
with the underlying LiDAR data [27]. The data of the five different RADAR sensors of the
nuScenes vehicle is demonstrated in different colors. The RADAR detections are shown
as a scatter plot. The velocity of the individual RADAR detections is indicated by the
arrows.
In summary, RADAR sensors can to a certain extent perceive objects in occluded regions.
Moreover, RADAR sensors provide a direct measurement of the radial velocity of other
objects while being mostly insensitive to weather conditions. However, due to the physical
properties of radio frequent signals, the angular resolution is sparse and the signal is prone
to reflections that lead to ghost objects.

2.4.4 Object detection

Object detection is the part of the environment perception that focuses on identifying
traffic participants like pedestrians, cyclists, animals and other vehicles. In the perception
of automated vehicles, the focus usually lies on dynamic/movable objects [13, 21, 27, 40,
41].
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Figure 2.3: RADAR data of the nuScenes dataset [27]. For comparison RADAR data is
shown on top of the LiDAR data which is visualized in grey. The five different colors
indicate the data from the five different sensors located at the front, the front right, the
front left and the back left and right. The corresponding camera image of the scene is
shown in Figure 2.1.

Object detection algorithms return so called bounding boxes that encircle the detected
object. Bounding boxes provide a rough estimation of surrounding objects. In 2D, a
bounding box corresponds to a rectangle while, in 3D, a bounding box corresponds to a
rectangular cuboid. Additional angles describe the relative orientation to the ego position
in 3D. Object algorithms for automated driving usually provide only a single angle around
an axis perpendicular to the driving plane. All these values for every object within a frame
are summarized in a table. Object data refers to a list of the tables from all frames of a
dataset.
Figure 2.1 illustrates the reference object data that is annotated by human labeling. The
object data is projected onto the camera images. It gives an impression of possible devia-
tions between the bounding boxes and the real-world object. In particular, many real-world
objects do not have sharp edges and, therefore, do not agree well with a bounding box.
An advantage of object detection is the straightforward estimation of the objects’ future
positions by translating the bounding boxes.
Object detection algorithms are often based on neural networks (NNs). The components
of NNs are usually difficult to interpret. Therefore, NN algorithms are also described as
black boxes [6, 9–11].
In order to compare neural networks and object detection algorithms an output-based val-
idation is commonly performed. As object detection gained increasing research interest in
the past decade, different validation procedures exist for object-detection-based environ-
ment perception [18]. This work investigates validation approaches for object detection
with a focus on the reliability analysis of the object-based environment perception of au-
tomated vehicles.
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2.4.5 Free space detection

Besides object detection, an additional representation of the surrounding environment is
provided by free space detection. In comparison to the object-detection-based environment
perception, free space detection allows a more detailed representation of the environment.
The more detailed representation comes with an increase in the computational effort.
Multiple definitions of free space exist. The idea behind free space is to generate a grid map
of the regions that are not accessible by a robot or an automated vehicle. Some free space
approaches take the data of multiple frames into account to generate a more thorough map,
a so-called occupancy grid [42, 43], while others explicitly define the free space within a
single data frame [44]. Free space does not necessarily mean that it is accessible by the
robot or the automated vehicle. Present definitions may not account for the fact that some
free space regions might be too narrow to be accessible by the robot/vehicle or that they
are only accessible on an indirect route.

2.4.6 Sensor fusion

Commonly, multiple types of perception sensors are utilized to obtain a more detailed and
complete digital representation of the environment by fusing the sensor data.
Sensor data fusion can be performed on different data levels [26, 45].
The raw sensor data like the pixel color from the camera can be projected on the LiDAR
data. An object detection algorithm can then be applied to the combined sensor raw data.
A single object list is obtained from all sensor data [26].
Alternatively, sensor fusion can be performed on the object data level. An object detection
algorithm is applied on the data of every sensor individually resulting in as many object
lists as sensors. The obtained object lists from the different sensors are then fused together
into a single coordinate frame [26].
The advantage of the raw data fusion is the utilization of all complementary information
of the different sensors in order to obtain object lists from the object detection algorithm.
This can result in more complete object lists in comparison to object lists obtained from
a single sensor.
In comparison, sensor fusion on the object data level allows an easier interpretation. False
detections can be related to sensor-specific properties. Fusion on the object data level
provides redundancy on the object level which allows a comparison of the results obtained
from neural-network-based object detection algorithms. However, while being beneficial
in its interpretation, object-based sensor fusion comes with the disadvantage that comple-
mentary information of different sensors might be neglected due to limitations of object
fusion algorithms [26].
This work utilizes an approach that relies on redundant sensor data in the form that either
an object is present or no object is present. The perception evaluation in this work is,
therefore, mainly based on redundant object data. As a result, fusion on the object level
is utilized.
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Figure 2.4: Flowchart of the object detection and evaluation pipeline. Starting with
raw sensor data, object detection algorithms generate object lists. The evaluation of the
object detection algorithm usually consists of two steps: the association, which allows a
classification of each detection and reference object as correctly or wrongly identified, and
the evaluation, which accumulated the correct and wrong detections.

2.5 Assessing the perception reliability

Safe automated driving requires a reliable environment perception. Thus, testing the
perception and assessing the reliability of the perception is a crucial step for automated
vehicle’s safety assurance, which is required for the release of automated vehicles [8, 16,
18].
Detecting the objects in the surrounding environment of automated vehicles is safety crit-
ical. Not detecting an object can result in an accident, especially if the object is right in
front of the ego vehicle.
Current approaches to validate the environment perception of automated vehicles are based
on the object detection [18]. Image processing and pattern recognition introduced object
detection prior to the use for automated vehicles [14, 15]. Therefore, evaluation procedures
for object detection were initially utilized and optimized for 2D image processing.
The flowchart in Figure 2.4 visualizes the data processing and evaluation pipeline used for
object detection. Starting at the sensor raw data, which corresponds to an image in image
processing, object lists are generated. The object lists obtained by the object detection
algorithm are then evaluated in two subsequent steps by comparing the object lists with
reference object data. The reference data is usually obtained by human annotation of the
data. Nowadays, state-of-the-art object detection algorithms already pre-label the data
automatically (see for example [46]). The first step in the object detection evaluation com-
pares the individual object detections with a list of reference objects in order to classify
each detection as a correct or a wrong detection. This is referred to as association or as
bounding box evaluation [15]. The second step in the object detection evaluation accu-
mulates all correct and wrong detections [15, 47, 48]. The following two sections briefly
introduce procedures that one can use for the association and the final evaluation.

2.5.1 Association

The association compares the detected objects of one frame with the reference objects
that are present in the frame. Different measures for the association exist. Together with
reference truth objects, the association allows the classification of every detection in either
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of the three cases True Positive (TP), which means an object was detected and there was
indeed an object, FP, which means an object was detected but no object was present
and False Negative (FN) which means no object was detected even though an object was
present. True Negative (TN) the case that no object is present and no object is detected
is often not considered in object detection [14, 15].
One of the most commonly used association measures is the Jaccard index, also known
as Intersection over Union (IoU), which compares the area or volume of detection and
reference object [15, 49–53]. The requirement for object detection to be associated with a
reference object is that the association measure has to exceed a predefined threshold. For
the IoU, thresholds of 0.5 or 0.7 are used (see for example [49]). An object detection whose
value of the association measure with a reference object is below (or above) the threshold is
considered as different object instance. It might either be associated with another reference
object or it corresponds to a FP. A reference object that has no detection assigned to it
is a FN.
It can also occur that multiple object detections fulfill the association requirement with the
same reference object within the same frame. Association algorithms, like the Hungarian
algorithm [18], solve this by optimizing the sum of all values of the association measures
from the same frame.
We want to point out that what we describe as association measure is also referred to
as distance (for example in [18]) or as metric (for example in [53]). A mathematical
definition of an association measure does not exist. The terms metric and distance are
interchangeable [54]. The IoU itself is in mathematical terms not a distance as the result
of the IoU of a set with itself is not equal to 0. Some studies suggest using 1− IoU which
is in agreement with the mathematical distance/metric definition (see for example [55]).
However, [55] introduces another association measure, the generalized Intersection over
Union (GIoU), that is not in agreement with the mathematical distance/metric definition
as the GIoU can be negative.
Chapter 3 provides a comparison of existing association measures and introduces additional
association measures that have been deployed for this work.

2.5.2 Perception evaluation

One aim of the perception evaluation is to provide a value that allows the comparison of
different perception systems quantitatively with respect to their detection performance. A
second aim of the perception evaluation is to provide an interpretable statement about the
reliability of the perception system.
Here, the focus lies on the evaluation of object detection. Not detecting objects or detecting
objects that are not present is safety critical in automated driving. Such a misdetection can
result in an immediate or intermediate accident. Hence, evaluation of the object detection
performance is relevant for the release of automated vehicles.
Multiple evaluation approaches exist for object detection [18]. Most of these approaches
allow a relative comparison between different object detection algorithms. However, they
do not provide any reliability estimate that answers the question if these object detection
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algorithms are “safe enough” [2]. As discussed in section 2.1, human driving deals commonly
as a safety benchmark. However, no measure allows a comparison of the performance
of human perception with the performance of the perception based on object detection
algorithms.
Common evaluation approaches that proceed according to the flowchart shown in Figure
2.4 require a reference truth [1, 14, 15]. Generating a reference truth for more than
6.6× 108 km to prove the safety of the automated vehicle perception would require driving
this distance [5]. Test driving such large distances is infeasible as previously discussed.
Moreover, an additional effort is associated with labeling the data in order to obtain the
reference truth.
[16] introduces an approach to validate object-based environment perception by exploiting
sensor redundancy rather than using a reference truth. Validation without reference truth
would allow to estimate the individual sensor reliabilities from a fleet of vehicles that have
the perception sensors intended for automated driving installed without using automated
driving capabilities.
This section introduces first the perception evaluation and reliability estimation of object-
detection-based on a reference truth. In a subsequent step, the method from [16] is intro-
duced.

With a reference truth

A detection may be classified by an association measure into TP, FP, FN and TN. The
association itself is based on a defined threshold α. Besides the threshold α for the asso-
ciation, confidence values are usually provided for every detection by the object detection
algorithms. Hence, an additional threshold τ only includes detections with confidence val-
ues higher or equal to that threshold. The following equations index α and τ in order to
emphasize the dependence on these thresholds.
Multiple evaluation measures to quantitatively assess the perception performance with a
reference exist. In this section, we introduce four evaluation measures that are repeatedly
used throughout this work. These four evaluation measures are precision and recall, the
Probability Of Detection (POD) and the Probability of False Alarm (PFA).
Definitions of precision and recall can for example be found in [56]. Recall r, which
corresponds to the conditional probability Pr (D | O), where D corresponds to a detection
and O corresponds to an object being present. Recall is also described as sensitivity or
POD and corresponds to the TP probability given an object is present [16, 56].

Pr (D | O) = rτ =
TPτ

TPτ + FNτ
(2.1)

In the ideal case, all present objects are observed, leading to a recall value of 1 which lets
one conclude that all present objects are detected.
Precision p, which corresponds to the conditional probability Pr (O | D), corresponds to
the probability that the detected object corresponds to a correct detection.
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D D̄

O TPτ FNτ
recall rτ
TPτ

TPτ+FNτ

Ō FPτ TNτ

precision pτ
TPτ

TPτ+FPτ

Table 2.1: Confusion matrix. Precision corresponds to the conditional probability
Pr (O | D) while recall corresponds to the conditional probability Pr (D | O).

Pr (O | D) = pτ =
TPτ

TPτ + FPτ
(2.2)

The ideal case leading to a precision value of 1 is the case when all detected objects are
actually present.
PFA, also known as fallout, is defined as the conditional probability that an object is
detected even though no object is present [16, 56].

PFA = Pr
(
D | Ō

)
=

FPτ
TNτ + FPτ

(2.3)

Table 2.1 shows the confusion matrix and indicates the evaluation of precision and recall.
A clear interpretation with respect to the reliability is not possible for all four evaluation
measures, actually three as recall and POD are the same. This is due to the fact, that
the result of the evaluation measures strongly depends on the utilized association measure
and the corresponding definition of an error. Common approaches weight false detections
at far distances equivalent to false detections at close distances. In this case, the resulting
value from the evaluation measure cannot be related to the reliability and the resulting
safety of the algorithm. A further discussion about the interpretation of the evaluation
measures can be found in section 4.2.

Without a reference truth

This section is taken from our publication [57]. Some parts have been modified. It provides
a brief overview of the model from [16].

Generating a dataset with a reference truth is time intense. Besides driving the vehicle
in order to record the data, obtaining a reference truth is also associated with labeling
the data. Like for test driving, gaining a reference truth for more than 6.6 km is infea-
sible [5]. [16] introduces a model that exploits the M redundant sensors to estimate the
sensor reliabilities without a reference truth. Learning the sensor reliabilities without the
need for a reference truth would allow to estimate the sensor reliabilities from a fleet of
vehicles that have the perception sensors installed.
The model in [16] is based on a binary representation of the sensor output. Either the
sensor m detects an object in a certain area of its FOV at a given time indexed n (sensor
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output Smn = 1) or it does not detect an object within this area (sensor output Smn = 0).
Hereafter, the Boolean array, which represents the sensor outputs of all M sensors, is
mapped to an integer number yn between 0 and 2M − 1 to increase the readability. yn is
called sensor system output. The mapping is based on the transformation from a binary
number to a decimal number yn =

∑M−1
m=0 Smn · 2m.

The distribution of recorded sensor system outputs yn in a certain rectangle will be different
for time-frames with an object and for time-frames without an object. Therefore, the
model incorporates a hidden variable, which is subject to environmental influences and
corresponds to the probability of an object being present. The overall distribution of
the sensor system outputs yn is evaluated based on the total probability theorem. The
probability for sensor system output yn with a given sensor parameter set θ including each
individual sensor’s PODm and PFAm as well as potential correlation parameters and the
probability that an object is present is described by the following equation:

p (yn | θ, pobj) = pobj · p (yn | θ, O = 1) + (1− pobj) · p (yn | θ, O = 0) (2.4)

Here, O = 0 corresponds to no object being present and O = 1 corresponds to an object
being present. The individual sensor reliabilities are quantified by PODm and PFAm. The
probability distribution for the sensor system outputs p (yn | θ, O = 1) conditional on the
fact that an object is present is based on the PODm values. The probability distribution
for the sensor system outputs p (yn | θ, O = 0) conditional on the fact that no object is
present is based on the PFAm values.
In case the sensor outputs are statistically independent, the probability of the sensor system
output p (yn | θ, O = 1) and p (yn | θ, O = 0) can be described as a product of the PODm

and the PFAm, respectively. Given an object is present in a certain area of the FOV,
the conditional probability for a certain sensor system output yn can be derived from the
individual sensor probabilities of detection PODm in the following way:

p (yn | θ, O = 1) =

M−1∏
m=0

PODSmn
m · (1− PODm)1−Smn (2.5)

Given no object is present, the conditional probability for a certain sensor system output
yn can be derived from the individual sensor probabilities of false alarm PFAm:

p (yn | θ, O = 0) =

M−1∏
m=0

PFASmnm · (1− PFAm)1−Smn (2.6)

Thus, when assuming statistical independence between the sensors, the considered sensor
parameters are θ = {POD0, . . . , PODM−1, PFA0, . . . , PFAM−1}.
However, in general sensor outputs are not statistically independent. As an example,
several sensors might be affected by harsh weather, which leads to an increase in the
probability of FN and FP errors for all these sensors under such conditions. In order to
account for dependent sensor outputs, an extended model that incorporates the statistical
dependence between sensors is proposed in [16]. In order to account for the statistical
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dependence between the sensors, the dependent model utilizes the Gaussian copula.
In case an object is present, the conditional probability for sensor system output yn is then
described by:

p (yn | θ, O = 1) = ΦRPOD,+




(2S0n − 1) · Φ−1 (POD0)
...

(2SM−1n − 1) · Φ−1 (PODM−1)


 (2.7)

Φ−1 corresponds to the univariate inverse normal CDF. ΦRPOD,+
is the multivariate Gaus-

sian cumulative distribution function (CDF) with correlation matrix RPOD,+ and a mean
value of zero. The plus-sign indicates that the sign of component ij of the correlation ma-
trix RPOD is changed if the results of sensor i and sensor j are in disagreement. Switching
the signs simplifies the integration that is included in the evaluation of the multivariate
Gaussian CDF. The term (2Smn − 1) switches the sign depending on the output of the
sensor that can either be Smn = 0 or Smn = 1. Due to the symmetry of the Gaussian
probability density function (PDF), switching signs allows to use the multivariate Gaus-
sian CDF for evaluating the probabilities of the sensor system yn instead of changing the
borders of the integral over the multivariate Gaussian PDF with correlation matrix RPOD.
The conditional probability for the sensor system output yn in case no object is present
is described by analogy to the above equation, interchanging the POD with the PFA and
the correlation matrices.

p (yn | θ, O = 0) = ΦRPFA,+




(2S0n − 1) · Φ−1 (PFA0)
...

(2SM−1n − 1) · Φ−1 (PFAM−1)


 (2.8)

ΦRPFA,+
corresponds to the multivariate Gaussian CDF with correlation matrix RPFA,+

in case no object is present.
The full parameter set is θ = {POD0, . . . , PODM−1,RPOD, PFA0, . . . , PFAM−1,RPFA}.
The number of free parameters for equation (2.4) in combination with the dependent model
from equation (2.7) and (2.8) is M2 +M + 1. In order to fit the distribution, the number
of free parameters needs to be smaller than 2M , which is the number of distinct sensor
system outputs yn. From the inequality M2 + M + 1 < 2M follows that at least M = 5

redundant sensors are required in order to apply to the model.
For M sensors, the multivariate Gaussian CDF is based on an M -dimensional integral.
Solving the integral for large values of M numerically is computationally demanding, as
the computational effort increases exponentially with the number M . Therefore, the full-
rank correlation matrices RPOD and RPFA are replaced with rank one Dunnet-Sobel
class matrices [16, 58]. Using the Dunnet-Sobel class matrices reduces the M dimensional
integral to a 1-dimensional integral. The rank one Dunnet-Sobel class matrices are of the
form:
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ρij =

λi · λj , for i 6= j

1, otherwise
(2.9)

We refer to λj as Dunnet-Sobel coefficients. With the Dunnet-Sobel class matrices the
sensor parameters are θ = {POD0, . . . , PODM−1, λO=1,0, . . . , λO=1,M−1, PFA0, . . . ,

PFAM−1, λO=0,0, . . . , λO=0,M−1}.
The likelihood of the sensor parameters θ and the hidden variable pobj can be derived from
equation (2.4) together with either the independent or the dependent model. According
to Bayes’ rule, the posterior of the parameters is derived from the likelihood and the prior
distribution:

f (θ, pobj | {y1, . . . , yN}) ∝ f (θ, pobj) ·
N∏
n=1

p (yn | θ, pobj) (2.10)

Here, f (θ, pobj | {y1, . . . , yN}) is the posterior distribution for the model parameters θ,
f (θ, pobj) is the prior distribution and

∏N
n=1 p (yn | θ, pobj) is the likelihood. In order to

obtain an estimate for the sensor parameters, the maximum likelihood estimate (MLE) is
evaluated.
In the following, the indices IM and DM will be attached to the model’s probability mass
function (PMF) p (yn | θ) to indicate whether the parameters were estimated using the
independent model from equations (2.5) and (2.6) or the dependent model from equations
(2.7), respectively. For the reference distribution, which represents the PMF p (yn) based
on the number of occurrences of every sensor system output, the index ref is used. We
incorporate both models, the independent and the dependent model, into our pipeline.
The focus of the study, however, lies on the pipeline with the dependent model. The
independent model is not expected to be capable of describing the data.
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3 Aspects of association measures and error
definitions for the perception evaluation
in individual time frames

Assessing the reliability perception of the environment perception of automated vehicles is
based on an evaluation of the recorded dataset. Its output may be based on a statistical
analysis of the number of times the detection was not in agreement with reality and the
number of times it was erroneous. To evaluate large datasets, one requires a mathematical
measure that allows a conclusion about whether sensor detection and reality are in agree-
ment. In other words, one must define what is an error in the environment perception and
what corresponds to a correct detection.
Due to the prominence of object detection in the environment perception for automated
vehicles, it has become increasingly customary to employ object-based data for assess-
ing its perceptual capabilities. In contradistinction, an alternative methodology involves
evaluating environmental perception based on free space detection.
In the context of object detection delineated in section 2.4.4, a measure can be established
by comparing each discrete object within a detection dataset against every object in a
reference dataset, taking into account factors such as position, size, and/or velocity. A
close match serves to link a detected object with a reference object, as they are assumed
to represent the same entity. The process of linking detections with reference objects or
other sensor detections is commonly referred to as association. Consequently, association
yields an assignment of each object in one dataset to either none or one object in another
dataset.
The term "association measure" is utilized in this work with two distinct connotations:
firstly, to represent a continuous distance measure between two object instances originating
from disparate datasets; and secondly, to signify a discrete, threshold-based measure that
allocates a binary value to each object within one dataset, reflecting the presence or absence
of the corresponding object in an alternate dataset. Given that the objective of association
entails categorizing outcomes as either correct or incorrect, a threshold is imposed on the
continuous distance measure to facilitate the derivation of the binary classification.
Object detection algorithms, aside from physical properties such as position and size, also
yield confidence values τ for every detection. The association of detection with a reference
object typically disregards the confidence value τ , given that the reference’s presence is
assured.
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Instead of associating detections with reference objects, an object association between vari-
ous sensors can be executed if multiple sensors are deployed. This association of detections
from multiple sensors aligns with the initial stage of sensor fusion at the object data level,
as briefly outlined in section 2.4.6. The association between multiple sensors is also requi-
site for implementing the method described in section 2.5.2 to estimate sensor reliability
without reference truth.
Comparing the association of object detections from a single sensor with the reference truth
to the association of object detections from multiple sensors reveals increased complexity in
the latter. While a comparison with reference truth imparts information about the sensor,
an association between sensors necessitates supplementary and intricate data pertaining
to individual sensors. For instance, the association of object detections from multiple
sensors incorporates weightings to prioritize detections from more reliable sensors over
less reliable ones. Furthermore, object-based multi-sensor fusion may integrate confidence
values derived from object detection algorithms. Approaches for the association between
multiple sensors are introduced in sections 3.2 and 3.3. For the sake of simplicity, in
subsequent sections, an object is considered present or absent, unless otherwise specified,
if its detection surpasses a defined confidence threshold of τ = 0.5.
This chapter addresses the various methods for comparing detections with either a reference
reality or other sensor detections, elucidating the relationship between these tasks and
providing a comprehensive understanding of their distinctions and interrelations.
The present chapter demonstrates various methodologies for comparing detections against
a referential reality or alternative sensor data. The primary objectives of this chapter
include:

• A comparison between existing association measures that are used for object detec-
tion in automated driving in section 3.1.

• An introduction of two association measures in sections 3.2 and 3.3 that were utilized
to make the model from section 2.5.2 applicable with object data.

• An extension of object detection association in section 3.4 that allows a larger devi-
ation between detection and reference object at distances further away from the ego
vehicle. Larger deviation at larger distances is a common sensor property and, thus,
may not be a perception error.

• A measure for assessing a perception performance from free space approaches in sec-
tion 3.5. Analogue to 3.4 it incorporates a relation between the distance to detections
and the possible deviations.

• An analysis of possible deviations in the human perception in section 3.6 as properties
of the human perception may provide reference values for a sufficient environment
perception.

Figure 3.1 highlights the focus of this chapter in the detection evaluation pipeline in blue.
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Figure 3.1: Basic representation of object detection and evaluation pipeline. Raw sensor
data is provided to the object detection algorithm. The object detection algorithm yields
bounding boxes as output. Data classified into TP, FP, FN and TN is obtained in the
first step of the evaluation. From the classified data, a performance estimate is generated
by applying one or multiple evaluation measures.

3.1 Existing association measures

Many association measures that classify detections into correct or false detections exist.
In automated driving, the evaluation of object detection algorithms should relate to the
vehicle’s safety. Therefore, the association measure, being part of the evaluation of ob-
ject detection algorithms, needs to differentiate between safety-critical and non-critical
situations. Thus, to determine an interpretable evaluation approach, which is necessary
for the perception validation of automated vehicles, one should start by finding an in-
terpretable association measure that performs the differentiation into safety-critical and
non-critical [59]. This motivates the comparison of existing association measures that are
used for the evaluation of object detection for automated vehicles with respect to their
interpretability.

3.1.1 Investigation outline

The association between detections and the reference truth commonly yields the following
results: An association between a detection and a reference object classifies the detection
as TP. Detections that are not associated with any reference objects are classified FPs.
All remaining reference objects to which no detection has been assigned to are classified
as FNs.
TNs, cases where objects are neither detected nor present, are usually not considered in
object detection due to the fact that this usually accounts for the largest fraction of the
FOV of the sensors. For such datasets where the ratio between the area that is occupied
by vehicles and the area that is unoccupied is small, not taking the TN cases into account
proofed to be beneficial [60]. As a result, TN cases are rarely defined in the perception for
automated driving.
We analyze the association based on the following specifications.

• The association measure should remain interpretable which requires that defined
values in the measure can be derived from persistent mathematical and physical
principles. Introduced thresholds are often set arbitrarily without any physical or
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Measure Reference Equation Abbr.

Jaccard index/Inter-
section over union

[15, 49, 50]
[51–53] (3.1) IoU

Dice coefficient
F1-Measure [62] (3.3) DICE

Generalized inter-
section over union [55] (3.4) GIoU

Euclidean
distance [61, 63] - ρ

Distance inter-
section over union [53] (3.5) DIoU

Complete inter-
section over union [53] (3.6) CIoU

Support distance
error [64] (3.8) SDE

Table 3.1: Summary of existing association measures that are mentioned in section 3.1.

mathematical reasoning, which leads to non-interpretability. The aim of some asso-
ciation measures is, therefore, to keep the number of thresholds low [18, 61].

• The classification outcomes of the association measure should correlate with poten-
tially hazardous situations. Margins of TP detections from their associated objects
should be interpretable and safe to accept. A higher number of TP detections and
less FN and FP detections should correspond to a safer system. Subsequently, a
higher number of FN and FP should correlate with a higher number of potential
accidents, corresponding to a system that is less safe.

• The association measure should be easy to evaluate in order to handle large amounts
of data which does not allow individual computationally expensive operations.

The covered association measures will be discussed with respect to these three specifica-
tions.

3.1.2 Investigation of existing association measures

The association between the detections and the reference objects corresponds to the first
block of the evaluation of object detection algorithms as shown in Figure 3.1. Table 3.1 lists
all association measures investigated in this paper, which are used in automated driving.
However, it is far from complete considering measures from other disciplines. A detailed
list of measures used for 3D image segmentation beyond automated driving can be found
in [62].
In the following, this section investigates different association measures. Based on examples
it demonstrates the largest possible deviations for TP detections according to the different
association measures and discusses when such detections are safety critical for the ego
vehicle. As these illustrations indicate the largest possible deviation, we refer to them as
corner cases in the following.
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Measure Fig. 3.2 Fig 3.3(a) Fig 3.3(b) Fig 3.4(a) Fig 3.4(b) Fig 3.5 Fig 3.6

IoU ∈ [0, 1] 0.70 0.72 0.70 0.70 0.70 0.19 0.00

DICE ∈ [0, 1] 0.82 0.84 0.82 0.82 0.82 0.30 0.00

GIoU ∈ [−1, 1] 0.70 0.72 0.70 0.70 0.70 0.02 −0.25

ρ ∈ [0,∞) m 2.25 m 2.11 m 0.00 m 0.00 m 0.00 m 0.00 m 5.43 m

DIoU ∈ [−1, 1] 0.68 0.70 0.70 0.70 0.70 0.19 −0.11

CIoU ∈ [−1, 1] 0.68 0.70 0.70 0.70 0.70 −0.16 −0.13

SDE ∈ [0,∞) m 4.40 m 4.12 m 2.20 m 1.24 m 1.23 m 5.80 m 0.00 m

Table 3.2: Values obtained from the different association measures for the different exam-
ples in the indicated Figures. All association measures are unitless except for the Euclidean
distance (ρ (r, rref )) and the SDE. The values highlighted in green are larger than the
threshold value of 0.7 for unitless measures or smaller than 0.5 m for distance-based mea-
sures. All examples are based on a reference object with dimension width w2D,ref = 2.5 m
and length l2D,ref = 15 m. The evaluation of the SDE requires a position of the ego posi-
tion and a driving direction.

Table 3.2 lists the investigated association measures together with the sets of their output
domain. Table 3.2 also lists the output of the association measures for the different corner
case examples. A chosen threshold value categorizes whether a detected object corresponds
to the reference object. Here, we set the threshold to a value of 0.7 for unitless measures
and a value of 0.5 m for distance-based measures. The same threshold values are utilized
in [49] for the IoU and in [48] for the Euclidean distance. In the case of unitless measures,
values greater or equal than the defined threshold of 0.7 correspond to a match between
detected object and reference object. In the case of distance-based measures, values smaller
than the defined threshold of 0.5 m correspond to a match between detected object and
reference object. Table 3.2 highlights matches between detected objects and reference
objects according to the different association measures in green.

Intersection over union/Jaccard index

The IoU is the most commonly used association measure [15, 49–53]. For two sets (shapes,
volumes) A,B ⊆ S ⊆ Rn the IoU is defined as:

IoU =
|A ∩B|
|A ∪B|

(3.1)

In the case of object detection for automated vehicles, the sets A and B usually refer to all
points within the 2D area of the bounding box projection on the driving plane or the 3D
volume of the bounding box for the detected object and the reference object, respectively.
Figure 3.2 demonstrates a possible corner case for the IoU that can correlate with a po-
tentially hazardous situation. The green bounding box corresponds to the reference truth
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while the bounding box in red with the dashed line corresponds to the detection. For the
demonstration a length of 15 m is chosen which is approximately the length of a truck.
A detection of an object that is 15 m in length can be up to 4.5 m shorter and still fulfill
the requirement of IoU ≥ 0.7 for a match between detected object and reference object as
utilized in [49]. A detection with a deviation of 4.5 m may be sufficient for an object that is
far away, however, a detection that is 4.5 m further away than the actual object can cause
an accident if the object is right in front of the ego vehicle. Furthermore, the IoU only
considers the orientation of an object to a certain extent. The orientation of the vehicle
may, however, be crucial, e.g., it makes a big difference whether a vehicle is considered to
stay in a neighboring lane on the motorway or whether the vehicle changes into the lane
of the ego vehicle.
In [64] it is shown that the IoU of two associated objects does not correlate with the
number of potential crashes. In [64] a crash is defined as an overlap of an object bounding
box with the ego-vehicle’s bounding box that is increased by 80 %. The average IoU of a
detected object and the reference object turned out to be approximately the same for cases
where both, the reference and the detection, are involved in a crash and for cases where
either the reference or the detection are involved in a crash. [64] also refers to crashes of
the hypothetically increased ego-vehicle with a reference and also its associated detection
as TP crash while crashes of the hypothetically increase ego-vehicle with only a reference
object or only a detection are referred to as FN crashes and FP crashes, respectively.
The conclusion from Figure 3.2 and the observations in [64] is that, especially for close
distances, the IoU may not be a good measure for collision avoidance and, therefore, it
may not correlate well with the number of hazardous situations. To account for differently
sized objects in images due to their distance from the camera, [65] introduces an object
size dependent threshold α instead of a constant. The threshold depends on the width wimg
and height himg of the reference bounding box Bimg. As [65] focuses on object detection
in images, the parameters wimg and himg of bounding box Bimg are measured in pixels.
The threshold is adjusted for objects that are smaller than 10× 10 pixels.

α (Bimg) = min

(
0.5,

wimghimg
(wimg + 10) · (himg + 10)

)
(3.2)

An object size dependent threshold could also be developed in 3D. Otherwise common
thresholds α for the association measure are the constant values 0.5 and 0.7 [15, 47, 66,
67]. Especially for rectangular bounding boxes but also for generic pixel-wise evaluations
the IoU is fast to evaluate which also makes it a common association measure in many
evaluations.

Dice coefficient

The Dice coefficient is a measure that is frequently used in semantic segmentation [62, 68,
69]. For two sets (shapes, volumes) A,B ⊆ S ⊆ Rn the Dice coefficient is defined as [62]:

DICE =
2 · |A ∩B|
|A|+ |B|

(3.3)
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Figure 3.2: A match between a detection (red) and a reference object (green) according to
the IoU with a threshold of α = 0.7. The detection would be associated with the reference
even though there is a deviation of 4.5 meter at the back side of the truck. A deviation of
4.5 meter can be essential when the object is right in front of the ego vehicle.

