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“When I meet God, I am going to ask him two questions:
Why relativity? And why turbulence? I really believe he
will have an answer for the first.”

—Werner Heisenberg





Abstract

The Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) actively pushes the international
efforts to reduce the use of highly enriched uranium (HEU) in civil operations. A new fuel
containing highly dense uranium-molybdenum (UMo) alloys is being developed together with
international partners to replace the currently used HEU fuels. This fuel allows Forschungs-
Neutronenquelle Heinz Maier-Leibnitz (FRM II) to convert to Low Enriched Uranium (LEU).
For the conversion to LEU fuel, the change of the core geometry is imminent. Therefore, the
entire reassessment of the neutronic, thermal-hydraulic and thermal-mechanical behavior of the
FRM II core is entailed. This work focuses on developing a fully coupled system that accounts
for neutronics, hydraulics and mechanics, with hydraulics and mechanics exchanging data on
step bases. To achieve this goal, Serpent 2, Ansys CFX and Ansys Mechanical are used for the
neutronics, thermal-hydraulic and mechanical calculations, respectively. The thermal-hydraulic
and thermal-mechanic aspects of a potential LEU core design that originates from an extensive
scoping process were assessed using different coupling schemes.
The starting point is verifying and validating Computational Fluid Dynamics (CFD) code
Ansys CFX and Computational Structural Mechanics (CSM) code Ansys Mechanical using
experiments that are representative of the FRM II operating conditions, such as Gambill-Bundy
and Cheverton-Kelley experiments. It could be shown that Ansys CFX and Ansys Mechanical
were able to capture the physical aspects of the experiments well. The codes were additionally
verified with similar codes within the Involute Working Group (IWG) framework.
Having verified and validated CFD and CSM codes, the next step consisted in verifying Serpent 2
and Ansys CFX using the FRM II licensing documents and the previously performed MCNP-
Ansys CFX coupling as a validation and verification basis. The results obtained from the
Serpent 2-Ansys CFX coupling for the current HEU core agree well with the FRM II licensing
documents and the previously performed MCNP-Ansys CFX coupling. The Serpent 2-Ansys CFX
coupling was performed for both the current HEU core and the potential LEU design, comparing
several parameters between the two.
The deformations occurring on the plate as a result of thermal expansion and pressure loads
were assessed via a sequential Thermal-Fluid-Structure Interaction (TFSI) coupling scheme.
Additionally, the influence of the deformations on the coolant flow was accounted for in a direct
TFSI coupling. These couplings were performed on the current FRM II core and the potential
LEU core.
The potential LEU core design is deemed scientifically feasible based on these calculations. With
the results presented in this thesis, all necessary tools to assess the core thermal-hydraulic and
mechanical stability under nominal and incident scenarios are available.
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Zusammenfassung

Die Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) treibt die internationalen Bemü-
hungen zur Reduzierung der Verwendung von hochangereichertem Uran (HEU) im zivilen Bereich
aktiv voran. Gemeinsam mit internationalen Partnern wird ein neuer Brennstoff mit hochdichten
Uran-Molybdän-Legierungen (UMo) entwickelt, der die derzeit verwendeten HEU-Brennstoffe
ersetzen soll. Dieser Brennstoff ermöglicht die Umwandlung von FRM II in LEU.
Für die Umstellung auf LEU-Brennstoff steht die Änderung der Kerngeometrie unmittelbar
bevor. Daher ist eine vollständige Neubewertung des neutronischen, thermohydraulischen und
thermomechanischen Verhaltens des FRM II-Kerns erforderlich. Diese Arbeit konzentriert sich
auf die Entwicklung eines vollständig gekoppelten Systems, das die Neutronik, die Hydraulik
und die Mechanik berücksichtigt, wobei die Hydraulik und die Mechanik Daten auf Stufenbasis
austauschen. Um dieses Ziel zu erreichen, werden Serpent 2, Ansys CFX und Ansys Mechanical
für die neutronischen, thermohydraulischen bzw. mechanischen Berechnungen verwendet. Die
thermohydraulischen und thermomechanischen Aspekte eines potenziellen LEU-Kerndesigns,
das aus einem umfangreichen Scoping-Prozess hervorgegangen ist, wurden unter Verwendung
verschiedener Kopplungsschemata bewertet.
Ausgangspunkt ist die Verifizierung und Validierung des CFD-Codes (Computational Fluid
Dynamics) Ansys CFX und des CSM-Codes (Computational Structural Mechanics) Ansys Me-
chanical anhand von Experimenten, die für die Betriebsbedingungen des FRM II repräsentativ
sind, wie z. B. Gambill-Bundy- und Cheverton-Kelley-Experimente. Es konnte gezeigt werden,
dass Ansys CFX und Ansys Mechanical in der Lage waren, die physikalischen Aspekte der
Experimente gut zu erfassen. Die Codes wurden zusätzlich mit ähnlichen Codes im Rahmen der
Involute Working Group (IWG) verifiziert.
Nach der Verifizierung und Validierung der CFD- und CSM-Codes bestand der nächste Schritt
in der Verifizierung von Serpent 2 und Ansys CFX unter Verwendung der FRM II Lizenzie-
rungsdokumente und einer zuvor durchgeführten MCNP-Ansys CFX-Kopplung als Grundlage
für die Validierung und Verifizierung. Die Ergebnisse der Serpent 2-Ansys CFX-Kopplung für
den aktuellen HEU-Kern stimmen gut mit den FRM II-Lizenzierungsunterlagen und der zuvor
durchgeführten MCNP-Ansys CFX-Kopplung überein. Die Serpent 2-Ansys CFX-Kopplung
wurde sowohl für den aktuellen HEU-Kern als auch für das potenzielle LEU-Design durchgeführt,
wobei mehrere Parameter zwischen beiden verglichen wurden.
Die auf der Platte auftretenden Verformungen infolge thermischer Ausdehnung und Druckbelas-
tungen wurden über ein sequenzielles Kopplungsschema Thermal-Fluid-Structure Interaction
(TFSI) bewertet. Zusätzlich wurde der Einfluss der Verformungen auf den Kühlmittelfluss in einer
direkten TFSI-Kopplung berücksichtigt. Diese Kopplungen wurden für den aktuellen FRM II-Kern
und den potenziellen LEU-Kern durchgeführt.
Auf der Grundlage dieser Berechnungen wird das Design des potenziellen LEU-Kerns als wissen-
schaftlich machbar angesehen. Diese Arten der Kopplung bieten alle notwendigen Instrumente zur
Bewertung der thermohydraulischen und mechanischen Stabilität des Kerns im Nominalbetrieb
und unter Störfallszenarien.
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1 Introduction

CHAPTER1
Introduction

1.1 FRM II

Figure 1.1: Scenic view of FRM II area, with the FRM (Atomei) on the right hand side, and FRM II on the left
hand side.

The neutron source Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) is located in
the Technische Universität München (TUM) campus Garching, Germany. Operating with a
power of 20 MW, it is Germany’s most powerful neutron source. FRM II is the descendant of
Atomei (FRM), which started operation in 1957 and was decommissioned in 2000. With a first
criticality on March 2nd, 2004, FRM II is Germany’s youngest reactor, and since the end of
April, 2023, it is Germany’s last operational reactor with a considerable thermal power. As a
modern research reactor, the concept and development of FRM II were based on the design of
the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) in the United
States and High Flux Reactor (RHF) at Institute Laue Langevin (ILL), Grenoble, France. The
design was optimized to obtain the highest thermal flux outside the fuel element while retaining
a low thermal power and accommodating many beam tubes, adding to a substantially different
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1.1 FRM II

design concept compared to a power reactor. FRM II typically operates four cycles a year, each
having 60 days of neutron beam. With an undisturbed thermal neutron flux of 8 · 10−14 n/s/cm2

at 20 MW thermal power, FRM II has the highest flux-to-power ratio worldwide. It is cooled
with light water, moderated, and reflected with heavy water [1].

Figure 1.2: A computer-aided design (CAD) model of the core is shown on the left-hand side, while a horizontal
cut can be seen on the right-hand side. 113 involute-shaped plates are shown, together with the fuel element’s inner
and outer side plates, and the comb ring. The right figure’s light and dark blue colors represent the light water and
heavy water moderator, respectively.

Figure 1.3: The fuel plate with two different uranium densities and AlMg2 frame. Red, green and gray colored
areas refer to the 3.0 gUcm−3, 1.5 gUcm−3 and AlMg2, respectively.

Fuel Element and Enrichment

FRM II, just like the other two predecessors HFIR and RHF, contains a compact core with
one single fuel element. Each fuel element has 113 involute1 shaped fuel plates, as depicted
in Figure 1.2. The involute geometry ensures a compact core with a constant cooling channel

1An involute is defined as a spiral generated around a circle.

2



1 Introduction

Figure 1.4: A cross-section of the pool. The heavy water tank, light water moderator, shut-down rods, central
channel, and fuel element are depicted [2, 3].

3



1.2 Conversion

thickness. FRM II uses 93% enriched U3Si2 dispersed in an aluminum matrix as fuel, and the
fueled length in each plate is 70 cm long. An AlMg2 frame surrounds the fueled area from all
sides, resulting in a fuel plate length of 72 cm. The plates have a sandwich-like structure with the
fuel in the middle and a layer of AlFeNi cladding on each side. With a fuel thickness of 0.6 mm
and cladding thickness of 0.38 mm, the plate thickness amounts to 1.36 mm. Two different fuel
densities are used for the plate. The fuel at the inner zone has a uranium density of 3.0 g cm−3.
The uranium density close to the outer side plate is modified to 1.5 g cm−3 to reduce the heat
deposited by the thermal neutrons being reflected from the heavy water reflector. Furthermore, a
boron ring is placed at the bottom of the outer side plate to decrease the power peaking in this
region.

The light water runs through 2.2 mm cooling channel which separates the plates. Roughly
274.5 kg s−1 water flows through the core with an average flow velocity of 15.9 m s−1. The fuel
element is positioned in the central channel, also shown in Figure 1.2. A control rod made of
hafnium at the top and a beryllium follower at the bottom is placed in the middle of the fuel
element. The D2O moderator encompasses the whole fuel element. Figure 1.4 shows a horizontal
cross-section of the reactor pool. In addition to the central channel, the FRM II core contains
multiple installations such as the cold source, hot source, 5 shut down rods2, 11 beam tubes,
the silicon doping system, material sample irradiation systems, and the high irradiation medical
system. The whole assembly is immersed in the light water pool [1].

1.2 Conversion

As of today, FRM II is operating with U3Si2 fuel with 93% enrichment. Such enrichment is
considered as Highly-Enriched Uranium (HEU). FRM II actively participates in international
efforts to reduce uranium enrichment in civil cycles[4]. However, compared to other research
reactors, the compact core and its already dense fuel make this reactor particularly cumbersome
to convert. The given conversion criteria are:

• Fulfillment of the safety requirements. The safety margins calculated for the potential Low
Enriched Uranium (LEU) core have to be at least as good as the ones for the current HEU
core.

• Compatibility with the existing facility. In order to avoid prolonged shutdowns of the
reactor, the LEU core needs to be downward compatible to the current facility. This means
that the outer central channel radius is a constraint, so the extension of the core to the
outer side is deemed infeasible.

• Preservation of the cycle length at 60 days to maintain the scientific activities and perfor-
mance.

2Due to the cut, only three are shown in Figure 1.4.
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• Marginal loss of neutron flux.

In order to lower the enrichment and fulfill the conversion criteria, modifications to the fuel
element need to be applied. In addition, a new fuel has to utilize a higher chemical uranium
density than the current one to compensate for the low enrichment. Only UMo fuel in monolithic
form allows a conversion to LEU while fulfilling the conversion criteria [3]. The potential usage
of this novel fuel for the conversion to LEU requires a new assessment of the core’s neutronics,
thermal-hydraulics, and mechanical aspects.

The thermal-hydraulic methods used for the licensing of FRM II in the past consisted of one-
dimensional (1D) steady-state calculations [5]. While offering an overview of key quantities, 1D
calculations are considered conservative. In order to provide a detailed representation of the
thermal-hydraulic conditions in the core, effort is put into employing commercial Computational
Fluid Dynamics (CFD) codes. So far, no high-flux research reactors have used CFD codes in their
licensing process. Consequently, the verification and validation of CFD codes are of importance
for conversion. Since all three involute reactors HFIR, RHF, and FRM II are pursuing the
conversion to LEU, an alliance is formed to validate the CFD solvers and techniques for the
high-performance research reactor safety analysis. Together with the support and expertise gained
by Argonne National Laboratory (Argonne) through their several conversion programs, the three
involute reactors have joined forces into the Involute Working Group (IWG) [6].

1.3 A Potential LEU Core

Identifying possible LEU core designs is a scientific process that relies on several design variables,
objectives, and constraints. The details of the down-selecting process and the parametric study
are not shown in this work. The interested reader can refer to the latest publication on this
topic [3]. The LEU core used in this work originates from this publication. It is important to
emphasize that this design is one of many that shows viability in accordance with the performed
down-selection analysis. Therefore, it is referred to in this work as a potential LEU core.

A potential LEU core considered here uses monolithic UMo. This fuel type has been investigated
thoroughly for the past twenty years [7, 8]. Additionally, the thermal-mechanical and physical
properties have been thoroughly assessed [9].

This specific core design has 109 plates. The fuel itself is 0.45 mm thick and it is sandwiched
between 0.3 mm AlFeNi cladding. The length of the active region is increased towards the top of
the plate by 13 cm resulting in 83 cm fueled length. The frame remains unchanged compared to
the current design, with 1 cm length on top and bottom of the fueled area, adding up to a plate
length of 85 cm. The cooling channel thickness increases to 2.4 mm, yielding a larger flow area
and higher moderation inside the fuel elements. Furthermore, to supply more fuel in the plate
while maintaining compatibility with the current HEU core, the radius of the involute-generating
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1.3 A Potential LEU Core

circle was decreased, leading to a larger involute plate arc length. At this stage of the project,
the position of the combs is assumed to be unchanged. This means that the arc length of the
involute plate starting from the inner side plate to the comb is unchanged. Subsequently, the
combination of larger involute arc length and unchanged arc length distance between the combs
and the inner side plate implies that the comb would no longer be located at the mid-radial
distance between the side plates but closer to the inner side plate. Figure 1.5 is a schematic
showing the geometrical differences between the current HEU core and the potential LEU core.

Figure 1.5: Comparison between HEU (green) and LEU (pink) plates. The involute generating circles are shown
for each plate. The combs can be identified at the mid half arc length for the HEU plate and slightly closer to the
involute generating circle for the LEU plate.

Since the potential LEU plate has a larger flow area, the pressure drop along the plate is expected
to decrease in comparison to the current HEU plate. Additionally, due to the increased flow
area, the flow resistance also decreases, thus, contributing to a lower pressure drop. Given that
a certain pressure drop is required from the FRM II reactor control system, measures must be
taken to increase the pressure. For this purpose, a flow restrictor located at the core outlet
is introduced. A flow restrictor can be a Venturi nozzle3 that confines the flow, leading to a
decrease of the flow area at the bottom of the core, thus increasing the velocity, and adding an
additional flow resistance. That leads to an irreversible pressure drop with the beneficial effect
that a larger pressure at the bottom of the fuel plates increases the saturation temperature of the
coolant, which in turn ameliorates the safety margins. In addition, the pressure drop through the
restrictor in the reverse direction (bottom to top) has to be small in order to minimize its impact
in transient accident scenarios, such as flow reversal due to failure of the pumps. According to
calculations performed with a flow network script developed by Argonne to model the primary
circuit, the flow restrictor should yield an additional pressure drop of 1.5 bar [3].

3A Venturi nozzle is a short narrow tube located within a wider tube.
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1 Introduction

The pump flow rate in the LEU core is assumed to remain unchanged. Due to the increased flow
area, the flow resistance decreases in comparison to the current core. Adding the flow restrictor
compensates for the difference in resistance between the two cores. The flow network script
discussed in [3] calculates a mass flow rate of 277.6 kg s−1 for the potential LEU design. The
small difference in mass flow rates between the HEU and LEU cores is due to the assumptions
used in the flow network script and do not impact the safety or validity of the results.