Like the IoU, the dice coefficient is equal to zero in case of no intersection between the two
sets A and B and equal to one in case the two sets A and B are equal. In all other cases
the dice coefficient is larger than the IoU as

DICE = IoU · 2 · |A ∪B|
|A|+ |B|

> IoU · 2 ·max (|A|, |B|)
|A|+ |B|

> IoU

As a result of the scenario in Figure 3.2 the dice coefficient returns a value larger than 0.7

as shown in Table 3.2. The question of how to choose the threshold α for associating two
objects remains. The same threshold α as for the IoU of 0.7 or 0.5 from [49], respectively,
yields a less restrictive measure for the association between objects in case of the Dice
coefficient. Like the IoU the Dice coefficient will also not directly correlate with poten-
tially hazardous situations. The calculation effort is comparable to the IoU and allows an
evaluation for large-scale datasets.

Generalized intersection over union

The GIoU is an extension to the IoU that addresses an issue that can arise when dealing
with non-overlapping bounding boxes. This issue, known as the vanishing gradient prob-
lem, makes the learning process of neural networks difficult or impossible. By incorporating
an additional term, GIoU can help to avoid this problem and improve the performance of
these algorithms [55]. For two sets (shapes, volumes) A,B ⊆ S ⊆ Rn the GIoU utilizes the
smallest convex set C ⊆ S that contains the sets A and B.

GIoU =
|A ∩B|
|A ∪B|

− |C \ (A ∪B)|
|C|

(3.4)

For close to perfectly aligned sets A and B the GIoU tends towards 1 as the first term
corresponds to the IoU and the subtracted term tends towards 0 because the smallest
convex set C becomes equivalent to the union of A and B. For two sets A and B that do
not intersect, i.e. A ∩ B = ∅, the GIoU tends towards -1 as the IoU term becomes 0 for
no intersection between the sets A and B and the further the sets A and B are apart, the
larger is the smallest convex set C, such that the second term tends towards -1 when C
becomes much larger than the union of A and B. Analog to the IoU a threshold α needs to
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be chosen such that detected objects are identified as correctly or falsely detected objects
when being compared with the reference objects. When using a threshold α, the GIoU
yields the same difficulties as the IoU as shown in Figure 3.2. Therefore, the GIoU may
not correlate well with critical situations analog to the IoU. An advantage of the GIoU in
comparison to the IoU is the faster decrease in the GIoU for example for slightly rotated
objects due to the increasing second term that is subtracted from the IoU value in the
GIoU.

Distance intersection over union

Similar to the GIoU, the Distance Intersection over Union (DIoU) extends the IoU with
an additional term in order to avoid the vanishing gradient problem for non-overlapping
bounding boxes [53]. Its introduction aims to optimize the training of object detection
algorithms based on neural networks by building upon the advancements of the GIoU [53].
However, the focus in [53] does not lie in the interpretability of the measure in terms of
safety and reliability. The DIoU is defined as

DIoU = IoU −
ρ2 (r, rref )

c2
. (3.5)

Here, ρ : R2 × R2 → R, (r, rref ) 7→ ρ (r, rref ) denotes the Euclidean distance between
the center points of the detection r and the reference rref . c is a normalization constant
and corresponds to the diagonal of the smallest possible bounding box that includes the
detection and the reference box [53]. In [53] it is shown that optimization of a neural
network with a loss based on the DIoU converges faster in comparison to using the GIoU.
In the following, without loss of generality, consider A to be the detection bounding box
and B to be the reference bounding box. For non-overlapping sets A and B an optimization
based on the GIoU results first in an increase in the detection bounding box A to minimize
the second term in the GIoU. Only when the increased detection bounding box starts
to overlap with the reference bounding box, does the IoU term get optimized [53]. In
comparison, the DIoU prioritizes the minimization of the Euclidean distance between the
center points of the detected bounding box and the reference bounding box during the
regression process, while maintaining the dimensions of the fitted bounding box.
For a final decision process, a threshold α is required analogous to the aforementioned
association measures. Setting the threshold α results in a loss of interpretability as pointed
out previously. However, in comparison to the IoU and the GIoU, the DIoU would rate the
example from Figure 3.2 worse as the bounding boxes are not aligned on their center points,
which yields a non-zero second term in the DIoU and, therefore, a worse fit in comparison
to a detection where the center point would be aligned with the reference. However, in
case the center points line up, as shown in Figure 3.3 (b), the object’s boundaries can still
deviate between reference and detection by up to 2.25 m. And in case the center points do
not line up even larger deviations at some boundaries can occur as shown in Figure 3.3 (a).
Thus, the distance to the back side of the object in front can still be crucially misestimated
even though the measures would consider it a TP in case the threshold α is set to 0.7. As
a conclusion, there can be corner cases in which the association measure does not correlate
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Figure 3.3: Two possible matches between a detection (red) and a reference object (green)
according to the DIoU with a threshold of α = 0.7. Even though the overlap of the reference
and detection bounding box is larger compared to the case of the IoU, as shown in Figure
3.2, the deviation can still be large even though the association measure demonstrates a
match. (a) demonstrates a match with the maximum possible deviation of the detection
from the reference object on only one side of the object. (b) demonstrates a match with
the maximum possible deviation in the area between detection and reference object.

with potentially hazardous situations. Like the GIoU, the DIoU also requires determining
the smallest convex bounding box that encircles both sets A and B and is, therefore, more
computationally expensive in comparison to the IoU.

Complete intersection over union

Besides the DIoU, [53] proposes the Complete Intersection over Union (CIoU). The CIoU
includes an additional term that accounts for the aspect ratio of the detected object’s
dimension.

CIoU = IoU −
ρ2 (r, rref )

c2
− v2

(1− IoU) + v
(3.6)

Here, the parameter v describes a function that accounts for the consistency of the aspect
ratio between the length and the width of the detected object. v is assessed in the following
way:

v =
4

π

(
arctan

w2D,ref

l2D,ref
− arctan

w2D

l2D

)2

For a perfect aspect ratio v becomes 0 while in case the object width and length are
interchanged v becomes equal 1. By adding the additional aspect ratio term to the DIoU,
the measure becomes more restrictive. For example Figure 3.3 (a) does not fulfill the
requirement that the CIoU is equal or greater than 0.7 while it does fulfill the requirement
for the DIoU. Figure 3.4 demonstrates two examples where the CIoU returns a value of 0.7.
In the two examples, both the center distance term and the aspect ratio term are equal to 0.
A maximum deviation of 1.22 m in the example from Figure 3.4 between the boundaries of
detection and reference is smaller in comparison to the maximum deviation in previously
mentioned association measures for a fixed threshold of α = 0.7. In comparison to the
aforementioned association measures, the CIoU is more restrictive for the same association
threshold α. Thus, with the same threshold α, it classifies fewer detections as TP while
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Figure 3.4: Two examples for a match between a detection (red) and a reference object
(green) according to the CIoU when the threshold is set to α = 0.7. In these two examples,
both terms, the center distance and the aspect ratio term, are equal to 0. (a) demonstrates
a match of the maximum possible deviation in the area between detection and reference
object. A rotation of the detection relative to the reference object does not influence the
value of the CIoU as long the area-wise overlap between detection and reference object is
the same as shown in (b).

classifying a greater number of detections as FP. Moreover, more reference objects will
be classified as FN. An TP detection is, therefore, in better agreement with the reference
object. However, the same difficulties in the interpretability of the classification as for
the other association measures arise. A direct correlation with the number of potentially
hazardous situations is not expected likewise to the IoU.

Euclidean distance

The Euclidean distance between the center points of objects may also be used as an asso-
ciation measure instead of the IoU [48, 61, 63]. In order to classify the detections in either
of the binary cases TP, FP and FN, a distance threshold α has to be chosen.
In the appraisal of the nuScenes challenge [63], the employed thresholds for the evaluation
are 0.5 m, 1.0 m, 2.0 m, 4.0 m. The rationale behind the selection of these specific thresholds
remains elusive. It is essential to consider that, in a real-world context, a deviation of 4.0 m
proves unsuitable for accurately assessing nearby objects. In situations such as approaching
a vehicle halted at a red traffic signal or during the process of parking even a deviation of
0.5 m may prove inadequate, especially, as one needs to take into account that the center
distance does not include information about the object’s size. On the one hand, this can
be an advantage in particular for small objects, for example pedestrians, which in case
of small deviations already show 0 IoU [48]. On the other hand, small objects can be
associated with large objects due to a small Euclidean distance and, thus, imply a good
fit while it may not be a good fit as demonstrated in Figure 3.5. In particular for large
object large deviations may occur. Therefore, the Euclidean distance may not allow a
proper interpretation after the data was classified into TP, FP and FN using a predefined
threshold α. In [64] it is shown that the IoU does not correlate well with crashes which
can be explained by the fact that the deviation of the object’s corner closest to the ego
vehicle can be quite large as shown in Figure 3.2, even though the IoU is greater than the
applied threshold α. The distance measure between center points faces the same difficulty
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Figure 3.5: A perfect match between a detection (red) and a reference object (green)
according to the Euclidean distance of the center points. The Euclidean distance does not
take the object size into account.

that the side of a detected object which is close to the ego-vehicle may not be properly
detected even though the center points of detection and reference are in good agreement.
Therefore, the Euclidean distance of the center points will, like the IoU, not correlate well
with the defined crashes either. The Euclidean distance is less expensive in comparison to
the IoU in terms of computational requirements.

Support distance error

The Support Distance Error (SDE) accounts for the object contours that are closest relative
to the ego vehicle [64]. Therefore, [64] describes the association measure to be ego-centric.
All before-mentioned association measures are considered to be object-centric as these
association measures are independent of the position and orientation in the ego-vehicle’s
coordinate frame. The support distance (SD) to a detection or reference bounding box
corresponds to the distance to the closest point of an object along the x (longitudinal) and
y (lateral) coordinates, respectively.

SDi (BC) = min
p∈BC

(pi) , i = x, y (3.7)

BC ∈ R represents the set of points on the contour of a 2D bounding box from the bird’s-
eye perspective. In this context, pi represents the coordinate component i of point p,
where i corresponds to either the x or y dimension. The SDE corresponds to the difference
in the SD for a detection and a reference object along the coordinates x and y from the
ego-perspective.

SDEi = SDi (BC,ref )− SDi (BC) , i = x, y (3.8)

The SDE corresponds to the minimum of the absolute value of the lateral and longitudinal
SDE [64].
[64] shows that, unlike the IoU, the SDE shows a correlation with the number of hypo-
thetical crashes. The SDE turns out to be on average lower for TP crashes and higher for
FP and FN crashes. Therefore, in the case of the SDE, a threshold α would allow a better
distinction of the detections into a dangerous and safe object than the IoU, as the IoU may
classify an object as TP even though the detection would pretend to avoid a crash with
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Figure 3.6: A perfect match between a detection (red) and a reference object (green)
according to the SDE from [64]. The SDE is equal to zero even though the boundaries of
the reference and the detection do not line up. The SDE depends on the position of the
ego vehicle. Therefore, the ego vehicle position is shown in the lower left corner.

the object while the ego-vehicle is crashing into the object on its path.
Moreover, the SDE provides a physical distance measure with units in meter which allows a
physical interpretation of how much closer/ how much further away the detection is allowed
to be from the ego-vehicle in comparison to the distance to the reference object. However,
the SDE may also lead to corner cases where the object may not be detected properly.
Especially for tilted objects this can be the case. Figure 3.6 demonstrates two bounding
boxes that are in perfect agreement according to the SDE as the SDE is equal to zero. As
the SDE depends on the ego-vehicles position, the ego-position is shown in the lower left
corner while the current driving direction is indicated with an arrow. As discerned from
Figure 3.6, it is plausible for the detection and reference to exhibit no overlap, despite the
SDE indicating perfect alignment. Consequently, although the correlation with potentially
hazardous situations in the immediate surroundings has been shown in [64], the measure
may still permit corner cases of utmost relevance for the safety assurance of autonomous
vehicles. Consequently, interpreting the results obtained through the SDE may prove
challenging, as exemplified in Figure 3.6. The measure may overlook pertinent cases,
inadvertently inflating overall performance metrics, despite the actual performance being
subpar.
The evaluation of the SDE uses non-expensive operations like subtraction and finding the
minimum of two values. It is less computationally expensive compared to the IoU.

Extension to non-rectangular objects

Object detection algorithms usually yield bounding boxes that encircle the objects as
closely as possible. However, real-world objects cannot be perfectly described by rectan-
gular boxes. Especially, at the corners, the real-world objects usually differ significantly
from the bounding box which can make a crucial difference whether an object is hit or
not. Therefore, a representation that covers the actual object dimension may be beneficial.
[64] proposes two methods for a more detailed representation of the objects in combination
with the SDE. Both methods are based on the raw LiDAR data.
The Convex Visible Contour (CVC) uses the convex hull of all LiDAR points from a
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single time frame within the object bounding box after removing the LiDAR points on the
ground [64]. In particular the object contours that are in the LiDAR sensor’s FOV and
are not occluded by other objects are commonly most relevant in terms of crash avoidance.
In [64], a better detection performance is observed for nearby objects when utilizing a CVC
representation of the objects instead of using a bounding box representation.
The CVC is only a viable option for measures that account for the nearest object’s contour
rather than a full contour of the objects as opposing sides of objects are occluded from the
LiDAR sensors perspective and cannot be detected. Object interpolations in occluded re-
gions are not considered when employing the CVC in a detection evaluation. Consequently,
CVC detections are not suitable for an evaluation that is based on an area or volume-based
measure, such as the IoU. An evaluation of the nearest object’s contour is justifiable by
the fact that the distance to the side of the object facing the ego vehicle typically holds
greater significance than the precise dimensions of the detected object as emphasized in
[64]. When used in conjunction with the SDE, the CVC offers a more accurate measure
by acknowledging that objects are not strictly rectangular in shape. Nevertheless, apart
from accounting for the non-rectangular forms of real-world objects, the combination of
the SDE and CVC may still encounter situations similar to the one depicted in Figure
3.6, thereby limiting the interpretability of the results. Moreover, evaluating the partial
point cloud within the bounding box imposes a greater computational burden compared
to assessing the IoU. Additionally, in adverse weather conditions, a LiDAR point cloud
may not be consistent, which may make an approach that is based on a LiDAR generated
CVC become inapplicable.
This argumentation can also be applied to the second approach by [64] of the name
Starpoly. Starpoly also takes into account that objects are seldom rectangular and, like
CVC, it is LiDAR-based. Starpoly utilizes a star-shaped description of the objects. Analog
to CVC, in combination with the SDE the interpretation of the results is limited as the
SDE can classify detections as a perfect match between reference and detection when they
are not, as demonstrated in Figure 3.6. Furthermore, it increases the difficulty in labeling
the data compared to bounding boxes. A more precise contour of the detected objects,
however, allows a better interpretation of the scene. Thus, as pointed out by [64], crashes
that would be observed with rectangular bounding boxes may indeed be no crashes as
the ego vehicle can pass the detected object when taking into account that the object
has round corners. Therefore, the introduction of non-rectangular boxes can increase the
interpretability of the result for all previously mentioned association measures.

Conclusion about existing association measures

The section provides an overview of association measures that have been utilized in the
context of object detection in automated driving. The association measures are analyzed
quantitatively concerning (1) their interpretability, (2) their correlation with potentially
hazardous situations and (3) in terms of the computational requirements. As the inter-
pretation of an evaluation is based on whether a situation is safe or potentially dangerous
based on physical properties of the object states, (1) and (2) are commonly related and
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discussed together.
Usually, a better agreement of detection and the reference object for an association is
achieved with more restrictive association measures or more restrictive thresholds. More
restrictive association measures and thresholds will lead to a decrease in the number of
detections that are classified asTP and, simultaneously, to an increase in the number of
FN and FP detections. However, a more restrictive association hardly provides better
interpretable results as the number of TP detections for such measures does not relate to
the physical properties of the vehicle and, thus, its safety. This argument holds for most of
the discussed association measures. Except for the SDE, which is proposed by [64], none
of the above-mentioned association measures incorporate the safety aspect.
In order to account for possibly hazardous situations [64] introduces the terms object-
centric and ego-centric. Ego-centric association measures incorporate the position of ob-
jects relative to the ego-vehicle in the evaluation.
The computational requirements may become relevant when dealing with very large datasets
where computationally expensive approaches can take infeasible amounts of time. However,
to this extent, this has not been a problem in the evaluation of object detection algorithms.
Even computationally more expensive algorithms can be applied to the datasets that are
available nowadays. In case the amount of data increases to an extent when the com-
putational requirements become relevant, SDE in combination with bounding boxes as
proposed by [64] provides a lightweight evaluation.
The computational demands may emerge as a significant factor when confronting vast
datasets, wherein computationally intensive association measures could lead to impractical
processing durations. Bounding boxes are frequently employed as an object representation
in object detection, offering a rudimentary approximation of reality. Despite their simplic-
ity, bounding boxes provide an accessible mathematical description with a limited number
of parameters, facilitating computationally efficient evaluation. Conversely, more intricate
shapes, though potentially yielding increased accuracy, necessitate greater computational
resources for evaluation.
Up to this point, such concerns have not been a challenge in the evaluation of object detec-
tion algorithms, even with more intricate shapes requiring higher computational complex-
ity. However, in case the amount of data escalates to levels where computational demands
become more relevant, the SDE in conjunction with bounding boxes, as proposed by [64],
presents an effective evaluation solution.

3.2 Grid-based association measure

In the evaluation of object detection, not detecting objects when none are present is often
overlooked due to data imbalance. Data imbalance refers to the uneven distribution of
instances across different classes or regions, in this case, between regions containing objects
and those without them. In object detection, addressing this imbalance is crucial, as an
object detection model may otherwise predict no objects by default, as regions with objects
are usually less frequent.
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For the reliability analysis, however, it is essential to consider regions correctly identified
as unoccupied when no objects are present, which constitute the TN cases. The model
outlined in section 3 for determining sensor reliabilities necessitates the definition of TN
cases for proper application. Furthermore, this model is dependent on an association of
multiple detections, rather than the association of a detection with a reference object. In
the absence of a reference, the challenge arises in determining which sensor to trust when
faced with disparate detections resulting from varying physical principles and uncertainties
in sensor measurements and processing procedures.
The association measures from section 3 do neither define TN cases nor do these association
measures deal with sensor-specific sensor properties to perform an association of object data
from multiple sensors. Thus, in the context of assessing sensors’ object-detection-based
on a redundant sensor system, a different association measure is required. A grid-based
association offers an intuitive approach as starting point for the evaluation of large-scale
datasets using the model from section 2.5.2.
Subdividing the FOV into a discrete grid for the association is briefly described in [8,
70]. One can use the grid-based association to apply the model from section 2.5.2. The
model from section 2.5.2 requires a definition of TN in order to evaluate the PFA. In the
following, we describe the grid-based association in more detail.

3.2.1 Association measure

The presented association measure is a discrete measure that assumes a value of one for
detections from different sensors that are in the same region, or zero otherwise. The
measure relies on the discretization of space by applying a grid on the bird’s eye view. The
measure only uses the position of a reference point from surrounding objects. Additional
parameters like the size of the object, its velocity and its rotation relative to the ego vehicle
are not considered. This work uses the center point at the rear of the objects as reference
point.
Objects from different sensors are considered to be the same in case their reference points
are within the same grid cell. Otherwise, the objects are considered to be different objects.
The grid size is a free parameter.
Figure 3.7 demonstrates the association on an artificially generated frame. In Figure 3.7
the cell size is to 2 m x 2 m and is indicated by the grey dashed lines. Figure 3.7 (a)
shows the reference objects by the green bounding boxes. The dots at the bounding boxes
indicate the rear center of the objects. The reference point of the ego vehicle is at position
(0 m, 0 m). Figure 3.7 (b) demonstrates the reference objects together with the detections
from different sensors.

3.2.2 Results and discussion

Figure 3.8 shows the resulting binary data that corresponds to either an object being
present or not. Figure 3.8 (a) shows the binary data of the reference truth. There are four
objects present in four different cells of the grid indicated by a small rectangle within each
cell that contains the reference point of an object. Figure 3.8 (b) shows the result for all
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Figure 3.7: Illustration of the grid-based association. A grid is used to subdivide the
environment from the bird’s eye perspective. (a) shows the reference truth objects, (b)
shows the sensor data in addition.

sensors for the example frame. A comparison of the binary detections and reference data
allows a classification of detections in any of the four cases of the confusion matrix from
Table 2.1, namely TP, FP, TN and FN. In comparison to the association approaches in
section 3.1, the grid-based association also defines TN cases which is necessary to apply
the model from section 2.5.2.
While the approach is straightforward to implement it has major drawbacks. Firstly, it
only considers the position of the reference point of the surrounding vehicles neglecting the
size of these vehicles. Consequently, a large object may be associated with a detection of
a much smaller object. Moreover, the detection may have an entirely different orientation
than the actual object. Secondly, the acceptable tolerance for an object’s reference point is
defined by the rectangular cell and varies in different directions due to the squared-shaped
grid cells. In the worst-case scenario, a detection’s rear center, chosen as the reference
point here, may be up to 2.83 m apart from an object it is associated with while still being
classified as a correct detection. This length is determined by the diagonal of a 2 m x 2 m

cell. Such a tolerance might be sufficient in the far distance. However, it is certainly not
sufficient in the near field and adds up to the error introduced in (1). Thirdly, the approach
classifies detections into a FP and a FN when reference object and detection are separated
by the cell border, even if the reference truth object and a detection are close together.
Lastly, the size of the grid cells is a free parameter without any particular rationale for
a specific value. A cell size that is too large increases the probability of multiple objects
gathering within the same cell. However, with decreasing cell sizes the number of TNs
increases which can modify the PFA arbitrarily. We propose, therefore, to choose a cell
size that is in the order of the size of the objects of an investigated class. Objects of a
certain class have usually roughly the same size. Studies in this work mostly focus on cars
only, disregarding other object classes. We chose 2 m x 2 m as the reference points, usually
the rear center points, of neighboring cars get hardly closer than 2.83 m while the size of
cars is in the same order of magnitude. We are aware that cars are usually larger than
2 m x 2 m, but a more extensive grid cell size would exacerbate the issue of multiple cars
congregating in the same cell. However, the chosen 2 m x 2 m cell size remains somewhat
arbitrary; some might argue that a 1.5 m x 1.5 cell size would be more appropriate to
prevent multiple cars from occupying the same grid cell.
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Figure 3.8: Binary data obtained from the grid-based association for the frame of Figure
3.7. (a) shows the binary reference truth data and (b) shows the sensor data in addition.

From the drawbacks of the measure, we conclude that the resulting classifications may not
correlate well with potentially dangerous situations when using the grid-based association
measure. Subsequently, the resulting number of detection errors does not allow a proper
interpretation as the detection errors can be benign or malign which cannot be derived
from the number of errors. However, the measure is fast and easy to apply on a large
dataset.

3.3 Trajectory-clustering-based association measure

In the preceding section, we presented an association measure that is based on a grid to
associate detections from multiple sensors, even in the absence of a reference truth. While
the measure is easy to implement it comes with major drawbacks, leading to a weak or
no correlation between the number of errors and potentially hazardous situations. One
issue is the potential lack of association between slightly shifted detections at grid cell
borders. Conversely, depending on the grid cell size the accepted tolerance for objects
within the same grid cell can be considerably large. Moreover, sensor-specific short-term
errors, which could be eliminated by employing a Multi-Object-Tracking (MOT) algorithm,
contribute to the overall error count. For instance, short-term ghost objects can appear in
object detections that are based on LiDAR recordings during rainy weather. These ghost
objects are often random occurrences in individual time frames. The subsequent association
measure addresses these limitations by introducing an association measure that is based
on the Euclidean distance and is employing a MOT approach. Nonetheless, a grid is still
employed to define the TN cases, a requisite step for classifying the associated objects into
either of the four cases of the confusion matrix. The measure is also presented in [57].

3.3.1 Association measure

The association measure functions in both spatial and temporal dimensions, offering a
more refined association approach in contrast to the measures previously examined in
this work. A MOT algorithm associates the object detections in time for each sensor by
evaluating their trajectories. Subsequently, the trajectories of objects from different sensors
are compared using a combination of the Euclidean distance for spatial aspects and the
Fréchet distance for temporal aspects, instead of relying solely on the position of the actual
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measurements.
The procedure can be subdivided into three key steps, aiming to provide a robust and
comprehensive evaluation of object detection performance: First, the objects detected in
an individual frame are tracked over time. Second, the obtained trajectories for all objects
and sensors are clustered between different sensors and the reference truth. Third, a grid
is utilized to obtain binary data from the object data either saying an object is present or
not. While the binary data is necessary for the reliability analysis by [16], the association
itself does not rely on binary data.
Figure 3.9, which we present in our publications [71] and [57], summarizes the details of
the procedure. Figure 3.9 (a) visualizes the three subsequent steps of the pipeline in a
flowchart. The pipeline takes object lists obtained from an object detection algorithm
as input and outputs binary data for a subsequent reliability analysis. The association
between the sensor detections and the reference truth is performed by the MOT procedure
and the trajectory clustering as indicated by the red box in Figure 3.9 (a). The binarization
represents an additional step necessary for the reliability analysis.
The pipeline employs the MOT algorithm from [50], which incorporates a Kalman filter for
object tracking. As a well-studied approach, the Kalman filter facilitates the interpretation
of the results, whereas MOT algorithms based on neural networks often exhibit a deficiency
in interpretability.
The MOT algorithm is used to avoid short-time artifacts like sudden misdetections or short-
time occlusions. Short time FPs might for example be detected by an object detection
algorithm that is based on LiDAR when it rains. Using the MOT algorithm, one can
eliminate these errors for a subsequent reliability analysis.
Figure 3.9 (b) visualizes the MOT algorithm from [50]. It starts by assigning an object
ID to every object (bottom left box in Figure 3.9 (b)). Subsequently, a Kalman filter
prediction is performed for every object. The subsequent step associates predictions and
measurements using the well-established and frequently used IoU, as outlined in section
3.1.2, and the Hungarian algorithm [55, 67, 72]. The association between detections and
predictions leads to three possible outcomes: Some predictions coincide with some of the
detections, some predictions have no corresponding detection and some detections may not
have been predicted by the Kalman filter as the object may not have been present in the
previous frame. Whether prediction and detection coincide is defined by a minimum IoU
threshold. The Hungarian algorithm optimizes overall associations of one frame in order
to avoid that multiple detections are associated with the same reference truth object. A
list stores predictions that are not associated with a detection for two more time-frames.
Furthermore, the algorithm only considers objects as being present if they are detected for
at least three subsequent time frames.
After tracking the object detections over time, the pipeline continues by clustering the
obtained trajectories. The pipeline applies a variation of Density-Based Spatial Clustering
of Application with Noise (DBSCAN) for clustering the trajectories and utilizes the Fréchet
distance with threshold of 1 m [73, 74]. Trajectories from different sensors whose Fréchet
distance is smaller than the threshold are clustered together and are assumed to relate to
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Figure 3.9: (a) Pipeline for associating and analyzing object data obtained from different
sensors based on trajectory generation using the MOT algorithm from [50] and a DBSCAN-
based clustering. (b) demonstrates the MOT algorithm by [50] in a flowchart. Figures are
taken from our publication [71] and [57].

the same object. In this manner, the algorithm can be concurrently applied to multiple
sensors and the reference, integrating their data for the proceeding analysis.
Finally, the data is put into a binary format. The number of TP, FP and FN are known
from the clustering. Similar to the approach in section 3.2, we suggest that the grid cell
size should be roughly determined by the minimum distance between two objects of the
same class. For cars, we recommend using a grid cell size of 2 m x 2 m at the largest.

3.3.2 Results and discussion

Figure 3.10 (c) demonstrates the output of the measure for a sequence of the Waymo
dataset [1]. Multiple sensors are obtained by sub-diving the LiDAR data of the Waymo
dataset and applying an object detection algorithm on each LiDAR data subset. Figure
3.10 (a) shows the camera image of the current frame together with the projected bounding
boxes of the reference and the object detection algorithm operating on two individual
subsets of the LiDAR data. Figure 3.10 (b) demonstrates the trajectories obtained from
two LiDAR data subsets over the past ten frames. The trajectories are relative to the ego
vehicle coordinate frame. The reference point of the ego vehicle is positioned at (0 m, 0 m).
Figure 3.10 (c) shows the positions of the objects for the current and the previous frame.
The 3σ deviation of the clustered data is shown by the green ellipses that highlight a
cluster.
Figure 3.11 demonstrates the resulting binary data for the specific frame of the scene from
Figure 3.10 for different grid cell sizes of 0.5 m × 0.5 m, 1 m × 1 m and 2 m × 2 m. The
clustered data is demonstrated by the green rectangular boxes while the red boxes indicate
the reference object data. The crosses indicate the center points of the bounding boxes.
The bounding boxes of the clustered data is obtained by taking the mean of all values from

36



(a) (b) (c)

Figure 3.10: Visualization of the pipeline from Figure 3.9 for one frame of the Waymo
dataset [1]: (a) visualizes the object data by projected bounding boxes on the camera
image while the reference truth bounding boxes are shown in red and the detected bounding
boxes in blue and yellow; (b) shows the evaluated trajectories of the detected objects; (c)
indicates the clustered objects by green ellipse. The figure is taken from our publication [57]
and modified.

(a) (b) (c)

Figure 3.11: Representation binary data obtained from object data of multiple sensors. The
grid size for the discretization in space is a free parameter and can be chosen differently.
Here, Figure (a) is based on a grid size of 0.5 m× 0.5 m, Figure (b) is based on a grid size
of 1 m× 1 m and Figure (c) is based on a grid size of 2 m× 2 m. As cars get hardly closer
than

√
2 ·2 m, a grid size of 2 m×2 m may sufficiently represent the data. (c) is taken from

our publication [57].

all sensors that participated in the cluster.
In comparison to the grid-based association, this approach does not encounter the problem
that a close detection might be classified as FP and FN because the detection and the
reference objects are in neighboring grid cells. Whether two trajectories contribute to the
same cluster is defined by the chosen threshold for the Fréchet distance between the trajec-
tories rather than the grid cell. The grid is only utilized to obtain a binary representation
of the data including the TN cases.
By using the Fréchet distance for associating trajectories, the chronological order of the de-
tections is not taken into account. The applied algorithm is derived from general trajectory
clustering where no chronological order of the trajectories exists. A better approach might
be to use the mean distance or the max distance obtained from the distances between the
objects at each point in time.
The grid cell size remains a free parameter with limited interpretability, as previously
discussed in section 3.2. If not otherwise stated, all subsequent evaluations based on this

37



association approach use a grid cell size of 2 m x 2 m, which is in the order of the size of
cars, here the investigated class of objects. Although in this approach the grid size does
not affect the number of detections that participate to one cluster, multiple clusters can
accumulate within the same grid cell in case of a too large cell size. In this case, the
counted number of detections and reference objects might vary with the grid size, leading
to different numbers of TP, FP and FN detections. However, for grid cell sizes small
enough the number of TP, FP and FN detections stay the same as these are defined by
the clusters which do not depend on the cell size. However, with decreasing the grid cell
size leads to an increasing number of TN cases, which arbitrarily alters the probability of
false alarm.
Similar to the association measure from section 3.2, a drawback of this association measure
is that only the center points of the objects are considered for the association. Like in the
measure from section 3.2 other parameters like the size and rotation of the objects are not
considered. Thus, a detection could be associated with a reference object even though it is
rotated by 90° or a detection could be of a different size compared to the reference object
which can make a crucial difference in the path planning of an automated vehicle.
In addition, a deviation up to the defined threshold for clusters based on the Fréchet dis-
tance can occur. The deviation is independent of the distance. Here, the chosen threshold
was set to 1 m. A deviation of 1 m might be too restrictive for faraway objects while it can
be too loose for nearby objects.
While retaining some limitations of the purely grid-based approach, the trajectory-based
association measure effectively addresses evaluation errors arising at grid cell boundaries
and short-term errors. Another advantage of the trajectory-based association measure
is the consideration of temporarily occluded objects due to continued tracking, ensuring
that such objects, which are often present in the reference data, do not contribute to
FN errors. Consequently, the trajectory clustering-based association is superior to the
grid-based association.