It is crucial to point out that the flow restrictor presented here is a first assessment, and it is,
therefore, subject to ongoing optimization. Figure 1.6b shows a design possibility of the flow
restrictor in which the restrictor confines the flow at the core outlet and then reopens to the
cooling channel. At this first assessment of the potential LEU core, the reopening of flow restrictor
is not taken into account. Furthermore, in this work, the restrictor shown in Figure 1.6a is used.
In the near future, the assessment of the LEU plate including the full restrictor is expected to
take place.

Table 1.1 summarizes the main differences between the current HEU core and the potential LEU
core from material and geometric points of view.

Figure 1.6: The CAD model of the plate, including (a) the flow restrictor used in this work and (b) the potential
flow restrictor. Note that only one plate is shown, while the restrictor is fully shown. Source (a) [3].
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Parameter Current HEU core A potential LEU core

Material

Fuel U3Si2-Al matrix UMo monolithic
Enrichment 93% 19.75%
Cladding material AlFeNi
Frame material AlMg2

Geometry

Number of plates 113 109
Fuel length 72 cm 83 cm
Plate length 70 cm 85 cm
Fuel thickness 0.6 mm 0.45 mm
Cladding thickness 0.38 mm 0.3 mm
Cooling channel thickness 2.2 mm 2.4 mm
Fuel width arc length 62.38 mm 71.07 mm
Plate width arc length 69.39 mm 78.39 mm
Flow restrictor no yes
Mass flow 274.5 kg s−1 277.3 kg s−1

Boron ring bottom outer side plate bottom outer side plate
Table 1.1: Comparison between the current HEU core and a potential LEU core design considered in this work.

1.4 This Work

The road of converting FRM II to Low-Enriched Uranium fuel (LEU) has many different aspects
to be considered. The change of the core material to LEU entails an entire assessment of the
new core’s behavior based on neutronics, thermal-hydraulics, and mechanics. This work is
primarily focused on the thermal-hydraulic and thermal-mechanic prospects. It is clear that all
the calculations rely on the neutronics outcome; however, the neutronics part is not discussed
in detail as substantial work has been performed in different frameworks and the work is still
advancing [2, 10, 11].

The underlying goal of this thesis is to create a fully coupled system that takes into account
neutronics, thermal-hydraulics, and mechanics, with hydraulics and mechanics systems exchanging
information on a stepped basis. Even though a coupling between neutronics and thermal-hydraulics
was performed in previous work [12], the starting point of this work is the verification and
validation of the CFD and Computational Structural Mechanics (CSM) codes. Experiments that
represent the thermal-hydraulics and mechanics of high-flux research reactors are taken as a
validation basis [13]. The Gambill–Bundy experiments [13] and Cheverton–Kelley experiments [14]
(also referred to as GB and CK experiments throughout this work) are two experiments that
were done in the 1960s for the licensing of the HFIR reactor. The test sections used in these
experiments represent the thermal-hydraulic and mechanical behavior of a high-flux research
reactor such as HFIR, and by extension, also RHF and FRM II. These experimental setups are
simulated in Ansys CFX (CFX) and Ansys Mechanical, respectively. The computational results
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are compared to the actual experimental outcomes. This process is repeated with other codes
such as Comsol and Star-CCM+ within the IWG framework [15, 16]. The results obtained with
each code are compared to each other and to the experiment (see Chapter 11).

Being acquainted with the codes of choice, the next step consists of performing the coupling
between the neutronics calculated by Serpent 2 and thermal-hydraulics by CFX, as shown in
Chapter 12. For various reasons, since 2015, Serpent 2 has been used to account for the neutronics
for FRM II as opposed to MCNP which was previously used in [12]. The coupling between
Serpent 2 and CFX is done in-house. Using the power deposition provided by Serpent 2 and the
conjugate heat transfer solver in CFX, this coupling provides insights into the pressure, velocity,
and temperature field of the reactor plates and coolant. The accuracy and credibility of the
Serpent 2–CFX coupling is attained via the previously completed verification and validation
of the code (see Chapter 11), the comparability with the FRM II licensing documents, and
comparability with previous work performed on the reactor plate using different codes (see
Chapter 12). The agreement between different sources and the Serpent 2–CFX coupling for the
current HEU plate provides additional credibility and confidence in using these methods for
the prediction of the thermal-hydraulic and mechanic aspects of a potential LEU core for the
conversion. The results obtained using the Serpent 2–CFX coupling for both core configurations
are compared between each other.

Thus far, the entire range of FRM II fuel plate assessments has been focused solely on the
neutronic and thermal-hydraulic behavior. However, in furtherance of a complete picture, the
plate deformation under nominal conditions is beneficial in understanding the mechanical stability
of the current core and the potential LEU one. This type of analysis is usually called a Fluid
Structure Interaction (FSI) analysis; however, in this case, the name is updated to Thermal-
Fluid-Structure Interaction (TFSI) since the coupling includes also the thermal aspect. The
method and naming details are explained in detail in Chapter 7. The evaluation of the plate’s
deformation amplitude and profile is executed in two forms: the first form, called one-way coupling,
is constructed to take the solution of the thermal-hydraulic solver CFX and map the results
into the solid domain in Ansys Mechanical (see Chapter 13). In the second approach, also called
two-way coupling, once the deformation is evaluated from the fluid solution, Ansys Mechanical
sends the corresponding deflections back to CFX, where the deformation’s influence on the
velocity is taken into account. The process carries on depending on the model and convergence
criteria (see Chapter 13). The TFSI simulations are performed for both the current HEU plate
and a potential LEU plate in order to provide a comparison between the two. In addition, the
newly settled TFSI coupling is used to assess a station blackout scenario in Chapter 14. A
flowchart of the work performed in this thesis is shown in Figure 1.7.

The theoretical background related to fluid and structural mechanics is given in Part I and
Part II, respectively. Part III explains the codes and the coupling approaches between them.
Furthermore, the results are shown and discussed in Part IV. Lastly, Part V summarizes the
results of this work.
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Figure 1.7: Flowchart of this work. The left column contains the verification and validation sources used in this
work. Comsol and Star-CCM+ in the Verification with Similar Codes category are colored green and blue since
these codes have both fluid and solid solvers incorporated into one Graphical User Interface (GUI). The right
column shows a flowchart of the two different coupling methods.
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Part I

Thermal Hydraulics
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2 Consideration of Basic Quantities

CHAPTER2
Consideration of Basic Quantities

The thermal-hydraulic aspect of this thesis relies on the Navier-Stokes equations. In this chapter,
the basis used to describe the equations is given first. A series of dimensionless quantities used
to quantify and describe the thermal-hydraulic analysis are presented and described in detail
in Section 2.1. Then, the heat transfer equation is given in Section 2.4, while heat transfer
correlations are explained in Section 2.3. Furthermore, the boiling phenomenon with the focus
on nucleate boiling is described in Section 2.4.

2.1 Dimensionless Numbers

The information given in this section is mainly based on [17–19].

Hydraulic diameter (dh) is a term used when the channel under investigation is not exactly circular.
There are several correlations to calculate the hydraulic diameter for different geometries [17].
Usually, dh is defined as:

dh = 4A

p
(2.1)

where A is the cross sectional area and p the perimeter.

Reynolds number (Re) is a dimensionless quantity defined by the ratio between a fluid’s inertial
and viscous forces. Re number serves as a measure for flow patterns such as turbulence, and it
can be calculated as:

Re = vdh

ν
(2.2)
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2.1 Dimensionless Numbers

where v is the velocity of the fluid and ν is the kinematic viscosity1. Therefore, Reynolds number
is temperature dependent. Low Re numbers are characteristic of laminar flows, indicating a
domination of the viscous forces. On the contrary, high Re numbers occur in turbulent flows,
where the inertial forces dominate. For pipe flows, a Re number at about 2300 presents the
transition between laminar and turbulent flows.

Prandtl number (Pr) is defined as a ratio between the momentum diffusivity (or kinematic
viscosity) and thermal diffusivity:

Pr = ν

a
(2.3)

where a is the thermal diffusivity defined as:

a = k

cpρ
(2.4)

where k is the thermal conductivity, cp the specific heat capacity at constant pressure and ρ the
density.

In conjugate heat transfer cases, Pr number also represents the ratio between the momentum
boundary layer thickness dM and the thermal boundary layer dT [17].

dM

dT
≈ Pr (2.5)

The definition of the boundary layers is illustrated in Figure 2.1. Supposing that there is a fluid
flowing with velocity v by a heated wall with temperature TSolid, the fluid velocity close to
the wall is zero. In regions far from the wall, the velocity is v. The momentum boundary layer
thickness is the distance from the wall towards the center of the channel where the velocity has
reached an asymptotic behavior or roughly 99% of the free stream velocity2.

Figure 2.1: The definition of the momentum boundary layer dM and thermal boundary layer dT . Refurbished
from [19].

1Kinematic viscosity is a measure of of the fluid flow resistance, and it is calculated as the absolute (or dynamic)
viscosity divided by the density.

2The term free stream is used to describe a region that is far from a boundary.
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In heat transfer processes, the fluid in close proximity to the heated wall has roughly the same
temperature as the wall, while the fluid at the center of the channel has a lower temperature.
Therefore, convective heat transfer takes place in the direction perpendicular to the flow. The
thermal boundary layer is defined as the distance from the heated wall for which the fluid has
reached 99 % of the free stream temperature [19].

As seen in Equation (2.5), for large Pr numbers, the momentum boundary layer is larger than the
thermal one. The opposite occurs for low Pr numbers. In the heated regions of the FRM II plates,
the Pr number is low; therefore, the thermal boundary layer is thicker than the momentum one.

Nusselt number (Nu) [18] is calculated as the ratio between the convective heat transfer and
conductive heat transfer. Hence, it can also be considered a dimensionless heat transfer coefficient.

Nu = hd

k
(2.6)

where h is the heat transfer coefficient, its calculation heavily depends on the fluid properties,
the fluid regime, and geometry.

2.2 Heat Transfer

The energy equation for a solid body is written as:

∂T

∂t
= ∇(a∇T ) + S (2.7)

where S is a source term, and a is the thermal diffusivity. The thermal diffusivity is defined
in Equation (2.4) where k is the thermal conductivity, cp the specific heat capacity and ρ the
density.

The source term is a temperature source [K s−1]:

S = Q

cpρ
(2.8)

The energy per unit volume and time is denoted by Q. For a steady state application, the time
derivative of the temperature is zero, therefore:

∇(a∇T ) = −S (2.9)

Equation (2.9) has to be solved for the volume elements by applying the divergence theorem:

∫
∇(a∇T )dV =

∮
a∇TdA = −

∫
SdV (2.10)
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2.3 Heat Transfer Correlations

Heat transfer is a complicated physical process. Therefore, heat transfer correlations that can
evaluate the heat flux at the fluid-solid interface are widely used in thermal-hydraulic frameworks.
These correlations take into account the geometry of the channel, the fluid properties, and the
operating conditions [20]. Correlations can be expressed in terms of dimensionless quantities that
characterize the flow and its thermal conditions. For instance, heat transfer is represented by the
dimensionless heat transfer coefficient (Nu), which can be expressed by quantities such as Re and
Pr, yielding an understanding whether the heat transfer is driven by conduction or convection.
The classical one-dimensional thermal-hydraulic codes rely on correlations such as Sieder-Tate [21]
or Hausen [22] to calculate the heat flux and heat transfer coefficients3. Therefore, it is common
practice to compare the heat transfer results obtained with Computational Fluid Dynamics (CFD)
codes to 1D calculations. Sieder-Tate and Hausen correlations are usually used for plate-type
geometries [23], such as the Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) plate.
Therefore, they are briefly introduced in the next section.

2.3.1 Sieder-Tate Correlation

In 1936, Sieder and Tate [21] used a series of heat transfer parameters measured on several types
of oil with very different temperature coefficients of viscosity in order to develop a correlation
using dimensionless numbers. The main focus of Sieder and Tate was to establish a correlation
that could evaluate the temperature-dependent viscosity and viscosity gradients on the flow
direction and perpendicular to the flow and heated walls. Therefore, they decided to use as
dimensionless quantity the ratio between the viscosity of the mainstream flow and the viscosity
at the heated wall µb

µw
. This ratio is given in terms of the dynamic viscosity4 and it estimates

the interaction between the viscosity gradient of the temperature distribution and the velocity
field. Thus, Nu number can be calculated by the Sieder-Tate correlation as:

NuST = 0.027(Re)0.8
b (Pr)1/3

b

(
µb

µw

)0.14
(2.11)

The subscript b means the value is calculated at the fluid mean temperature.

The Sieder-Tate correlation is valid for Pr between 0.7 and 16700 and for Re larger than 10000
[17].

3For CFD, the heat fluxes are calculated based on a mesh. See Chapter 3
4Dynamic (or absolute) viscosity is a measure of force required to make the fluid flow at a certain rate. It is

important to note that the kinematic viscosity, on the other hand, gives information about the velocity the fluid is
flowing when a force is applied on it.
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2.3.2 Hausen Correlation

Helmuth Hausen extended the Sieder-Tate correlation to be used both for transitional and fully
turbulent flows [22]. Nu number, according to Hausen’s correlation, can be calculated as:

NuH = 0.116[(Re)2/3
b − 125](Pr)1/3

b

[
1 +

(
dh

Lh

)2/3]( µb

µw

)0.14

x

(2.12)

where Lh is the heated length. All the properties except µw are evaluated at the fluid temperature.

2.4 Boiling Phenomena

FRM II is designed in a way that no boiling occurs under nominal conditions. However, the
assessment of the safety margins is necessary. An important scenario for FRM II is the flow
reversal scenario, where nucleate boiling is expected (see Chapter 14). To explain what nucleate
boiling is and subsequently illustrate this scenario, the Nukiyama boiling curve in Figure 2.2 is
used.

Figure 2.2: Typical boiling curve showing the evolution of the heat flux at the heated wall depending on the
wall superheat, also defined as the temperature difference between the wall temperature and the fluid saturation
temperature. Refurbished from source [24].

Nucleate boiling occurs when the heat flux at a solid surface is increased, and therefore, the
temperature of the wall is increased by a couple of degrees above the water saturation temperature.
In this case, small bubbles start forming at the wall. However, since the applied heat flux is
not large enough, most of the water is still below the saturation temperature. Therefore, the
steam bubbles cannot get too far from the wall without condensing. This point is the Onset of
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Nucleate Boiling (ONB). This flow is called subcooled flow boiling. If the heat flux is increased
further, the water temperature also increases. The bubbles start detaching from the walls and
merge with the fluid flow. This process continues until the heat flux is large enough that bubbles
have increased in size and the detachment rate is also large. This point is called Departure from
Nucleate Boiling (DNB). The largest value of heat flux that can be achieved is called Critical
Heat Flux (CHF). There comes the point where a large amount of vapor bubbles is covering the
wall. The heat transfer from the heated wall to vapor is much less efficient than to liquid, causing
the heat flux to decrease. This point is called the Leidenfrost point. From this point on, the
heated wall is covered exclusively by vapor and radiation is the main heat transfer mechanism.
This causes the heat flux to increase fast. This region is referred to as film boiling [25].

In the case of FRM II, nucleate boiling is related to pump failures. In the event of a pump failure,
the coolant is subject to decay heat from the fission reaction. The water gets warmer and natural
convection takes place. In Figure 2.2 this is denoted from the starting point of the curve up to
ONB. The coolant temperature is still below the saturation temperature, and the flow is still
in a single phase; therefore, no bubbles form. Nucleate boiling occurs when the temperature
of the wall is between 5 ◦C to 10 ◦C larger than the water saturation temperature. In ONB,
the coolant pressure decreases and bubbles form at the cladding surface (two-phase flow). The
pressure decreases further while the void fraction increases with the coolant velocity decreasing
until the Onset of Flow Instability is reached (OFI). This process continues until DNB transpires.
The presence of numerous vapor bubbles at the wall causes an increase in frictional drag and a
decrease of pressure drop.

This work does not include the flow reversal CFD calculations for the FRM II plate. However,
since 2021 efforts have been made to build representative experimental setups that focus on
capturing the nucleate boiling in a simple rectangular channel. The data acquisition is expected to
facilitate the CFD modeling of such scenarios for FRM II in the very near future. The interested
reader can refer to the master thesis performed as a first step of nucleate boiling assessment [26].
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CHAPTER3
Fluid Mechanics

3.1 Navier-Stokes Equations

Fluid mechanics is based on the assumption that the density of a fluid is large enough to
approximate it as a continuum. This means that even an infinitesimal amount of fluid is composed
of a plentiful amount of particles, each with a velocity and mean kinetic energy. Consequently,
one can determine the pressure, temperature, density, turbulence parameters and other quantities
related to the fluid. The governing equations of fluid dynamics are primarily based on three
conservation laws: the conservation of mass, momentum and energy. These three laws define a
set of equations called the Navier-Stokes equations [27], and they can be expressed based on the
Reynolds Transport Theorem [28], which is a three-dimensional generalization of Leibnitz rule:

d

dt

∫
V (t)

fdV =
∫

V (t)

df

dt
dV +

∫
S(t)

fv · ndS (3.1)

f is a general quantity, V(t) is the element volume at time t, S(t) is the surface at time t and n

is the vector normal to the surface. Equation (3.1) connects two different ways to describe the
motion of a fluid: the Lagrangian and Eulerian approaches. In the Lagrangian approach, all fluid
particles are followed and the change around each particle is described in terms of its path. In
the Eulerian approach, all particles are characterized at fixed positions at different times.

Mass Conservation

The conservation law of mass or continuity equation is based on the logic that the mass in a
single-phase fluid system cannot disappear nor be created out of nothing. Therefore, the mass
change in an infinitesimal volume element equals the sum of mass fluxes through the surfaces.
The mass fluxes through the X-direction of one element are shown in Figure 3.1.
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3.1 Navier-Stokes Equations

Figure 3.1: The mass fluxes in X-direction through an infinitesimal element volume. Since only the X-direction is
taken into account, the u component of velocity is used. Refurbished from [29].

For all three directions, the continuity equation for one element is written as:

∫
V (t)

dρ

dt
dV +

∫
S(t)

ρv · ndS = 0 (3.2)

where ρ refers to the density and v to the velocity vector. Using Gauss’ theorem, Equation (3.2)
can be written as:

∂ρ

∂t
+ ∇ (ρ · v) = 0 (3.3)

Momentum Conservation

The equation regarding the conservation of momentum is an application of Newton’s second
law. Therefore, the time-dependent momentum change in an element ρv is calculated as the
difference between incoming and outgoing momentum currents plus the sum of the forces acting
on the volume element. Two types of forces act on the control volume: body and surface forces.
The body forces can be gravity or buoyancy. Surface forces can be separated into two parts: the
pressure and the viscous stress tensor τ that includes the normal stress and shear stress, i.e.:

σ = −pδij + τ (3.4)

where δij is the Kronecker delta and σ is the stress tensor. The pressure is expressed in terms of
the normal stress components:

p = − tr(σ) (3.5)

The minus sign indicates that the pressure is acting on the volume.

For Newtonian fluids, the normal and shear stresses can be expressed in terms of the velocity
gradient such that:
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3 Fluid Mechanics

Figure 3.2: Momentum in X-direction through an infinitesimal volume element. Since only the X-direction is
taken into account, the u component of velocity is used. Refurbished from [29].

τii = λ∇ · v + 2µ
∂vi

∂xi
(3.6)

and
τij = τji = µ

(
∂vi

∂xj
+ ∂vj

∂xi

)
(3.7)

In Equation (3.6), λ is the bulk viscosity1. The momentum conservation law for one element is
written as:

ρ ·
(

∂v

∂t
+ (v · ∇) v

)
= −∇p + µ∆v + ρg (3.8)

Energy Conservation

The energy conservation equation is another way of expressing the first law of thermodynamics.
The time-dependent change of energy in a volume can be calculated as the sum of incoming and
outgoing energy flux in an element, the flow of energy due to heat transfer, the work done by all
the forces such as compressive forces, normal- and shear stress and energy contribution from
external sources. The total energy of an infinitesimal volume element is a sum of the internal
energy ρedV and kinetic energy ρ|v|2dV :

ρEdV = ρedV + ρ|v|2dV (3.9)

where e is the internal energy per unit mass.

The time change of energy in a volume equals the sum of the change in internal energy and the
energy flux through the element walls. Analogously to Equation (3.1), the time change of energy
is defined as:

d

dt

∫
(ρE)dV =

∫
∂(ρE)

∂t
dV +

∫
ρEv · ndS (3.10)

1The bulk viscosity, or also called volume viscosity, introduces damping that is associated to volumetric staining
of the liquid, such as compression.
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Figure 3.3: Energy through an infinitesimal volume element. Since only the X-direction is taken into account, the
u component of velocity is used. Refurbished from [29].

To account for the heating within the element, the Fourier law can be used:

dQ̇ = ρqdV − k∇TdS (3.11)

where q is the heat strength and k is the thermal conductivity.

The time rate of the work done by the compressive forces can be written as:

dW = ρg · v + v · (σ · n)dS (3.12)

Applying the divergence theorem, the energy equation can be assembled to:

∂(ρE)
∂t

+ ∇ · (ρEv) = ∇ · (k∇T ) + ρq − ∇ · (pv) + ρg · v + ∇ · (τ · v) (3.13)

Equation (3.3), (3.8) and (3.13) add up to the compressible Navier-Stokes equations. They can
be expressed in a conservation form as:

∂U

∂t
+ ∇ · F = Q (3.14)

where:

U =


ρ

ρv

ρE

 (3.15)
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F =


ρv

ρ (v · ∇) v

(ρE + p) v − k∇T − τ · v

 (3.16)

Q =


0

ρg

ρ (q + g · v)

 (3.17)

Equation (3.14) is a system of 5 equations and 5 variables: ρ, ρv and ρE. However, since there
are 7 unknown flow field variables: ρ, u, v, w, E, p and T , this system is under-defined. Therefore,
two more thermodynamic relations are necessary, such as the pressure dependence on density
and temperature and the internal energy in terms of pressure and temperature. In addition, the
viscosity µ and thermal conductivity k have to be determined in dependence on the system’s state
so that this equation system is closed. Such formulations are derived for an ideal and a real gas in
literature [27]. Given the complicated nature of Navier-Stokes equations2, to describe a real-life
turbulent flow, the British physicist Osborne Reynolds suggested the so-called Reynolds-averaging
approach, which is described in the following section.

3.2 Reynolds Averages Navier-Stokes (RANS) Equations

Osborne Reynolds introduced the concept of decomposing quantities into averaged and fluctuating
components that can help solve a set of equations that covers the turbulence models [31]. This
way, the turbulence fluctuations can be eliminated. A variable can be divided into two parts: the
averaged and varying components, e.g., velocity:

vi = vi + v
′

i (3.18)

The averaged part can be expressed as:

vi = 1
δt

∫ t+δt

t
vi dt (3.19)

The time interval δt is chosen in a way that it is small compared to the time scale of solving the
equations but larger in account of the turbulent fluctuations3.

2As of the early 2000s, the existence of smooth and reasonable solutions of the Navier-Stokes equations in
three-dimensional (3D) constitute a millennium problem [30]. In fact, the smoothness of these equations is the last
unsolved problem of classical mechanics.

3This is Favre-averaging when weighted by density for the compressible flows.
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Substituting the averaged quantities into the conservation equation in Section 3.1 one gets
Equation (3.20) for the mass conservation, Equation (3.21) for momentum conservation and
Equation (3.22) for energy conservation:

∂ρ

∂t
+ ∇ · (ρv) = 0 (3.20)

∂ρv

∂t
+ (v · ∇) · v = −∇p + µ∇2v + ρg + ∇ · τt (3.21)

∂
(
ρE
)

∂t
+ ∇ ·

(
ρvE

)
= ∇ · (κ∆T ) + ρq − ∇ · (pv) + ρgv + ∇ · (τ · v) (3.22)

One can see that no changes were made to the continuity Equation (3.20) compared to the
continuity equation without averaged quantities in Equation (3.3). However, turbulent flux terms
are added to the momentum Equation (3.21) and the scalar transport Equation (3.22). The
Reynolds stress tensor is the last term in Equation (3.21). It mathematically rises due to the
nonlinear convective term when averaging. Physically, it describes the momentum transfer due
to turbulent fluctuations. The Reynolds stress tensor has 9 components:

τt = ρv′
iv

′
j =


ρ(v′

1)2 ρv′
1v′

1 ρv′
1v′

3
ρv′

2v′
1 ρ(v′

2)2 ρv′
2v′

3
ρv′

3v′
1 ρv′

3v′
2 ρ(v′

3)2

 (3.23)

However, since velocities v′
i and v′

j can be interchanged, the Reynolds stress tensor has only 6
independent components. In order to solve for the components of Equation (3.23), a closure
approach is needed. In 1877, Boussinesq [32] proposed a hypothesis that relates the Reynolds
stress components to the average velocity:

ρv′
iv

′
j = 2µt

(
∂ui

∂xj
+ ∂uj

∂xi

)
− 2

3

(
ρK + µt

∂uk

∂xk

)
δij (3.24)

where µt is the turbulent (or eddy) viscosity and K is the turbulent kinetic energy. The turbulent
viscosity is not a physical descriptor of the fluid, it is dependent on the local flow conditions.
More details on the turbulent viscosity are given in Section 4.3.

In the case when supplementary variables that are introduced by the turbulence models have to
be calculated, the transport equation is:

∂ρϕ

∂t
+ ∇ · (ρvϕ) = ∇ ·

(
a∇ϕ − ρv′ϕ

)
+ Sϕ (3.25)
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where Sϕ is the source term for the supplementary variable. Supplemental variables, such as the
turbulence kinetic energy or dissipation rate for which Equation (3.25) is solved are introduced
in Section 4.3.
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CHAPTER4
Computational Fluid Dynamics (CFD)

Computational Fluid Dynamics (CFD) is a field within fluid mechanics that deals with solving
fluid flow-related problems through numerical analysis. The Navier-Stokes equations presented in
Section 3.1 are Partial Differential Equation (PDE) and can only be solved analytically for very
simple problems. For complicated tasks, the PDEs can be expressed as a set of linear equations,
which then can be solved iteratively using computational resources.

4.1 Discretization

The physical space where the flow needs to be calculated can be broken down into a number of
smaller geometrical components, the entire assembly of which is called a grid or mesh. This process
is referred to in the literature as mesh generation [27]. The mesh elements are usually 2- (triangle,
quadrilateral) or 3-dimensional (tetrahedron, hexahedron) shapes. The mesh requirements are
application-dependent. However, in all cases, the mesh must be constructed in a way that no
unexpected variation in cell volumes occurs. A mesh consists of several elements and nodes. An
element is defined as an assembly of nodes that connect the geometrical points on each mesh
element. Figure 4.1 illustrates the elements and nodes.

Figure 4.1: Graphics showing a mesh element or cell, a node, boundary face and edge. Source: [33].
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There are several discretization methods, such as Finite Element Method (FEM), Finite Volume
Method (FVM) or Finite Difference Method (FDM). The finite volume method is the most
commonly used for CFD. There are two types of FVMs:

• Cell-centered: the variables are calculated at the center of every cell volume.

• Vertex-centered: the variables are calculated at the middle line that connects two nodes.

Figure 4.2 illustrates the difference between cell-centered and vertex-centered FVM discretization.
The latter is a hybrid FEM-FVM discretization approach. More details can be found in Section 4.4.

Figure 4.2: The difference between (a) cell-centered and (b) vertex-centered finite volume method. Refurbished
from [27].

4.2 Turbulence Wall Modeling

Turbulence is a three-dimensional phenomenon that consists of many scales and happens when
the fluid’s inertia forces become comparable to the viscous forces; thus, Reynolds number (Re) is
high [27]. A Direct Numerical Simulation (DNS) could provide further insights (see Section 4.3).
However, DNS simulations require higher computing power and cannot be performed for complex
geometries. To overcome this issue, CFD research is focused on deriving turbulence models, which
can account for the turbulence phenomenon statistically and, thus, save computational resources.
One of the most important concepts regarding turbulence in CFD is modeling the flow in the
wall vicinity.

In CFD, it is common practice that the near-wall region is considered as three layers; one almost
laminar viscous sublayer where viscosity is a crucial factor for momentum and heat transfer, and
logarithmic layer where turbulence is the primary mechanism for heat and momentum transfer.
The zone where the sublayer and logarithmic layer mix is considered a buffer layer. To evaluate
the flow velocity dependence on the wall distance, it is helpful to define dimensionless parameters
that can be used universally such as the dimensionless velocity, temperature and wall distance.

The dimensionless wall distance y+ can be written in terms of the density ρ, friction velocity
uτ

1, viscosity µ and distance from the wall y as:
1The friction or shear velocity is shear stress expressed in units of velocity. In other words, uτ =

√
τ/ρ
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y+ = ρyuτ

µ
(4.1)

The evolution of the non-dimensional velocity u+ in terms of y+ is linear in the viscous sublayer
region:

u+ = y+ (4.2)

In the logarithmic layer, the dimensionless velocity can be determined as the ratio between the
local velocity tangent to the wall ut and the friction velocity uτ :

u+ = ut

uτ
= 1

κ
ln(y+) + C (4.3)

where κ is the von Karman constant with a value of 0.41 [34]. C is a constant that depends on
the wall roughness. The friction velocity uτ is calculated as:

uτ =
(

τw

ρ

)1/2
(4.4)

The velocity at the blending region can be calculated by blending the viscous sublayer and
logarithmic layer [35].

Figure 4.3 shows the evolution of the dimensionless velocity u+ in terms of the dimensionless
wall distance y+. This plot is also known in the literature as the universal law of the wall [19].

Figure 4.3: Universal law of the wall. The red line shows the linear behavior in the viscous sublayer, the green curve
shows the logarithmic law and the blue curve shows the universal law that includes all regions. The gray-colored
area shows the buffer layer. Refurbished from [19].

29



4.2 Turbulence Wall Modeling

The dimensionless temperature in the viscous sublayer is linearly related to the dimensionless
wall distance y+ via the Prandtl number (Pr) number:

T + = Pr · y+ (4.5)

In the logarithmic region T + can be written as:

T + ≈ Prt

κ
ln y+ + A(Pr) (4.6)

where:

A(Pr) =
(
3.85Pr(1/3) − 1.3

)2
+ Prt

κ
ln Pr (4.7)

Prt is the turbulent Pr number and it is calculated as the ratio between momentum turbulent
diffusivity and thermal turbulent diffusivity. The physical meaning of Prt is the quantification of
how quickly momentum is transferred compared to how quickly heat is transferred within the
turbulent flow [25, 36]. Prt is usually equal to 0.9 in Ansys CFX [35].

4.2.1 Wall Functions

To fully resolve the viscous sublayer in CFD, very fine mesh cells are needed close to the wall,
which can easily increase the need for computational effort. In order to skip the necessity of very
fine meshes close to the wall, the wall function approach can be used. Wall functions are empirical
correlations that bridge the viscous sublayer region. These equations connect the wall shear stress
to the dependent variables without resolving the boundary layer. In Ansys CFX (CFX), the near
wall modeling is based on an extension of the method developed by Launder and Spalding [37].
The dimensionless velocity of the viscous sublayer and logarithmic region intersect at a y+ value
of 11.25 in the buffer region. In general, it is recommended the y+ should be smaller than 5
(turbulence model dependent) in the case that the viscous sublayer is to be resolved and larger
than 30 when the wall functions are used [35][38].

One drawback of the wall function approach is the sensitivity of the results to the location
of the nearest point to the wall. Refining the mesh at the wall does not necessarily provide a
unique solution and increase accuracy. Therefore, to tackle the inconsistencies of the wall function
formulation, the scalable wall functions were introduced in CFX.

Scalable Wall Functions

Equation (4.3) becomes singular when the near wall velocity ut is zero. Therefore, a different
velocity scale u∗ is defined for the logarithmic region such that it does not result in zero if ut is
zero:
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u∗ = C1/4
µ

√
k (4.8)

where Cµ is a constant with value 0.09.

Analogously, an alternative dimensionless wall distance variable is defined as:

y∗ = ρu∗y

µ
(4.9)

It is important to note that y∗ is the same concept as y+. The different notation of star and plus
is related to whether the dimensionless wall distance is calculated by using the wall shear stress
(Equation (4.1)) or the turbulent kinetic energy (Equation (4.9)).