3.4 Distance-weighted association using threshold-based mea-
sures

Without the need for the exact location and distance of the other participants in the traffic
scenario, humans are also eligible to steer a vehicle safely. Human driving is often taken as
a reference in safety concerns for automated driving [4, 8, 75, 76]. Human estimation of
distances to surrounding objects that are further away is prone to misestimation. Consider
an example in which the ego vehicle approaches the tail end of a traffic jam on the highway
assuming a moderate speed of 120 km h−1 for the ego vehicle. A human will most likely
not evaluate whether the last car or truck of the traffic jam is 150 m in front of the ego
vehicle or 140 m in front of the ego vehicle. Nonetheless, a human will start to decelerate
the vehicle. In case the last car/truck at the end of the traffic jam is right in front of the
ego vehicle, however, a tolerance of 10 m is not acceptable. One may conclude that the
human precision in distance estimation to surrounding objects is partially dependent on
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the distance to these objects. In this context, the required precision for object detection
algorithms could be related to distance. Just as with human drivers, pinpoint accuracy
may not be essential for safely navigating a vehicle on public roads, especially at large
distances to another object.
The correlation between the precision of a detection with its distance from the ego posi-
tion can be assumed for most ego centric sensors. Such sensors usually have an angular
resolution. As an example, consider a LiDAR sensor: an object of the same size is hit by
more laser beams of the LiDAR if it is closer to the ego vehicle. Thus, a nearby detection is
represented by more measurements in comparison to a measurement at faraway distances.
Besides the reduced spatial resolution of ego centric sensors, a decrease in the signal inten-
sity of individual measurements is expected with increasing distance to objects for active
sensors [36]. Considering the LiDAR again, the laser beam is not perfectly parallel and,
therefore, diverges over distance. Thus, the further an object is away from the LiDAR, the
less intense is the returning signal.
To the best of the author’s knowledge, to this date, no properly justifiable performance
requirements for environment perception sensors and their object perception exist for the
use in automated vehicles. A major focus in the development of object detection algo-
rithms for the environment perception of automated vehicles has been the improvement
of these algorithms. This is achieved by aiming for higher numbers of TP detections with
association techniques described in section 3.1, 3.2 and 3.3. However, hardly any research
describing perception specifications that may be sufficient for automated driving exists.
One may achieve requirements sufficient for automated driving by drawing parallels to
human perception and adjusting them on a distance-dependent basis. Consequently, for
an interpretable and justifiable evaluation one may need to drop current association ap-
proaches that classify detections independent of their distance into TP and TN as well as
FP and FN, meaning correctly or falsely identified. Such requirements may not just allow
an interpretation of the results by a comparison with the human perception but at the
same time, they may be better achievable due to the described sensor properties. To the
best of the authors’ knowledge, a distance-dependent association in the field of automated
driving perception does not yet exist.
Concerning requirements, no approaches have been found by the authors. Distance de-
pendency, however, found its way directly or indirectly into the performance evaluation of
object detection performance. [65] indirectly incorporates the distance to objects by their
size in images is, using equation 3.2. Furthermore, an approach that considers the distance
in the evaluation of the perception performance of automated vehicles exists [64]. However,
this approach weights the detections depending on their distance to the ego vehicle after
the association between the detections and the reference.
Many measures used for the association between detections and reference are derived from
image processing. One of the most commonly used association measures in the perception
evaluation of automated vehicles is IoU as described in section 3.1 [51, 62]. Figure 3.12
provides a one-dimensional illustration for two correct detections according to the IoU.
For the illustration assumes an IoU ≥ 0.7 [49]. Detections with an IoU greater or equal

39



(a)

(b)

Figure 3.12: One-dimensional illustration of a problem with the most common approach
for associating object detection and reference truth, which consist of the IoU as associa-
tion measure and a predefined threshold, usually 0.5 or 0.7 [15, 49–53]. The detection is
illustrated in blue while the true scene is shown in grey, on the left-hand side is the ego
vehicle and on the right-hand side is a truck which is an object for detection. A fraction
of 0.7 of the reference truck and the detected truck are in agreement. This corresponds to
an IoU value of 0.7. If the truck is at far distances, the IoU of 0.7 might be sufficient as
demonstrated in Figure (a). However, if the object is close, a detection with an IoU value
of 0.7 might not be sufficient as demonstrated in Figure (b).

0.7 with a corresponding reference object are considered as correctly detected. Figure 3.12
highlights the detections in blue while the reference truth is shown in grey. In both Figure
3.12 (a) and (b), the IoU value is equal to 0.7. For large objects, however, the deviation
in the detection of the object’s frame can be large even if the requirement for the IoU is
fulfilled. In the case of a truck of a length of 10 m, the deviation can be up to 3 m which
can lead to an accident as illustrated in Figure 3.12 (b). Thus, for the reliability analysis
of automated vehicles, the IoU might be too conservative in far distances on the one hand
but too speculative in the near field of the ego vehicle on the other hand.
For the evaluation of the object detections in automated driving one may, therefore, need
to find a set of rules that classifies the detections into correct or false in another way, e.g.,
by incorporating the distance into the measure.

3.4.1 Concept behind a distance-weighted association

As illustrated with a truck at different distances, a distance-dependent association based
on a distance-dependent acceptable tolerance can be beneficial in the evaluation of the
environment perception from an ego centric perspective. Detections that deviate more
than the acceptable distance-dependent tolerance from a reference object are classified as
false detections, objects that lie within the acceptable tolerance are classified as correct
detections. The evaluation only focuses on the edges of objects which are in sight from the
ego perspective. Therefore, only the objects that are closest to the ego vehicle in any radial
direction covered by the sensor are considered for the evaluation. We propose to scale the
allowed tolerance linearly with distance. This fulfills the requirement that the acceptable
tolerance should be close to zero for nearby objects. The acceptable tolerance ∆R for an
obstacle detection at distance r2D to be classified as a TP is then defined by the distance
r2D,ref of the corresponding reference obstacle and a defined error constant ∆R.
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Figure 3.13: One-dimensional illustration of a distance-dependent allowed deviation. Most
relevant in the detection of other objects are the object faces closest to the ego vehicle.
For the evaluation of the perception, it might be sufficient to allow large deviations for
detections at far distances. However, unlike demonstrated in Figure 3.12 nearby detections
are only allowed to have small deviations from the reference object in order to be counted
as a correct detection.

∆R = αdd · r2D,ref (3.9)

Here, αdd is a relative error constant that defines the allowed deviation between the de-
tection r2D and the reference r2D,ref . Thus, a detection of an object that is located at a
distance r2D,ref from the ego vehicle is classified as a TP detection in case it is lying at a
distance r2D ∈ [r2D,ref (1− αdd) , r2D,ref (1 + αdd)].
Figure 3.13 illustrates the approach in 1D. At small distances, the error in the distance
estimation should be close to zero as shown in Figure 3.13 (a). For larger distances, a
larger tolerance is sufficient as shown in 3.13 (b). This way we avoid adding events as
shown in Figure 3.12 (b) to the number of correct detections in the reliability evaluation.
The unit-less error constant αdd is a free parameter. Similar to the selection of threshold
values for numerous in the other association measures, a rigorous theoretical derivation for
the determination of the error constant αdd is missing here. As described above, one may
consider a tolerance of 10 m at a distance of 150 m as being sufficient to navigate a vehicle
safely. This corresponds to an error constant of αdd = 6.67× 10−2. For the illustrations
in the following, we utilize a slightly smaller error constant of αdd = 5× 10−2.
The 1D illustration of Figure 3.13 lacks the second dimension of the driving plane of the
vehicle. As most sensors are recording with a certain angular resolution, we propose to add
a constant angular error additional to the relative radial error. In the following calculations,
we allow an angular deviation of ∆ϕdev = ±1°.
Figures for the demonstration of the measure in this section are based on LiDAR scanner
data. The assumption of a certain angular resolution is satisfied by the LiDAR scanner.
The study uses a scene of the nuScenes dataset for the illustration [27]. The front and rear
camera images of the scene are shown in Figure 2.1.
We introduce two approaches that account for a distance-dependent deviation and a con-
stant angular deviation. The first approach limits the allowed deviation to the maximum
angular deviation. The second approach is less restrictive at the corners of bounding boxes
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Figure 3.14: Illustration of the determined allowed deviation frames for an individual scene
of the nuScenes dataset in polar coordinates. The scatter plot indicates the LiDAR record-
ings, indicating the height of the recordings with the colormap. The reference bounding
boxes are shown in black. The green frames indicate the allowed deviation of detections.
Detected bounding boxes that fall within the green deviation frame can be considered as
TP detections. The allowed deviation is determined under the assumption that the devia-
tion increases linearly with the distance to the detections in combination with a constant
angular deviation. The front and rear camera images of the scene are shown in Figure 2.1.

as bounding boxes are a rough approximation of objects. For many objects, the devia-
tion of bounding boxes is largest at the box corners if the objects do not entirely fill the
bounding box.

3.4.2 Threshold-based association measure in polar coordinates

This association method relies on a transformation of the bounding box into polar coor-
dinates. Both, angular and radial deviation, are added using a polar representation of the
scene.
Figure 3.14 shows one scene of the nuScenes dataset in polar coordinates. The LiDAR
data is added as a scatter plot. The height of the LiDAR recordings are indicated by the
colormap. The reference bounding boxes are shown in black. Due to the transformation
into polar coordinates, the bounding boxes are distorted. The allowed deviation of the
bounding boxes is illustrated by the green frames. The detection bounding boxes are
supposed to lie within the green areas in order to be accounted as TP detection.
The method first uses image processing for the transformation into polar coordinates and
the consideration of the angular deviation. One starts by transforming the bounding boxes
into binary images. The binary images are obtained by limiting the considered region
around the car and discretizing it. Here, the region along the x and the y axis was limited
to the interval [−90 m, 90 m] with a discretization of ∆x = ∆y = 20 cm. One can then
transfer the image from the Cartesian coordinate system to polar coordinates. One can
add/subtract the angular deviation by applying a dilation/erosion with a kernel that is
only one pixel in width along the radial dimension and N pixel in width along the angular
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Figure 3.15: Illustration of the approach for determining the allowed deviation. The al-
lowed deviation is indicated by the green frames around the reference bounding boxes
which are shown in black. The scatter plot shows the LiDAR data while the height of the
LiDAR recordings are visualized by the colormap.

dimension while, here, N is defined by the resolution of the angular axis and the allow
deviation for the specific sensor. For this analysis, the resolution of the angular axis was
set to ∆ϕimg = 0.01° and the deviation of the LiDAR sensor was set to 1°. This resulted
in a width of the dilation/erosion kernel of N = 201.
In a second step, the method derives the lines of the bounding boxes in polar coordinates
from the polar images and adds the radial deviation. When determining the lines of the
bounding box, one can separate between the lines outside and inside the FOV of the
sensor. For the bounding boxes obtained from dilation of the initial bounding boxes,
the lines inside the FOV are multiplied by (1− αdd) and the lines outside the FOV are
multiplied by (1 + αdd). This results in the maximum outline within which the approach
requires a TP bounding box to be. For the bounding boxes obtained from dilation of the
initial bounding boxes, the opposite is applied: the lines inside the FOV are multiplied
by (1 + αdd) and the lines outside the FOV are multiplied by (1− αdd). This provides a
minimum outline. A TP detection bounding box is required to be larger than the minimum
outline.

Results

Figure 3.15 illustrates the allowed deviation from Figure 3.14 in Cartesian coordinates.
The position of the sensor is indicated by the red cross. In Figure 3.15 one sees that the
corners of the green deviation frame appear to be cut off. This is because we assume a
constant deviation in the angle. Thus, the corner of a bounding box can at most deviate
by the maximum angular deviation of ∆ϕdev = 1°. The allowed deviation in the distance
to the other objects, however, can be larger which can be seen be the increasing frame
width for objects further away.
Cutting off the edges of the deviation frames is caused by the rigid definition of the angular
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deviation and is, thus, one feature of this definition. This is a legitimate approximation
if the object corners would be in perfect agreement with the corner of the bounding box.
As an example, consider a camera image with a pedestrian in the image. A human would
be able to draw the edges of the visible part of the pedestrian within plus or minus one
pixel. However, when drawing a bounding box around the pedestrian the task requires
more assumptions: For example, if the pedestrian stretches out his arms, do the entire
arms have to be within the bounding box? In this case, the entire bounding box might be
larger than twice the size of the pedestrian herself. In case the pedestrian is partly occluded
the definition of the bounding box becomes even less intuitive. Some studies restrict the
bounding box on the visual parts of the object only [14]. This argumentation demonstrates
that the definition of bounding boxes itself is not trivial. Also, more rigid bodies like cars
and trucks are not rectangular. Thus, bounding boxes are just a rough approximation also
for these objects. As a result, one might want to allow a larger deviation at the corners
of bounding boxes instead of the cut off frames due to the small angular deviation. The
small deviation might still be valid for the type of sensor, however, not for the bounding
box approximation.
The following section presents an association measure that is based on a deviation frame
that is not as restrictive at the bounding box corners.

3.4.3 Threshold-based association measure with interpolation at bound-
ing box corners

Likewise, to the previous association measure, this association measure is based on distance-
dependent deviation within which the detected bounding boxes need to be. The figures
illustrate the allowed deviations by green frames around the reference bounding boxes. The
implementation of the association starts with extending the lines of the bounding boxes
to infinity as illustrated in Figure 3.16. Likewise, to the previous association measure, the
calculations are performed in polar coordinates.
Figure 3.17 shows the extended lines of the bounding box in polar coordinates for the
truck in the scene. One can evaluate the radial distance r in dependence of the angle
ϕ. The function incorporates the tangent of the angle ϕ, which is periodic every 180°.
The periodicity of the tangent leads to additional lines that are mirrored around the ego
position. Excluding these lines has to be accounted for in the evaluation which can be
obtained by checking the y-intercept and the slope of every line. For lines where the y-
intercept and slope are both positive or both negative, one needs to consider a different
interval in ϕ in comparison to lines where either the y-intercept or slope are negative. In
Figure 3.17 this is already considered.
In polar coordinates, one can add the allowed deviation to the lines. The constant angular
deviation is obtained by shifting the lines along the angular dimension by the constant
deviation of ±1°. The radial deviation is added by multiplying the lines with (1± αdd)
while αdd represents the error constant.
Figure 3.17 illustrates the minimum and maximum deviation for each of the lines which
define the bounding box. From Figure 3.17 one can derive the different widths of the
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Figure 3.16: First step of the implementation for the distance-dependent association mea-
sure that interpolates at bounding boxes corners. In the first step, the lines of the bounding
box are extended to infinity. Here, this is exemplarily shown for the truck in the scene
that is in front of the ego vehicle.

Figure 3.17: The lines of the bounding box as shown in Figure 3.16 transferred to polar
coordinates. Additionally, for visualization the LiDAR data is added to the figure.
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Figure 3.18: If only one side of a bounding box faces the ego vehicle, the lines obtained by
adding/subtracting the angular deviation intersect. This Figure shows an example within
the considered nuScenes scene. (a) shows the bounding box within the LiDAR point cloud.
(b) shows a zoomed-in extract of the bounding box side that faces that ego vehicle. The
green lines correspond to the bounding box side that faces the ego vehicle and the two
lines that are achieved by shifting the line by the angular deviation in either direction.
The extract shown in Figure (b) is highlighted in Figure (a) by the red dashed rectangle.

deviation corridors for lines of the object that are further away from the ego vehicle.
In case only a single side of the bounding box is observed from the ego centric perspective,
one cannot define the minimum and the maximum deviation by a single line that has been
shifted by ∆ϕdev or −∆ϕdev as the shifted lines intersect as shown in Figure 3.18. In order
to overcome this effect, nine lines are evaluated out of every line. Three lines are obtained
by adding the angular deviation ±∆ϕdev and keeping the initial line itself as shown for
the relevant bounding box side for the object in Figure 3.18. For all of these three lines,
the procedure is repeated with adding and subtracting the radial deviation. In the end,
the maximum and the minimum of the nine lines define the outer bound of the allowed
deviation. Figure 3.19 shows the resulting outbounds for the nearby truck in the scene as
shown in Figure 3.16.
Figure 3.20 illustrates the lines defining the minimum and maximum deviation in Cartesian
coordinates. One obtains a minimum bounding box and a maximum bounding box by
truncating the lines at their intersections.

Results

Figure 3.21 shows the resulting deviation frames that are extended at the corners of the
bounding boxes. In comparison to the deviation frames from the association measure that
is solely based on polar coordinates, the extended frames are less strict at the corners of the
bounding boxes. As discussed for the solely polar-coordinate-based association measure,
bounding boxes are just a rough approximation of the objects and the interpretation of
a perfect bounding box can vary. The deviation at the corners of bounding boxes can,
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Figure 3.19: The lines of the bounding box after adding the allowed radial and angular
deviation. The angular deviation is added by shifting the graph to the left and to the right
by the angular deviation of ∆ϕdev = 1°. The radial deviation is added by multiplying the
radial distance from the ego vehicle with (1± αdd). The points refer to the measurements
by the LiDAR scanner. The height of the measurements is indicated by the color map.

Figure 3.20: The lines of the bounding boxes after adding the allowed radial and angular
deviation and the back transformation to polar coordinates. The LiDAR point cloud is
added to the figure while the color map indicates the height of the LiDAR measurements.
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Figure 3.21: The figure shows the resulting frames for the allowed deviation in green
around the reference truth bounding boxes which are shown in black. In addition, the
LiDAR point cloud is added to the figure while the color coding indicates the height of the
LiDAR measurements.

therefore, be indeed larger than the angular deviation of the sensor which is defined by
the maximum angular resolution of the sensor. One can account for this larger deviation
using interpolation at the corners of the deviation frames. Like the solely polar-coordinate-
based association measure, the allowed deviation still varies in distance and the accepted
detection deviation of nearby objects reduces to zero the closer surrounding objects get to
the ego vehicle.

3.4.4 Results and discussion

Figure 3.15 and Figure 3.21 illustrate the results of the two different threshold-based asso-
ciation measures. Both association measures rely on the assumption of a radial recording
pattern of the data. Radial recording is the default case for most ego centric sensors like
camera and LiDAR scanner. Most of the calculations are, therefore, performed in polar
coordinates.
The two introduced association measures demonstrate a way to classify bounding box
detections in TPs or FPs based on the allowed deviation around the reference bounding
box. However, there is no clear and unique interpretation of bounding boxes, which are
just a rough approximation of real-world objects. One difficulty for a clear definition of
bounding boxes is that from the ego centric perspective at most two faces of an object
are observable. In some cases, only one face of surrounding objects may be observed, e.g.,
of the car or a truck in front of the ego vehicle in a traffic jam. Thus, object detection
algorithms extrapolate the bounding boxes in regions that are not observable by the sensor.
However, the extrapolation is ill-defined as one does not know what an object looks like
when not seeing it from the other side. As an example, one cannot see if the co-driver door
of the truck in Figure 2.1 is open. A bounding box that includes an opened co-driver door
of the truck would be wider than a bounding box that does not include an opened co-driver
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door. Bounding boxes that do not include this case assume that the door is always closed
as neither a human nor a sensor is capable of detecting the co-driver door of the truck from
the perspective in Figure 2.1. However, both approaches correctly describe the object with
a bounding box.
To summarize, one has to be aware that corners of surrounding objects which are not
within the FOV of the sensor due to occlusion may not be relevant in the evaluation of
the sensor performance. At worst including occluded regions in the evaluation may lead to
an underestimation of the environment perception reliability of the sensors and the sensor
system. An underestimation of the perception reliability can have a crucial influence on the
validation of the environment perception and, thus, on the release of automated vehicles.
This, however, is an effect of bounding boxes. The occluded object faces are defined by
the faces that are not occluded.
In order to circumvent the evaluation of the occluded faces of the object, one could only
investigate the sides that can be observed by the sensor. The first approach differentiates
between the object sides that are inside and outside the FOV. The second approach
determines the allowed deviations of all object sides individually, which also allows to
extract only the object sides inside the FOV. Thus, it would be possible to only investigate
the detected lengths and positions of the object faces inside the FOV. This does make a
difference in case only a single object face is detected. In this case, only one side of the
rectangle would have to match the detection. However, it does not change the evaluation
for the cases where two object faces are detected as two sides of the bounding box rectangle
already define the entire rectangle/box.
Another difficulty of bounding boxes, besides the fact that bounding boxes do not represent
the objects properly and that occluded object faces underlie the discussed assumption, is
that bounding boxes are associated with a classification of the object. However, there might
be objects that cannot be classified in any of the finite set of classes, e.g., a combination of
objects like a bicycle on the back of a car or objects that are rare on the street like tractors
or harvesters. Such objects might not be included in the evaluation of the environment
perception. In most studies, we only focus on cars and avoid the discussion about what
objects to include in the evaluation. Bounding box detections of objects are not able to
cover the infinite number of different objects that are possible on public roads. In addition,
bounding box detections do not account for the detection of the driving lane on the street.
Street and lane detection, however, is also an important part of the environment perception.
Instead of focusing on object detection for the evaluation of the environment perception,
one may require a more general approach that can account for all different types of objects
and that also takes the detection of the street into the evaluation.
Instead of an allowed deviation that increases linearly with the distance, one can also use
other functions to account for deviations. First, some sensors may perform differently in
different directions due to the limited FOV. Therefore, one may want to account for the
difference in the directions in the evaluation of the sensors. Second, in some directions, a
precise detection might not be that relevant compared to other directions. For example, it
may be more relevant to detect the car in front of the ego vehicle precisely than the car to
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either side of the ego vehicle. Third, the FOV of the sensor is also limited in the distance
from the sensor. Therefore, one might want to perform the evaluation only for limited
distances. Besides a clear threshold, one could also use a function where the increase in
the deviation has a singularity at a certain distance indicating the maximum range of the
sensor. One such approach is introduced in section 3.6.
[77] argues that the misdetections by the perception are velocity dependent due to the fact
that misdetections in far distances can become relevant at high speed. This is a function-
specific approach, e.g., for the adaptive cruise control on the motorway. However, as car
manufacturers do not know whether their customers will drive on motorways or in cities
with their automated cars, these cars and, thus, their environment perception, need to
perform reliably on motorways as well as in cities. Therefore, we suggest not making the
analysis dependent on the mission profile for highly automated vehicles. Thus, we would
also not incorporate the ego velocity in the evaluation of the environment perception. If a
sensor has a maximum range of 100 m one should not expect the sensor to detect objects
at distances greater than 100 m. As described in the previous paragraph the introduced
approach could also account for this effect by choosing a function where the acceptable
tolerance goes to infinity for distances greater than the maximum sensor range.

3.5 Drivable area-based error definition

The previous sections focus on defining the error on the object data level. Research in the
field of the perception for automated vehicles often focuses on object detection [18, 27, 49].
Therefore, validation of object detection is currently the most intuitive approach. It also
allows comparing different sensors with each other as the sensor’s raw data is transformed
into the same data format. A comparable data format is required for some validation
techniques [16].
This section introduces an error definition based on the drivable area rather than on object
detection and association. The drivable area is the frame-wise area that can be accessed
by the vehicle using a translation in any radial direction. This includes the first order
approximation of the vehicle’s driving trajectory. In case the drivable area is utilized to
determine the reliability of perception sensors, the drivable area has to be derived from
sensor raw data instead of object bounding boxes. As with object detection algorithms, a
good approximation of the drivable area might be derived using neural networks. While
the drivable area focuses on the closest obstacles only, trajectories of other objects might
be implicitly included in future predictions of the drivable area.
This section is structured as follows: Section 3.5.1 performs a comparison of the drivable
area with free space and occupancy grid calculations. Section 3.5.2 provides one method
for determining the drivable area-based on a radial investigation of LiDAR data. Section
3.5.4 introduces the error definition based on the drivable area, followed by the result and
discussion in section 3.5.5.
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Figure 3.22: A car can only surpass a certain slope without touching the ground. Actually,
the change in the slope is relevant. However, from the ego perspective, we consider that the
closest distance at which the maximum slope is exceeded does not belong to the drivable
area anymore. In our analysis, we take a conservative measure of 12.5 cm m−1. This is
lower than the value accessible by a Porsche 911, which is car with a relatively small height
of the auto body above the ground [79].

3.5.1 Drivable area, free space and occupancy grid

Occupancy grid and free space approaches often incorporate the sensor information avail-
able from one or multiple frames in a single map [26, 42, 78]. The definition of the drivable
area is similar to the definition from [44]. The drivable area does not provide an ever-
increasing map but a frame-based linear approximation in every radial direction of the
current situation which does not exceed any object that cannot be passed in the radial
direction from the current ego position.
The following section is introducing an approach to get a rough approximation of the
drivable area. Analogue to [44], the introduced approach is only based on LiDAR data. It
does not utilize neural networks and is based on the gradient and height difference in any
radial direction.

3.5.2 Deriving the drivable area from LiDAR data

This section introduces a procedure to obtain the drivable area in all radial directions from
the ego position of the vehicle based on LiDAR data. For the determination of the drivable
area, one may assume that the vehicle can exceed a threshold of ∆ht and a maximum slope
∆hs/∆rs. The maximum accessible threshold and the maximum slope that is accessible
are defined by the vehicle parameters of each vehicle as shown in Figure 3.22 and 3.23.
The approach excludes all LiDAR points that are more than 5 cm above the ego vehicle.
The evaluation uses the height difference and the slope between subsequent LiDAR mea-
surements along the radial direction. Neighboring radial lines are separated by an angular
deviation of ∆ϕdev. The angular deviation is defined by the angular resolution of the
LiDAR sensor of the azimuth angle. The azimuth angle is the angle between the x and
the y coordinates while the x, y-plane corresponds to the driving plane of the vehicle. In
the case of the nuScenes dataset, the LiDAR sensor was calibrated and was not aligned
parallel to the driving plane. Therefore, instead of choosing the LiDAR resolution, one
may choose a predefined value for ∆ϕdev.
All points of the LiDAR point cloud that are recorded in the same interval ∆ϕ are then
used to generate the radial height profile. The LiDAR points within the same interval are
ordered according to their radial distance from the ego position. Plotting the height versus

51



Figure 3.23: Maximum height that is surpassable by the vehicle without major damage to
the car. This is just a rough approximation as, depending on the speed, such a threshold
in the height might be devastating. However, at faraway distances, this height might
provide a good approximation of heights that do not need major attention. In this study,
we use a height threshold of 20 cm for subsequent measurements to be not considered as
drivable area. 20 cm is larger than the indicated height for most cars. However, at faraway
distances, for which we consider the approach more suitable, height differences smaller than
20 cm between subsequent measurements are not expected to be of major safety concern.

the sorted radial distances of all LiDAR recordings within the interval ∆ϕ provides the
distance-dependent height profile along a radial line.
The height difference and the slope between radially subsequent LiDAR points are derived
from the height profile. The height difference is obtained by subtracting the height of
subsequent LiDAR points in a radial direction. The slope between subsequent LiDAR
points is then obtained by dividing the obtained height differences by the difference of the
radial distance of the same two subsequent points.
The distance r at which both, the height difference and the slope, exceed the threshold
defines the border of the drivable area. The determination of the border of the drivable
area is repeated for all azimuth angles ϕ with a discretization of ∆ϕ in order to determine
the drivable area along all directions.
This analysis utilizes a height threshold of ∆ht = 5 cm and a maximum slope of ∆hs/∆rs =

5 cm m−1. The discrete step in the azimuth angle is set to ∆ϕ = 1°.

Results and Discussion:

Figure 3.24 demonstrates the drivable area for a single frame of the nuScenes dataset [27]
shown by the grey area. The LiDAR point cloud is shown on top of the drivable area,
with a color scheme that indicates the height of the recorded LiDAR points. The red line
highlights all points along the radial line at an azimuth angle of 31°.
Figure 3.25 (a) demonstrates the height profile along the radial line at azimuth angle
ϕ = 31°. The points indicate the recordings. The point at which the threshold exceeds
5 cm and where the slope exceeds 5 cm m−1 is indicated by the dashed line. It is observed
at 12.07 m. The drivable area in Figure 3.24 roughly indicates the street. However, the
drivable area exceeds the street at some angles, indicated by the spikes mainly in the lower
part of the Figure.
The difference in the height of subsequent LiDAR points and the derivative of the height
profile along a radial direction at an azimuth angle of 31° are shown in Figure 3.25 (b).
Both curves are normalized by the maximum acceptable values of 5 cm and 5 cm m−1,
respectively. Therefore, the border of the drivable area along this radial line is defined
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Figure 3.24: The Figure is showing the drivable area by the grey region together with the
LiDAR point cloud. The corresponding camera images of the frame are shown in Figure
2.1. The drivable area is determined by the distance at which the height profile has a
threshold greater than 5 cm and a slope greater than 5 cm m−1 in any radial direction.
The red line highlights the LiDAR points at an azimuth angle of 31°. The height profile
along this radial line is shown in Figure 3.25 (a).

by the smallest distance where both curves exceed the value of 1. The point where both
profiles exceed the threshold is additionally shown by the arrow with the label f (r) > 1.
The presented approach to determine the drivable area performs reasonably well in finding
the surrounding street in this particular frame. Except in some locations at individual az-
imuth angles the border of the drivable area is set to the border of the street or surrounding
objects. However, the approach has two drawbacks:
First, the defined height threshold of 5 cm is restrictive enough in far distances. At far
distances, subsequent LiDAR points in radial direction can be a few meters apart. In case
of an incline or decline of the street, subsequent LiDAR points can differ more in height.
However, for the near field, where many measurements are taken nearby, a threshold of
5 cm might be too loose. Imagine three subsequent LiDAR measurements that have a
height difference of 5 cm between each other. As the approach accounts for the radial
distance for the height threshold, these three measurements might be very close to each
other. Thus, the effective height difference might be around 10 cm of the nearby LiDAR
measurements. More LiDAR measurements could also occur at the same distance, leading
to an even higher height difference for nearby measurements.
Second, the slope might be quite small at far distances even for objects that have a height
in the order of 1 m. As in large distance subsequent LiDAR measurement can be quite
far apart, the measurement of a surrounding object might be at a height of 0.5 m. Now
consider that subsequent LiDAR measurements in the radial direction are 10 m apart from
each other as measurements in the far distance get sparse as seen in Figure 3.24. In this
case, the slope is 5 cm m−1 even though the object is at least 0.5 m high.
This section investigates the two limitations of the approach individually and provides
another approach that combines the threshold and slope-based methods in a different way.
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(a) (b)

Figure 3.25: (a) Height profile for the frame from Figure 3.24 along the radial line at an
azimuth angle of 31° as indicted in Figure 3.24 by the red line. (b) Differences in the height
profile and slope between subsequent LiDAR recordings. The height differences and the
slope are normalized by the threshold which the car is expected not to exceed. The border
of the drivable area is, therefore, defined by the closest distance at which both functions
exceed 1.

The following section use image processing tools to exclude the spikes from the drivable
area in Figure 3.24.

3.5.3 Adjustments of LiDAR-based drivable area using morphological
operations

Figure 3.24 gives an approximation of the drivable area of a single frame of the NuScenes
dataset. The drivable area demonstrates spikes that are not intended for driving and are
an effect due to low height differences and slopes between subsequent LiDAR points along
these radial directions. However, these regions might not be accessible by the car due
to minor thresholds that are not detected by the used approach. Even if no threshold is
observed in these directions, the regions are too narrow for the ego vehicle to pass.
Morphological operations, specifically the morphological opening, allow the reduction of
the occurrence of such protuberances within the LiDAR-based drivable area.

Background on morphological operations

Morphological operations are performed on binary images. A morphological opening con-
sists, first, of a morphological erosion and, second, of a morphological dilation [80, 81].
Binary images can be described as a set of 2D-integer values in the Z2 space. The morpho-
logical erosion of binary image set A and structuring element B, denoted A	B, is defined
as the set of points z ∈ Z2 such that the set B translated by z is a subset of A [81]:

A	B = {z | (B)z ⊆ A} (3.10)

In the following, this work adapts the terminology of the OpenCV package and refers to
the structuring element as kernel [82]. The morphological dilation of a binary image set A
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and a kernel B, denoted as A⊕B, is defined as the points z ∈ Z2 for which the cardinality
of the intersection of the set A with the set B translated by z is larger than zero. In other
words, where the intersection is not equal the empty set [81].