Scalable wall functions are able to limit the y∗ to a lower value, that is the intersection between
linear and logarithmic regions [35]. This means that the mesh points lay surely outside the
viscous sublayer. Using scalable wall functions essentially means that arbitrary fine meshes can
be used without deciding whether the wall functions are feasible. Therefore, the velocity law is
modified, and u∗ cannot take zero values.

For the scalable wall functions the dimensionless temperature can be calculated as:

T + = 2.12 ln(y∗) + β (4.10)

where:

β =
(
3.85Pr1/3 − 1.3

)2
+ 2.12 ln(Pr) (4.11)

However, the scalable wall function formulation is cumbersome for low Re numbers, since the
viscous sublayer is completely ignored in the mass and momentum balance equation.

Automatic Wall Functions

Automatic wall functions rely on a continuous function acting on the entire range of y+ and
switching automatically between the wall function and low Re number formulation [35]. This
approach provides an advantage to the scalable wall functions described in Section 4.2.1. CFD
codes first evaluate the y+ value then select the appropriate formulation or apply blending
functions to bridge the buffer layer. The dimensionless velocity is calculated in the same approach
as shown in Equations (4.1) and (4.3). The thermal boundary layer when using automatic wall
functions is expressed as:
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T + = Pry∗ exp(−Γ) + [2.12 ln(y∗) + β] exp(1 − Γ) (4.12)

where β is calculated by Equation (4.11) and Γ is defined as:

Γ = 0.01(Pry∗)4

1 + 5Pr3y∗ (4.13)

Roughness

In reality, surfaces have roughness, which means that there is an increase of turbulence production
near a wall and therefore the shear stress and wall heat transfer coefficients can experience
significant enhancement. Taking into account the wall roughness, the logarithmic velocity profile
will shift closer to the wall as shown in Figure 4.4. The notion of sand grain roughness is employed
to account for the surface roughness effect. The sand grain roughness averages the roughness
with different shapes and sizess by implying that the wall consists of closely packed spheres with
an average roughness height hs [19], as illustrated in Figure 4.5.

Figure 4.4: Due to roughness, the wall shear stress is enhanced compared to a hydraulically smooth wall. Therefore,
the velocity profile is shifted downward (closer to the wall) by ∆B [35][35].

The dimensionless velocity can be expressed taking into account the roughness as:

u+ = 1
κ

ln y+ + C − ∆B (4.14)

where C is a constant equal to 5 [19]. ∆B represents the downward shift of the profile and it is a
function of the dimensionless roughness height h+:

∆B = 1
κ

ln(1 + 0.3h+
s ) (4.15)
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where:

h+ = huτ

ν
(4.16)

Figure 4.5: Sand grain roughness concept. The average height of the technical roughness can be approximated to a
surface covered with closely-packed spheres with a diameter hs. Source: [19][35].

The thermal boundary layer in the logarithmic region is expressed by:

T +
log = 2.12 ln(Pry∗) + (3.85Pr1/3 − 1.3)2 − 1

κ
ln(1 + 0.3BPrh+

s ) (4.17)

where B is the energy calibration coefficient with a value of 0.2. B was calibrated using the data
obtained by a heat transfer experiment performed on a flat plate [35]. It is important to mention
that this experiment used air as the fluid medium; however, Lechner and Menter showed in 2004
that 0.2 is a reasonable value for water as well [39].

It is important to note that for values h+
s > 70, the application of blending function in the SST

turbulence model becomes rather unphysical due to the disappearing of the viscous sublayer [35].

4.3 Turbulence Models

Prior to getting into details concerning turbulence models, a few key concepts and parameters
are introduced. Turbulence is one of the most complicated processes of fluid mechanics. Over the
last two centuries, scientists like Landau [40], Prandtl [41] and Kolmogorov [42] have contributed
to developing an understanding of turbulence and its properties. The turbulent length scale is
defined in literature as a measure of the size of the largest eddies2 present in the flow [29]. It was
suggested by Richardson [44] that the large eddies break down into smaller ones. The energy is
transferred from a large eddy to a smaller one without dissipation until the small eddies take
the energy out of the system via viscous forces (low Re numbers). This is called the energy
cascade process [29]. The turbulent dissipation ϵ defines the amount of turbulent kinetic energy
that is transformed into thermal energy. The turbulent dissipation rate ω defines the amount of
turbulent kinetic energy that is transformed into thermal energy per unit of turbulent kinetic
energy.

2The eddies have a very loose definition. In his book "Turbulent Flows" [43], Pope writes, "An ‘eddy’ eludes
precise definition, but it is conceived to be a turbulent motion, localized within a region of size l, that is at least
moderately coherent over this region".
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The development of turbulence modeling is a fast-changing field. There are several approaches
to model turbulence such as Direct Numerical Simulation (DNS) [45], Large Eddy Simulation
(LES) [46], Detached Eddy Simulation (DES) [47] and Reynolds-Averaged Navier-Stokes (RANS).
DNS simulations involve very fine meshes to resolve all scales of turbulence without using
turbulence models. It is mostly used for research concerning turbulence. The computational
effort of DNS is very high even for simple geometries and flows with low Re numbers. LES
deals with modeling only the large eddies while filtering out the smaller ones. DES uses the
RANS modeling in the regions where the turbulence length scale is smaller than the mesh size
and LES for the regions where the turbulence length scale is larger than the mesh size. As
explained in Chapter 3.2, RANS turbulence modeling relies on the time averaging of the flow
properties such as velocity and the modeling of the Reynolds stress terms that arise from the
averaging process. RANS can be further sub-categorized into the Boussinesq hypothesis and
Reynold Stress (RS) models. Boussinesq’s hypothesis relates the Reynolds stress to the turbulent
viscosity (see Chapter 3.2), while RS models solves transport equations for the Reynolds stress
components [19].

K-ϵ, K-ω and Shear Stress Transport (SST) are two-equation turbulence models widely used
due to their numerical robustness and the satisfactory level of numerical effort [48]. The name
originates from the fact that they use two separate transport equations, one for the velocity
(kinetic energy K), and the other for the turbulence length scale. Both are based on the gradient
diffusion hypothesis and they relate the Reynolds stresses to the average velocity gradients and
turbulent viscosity as expressed in Equation (3.24). The turbulent kinetic energy K is calculated
from the solution of its transport equation, and the same is done for the dissipation rate. Then,
the turbulence velocity and length scales are estimated from the turbulent kinetic energy and
dissipation rate. All the turbulence models aim at modeling the Reynolds stress defined in
Equation (3.24), where the turbulence viscosity µt plays an important role. The turbulence
viscosity is a modeling approach used to account for turbulence. In other words, in a laminar flow,
the diffusion in the flow occurs by molecular motion, while in a turbulent flow, the eddies also
play a role to diffusion. Therefore, in turbulence modeling, the diffusion is enhanced by including
the turbulent viscosity in addition to the molecular viscosity. The quantity of turbulence intensity
I can be defined based on viscosity µ and turbulent viscosity µt such that:

I = 0.001µt

µ
(4.18)

Furthermore, the turbulent kinetic energy K can be determined in terms of Reynolds stress:

K = 1
2
∑

i

v′
i · v′

i (4.19)
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4.3.1 K-ϵ

K-ϵ is a rather standard turbulence model used widely in industry. This model deals with
modeling the turbulent kinetic energy K and the turbulent dissipation rate ϵ [35]. One of the
assumptions made is that the turbulent viscosity µt is related to the turbulent kinetic energy as:

µt = Cµρ
K2

ϵ
(4.20)

where Cµ is a constant with value of 0.09. The turbulent kinetic energy K can be calculated
using Equation (4.19), while the turbulent dissipation rate ϵ that determines the turbulence
length scale is calculated as:

ϵ = ν · ∂v′
i

∂xk
· ∂v′

i

∂xk
(4.21)

For both K and ϵ, transport Equation (4.3) is used.

The major disadvantage of K-ϵ is the inability to model the low-Reynolds number flows close to
the heated walls. For heated walls, a very fine mesh with a y+ value (see Equation (4.1)) smaller
than 0.2 would be necessary to adequately describe the heat transfer processes in the near wall
regions.

4.3.2 K-ω

Similarly to K-ϵ, K-ω is also a two-equation model dealing with the turbulent kinetic energy K

and the turbulent frequency ω [49]. This model reflects the fact that the turbulent viscosity is
proportional to the kinetic energy and inversely proportional to the turbulent frequency:

µt = ρ
K

ω
(4.22)

where ω represents the time scale of the turbulence.

For K-ω, two transport equations are solved, one for the turbulent kinetic energy K and the
other for the turbulent frequency ω. The main advantage of K-ω over K-ϵ is that it deals better
with the near wall region for low Re number calculations. To be able to resolve the viscous
sublayer, a y+ value smaller than 2 would be required. A substantial disadvantage of K-ω is the
large sensitivity to the initial conditions of the free stream.

4.3.3 Shear Stress Transport (SST) Model

The baseline K-ω model (BSL) was developed to deal with K-ω’s inability to properly predict
the free stream by combining Wilcox’s K-ω model and K-ϵ. However big these efforts were, BSL
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still failed to deal with the flow separation from smooth surfaces. Furthermore, BSL did not
account for the turbulent shear stress, and thus it led to an overprediction of the eddy viscosity.
Therefore, the SST model was developed with the aim of overcoming these issues [50]. SST uses
the potential of K-ω to model the inner part of the boundary layer and K-ϵ for the free stream.
An important feature of the SST model is the introduction of a factor that limits the behavior of
eddy viscosity, making it possible to calculate flows with strong pressure gradients and boundary
layer separation [27]. The switching between K-ϵ and K-ω formulations is done through blending
functions, which control the switching on and off of the two models [35]. The formulation of
the blending functions is based on the distance to the nearest surface. For more details on the
blending functions, the interested reader can refer to literature [27] and the Ansys CFX theory
guide [35].

In general, SST calculates lower wall temperatures compared to K-ϵ, which leads to higher heat
transfer coefficients.

4.3.4 Reynolds Stress Models

Reynolds stress models (also called second-moment closure models), unlike the previously
discussed turbulence models, do not use the eddy viscosity hypothesis but rather calculate all
the components of the Reynolds stress tensor [51].

Since the Reynolds stress tensor is symmetric, there are six equations to solve in total. These
equations have the form of:

vi
∂vivj

∂x
+ vj

∂vivj

∂y
= Dij + Pij − ϵij + Φij (4.23)

The terms on the left-hand side of Equation (4.23) are the convection terms. Furthermore, Dij

accounts for the diffusion, Φij is the pressure-strain correlation, Pij is the production term and
ϵij is the dissipation term.

The pressure-strain correlation is an important term for RS models since it drives turbulence
toward an isotropic state by redistributing the Reynolds stresses. Several RS models are available,
and LRR-IP and LRR-QI models use linear pressure-strain correlation. The SSG model, on the
other hand, uses a quadratic relation [35].

4.4 Ansys CFX Solver

The theory presented here is based on Ansys CFX Solver Theory Guide [35]. CFX uses a
hybrid finite element-finite volume approach together with a discretizing grid. This means the
vertex-based finite volume method is used to construct the mesh. This denotes an element with
multiple nodes depending on the shape of the element and solving order. The relevant quantities
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Figure 4.6: Mesh element in Ansys CFX. Source [35].

during solution are stored in nodes, while the conservation of quantities such as momentum,
mass, and energy is done in each volume. Around each node, a control volume is constructed,
whose corners are defined by the median of the line connecting two nodes, also called integration
points. Equation (3.14) is integrated over the control volume and the Gauss divergence theorem
is applied, provided that the control volumes do not exhibit deformation in time steps. Volume
integrals are discretized in each volume sector and then summed to the control volume. Figure 4.6
shows schematics of nodes, volume sector and control volume in a 2D element. The volume
integrals are calculated at the element sectors, then summed up at the control volume where the
sector belongs. Surface integrals are evaluated at integration points and then assigned to the
adjacent control volume.

4.4.1 Calculations of Special Terms

Shape Functions

The solution variables are stored at mesh nodes; however, evaluating solution fields and gradients
requires approximating solutions at the integration point. This constitutes to a finite element
method and it is done in CFX by shape functions that essentially describe a variable’s development
within one element by means of linear approximations:

X =
Nnode∑

i=1
NiXi (4.24)

where Ni are the shape functions at each node, and Xi is the variable value at each node i.

This work uses hexahedral and tetrahedral elements for CFD discretization. A hexahedral linear
element has 8 nodes and therefore 8 shape functions, while a tetrahedral element has 4 nodes
and 4 shape functions. Figure 4.7 shows both element types and the corresponding nodes.
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Figure 4.7: Hexahedral (a) and tetrahedral (b) element types in CFX. Source [35].

Control Volume Gradients

In the event that the gradients need to be calculated at nodes, a form of Gauss’ divergence
theorem is employed by CFX to calculate the control volume gradients such that:

∇X = 1
V

∑
ip

(X∆n)ip (4.25)

∆n is the outward normal vector at the integration point ip. It is important to note that in order
to be able to use this formula, the variable X has to be calculated at the integration points by
means of shape functions.

Diffusion Terms

The diffusion of heat in a domain is also calculated by using shape functions:

∂X

∂x

∣∣∣∣
ip

=
∑

n

∂Nn

∂x

∣∣∣∣
ip

Xn (4.26)

Mesh Deformation

In the Fluid-Structure Interaction (FSI) calculations, the CFD mesh is subject to deformation.
Therefore, Equation (3.14) is modified to account for the change of control volumes in time steps.
The modifications include the application of Leibniz rule and differentiation under the integral
sign:

d

dt

∫
V (t)

XdV =
∫

V

∂X

∂t
dV +

∫
S

XWjdnj (4.27)

where Wj is the velocity of the control volume boundary.
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The Coupled Equation System

CFX uses a coupled system of equations to solve for the field variables. The application of the
finite element method in the domain gives rise to a system of linear equations written in such
form:

∑
nbi

anb
i Xnb

i = bi (4.28)

where the subscript nb stands for neighbors of the node i. b, a and X are scalars for scalar
equations. They are matrices and vectors for the coupled 3D mass-momentum equations.

4.4.2 Ansys CFX Solution Strategy

CFX uses the coupled equation system shown in Equation (4.28), which is also called a coupled
solver since it solves the hydrodynamic equations for all the velocity components and pressure
as a single system. This approach is robust and efficient as opposed to segregated solvers3. The
drawback of coupled solvers is a large amount of memory needed to store all the coefficients of the
linear set of equations. Furthermore, Ansys CFX uses a so-called acceleration parameter as a time
step notion in the steady state solver. This helps approximate the solutions within a physically
based manner, and the convergence is reached within a reasonable number of iterations.

Figure 4.8 shows the general solution process. The solver performs two numerically intensive
processes in each iteration. First, the linearization of nonlinear equations takes place and are
gathered into the solution matrix. Then, the linear equations are solved using a Multigrid (MG)
accelerated Incomplete Lower Upper (ILU) factorization technique.

The ILU technique is an iteration process that starts the solving by stating an approximate
solution. For example, if the system of equations resulting from discretization has the form:

[A][X] = [b] (4.29)

where [A], [X] and [b] are the coefficient matrix, solution vector and the right-hand side of the
equation.

The iterative process starts with an approximate solution [Xn] that will be improved by a
correction [X’]:

[Xn+1] = [Xn] + [X ′] (4.30)
3Segregated solvers solve first the momentum equations using a guess value for the pressure to obtain a

correction equation for the pressure.
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Figure 4.8: Flowchart of the CFX solver. Source: [35].

where [X’] is the solution obtained from:

[A][X ′] = [rn] (4.31)

Moreover, [rn] is the residual defined as:

[rn] = b − [A][Xn] (4.32)

Iterative solvers can only reduce discretization errors with a wavelength comparable in order of
magnitude to the mesh size. Therefore, for a fine mesh, the short wavelength errors disappear
relatively fast, however, the longer wavelength ones do not. This problem is overcome by the usage
of the Multigrid method [52] since coarser meshes are built where the longer wavelength errors
appear as short wavelength errors with respect to the mesh size. To avert the need for re-meshing
the geometry with a set of different mesh sizes, CFX uses the Algebraic Multigrid. The Algebraic
Multigrid sums up the fine mesh equations to build a discrete equation system for a coarse
mesh. The mesh is coarsened in a virtual manner without user intervention. This essentially
means that the early iterations are performed on a fine mesh that coarsens out continuously.
The results are finally transferred to the original mesh to obtain a more accurate solution with
fewer discretization errors. Algebraic Multigrid’s main advantage is the reduced computational
expense since the nonlinear equations are only discretized once for the finest mesh. The particular
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implementation of the Algebraic Multigrid used by CFX is called Additive Correction. The reason
behind this is the suitability of this approach to the CFX solver implementation. More specifically,
taking into account that the discrete equations represent the conservation of quantities in a
control volume, the coarse mesh equations can be built by joining the small control volumes to
form larger ones. Therefore, the coarse mesh equations also establish conservation over large
control volumes, reducing the errors components. A small schematic of Algebraic Multigrid is
shown in Figure 4.9.

Figure 4.9: Schematics of the Algebraic Multigrid method going from fine meshes to coarser ones. The process
starts with the most lower plane (fine mesh). As the solver progresses, the mesh is coarsened out in a virtual
manner. Finally, the final results are mapped into the fine mesh. Source [12].

41



4.4 Ansys CFX Solver

42



Part II

Mechanics

43





5 Structural and Thermal Mechanics

CHAPTER5
Structural and Thermal Mechanics

This part consists of two chapters, the first including a theoretical background of structural and
thermal mechanics as well as their implementation into Ansys. The second provides more details
on the finite element method. It is crucial to note that in the Mechanics part, the vector notation
is done by using curly brackets:

• {V } represents a column vector.

• The subscript T means that the matrix or vector is transposed.

• {V }T represents the transpose of a column vector, which is a row vector.

• [M ] is a matrix.

The information given in the next two chapters is mainly based on [17, 53–55] and the Ansys
Mechanical Theory Reference [56], and oftentimes appended with the locally mentioned references.

5.1 The Structural System

Hooke’s law is one of the basic principles upon which the theory of elasticity is developed. It
suggests that the force needed to deform a spring by a distance is proportional to that distance
and a constant. For continuous media, Hooke’s law can be written as:

[K] {u} = {F} (5.1)

where [K] is the stiffness matrix, {u} is the vector of displacement and {F} is the applied force.

A structure’s response to a load can be linear or nonlinear. A linear behavior would imply that
the displacement is directly proportional to the applied load, meaning that the stiffness matrix
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remains constant with the applied load. On the other hand, when the response is nonlinear, the
displacement and the applied load are non-linearly related. Therefore, the stiffness matrix is not
constant in terms of load steps.

One of the primary relations, arguably the most important in structural mechanics, is the
relationship between stress and strain, which is another way of expressing Hooke’s Law. In this
section, only a linear behavior is considered, whereas the nonlinear one is described later in
Section 5.3. For a linear behavior, it holds:

{σ} = [D]
{

ϵel
}

(5.2)

where {σ} is the stress vector whose component are also shown in Figure 5.1, [D] is the elasticity
matrix and

{
ϵel
}

is the elastic strain vector.

The total strain vector is defined as the sum of the elastic strain and the thermal strain vectors:

{ϵ} =
{

ϵel
}

+
{

ϵth
}

= [ϵx ϵy ϵz ϵxy ϵyz ϵxz]T (5.3)

The shear strain components ϵxy, ϵyz, ϵxz are twice the tensor shear strains.

In order to include the thermal strain, Equation 5.2 can be written as:

{ϵ} =
{

ϵth
}

+ [D]−1 σ (5.4)

The thermal strain for a 3D case is defined as:

{
ϵth
}

= ∆T [αse
x αse

y αse
z 0 0 0]T (5.5)

Figure 5.1: The definition of the stress vector. The shear stresses are denoted by double subscripts, while normal
stresses are by single subscripts. Source [56].
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where αse
x are the Secant coefficients of thermal expansion in all three directions. ∆T is defined

as the difference between the current temperature at the point in question and a reference
temperature.

The inverse of the elasticity matrix [D]−1 can be defined as:

[D]−1 =



1/Ex −νxy/Ex −νxz/Ex 0 0 0
−νyx/Ey 1/Ey −νyz/Ey 0 0 0
−νzx/Ez −νzy/Ez 1/Ez 0 0 0

0 0 0 1/Gxy 0 0
0 0 0 0 1/Gyz 0
0 0 0 0 0 1/Gxz


(5.6)

where Ex is the x component of Young’s modulus, νxy and νyx are the major and minor Poisson’s
ratios, respectively. Gxy is the xy component of the shear modulus.

In an orthotropic material, the symmetry of the [D]−1 matrix relies on the fact that only three
out of six Poisson’s ratios are independent. The remaining can be calculated as:

νyx

Ey
= νxy

Ex
; νzx

Ez
= νxz

Ex
; νyz

Ey
= νzy

Ez
(5.7)

Taking into account all the above relations, Equation 5.2 can be expressed in six explicit relations:

σx = Ex

h

(
1 − (νyz)2 Ez

Ey

)
(ϵx − αx∆T ) + Ey

h

(
νxy + νxzνyz

Ez

Ey

)
(ϵy − αy∆T ) +

Ez

h
(νxz + νyzνxy) (ϵz − αz∆T )

(5.8)

σy = Ey

h

(
νxy + νxzνyz

Ez

Ey

)
(ϵx − αx∆T ) + Ey

h

(
1 − (νxz)2 Ez

Ex

)
(ϵy − αy∆T ) +

Ez

h

(
νyz + νxzνxy

Ey

Ex

)
(ϵz − αz∆T )

(5.9)

σz = Ez

h
(νxz + νyzνxy) (ϵx − αx∆T ) + Ez

h

(
νyz + νxzνxy

Ey

Ex

)
(ϵy − αy∆T ) +

Ez

h

(
1 − (νxy)2 Ey

Ex

)
(ϵz − αz∆T )

(5.10)

σxy = Gxyϵxy (5.11)

σyz = Gyzϵyz (5.12)

47



5.1 The Structural System

σxz = Gxzϵxz (5.13)

h is defined for simplicity reasons as:

h = 1 − (νxy)2 Ey

Ex
− (νyz)2 Ez

Ey
− (νxz)2 Ez

Ex
− 2νxyνyzνxz

Ez

Ex
(5.14)

ϵx,y,z and σx,y,z describe the direct strain and stress terms, and ϵxy,yz,xz and σxy,yz,xz the shear
strain and stress terms, respectively.

From Equation (5.7), one can deduct that if Ex > Ey then νxy > νyx. In this case, νxy is the
major Poisson’s ratio and νyx is the minor. However, for isotropic materials, all the components
of Young’s modulus are equal; therefore, Poisson’s ratio’s components are also equal.

If the material under study is isotropic, the shear modulus components are not input parameters.
They are instead calculated as:

Gxy = Gyz = Gxz = E

2 (1 + ν) (5.15)

5.1.1 Von Mises Theory

The total stress {σ} can be expressed as a sum of hydrostatic and deviatoric stresses. The same
holds for strain. The hydrostatic stress, also known as volumetric stress, causes changes only in
the volume without triggering a change in shape, and it can be calculated as the average of the
normal components of a stress tensor, also shown in Figure 5.1.

σHyd = σxx + σyy + σzz

3 (5.16)

The deviatoric stress is in charge of shearing and distortion, and it is calculated as a difference
between the total stress and the hydrostatic stress:

{σd} = {σ} − {σHyd} (5.17)

The limits of elasticity are usually based on uniaxial stress tests. The von Mises theory [57],
also known as the maximum distortion energy theory, suggests that the structure fails when the
maximum distortion energy equals the distortion energy when yielding in a uniaxial test. The
distortion energy Wd refers to the strain energy corresponding to the effect of deviatoric stresses
in the stress tensor. Wd per unit volume can be calculated as:

Wd = 1 + ν

6E

[
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

]
(5.18)
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where σ1, σ2 and σ3 are the three principal stress components1.

The maximum principal stress equals the material’s yield strength during a stress test. The rest
of the principal stresses are zero. Therefore, the distortion energy when yielding in a uniaxial (y)
stress test can be calculated as:

Wd,y = 1 + ν

3E
σ2

y (5.19)

By equalizing the Equations (5.18) and (5.19), von Mises failure criteria in terms of principal
stresses and stress tensor components are obtained:

σe =
√

1
2 (σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

=
√

1
2 (σxx − σyy)2 + (σyy − σzz)2 + (σzz − σxx)2 + 6

(
σ2

xy + σ2
yz + σ2

zx

) (5.20)

σe is called the equivalent von Mises stress. It states that the structure has deformed if the von
Mises stress is reached.

5.1.2 Boundary Conditions

Generally, the most common boundary condition is a zero-displacement condition, which refers
to a structure or element being fully fixed in all three directions. The fixed end of a cantilever
beam is an example of this.

5.2 Heat Flow

The energy equation for solids in a differential control volume has the form [17]:

ρcp

(
∂T

∂t
+ {v}T ∇T

)
+ ∇ {q} = ...

q (5.21)

where {v} is the velocity vector for mass transport, {q} is the heat flux vector and ...
q is the heat

generation rate per unit volume.

In order to introduce a relation between the heat flux vector {q} and the temperature gradients,
the Fourier law (from Section 2.2) is applied:

{q} = − [D] {L} T (5.22)
1The principal stress is defined as such that upon a basis change, the shear stress component is always zero.

Mathematically speaking, principal stresses are the eigenvalues of the stress tensor
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where [D] is the thermal conductivity matrix:

[D] =


KXX 0 0

0 KY Y 0
0 0 KZZ

 (5.23)

Moreover, {L} is a vector operator defined as:

{L} =


∂

∂x
∂

∂y
∂
∂z

 (5.24)

Combining Equation (5.22) and Equation (5.21) leads to:

ρcp

(
∂T

∂t
+ vX

∂T

∂t
vY

∂T

∂t
vZ

∂T

∂t

)
= ...

q + ∂

∂x

(
KX

∂

∂x

)
+ ∂

∂y

(
KY

∂

∂y

)
+ ∂

∂z

(
KZ

∂

∂z

)
(5.25)

5.2.1 Boundary Conditions

The boundary conditions that can be applied to Equation (5.25) are:

• A specified temperature on a surface: T = T∗

• A specified flux on a surface: {q}T {n} = −q∗, where {n} is the normal unit vector and q∗

is the specified heat flux.

• A specified convection applied to a surface, or better known as the Newton’s law of cooling:
{q}T {n} = h(Ts − Tb), where h is the heat transfer coefficient and Ts and Tb refer to the
temperature of the surface of the model and the adjacent fluid temperature, respectively.

Combining Equation (5.21) and Equation (5.22):

{n}T [D] {L} T = h(Tb − Ts) (5.26)

5.3 Linear and Nonlinear Analysis

As mentioned in Chapter 5.1, a structure’s response to a particular load can be linear or nonlinear.
Similarly, there are linear and nonlinear types of structural analysis. Nonlinearity can be expressed
as geometrical nonlinearity, material nonlinearity, or change of contact status during the analysis2.

2For instance, if the initial contact is lost or changed during the load application.
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Large deformations, rotations and stress stiffening are referred to as geometrical nonlinearities.
The term large deformation is used in cases where the most significant deformations the structure
undergoes are comparable to its smallest dimensions. The material nonlinearity is explained in
detail in subsection 5.3.2.

5.3.1 Geometric Nonlinearities

Geometric nonlinearities imply a nonlinear structure behavior due to the changing geometry
during deformation since the stiffness matrix [K] is a function of the deformation {u}. Ansys
Mechanical includes four types of geometrical nonlinearities [56]:

1. Large deflection is used when the largest deformations the structure undergo are comparable
to its smallest dimensions. In this case, the strains are finite.

2. Rotation assumes that the structure does not exhibit a shape change other than rigid body
dynamics. The rotations are significant, but the strains are still calculated with linear
expressions.

3. Stress stiffening estimates that strain and rotations are minor, and a first-order approxima-
tion of the rotations is used for nonlinear effects.

4. Spin Softening accounts for the combinations of the transverse vibrational motion and the
centrifugal force. Both strains and rotations are minor in this case.

Not all elements available in Ansys Mechanical support all the geometric nonlinearities. Only
the large deformations are used in the mechanical analysis of Forschungs-Neutronenquelle Heinz
Maier-Leibnitz (FRM II). In principle, the maximum predicted deformation for the FRM II
plate is not expected to exceed 6% of the plate thickness. However, the large deformation
implementation was used for research purposes. Therefore, this approach is explained further in
detail here.

Large Deformation Theory

The motion of a body from one position to another under an applied load is assessed by examining
the position vector of the deformed x and undeformed X conditions, also shown in Figure 5.2:

{u} = {x} − {X} (5.27)

The change in deformation is then defined in terms of displacement as:

[F ] = ∂ {x}
∂ {X}

= [I] + ∂ {u}
∂ {X}

(5.28)
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Figure 5.2: Position vector of a deformed and undeformed body. Source [56].

where [I] is the identity matrix.

The volume change, rotation and shape change of the body are included in the change in
deformation. Therefore, the volume change at one point can be calculated as:

dV

dV0
= det[F ] (5.29)

where V0 is the original volume, V the current volume and det the determinant of the matrix.

The deformation gradient can be expressed by rotation and shape change:

[F ] = [R][U ] (5.30)

where [R] is the rotation matrix and [U ] the shape change matrix.

When [U ] is known, the logarithmic strain measure can be defined as:

[ϵ] = ln[U ] (5.31)

Since here [ϵ] is a matrix, not a vector as usual, a spectral decomposition of [U ] is needed:

[ϵ] =
3∑

i=1
ln λi ei ei

T (5.32)

where λi are the eigenvalues of [U ] and ei the eigenvectors of [U ].

Implementation in Ansys Mechanical

The computation of Equation (5.31) can be done by following an incremental approximation
such that:

[∆ϵn] = ln[∆Un] (5.33)
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where n refers to the current time step. By expressing the incremental logarithmic strain in terms
of the strain-displacement matrix and the incremental displacement, this method leads to the
calculation of the position of the midpoint of the deformed geometry:

{
X1/2

}
= 1

2 ({Xn} + {Xn−1}) (5.34)

where n-1 refers to the previous time step. This method is used to approximate the logarithmic
strain when the strain steps are less than 10% and is employed in 2D and 3D element formulations.
Furthermore, the element matrices and load vectors are derived based on the updated Lagrange
formulation, which implies that all the variables refer to the last calculated state, not the original
one.

5.3.2 Material Nonlinearities

The material nonlinearity is referred to the strain-strain relationship in Equation (5.2). The
nonlinearity and the different ways of unloading make modeling nonlinear materials complicated.
One thing that must be considered is the limit of this linear stress-strain dependence. For this
purpose, one can examine the stress-strain plot of a ductile material shown in Figure 5.3. A linear
behavior holds for small stresses and strains (linear analysis). This means that when a small load
is applied in a way that no energy is lost in the process, the structure can return to its original
state upon unloading. This is called the elastic region and is limited by the yield strength, which
suggests that the deformations are irreversible above this limit. The yield strength defines the
beginning of the plastic regime. The ultimate or tensile strength is the maximum stress value the
material can withstand before rupturing. When the rupture stress is reached, a fracture of the
structure is expected. The area under the curve in the plastic regime is equal to the energy the
structure absorbs during the elongation of the compression process [58].

All the types of material nonlinearity except nonlinear elasticity and hyperelasticity have a
path-dependent stress-strain relationship, which essentially means that the stress depends on the
history of the strain [56].

• Rate independent plasticity refers to a small but irreversible strain in a material.

• Rate dependent plasticity, also referred to as viscoplasticity, implies the development of the
plastic strains over a certain amount of time.

• Creep is very similar to both rate-dependent and independent plasticity, with the larger
time frame.

• Gasket Material can be modeled using very specific relationships

• Nonlinear elasticity implies that a nonlinear stress-strain relation can be input; however,
all straining is reversible.
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• Hyperelasticity is referred to the strain energy density potential in foam-like materials. Also,
here the straining is reversible.

• Swelling refers to enlarging materials due to neutron flux.