A⊕B = {z | (B)z ∩A 6= ∅} (3.11)

Morphological opening corresponds to the subsequent application of erosion and dilation.
The morphological opening erases contours that are smaller than the set defined by the
kernel. Therefore, morphological opening provides a method to erase the thin spikes from
the drivable area from Figure 3.24.

Adjusting the LiDAR-based drivable area using a morphological opening

To mitigate the presence of the spikes in the drivable area one can apply a morphological
opening on the LiDAR-based drivable area from section 3.5.2 which is characterized by a
set of angular and radial distances. In order to apply a morphological opening, the process
starts with converting the polar coordinates of the polygon into an image representing the
drivable area. For image processing, we utilize the implementations of the OpenCV python
package [82]. The size of the image is defined by a maximum and a minimum value in x-
and y-direction, parallel and orthogonal to the driving direction. The evaluations in this
section use an interval of [−90 m, 90 m] in x- and y-direction for our calculations. A spatial
resolution of 20 cm × 20 cm is used. In order to apply the morphological operations, one
has to transfer the polygon to a binary mask by filling the polygon in image coordinates.
The subsequent step involves performing a morphological opening on the binary mask. A
kernel with a length of 4.6 m and a width of 1.8 m approximately represents the size of the
ego vehicle. The length and width of the kernel have to be adapted to the utilized image
resolution.
Figure 3.26 demonstrates the drivable area after the morphological opening is performed
on the drivable area from section 3.5.2 in Figure 3.24. The initial protuberances in the
LiDAR-based drivable area, which the ego vehicle cannot pass as they are too narrow, are
removed in Figure 3.26. The drivable area from Figure 3.26 provides, therefore, a more
realistic approximation of the area where the ego vehicle can indeed go. However, it is
noteworthy that a morphological opening can only provide a rough approximation of the
vehicle movement in the 2D plane. It represents a translation of the rectangle while a
rotation of the vehicle around its z-axis, the axis orthogonal to the driving plane, is not
considered.

3.5.4 Error definition

The detection of the drivable area comes with the advantage that it incorporates all sur-
rounding objects and obstacles. Object detection algorithms in comparison can only deal
with predefined objects and neglect all objects of any other classes. In automated driv-
ing, usual object detection algorithms focus on non-stationary objects like other cars,
trucks, buses, pedestrians, cyclists, etc. However, many stationary objects like for example
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Figure 3.26: The drivable area obtained after applying a morphological opening on the
drivable area of Figure 3.24. The kernel used for the morphological opening is a rectangle
of the size of the ego-vehicle. The opening operation gives an approximation of where the
ego vehicle can drive. It is just a rough approximation as it only considers a translation of
the vehicle in any direction, but no rotation. However, it reduces the spikes of the drivable
area from Figure 3.24 which are too narrow for the ego vehicle to pass.

trees are often not considered in datasets meant for automated driving. For instance the
Waymo open dataset contains labels for vehicles, pedestrians, cyclists and traffic signs [1].
The KITTI dataset contains labels for 8 object classes and the nuScenes dataset contains
labels for 23 object classes [27, 40]. The problem remains that a finite number of object
classes cannot represent all possible objects on the street. Investigating the detection of
the drivable area instead of the detected objects may, therefore, allow a better estimation
of the sensor reliabilities and the underlying algorithms.
In addition, one should intend to define an error that accounts for the physical properties
and limitations of the sensors. The sensors record the surroundings from the ego perspec-
tive in radial direction with a sensor-specific angular resolution. This accounts for all major
types of sensors utilized in automated driving namely LiDAR, camera and RADAR. Ob-
stacles at distances further away occupy a smaller solid angle in the FOV of these sensors.
Thus, the number of detections of an object of the same size decreases with the distance,
resulting in a less accurate detection of objects at locations further away from the ego
vehicle. Figure 3.27 illustrates the number of detections for a car of the same size at dis-
tance r2D,ref and distance 2 · r2D,ref . The beams in Figure 3.27 illustrate for example the
angular resolution of a camera or a LiDAR sensor. The object that is located at a distance
of 2 · r2D,ref is only detected at a solid angle that is half the size of the solid angle of the
detection of the object at distance r2D,ref . Subsequently, the object is only detected by
half the number of pixels in an image or by half the number of LiDAR points in the point
cloud. Figure 3.27 illustrates the example in the 2D plane. Here, the number of detections
of an object scale with the inverse of the distance. In 3D the number of detections scales
with the inverse of the distance squared. Thus, if an object is twice as far away, it only
occupies one fourth of the image from a camera.
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Figure 3.27: The Figure illustrates the number of recordings of an object at different
distances. The red beams illustrate the discrete angles at which the sensor records the
surrounding. For a LiDAR the discrete angles are determined by the angular resolution
and for a camera, the angles are determined by the number of pixels and the objective lens.
Only half the number of detections is observed for an object that is twice as far away from
the ego vehicle in this 2D illustration (4 beams instead of 8 beams). For 3D the number
of detections of an object decreases with the inverse of the distance squared.

Figure 3.27 also illustrates that the sensor recordings occur for discrete angles. The maxi-
mum resolution is defined by the angular difference ∆ϕ between two subsequent measure-
ments. The deviation in the azimuth angle can be up to ±∆ϕ. The translational deviation
should, therefore, be dependent on the distance to the ego vehicle.
Moreover, the accuracy in the detection of the distance estimation can be worse for objects
that are further away from the ego vehicle. This might be caused for example by a system-
atic, distance-dependent error in the LiDAR calibration or due to the worse performance
of a stereo system for objects that are far away [30, 83]. Actually, an automated vehicle
may not rely on perfectly accurate distance estimation of faraway objects. Therefore, this
measure scales the allowable tolerance with the distance like in section 3.4 in addition to
the angular deviation.
Starting with the mask of the drivable area in polar coordinates one can derive a lower
limit of the drivable area and an upper limit for the drivable area based on the acceptable
angular deviation. The lower limit is obtained by performing a morphological erosion on
the binary mask of the drivable area in polar coordinates. The kernel for the erosion
is chosen such that it only allows a deviation in the angular dimension with a width of
2∆ϕdev/∆ϕimg+1 while ∆ϕdev is the accepted angular deviation and ∆ϕimg is the angular
resolution of the image. ∆ϕdev should be a multiple of ∆ϕimg. In case the resolution is
in agreement with the deviation as illustrated in Figure 3.27, the ∆ϕdev and ∆ϕimg are
in agreement. The upper limit is obtained by performing a morphological dilation on the
polar representation of the drivable area. The kernel used for the morphological dilation is
the same as the kernel that is used for the erosion according to the deviation of ±∆ϕdev.
The binary mask in polar coordinates reaches from 0° to 360°. For the morphological
operations, one is required to extend the boundaries of the binary mask on every side
beyond the image boundaries at 0° to 360° to avoid artifacts. This is due to the fact that
the polar coordinate frame is periodic. The extension has to be half the width of the
kernel. After the erosion and the dilation, respectively, the mask of the drivable area in
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polar coordinates should be reduced to the initial range from 0° to 360°.
The next step incorporates the acceptable deviation based on the distance from the ego
vehicle. The measure accounts for the fact that the accuracy of the drivable area should
be higher around nearby objects than it is required around objects that are far away.
Thus, the proposed measure scales the acceptable deviation linearly with the distance
from the ego vehicle. The linearly distance-dependent deviation around the boundaries of
the drivable area is achieved by transforming the binary mask of the drivable area in polar
coordinates into a polygon in polar coordinates. This is repeated for both, the upper and
the lower limit that is obtained from applying the angular deviation. The radial distance
of the polygons can then be multiplied with (1± αdd) while αdd determines the distance-
dependent acceptable deviation. The radial distances of the polygon obtained from erosion
of the drivable area mask are multiplied with (1− αdd) to provide the lower limit. The
radial distances of the polygon obtained from dilation are multiplied with (1 + αdd) to
provide the upper limit, respectively.
A detection of the drivable area has to be within the lower and the upper limits of the
reference area in order to be detected correctly. Deviations larger than acceptable can be
interpreted as an incorrectly identified frame and the errors can be counted framewise. An
alternative is to count the percentage of the azimuth angle for which the detection deviates
larger than acceptable.
For illustration, the acceptable deviation for the drivable area is evaluated for one frame.
The constant αdd is set to 10 %, ∆ϕdev is 1° and ∆ϕimg is 0.01°. The small value for ∆ϕimg

guarantees a high resolution for the resulting Figure. Thus, we differentiate here between
∆ϕdev and ∆ϕimg. The drivable area from Figure 3.26 is utilized for the evaluations as a
reference area.

3.5.5 Results and discussion

Figure 3.28 shows in green the allowed deviation from the reference area. The reference for
the drivable area is illustrated in grey. In addition, Figure 3.28 shows the LiDAR points
of the recorded scene. The color bar indicates the height at which the LiDAR points were
measured.
One can see that the allowed deviation increases at distances further away from the ego
vehicle. The angular deviation is constant which can be observed at 1° and at 178°. These
two angles mark the border of two detected objects. There is a detection of a close obstacle
at angle ϕ and a detection of a far obstacle at angle ϕ+ ∆ϕ.
Figure 3.29 shows the drivable area together with the defined acceptable tolerance in
Cartesian coordinates. The position of the ego vehicle is indicated by a red cross. Analog
to Figure 3.28, Figure 3.29 shows the LiDAR point cloud with a color map that shows the
height of the LiDAR measurements. At small distances, the deviation corridor is narrow
while it is larger at distances further away from the ego vehicle.
The approach demonstrates an alternative to the validation of perception sensors based on
object data from object detection algorithms. So far, the proposed approach comes with
the difficulty that nearly no datasets with reference data of the drivable area exist. The
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Figure 3.28: Drivable area (grey) and acceptable deviation (shaded green) polar coordi-
nates. The angular deviation is set to ∆ϕdev = 1° and the acceptable deviation for the
distance estimation is set to αdd = 10 %. The LiDAR point cloud is shown in order to
obtain a height estimation of the surrounding.

Figure 3.29: Drivable area (grey) and acceptable deviation (shaded green) in Cartesian
coordinates. The angular deviation is set to ∆ϕdev = 1° and the acceptable deviation for
the distance estimation is set to αdd = 10 %. The ego position is indicated by the red cross.
The LiDAR point cloud is shown in order to obtain a height estimation of the surrounding.
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nuScenes dataset is one of the only datasets that also contains information about the shape
of the street [27]. This additional information is also used in the planner-centric measure
for the validation of the perception of automated vehicles [22]. In contrast, [22] validates
the perception based on predicted trajectories of the surrounding objects.
In this section we introduced two ways of determining the drivable area from highly resolute
LiDAR data. However, most probably this can be further improved using neural networks.
Neural networks could also be used for a method that derives the drivable area from camera
data. Yet, the focus of this study is to provide a method for determining the reliability of
perception sensors and not on determining the drivable area. Thus, only four approaches
based on algebra and image processing are introduced here.
In comparison to commonly used association measures, this measure accounts for the
distance dependence of the translational error. As all perception sensors in automated
driving record the surrounding in radial lines for equally spaced azimuth angles, a detection
that is far away cannot be as accurate as a nearby detection. Actually, detections at far
distances may not even have to be as accurate as nearby detections. Therefore, this measure
might provide a useful tool in the evaluation of perception sensors.
Instead of using a deviation interval that depends linearly on the distance, the measure
can be extended by incorporating other dependences of the accuracy in the detection of
the surrounding. For example, at the borders of the FOV of sensors the performance of
the sensors may be less. So, one could also incorporate an angular dependence. One can
also incorporate the fact that at some distance the sensor is not capable of any distance
estimation. Section 3.6, which focuses on systems that come closest to the perception of
humans, derives a function based on the equations of a stereo camera for the accuracy in
the distance estimation. Thus, instead of using a linear scaling of the acceptable deviation,
one could use the function derived in section 3.6 for the scaling of the acceptable deviation.
One could also evaluate future predictions of the drivable area using this approach. [44]
introduces a method to extrapolate the free space into the future. The definition of the
free space by [44] is similar to the definition of the drivable area except that they limit the
definition of the free space to LiDAR data.
The recorded deviations provide a distribution for the difference between the reference area
and the detected area. The distribution can also be generated for a specific distance and/or
a specific interval of the azimuth angle. One could conclude from the distributions the
performance of individual sensors depends on the direction and the distance to surrounding
obstacles instead of obtaining a specific error rate.

3.6 Parallels and comparison with the human perception

As discussed in the introduction, human driving is often used as a benchmark for automated
driving in terms of safety by utilizing the rate of fatal accidents [4, 77].
A perception error may not directly lead to a fatality. Thus, for the validation of the
environment perception of automated vehicles, one has to base the error definition on
other parameters. In order to obtain a benchmark for a sufficient environment perception,
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Figure 3.30: Visualization to evaluate the maximum distance zmax at which an object of
width w2D can still be observed given a minimum resolution of ∆α.

one can quantify the performance of human depth perception. Even though the human
depth estimation is far from precise, especially at far distances, it is sufficient for driving.
As a result, this section investigates the human depth perception. This work intends to
find fuzzy rules that can be used to roughly estimate the performance of the human depth
perception that could be used as a benchmark for a comparison with the environment
perception of automated vehicles. The human perception is based on multiple principles
that provide depth information [84]. This section focuses in particular on stereopsis and
depth perception based on familiar object sizes.

3.6.1 Human resolution

The resolution of a sensor and of the human eye is one parameter that limits the distance for
how far one can detect or see objects of a certain size. A human can approximately resolve
one arcminute [85] which corresponds to ∆α = 0.0167°. For a primitive approximation
for how far a car can be seen by a human, we made the assumption that a car is still
observable if the car occupies at least a solid angle of two times the minimum resolution.
Figure 3.30 provides a demonstration of the calculation. From the minimum resolution
∆α and the width of the object, one can derive a maximum distance at which the object
can still be observed. Here, due to the focus of object detection in traffic situations which
include cars an object width of 2 m is assumed here which is approximately the width of
a car. The resulting distance at which the object of 2 m in width can still be observed is
zmax = 1 m

arctan(0.0167°) ≈ 3500 m.
For comparison, one can repeat the calculations for example for the Puck LITE LiDAR from
Velodyne. The Puck LITE has an angular resolution of 0.1° - 0.4° [31]. For simplification
one may assume that the minimum number of two LiDAR point detections of an object
in order to detect the object analog to the previous assumption. For a LiDAR with an
angular resolution of 0.4° the maximum distance at which an object can be detected is
140 m.
The assumption that two LiDAR point detections might be an optimistic assumption to
detect an object. It might be unlikely that an object detection algorithm can estimate
an object from two single LiDAR points. Moreover, the LiDAR range is restricted by the
Laser intensity. The maximum range of 100 m is neglected in the calculation [31]. However,
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the assumption allows a rough but first quantitative comparison of human detection

3.6.2 Human depth perception

Human depth perception is based on many different principles [84]. For the evaluation of
possible deviations in human perception, we focus on two principles: the stereopsis and the
depth perception due to familiar sizes of objects. We utilize these two principles to quantify
the possible deviation in the depth perception of humans. We focus on these two principles
as they allow basic assumptions that are necessary for the estimation of the deviation in
the depth perception. However, these two principles are only partially representative for
the human depth perception and were used here to obtain a rough estimation which is a
start for the comparison with the performance of depth perception of sensors.

The stereo system

Figure 3.31 demonstrates the principle for a stereo system which is a perception system
which could be compared with the perception of a human. For the further estimations of
the depth estimation of humans we start from the equation for a stereo system which can
be derived using Figure 3.31 [30].

z =
fb

xl − xr
(3.12)

Here, we are not interested in estimating the depth from an image where one has to
estimate xl and xr from the image which is achieved by the correlation of small image
segments along the epipolar line as described in [30]. Instead, we are interested in finding
an estimate of the possible deviation of z based on the resolution of the recorded images.
The resolution is provided by the difference in the angle that can be recorded ∆ϕ. In order
to find the deviation in z we, therefore, need to represent the image positions xl and xr in
dependence of the angle ϕl and ϕr, respectively.

xl = f · tan (ϕl) ≈ fϕl (3.13)

The small angle approximation is often used for angles smaller than 5°. From equation
(3.12) and (3.13) one can evaluate the depth based on the angles ϕl and ϕr.

z =
b

tan (ϕl)− tan (ϕr)
≈ b

ϕl − ϕr
(3.14)

This allows to estimate the possible deviation in the depth estimation given a resolution
∆ϕ in the angles ϕl and ϕr.

∆z =
b

tan (ϕl + ∆ϕ)− tan (ϕr)
− b

tan (ϕl)− tan (ϕr)

≈ −∆ϕb

(ϕl − ϕr)2 + ∆ϕ (ϕl − ϕr)
(3.15)
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Figure 3.31: Determination of the distance based on the stereo system [30]. f represents
the distance between the focal length of the camera or the human eye; the baseline b is the
distance between the two cameras of a stereo system or the distance between two eyes; z
is the distance to the object which is the subject of interest in a stereo system; x is the
position of the object in focus; xl and xr are the distances of the object at position x on
the camera chip or the human retina.

Under the assumption that the object is right in front of the ego vehicle on a central line
so that ϕr = −ϕl ≈ b/(2z) we get a possible deviation in the depth estimation of

∆z =
−∆ϕz2

b+ ∆ϕz
. (3.16)

The maximum distance at which it may still be possible to estimate the depth can be
derived from equation (3.16) as follows:

zmax = lim
z→∞

z + ∆z = lim
z→∞

zb

b+ ∆ϕz
=

b

∆ϕ
(3.17)

In case ∆ϕ is in the opposite direction corresponding to an inverse sign, the zmax is obtained
due to the fact that for a negative ∆ϕ the fraction has a singularity for z = b/|∆ϕ|.
For the analysis of the depth estimation using the stereo system the parameter b from
Figure 3.31 was set to 10 cm. 10 cm may be an upper estimation of the distance between
the eyes of a human and may lead to an underestimation of the deviation in the depth
estimation of a human. However, human depth estimation is also based on other principles
which may lead to a better estimation than the estimation only obtained by stereopsis.
Therefore, the overestimation of b may still lead to an overestimation of the deviation in
human depth perception. For the evaluations the angular resolution was set to ∆ϕ =

1/60° = 0.0167° [85].
The error in the small angle approximation of tan (ϕ) ≈ ϕ is smaller than 0.3 % for angles
smaller than 5°. For a distance of z = b/ (2 · tan (5°)) ≈ 0.57 m are the angles ϕl and ϕr
smaller than 5° for the assumptions made for equation (3.16).
Figure 3.32 shows the possible deviation of detections by a stereo system with the defined
parameters. The possible deviation increases with distance according to equation (3.16).
The distance to an object can be detected to lie anywhere in the interval of [87 m, 117 m]

for an object at a distance of 100 m. With equation (3.17) and using the parameter values
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(a) (b)

Figure 3.32: Error in distance estimation when only considering a stereo system with
a distance between two eyes of 10 cm and a solid angle resolution of 0.0167° which is
approximately the resolution of a human [85].

b = 10 cm and ∆ϕ = 0.0167° one obtains a maximum distance of approximately 340 m.
Above this distance, the possible deviation expands to infinity meaning that it becomes
impossible to make an estimation of the distance to the object except that it is further
than 340 m away from the ego position.
The result of the previous section demonstrates that a human is capable of seeing an object
of a width of 2 m, approximately the width of a car, for multiple kilometers. The 340 m

are just the limitation of the stereo system to estimate the distance from the ego position.
However, one can still differentiate between a car that is in the visible range or out of
sight. Thus, even above 340 m one can estimate distances using other principles that are
built on the intuition of humans. One such principle is based on familiar sizes of objects
which can be compared with the size these objects occupy in the perceived image. In the
following, we want to investigate the principle based on familiar sizes of objects in order
to make depth estimations.

Familiar sizes

Another approach that allows humans to estimate depth, besides the stereo-based depth
estimation, is based on the intuition about sizes of objects. The intuition is based on the
knowledge obtained from seeing similar objects previously. The equations for the depth
estimation based on familiar size objects are derived from Figure 3.33. For simplicity, we
consider an object right in front of the ego-vehicle. The distance to the object can be
derived from the size of the object and the solid angle that the object occupies in the
visible space by the following equation.

z =
w2D

2 tan (γ/2)
≈ w2D

γ
(3.18)
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Figure 3.33: Determination of the distance based on familiar sizes.

For a provided angular resolution, we can derive the deviation in the distance that we can
resolve based on the principle of the familiar sizes of objects.

∆z =
w2D

2 tan (γ/2)
≈ w2D

γ
− w2D

2 tan ((γ + ∆γ) /2)

≈ ∆γz2

w2D + ∆γz
(3.19)

Equation (3.19) is similar to equation (3.16) for the stereo system. The difference between
equation (3.16) and (3.19) is lying in the width w2D of the observed object rather than the
baseline b which corresponds to the difference between the two eyes or between the two
cameras. Unlike the baseline b, which is the fixed distance between the two eyes or the two
cameras of the stereo system, the width w2D is object dependent. ∆γ corresponds to the
minimal difference of the solid angle which the object occupies in the FOV. This minimal
angle difference is defined by the resolution of the human eye or the sensor analogous to
∆ϕ in the equation for the stereo system (3.16).
Analog to the stereo system one can derive a maximum distance at which depth estimation
becomes impossible.

zmax = lim
z→∞

z −∆z = lim
z→∞

zw2D

w2D + ∆γz
=

b

∆γ
(3.20)

The maximum distance at which the distance to an object can still be estimated is depen-
dent on the object’s size. For a car with a width of w = 2 m is the maximum distance
zmax ≈ 3500 m. This is in agreement with the obtained distance from 3.6.1 that de-
fines how far an object of width w = 2 m can be seen for a specified angular resolution
∆ϕ = ∆γ = 0.0167°.

3.6.3 Discussion

The safety of human driving is frequently utilized as a safety reference for automated
vehicles [77]. The number of crashes or the number of fatalities per unit time driven or
per kilometer driven is commonly used as benchmark [4].
However, hardly any data about the number of fatalities exist for automated driving and
the industry is far from gaining the required amount of data for proving a failure rate close
to the performance of human driving as the required number of drive kilometers to prove
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the vehicle safety is immense [4, 75].
In the development of automated vehicles, the research focus is usually on one of three
major tasks which are perceiving the environment, planning the driving path and finally
steering the vehicle through the traffic. These three tasks are also described as sense, plan,
act [8, 9, 86, 87]. A safe automated vehicle is required to perform all three tasks reliably.
Here the focus lies on the perception of automated vehicles. The failure rates allow an
intuitive and quantitative comparison between human driving with automated driving.
However, with a focus solely on the perception of automated vehicles, a comparison with
humans is not as intuitive. Therefore, we provide a first approach to quantify human
perception. This would allow a straightforward comparison of human perception with the
perception of automated vehicles.
The human perception is based on many principles [84]. This study focuses on two of these
principles to allow a first estimation of the performance in depth estimation. These two
principles are the stereo system and the depth perception by familiar sizes.
In both approaches the deviation in the depth estimation becomes larger for objects that
are further away from the ego vehicle. While the depth estimation from a stereo system is
independent of the object size, the depth estimation by familiar sizes of objects depends
on the size of the respective object.
The depth estimation based on familiar object sizes allows an estimation as long as the
object can be observed which is only limited by the size of the observed object and the
resolution of the human eye or the sensor. Thus, the principle based on familiar sizes
allows a longer range in comparison to the stereo system. However, while the stereo
system depends on the physical parameters of the distance between the eyes/cameras and
their resolution, the principle based on familiar sizes depends on the object size estimation
by humans. This is not a quantitative measure and even though human intuition allows a
depth estimation beyond the possible range of the human stereo system, the estimation in
depth may not be better in the near field compared to the stereo system despite equation
(3.19) let one first expect that this is the case.
Currently, most validation approaches for object detection do not take the distance to
the objects into account and evaluate all objects in the same way. However, even though
the deviation in distance estimations increases with an increasing distance to the objects,
humans are capable to navigate vehicles safely on public roads. Therefore, one may con-
clude that one could implement an association that takes the distance to the objects into
account and is less restrictive for faraway objects. Section 3.4 and section 3.5 provide two
approaches that take the distance into account.
Unlike the deviation in section 3.5 and section 3.4 the deviation by the discussed principles
of human depth perception is not linear. The function shows a maximum distance. The
maximum distance corresponds to a singularity in the function for the upper bound and a
constant maximum value in the function for the lower bound.
An extension of the approaches from sections 3.4 and 3.5 could utilize the deviation function
from equation (3.16). Especially for camera-based stereo systems this function represents
the capabilities of the system in more detail.
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3.7 Conclusion

This chapter provides concepts that can be used to define an error in the environment
perception of automated vehicles. Object detections that are associated with reference
bounding boxes indicate a correct detection while detections without an associated ref-
erence object are classified as erroneous. Association measures for object detections are,
thus, directly linked with an error definition for object detection.
The chapter first provides an overview of existing association measures between object
detections and reference objects used in automated driving. Most association measures
are based on the difference between the detection and reference from the object’s point of
view. Only one measure, the SDE, takes the ego position into account by focusing on the
bounding box sides that are facing the ego vehicle’s position.
Subsequently, the section introduces two other association measures that can be used to
compare detections from multiple sensors instead of a comparison with the reference only.
The first approach assigns detections to rectangles in a grid in order to associate them. The
second approach is based on trajectory clustering for the association. These approaches
are intended to be usable for an application of the model from [16] on real-world data.
In a reliability analysis, one may make the association dependent on the distance such
that the impact of detection errors at different distances becomes comparable. In this
case, association errors may be weighted the same independently of the distance. This
chapter introduces two such association approaches that introduce a distance dependence
for the evaluation of object detection.
Furthermore, the chapter addresses the limitations of bounding boxes obtained from object
detection. Due to their rectangular shape, bounding boxes can only provide a very rough
approximation of surrounding objects as they are commonly not rectangular. To account
for some of the limitations this chapter also provides an approach based on the drivable
area around the ego vehicle. Detections and evaluations of the drivable area have the
advantage that they account for all possible objects in the vehicle’s environment.
A benchmark for the safety of an automated vehicle is the human driver [1, 2]. The
human depth perception might be utilized as a benchmark for necessary properties of the
perception. Therefore, an investigation of human depth perception may allow to define
sufficient properties for the environment perception of an automated vehicle. Thus, the
last part of the chapter quantifies human depth perception based on a comparison with
the stereo system and the familiar size-based depth estimation.
The depth estimation based on these two principles is quite rough at faraway distances.
This is in agreement with the introduced distance-based association and the drivable area-
based error definition. For future studies, one may adjust the distance-based association
using the knowledge about human depth perception.
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4 Reference-truth-based perception
evaluation and reliability assessment
aggregated across frames

Once a perception error is defined, an estimation for the perception reliability can be
obtained by an evaluation measure that sets erroneous detections in relation to correct
detections. For this, the errors are accumulated over recorded driving datasets.
Some perception errors may not have any influence on the driving behavior of the au-
tomated vehicle. Such perception errors may be excluded in the reliability evaluation of
automated vehicles. Therefore, accumulating these errors in the evaluation of the environ-
ment perception is subject to discussion.
In object detection, association measures define corresponding errors for the case of object
detection. The association of data from different sensors with a reference classifies the
object detections as correct or wrong. The accumulation of the number of correct and
wrong object detections grants insight into the performance of the sensors together with
the underlying detection algorithms. The accumulation is achieved using an evaluation
measure. The application of the evaluation measure is the second step of the object-based
perception evaluation and is represented as the last block of the pipeline from Figure 4.1
that is highlighted in blue. Likewise, to the association measures, many measures for
evaluating the detection performance exist.
Evaluation measures can be categorized into relative and absolute measures. Relative
evaluation measures allow a comparison of the performance of different detection algorithms
and sensors. However, such measures do not allow to draw a conclusion on whether the
sensor system is sufficient for automated driving. Absolute evaluation measures should
allow classifying the perception as being sufficient or non-sufficient for the use in automated
vehicles.
This chapter provides an overview of perception evaluation techniques with its objectives
being:

• An analysis of scenarios with perception errors that may not have a direct influence
on the ego vehicle’s driving behavior and a qualitative evaluation of the effect of such
scenarios on the statistical assessment of the perception reliability in section 4.1.

• An inventory of existing evaluation measures that can be utilized for the evaluation of
object detection is in section 4.2. The analysis lists the different evaluation measures
and classifies them into absolute and relative association measures.
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Figure 4.1: A modification of Figure 2.4. A basic representation of object detection
and evaluation pipeline, starting from raw sensor data. The evaluation of the obtained
object data is usually performed in two steps. The first step is the association between
the sensor data and some reference data or other sensor data. The association with the
reference usually classifies individual detections as correct or wrong. The second step is the
evaluation which is obtained by the accumulation of some kind for all correct and wrong
detections. The focus of this chapter is lying on the second step, the evaluation measures.

• An analysis of the combination of evaluation measure and association measure used
for the performance evaluation of the environment perception in section 4.3.

4.1 Situation-dependent safety considerations

Detection failures may not have an influence on the driving behavior of the ego vehicle. In
particular, objects whose trajectory never passes the ego trajectory are safe not to detect.
The following section demonstrates example scenarios in which detections may not have an
influence on the ego trajectory. Based on the examples we discuss the use of scenario-based
testing. Subsequently, scenario-based testing is compared with a statistical assessment of
the perception reliability.

4.1.1 Impact of vehicle constellations on the perception performance

The following section investigates three vehicle constellations. A vehicle constellation de-
scribes the positions of multiple vehicles relative to each other. The same vehicle con-
stellation can occur in different scenarios. This section demonstrates multiple scenarios
for the three considered vehicle constellations. The different scenarios for the three vehicle
constellations are illustrated in Figures 4.2, 4.3 and 4.4. Each vehicle is assigned a number.
The ego vehicle corresponds to the vehicle with index 1. The illustrations are based on
right-hand traffic.
In the first constellation Vehicle 1 drives on a trajectory that is parallel to the trajectory
of Vehicle 2. Vehicle 1 is slightly behind Vehicle 2 while having a higher speed compared
to Vehicle 2. Typical scenarios with such vehicle constellations are overtaking maneuvers.
Figure 4.2 illustrates different overtaking maneuvers. In Figure 4.2 (a) the lane marking
does not allow to interchange lanes. Assuming that both vehicles conform to public road
regulations, a detection of Vehicle 2 does not have an effect on the trajectory of Vehicle
1. In the scenario of Figure 4.2 (b) and (c) this is different. Figure 4.2 (b) illustrates a
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(a) (b) (c)

Figure 4.2: Three possible scenarios on (German) motorways. Vehicle 1 is considered
to be the ego vehicle. The scenarios from left to right: (a) A continuous line separates
the two lanes so the vehicles are not supposed to change lanes there. This is common in
combination with a motorway access road. (b) End of a motorway or a two lane interval.
(c) Common motorway interval with a dashed line. Thus, changing lanes is permitted.
The scenario considers that the ego vehicle just passed another vehicle.

(a) (b)

Figure 4.3: Two possible scenarios in a roundabout. Vehicle 1 is considered to be the ego
vehicle. From left to right: (a) Vehicle 2 stays in the roundabout. (b) Vehicle 2 exits the
roundabout.

scenario where Vehicle 1 has to change from the left lane to the right lane as the left lane
is about to end. Detecting Vehicle 2 in this situation is safety critical as the trajectories of
Vehicle 1 and Vehicle 2 cross due to the higher speed of Vehicle 1. Figure 4.2 (c) illustrates
a similar scenario. Here, Vehicle 1 is on the left lane as it just passed Vehicle 3 and it can
keep driving on the left lane to also pass Vehicle 2. Due to the obligation to drive on the
right-hand lane according to public road regulations, Vehicle 1 is supposed to change from
the left to the right lane if possible. Therefore, detecting Vehicle 2 is also safety-critical in
this situation. If Vehicle 2 is not detected, Vehicle 1 will change to the right lane and the
trajectories of Vehicle 1 and Vehicle 2 will cross, leading to an accident. Only if Vehicle
1 detects Vehicle 2 it will keep driving on the left lane as indicated by the green arrow.
In summary, in two out of the three scenarios, the detection of Vehicle 2 by Vehicle 1 is
safety-critical.
Figure 4.3 shows two different scenarios for another vehicle constellation. Vehicle 1 intends
to enter a roundabout in both scenarios. However, in Figure 4.3 (a) Vehicle 2 stays in the
roundabout while in Figure 4.3 (b) Vehicle 2 leaves the roundabout. In the scenario of
Figure 4.3 (a) a detection of Vehicle 2 is safety-relevant. However, in the scenario of Figure
4.3 (b) a detection of Vehicle 2 does not have an influence on the trajectory of Vehicle 1.
Thus, in this case, a detection of Vehicle 2 is not safety critical.
The third vehicle constellation with two vehicles is illustrated in Figure 4.4 which considers
nine different scenarios at a four-way-intersection. The nine different scenarios are derived
from the fact that each of the two vehicles has three possible directions to go if excluding the
possibility of U-turns. In four out of the nine scenarios, the trajectories of the two vehicles
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.4: All nine possible scenarios with two vehicles at a four-way-intersection. The
possibility of a U-Turn is not considered. Vehicle 1 is considered to be the ego vehicle.

intersect. These four scenarios all include left turns by one of the vehicles. Assuming that
the vehicles drive according to public road regulations, in two out of these four trajectories
a detection of Vehicle 2 by Vehicle 1 is safety critical. These two scenarios are shown in
Figure 4.4 (a) and (e). In these cases, Vehicle 1 performs a left turn and has to give way
to Vehicle 2. In Figure 4.4 (c) and (d) Vehicle 2 has to give way. Thus, the detection of
Vehicle 2 is safety critical in two out of all nine scenarios.