Figure 5.3: Stress-strain relation for a ductile material. Source [58].

Rate-independent plasticity

Rate-independent plasticity occurs in a material once a certain level of stress is reached, and it is
called rate-independent because plasticity occurs instantaneously and not as a function of time
steps [56].

A few concepts are necessary to grasp when talking about rate-independent plasticity. First, the
von Mises failure criteria, explained in subsection 5.1.1, is employed in the rate-independent
plasticity approach. That means the structure will obey the linear stress-strain relationship when
an equivalent stress value is smaller than the yield stress. When the yield stress value is surpassed,
the plastic strain in the structure will develop at once. Equation (5.20) can be expressed more
easily as:

f({σ}) = σy (5.35)

where f({σ}) is a function taking into account all the stress components.

The yielding direction of the structure is assumed to be always normal to the surface. This is
called the flow rule. If the yielding is progressing, the hardening rule describes the evolution
of the yielding surface upon further yielding. There are two types of hardening. The first one
is isotropic hardening which entails that the yielding surface continues to be centered around
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its initial axis; however, its size has increased as the strain increases. The second type, called
kinematic hardening, relies on the rationale that the yielding surface keeps a constant size, but it
does translate in the stress space as the plastic strain is proceeding. By including the hardening
features into Equation (5.35):

f({σ} , κ, {α}) = 0 (5.36)

where κ is the sum of all the plastic work performed in the system upon loading, and {α} is the
translation of the yield surface.

κ =
∫

{σ}T [M ]d {ϵ}pl (5.37)

[M] refers to the mass matrix.

{α} =
∫

Cdϵpl (5.38)

where C is a material parameter.

Ansys Mechanical offers several types of hardening rules for materials. The most used ones are
the bilinear and multilinear isotropic hardening. In the few cases where nonlinear analysis was
performed throughout this work, bilinear isotropic hardening was used. In this model, the von
Mises stress is calculated as:

σe =
[3

2 {σd}T [M ] {σd}
] 1

2
(5.39)

When the equivalent stress is equal to the current yield stress σk, the material goes through
yielding, and the von Mises yielding criteria from Equation (5.20) is expressed as:

[3
2 {σd}T [M ] {σd}

] 1
2

− σk = 0 (5.40)

where σk is the current yield stress, and it can be determined from the equivalent plastic strain
and the stress-strain curve, shown in Figure 5.4.

Implementation in Ansys Mechanical

The implementation of material nonlinearities in Ansys Mechanical is done by a backward Euler
scheme3 to ensure a consistency condition that the equivalent stress is equal to the material yield
stress. Therefore, first, yield stress for a material is determined in terms of temperature. Then,

3A backward Euler scheme is a numerical method used for the time integration of differential equations. It
approximates the solution at the next time step using information from the current time step.

55



5.3 Linear and Nonlinear Analysis

Figure 5.4: The uniaxial behavior of the stress-strain curve is also used to determine the yield stress at the current
step σk. Source: [56].

the trial strain, which is defined as the difference between the total strain and the plastic strain
from the previous time step, is defined, and the trial stress is calculated based on it. Furthermore,
the failure condition is applied after the equivalent stress σe is calculated at this stress level
using Equation (5.39). No plastic strain increment is needed if σe < σy. If σe < σy, the plastic
multiplier λ is calculated by using a Newton-Raphson procedure [59]. The incremental plastic
strain is calculated as:

d {ϵ}pl = λ
∂ {Q}
∂ {σ}

(5.41)

The plastic strain is then updated by adding the incremental plastic strain to the plastic strain
calculated at the current step.

{ϵ}pl
n = {ϵ}pl

n−1 + ∆ {ϵ}pl (5.42)

The elastic strain is then calculated as:

{ϵ}el = {ϵ}tr − ∆ {ϵ}pl (5.43)

The stress vector is then:

{σ} = [D] {ϵ}el (5.44)

The incremental plastic work, which is the sum of the plastic work performed over the whole
loading, and the center of the yielding surface are calculated using Equations (5.37), (5.38) and
the values are updated taking into account the previous step. Values such as equivalent plastic
strain, strain increment, equivalent stress, and stress ratio are also output.
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6 Finite Element Formulation

CHAPTER6
Finite Element Formulation

The structural analysis of many systems is based on the Finite Element Method (FEM). FEM,
as mentioned briefly in Chapter 4.1, is a discretization method. The Finite Element Analysis was
introduced in 1956 by Turner and his team [60]. FEM divides the domain into numerous elements,
thus transforming the problem into a finite number of unknown variables expressed in terms of
assumed approximating functions within the element. The nodal approximation (predecessor
of finite elements) is a mathematical approach that takes care of modeling a physical system
with a certain number of variables or functions uex(x). The function can be a representation of
any variable, such as temperature, velocity. These variables can be approximated by functions
u(x) in a way that the difference u(x) − uex(x) is small enough for a specific problem. However,
constructing u(x) functions becomes challenging when the number of nodes is large. That is when
finite elements come to play. If there is a domain V with a complex shape, there is a function
u(x) that satisfies the boundary conditions of V . It implies that a number of subdomains V e is
established that represents the total domain V . Then, an approximating function is built for
each element, and it depends on the nodal variables of the nodes in the current element and
its boundary. Furthermore, the approximating functions are continuous over the element and
the different elements. In the finite element method, the u(x) functions are called nodal points
and uex(x) nodal variables. A clearer definition is shown in Figure 6.1 in 1D (a) and 2D (b).
The nodes are denoted with numbers 1, 2, 3 and 4; the nodal coordinates are x1, x2, x3 and x4.
The domain is V, and the elements are defined as V 1, V 2 and V 3. The approximating functions
u1(x), u2(x) and u3(x) are linear in this case [55].

A typical FEM analysis consists of six steps. The first step is to define the problem, including
its boundary conditions and loads. Then, the discretization of the geometry into elements takes
place. Furthermore, the element stiffness matrix is defined. For this, the shape functions used
to describe the variation of a variable within an element are taken into account. Next, a global
stiffness matrix is defined in which the connection between the elements is taken into account.
The global stiffness matrix can be used together with the loads and boundary conditions to solve
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(a)

(b)
Figure 6.1: Definition of nodes, nodal coordinates, domain and elements in 1D (a) and 2D (b). Source: [55].

for displacement in the structure. Finally, as a last step, the results can be post-processed or
used for further validation.
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Figure 6.2: The steps of finite element analysis. The green tabs are an indication of user operations, while the
blue tabs represent the work done by the software.

6.1 Stiffness Matrix and Thermal Conductivity Matrix

Equation (5.1) is the fundamental equation to be solved. Therefore, the stiffness matrix [K]
solution must be found first. [K] is a square matrix the dimensions of which correspond to the
number of nodes. For a structure with numerous elements, [K] stores all of them at each node of
each element. The situation is analogous to thermal analysis, where the thermal conductivity
matrix has to be calculated.

Three basic paths exist to derive the stiffness matrices and construct an approximate solution.
First, there is the direct approach which derives the stiffness matrix directly from an equilibrium
equation for the behavior of a given element. A differential equation usually governs the behavior
of an element, and solving these equations encloses the strong form. Due to the complexity of
these differential equations for different elements, the direct method is mainly used for simple
elements or explaining how FEA works.

The second and third approaches constitute the weak form since they depict a problem in integral
form utilizing approximate solutions that are easier to solve. The second approach consists of
weighted residuals such as the Galerkin, Ritz, or the least squares formulation [61]. The Galerkin
method, for instance, approximates the function satisfying the differential equation as the sum
of several functions with unknown coefficients. This approximation is then substituted in the
differential equation and an error equation or the residual is obtained. The unknown coefficient
that minimizes the residuals can then be calculated.

The third approach is the minimum potential energy approach. It is based on variational calculus
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and the calculation of the extremities of the potential energy. This approach states that the
displacement that is able to fulfill the equilibrium condition must be the one for which the total
potential energy reaches a minimum. The potential energy is the sum between the strain energy
and the energy originating from external loads1. This approach is called virtual strain energy
and is a special case of the virtual work principle [62]. The concept of virtual work does not
have a significant physical background; instead, it is a purely mathematical approach, the goal of
which is to find approximate displacement functions and provide a set of linear equations that
can be solved.

6.1.1 The principle of virtual work

For a solid 3D body, the conservation of momentum is expressed by Cauchy’s momentum equation
in a continuum, which is in the core Newton’s second law and it can be written as:

ρ {ü} − ∇ {σ} + {b} = 0 (6.1)

where {ü}, {σ} and {b} refer to the acceleration, stress tensor and the total body forces,
respectively.

Loads and constraints are applied to the equilibrium equation:

{u} = {u} Constaint (6.2)
{σ} {n} = {t} Load (6.3)

The {u} is a prescribed displacement and {t} the prescribed surface traction. {n} refers to the
normal to the surface.

For a virtual displacement {δu}:

∫
V

{δu} (ρ {ü} − ∇ {σ} + {b} dV ) = 0 (6.4)

By inserting the load and constraint equations, the virtual work equation takes the form:

∫
V

{δu} ρ {ü} dV +
∫

V
{δϵ} {σ} dV =

∫
V

{δu} {b} dV +
∫

St

{δu} {t} dSt (6.5)

St is the surface where the external loads such as traction, is specified.
1In other words, the external work is stored in a material as strain energy.
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6.1.2 Virtual Displacement Principle in Ansys Mechanical

Most of Ansys FEM formulations are based on the principle of virtual displacement [56], which
states that a minimal (virtual) change in internal work or strain energy must correspond to an
identical change in external work:

δUi = δVe (6.6)

where Ui is the internal work, Ve is the external work and δ is the virtual operator.

Assuming a linear material and geometry, the virtual strain energy (internal energy) can be
calculated as:

δU1 =
∫

vol

(
{δϵ}T [D] {ϵ} − {δϵ}T [D]

{
ϵth
} )

d(vol) (6.7)

Furthermore:

{ϵ} = [B] {u} (6.8)

expresses the connection between strain and displacement by means of the strain-displacement
matrix [B].

Incorporating the strain-displacement relation in Equation (6.7) and pointing out that the
displacement vector {u} does not change over the volume:

δU1 = {δu}T
∫

vol
[B]T [D][B] d(vol) {u} − {δu}T

∫
vol

[B]T [D]
{

ϵth
}

d(vol) (6.9)

The external work done on a body is constituted by the work done due to the body force δV1,
work done due to the traction force δV2 and work done due to the force applied to the body δV3.

V1 is defined as:
δV1 = − {δu}T ρ

∫
vol

[N ]T [N ] δ2

δt2 {u} d(vol) (6.10)

where [N] is the shape function matrix.

V2 is defined as:

δV2 =
∫

areap

{δwn}T {P} d(areap) (6.11)

where {P} is the pressure vector acting on areap, and {wn} is a vector describing the motion
normal to the surface.

V3 is defined as:
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δV3 = {δu}T
{

F nd
e

}
(6.12)

Summing up the contributions to the external work and applying Equation (6.6) the virtual
work principle is expressed as:

{δu}T
∫

vol
[B]T [D][B] {u} d(vol) − {δu}T

∫
vol

[B]T [D]
{

ϵth
}

d(vol)+

= − {δu}T ρ

∫
vol

[Nn]T [Nn] δ2

δt2 {u} d(vol)+

{δu}T
∫

areap

[Nn]T {P} d(areap) + {δu}T
{

F nd
e

} (6.13)

Since {δu}T is an arbitrary displacement vector in all the terms, Equation (6.13) can be reduced
to:

[Ke] {u} −
{

F th
e

}
= [Me] {ü} + {F pr

e } +
{

F nd
e

}
(6.14)

where:

[Ke] =
∫

vol
[B]T [D][B] d(vol) = element stiffness matrix (6.15)

{
F th

e

}
=
∫

vol
[B]T [D]

{
ϵth
}

d(vol) = element thermal load vector (6.16)

[Me] = ρ

∫
vol

[Nn]T [Nn] d(vol) = element mass matrix (6.17)

{ü} = δ2

δt2 {u} = acceleration vector (accounts for gravity effects) (6.18)

{F pr
e } =

∫
areap

[Nn]T {P} d(areap) = element pressure vector (6.19)

Equation (6.14) represents the equilibrium state for one element. In order to express the whole
domain or structure, it has to be integrated over the domain volume. Equation (6.14) can be
redistributed and express Hooke’s law in a set of linear equations. It is important to note that
even though a thermal load vector is present in Equation (6.14), the system does not contain
thermal degrees of freedom, only structural. A coupled solver is needed if there is a need to solve
for temperature in addition to displacement, and this is explained further in the thesis.

Once Equation 6.14 is obtained, the software can solve for the displacement field. Then, other
field variables such as strain and stress can be calculated using the obtained displacements.
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6.1.3 Virtual Temperature Principle in Ansys Mechanical

The virtual temperature principle is used when dealing with thermal mechanics and is anal-
ogous to the virtual displacement principle. Applying a virtual temperature (δT (x, y, z, t)) to
Equation (5.21):

∫
vol

(
ρcpδT

(
∂T

∂t

)
+ {L}T (δT ) ([D] {L} T )

)
d(vol) =∫

S2
qd(S2) +

∫
S3

δ T h (Tb − Ts)d(S3) +
∫

vol δ T ...
q d(vol)

(6.20)

where vol represents the volume element. In the case of thermal analysis, the [D] matrix represents
thermal conductivity.

Since the temperature can be varied in space and time, the variables can be separated as:

T = {N}T {Te} (6.21)

{N} represents the shape functions depending on position, while {Te} is the nodal temperature
vector of an element and it is time dependent. Therefore the time derivatives are written as:

Ṫ = ∂T

∂t
= {N}T

{
Ṫe

}
(6.22)

The virtual temperature takes the form:

δT = {δTe}T {N} (6.23)

Additionally, the term {L} T can be expressed as:

{L} T = [B] {Te} (6.24)

where
[B] = {L} {N} T (6.25)

Combining the variational approach of Equation 6.20 with Equation (6.21) and taking into
account that the density is assumed to stay constant within one element (while the specific heat
capacity and internal heat generation can vary):
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ρ
∫

vol cp {N} {N}T
{

Ṫe

}
d(vol) + ρ

∫
vol cp {N} {v}T [B] {Te} d(vol)

+
∫

vol
[B]T [D][B] {Te} d(vol) =

∫
S2

{N} q∗d(S2)

+
∫

S3
TBh {N} d(S3) −

∫
S3

h {N} {N}T {Te} d(S3) +
∫

vol

...
q {N} d(vol)

(6.26)

This equation can be rewritten in a simplified form:

[Ct
e]
{

Ṫe

}
+
(
[Ktm

e ] + [Ktb
e ] + [Ktc

e ]
)

{Te} =
{

Qf
e

}
+ {Qc

e} + {Qg
e} (6.27)

where:
[Ct

e] = ρ

∫
vol

cp {N} {N}T d(vol) = element specific heat matrix (6.28)

[Ktm
e ] = ρ

∫
vol

cp {N} {v}T [B] d(vol) = element mass transport conductivity matrix (6.29)

[Ktb
e ] =

∫
vol

[B]T [D][B] d(vol) = element diffusion conductivity matrix (6.30)

[Ktc
e ] =

∫
S3

h {N} {N}T d(S3) = element convection surface matrix (6.31)

{
Qf

e

}
=
∫

S2
{N} qd(S2) = element mass flux vector (6.32)

{Qg
e} =

∫
vol

...
q {N} d(vol) = element heat generation load (6.33)

Once Equation (6.27) is settled, it can be solved to find the temperature field.

6.2 Shape Functions

In order to be able to apply the virtual principles as mentioned in Chapter 6.1.1, functions that
describe how variables change within one element are needed. These assumed functions are called
shape functions and are used to interpolate the solutions from the nodes. The shape functions
are usually polynomials whose derivative is a constant. In general, the expression for calculating
the displacement approximation in an element can be written in an isoparametric form as:

ue =
n∑
a

Na(ξ)ũa (6.34)
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6 Finite Element Formulation

Figure 6.3: The difference between linear and quadratic shape functions with the corresponding nodes are shown.
The shape function of the element is shown at the bottom of the figure for linear and quadratic shape functions,
respectively.

where ξ refers to the parent coordinate, which is expressed as a normalization of the global
coordinates from -1 to 1. ũa are the parameters to be determined and n is the total number of
functions for one element.