4.1.2 Discussion

Scenario-based evaluation does not only consider the perception. As illustrated by Figures
4.2, 4.3 and 4.4, the scenario-based evaluation also takes the path planning of the auto-
mated vehicle into account and includes the actions and trajectories of surrounding traffic
participants in the evaluation. Accidents do not occur in case the ego vehicle trajectory
does not intersect with the trajectory of other traffic participants. This is also the case
if the other traffic participants are not detected by the perception sensors. Therefore,
scenario-based evaluation can provide an estimate of the risk introduced by an automated
vehicle. The risk corresponds to the product of the rate of failures λ and the associated
consequences C [8, 77, 88].
One may count as a consequence the number of accidents. Considering the vehicle con-
stellation from Figure 4.3, the consequence of not detecting Vehicle 2 is an accident in the
scenario from Figure 4.3 (a), thus, C = 1 accident. The scenario from Figure 4.3 (b) leads
to no consequences if Vehicle 2 is not detected, resulting in C = 0 accidents. Assuming
that the two scenarios are on average equally represented on public roads, the expected
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value for the consequence is an accident half of the times the vehicle enters a roundabout
if the perception is not working E[C] = 1/2 accidents. The expected value of the conse-
quence E[C] = 1/2 accidents indicates that the scenario results on average every second
time in an accident if the ego vehicle just follows its trajectory without taking other traffic
participants into account.
The failure rate of the environment perception of the vehicle, which is directly related to
its reliability, can be treated independently. Assuming the environment perception detects
99 instances out of 100 vehicle instances that are in a corridor of 30 m in length and 30 m

in width in front of the vehicle, which covers the size of most roundabouts, one obtains
a reliability of 99 %. A vehicle instance describes one occurrence of a vehicle in a frame.
Moreover, an adequate underlying association measure is assumed here. A reliability of
99 % corresponds to a failure rate of 1 %.
Figure 4.3 only visualizes a single frame. Scenarios are not based on a single frame.
However, there exists a final frame at which Vehicle 1 has to make a decision whether to
enter the roundabout or to wait [89]. The risk introduced by automated Vehicle 1 in such
a scenario is provided by r = λsys · C = 0.005 accidents per time entering a roundabout).
Accident data for such specific road infrastructure scenarios is difficult to obtain. Record-
ings of a single scenario like entering a roundabout are often too sparse to determine a
statistically valid error rate for this individual scenario. [90] investigates a dataset with
266 vehicle trajectories within a roundabout. The study, however, is not solely limited to
entering the roundabout but also accounts for the exiting of the roundabout. Furthermore,
an accident is not reported within the analysis.
[91] in comparison works on accident data and classifies the data into scenarios. However,
scenarios in [91] specify the number of vehicles involved, the driving direction and the
orientation of the vehicle relative to the driving lane instead of specific road infrastructure
and a specific vehicle setup like the roundabout example. Scenarios without accidents do
not exist in the analysis which does not allow a conclusion about the accident rate in a
specific road infrastructure-based scenario.
[77] estimates the probability of safety-critical scenarios, so scenarios that lead to an
accident, on German motorways using the HighD dataset [92]. The study is limited
to situations on motorways where a vehicle stays in the same lane. Different situa-
tions correspond to a categorization of each vehicle into speed intervals. This approach
categorically excluded lane-switching situations where the detection of neighboring ob-
jects also matters. [77] estimates the probabilities for different speeds and adds up the
data using the total probability theorem with κ =

∑
i pi · pS,i =

∑
i Pr (Speed ∈ Ii) ·

Pr (Scenario ∈ {S2, S3} | Speed ∈ Ii). pi = Pr (Speed ∈ Ii) describes the probability of
driving with a speed in the range defined by the interval Ii; pS,i describes the conditional
probability of having potentially dangerous scenarios in the speed range i. Potentially dan-
gerous scenarios are defined as scenarios that can lead to collisions of S2 or S3 severity ac-
cording to ISO26262 [77]. Based on an approximated mean time between failures (MTBF)
of 1.3× 105 h and the HighD dataset, which contains 150 h of drone recordings of German
motorways, the study in [77] concludes that an FN rate sufficient for automated driving
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should not exceed 1× 10−4 h−1 for leading vehicles on the same lane on motorways.
Investigating safety-critical scenarios and estimating the probability of these scenarios is
a research topic in itself. Further research scenario-based testing can be found in [93–
96]. [93] presents a list of possible scenarios. Furthermore, within the scope of the
PEGASUS project a database of relevant scenarios for the testing of automated vehicles
was generated [94, 96].
Scenario-based testing performs a validation on the vehicle level rather than on the in-
dividual components of the vehicle like the perception. However, scenario testing stays
always limited to recorded and/or defined scenarios [86, 93]. As indicated by the example
situation in this section, the risk of individual situations where a misdetection may not
directly lead to an accident is also represented in a statistical analysis of the environment
perception.

4.2 Existing evaluation measures

Besides the probability of detection and the probability of false alarm, which are utilized
by the model from [16] as introduced in section 2.5, other evaluation measures for the per-
formance of sensors exist. The following section investigates evaluation measures utilized
for the perception evaluation of automated vehicles.
The legibility of the evaluation is contingent upon not just the evaluation measure, but
also the association measure. Thus, for the analysis of the evaluation measures we employ
the IoU as association measure in the subsequent analysis.
Furthermore, the evaluation usually depends on the confidence score which is a measure
provided by object detection algorithms to rate how certain an algorithm is about the
presence of every detected object. An additional threshold τ for the confidence score is
introduced. In order to indicate the additional threshold τ for each classification TP, FP
and FN by the association, τ is used as a subscript in the equations.

4.2.1 Investigation outline

This work discusses different evaluation measures that can be used for the evaluation of
object data that is associated with a reference truth. Object data that is associated with
a reference truth is classified into TP, FN and FP cases based on the association measure.
With regard to the release of automated vehicles, one requires a sufficiently reliable environ-
ment perception for the vehicle. Addressing a sufficiently reliable environment perception,
there are two associated questions: first, how to evaluate the environment perception? To
answer this question, we investigate the different evaluation measures. Second, based on
the evaluation measure how could one determine that the perception is sufficient? We
try to answer the latter question by classifying the evaluation measures into absolute and
relative evaluation measures. Absolute evaluation measures can derive an actual error rate
in failures per unit time that can be related to the failure rate of human driving whereas
relative measures allow a comparison between sensor systems without allowing a determi-
nation of the failure rate that can be related to the vehicle’s safety. This section proceeds
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as follows:

• In the first step, it investigates if and how one can interpret the result of the evaluation
measure. Moreover, it incorporates expectations obtained from human driving. The
performance of human driving is often provided as fatalities or accidents per unit
time of driving or per driven kilometers. For the release of automated vehicles, one
needs to be able to obtain a measure that is understandable for the public in order
to become acceptable.

• In the second step, the section evaluates whether the evaluation measure is better
used as a relative measure or whether it might be usable as an absolute measure. The
classification into a relative or an absolute measure correlates with the interpretability
of the measure.

The subsequent section is subdivided into the following four parts: (1) the next section
investigates individual association measures for the classification of the detection into cor-
rect and false according to the discussed procedure; the study continues with investigating
different evaluation measures used for object detection evaluation in automated driving;
(2) we investigate the combinations of association measures and evaluation measures while
having a closer look at common combinations of the two; besides we discuss an approach
that does not differentiate between classification and evaluation; (3) we discuss advantages
and disadvantage and (4) we present a conclusion.

4.2.2 Investigation of existing evaluation measures

This section investigates different evaluation measures used in object detection for auto-
mated driving, which corresponds to the second part of the evaluation in Figure 4.1 besides
the association. The evaluation measures accumulate FP and FN errors over the dataset
and are supposed to provide information about the overall performance of the perception
sensors. All evaluation measures investigated in this work are summarized in Table 4.1.

Recall

Section 2.5.2 introduces the recall value as defined in equation (2.1). One can derive the
number of false negatives FNτ from the recall value rτ . Furthermore, one can estimate
the average value for the number of objects µo,τ,t of the specific class that are present in a
data recording at the time point with index t and the number of data recordings nt.

FNτ = (1− rτ ) · (TPτ + FNτ ) ≈ (1− rτ ) · µ̂o,τ,t · nt (4.1)

The recordings are performed at a certain rate and the time between recordings is also
referred to as a time frame which can, thus, be indexed by t. TPτ + FNτ corresponds to
the total number of objects present in all time frames. And the total number of objects
present in all time frames can be approximated by the expected value of the average
number of objects per time frame µ̂o,τ,t times the number of time frames nt. The number
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Measure Reference Equation Abbr. Category

Recall - (2.1) pτ
Pr (O | D) absolut

Precision - (2.2) rτ
Pr (D | O) absolut

Average
precision

[14, 15, 97]
[60, 66, 98]
[47, 53, 99]

(4.3) AP relative

AUC of the
ROC [60] - - (relative)

distance
weighted
recall

[64] (4.5) rD relative

distance
weighted
precision

[64] (4.5) pD relative

distance
weighted
AP

[64] (4.5) APD relative

nuScenes
detection
score

[22, 48] (4.8) NDS relative

Average
orientation
similarity

[47] (4.3) AOS relative

multi object
tracking precision [61] - MOTP relative

multi object
tracking accuracy [61] - MOTA relative

average multi
object tracking
precision

[67] - AMOTP relative

average multi
object tracking
accuracy

[67] - AMOTA relative

higher order
tracking
accuracy

[100] (4.13) HOTA relative

Table 4.1: Evaluation measures used for object detection and object tracking algorithms.
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of FNτ errors per unit time correspond to (1− rτ )·µ̂o,τ,t/∆t where ∆t is the time difference
between two subsequent time frames.
In conclusion, recall corresponds to our definition of an absolute evaluation measure as the
error rate can be determined from the number of FNτ for a specific period of time.
Recall has been considered for the reliability analysis of the vehicle’s environment per-
ception in previous studies where it was also referred to as the probability of detection
(POD) [8, 16]. As an interpretable evaluation measure, recall or actually the derived error
rate can be compared to human driving.

Precision

Section 2.5.2 introduces the precision in equation 2.2. The precision provides a value for
how reliable an object detection is and how often ghost objects appear. In parallel to the
concept of recall, a value close to 1 indicates a good agreement of the detections with the
reference. All objects that are detected by the object detection algorithm are correctly
identified and are indeed present. The number of false positive occurrences FPτ within a
certain time interval can be evaluated using the precision pτ

FPτ = (1− pτ ) · (TPτ + FPτ ) ≈ (1− pτ ) · µ̂d,τ,t · nt (4.2)

Here, the expected average number of detections µ̂d,τ,t is considered instead of the expected
average number of present objects µ̂o,τ,t.
Consequently, precision is an absolute measure evaluating the number of objects that were
correctly identified versus the total number of objects. With an average of present vehicles
in common driving scenarios, the number of errors per unit time or unit distance can be
estimated.
Recall and precision are usually presented together as one measure alone does not ensure
a good performance of an object detection algorithm. For example, a high recall can
be obtained when the object detection algorithm recognizes many objects independent of
whether the algorithms also detect many ghost objects. Therefore, the aim is to achieve a
high recall as well as a high precision.

Average precision

The average precision (AP) is the most common measure for evaluating the performance of
object detection algorithms once the detections are classified into TP, FP and FN by the
association measure [14, 15, 47, 48, 53, 60, 66, 97–99]. For the evaluation of the AP, the
confidence score for every detection is utilized besides the association measure in order to
evaluate the goodness of the detections. While the number TPτ and FPτ can increase with
an increasing threshold τ , FNτ will decrease with an increase in τ for an algorithm that
is based on a regression of the confidence values. The AP combines recall and precision in
one measure and corresponds to the area under the precision-recall curve.
For the AP, precision and recall are evaluated at different confidence scores τ which cor-
responds to the functions τ 7→ p(τ) = pτ and τ 7→ r(τ) = rτ . The average precision makes
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use of the inverse function of r(τ) to eradicate the use of the confidence threshold in the
evaluation. This provides a relation between precision and recall r 7→ p(r). An estimate
of the AP is obtained by averaging over the interpolated precision values at certain recall
levels. For interpolation, the maximum precision for any recall value higher than the recall
level of evaluation is used [15].

AP =
1

N

∑
r∈S

max
r̃:r̃≤r

(p (r̃)) (4.3)

Here, S is the set of equally spaced recall levels with cardinality N . The AP may also be
approximated using all calculated recall levels instead of only a set of equally spaced recall
levels.
Some studies evaluate the AP for every class of objects individually [14, 52]. A comparison
is performed for the individual object classes. The best object detection algorithm for a
specific class of objects is the one that yields the highest AP. And the best overall object
detection algorithm is the one that yields the highest AP for most classes as used in [14,
52].
The higher the AP for a certain class, the better the detection of objects for the specific
class. An AP close to 0 means that independent of the confidence score threshold τ only
very few objects are detected correctly. In comparison, an AP close to 1 means that nearly
all objects are detected independent of the chosen confidence threshold τ . AP values
between 0 and 1 show a dependence between precision and recall. The negative correlation
between precision and recall is introduced by the chosen confidence threshold τ , as both,
precision and recall depend on the confidence threshold. The number of correct detections
depends on the confidence threshold τ as the recall tends to increase with a lower chosen
confidence threshold τ as more objects are detected while the precision tends to decrease
with a lower confidence threshold τ as usually more FPτ are observed. The introduction
of novel object objective detection algorithms entails a progressive elevation of the AP by
aiming to achieve values closer to 1 which allows a comparison between different object
detection algorithms and rating them relative to each other. However, the AP does not
provide a value that can be related to a specific failure rate as the failure rate can vary
with the chosen confidence threshold. The AP, however, does not rely on the confidence
threshold τ .
The confidence threshold τ may still be use case dependent and may be chosen such that
it optimizes the object detection output depending on whatever error is more relevant,
e.g., in case FP is more relevant the confidence threshold τ may be increased and if FN
errors are more relevant the threshold τ may be decreased. Choosing a specific confidence
threshold τ is usually restricted to a specific training data set together with a specific
association measure but may not be applicable to other datasets or association measures.
The independence on the confidence threshold τ of the evaluation of the object detection
is, therefore, beneficial. However, the question remains whether the AP can also be used
as an absolute measure that is interpretable for the comparison to human driving which is
taken into account when talking about the release of automated vehicles.
Figure 4.5 shows an example precision-recall curve. Precision and recall correspond to
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Figure 4.5: Example precision recall curve maxr̃:r̃≤r (p (r̃)). (4.3) corresponds to an ap-
proximation of the curve’s integral. An even more basic approximation corresponds to the
shown rectangle which corresponds to the multiplication of a certain precision-recall pair.
A precision-recall pair is obtained for a certain confidence threshold τ . The multiplication
of precision and recall corresponds to the multiplication of two conditional probabilities
Pr (O | D) · Pr (D | O).

the two conditional probabilities Pr (O | D) and Pr (D | O), respectively. The intention is
that both conditional probabilities approximate one for a reliable environment perception.
Thus, the product of the two should also tend towards one. However, a product of the
two conditional probabilities, which is exemplary indicated by the rectangle in Figure 4.5,
does not allow any relation to the actual failure rate. Neither does the integral of one
conditional probability in dependence on the other.
The actual number of errors corresponds to the additive measure FNτ +FPτ instead of a
multiplication or integration of precision and recall. As the number of errors per unit time
or per distance is usually a measure taken for comparison, we consider an additive mea-
sure as more appropriate for the evaluation of the perception reliability of the automated
vehicles such that it can be used as justification for their release.

Average precision for multiple object classes

Some references take the mean of all AP values obtained for the different classes, which is
commonly referred to as mean average precision (mAP) [51].
In order to obtain a measure that becomes independent of the chosen threshold α for
the association measure, other references average also the mAP obtained for different
association thresholds α [53, 98]. The different approaches to evaluate the mAP are not
consistently separated by distinct acronyms in the literature [98].
The aforementioned mAP fails to adequately address the issue of data imbalance among
classes, as it assigns equal weight to all classes. Consider the following example: a class C1

of objects with only a few instances occurring in the dataset and a class C2 of objects with
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many instances occurring in the dataset. The resulting mAP would be the same in case
(a) all objects of class C1 are observed and none of class C2 or (b) no objects of class C1

are observed but all of class C2. The overall number of objects detected would be low in
case (a) while it is high in case (b). To account for this problem [97] proposes to pool all
objects from all classes and combine them in a single precision-recall curve which is used to
evaluate the average precision APPool. In APPool all object instances are weighted equally
rather than all object classes with different numbers of observed objects. However, like
AP, APPool lacks the relation to an absolute number of errors that allows the comparison
with human driving capabilities. It is, therefore, also only applicable as a relative measure.

Association measure threshold independent average precision

While the AP measure is independent of the confidence threshold τ , it still relies on a
chosen threshold α for the association measure. Many references use a predefined threshold
α in combination with the association measure IoU as described in section 3.1 [14, 47] .
However, with a single IoU threshold α, one encounters the issues described in section 3.1.
An AP close to 1 would still not account for imperfections in the detection of the position
of objects introduced by the association measure.

Distance-dependent average precision

The distance weighted average precision (APD) is proposed by [64]. The APD is based on
inverse distance-weighted TP, FN and FP counts. For a set of detections, B = {bi} , i =

1, . . . , N and a set of reference truth objects G = {gi} , i = 1, . . . ,M these counts are
defined by the sum of the inverse distances to the power of a hyperparameter β that
controls how much the distance is taken into account.

IDTP =
∑
bi∈TP

1

dβg(bi)
, IDFP =

∑
bi∈FP

1

dβbi

IDG =
∑
gi∈G

1

dβgi
(4.4)

The distance d corresponds to the Manhattan distance between the center point of the ego
vehicle and the center point of the detection bi or reference object gi/g (bi). g (bi) denotes
the reference truth object that is associated with the detection bi. The distance weighted
recall and precision are derived from the inversely distance-weighted TP, FP and IDG

values.

rD =
IDTP

IDG
, pD =

IDTP

IDTP + IDFP
(4.5)

The APD is derived from the precision-recall curve while using pD and rD as precision and
as recall, respectively [64].
Compared to any other evaluation measure in this section, the APD is the only measure
that takes into account that objects that are further away from the ego vehicle may be
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less relevant for the trajectory planning of the ego vehicle if not detected. The averaging,
however, still allows that a high recall value rD can be observed even though an object
right in front of the ego vehicle may not be detected while many objects in the far distance
are observed. Therefore, from the APD itself, one cannot conclude whether a few errors
in the near distance occur or whether many errors in the far distance are observed.
Moreover, as the APD averages over the precision values pD in dependence of the recall
values rD, one cannot know the specific confidence score threshold τ that yields the best
precision-recall pair for the intended application with the used object detection algorithm.
Likewise, to the AP, from the APD one can only extract which object detection algorithm
performs best on average. Therefore, APD is also a measure that allows a relative com-
parison between different object detection algorithms. However, one cannot conclude an
absolute number of critical situations per unit time or per distance. A high APD value
only indicates that either a few errors in the close distance are observed or many in the
far distance. Depending on the scenario, far-distance objects may also be relevant, e.g., on
the motorway.

Average recall

The average recall (AR) is another measure used for the evaluation of object detection al-
gorithms. Unlike AP, AR does not take the confidence score τ into consideration. Instead,
AR represents the average value of recall values obtained for differently chosen values of
the IoU threshold α [51, 101].

AR = 2

∫ 1

0.5
r (α) dα (4.6)

For the evaluation of the COCO challenges AR is defined slightly different. It is defined
as the average of the maximum recall values for the defined set of 10 IoU thresholds
[0.5, 0.55, · · · , 0.95]. The evaluation of AR based on the set of predefined IoU thresholds
provides an approximation of the AR from equation (4.6) [101].
Unlike AP, which incorporates the recall values by the integration of the precision in de-
pendence of the recall, AR is an individual measure that does not incorporate the precision.
However, it accounts for different IoU values and tends to be better for increasingly confi-
dent fits. Averaging over different IoU thresholds α, however, does not allow an extraction
of the best IoU value for a specific application. It may, therefore, be used as a relative
measure but, in case a specific decision about the objects’ state has to be made, which re-
quires the use of a threshold α, AR does not provide any information about the best choice
of the IoU threshold α. At some point, it may be used as an absolute measure though.
One knows that there exists an IoU threshold α for which the recall is at least as large as
the AR. Therefore, by using AR in combination with equation (4.1) one can estimate the
minimum number of possible FN failures. However, from AR one cannot conclude the IoU
threshold α for which this number of FPs is achieved.
In the COCO challenges the term AR also incorporates averaging over the different classes [98]
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while others refer to the averaging over the different classes as (mean average recall (mAR)).
In case of data imbalance, averaging over multiple classes is in favor of object classes with
only a few object instances. For object classes with many object instances, the object
detection algorithm has to properly detect many objects in order to achieve a similar mAR
while only doing few mistakes in the object class with few objects.

Receiver operator characteristic

The receiver operator characteristic (ROC) is an alternative to the precision over recall
curve, which is used for the evaluation of AP. The ROC represents the TP rate in depen-
dence on the FP rate. The TP rate corresponds to recall while the FP rate, also defined
as PFA, is defined as FP/ (FP + TN). As a high recall and a low FP rate are preferred,
the intention lies in finding algorithms that achieve values in the upper left corner of the
diagram.
In case the dataset can be subdivided into a number of cases where an object is present
and into a number of cases where no object is present, the ROC can be directly transferred
into the precision-recall curve or vice versa [60]. A possible definition for the TN cases
was introduced in [70] and [71] by subdividing the FOV into a grid. [60] demonstrates
that a curve dominates in ROC space if, and only if the curve dominates in precision-
recall space. Furthermore, the ROC allows to create a convex hull by linear interpolation
between the points on the ROC. This is explained by the fact that an average TP rate
and a FP rate between two classifiers can be achieved by randomly choosing between one
or the other classifier with weighted probability. In this context, the term classifier is used
for a differently chosen confidence score threshold τ . The precision-recall curve does not
allow a linear interpolation as shown by [60]. In the case of the precision-recall curve,
linear interpolation leads to an overestimation. The approximation with a step function
by using the maximum precision at any higher recall value in equation (4.3) returns a lower
approximation. The correct ideal approximation of the precision-recall curve requires the
transformation from the linear interpolation in the ROC.
The ROC obtains the same information as the precision over recall curve in case TN
cases are defined. In addition, it relies on the definition of the TN cases. A common
practice in object detection is to not take the TN cases into account to avoid associated
data imbalance between regions with and without objects. As mentioned previously, [70]
and [71] introduce a definition for TN cases by subdividing the bird-eye view perspective
of the FOV of an automated vehicle into a grid. However, this approach lacks a proper
interpretation due to the fact that the chosen grid size is a freely choosable parameter that
provides no clear definition except that it is required to be in the order of magnitude of
the considered objects.

Area under the receiver operator characteristic

Like for AP the area under curve (AUC) of the ROC is intended to reach values close to
1. An algorithm that yields results with higher AUC of the ROC is, therefore, preferred.
The AUC of the ROC is not suitable for the evaluation of highly skewed datasets [60]. As
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surrounding objects usually cover only a small area of the FOV of the sensors, the sensor
data commonly corresponds to a skewed dataset between regions with and without objects.
Subsequently, a proper definition of TN cases for object detection in automated driving
does not exist. Furthermore, the reference and the object detection algorithms only yield
objects that are present or detected, which only incorporates FP, FN and TP cases but
no TN cases. And even with a definition of the TN cases, the AUC of the ROC remains a
relative measure.
To sum up, the discussion in the previous section about the limitations of the ROC in the
evaluation of object detection can also be applied to the AUC of the ROC. Without a
proper definition of the TN cases, the resulting AUC of the ROC will remain difficult to
interpret. Besides, also in case of a proper definition of TN cases, which is for example
achieved in semantic segmentation, the AP is commonly the preferred measure as the
AUC-ROC does not account for the imbalance between the actual positive and the actual
negative cases according to the reference truth.

True positive measures

TP measures average over the difference between TP detections and their correspond-
ing reference objects [47, 48, 61, 102]. The nuScenes challenges based on the nuScenes
dataset introduce a set of five TP measures to account for multiple attributes in object
detection [48]. The nuScenes set of TP measures TP includes:

• The average translation error (ATE) is the average of the 2D Euclidean center dis-
tance in the bird-eye view perspective. The multi object tracking precision (MOTP),
used in [61, 102], is the average value of the association measure for all TP detec-
tions. It is equivalent to the ATE when using the Euclidean distance as an association
measure. In comparison to the ATE, [102] proposes to use the MOTP with differ-
ent association measures. For face, person and vehicle tracking in 2D images [102]
proposes to use the IoU instead of the Euclidean center distance.

• The average scale error (ASE) is the average of the 3D IoU after correction of the
orientation and the translation.

• The average orientation error (AOE) is the average difference in the orientation of the
detection and the orientation of the assigned reference. [47] provides a comparable
measure that is called the average orientation similarity (AOS).

• The average velocity error (AVE) is the average of the absolute velocity provided by
the L2 norm of the difference in the velocity between detection and reference object.

• The average attribute error (AAE) averages the result of 1 minus the attribute clas-
sification accuracy.

The measures are only applied on the TP detections, so all detections that are associated
with a reference truth object. The mean over all classes is evaluated for each of the five
measures.
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mTP =
1

C
∑
c∈C

TPc (4.7)

Classes, where attributes are not well defined, are omitted in the evaluation of the mean
in nuScenes’ TP measures. The evaluation measures, which can be larger than 1 (mean
average velocity error (mAVE), mean average orientation error (mAOE), mean average
translation error (mATE)), are normalized to the range of 0 to 1 [48].
In the case of the ATE and the MOTP, the chosen threshold α for the association measure
defines a maximum possible (Euclidean) distance between detections and their reference
counterpart. Association measures specific limitations as described in section 3.1 remain
as shown by the following two examples:
An average of any association measure does not provide a measure that allows a statement
about the vehicle’s safety in terms of object detection errors per unit time or per distance.
A MOTP value only allows a relative comparison: Depending on the chosen association
measure, larger or smaller MOTP values show an improvement on average. E.g., in the
case of the Euclidean center distance: the smaller the ATE/MOTP the closer the object
centers of detection and reference on average which indicate a better fit only of the center
points.
A variation of MOTP that is independent of a fixed confidence threshold τ exists. The
average multi object tracking precision (AMOTP) is achieved by averaging over multiple
confidence thresholds τ [67]. Like MOTP, AMOTP is difficult to interpret as good and
bad fits average to medium performance. However, as demonstrated in Figure 4.7 one
cannot exclude potentially hazardous situations from a medium performance or even a good
performance in MOTP. The same applies to AMOTP. Further averaging over different
confidence values decreases the interpretability as one no longer knows the performance
for a fixed confidence threshold τ . A lower AMOTP value can be lower for some MOTP
values while being higher for others. In the case where the threshold τ is relevant, e.g.,
when a decision is required for the upcoming time step, the optimum threshold cannot be
derived from the AMOTP measure. The AMOTP measure allows a relative comparison
as a lower AMOTP value indicates that the MOTP value is lower either for more recall
values of much lower for individual recall levels. However, it does not allow to conclude
what confidence threshold τ may be suitable. Like MOTP, AMOTP does not provide an
error rate that can be translated to human driving. Thus, AMOTP is not suitable for the
use in the reliability analysis of the environment perception and the release of automated
driving and only allows a relative comparison of object detection algorithms.
Except for the ATE, MOTP and AMOTP, all other TP measures are not based on an
association measure. These measures only compare individual state variables of objects.
They are not suitable as individual measures for evaluating the environment perception
performance of sensor and object detection algorithm [47]. There is no transformation that
allows to associate the measures with the number of errors in perception that can possibly
lead to an accident. Thus, they cannot be considered as absolute measures and only allows
to draw relative conclusions.
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nuScenes detection score

In order to also account for the suitability of the associated objects, the nuScenes detection
score (NDS) summarizes the five TP measures and the mean average precision [48] in a
single measure.

NDS =
1

10

[
5mAP +

∑
mTP∈TP

(1−min (1,mTP ))

]
(4.8)

As the NDS incorporates the AP, we refer to the discussion of the AP concerning its inter-
pretability. We classify the NDS as a relative evaluation measure as the AP corresponds
to a relative evaluation measure. Like the AP, the NDS does not allow a conclusion about
an absolute number of dangerous scenarios per unit time or unit distance as required for
the release of automated vehicles. Taking the mean of the mAP and the five TP measures
does not allow a subdivision in the number of occurrences of the individual types of errors
from the NDS. The resulting evaluation measures become, therefore, less interpretable.
The reduction of all individual types of errors is still pursued. Thus, an increase in the
NDS is preferred and shows an overall tendency towards the reduction in any type or all
types of errors. However, an increase in the NDS does not allow a conclusion about the
way in which the object detection results improved.

Multiple object tracking accuracy

Besides MOTP, the multi object tracking accuracy (MOTA) is proposed to be used in
automated driving by [61] to also account for the consistency of the object detections in
time.
MOTA summarizes the FP rate, the FN rate and the rate of mismatches, in one measure
[61, 67, 103, 104]. While the FN and the FP rate can be in the interval of [0, 1], the rate of
mismatches lies in the interval between 0 and the maximum ratio of mismatches mmemax.
The maximum ratio of mismatches mmemax is defined by the maximum number of time
steps nt,max for which the maximum number of objects no,max is present.

mmemax =
(nt,max − 1) (no,max − 1)

nt,max · no,max
(4.9)

Therefore, the MOTA returns a number in the interval (−(1 +mmemax), 1]. From MOTA
one can derive the total number of errors in all nt time frames analog to equation (4.1)
when an estimate for the number of objects µ̂o,r,t in each frame is available. However,
the type of error remains unknown and can correspond to any of the three types. The
question that needs to be addressed is whether the error caused by a FP, a FN and or by a
mismatch can be weighted equally. Like the definition of the appropriate thresholds α for
the association as discussed in section 3.1, the correct weighting of different types of errors
remains an open question. Moreover, the number of errors is dependent on the definition of
an error that corresponds to the chosen association. Additionally, the errors are weighted
equally, independent of the distance from the ego vehicle. Thus, a mismatch of two objects
which are 50 m away from the ego vehicle is weighted the same as a mismatch of two objects

84



Figure 4.6: Example for a mismatch in the trajectories of two objects. Such a switch in
the object IDs is weighted the same as a FP and an FN error by the MOTA measure.

which are 5 m away from the ego vehicle. However, a mismatch while tracking multiple
objects is not as relevant as a FP error or a FN error. For example, one can consider two
vehicles in front of the ego vehicle on the motorway as shown in Figure 4.6. The mismatch
in the two object trajectories may not have a direct influence on the ego vehicle as, in any
way, it needs to keep a distance from the two other vehicles. However, a FP in front of the
ego vehicle may lead to an accident due to unexpected emergency braking. Based on these
considerations MOTA can only be utilized as a relative evaluation measure for comparing
object-tracking algorithms.

Average multi-object-tracking accuracy

MOTA does not consider the confidence score of the object detections which are provided
by the object detection algorithms. Thus, MOTA are evaluated for a specifically chosen
confidence threshold τ . Objects below the chosen threshold τ are neglected. In order to
obtain a measure that is independent of a fixed confidence threshold τ , [67] proposes the
AMOTP and the average multi object tracking accuracy (AMOTA). Like the AP and
the AOS, the AMOTP and the AMOTA provide an average value for the MOTP and the
MOTA for different recall levels.
AMOTA corresponds to the average value of the MOTA values obtained at different recall
levels. By taking the average of multiple MOTA values for different recall values r one
also loses interpretability in AMOTA. Like in AMOTP, the additional averaging does not
allow to specify which confidence threshold τ yields better results. However, the confidence
threshold τ may be necessary for a decision in path planning, making it necessary for the
reliability analysis. An error in the detection can cause an accident due to subsequent
incorrect planning. Besides, AMOTA faces the same difficulties as MOTA: it does not dif-
ferentiate between the three different types of errors, FP errors, FN errors and mismatches.
A small AMOTA value can be due to too many errors of one type or due to errors of all
types with a lower incidence of each individual error type. Thus, AMOTA may be used as
a relative measure but is not sufficient as an absolute measure that can be utilized for the
reliability analysis of automated vehicles.

Scaled multi-object-tracking accuracy

[67] proposes an additional measure that they introduce as scaled multi object tracking
accuracy (sMOTA) and scaled average multi object tracking accuracy (sAMOTA), respec-
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tively. Commonly used measures, in particular the AP, return a value in the interval [0, 1].
In comparison, the AMOTA reveals at most a value of 0.5 as the value of MOTA is smaller
than the recall rτ . In order to normalize the AMOTA into the interval [0, 1], the sMOTA
is introduced.

sMOTA =

max

(
0, 1−

∑
t

(
mt,τ + fpt,τ +mmet,τ

)
− (1− r) ·

∑
t gt

r · (
∑

t gt)

)
(4.10)

The notation is adapted from [61]: mt,τ , fpt,τ and mmet,τ are the number of FN, the
number of FP and the number of identity switches within a single time frame t with are
accumulated over all frames by summing them up. The numbers of FN and FP accumulated
over all time frames of a dataset are represented by capital notation.
Besides the subtraction in the nominator, the number of TP detections is used in the
denominator rather than the total number of reference truth objects as r ·

∑
t gt = r ·

(TPτ + FNτ ) = TP/ (TPτ + FNτ ) · (TP + FN) = TP. sAMOTA is the average of the
sMOTArτ values at different recall levels r analogue to the relation between AMOTA and
MOTArτ .
By normalizing a measure into the range [0, 1] the measure itself does not become easier
to interpret. The limitations of MOTA remain for sMOTA. The sum of all missed objects
is equivalent to the number of FNs FN =

∑
tmt,τ . The subtracted term in the nominator

of the fraction also corresponds to the number of FNs as

(1− rτ ) ·
∑
t

gt =

(
1− TPτ

TPτ + FNτ

)
· (TPτ + FNτ ) = FNτ .

Thus, one can reduce equation (4.10) by the term which describes the number of FPs.

sMOTA = max

(
0, 1−

∑
t

(
fpt,τ +mmet,τ

)
rτ · (

∑
t gt)

)
= max

(
0, 1− FP

TP
−
∑

t (mmet,τ )

TP

)
(4.11)

In conclusion, sMOTA proposed by [67] does not consider the FN errors.
The ratio of the number of FPs and the number of TPs can be is related to the precision.

1

1 + FPτ/TPτ
=

1

TPτ/TPτ + FPτ/TPτ

=
1

(TPτ + FPτ ) /TPτ

=
TPτ

TPτ + FPτ
= pτ

The precision is a measure that can be transformed into the number of FPs as described
in equation (4.2). Using the relation between the precision and the ratio of the number of
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FPs and the number of TPs one can further rewrite equation (4.11).

sMOTA = max

(
0, 2− 1

pτ
− mmet,τ
rτ · (

∑
t gt)

)
(4.12)

While precision allows an interpretation with respect to the automated vehicle’s safety, the
summation of the inverse of the precision and the number of identity switches only allows
a relative comparison. sMOTA should tend towards 1. However, from the sMOTA one
cannot conclude the number of individual types of errors.
Furthermore, the inverse of the precision tends towards infinity when the precision tends
to zero. However, sMOTA is limited by the lower bound of 0 due to the max function used
in equation (4.11). Cutting the value does not reduce the actual number of errors, it just
increases the value of the sMOTA measure versus the MOTA measure. However, cutting
of sMOTA at a minimum of 0 further reduces the interpretability as the error rate may be
worse than actually expected.

Higher order tracking accuracy

[100] propose the higher order tracking accuracy (HOTA) for the evaluation of the tracking
accuracy. HOTA is independent of the association threshold α which is obtained by taking
the mean of the measure HOTAα for different association thresholds α.

HOTAα =

√ ∑
c∈TPα Aα (TPi)

|TPα|+ |FNα|+ |FPα|
(4.13)

The association score Aα (TPi) is defined by [100] as the Jaccard index for the trajectory
of a TP detection TPi at a specific time point.

Aα (TPi) =
|TPAα (TPi) |

|TPAα (TPi) |+ |FNAα (TPi) |+ |FPAα (TPi) |
(4.14)

TPA, FNA and FPA are defined for the trajectory of an associated TP detection. For an
TP detection in a time frame t, TPA are the number of times the detection trajectory and
the reference trajectory are in agreement. FNA are the object instances at time frames
where the reference trajectory of the TP detection does not correspond to the detection
trajectory. FPA are the object instances at time frames where the detection trajectory of
the TP detection does not correspond to the reference trajectory.
In case only a single object is presentHOTAα reduces to the Jaccard index |TPα|

|TPα|+|FNα|+|FPα| .
HOTA does not incorporate the confidence of the object detection and tracking algorithms.
It is, therefore, required to set a defined threshold τ in case the object detection algorithm
yields confidence values.
HOTA is in the range of [0, 1] by default and does not require an artificial cut-off like
sMOTA. It indirectly incorporates identity switches/mismatches mme by the association
measure A as an identity switch either leads to an FNA and/or an FPA. The Jaccard
index, which is used for evaluation of the trajectories in HOTA, is a frequently used measure
due to its interpretation as a percentage of agreement between two sets, here the set of
reference truth objects and the set of detected objects.
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Integrating over the association threshold α, however, does not allow a conclusion about
any specific association threshold that might be best for the intended application. For this
case HOTAα can be used. In addition, HOTA and HOTAα do not allow a distinction
between errors in tracking and errors in detection. A lower HOTA value indicates that
either there are more FP or FN detections or the detection might be good but the tracking
is quite bad, leading to a low value of A. As a result, the suitable measure depends on
the specific use case and cannot be summarized in HOTA. For automated vehicles, the
detection of the surrounding objects may be more relevant for safe driving than proper
tracking over time [100]. For automated driving the weighting of the tracking in HOTA
is not necessary for the use case of automated driving. The egocentric perspective of an
automated vehicle is also not considered in the HOTA. A detection error for an object
that is far away is, therefore, weighted the same way as a detection error for an object
right in front of the ego vehicle. While an error in the detection of a faraway object may
not be relevant to the automated vehicle, an error for a nearby object may be crucial.

4.3 Combining association measure and evaluation measure

The evaluation of a dataset can be performed using any combination of an association
measure and an evaluation measure. Any of the 7 association measures from Table 3.1
could be combined with any of the 13 evaluation measures that are listed in Table 4.1.
Based on the same association measure, all evaluation measures are in agreement in case
the object detection algorithm performs perfectly. However, for imperfect object detection
algorithms, the individual errors are weighted differently by the different measures.
The evaluation should be interpretable such that one can relate the resulting value of the
evaluation measure to the human error rate which is a common census in the discussion
about the release of automated vehicles [4, 20]. In case one cannot interpret either the as-
sociation measure or the evaluation measure or both, the result remains non-interpretable.
As an example, one can consider the combination of the IoU with a threshold of α = 0.7

in combination with the precision as an evaluation measure. In case a precision close to
one is observed, one can conclude that nearly every detection corresponds to a real object
within the limits of the IoU given by the threshold of α = 0.7. Here, the higher the value,
the better. However, even for the limit that the precision reaches the value of one, one
cannot ensure that none of the situations from Figure 3.2 occur. Especially in the case of
large objects like trucks, a crucial deviation in the detection may be observed while the
detection is still classified as correct detection. The release of automated vehicles requires
to account also for such corner cases. By using the IoU in the evaluation, corner cases as
shown in Figure 3.2 can occur while the evaluation measure indicates perfect agreement.
The example demonstrates that the selection of the association measure plays an important
role in the interpretability of the resulting evaluation.
The resulting evaluation can also be limited by the chosen evaluation measure. As an
example consider the AP as an evaluation measure in combination with the IoU with a
threshold of α = 0.7 as association measure. A higher AP value is beneficial as the AP
corresponds to the integral of one conditional probability, precision, depending on another
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Figure 4.7: Example for a situation where all evaluation measures are not capable of
indicating the misdetection when using the IoU with an association threshold of α = 0.7
as association measure. The reference truth objects are shown in green and the detections
are shown in red with a dashed contour. The ego vehicle is shown in black.

conditional probability, recall. The higher both conditional probabilities are, the better,
thus it is aimed at a value close to one, meaning both conditional probabilities are high
for all confidence values τ . However, the integral of precision in dependence on recall does
not specify a value that can be interpreted in the sense that the result can be compared
with the rate of accidents in human driving. In the previous example, one is able to relate
the precision to the number of errors within the limitations of the IoU with a threshold
of α = 0.7. For the AP one cannot conclude the number of errors per unit time or per
distance even within the limitations defined by the IoU with the threshold of α = 0.7 as
the AP itself cannot be referred to a number of errors as the number of errors is dependent
on a chosen confidence threshold τ . The AP, however, averages over all precision values
in dependence of recall which are obtained for different confidence values τ .
Figure 4.7 visualizes an example scenario for illustration purposes of the MOTP combined
with the IoU. The evaluated value for MOTP is equal to 1.125 m. 1.125 m may be a good
value for faraway objects. The distance and the associated criticality of the deviation are,
however, not included in MOTP. Moreover, 1.125 m is just an average value. As shown in
the example scenario from Figure 4.7 the deviation between the detection and the reference
truth object can be much larger (4.5 m in this example). Especially, for close objects this
can be critical as demonstrated in Figure 4.7. Similar examples can be found in any other
combination of association and evaluation measures.
An introduced threshold in the evaluation is usually difficult to interpret as the selection
of a threshold is often associated based on the use case, e.g., parking assistance where
a false negative may be more acceptable than a continuous warning by the assistance
system. In order to overcome the need for a specific threshold, a common approach is
to average over a range of thresholds. However, for a specific use case, a threshold is
usually required and an improved mean does not necessarily result in a better detection
for a specific use case. Therefore, taking the mean value over a range of thresholds rather
reduces the interpretability of evaluation measures. Almost all measures do not correspond
to an absolute measure that could be compared with human driving.
A differentiation between the object-centric perspective and the ego-centric perspective
is introduced in [64]. The distance-weighted average precision for the evaluation of ob-
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ject detection algorithms in automated driving is introduced in [64] to account for the
criticality of detection errors of nearby objects and objects that are far away. Previous
object detection evaluations in image processing partition the objects in small, medium
and large-sized objects to compare the performance of the algorithms for different object
sizes which usually correlates with the distance [51].
So far, distance-weighting has only been introduced in the evaluation measure. The
distance-weighting in the evaluation measure does not allow to differentiate between many
detection errors in the far distance or very few detection errors nearby while the latter could
be of more importance. Instead of introducing distance-weighting in the evaluation mea-
sure, one could also use an association measure where the acceptable tolerance increases
with the distance. Besides the distance-weighted error definition presented in sections 3.4
and 3.5.5, one could for instance adjust the threshold for the IoU linearly with the distance.
Similar attempts for the IoU are presented in [65]. An introduction of distance-weighting
may account for the relevance of objects at different distances and, thus, may lead to a
more intuitive evaluation whose values can be better interpreted.
In conclusion, the interpretability is lost or limited by either the result of the association
measure, the evaluation measure, or both. If either the association measure or the evalua-
tion measure is not interpretable, the overall evaluation is not interpretable, meaning that
one cannot transfer it into a number of errors per unit time or per distance.

4.4 Conclusion

Firstly, the chapter emphasizes the evaluation of perception data based on object classi-
fications as TP, FN, and FP. It acknowledges that not all FN and FP instances result
in accidents, particularly when the trajectories of the other traffic participants do not in-
tersect with that of the ego vehicle. To address this, this chapter analyzes the relation
between scenario-based testing and a statistical evaluation of the environment perception
of automated vehicles.
Furthermore, an analysis of existing evaluation measures is conducted. These measures are
categorized as either relative or absolute evaluation measures. Absolute association mea-
sures enable the calculation of an error rate, which can be compared against the human
failure rate of e.g. 1.52× 10−9 km−1 [5, 6]. In contrast, relative measures only facili-
tate comparisons between different object detection algorithms without defining a safety
threshold. An absolute measure is, therefore, a requirement to define what sensor system
is sufficient for automated driving.
Only recall and precision possess the properties of an absolute measure. Other evaluation
measures average over different types of errors, making the interpretation of their results
challenging and limiting them to relative comparisons between object detections.
Furthermore, the interpretability of their values relies heavily on the error definition in-
troduced by the association measure used. An ill-defined association measure may yield
a favorable average performance despite the possibility of poor performance in specific
regions within the field of view. This can be especially problematic for nearby detections.
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To summarize, the conclusion encompasses the safety considerations of perception errors
that do not impact the vehicle’s driving behavior, an inventory of existing evaluation
measures classified into absolute and relative association measures, and an analysis of
the combination of evaluation measures and association measures for the performance
evaluation of environment perception.
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5 Assessing the perception reliabilities
without reference truth

An approach to learning perception sensor reliabilities by exploiting the sensor redundancy
in order to avoid the approval trap is proposed by [16]. According to [16], one can avoid
the requirement for a reference truth by utilizing multiple redundant sensors. A summary
of the model from [16] can be found in section 2.5.2. [16] did not deploy their model on
real-world data. This work tests the model on real-world datasets with object data using
two different association measures.
The model from [16] requires a binary representation of the surrounding: either an object
is present or no object is present. Object data, however, is not binary. A subsequent
question throughout the thesis project was, thus, how to extend the model in a way that
also incorporates other parameters.
The chapter deals with:

• An application of the model from [16] in combination with the grid-based association
from section 3.2 to estimate the sensor reliabilities without a reference truth.

• An application of the model from [16] in combination with the trajectory-clustering-
based association from section 3.3 on a different dataset with more correlated data.

• An introduction of a model that also operates on non-binary data to also incorpo-
rate the confidence values that are provided by object detection algorithms in the
evaluation and estimation of sensor reliabilities.

5.1 Learning the sensor reliabilities using the grid-based as-
sociation

This section provides a first approach to learning the sensor reliabilities without a reference
truth from object-data-based on the model which is summarized in section 2.5.2. The model
was applied to a real-world dataset recorded for automated driving using object data. In
order to build upon the required binary format of an object either being present or not, the
grid-based approach from section 3.2 is applied to the dataset. The validation procedure,
the results, and a discussion are summarized in the following sections. The work from this
section is taken from our publication [70].
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5.1.1 Validation

This section is taken from our publication [70] (©SAE International).

Using the reference truth, an estimate for the sensor reliabilities consisting of the PODm

and the PFAm for each sensor m is derived, as well as the distribution of Y , which repre-
sents all sensors including their dependence as described in section 2.5.2. The conditional
distributions of Y derived from the reference truth are denoted by pref (y | θ, O = 1) and
pref (y | θ, O = 0) in the following. pref (y | θ) describes the distribution of the 2M sensor
system outputs, also referred to as reference distribution, which is unconditional on the
objects state. We approach the validation step-by-step as follows:

(I) We learn only the Dunnet-Sobel coefficients based on the reference truth data to
assess whether the proposed dependence model can reflect the true dependence.

(II) We learn only the Dunnet-Sobel coefficients without reference truth data to assess
whether the model stays persistent with the reference truth when the reference truth
data is unknown. The Markov Chain Monte Carlo (MCMC) starting values are set
to the values derived from (I).

(III) We learn all parameters of the dependent model without the reference truth data
to assess whether the model finds the right values for the sensor reliabilities. The
MCMC starting values are set to the values derived from the reference truth for
pobj , the PODm values and the PFAm values. The MCMC starting values for the
Dunnet-Sobel coefficients are set to the values derived from (II).

(IV) We learn all parameters of the dependent model without the reference truth data.
In comparison to (III) we set the MCMC starting values to the values obtained from
the expectation maximization (EM) algorithm as explained in [16] to assess whether
the sensor reliabilities can be learned when no prior knowledge is provided to the
model.

Step (I) is included to verify that the model can in principle describe the data. The
remaining steps are included to verify if and how well the proposed statistical models and
MCMC algorithms are able to learn the sensor reliabilities without reference truth data.
The NUTS algorithm is used to generate the Markov chains (MCs) [105, 106]. In every
validation step 50 MCs with 500 tune steps and an additional 500 samples are generated
each. A set of model parameters is obtained per chain by taking the mean value of the
last 500 draws in analogy. The set of model parameters that yield the highest likelihood is
used for the comparison with the reference values derived from the reference truth data.

5.1.2 Results

This section is taken from our publication [70] (©SAE International).
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Model MSE Log-likelihood
Independent (O=1) 1.3588e-02 -2306634
Dependent (O=1) 3.5970e-04 -2232955
Independent (O=0) 1.2412e-05 -46653726
Dependent (O=0) 2.0699e-08 -45214280
Independent 1.4753e-05 -50028013
Dependent 3.1989e-08 -49542497

Table 5.1: Mean squared error and the logarithm of the likelihood for the PMF s from
Figure 5.1 and Figure 5.2 (reprinted with permission from [70], ©SAE International).

Validation step (I)

Figure 5.1 (a) shows the PMF for the independent model pIM and the dependent model
pDM in comparison to the reference PMF pref defined by the reference truth data for the
case that an object is present p (y | θ, O = 1) and Figure 5.1 (b) in case that no object is
present p (y | θ, O = 0). Figure 5.2 shows the resulting PMF p (y | θ) unconditional on
the fact whether an object is present or not which is obtained by entering the conditional
distributions from Figure 5.1 described by equations (2.5) and (2.6) of the independent
model/equations (2.7) and (2.8) of the dependent model into equation (2.4). The three
curves show the resulting PMF using the independent model, the dependent model and
the output of the sensor system. The mean squared error of the PMF based on the in-
dependent model and the PMF based on the dependent model relative to the reference
distributions conditional/unconditional on the presence/ absence of an object as well as
the log-likelihood of the two models are listed in Table 5.1. The mean squared error (MSE)
provides a measure for how well the resulting distributions of the independent model and
the dependent model approximate the reference distributions based on the reference truth
pref (y | θ, O = 1), pref (y | θ, O = 0) and pref (y | θ), respectively. As expected from Fig-
ure 5.1 and Figure 5.2, the MSE is much larger in the case of the independent model for the
conditional PMF s as well as the unconditional PMF compared to the dependent model.
Figure 5.1 (b) shows that in the case of the independent model, the fitted distribution is
in agreement with the reference truth distribution only for some sensor system outputs.
These sensor system outputs correspond to the most frequently recorded sensor system
outputs when either no sensor recognized an object (index 1) or when only a single sensor
recognized an object (indices 2, 3, 5, 9 and 17).
We also point out that the MSE for the dependent model distribution pDM (y | θDM , o = 1)

conditional on an object being present is much larger than the MSE for the distribu-
tion conditional on no object being present. Figure 5.1 also shows that the distribution
pref (y | θ, O = 0) conditional on no object being present is better approximated by fitting
the conditional distribution of the dependent model pDM (y | θDM , O = 0) than the distri-
bution pref (y | θ, O = 1) conditional on an object being present. This may be because the
reference truth data contains fewer cases with an object being present compared to cases
without an object being present in the region of interest of the rectangle with two-by-two
meters squared. Therefore, the data without an object is better approximated by the dis-
tribution of the dependent model. Data balancing could reduce this effect in this validation
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Figure 5.1: PMF conditional (a) on the case that an object is present p (y | θ, O = 1)
and (b) on the case that no object is present p (y | θ, O = 0). The three PMF s correspond
to the independent model, the dependent model and the reference distribution. The pa-
rameters of the models are learned from the data with reference truth. In case no object
is present the independent model yields very small probabilities for lots of sensor system
outputs. It becomes clear that these low values do not properly represent the reference
distribution. Therefore, the distribution of the independent model is cut off so that the dis-
tribution of the dependent model and the reference distribution is better visible (reprinted
with permission from [70], ©SAE International).

step. However, [16] proposes a model to learn the sensor reliabilities without a reference
truth, as performed in validation step (IV). Data balancing is not possible without the
reference truth; hence this is also not implemented here. In summary, the independent
model’s MSE is greater across all three distributions - the two distributions conditional on
the fact that an object is present or not and the distribution unconditional on the objects
state as seen in Table 5.1. The likelihood is always larger for the dependent model. This
is explained by the fact that the independent model is equivalent to the dependent model
while setting all the Dunnet-Sobel coefficients to zero. The sensors, however, are most
likely statistically dependent and, therefore, the Dunnet-Sobel coefficient will not be equal
to zero. Thus, by fitting the Dunnet-Sobel coefficients, the reference distributions can be
better represented and the likelihood of the model is increased. It can be concluded that
the independent model does not properly represent the reference distribution, even though
the parameters are derived from the reference truth data. The independent model does
not fit the reference distribution because it does not account for statistical dependence
between the sensors. However, the sensors are most likely influenced by environment con-
ditions such as weather and light conditions, which leads to a statistical dependence of the
sensor outputs. Therefore, the results of the independent model are not further considered
in subsequent validation steps while the dependent model is studied in further detail.
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Figure 5.2: PMF p (y | θ) unconditional on the fact whether an object is present or not.
The parameters correspond to the parameters of the PMF in Figure 5.1. The PMF is
obtained using equation (2.4) (reprinted with permission from [70], ©SAE International).

Figure 5.3: Estimated PMF p (y | θ). The PMF from the dependent model with fitted
Dunnet-Sobel coefficients λPOD,m and λPFA,m is compared to the reference PMF . The
sensor reliabilities PODm and PFAm as well as the probability of an object being present
are derived using the reference truth data (reprinted with permission from [70], ©SAE
International).

Validation step (II)

Figure 5.3 shows the results when fitting the correlation parameters λPOD,m and λPFA,m
of the dependent model without reference truth data. The two curves correspond to the
PMF pref (y | θ) of all observed sensor system outputs y from the sensor system and
the PMF of the dependent model pDM (y | θDM ). The curve of the dependent model
approximates the PMF of the observed sensor system outputs closely.
Figure 5.4 (a) and (b) show the conditional probabilities p (y | θ, O = 1) and p (y | θ, O = 0),
respectively, which are obtained by filling in the sensor reliabilities PODm and PFAm de-
rived from the reference truth data and the fitted Dunnet-Sobel coefficients λPOD and
λPFA into equation (2.7) and (2.8), respectively. In comparison to the conditional prob-
abilities from Figure 5.1 (a) and (b), where the λPOD,m and λPFA,m were fitted based
on the reference truth data, the curves deviate stronger from the reference distribution,
especially, for the case when an object is present in Figure 5.4 (a) it is clearly visible.
The corresponding MSE and the log-likelihood are listed in Table 5.2. While the MSE
values of the conditional PMF s are increased compared to the conditional PMF s from
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Figure 5.4: PMF conditional (a) on the case that an object is present p (y | θ, O = 1) and
(b) on the case that no object is present p (y | θ, O = 0). The parameters are derived in
analogy to the parameters of the PMF in Figure 5.3 (reprinted with permission from [70],
©SAE International).

Table 5.1, the MSE of the unconditional PMF pDM (y | θDM ) is decreased. Moreover, the
MSE of the unconditional distribution pDM (y | θDM ) is smaller compared to the MSE of
the PMF conditional on the fact that no object is present pDM (y | θDM , O = 0) in Table
5.2 while in Table 5.1 the MSE of the unconditional distribution pDM (y | θDM ) is larger
than the PMF conditional on the fact that no object is present pDM (y | θDM , O = 0).
It can be concluded that in case all Dunnet-Sobel coefficients are fitted based on data
without reference truth, the resulting unconditional distribution of the dependent model
approximates the reference distribution better as seen in Figure 5.3 as the number of free
parameters is increased to fit the distribution. A quantitative confirmation is given by the
decrease of the MSE from Table 5.2 versus the MSE from Table 5.1 for the distribution
pDM (y | θDM ) unconditional on the state of the object. While the distribution uncon-
ditional on the state of the object is fitted better, however, the conditional distributions
pDM (y | θDM , O = 0) and pDM (y | θDM , O = 1) are no longer that well described by the
fitted parameters. The parameters do not represent the true correlation of the sensors
perfectly. Thus, even though the superposition of the two conditional distributions leads
to a better approximation of the distribution unconditional on the state of the object,
one conditional distribution is overestimated while the other conditional distribution is
underestimated for specific sensor system outputs.

Validation step (III)

Figure 5.5 shows the resulting distribution pDM (y | θDM ) from the dependent model when
fitting all parameters without reference truth data. Figure 5.6 shows the correspond-
ing distributions pDM (y | θDM , O = 0) and pDM (y | θDM , O = 1) conditional on the fact
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Model MSE Log-likelihood
Dependent (O=1) 2.6615e-03 -2251719
Dependent (O=0) 2.8772e-08 -45220179
Dependent 2.6371e-08 -49536819

Table 5.2: Mean squared error and the logarithm of the likelihood for the PMF s of Figure
5.3 and Figure 5.4 (reprinted with permission from [70], ©SAE International).

Figure 5.5: PMF p (y | θ) unconditional on the fact whether an object is present or not.
The two curves represent the reference distribution and the resulting PMF p (y | θ) when
fitting all parameters providing the values from validation step (II) as starting values to
the MCMCs (reprinted with permission from [70], ©SAE International).

whether an object is present or not. It is visible that the fitted distributions do not rep-
resent the reference distribution perfectly. Table 5.3 shows the corresponding values for
the MSE and the log-likelihood. While the MSE is decreased for the unconditional distri-
bution pDM (y | θDM ) by an order of magnitude compared to the values from validation
step (II), the MSE for the distributions pDM (y | θDM , O = 0) and pDM (y | θDM , O = 1)

conditional on the state of the object is much larger compared to the values in Table 5.2.
It can be summarized that when fitting all parameters, the dependent model better fits the
reference distribution. However, the conditional distributions from Figure 5.6 are fitted
worse compared to the conditional distributions derived by using the reference truth data
as seen in Figure 5.3.
Figure 5.7 shows the histogram for PODm and PFAm of the MC. The PODm and PFAm
derived by using the reference truth data are shown by the vertical line. It can be seen that
the PODm and PFAm values converge at values other than the ones derived by using the
reference truth. However, the values are of the same order of magnitude. The values in
Figure 5.7 are normalized with respect to the sensor reliabilities derived from the reference
truth.

Model MSE Log-likelihood
Dependent (O=1) 2.2142e-02 -2307737
Dependent (O=0) 1.0177e-05 -45688336
Dependent 1.4296e-09 -49522532

Table 5.3: Mean squared error and the logarithm of the likelihood for the PMF s of Figure
5.5 and Figure 5.6 (reprinted with permission from [70], ©SAE International).
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Figure 5.6: PMF conditional (a) on the case that an object is present p (y | θ, O = 1)
and (b) on the case that no object is present p (y | θ, O = 0). All model parameters are
fitted without providing the reference truth (reprinted with permission from [70], ©SAE
International).

Validation step (IV)

Figure 5.8 shows the result when fitting the dependent model to the data without reference
truth and neither deriving the starting values of the MCMCs from the reference truth data
nor from previous validation steps. The distribution pDM (y | θDM ) of the dependent
model approximates the distribution of the measured sensor system outputs pref (Y | θ)

rather well. Compared to Figure 5.5 there is hardly any difference visible. The conditional
distributions pDM (y | θDM , O = 1) and pDM (y | θDM , O = 0) from Figure 5.9 appears to
be identical to the conditional distributions from Figure 5.6.
Figure 5.10 shows a histogram of the learned sensor reliabilities when starting the MCMC
with the values obtained by the EM algorithm with the independent model. The values
are normalized by dividing through the value obtained with the reference truth data. The
reference truth is, thus, represented by the vertical line at (PODm)/(POD(m,GT )) = 1

and (PFAm)/(PFA(m,GT )) = 1, respectively. The ranges of the x-axis and the width
of the histogram bars are chosen to be the same as in Figure 5.7. It is visible that the
learned values for the PODm and PFAm from Figure 5.10 converge to similar values as
in Figure 5.7. The maximum deviation occurs in the case of the PFA1 value of about
50 % relative to the value derived from the reference truth. Table 5.4 shows the resulting
MSE and log-likelihood corresponding to the fitted values. The values for the MSE and
the log-likelihood both for the conditional and the unconditional distributions confirm that
the learned values are nearly the same as observed in validation step (III).
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Figure 5.7: Histogram of the learned distribution for (a) the probabilities of detection
PODm and (b) the probability of false alarm PFAm for the five sensors. Here, the starting
values for the MCMCs are derived from the reference truth and the values from validation
step (II). The values are normalized by dividing through the value obtained with the
reference truth data (reprinted with permission from [70], ©SAE International).

Model MSE Log-likelihood
Dependent (O=1) 2.2148e-02 -2307774
Dependent (O=0) 1.0164e-05 -45687581
Dependent 1.4280e-09 -49522532

Table 5.4: Mean squared error and the logarithm of the likelihood for the PMF s of Figure
5.8 and Figure 5.9. The parameters of the distribution are learned starting from the
result of the EM algorithm applied on the independent model (reprinted with permission
from [70], ©SAE International).
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Figure 5.8: PMF p (y | θ) unconditional on the fact whether an object is present or
not showing the resulting distribution when using the dependent model pDM (y | θDM )
relative to the reference distribution pref (y | θ) of the occurrences of the sensor system
output with index y =

[
1, . . . , 2M

]
. The MCMC starting values for learning the parameters

of the dependent model are obtained by applying the EM algorithm on the independent
model (reprinted with permission from [70], ©SAE International).

5.1.3 Discussion

This section is taken from our publication [70] (©SAE International).