There are different orders of shape functions; two of the most used ones are linear and quadratic.
As the term denotes, linear shape functions use a first-order polynomial to describe the connection
between the nodes in an element. A polynomial of the second order is used in the quadratic
shape functions. Quadratic shape functions are, therefore more complex and require greater
computational effort. In some cases, using quadratic elements is helpful due to the complex
response of the structure under investigation. In this work, the linear shape functions with
enhanced strain functions (see Chapter 6.3) are used. The difference between linear and quadratic
shape functions is illustrated in Figure 6.3.

6.2.1 Element types in Ansys Mechanical and their shape functions

6.2.1.1 SOLID285

SOLID285 is a 4-node tetrahedral solid element shown in Figure 6.4, where I, J and K here are
the nodal points [56].

The shape functions for the displacement, pressure and temperature are given with the following
equations:
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6.2 Shape Functions

Figure 6.4: SOLID285 element from Ansys Mechanical Theory Reference. I, J and K are the nodal points.
Source [56].

Figure 6.5: SOLID185 element from Ansys Mechanical Theory Reference. Source [56].

u = uIL1 + uJL2 + uKL3 + uM L4 Translation in u-direction (6.35)
v = vIL1 + vJL2 + vKL3 + vM L4 Translation in v-direction (6.36)
w = wIL1 + wJL2 + wKL3 + wM L4 Translation in u-direction (6.37)
P = PIL1 + PJL2 + PKL3 + PM L4 Pressure (6.38)
T = TIL1 + TJL2 + TKL3 + TM L4 Temperature (6.39)

where L denotes the location of the integration points for a tetrahedron. The integration points
are further explained in Section 6.3.

6.2.1.2 SOLID185

SOLID185 is a simple 8-node hexahedron, shown in Figure 6.5, where the nodal points are written
as I, J, L, K, M, N, O and P. A hexahedron’s natural coordinates are denoted with r, s and t.

The shape function for the displacement in the u-direction for a SOLID185 element is written as:
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6 Finite Element Formulation

u = 1
8 (uI (1 − s) (1 − t) (1 − r) + uJ (1 + s) (1 − t) (1 − r)

+ uK (1 + s) (1 + t) (1 − r) + uL (1 − s) (1 + t) (1 − r)
+ uM (1 − s) (1 − t) (1 + r) + uN (1 + s) (1 − t) (1 + r)
+ uO (1 + s) (1 + t) (1 + r) + uP (1 − s) (1 + t) (1 + r)

(6.40)

The rest of the shape functions are analogously given to Equation (6.40).

6.3 Numerical Integration

Numerical integration methods are employed to construct the element matrices through integration
over a reference element. A reference element has a very basic shape in a reference space with
coordinates r,s and t, and it can be transformed into the "real" element by using a geometrical
transformation τ . The numerical integration used by Ansys Mechanical is the Gauss Quadrature
integration method [63]. The term quadrature implies that an integral is evaluated numerically
and not analytically.

Gauss Quadrature method consists of three steps. First, the integral given in global coordinates
(x, y, z) is transformed into the normalized or natural coordinates (r, s, t), which take values from
-1 to 1. Then, the transformed functions are evaluated at specific locations within an element,
and the locations are also referred to as Gauss points. Finally, weighting factors are applied to
each Gauss point and the contributions are summed up. In Table 6.1, the weighting factors and
the function arguments are given for 2 and 3-point integration for quadrilateral cells:

No. of points in one direction Point locations Weighting factors

2 r1 = 1
r2 = 1

w1 = 0.57735
w2 = −0.577335

3
r1 = 0.55556
r2 = 0.88889
r3 = 0.55556

w1 = −0.77460
w2 = 0
w3 = 0.77460

Table 6.1: Gauss points and weighting factors for each point of a quadrilateral cell. Source [56].

Figure 6.6 shows a quadrilateral cell’s 2x2 and 3x3 Gauss integration points.

The Gauss points and weighting factors for a tetrahedron are given in Table 6.2.

The numerical integration affects the accuracy and cost of the simulation and it has to be chosen
carefully in a way that computes the element volume accurately. There are two categories of
numerical integration: full and reduced. The full integration implies that the rules for displacement
are in the same order as the element. In other words, the number of nodes located in an element
edge is the same as the number of Gauss points. This means that the element order is able to
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6.4 Solvers

Figure 6.6: Location of Gauss Integration points for a quadrilateral cell. Source [56].

Points Point locations Weighting factors

4 (corner points) w1 = 0.58541
w2 = w3 = w4 = 0.13819

0.25

Table 6.2: Gauss points and weighting factors for a tetrahedron cell. Source [56].

provide the exact integral of the components of the strain energy. Fully integrated lower-order
elements (linear) can exhibit shear locking in bending problems by creating artificial shear strains
which do not physically exist. This issue becomes particularly large in structures with a large
length-to-thickness ratio. Therefore, usually an enhanced strain formulation [64] [65] is applied,
adding additional shape functions to treat volumetric locking.

In the reduced integration, on the other hand, the number of Gauss points is one order lower
than the number of nodes located in the element edge. The elements during reduced integration
can avoid locking and are also preferred for better computational utilization times, which is
beneficial.

For lower-order elements, the full integration with enhanced strain formulation is the default
in Workbench2, while for higher-order elements, the default is the reduced integration [56]. In
Ansys Mechanical, element stress and strains are calculated at Gauss points, while displacement
is calculated at nodes. Furthermore, the stresses and strains at nodes can be calculated by
extrapolating the Gauss point values, which depends on the element type and integration
scheme.

6.4 Solvers

There are two generally available solvers in Ansys Mechanical, a direct and an iterative solver.
The direct solvers use a direct elimination process based on Gauss elimination, which essentially
decomposes the matrix [K] into lower and upper triangular matrices [K]=[L] [U]. Furthermore,

2Workbench is part of the Ansys Suite of products. It is used for setting up couplings or as a work frame for
different types of simulations. All the Ansys software are included in Workbench.
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6 Finite Element Formulation

substitutions concerning [L] and [U] matrices are made, and the displacement vector {u} is
calculated. The main type of direct solver is the Direct Sparse Solver, which is also the solver
used in the calculations throughout this work.

On the other hand, the iterative solvers start with an initial guess {u1} for the solution. Then,
the solver iterates until a convergence criterion is reached. The calculation of {un+1} involves [K],
{F} and {u} from the previous iterations. The direct solver is explained here based on Ansys
documentation [56].

The equation system with the lower and upper triangular matrices is solved:

[L][U ] {u} = {F} (6.41)

Assuming that {w} is a vector containing [U] and {u}, the matrix equation system in Equa-
tion (6.41) is then:

{w} = [U ] {u} =⇒ [L] {w} = {F} (6.42)

{u} can be obtained back-substituting into the triangular matrix. When [K] is symmetric, its
decomposition into lower and upper matrices is done as shown in Equation (6.41). If [K] is
non-symmetric:

[K] = [L][D][L]T (6.43)

where [D] is a diagonal matrix whose terms can be negative in some cases of non-linear analysis.
Therefore the above equations are written as:

[L][D][L]T {u} = {F} (6.44)

{w} = [D][L]T {u} (6.45)

[L] {w} = {F} (6.46)

and then back substituting:
[D][L]T {u} = {F} (6.47)

The [K] matrix is sparsely populated with non-zero values in non-diagonal positions; therefore,
the direct sparse solver deals exclusively with the non-zero values in [K]. Furthermore, it can
happen that during the decomposition of [K] into upper and lower triangular matrices, non-zero
coefficients show up in the [L] or [L’] at the positions where zero coefficients were before in [K].
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6.4 Solvers

Therefore, the direct solver takes care of this by reordering the equation numbers in [K] by a
permutation of rows and columns of [K] with the rows in {F} in an appropriate manner. This
means that the fill of [L] matrices are kept to a minimum, which adds up to the performance of
the Direct Sparse Solver. To achieve this, different reordering algorithms are available [66].
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7 Fluid-Structure Interaction

CHAPTER7
Fluid-Structure Interaction

Fluid Structure Interaction (FSI) is a type of analysis where the interaction between two or
more different physics phenomena is analyzed. In the context of this work, Fluid-Structure
Interaction (FSI) means assessing the mechanical and thermal hydraulic behavior of the fuel
plates as well as the influence one of the fields has on the other. As an example, the water
running through the reactor core can induce vibrations and deformations of the plate, which
in turn can change the velocity and pressure of the water, and thus, also the temperature and
heat fluxes of the fuel plate. Furthermore, the thermal expansion of the fuel plate under thermal
loads impacts the width of the cooling channel, leading to a modification of the velocity and
pressure fields. Since the thermal aspect is included into the calculations, the term is updated
from FSI to Thermal-Fluid-Structure Interaction (TFSI). In this case, TFSI does not present
a severe change of analysis type, it only means that the thermal response of the system being
analyzed is taken into account in addition to the structural and hydraulic responses.

There are two main branches of FSI: one-way and two-way coupling. one-way coupling is a
sequential analysis, meaning that a converged solution is first achieved for one solver, and the
results are transferred as boundary conditions to the second field, which then is iterated towards
a converged result. The two-way coupling on the other hand is referred to as a bidirectional or
direct coupling, and it includes several sub-methods listed from strongest to weakest coupling [67]:

• Fully coupled. In this type of coupling, the fluid and solid fields are included in one
monolithic fluid-structure matrix, which is difficult to solve. Such modeling is up to this
point not possible for the Ansys Mechanical - Ansys CFX coupling.

• Two-way iteratively implicit coupling relies on the fluid and structural equations being
solved separately. The data such as temperature, pressure etc is then transferred between
the solvers. The solvers continue iterating within each time step to find an implicit solution.

• Two-way explicit coupling concept is similar to the iteratively implicit coupling with the
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exception that the fluid and structural solvers exchange information on a single time step.

All types of coupling are shown in Figure 7.1 in terms of different physics phenomena. In this
thesis, the one-way coupling and the two-way iterative implicit coupling are used. In this sense,
the implicit/explicit concept is not related to the solver per se, but to the formulation used in
the matrices. For instance, implicit coupling refers to the fact that the solution between fluid
and solid is done within one time step, while explicit means that the solid and fluid fields are
solved separately and there are n coupling iterations within time steps.

The coupling workflow between the one-way and two-way coupling differs greatly. In the one-way
coupling, the thermal and hydraulics fields are considered within the fluid solver and it means
that the fluid solver Ansys CFX is used as a conjugate heat transfer solver. Therefore, it solves for
thermal-hydraulics and heat diffusion in solids. In the two-way coupling the thermal-structural
coupling is used, which implies that the thermal diffusion in solids as well as deformation are
accounted for in the structural solver Ansys Mechanical. The thermal-hydraulic behavior of
the fluid is calculated with Ansys CFX. Furthermore, Ansys CFX and Mechanical exchange
information on a step basis. The thermal-structural coupling is described in further detail in
Section 7.1.
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7 Fluid-Structure Interaction

Figure 7.1: Examples of physics phenomena in terms of their physics complexity (y axis) and numerical coupling
(x axis). Conjugated Heat Transfer (CHT) does not present big challenges. Therefore, a basic coupling approach
such as one-way coupling can be used. For more complex physical phenomena such as biomedical membranes
(which are very prone to deformation and vibrations) would require a very strong coupling such as the fully coupled
approach. The graph is provided by Ansys. Source: [67].

7.1 Thermal-Structural Coupling

Analogously to FSI, the thermal-structural coupling can be done in a sequential manner or a
direct one. A sequential manner means that the thermal field is solved first, and the results
are imported into the structural solver as boundary conditions. This method can be used for
example to calculate the thermal expansion of railways due to the sun. Another approach for the
sequential coupling is to invert the order of solving the physics, such that the displacement field
is solved first, then the results are used as boundary condition for the thermal field. For example,
if the heat generated in the disc brakes of a car should be assessed, this type of coupling would
be used.

The direct approach implies that both fields are solved simultaneously exchanging information
with one-another. The direct thermal-structural coupling aims of capturing the thermally-induced
deformation within the scope of one element. This means that the finite element types used in
this analysis have both displacement and temperature degrees of freedom. A general example
of the direct thermal-structural coupling would be the physics of a high temperature turbine
where the thermal expansion impacts the deflection and vice-versa. Figure 7.2 shows the different
thermal-structural coupling types together with examples.

To show the solution of a thermal-structural system, the equations representing the respective
fields are shown from Chapter 6.1.2 and Chapter 6.1.3. The structural solution has the form:

[M ] {ü} + [C] {u̇} + [K] {u} = {F} (7.1)
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7.1 Thermal-Structural Coupling

Figure 7.2: Different types of thermal-structural coupling including examples. Refurbished from [68].

where {ü} and {u̇} are the acceleration and velocity, respectively in the case a moving structure
is used, [M] is the mass matrix, [C] is the structural damping matrix, [K] is the stiffness matrix,
{u} is the displacement vector and {F} is the applied load [56].

The thermal solution has the form:

[Ct]
{

Ṫ
}

+ [Kt] {T} = {Q} (7.2)

where [Ct] is the specific heat matrix,
{

Ṫ
}

is the temperature gradient vector, {T} is the
temperature vector, [Kt] is the thermal conductivity matrix and {Q} is the thermal load vector.
The definitions of these matrices are given in Chapter 6.1.3.

Ansys provides 2 types of thermal-structural coupling: weak and strong. The weak coupling
implies that the thermal matrices are simply added to the structural ones. The matrix equation
has the form:

[
[M ] [0]
[0] [0]

]
{ü}{
T̈
}+

[
[C] [0]
[0] [Ct]

]
{u̇}{
Ṫ
}+

[
[K] [0]
[0] [Kt]

]
{u}
{T}

=
{F} +

{
F th

}
{Q} +

{
Qted

} (7.3)

All the matrices on the left-hand side of Equation (7.3) contain coefficients that are based on
material properties such as Young’s modulus, Poisson’s ratio, thermal conductivity, specific heat
capacity etc. On the right-hand side, there is the sum of the nodal forces and pressure vector {F},
the sum of the heat generation load and convection surface heat flow vectors {Q}, the thermal
load vector

{
F th

}
, the heat generation rate vector for thermoelastic damping

{
Qted

}
. All the

vectors on the right hand side of the equation are loads and are, therefore, user defined. The
temperature and displacement vectors are the unknowns for which these equations are solved.
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7 Fluid-Structure Interaction

For the strong coupling the matrix equation is written as:

[
[M ] [0]
[0] [0]

]
{ü}{
T̈
}+

[
[C] [0]

[Ctu] [Ct]

]
{u̇}{
Ṫ
}+

[
[K] [Kut]
[0] [Kt]

]
{u}
{T}

= {F}
{Q}

(7.4)

where [Kut] is the thermoelastic stiffness matrix, and [Ctu] is the thermoelastic damping ma-
trix [56].
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CHAPTER8
Impulse Excitation Technique (IET)

To calculate the as fabricated Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) fuel
plate behavior under different loads, the mechanical material properties of the fuel are required.
To the knowledge of the author, there are no elastic modulus data available on the current
FRM II fuel U3Si2 dispersed in an aluminum matrix as fabricated by Framatome CERCA. As
a first assessment, a rough hand calculation can be done in order to have an estimation of
E-modulus and the fundamental vibration frequency of the plate, accordingly.

The U3Si2 fuel dispersed in an aluminum matrix can be assumed as a fiber in a matrix. By using
the rule of mixtures for an isotropic mixture of materials such as a fiber and a matrix, the Voigt
model [69] estimates the E-modulus for axial loading by using:

Emix = fEf + (1 − f)Em (8.1)

where f is the volume fraction of the fiber calculated as:

f = Vf

Vf + Vm
(8.2)

Vf and Vm are the volumes of the fiber and matrix, respectively.

Using Equation (8.1) for the FRM II plate and applying the properties of U3Si2 [70] and aluminum
A6061-0 [71], the expected Young’s modulus is on the range from 69 GPa to 79 GPa. Applying
this range of E-modulus and the appropriate plate dimensions in the equations provided in [72],
the longitudinal frequency of the plate ranges from 3057 Hz to 3272 Hz.