For validation, the statistical model from [16] to learn the sensor reliabilities without
reference truth data was applied to a real-world data set. It is of interest, whether the model
can properly represent real-world data. Another concern is whether the fitted parameters
of the model are in agreement with parameters derived from reference truth data, which
correspond to the sensor reliabilities. Plotting the distribution of the independent model as
shown in Figure 5.1 and Figure 5.2 with the parameters derived from the reference truth
data clearly shows that the assumption of statistical independence is not applicable for
real-world data. The independent model may be useable to obtain a rough approximation
for the order of magnitude of the sensor reliabilities. However, the independent model will
not be a good model for a more precise analysis of the sensor reliabilities. In comparison to
the independent model, the dependent model accounts for a correlation between the sensors
with the integrated Dunnet-Sobel coefficients. With these additional free parameters in
the dependent model, the distribution fits well with the conditional distributions which are
based on the fact that an object is either present or not and which are shown in Figure 5.1.
From the second validation step, however, we conclude that the Dunnet-Sobel coefficients
may not represent the true correlation of the sensors perfectly when the reference truth is
unknown. Therefore, when fitting all parameters of the dependent model, the probabilities
of detection PODm, the probabilities of false alarm PFAm and the probability of an object
being present pobj cannot be learned exactly without reference truth.
In the work of section 5.1, we used a very basic association. This association method
ignores that an object is recognized correctly when it was observed just at the border of a
rectangle while the reference truth is just on the other side of the rectangle’s border. This
association is not suited for a practical evaluation of sensor reliabilities because it is very
sensitive to small errors in position, decreasing the probability of detection PODm and
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Figure 5.9: PMF conditional (a) on the case that an object is present p (y | θ, O = 1) and
(b) on the case that no object is present p (y | θ, O = 0). The parameters are derived in
analogy to the parameters of the PMF in Figure 5.8. The parameters are learned by setting
the MCMC starting values to the result of the EM algorithm applied on the independent
model as described in [16] (reprinted with permission from [70], ©SAE International).

increasing the probability of false alarm PFAm of the sensors, even though in these cases
the automated driving functionality would not have a problem to find a safe trajectory.
However, our intention in this paper is to investigate how well the model fits real-world
data, and not to make an absolute statement about sensor reliability. Other association
methods will lead to an increase in the number of situations in which more than one sensor
is recognizing an object, also leading to a higher correlation between the sensor data. As
discussed in [16], an increase in sensor correlations can increase the credible interval of
the learned parameters. To counteract the increased credible interval, more data might be
necessary.
The behavior when fitting the model might be explained by the following two reasons:
First of all, the available data was limited to about 1.5 million frames here. Even though
the data was increased by aggregating the data from multiple locations to learn an average
value of the parameters of the dependent model, subsequent time frames are statistically
dependent reducing the effective sample size by about two orders of magnitude compared
to the actual number of frames. Therefore, the model might show that it is more confident
with the data that it found the right values than it is supposed to be. When having much
more data, which is achievable with large fleets of vehicles, this effect may average out and,
in case this is the reason for the deviation of the model from the conditional distributions
derived with the reference truth, the model should finally learn the true values for the
sensor reliabilities. The influence of the amount of data has a larger effect on the data
when an object is present due to the fact that the number of frames with an object at a
certain location, here specified by a two-by-two meter squared rectangle, is much smaller
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Figure 5.10: Histogram of the learned distribution for (a) the probabilities of detection
PODm and (b) the probability of false alarm PFAm for the five sensors. Here, when
deriving the starting values of the MCs by using the EM algorithm applied to the inde-
pendent model. The values are normalized by dividing through the value obtained with
the reference truth data (reprinted with permission from [70], ©SAE International).

than the number of frames without an object. Second, even though it is shown in this paper
that the model can very well approximate the conditional distributions when just fitting
the correlation parameters described by the Dunnet-Sobel coefficients with the reference
truth data, when fitting all parameters, the fitted parameters do not correspond to the
actual parameters derived from the reference truth data. The distributions for the sensor
reliabilities derived from the MCs in validation step (III) and (IV) do not intersect with
the sensor reliabilities derived from the reference truth.
When choosing the starting parameters of the MCMCs independent of the reference truth
as performed in validation step (IV), the model converges to the same values fitted with
providing starting values based derived from the reference truth data. Even though being
different from the values for the sensor reliabilities derived from the reference truth data,
these values are in the same order of magnitude with a maximum deviation of about 50 %

compared to the values derived from the reference truth data. The resulting values may,
therefore, be still usable as an approximation for the sensor reliabilities even if the values
do not fit perfectly. However, the fitted parameters derived from the MCMCs do not
always end up at the same values. Not all MCMCs of validation step (IV) end up at
the values of validation step (III). Here, 50 MCs were generated to obtain this result. At
least one MCMC of validation step (IV) ended with the same values as the best matching
chain of validation step (III). However, it also happens that different values are found as it
appears that the likelihood has many different maxima. As seen in validation step (IV) the
maxima found by the MCMC may provide quite a decent estimate of the sensor reliabilities,
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which yield sensor reliabilities is in the same order of magnitude as those derived from the
reference truth data.

5.2 Learning the sensor reliabilities using the trajectory-clustering-
based association

We repeat the evaluation from section 5.1 with the Waymo dataset [1]. The Waymo dataset
does not provide data of five different sensors as required by the model in [16]. In order to
obtain the data of five redundant sensors, we divided the LiDAR point cloud into equally
sized subsets by using only every fifth horizontal line for one sensor. This results in strongly
correlated object data sets which are obtained by applying the PointRCNN on each point
cloud subset [13].
In order to associate the obtained object lists, this work utilizes the association measure
introduced in 3.3. For comparison purposes with the reference truth, the reference truth
object lists were included in the association.
The following sections summarize the validation procedure, the results and a discussion.
The sections are taken from our contribution [57].

5.2.1 Validation

This section is taken from our publication [57] (©SAE International).

In this study, we first investigate if the dependent model can describe the binarized sensor
data with five sensors derived from the Waymo dataset after the application of the object
detection algorithm and the transformation into the binary format. We then evaluate if
the correct values for the PODm and the PFAm can be learned without reference truth
when utilizing the dependent model from equations (2.4), (2.7) and (2.8). We approach
the validation of the model in two steps.
(I) we validate whether the sensor reliabilities derived from the reference truth can describe
the measured distribution of the sensor system outputs. We derive the PODm values, the
PFAm values and pobj using the reference truth and enter these values into the model. We
compare the obtained model distribution with the measured distribution of the 25 = 32

possible sensor system outputs for M = 5 sensors. The equivalent correlation coefficients
in the Gaussian space are obtained by the Nataf transformation [107]:

ρS,ij =

∫ ∞
−∞

∫ ∞
−∞

(
F−1 (Φ (yi))− µi

σi

)
·
(
F−1 (Φ (yj))− µj

σj

)
· ϕ (yi, yj , ρij) dyidyj (5.1)

Here, ρS,ij corresponds to the correlation coefficient in the binary space of the sensor
detections; ρij is the equivalent correlation coefficient in the Gaussian space; ϕ (yi, yj , ρij)

is the bivariate normal distribution with correlation coefficient ρij ; Φ (y) is the standard
normal CDF; F−1 (u) is the inverse CDF of the Bernoulli distribution with the parameter
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p being POD for the distribution conditional on the presence of an object and PFA for
the distribution conditional on the fact that no object is present.

F−1 (um) =

0, if um ≤ (1− p) with p = PODm, PFAm

1, otherwise
(5.2)

Equation (5.1) is solved with a root-finding algorithm and a numerical evaluation of the
integral. The Dunnet-Sobel coefficients λm from equation (2.9) are approximated by the
square root of the mean of all correlation parameters. We justify this approximation by
the fact that all sensors are derived from the LiDAR-Data and, therefore, are expected to
all have similar correlation coefficients.
In addition to the dependent model, we also utilize the independent model in validation
step (I) to show the influence of lacking the dependence for the considered dataset.
In validation step (II) we validate the model’s ability to estimate the sensor reliabilities
without a reference truth. We provide random initial values to the optimization algorithm
for finding the MLE. We compare the results with the reference from the previous valida-
tion step to see whether the resulting parameter estimates tend towards the values derived
from the reference truth.
In comparison to [16], we used an optimizer to find the MLE instead of applying a
Hamiltonian-based MCMC to find a distribution of the sensor reliabilities. The initially
used Hamiltonian-based MCMC did not converge when using the Waymo dataset.
As optimizer for finding the MLE we use the SciPy [108] implementation of Powell’s op-
timization [109]. The results are shown for grids with a chosen rectangle size of 0.5 m by
0.5 m and 2 m by 2 m.

5.2.2 Results

This section is taken from our publication [57] (©SAE International).

Figure 5.11 shows the reference distributions for the 32 possible sensor system outputs from
the Waymo dataset for chosen grid cell sizes of 0.5 m x 0.5 m and 2 m x 2 m. The total
number of present objects in the considered FOV was 222503 and 269924, respectively.
Overall, the data of 158081 time-frames is used for the evaluation in this paper.
Table 5.5 summarizes the PODm and the PFAm derived from the reference truth. The
probability of an object being present is pobj = 1.23× 10−3 when based on a grid with a
cell size of 0.5 m x 0.5 m and pobj = 1.99× 10−2 when based on a grid with a cell size of
2 m x 2 m for the Waymo dataset when considering the FOV as described in section 3.3.

Validation step (I) - 0.5 m x 0.5 m

Figure 5.12 shows the resulting conditional and unconditional distributions where the pa-
rameters are derived from the reference truth and are inserted into the independent and
the dependent model. The curve of the independent model is fully described by the co-
efficients of Table 5.5 together with the probability of an object being present pobj . As
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Figure 5.11: Reference distributions of the 32 possible sensor system outputs obtained by
using the labeled reference data. Figure (a) shows the distribution p (y | O = 1) conditional
on the fact that an object is present. Figure (b) shows the distribution p (y | O = 0)
conditional on the fact that no object is present. Figure (c) shows the distribution p (y)
unconditional on the presence or absence of an object. The distributions are based on
a discretization of the FOV with two different cell sizes: 0.5 m by 0.5 m and 2 m by 2 m
(reprinted with permission from [57], ©SAE International).

Sensor PODm PFAm Grid size
0 0.795 0.000064
1 0.800 0.000066
2 0.800 0.000068 0.5 m x 0.5 m
3 0.799 0.000067
4 0.798 0.000067
0 0.818 0.00090
1 0.823 0.00096
2 0.824 0.00099 2 m x 2 m
3 0.823 0.00099
4 0.822 0.00099

Table 5.5: The PODm values and the PFAm values derived from the reference truth
(reprinted with permission from [57], ©SAE International).

106



Figure 5.12: Validation step (I) - 0.5 m x 0.5 m: Resulting distributions of the system
output when applying the reference values for the sensor reliabilities to the independent
and the dependent model. Figure (a) shows the distribution p (y | O = 1) conditional on the
fact that an object is present. Figure (b) shows the distribution p (y | O = 0) conditional
on the fact that no object is present. Figure (c) shows the distribution p (y) unconditional
on the presence or absence of an object (reprinted with permission from [57], ©SAE
International).

expected, the independent model cannot properly represent the reference distribution. In
case an object is present, the independent model tends to underestimate the number of
sensor system outputs where one or no sensor detects an object while overestimating the
cases with more than one sensor detecting the object. In case no object is present, the
opposite is observed.
In comparison to the independent model, the dependent model can approximate the dis-
tributions much better. The derived values for the Dunnet-Sobel coefficients are λo=1,m =

0.99 and λo=0,m = 0.97. The relative differences in the matrix elements of the low-rank
Dunnet-Sobel class matrix defined by equation (2.9) compared to the full-rank correlation
matrix obtained in equation (5.1) are smaller than 0.5 %.
The log-likelihood as well as the Kulback-Leibler-divergences derived from the models are
listed in Table 5.6 for a quantitative comparison. The lower log-likelihood of the indepen-
dent model compared to the dependent model is in agreement with the fit from Figure 5.12
and highlights that the dependent model is superior. The smaller KL-divergences of the
dependent model also indicate a closer fit.
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Distribution Log-likelihood KL-divergence
pIM (yn | θ, O = 1) -5.589e+05 1.517e+00
pIM (yn | θ, O = 0) -6.372e+05 1.483e-03

pIM (yn | θ) -2.074e+06 8.664e-04
pDM (yn | θ, O = 1) -2.217e+05 2.024e-03
pDM (yn | θ, O = 0) -3.704e+05 4.493e-06

pDM (yn | θ) -1.919e+06 4.211e-06

Table 5.6: Validation step (I) - 0.5 m x 0.5 m: Log-likelihood in case when an object is
present, in case when no object is present and in any case independent whether an object is
present or not using both, the independent and the dependent model. In addition, the table
lists the Kulback-Leibler-divergence between the model distributions and the corresponding
reference distributions (reprinted with permission from [57], ©SAE International).

Validation step (II) - 0.5 m x 0.5 m

Figure 5.13 shows the resulting distributions from validation step (II).
The distribution conditional on the absence of an object in Figure 5.13 (b) and the dis-
tribution unconditional on the presence or absence of an object in Figure 5.13 (c) are in
agreement with the reference distribution.
Table 5.7 summarizes the fitted parameters θ (except for pobj) from validation step (II).
The probability that an object is present was estimated by the dependent model to be
pobj = 1.33× 10−3, larger than the reference value. All probabilities of missing an object
1− PODm and all probabilities of false PFAm are in the same order of magnitude as the
reference PODm and the reference PFAm from Table 5.5. The PODm and most PFAm
are underestimated while the PFA0 is overestimated. The Dunnet-Sobel coefficients de-
viate by up to 0.8 % in case an object is present and by up to 3.2 % in case no object is
present.
The log-likelihood and the KL-divergence are listed in Table 5.8. In comparison to the
previous validation step, the log-likelihood is smaller for the conditional distributions and
the unconditional distribution. The opposite is observed for the KL-divergence. In the
case of the unconditional distribution, the deviation in the log-likelihood is in the order of
1× 102.

Sensor/Index PODm PFAm λO=1,m λO=0,m

0 0.723 0.000087 0.9991 0.9884
1 0.754 0.000053 0.9855 0.9924
2 0.756 0.000053 0.9877 0.9802
3 0.751 0.000053 0.9970 0.9420
4 0.746 0.000053 0.9961 0.9529

Table 5.7: Validation step (II) - 0.5 m x 0.5 m: fitted parameters θ: PODm values,
PFAm values and the Dunnet-Sobel coefficients λO=1,m, λO=0,m (reprinted with permis-
sion from [57], ©SAE International).
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Figure 5.13: Validation step (II) - 0.5 m x 0.5 m: Resulting distributions of the system
output when fitting the distributions without any prior knowledge about the sensor reli-
abilities. Figure (a) shows the distribution p (y | O = 1) conditional on the fact that an
object is present. Figure (b) shows the distribution p (y | O = 0) conditional on the fact
that no object is present. Figure (c) shows the distribution p (y) unconditional on the pres-
ence or absence of an object (reprinted with permission from [57], ©SAE International).

Distribution Log-likelihood KL-divergence
pDM (yn | θ, O = 1) -2.329e+05 5.144e-02
pDM (yn | θ, O = 0) -3.782e+05 4.735e-05

pDM (yn | θ) -1.919e+06 4.695e-06

Table 5.8: Validation step (II) - 0.5 m x 0.5 m: Log-likelihood in case when an object is
present, in case when no object is present and in any case independent whether an object is
present or not using the dependent model. In addition, the table lists the Kulback-Leibler-
divergence between the model distributions and the corresponding reference distributions
(reprinted with permission from [57], ©SAE International).
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Figure 5.14: Validation step (I) - 2 m x 2 m: Resulting distributions of the system output
when applying the reference values for the sensor reliabilities to the dependent model.
Figure (a) shows the distribution p (y | O = 1) conditional on the fact that an object is
present. Figure (b) shows the distribution p (y | O = 0) conditional on the fact that no
object is present. Figure (c) shows the distribution p (y) unconditional on the presence or
absence of an object (reprinted with permission from [57], ©SAE International).

Validation step (I) - 2 m x 2 m

Figure 5.14 shows the resulting conditional and unconditional distributions for validation
step (I) with a discretization in space of 2 m x 2 m.
The derived values for the Dunnet-Sobel coefficients are λo=1,m = 0.99 and λo=0,m = 0.97,
the same as for the distributions based on the grid with cell size 0.5 m x 0.5 m. The relative
differences in the matrix elements of the low-rank Dunnet-Sobel class matrix defined by
equation (2.9) compared to the full-rank correlation matrix obtained in equation (5.1) are
at most 1 %.
The log-likelihood, as well as the Kulback-Leibler-divergences, are listed in Table 5.9 for a
quantitative comparison.

Validation step (II) - 2 m x 2 m

Figure 5.15 shows the resulting distributions from validation step (II) for the 2 m x 2 m

cell size.
The distribution conditional on the absence of an object in Figure 5.15 (b) and the dis-
tribution unconditional on the presence or absence of an object in Figure 5.15 (c) are in
agreement with the reference distribution. However, the distribution conditional on the
presence of an object is underestimated by orders of magnitude for half of the sensor system
outputs.
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Distribution Log-likelihood KL-divergence
pDM (yn | θ, O = 1) -2.420e+05 1.72e-03
pDM (yn | θ, O = 0) -2.970e+05 8.64e-05

pDM (yn | θ) -1.548e+06 6.40e-05

Table 5.9: Validation step (I) - 2 m x 2 m: Log-likelihood in the case when an object
is present, in the case when no object is present and in any case independent whether
an object is present or not using the dependent model. In addition, the table lists the
Kulback-Leibler-divergence between the model distributions and the corresponding refer-
ence distributions (reprinted with permission from [57], ©SAE International).

Sensor/Index PODm PFAm λO=1,m λO=0,m

0 0.982 0.00110 0.902 0.953
1 0.983 0.00126 0.936 0.967
2 0.988 0.00121 0.842 0.954
3 0.996 0.00106 0.284 0.939
4 0.989 0.00119 0.822 0.945

Table 5.10: Validation step (II) - 2 m x 2 m: fitted parameters θ: PODm values, PFAm val-
ues and the Dunnet-Sobel coefficients λO=1,m, λO=0,m (reprinted with permission from [57],
©SAE International).

Table 5.10 summarizes the fitted parameters θ (except for pobj) from validation step (II).
The probability that an object is present was estimated by the dependent model to be
pobj = 1.63× 10−2, smaller than the reference value. While the values for the probability
of false alarm are in the same order of magnitude as the reference values, the probability
of missing an object 1−PODm is underestimated by an order of magnitude in comparison
to the reference values. The PODm values are significantly overestimated in comparison
to the values from Table 5.10, respectively. The Dunnet-Sobel coefficients deviate by up
to 71.4 % in case an object is present and by up to 3.1 % in case no object is present.

5.2.3 Discussion

This section is taken from our publication [57] (©SAE International).

This work presents a pipeline consisting of an association approach and a statistical model

Distribution Log-likelihood KL-divergence
pDM (yn | θ, O = 1) -5.405e+05 1.11e+00
pDM (yn | θ, O = 0) -2.988e+05 2.24e-04

pDM (yn | θ) -1.547e+06 2.31e-05

Table 5.11: Validation step (II) - 2 m x 2 m: Log-likelihood in case when an object is
present, in the case when no object is present and in any case independent whether an
object is present or not using both, the independent and the dependent model. In addi-
tion, the table lists the Kulback-Leibler-divergence between the model distributions and
the corresponding reference distributions (reprinted with permission from [57], ©SAE In-
ternational).
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Figure 5.15: Validation step (II) - 2 m x 2 m: Resulting distributions of the system output
when fitting the distributions without any prior knowledge about the sensor reliabilities.
Figure (a) shows the distribution p (y | O = 1) conditional on the fact that an object is
present. Figure (b) shows the distribution p (y | O = 0) conditional on the fact that no
object is present. Figure (c) shows the distribution p (y) unconditional on the presence or
absence of an object (reprinted with permission from [57], ©SAE International).
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to estimate the sensor reliabilities from real-world object data without the necessity of a
reference truth. The pipeline includes a procedure to transform object lists into a binary
format that can be used for the reliability analysis. The binary representation of the data
is then used for the estimation of the sensor reliabilities. For the estimation of the sensor
reliabilities without a reference truth, we incorporate the model from [16] in the pipeline.
The proposed procedure to transform the object lists into a binary representation consists
of a multi-object-tracking step, a clustering step and a binarization step. Multi-object-
tracking is performed to avoid short-time errors for example when an object is missed one
or two frames due to occlusion. The clustering is performed to relate the different objects
obtained from different sensors. Finally, the binary data is obtained by subdividing the
FOV into a grid. The cell size of the grid is a free parameter. There are no specific criteria
for choosing the cell size except that it has to be small enough such that two neighboring
objects cannot be within the same grid cell. For cars, which were the only objects that
were investigated in this paper, we prescribed a maximum cell size of about 2 m x 2 m due
to the fact that center points of neighboring cars hardly get closer than 2

√
2 m ≈ 2.83 m.

The difference in the number of objects is 0.5 % when using cell sizes of 0.5 m x 0.5 m and
2 m x 2 m and when considering the same FOV. This underlines the assumption that two
neighboring cars get hardly closer than 2.83 m. The difference in the number of objects in
the result section comes from the derivation of the FOV based on erosion as demonstrated
in Figure 3.11 of section 3.3, which yields slightly different FOVs for different cell sizes.
The FOV appeared to be smaller when using grid cell sizes of 0.5 m x 0.5 m rather than grid
cell sizes of 2 m x 2 m. The main difference between distributions derived using different
cell sizes, however, lies in the number of times when no object is present and no object is
detected as can be seen in the reference distributions in Figure 5.11 (b). When choosing a
cell size of 0.5 m x 0.5 m instead of 2 m x 2 m, the occurrence of no object being present and
no object being detected increases by approximately a factor of 16. Thus, the chosen cell
size has a great influence on the resulting distribution, which can influence the learning of
the sensor reliabilities with the model from [16]. As a result, we investigate the performance
of the model from [16] using two different cell sizes.
We then perform a validation of the resulting pipeline using the Waymo dataset and
assess (a) whether the model is able to describe the real-world data and (b) whether the
reliabilities of the sensors can be learned from the real-world data without the reference
truth.
Addressing question (a): the dependent model approximates the conditional probability
distributions well in validation step (I) given the parameters derived from the reference
truth. This observation was achieved for any of the chosen cell sizes. The low-rank Dunnet-
Sobel class matrix is sufficient for a good approximation of the distributions, which are
based on the Waymo data. A full-rank correlation in the Gaussian copula is not required
here. Validation step (I) also indicates that accounting for the dependence of the system is
necessary for describing the real-world dataset. The independent model does describe the
real-world data well. Validation step (I) proves that, independent of the chosen cell size,
the dependent model is capable of describing the unconditional as well as the conditional
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distributions. The different grid sizes yield different distributions of the object detections.
As a result, we can assume that the model is capable of describing the distributions derived
also from different association methods closely. This is a necessary condition for the model
in order to fit the distribution properly and was, therefore, tested in the first step.
In order to address the question (b), we perform validation step (II). In the case of the
distribution based on a cell size of 0.5 m x 0.5 m, the optimizer tends to the reference values.
The fitted log-likelihood is close to the log-likelihood which is obtained when entering the
reference values in the model. However, the optimization stops at values other than the
reference while the log-likelihood is still smaller. Most likely, the optimizer gets stuck in
a local minimum. The smaller log-likelihood of the fitted distribution indicates that the
reference values provide an estimate that is closer to the global maximum of the likelihood
function. Actually, a higher log-likelihood and a smaller KL-divergence is expected for the
unconditional distribution in validation step (II) in comparison to validation step (I). The
opposite should be the case for the conditional distribution. This is due to the fact that
the optimizer approaches the unconditional distribution while the conditional distributions
rely on the estimation of pobj . Over- and underestimation in the PMF conditional on the
presence of an object compensates with a slight under- and overestimation of the same
sensor system outputs in the PMF conditional on the absence of an object, which can lead
to a better approximation of the unconditional distribution.
The expected behavior in validation step (II) is observed for the data based on 2 m x 2 m.
Validation step (II) with the data based on a cell size of 2 m x 2 m also demonstrates a
probability of missing an object 1− POD an order of magnitude lower than the reference
corresponding to a much higher reliability in comparison to the reference. This shows that
the pipeline does not always provide a reliable estimation of real-world sensor reliabilities.
Validation step (II) was repeated multiple times with different starting values for the
optimizer for finding the maximum likelihood. The estimated PODm values within each
fitting repetition turned out to be approximately the same for the different sensors m =

0, . . . , 4. The same is observed for the PFAm values. However, the values deviate between
repetitions and often deviated from the reference truth. Apparently, the log-likelihood
has multiple local maxima and the dependent model is not capable of representing the
association between the sensor reliabilities and the observed distribution correctly. A
tendency of the optimizer in validation step (II) towards the reference values with the
distribution based on cell sizes of 0.5 m x 0.5 m might, therefore, be a coincidence.
Better estimations of the sensor reliabilities might be achievable in the case of less de-
pendent sensors, as higher correlations have a negative effect while learning the sensor
reliabilities [16]. Here, high correlations between the sensors were introduced due to the
artificial setup that was achieved by subdividing the LiDAR data.
Current studies, which focus on sensor fusion on the raw data level, seem to outperform
the fusion on the object list level, especially in the case of multiple LiDARs [110–112].
Moreover, Radar, LiDAR and camera yield complementary information. The complemen-
tary information is often used to extract additional features, e.g., the relative speed of the
surrounding objects in the case of RADAR using the Doppler effect. Therefore, the sensors
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may not be considered as being redundant. An application of the proposed pipeline will
most likely not be possible in the future without the partial use of artificially generated
sensors, as done in this paper. Hence, an advanced method should be able to derive the
sensor reliabilities using less redundant sensors.
A possible future application of the proposed pipeline may be to use it for testing redun-
dant object detection algorithms. Future vehicles may apply different object detection
algorithms that rely on different sets of sensors (e.g., Radar and Camera or LiDAR and
Camera), which could be considered as different sensors and which may show less statistical
dependence than the pseudo-sensors used in this paper.
In addition, the definition of an error should be standardized and the distribution of the
sensor system outputs should not depend on a free parameter like the cell size of the grid.
A grid size of 2 m x 2 m was initially the best compromise such that the cell size gets closest
to the size of the objects without more than two objects occupying the same grid cell. A
future approach may consider the area of the individual objects in the evaluation. Other
ways of defining a perception error for the reliability analysis of perception sensors, such
that the resulting reliability is interpretable, remain a research topic.

5.3 Considering confidence values of object detection algo-
rithms in the perception evaluation

The previous sections on estimating the sensor reliability without a reference truth utilize
the model by Berk et al. [16]. This model is based on the assumption that an object
is detected or no object is detected by the sensor, which is represented by a Bernoulli
distribution for each individual sensor [16, 88]. The reference truth is represented likewise
with a Boolean representation describing that either an object is present or no object is
present. However, machine learning algorithms usually yield object data that does not
conform to a binary representation. In order to obtain a binary representation of the
data, an association measure is necessary in order to associate the detections with the
reference objects as discussed in chapter 3. In combination with the object lists, the object
detection algorithms usually provide a confidence value for the detected objects. In the
previous two sections, a threshold was utilized to obtain binary values representing the
presence or absence of an object. Thus, in order to obtain a binary representation, one
has to introduce an additional threshold for the confidence value, which is applied after
the association between the detections.
Some evaluation measures incorporate the confidence value rather than setting a certain
confidence threshold and evaluating the algorithm for this specific confidence threshold.
Examples of these measures are the AP and the area under the ROC curve from section 4.2.
Incorporating the confidence value in the estimation of the sensor reliabilities makes the
evaluation measure independent of the freely chosen confidence threshold. This circumvents
the necessity of choosing a specific confidence threshold. As varying thresholds may yield
advantageous outcomes for distinct tasks, not choosing a threshold introduces a degree of
adaptability and flexibility for applications in a later process. E.g., in parking assistance
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systems, a too low confidence threshold can lead to many FPs, which can lead to driver
distraction, but a too high threshold can lead to too many FNs, which can cause the driver
to hit an object when relying on the system. An appropriate confidence threshold can,
thus, vary between tasks and is an additional research topic besides the task of object
detection.
A model for estimating the sensor performance that does not rely on a fixed confidence
threshold is more general. The following section introduces a model that extends the model
by Berk et al. [16] to account for continuous confidence values.

5.3.1 Method

The model is based on a Gaussian copula in order to account for the dependence of the
sensor outputs. In order to account for the continuous confidence values between 0 and 1,
a Beta distribution is utilized.
The sensor system output with M sensors is represented by the vector ~s = (s1, . . . , sM ),
which contains values between 0 and 1 for each individual sensor detection. The Gaussian
copula density of the model for M sensors is given by cR.

cR (u1, . . . , uM ) =

exp

− 1
2 ·


Φ−1 (u1)

...
Φ−1 (uM )
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T (

R−1 − I
)

Φ−1 (u1)
...

Φ−1 (uM )




√
det (R)

(5.3)

R ∈ [−1, 1]M×M represents the correlation matrix. Equation (5.3) ignores the normaliza-
tion constants as the constants have no influence on the MCMC sampling.
The uniformly distributed variables u1, . . . , uM are obtained by applying the cumulative
distribution function of the beta distribution, which is the regularized incomplete beta
function, on the sensor outputs s1, . . . , sM under the assumption that the sensor outputs
s1, . . . , sM are beta distributed.

um = Ism (am, bm) =
B (sm; am, bm)

B (am, bm)
(5.4)

WhereB (sm; am, bm) =
∫ sm

0 xam−1 (1− x)bm dx is the incomplete beta function andB (am, bm) =∫ 1
0 x

am−1 (1− x)bm dx is the beta function.
With these equations, the conditional probabilities of an object being present can be re-
formulated in terms of the Gaussian copula density.

p
(
~s | ~ao,~bo, ρo, o = 1

)
= cRo (Is1 (a1,o, b1,o) , . . . , IsM (aM,o, bM,o)) (5.5)

p
(
~s | ~aō,~bō, ρō, o = 0

)
= cRō (Is1 (a1,ō, b1,ō) , . . . , IsM (aM,ō, bM,ō)) (5.6)
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The probability for a specific sensor output ~s, independent of the case of whether an object
is present or not, is the superposition of the two conditional probabilities associated with
the probability of the presence/absence of an object.

p (~s | θ) =p
(
~s | ~ao,~bo, ρo, o = 1

)
· po + p

(
~s | ~aō,~bō, ρō, o = 0

)
· (1− po) (5.7)

Here, θ = {~ao,~bo, ρo,~aō,~bō, ρō, po} represents the model parameters, which consist of the
sensor parameters, and the environmental parameter po, which describes the probability
that an object is present. The probability that no object is present is pō = (1− po).
However, as po and pō are directly dependent on each other, we will always express the
terms in dependence of the probability that an object is present po.
The likelihood L (θ) corresponds to the product of the probabilities p (~sn | θ) for every
measurement of the n = 1, . . . , N time frames evaluated with the given parameter set θ,
which contains the sensor parameters and the probability of an object being present. From
the likelihood, the posterior distribution for the model parameters θ can be obtained using
Bayes’ theorem.

f (θ | {~s1, . . . , ~sN}) ∝ f (θ) · L (θ) (5.8)

L (θ) ∝
N∏
n=1

p (~sn | θ)

The posterior can be estimated using MCMC. The marginal distributions for the model
parameters θ are then approximated by the histograms obtained from the MCMC.
The sensor reliabilities can be derived from the estimated model parameters θ by applying
the threshold which is chosen to specify a detection or no detection. A visualization is
shown in Figure 5.16. From the continuous distribution of the confidence values, the
intention is to derive a statistical estimate for the number of cases where an object is
present and where no object is present. The learned distributions are independent of the
chosen threshold. The threshold can still be varied and the corresponding FP and FN
rates can be derived individually after fitting the distributions. Figure 5.16 illustrates an
example threshold. The threshold defines the FP rate and the FN rate.

5.3.2 Validation

We test the model in two subsequent steps. First, in order to check the model for con-
vergence, the model was tested using simulated data. In a second step, we perform an
analysis with real-world data.

Simulation

In order to validate the model before applying it to real-world data, data for the sensor
system outputs ~s were randomly simulated with N = 5× 104 time frames and M = 2 sen-
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Figure 5.16: The measured distribution from one individual sensor may look like the grey
distribution (simulated data here). By exploring the redundancies of two sensors, the
distribution can be separated into cases where no object was present and cases where an
object is present. By setting a threshold, here shown by the green lines, the number of TN,
FP, FN and TP cases can be estimated from the learned distribution shown by the red
and yellowish curve. Here, in addition to the curve the histograms derived by using the
reference truth are shown in addition while the fitted curves in red and yellow approximate
the histograms well.
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sors. Random model parameters for the simulation were chosen, resulting in the following
parameters: { a1,o, a2,o, b1,o, b2,o, ρo, a1,ō, a2,ō, b1,ō, b2,ō, ρō, po } = { 13.0, 16.0, 0.4, 0.7,

0.73, 0.4, 0.5, 47.0, 23.1, 0.64 , 0.3 }. The initial setup included the following conditions
am,o > 0, bm,o < 0 and am,ō < 0, bm,ō > 0 so that the singularity of the functions are at
1 if an object is present and at 0 if no object is present as the sensors are assumed to are
more often right than wrong.
Afterwards, the model fitted the simulated data. The prior distributions were chosen to
be U (1, 20) for the values of ~ao, U (0.01, 1) for the values of ~bo, U (−1, 1) for the value of
ρo, U (0.01, 1) for the values of ~aō, U (1, 50) for the values of ~bō, U (−1, 1) for the value of
ρō and U (0, 0.5) for the value of po.
The simulated data is fitted using MCMC. First, the reference values that are used to
simulate the data are utilized as starting values of the MC. This allows one to validate
that the model does not diverge. Second, random starting values are used in order to find
out whether the model converges towards the reference values.

Application on real-world data

In the second step, this work analyzes the output of real-world data. The analysis is
based on the Waymo dataset. In order to achieve multiple sensors from the LiDAR
data, this study subdivides the LiDAR data into subsets and applied the PointRCNN
algorithm on each subset of the LiDAR point cloud individually as in section 3.3. The
performed analysis utilizes two sensors. The association between the sensor data is per-
formed using the association measure from section 3.3. The data is normalized to the range[
1× 10−9, 1− 1× 10−9

]
as the Beta distribution can have singularities at 0 and 1.

5.3.3 Results

Figures 5.17 and 5.19 show the simulated and the real-world, respectively. Figure 5.17 of
the simulated data also contains the fitted distributions. The model does not represent
the real-world data well and the fitting procedure does not converge. The following two
subsections analyze the simulated and the real-world data in more detail.

Simulation

Figure 5.17 demonstrates the simulated data. The marginal distributions are shown along
the axis of the plot. Red illustrates the cases where an object is present while blue illustrates
the cases where no object is present. One expects more object detections with higher
confidence when objects are present. More red data points are observed in the upper right
corner. Fewer object detections, or object detections with less confidence, are expected
when no object is present. A higher number of blue data points are shown in the bottom
left corner, which corresponds to detections even though no object is present.
Figure 5.18 shows the resulting MCs for the 11 parameters θ of the model when using two
sensors. The MC demonstrates that the model can converge to the reference values when
setting the starting values of the MC to a random set of values.
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Figure 5.17: Visualization of the simulated data and the contour plot of the joint probability
density function. The marginal distributions indicating the distributions of the individual
(simulated) sensors are plotted along the axis of the plot. Red and blue data points
differentiate between the presence and absence of an object.

For more sensors, the evaluation of the likelihood becomes computationally more demand-
ing. A convergence with more than two sensors could not be observed when fitting all
parameters simultaneously. One alternative procedure to fit all parameters is to fit the
distribution with only a single sensor or with two sensors. The fitted parameters can then
be utilized to subsequently find the correlation parameters by using the model for three
parameters.

Application on real-world data

Figure 5.19 visualizes the data derived from theWaymo dataset after applying the PointRCNN
to derive the object data and using the association measure from section 3.3 to associate
the obtained object data. Figure 5.19 (a) shows the confidence values obtained from the
PointRCNN which were transformed to the range [0, 1]. One can see in Figure 5.19 (a)
that the algorithm assigns a confidence value of at least 0.2 to object detections and does
not provide values in the entire range [0, 1]. The occurrence of no objects is obtained by
introducing the grid after the association and accounting grid cells without any object as
the occurrence of no object. The number of occurrences with no object and no detections
are, therefore, dominant in the dataset and lead to a data imbalance between occurrences
with and without objects.
Figure 5.19 (b) shows the data after removing all data points where both sensors did not
detect an object. This reduces the observed data imbalance between cases with and without
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 5.18: The resulting two MCs from fitting the simulated data for all 11 parameters
in case of two considered sensors which are θ = { a1,o, a2,o, b1,o, b2,o, ρo, a1,ō, a2,ō, b1,ō, b2,ō,
ρō, po }. The fitting was once performed by starting with the reference values and once by
starting with random values. In both cases the MCMC algorithm converges towards the
reference values which are indicated in the plots for all parameters by horizontal lines.
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(a) (b)

Figure 5.19: Visualization of data obtained from the Waymo dataset [1]. Object data
is generated from two subsets of the LiDAR point cloud. The object data is associated
using the procedure described in section 3.3. Figure (a) shows the unprocessed data. The
utilized object detection algorithm assigned confidence values ≤ 0.2 to detections. As the
Beta distribution covers all values between [0, 1], the confidence values were transformed to
the range [0, 1]. Moreover, due to the data imbalance between occurrences with and without
an object, the occurrences without any detections were removed for the visualization in
Figure (b).

present objects. However, it also excludes the FN cases in which both sensors have a FN at
the same time. In addition, the values are transferred to the range

[
1× 10−9, 1− 1× 10−9

]
as, depending on the parametrization, the Beta distribution demonstrates singularities at
0 and 1.
Figure 5.20 shows the distributions of the confidence values for sensor 0 conditional on
the fact whether (a) an object is present in red or (b) no object is present in blue. The
unconditional, marginal distribution of sensor 0 from Figure 5.19 is a superposition of these
two conditional distributions. In addition to the distributions conditional on whether an
object is present or not, Figures 5.19 (a) and (b) also show the fit of the Beta distribution for
the conditional cases. Due to a higher number of observations at values close to 0 and values
close to 1 both conditional distributions of the confidence values have a bathtub shape.
The conditional distributions are not well approximated by the two Beta distributions.
Consequently, fitting the parameters of the beta functions turned out difficult. First, the
confidence value distribution of a single sensor, sensor 0, was fitted. It turned out that
fitting the unconditional distribution for sensor 0 did not result in the parameter values
obtained by fitting the conditional distributions individually.
As the confidence values do not closely resemble a beta distribution, a model that takes the
correlation as an additional parameter into account may perform better. However, fitting
the joint distributions from Figure 5.19 (a) and (b) did not converge.
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(a) (b)

Figure 5.20: The fitted marginal distributions of Figure 5.19 (b). Figure (a) shows the
distribution for the cases where an object is present while Figure (b) shows the distribu-
tion for the cases where no object is present. For the generation of the distributions, all
occurrences where no object was present and where no object was detected by either of
the sensors were excluded from the data.

5.3.4 Discussion

The presented model accounts for continuous confidence values of object data and, there-
fore, can be seen as an extension to the model described by Berk et al. [16].
One advantage of the idea behind the model is that instead of defining a threshold in
advance, as necessary for the model from [16], no confidence threshold is required for this
model. This allows for an analysis of a good choice for the confidence threshold even after
determining the performance of the sensors with the Beta distribution. Moreover, instead
of at least 5 different sensors as for the method in [16], in theory, only a single sensor is
necessary for the application of the method in the case that the confidence values are Beta
distributed.
However, the model based on continuous confidence values comes with numeric challenges
in the evaluation of the likelihood.
The model by Berk et al. [16] requires a reduction of the confidence value provided by the
object detection algorithm to a binary number saying either that the sensor recognized an
object or it did not recognize an object. This is obtained by setting a threshold: objects
with a confidence value exceeding the threshold are considered as detected objects while
detected objects with a confidence value below the threshold are considered as no detected
objects. In this binary representation, the amount of sensor system outputs is restricted
to the number of 2M while M is the number of redundant sensors. Thus, the number of
evaluations of the probability p (y | θ) for a certain sensor system output y is limited to
the 2M for each iteration in the optimization or MCMC process and does not scale with
the number of data points like in the presented model which becomes computationally
demanding.
In comparison with the proposed model, the number of the possible sensor system outputs ~s
is unlimited as every sensor output sm, which corresponds to the confidence value provided
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by the object detection algorithm, can be any value in the interval of 0 to 1. Therefore,
the probability p (~s | θ) has to be evaluated for all N time frames in order to evaluate
the likelihood. For a large amount N of recorded frames, which is necessary to also
include driving scenes including relevant corner cases, it is, therefore, computationally very
demanding to evaluate the likelihood. However, the many evaluations of the probability
p (~s | θ) of the sensor system output ~s occurring are of the type single instruction multiple
data (SIMD). The calculations can, therefore, be parallelized on graphical processing
units (GPUs). In order to accelerate the fitting process we parallelized the evaluation of
the probability p (~s | θ) on the GPU using the cupy package for numpy. However, despite
the parallelization on the GPU, the fitting process was in the order of hours. For more
than two sensors the fitting did not converge.
Furthermore, the chosen Beta distribution does not properly describe the distribution of the
real-world data. The confidence values obtained from the PointRCNN applied on subsets
of Waymo’s LiDAR data are far from being Beta distributed as shown in Figure 5.20 [1].
Both conditional distributions of the data where either an object is present or not present
are already bathtub shaped. Beta distributions with limited parameter intervals so that
the beta distributions only demonstrate one pole at either 0 or 1 are, thus not suitable. Not
limiting the parameter range, however, may not offer a robust solution. In this case, both
conditional distributions can be bathtub shaped. A superposition of two bathtub-shaped
functions, however, does not allow separation between cases when an object is present and
when no object is present.
We want to point out that the shape of the distribution can vary for different object
detection algorithms. Hence, multiple sensors with multiple object detection algorithms
will result in multiple different distributions of confidence values. The Beta distribution
is, thus, a strong assumption that may seldom be satisfied.
Including multiple sensors may be beneficial due to the additional fitting of the correlation
parameter which is independent of the utilized marginal distributions. For the derived
object data from two subsets of the Waymo LiDAR data, however, the model did not
converge.
Summarizing, the model offers a mathematical description for Beta distributed confidence
values from multiple sensors that are correlated. The model is computationally very de-
manding. The model converges in the case of Beta distributed values for two sensors.
However, real-world confidence values are not expected to be exactly Beta distributed.
Thus, there are probably only very limited applications for the utilization of the model.

5.4 Conclusion

The chapter focuses on the reliability analysis without a reference truth by exploiting
sensor redundancies. The first two sections utilize the model from [16] using two different
datasets. For the first dataset, the grid-based association is utilized. For the second
dataset, the association based on trajectory clustering is used. The third section extends
the model from [16] to account for continuous confidence values instead of binary outputs.
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The model from [16] is capable of describing the data. However, when fitting the sensor
reliabilities, the model can converge to values different from the reference.
The advantage of the model from section 5.3 is that in theory, a single sensor could be suf-
ficient for deriving sensor reliabilities if the data adheres strictly to a Beta distribution. If
the data does not perfectly conform to a Beta distribution, which is expected for real-world
data, we anticipated the need for more than one sensor to also depend on the correlation
parameter as an additional model parameter that is independent of the marginal distri-
bution. Even with additional sensors, we assumed to use fewer sensors for the reliability
estimation with the proposed model in comparison to the five redundant sensors required
by the model in [16].
The model performs well in simulations with up to two sensors. In the case of more sensors,
however, the fitting did not converge. Thus, for three sensors we first fitted the marginal
distribution and utilized the derived parameter values of the marginal Beta distribution
to obtain the correlation coefficients. Alternatively, one could do the same with the joint
distribution of just two sensors and use the derived parameter values to determine the
parameters of the third sensor. This could be scaled up to any number of sensors. However,
as discussed in section 5.2, the use of many different sensors that provide redundant object
data is not expected in future applications.
For the real-world data, we found out that it is not well described by the utilized Beta
distribution of the model. A fit of the real-world data turned out to be not possible with
the proposed setup.
In upcoming studies, one may consider employing different marginal distributions to better
accommodate real-world data. In this case, since we selected subsets of LiDAR data to rep-
resent multiple sensors, the data distributions were approximately equal for all sensors. If
different sensors were to be utilized, one could also tailor individual marginal distributions
to align more closely with the respective sensor distribution as the correlation parameters
are utilized in the copula which is independent of the marginal distributions.
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6 Discussion and conclusion

A reliable environment perception is required for safe automated driving. The following
sections discuss the contributions of this work to the assurance of a reliable environment
perception and future research needs. The section starts with an overall discussion of the
achieved results. The following section concludes the work and presents an outlook on
possible future work.

6.1 Discussion

This work emphasizes the requirement of a reliable environment perception for safe auto-
mated driving. The evaluation of the environment and the assurance of its reliability is
far from trivial due to a lacking interpretation of most methods utilized for environment
perception. Methods for perceiving the environment commonly focus only on specific
functions like object detection, traffic sign and traffic light detection, or lane and street
detection [86]. Moreover, the functions often rely on neural networks which are difficult to
interpret.
All functions are necessary for the safe maneuvering of the vehicle on public roads, although
the focus of the environment perception evaluation often lies in the evaluation of object
detection. One advantage of object detection lies in the interpretability of the resulting
objects. The safety issue caused by an object that is not detected by the perception of an
automated vehicle is easy to understand. One can imagine that not seeing the vehicle right
in front of the ego vehicle can immediately result in an accident. Not detecting a traffic sign
or the lanes may not cause an accident given no other traffic participants are present. And,
in case other traffic participants are present, one could reduce the environment perception
to object perception again.
Beyond common examples of detection failures like not detecting an object at all, an in-
terpretable definition of an error of object detection algorithms is not trivial as shown and
discussed in chapter 3. All introduced approaches rely on thresholds that define when
a detection and a reference object are no longer the same. Defining crisp thresholds is
non-intuitive as no crisp threshold in human perception and judgment exists. Whether a
detection is shifted by 0.5 m or by 0.55 m from the reference object may not be relevant
while a shift of 2 m might make a crucial difference. The question arises where to set
the crisp threshold between 0.5 m and 2 m and why not move it some centimeters in any
direction? The question arises for all parameters that are considered in the evaluation.
Parameters that might be considered in the evaluation might be the position defined by
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x-, y-, z-coordinates, size defined by height, width, length, and rotation around an axis
perpendicular to the driving plane relative to the ego vehicle. Area and volume-based
measures like the IoU, also known as the Jaccard index, implicitly incorporate these pa-
rameters, however, the question of the interpretability of the chosen threshold remains.
As an example, KITTI utilizes a threshold of 0.7 for cars [49]. However, there is no clear
reason why one should not use instead a threshold of, e.g., 0.8 or 0.75.
A defined perception error and the corresponding association measure allows to evaluate the
object-based environment perception and estimate the reliability of the perception system.
Chapter 4 provides a comparison of approaches to evaluate object detection algorithms
once detections and reference objects are associated. And chapter 5 utilizes the model
from [16] to learn the sensor reliabilities that are described by the probability of detection,
also known as recall, and the probability of false alarm, also known as false positive rate.
The interpretation of the resulting perception performance values depends on the utilized
association measure. No association measure from the comparison in section 3.1 is superior
as all measures focus on different parameters that all have a legitimate influence on the
perception performance. All of these association measures are parameter specific and might
be sufficient for individual driver assistance systems, however, for highly automated driving
these measures might be insufficient.
An accepted perception error and a corresponding association measure is essential in order
to determine the perception reliability. The definition of a superior perception error might
have to take additional components of the environment perception into account besides
object detection.
Without a more general error definition, ever new scenarios can be generated that provide
examples that violate current error definitions. Studies on automated driving still alternate
between scenario-based testing and a stochastic evaluation. Scenario-based testing is very
limited as the vehicle is not exposed to an infinite number of situations on public roads as
the number of defined scenarios will always stay limited. In addition, as described in section
4.1, scenario-based testing interchanges the consequences, also described as criticality, of
a malfunctioning perception with the reliability of the perception.
Section 3.5 defines an error based on the drivable area. The measure only focuses on the
nearest obstacle that cannot be passed. It does not incorporate second row objects, so
objects that are occluded by other objects in the 2D bird-eye perspective. An explicit
evaluation of RADAR perception which may provide detections of occluded objects due
to the nature of RADAR is, thus, not possible. Moreover, the measure does account for
lane markings as they are drivable. However, the introduced measure is not limited to a
finite set of object classes and, therefore, includes all obstacles that are not drivable by
the vehicle. In addition, implicit perception evaluations even of second row objects can be
obtained when predicting the drivable area in the future, as the trajectories of second row
objects also have an influence on the first-row objects. In addition, the measure allows
accounting for the distance-dependent performance of sensors and accounts for the fact
that a perfect detection may not be required, especially for faraway objects.
The idea behind the distance-dependent error is the fact that humans, despite being able
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to navigate safely on public roads, are not good at estimating distances precisely, especially
for objects at far distances. Thus, for automated driving, precise detection of the position
of surrounding vehicles may also not be necessary in order to navigate safely. Association
measures do not account for distance-dependent detection performance. As a result, the
evaluation of the perception is difficult or impossible to interpret and yields bad results,
which are not sufficient for automated driving. Furthermore, faraway objects should only
have little influence on path planning and, thus, allowing a larger deviation in the detec-
tion of faraway objects may increase the interpretability of reliability estimations for the
perception.
Without an interpretable definition of the perception error, the evaluation only allows
relative comparisons between different object detection algorithms as described in section
3.1. For cases where a reference truth is present, the reference truth corresponds to an
ideal sensor. Thus, any tendency towards the reference can be considered as improvement,
independent of the types of errors that are decreased, such that they lead to a better score
in the evaluation.
Based on this argumentation, the performed reliability analysis of the environment per-
ception in chapter 5 may seem superfluous as it does not include the latest error definition
which incorporates the distance dependence. However, considering that the initial idea of
this work lies on the reliability estimation of automated vehicles where it is non-feasible to
gain enough reference data, chapter 5 provides a basis for an initial setup for estimating
the sensor reliability from object data without an existing reference truth. In section 5.2.2,
the resulting sensor reliabilities described by the POD and the PFA, are far from values
that are sufficient for automated driving. The testing of the method by [16] itself, however,
should already be testable with sensor data that is not yet sufficient for automated driving.
Moreover, any error definition can be incorporated as the model is based on binary sensor
output saying either an object is present or not which can only be achieved by defining the
respective error first. Hence, chapter 5 provides two case studies with different distributions
from two sensor datasets. The study shows that the model can represent the distribution
with the reference values for the POD and PFA values of every sensor, however, the model
is not robust in finding the POD and PFA of every sensor without reference. As a result,
the case studies demonstrate that the model is not robust in fitting the two distributions
that are derived from real-world data. The same applies to the model that is based on
the Beta distribution to account for continuous confidence values rather than the binary
output of an object being present or not. In conclusion, the two models presented in this
work do not provide an approach that can solve the approval trap.
In order to make utilize these models for an estimate of the sensor reliabilities it would
be essential to explore potential avenues for improving the robustness. One plausible
approach could be to consider alternative distributions, apart from the Beta distribution,
which might better capture the complexities of the continuous confidence values. For the
discrete model, one could reevaluate alternatives for the underlying Gaussian copula. By
conducting a thorough analysis, it may be possible to identify more suitable distributions.
While being very vague as the distributions strongly depend on the chosen set of sensors,
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such an exploration could hold promise for advancing the models presented in this study.

6.2 Outlook

The study explores various approaches to estimate the reliability with and without reference
truth. The performed reliability analysis is based on data obtained from object detection.
In object detection errors are defined by the utilized association either with reference truth
objects or, in case that no reference truth is utilized, with other sensor’s detections. The
study extends the error definition beyond the scope of object detection by introducing a
comparison based on the drivable area.
Besides a reliability analysis using object data, one could include the drivable area-based
error definition in the reliability analysis. With a high-resolution sensor, the environment
can be precisely perceived, which may allow the generation of the drivable area without
human labeling. For the calculation of the ego trajectory future predictions of surrounding
vehicles are required. The reference for such future predictions corresponds to the same
dataset only with a time shift that defines how far the model is supposed to predict into
the future.
Corner cases could be caught if the detections, like objects or the free space, differ signifi-
cantly between different sensors as defined by the error definition. However, this can only
be a rough indicator, as different sensors have complementary properties and a detection
by a camera can be different from the detection of a RADAR due to the different physical
principles used for detections.
Above all is the requirement for a generalized error definition that does not only account for
moving and isolated objects like cars but also accounts for stationary objects in the envi-
ronment like trees. The drivable area allows for an extended error definition in comparison
to the error definition based on objects, as it incorporates the street to a certain extent
and is not limited to a predefined set of objects. It, therefore, expands the scope of the
research beyond object detection, considering the surrounding environment and potential
obstacles or hazards in the absence of detectable objects.
However, lane markings, traffic signs and traffic lights are not included in the drivable area.
Moreover, in some directions, even if there is an object, it might be of little relevance. For
example, a plastic bag flying over the street. Future error definition may, therefore, include
a weighting for the borders of the drivable area saying in which direction it might be worse
to hit the object in comparison to other directions. Thus, these error definitions should
be further investigated and integrated into the analysis to provide a more comprehensive
understanding of sensor reliability, especially in scenarios where object-based detection is
not the primary focus.
Besides the investigation of association measures, further research is required to find a
widely accepted evaluation measure that introduces a reference for a sufficient environment
perception for automated vehicles. The research on reliability analysis of automated vehicle
sensors in this work has made progress by investigating various evaluation measures for
obtaining a reliability estimate, including precision, recall, and mean average precision.
Evaluation measures such as precision and recall can be classified as absolute measures,
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as they can be translated into error rates, while evaluation measures like the mAP are
considered a relative evaluation measure, allowing for comparisons between object detection
algorithms but not providing an error rate (errors per unit time). In future research, one
should take into account that an evaluation measure that can classify a perception sensor
system as sufficient for automated driving can only be based on an absolute evaluation
measure.
Furthermore, integrating distance-dependent error definitions in the reliability evaluation
and finding an appropriate evaluation measure, should also be pursued. The research
has introduced distance-dependent error definitions that have not yet been incorporated
into the reliability estimation. Expanding the investigation to the reliability of sensors
detecting and analyzing the drivable area is crucial as it expands the scope of the research
beyond object detection, considering the surrounding environment and potential obstacles
or hazards in the absence of detectable objects.
The investigated approaches for estimating the reliability without the need for a reference
truth do not provide satisfying results. In the case of the model from [16], the obtained
reliability estimates that were different from the reference truth indicate the need for further
investigation and improvement. One potential avenue for enhancing the robustness of the
model is to explore alternatives for the underlying Gaussian copula. Other copulas may
better capture the complexities inherent in the sensor data.
Moreover, it is worth considering the practicality of utilizing object data from five different
sensors in the research. The focus of future research appears to be on low-level sensor
fusion rather than fusion at the object level as fusion on the raw data level seems to
outperform the fusion on object list level [110–112]. Thus, obtaining object data from at
least five redundant sensors for the same FOV may be challenging in future applications.
Especially, as the considered sensor types for automated driving are only threefold, namely,
camera, RADAR and LiDAR.
This motivates the development of other approaches for accessing the sensor reliability like
the presented continuous model from section 5.3. However, in the case of the continu-
ous model that accounts for continuous confidence values, it is crucial to recognize that
the initially deployed Beta distribution does not fully capture the characteristics of the
real-world data with its high peaks at 0 and 1. By thoroughly analyzing the data and
considering alternative distributions, researchers may uncover a more suitable distribution
that effectively models the underlying patterns, thus improving the reliability estimation.

6.3 Conclusion

A reliable environment perception is necessary for safe automated driving. This work
focuses on concepts for obtaining reliability estimates of the environment perception for
automated vehicles.
The evaluation of the environment perception is often based on object detection. Not
detecting surrounding objects can be a direct cause of an accident. The object detection
can be divided into two parts. The first part is an evaluation of each individual frame where
object detections of the vehicle’s environment perception are associated with manually
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labeled reference objects. The second part consists of the accumulation of the associated
objects over the entire dataset.
Bounding boxes identified through object detection algorithms provide the benefit of their
results - the object boxes - are intuitively understood at a quick look. That being said, the
detailed interpretation faces constraints due to the need for clear-cut definitions of distance
and size as real-world objects seldom correspond to a rectangular box. Moreover, this is
in contrast with humans, who often make decisions based on flexible rules including the
surrounding context. Furthermore, object detection does not represent the full environment
due to finite sets of object classes. Hence, a different error definition based on the drivable
area is introduced.
The resulting value from the second part of the evaluation strongly depends on the chosen
association. Moreover, accumulating different types of errors can further reduce the validity
of the obtained reliability. Different ways to obtain an evaluation in object detection used
in studies for automated driving were investigated.
An additional challenge with these approaches is the missing reference truth for billions
of kilometers that are required for statistical significance to ensure reliability. This work
includes two case studies using a model that was developed to solve the problem with the
missing reference by exploiting sensor redundancies instead of requiring a reference truth.
Two case studies based on the model are performed in this work, with highly and weakly
correlated sensor data. The datasets used for the case studies included a reference truth
for the observed object data. In both cases, the approximated reliability values obtained
by the model are hardly in agreement with the reference values. The same applies to an
additional model introduced in this work that additionally accounts for the continuous
confidence scores of object detection algorithms.
How to run validation procedures that do not rely on reference labeling for infeasible
amounts of kilometers remains an open research topic. In case a human-labeled reference
truth is not required for the validation, one can validate the environment perception by
running the algorithms in the background of human-driven vehicles and deploying the
validation procedure in large vehicle fleets in order to achieve a large number of kilometers.
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B Symbols

α Threshold that specifies the minimum requirement for association using an as-
sociation measure. The threshold can either be a constant or a function of the
size of or the distance to the object

αdd Relative distance dependent error that defines the allowed distance dependent
deviation ∆R in radial direction, also described as error constant.

γ Solid angle of an object.
∆ϕ Difference in the azimuth angle in polar coordinates (for example between two

LiDAR measurement)
∆hs Height difference that defines maximum slope. See Figure 3.22 for further details.
∆ht Height difference that defines maximum threshold. See Figure 3.23 for further

details.
∆R Distance dependent deviation.
∆rs Length difference that defines maximum slope. See Figure 3.22 for further de-

tails.
∆t Time difference between two subsequent time frames.
λ Wavelength of an electromagnetic signal.
λact Failure rate of the actuators of the vehicle like motors.
λplan Failure rate of the trajectory planning.
λsense Failure rate of the environment perception.
λsys Failure rate of the system, which is the automated vehicle.
µ̂d,τ,t Expected average number of detections.
µ̂o,τ,t Expected value of the average number of objects per time frame.
ρ Euclidean distance between two points in the 2D bird’s-eye-view perspective e.g.

between a detected object and a reference object or the distance between the
ego vehicle and another object.

τ Threshold that specifies the minimum requirement for association using an as-
sociation measure. The threshold can either be a constant or a function of the
size of or the distance to the object

ϕ Azimuth angle (for example of a LiDAR measurement)
ϕdev Constant angular deviation.
ϕimg Angular resolution utilized for generating plots.
A Representation of a set of objects according to set theory.
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B Representation of a set of objects according to set theory.
b Baseline distance between two eyes or between two cameras of a stereo system.
B2D 2D bounding box that encircles an object from the bird eye perspective. This

bounding box is described by four parameters, its position x2D, y2D, its size w2D

and l2D and an angle of rotation relative to the ego vehicle γ2D.
B2D,ref Reference 2D bounding box that encircles an object from the bird eye perspec-

tive. This bounding box is described by four parameters, its position x2D, y2D,
its size w2D and l2D and an angle of rotation relative to the ego vehicle γ2D.

B3D 3D bounding box. This bounding box is described by four parameters, its po-
sition x3D, y3D, z3D, its size w3D, l3D, h3D, an angle of rotation relative to the
ego vehicle and a confidence value.

B3D,ref Reference 3D bounding box. This bounding box is described by four parameters,
its position x3D, y3D, z3D, its size w3D, l3D, h3D, an angle of rotation relative
to the ego vehicle and a confidence value.

BC Contour of a bounding box from the bird eye perspective.
BC,ref Contour of bounding box B2D,ref .
Bimg 2D bounding box that encircles an object in an image while the sides of the

sides of the bounding box are parallel to the image borders. This bounding box
is described by four parameters, its position ximg, yimg and its size wimg and
himg

Bimg,ref Reference 2D bounding box that encircles an object in an image while the sides
of the sides of the bounding box are parallel to the image borders. This bounding
box is described by four parameters, its position ximg,ref , yimg,ref and its size
wimg,ref and himg,ref

C Representation of a set of objects according to set theory.
C Consequences.
c Diagonal of the smallest possible bounding box that includes the detection and

the reference box.
f Focal length.
h3D Height of a 3D bounding box.
h3D,ref Height of a reference bounding box.
himg Height of a 2D bounding box that encircles an object in an image measured in

pixels.
himg,ref Height of a reference bounding box that encircles an object in an image measured

in pixels.
l2D Height of a 2D bounding box that encircles an object from the bird eye perspec-

tive.
l2D,ref Height of a reference bounding box that encircles an object from the bird eye

perspective.
nt Number time frames in a dataset.
p Precision.
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pD Distance weighted precision.
r Recall.
r Center point position of a detected object (vector).
r2D Distance to a point from ego position to a detected obstacle in the 2D bird’s-

eye-view perspective (scalar).
r2D,ref Reference distance to a point from ego position to an obstacle in the 2D bird’s-

eye-view perspective (scalar).
rD Distance weighted recall.
rref Center point position of a reference object (vector).
v Function that accounts for the aspect ratio of detection and reference object

according to [53].
w2D Width of a 2D bounding box that encircles an object from the bird eye perspec-

tive.
w2D,ref Width of a reference bounding box that encircles an object from the bird eye

perspective.
w3D Width of a 3D bounding box.
w3D,ref Width of a reference bounding box.
wimg Width of a 2D bounding box that encircles an object in an image measured in

pixels.
wimg,ref Width of a reference bounding box that encircles an object in an image measured

in pixels.

145



C Acronyms

AAE average attribute error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

AMOTA average multi object tracking accuracy . . . . . . . . . . . . . . . . . . . 85

AMOTP average multi object tracking precision . . . . . . . . . . . . . . . . . . . 83

AOE average orientation error . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

AOS average orientation similarity . . . . . . . . . . . . . . . . . . . . . . . . 82

AP average precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

APD distance weighted average precision . . . . . . . . . . . . . . . . . . . . . 79

AR average recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

ASE average scale error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

ATE average translation error . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

AUC area under curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

AVE average velocity error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

CIoU Complete Intersection over Union . . . . . . . . . . . . . . . . . . . . . . 26

CVC Convex Visible Contour . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

DBSCAN Density-Based Spatial Clustering of Application with Noise . . . . . . . 35

DIoU Distance Intersection over Union . . . . . . . . . . . . . . . . . . . . . . 25

EM expectation maximization . . . . . . . . . . . . . . . . . . . . . . . . . . 93

FM frequency modulated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

FN False Negative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

FOV field of view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

FP False Positive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

GIoU generalized Intersection over Union . . . . . . . . . . . . . . . . . . . . . 12

GPU graphical processing unit . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

HOTA higher order tracking accuracy . . . . . . . . . . . . . . . . . . . . . . . 87

IoU Intersection over Union . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

LiDAR Light Detection And Ranging . . . . . . . . . . . . . . . . . . . . . . . . 5

mAOE mean average orientation error . . . . . . . . . . . . . . . . . . . . . . . 83

146



mAP mean average precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

mAR mean average recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

mATE mean average translation error . . . . . . . . . . . . . . . . . . . . . . . 83

mAVE mean average velocity error . . . . . . . . . . . . . . . . . . . . . . . . . 83

MC Markov chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

MCMC Markov Chain Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . 93

MLE maximum likelihood estimate . . . . . . . . . . . . . . . . . . . . . . . . 17

MOT Multi-Object-Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

MOTA multi object tracking accuracy . . . . . . . . . . . . . . . . . . . . . . . 84

MOTP multi object tracking precision . . . . . . . . . . . . . . . . . . . . . . . 82

MSE mean squared error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

MTBF mean time between failures . . . . . . . . . . . . . . . . . . . . . . . . . 72

NDS nuScenes detection score . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

NN neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

PFA Probability of False Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . 13

PMF probability mass function . . . . . . . . . . . . . . . . . . . . . . . . . . 17

POD Probability Of Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

RADAR RAdio Detection And Ranging . . . . . . . . . . . . . . . . . . . . . . . 5

ROC receiver operator characteristic . . . . . . . . . . . . . . . . . . . . . . . 81

sAMOTA scaled average multi object tracking accuracy . . . . . . . . . . . . . . . 85

SD support distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

SDE Support Distance Error . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

SIMD single instruction multiple data . . . . . . . . . . . . . . . . . . . . . . . 124

SIMO single-input, multiple-output . . . . . . . . . . . . . . . . . . . . . . . . 8

sMOTA scaled multi object tracking accuracy . . . . . . . . . . . . . . . . . . . . 85

SOTIF safety of intended functionality . . . . . . . . . . . . . . . . . . . . . . . 4

TN True Negative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

TP True Positive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
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D Bounding box contour

Equations (3.7) and (3.8) utilize the bounding box contour. Figure D.1 illustrates the
derivation a bounding box contour from the 2D bird-eye few perspective. The bounding
box area in the object coordinate system is described by the set BO,A = [−l2D/2, l2D/2]×
[−w2D/2, w2D/2]. The transformation from the coordinate frame of the object bounding
box to the coordinate frame of the ego vehicle is provided by

T :R2 → R2(
xO

yO

)
7→

(
cos (γ2D) − sin (γ2D)

sin (γ2D) cos (γ2D)

)(
xO

yO

)

The area of the bounding box in the coordinate frame of the ego vehicle is then provided
by BA = T (BO,A). The contour of the bounding box in the ego position coordinate frame
corresponds to BC = ∂BA. Actually, instead of using BC in equation (3.7) one could also
enter BA due to the fact that the minimum of the set BA lies on its boundary BC = ∂BA.

Figure D.1: Evaluation of the bounding box contour which is utilized in some association
measures.
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