For a more precise assessment, E-modulus of FRM II plates containing the fuel, cladding and
frame were measured at the fuel fabricator Framatome CERCA by using the Impulse Excitation
Technique (IET). Impulse Excitation Technique (IET) is a non-destructive method, and it follows
a simple approach. A mechanical impulse is generated in the sample by means of a light touch with
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a small hammer. The generated elastic waves dampen depending on the material properties and
composition of the sample. The resulting elastic waves are picked up by a sensitive microphone
or a piezoelectric detector and then transformed into spectral data by using the Fast Fourier
Transform (FFT) technique. After the natural frequencies of the sample are established, they are
used as input values into engineering correlations and the Young’s modulus can thus be obtained.

Figure 8.1: The schematics of the experimental setup is shown.

For plate samples with a large length-to-thickness ratio, the bending and torsional fundamental
frequencies are small and thus, complicated to capture when noise is present in the experimental
room. Therefore, in the performed measurements, the longitudinal vibrations were measured due
to their large amplitude and ease of accessibility. The longitudinal fundamental frequency can be
related to E-modulus by the following formula [72]:

E =
f2

long

k2 · m · l

A
· 4 · C (8.3)

where flong is the longitudinal frequency, k is the harmonic order, m is the mass, l is the length
of the specimen, A is the cross section area and C is a factor used to account for the small cross
section to length ratio of the sample. C is defined as:

C = 1 + k2π2ν2I

Al2
(8.4)

where ν is the Poisson ratio and I is the moment of inertia, which for a rectangular cross section,
is defined as:

I = bh3

12 (8.5)

where b is the width and h the height of the rectangular cross section. The Poisson ratio ν can
be calculated by using the E- and shear- moduli such as:

ν = E

2G
− 1 (8.6)
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8 Impulse Excitation Technique (IET)

where G refers to the shear modulus, and it can be calculated by measuring the torsional frequency
of the sample under investigation. Since the fundamental torsional and bending frequencies of
the FRM II plate are expected to be very low1 and thus challenging to measure, the Poisson
ratio was taken as a stable value of 0.3 in the above formulas. The Poisson ratio of aluminum is
0.33. Since the plate contains a small amount of U3Si2 in addition to aluminum, its Poisson ratio
is expected to be somewhat smaller than 0.3. Additionally, it was proven that the variation of
Poisson ratio in Equation (8.3) yields a change of roughly 10−6% in Young’s modulus, which is
negligible.

A schematic of the experimental setup used to measure the E-modulus is shown in Figure 8.1.

In addition to the FRM II fuel plates, a plate made of pure AlFeNi with the same dimensions as
the ones in the reactor was measured, with the rationale being that the FRM II plates are made
mostly of AlFeNi, and therefore the Young’s modulus of the fuel plate and AlFeNi plates are
believed to be rather similar. The results concerning the fuel plate and AlFeNi plate are shown
in the Material Properties Section in Chapter 10.3.

1Roughly 15 Hz
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9 Neutronics - Hydraulics Coupling

CHAPTER9
Neutronics - Hydraulics Coupling

The coupling between Serpent 2 and Ansys CFX (CFX) is a joint effort between the author and
Dr. Christian Reiter who provided the Serpent 2 results [2, 10]. Since Serpent 2 modeling is not
the main focus of this thesis, only very few and absolutely necessary details are provided. More
details regarding the Serpent 2 calculations can be found on previous work [2, 3, 10, 11] of TUM
CNSI [73]. On the other hand, details regarding the CFX modeling are given in the next sections.

9.1 Thermal Hydraulics

The neutronics-thermal hydraulics work frame consists of two key points:

1. Serpent 2-CFX coupling is validated for the Forschungs-Neutronenquelle Heinz Maier-
Leibnitz (FRM II) Highly-Enriched Uranium (HEU) case by using the previously performed
MCNP-CFX coupling as a validation source [12] and the licensing report of FRM II prepared
by Siemens in 1996 [5].

2. An adequate mesh and model representing the physics of the system are established.

3. The results obtained with Serpent 2-CFX coupling are verified by using the coupling of a
2D thermal-hydraulic code PLTEMP with Serpent 2, previously developed as part of a
master thesis [74]. An additional independent verification is performed by Argonne National
Laboratory (Argonne) with the coupling of MNCP and their in-house code CD3CL2 [3].

Once the steps mentioned above are completed, the approach is used to predict the thermal-
hydraulic and neutronic behavior of a potential LEU design for FRM II.
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9.1 Thermal Hydraulics

Figure 9.1: Schematics of the CAD model of a single HEU (a) and LEU (b) plate with a split cooling channel.

9.1.1 Geometry

The computer-aided design (CAD) models needed for the thermal-hydraulic analysis was built in
SolidWorks [75]. Furthermore, an exact drawing of the involute is possible by using the parametric
equation tools in SolidWorks. Due to the rotational symmetry of the core, only one fuel plate
together with the directly adjacent structural materials, such as side plates and combs, are taken
into account. Additionally, the cooling channel is split in half on both the concave and convex
sides of the plate to fulfill the symmetry condition. This approach decreases the computational
efforts. A top view of the HEU and Low Enriched Uranium (LEU) plates is shown in Figure 9.1.

The plate models are split into three parts: inlet, main, and outlet sections, also shown in
Figure 9.2. For HEU plate: the inlet section is referred to as a 4 cm long zone, starting from the
actual inlet until the top of the heated area. The main section comprises the 70 cm long-fueled
plates. The outlet section begins at the bottom of the fueled area and is 7.6 cm. The HEU outlet
was slightly extended compared to previous work [12] so that the turbulence induced by the
lower comb can develop before the outlet boundary condition (see Chapter 12). This extension
of the HEU outlet does not show a difference in results compared to previous work, but it does
ease the convergence behavior of the simulation.

For the potential LEU plate, the inlet section is kept constant at 4 cm long, while the main part
is extended to 83 cm. The outlet section for the LEU plate was even further extended to 15 cm
due to the presence of the flow restrictor. As mentioned in the Introduction Chapter 1.3, the
current flow restrictor used in the calculations performed in this work is a preliminary design.
More details on the flow restrictor and its related boundary conditions are shown in Section 9.1.2.
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9 Neutronics - Hydraulics Coupling

Figure 9.2: The CAD model of both HEU and LEU plates created in SolidWorks and a zoom-in at the comb, is
shown. The empty arrows refer to the water movement direction, while the red, yellow, and green arrows show the
inlet, main and outlet sections used for the meshing process.

9.1.2 Mesh

The mesh used for further calculations and couplings comes as a result of a mesh sensitivity
analysis. Prior to mesh generation and evaluation, the height of the first cell at the wall was
determined such that the y+ value lies within the logarithmic region of 30-200 (see Chapter 4.2),
and the usage of the automatic wall treatment is appropriate. Using Equation (4.1), the height
of the first cell at the wall can be calculated to be around 0.06 mm to 0.09 mm depending on the
mainstream velocity which ranges from 9.8 m s−1 at the inlet to roughly 21 m s−1 close to the
lower comb.

Main section

The main section is meshed with hexahedra elements, which allow for a high degree of user
control. Since this is the area where the heat is deposited and, therefore, where most of the
heat transfer takes place, special care is taken to find a suitable mesh that captures the physics
correctly. For this, the necessary number of elements along the plate’s thickness, width, and
length is explored. For the HEU plate, 34 elements are placed in the thickness of the water
domain (17 on each side), 8 in each cladding domain, and 10 in the fuel. Additionally, in the
radial direction, 25 cells are used to mesh each frame in the radial direction, 120 cells and 75
cells for the higher and lower density fuels, respectively. 200 cells are placed in the longitudinal
direction.

For the LEU plate, the final main section mesh has 66 elements through the thickness, of which
40 are placed in the cooling channel (20 on each side), 8 in each cladding domain, and 10 in the
fuel. Furthermore, 230 elements are placed along the width of the cooling channel, 25 in the
frame, 180 in the fuel, and 15 in the tubing. The final mesh used for calculations of the HEU
plate consists of approximately 3 ·106 nodes, while the mesh used for the LEU calculation has
about 4.3 ·106 elements. Table 9.1 summarizes all the meshing parameters for both HEU and
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Plates
Thickness Width Length

Water Cladding Fuel Frame Fuel 3.0 Fuel 1.5 All

HEU plate 17 8 10 25 120 35 200
LEU plate 20 8 10 25 180 230

Table 9.1: Meshing details for the main heated part in the HEU and LEU plate.

LEU plates.

Inlet and Outlet sections

The inlet and outlet regions are discretized using tetrahedra cells, while the main part is meshed
with hexahedra cells. This was done to avoid skewed hexahedra cells in the combs’ vicinity. Due
to the tilted bottom surface of the combs, the usage of skewed hexahedra cells presents numerical
instability.

For the inlet and outlet section, a maximum element size of 1 mm is used, except for the cladding
and frame where the element size is set to 0.5 mm. The mesh density at the water domain
right below and above the comb is also increased to 0.5 mm in pursuance of the maximum and
minimum pressure values using the sphere influence radius method. This implies that a sphere
with a certain radius covering the chosen areas for mesh refinement is defined. The advantage
of this sizing method is the ability to select specific zones and not the entire domain, edge, or
surface.

In the areas where the inlet and outlet sections are connected to the main heated section, the
mesh is further refined to 0.2 mm to ensure continuous development of the heat transfer processes
and velocity and pressure contours. Moreover, in order to properly account for the heat transfer
at the walls, 5 mesh element layers are created at the fluid-solid interface with a first cell height
of 0.05 mm, and a growth factor of 1.2. At the inlet, an additional refinement takes place by
setting a sphere influence radius with an element size of 0.5 mm with the aim to better capture
the velocity development into the domain. The same meshing approach was followed for the inlet
and outlet sections of the LEU plate.

The three meshes were then "glued" together using the General Grid Interface (GGI) feature
in CFX. The GGI option ensures the connection between non-matching element types such as
hexahedron to tetrahedron in this case or node location. Further details on GGI theory can be
found in [35].

9.1.3 Turbulence Parameter Evaluation

The turbulence parameters at the inlet of the water domain are estimated using the formulas
shown in [76]. The hydraulic diameter of a channel that consists of two concentric circles is
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9 Neutronics - Hydraulics Coupling

defined as:

dh = d0 − di (9.1)

In a fully developed flow, the turbulence length scale l is estimated to be 3.8 % of the hydraulic
diameter in a circular pipe and 7% of the hydraulic diameter in cases where the pipe diameter
does not imply the hydraulic diameter [77]:

l = 0.07 · dh (9.2)

In turbulence models such as K-ϵ, the turbulent kinetic energy is related to the turbulent length
scale such that:

l = C3/4
µ

K3/2

ϵ
(9.3)

where Cµ is a constant with value 0.09. Similarly, for k-ω based models:

l = C−1/4
µ

K1/2

ω
(9.4)

The turbulent kinetic energy K can be calculated as:

K = 3
2v′2 (9.5)

Where v′2 is the mean square of the velocity fluctuations. To calculate it, Reynolds number (Re)
and turbulence intensity are first taken into account:

Re = vdh

ν
(9.6)

And:

I = 0.16 · Re−1/8 (9.7)

The turbulence intensity can also be expressed as a ratio between the root-mean-square of the
velocity fluctuations v′ and Reynold’s averaged velocity ṽ:

I = v′

ṽ
(9.8)

Using these relations, the turbulence parameters of the FRM II plate at the inlet are summarized
in Table 9.2.
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9.1 Thermal Hydraulics

Parameter Symbol Value HEU Value LEU

Hydraulic diameter (mm) dh 99 107.1
Reynolds number (-) Re 1.4 · 106 1.54 · 106

Turbulent intensity (%) I 2.7 3.6
Turbulent energy (m2 s−2) K 0.1 0.2
Turbulent length scale (mm) l 6.9 7.5
Turbulent dissipation rate (s−1) ω 87.8 108.3
Turbulent dissipation (m2 s−3) ϵ 0.8 1.9

Table 9.2: The turbulence parameters at the inlet of the water domain for the current HEU plate and the potential
LEU plate.

The cooling channel thickness of the potential LEU core is larger compared to the HEU core,
leading to a larger hydraulic diameter. Since Re number depends proportionally on the hydraulic
diameter, it increases slightly in the LEU core. A higher Re number indicates larger turbulence
in the channel. This is reflected by the higher turbulent intensity I and turbulent energy K.
However, even though the turbulent intensity is larger in the LEU core, the turbulent intensity
values between 1% and 5% are still in the medium turbulent intensity range. The turbulent
length scale increases from 6.9 mm to 7.5 mm from HEU to LEU. This means that the largest
eddies in the LEU core are slightly larger. Analogously, the rate at which the turbulent kinetic
energy transforms into thermal energy is also increased for the LEU core compared to the HEU
core. This implies larger turbulent heat transfer and therefore, slightly more efficient cooling in
the LEU core.

9.1.4 Boundary Conditions

Inlet

HEU
The mass flow of water going through the FRM II core is 274.5 kg s−1. Given that there are in
total 113 plates and the CFD setup consists of one of them, 2.4292 kg s−1 water is flowing through
one plate. A preliminary calculation of the velocity profile from the sieve is performed to assure
a fully developed flow at the inlet of the Computational Fluid Dynamics (CFD) domain. The
details of these calculations are shown in Appendix VI. The velocity profile obtained from this
calculation is used as a boundary condition for the inlet. Additionally, the inlet water temperature
is set at 37 ◦C, according to [5].

LEU
For the LEU core, the mass flow calculated by the flow network code in [3] results in 277.655 kg s−1.
Since there are 109 plates in the LEU core, the mass flow crossing one coolant channel is
2.5473 kg s−1. Similarly to the HEU plate, a preliminary isothermal calculation of the sieve was
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9 Neutronics - Hydraulics Coupling

performed to deduct the velocity profile at the inlet.

Outlet

At the outlet, the system pressure of FRM II of 2.3 bar was set as the average static pressure
for the HEU plate. For the LEU plate, the outlet pressure was obtained by a hand calculation
considering that the reduction of the flow area compared to the case without flow restrictor leads
to an increase in velocity and subsequently a decrease in pressure [3]. From this, an average
static pressure of 0.26 bar was set at the outlet.

Fluid Solid Interface

At the fluid-solid interface, the heat transfer is activated. Additionally, an absolute roughness of
2.4 µm is applied. This roughness value was calculated in [12] from the values provided in the
licensing documents [5, 78].

9.1.5 Heating Data

A script retrieves the heat source needed to perform the thermal hydraulics calculations from
Serpent 2. The flowchart of the script is shown in Figure 9.3. This script essentially compresses
the power density calculated for the entire plate and coolant channels into the power density
that can be deposited only in the fuel domains (Step 1). The heating data is then rotated by
2pi (Step 2), and only the data covering the fuel domain is kept (Step 3). Dr. Christian Reiter
wrote and prepared the script as part of the Serpent 2-CFX coupling framework. The heating
data shown in Step 3 in Figure 9.3 is the heating profile that is imported into CFX via the
"Initialize Profile Data" tool. An additional variable responsible for the heating data’s power
density (HeatDep) is created and assigned to each fuel domain. Furthermore, a subdomain
containing the high- and low-density fuels is created and assigned the said variable1.

1Ansys CFX offers the possibility to include thermal radiation into the setup. Nonetheless, this approach is not
considered since thermal radiation makes up for less than 1% of the total heat. Applying the Stefan-Boltzmann’s
law for radiation for a maximum temperature difference of 80 K in the fuel:

P

A
= σ · ∆T ≈ 2 W m−2 (9.9)
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9.1 Thermal Hydraulics

Figure 9.3: The script workflow that transforms the heating data to be used by Ansys CFX. From Serpent 2,
the power density obtained for all the domains is shown in red. In step 1, the red area is restricted only to the
fuel region to show that the power density is compressed to the fuel. The power density data points (one line) are
rotated over 2pi to cover the full radial range of the plate in step 2. In step 3, only the power density data points
that cover the fuel area are taken into account.
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9 Neutronics - Hydraulics Coupling

9.1.6 Material Properties

Water

The international steam tables IAPWS-97 [79], implemented in CFX, are used for the water
material properties. This library expresses the water properties in a temperature- and pressure-
dependent fashion. It also includes the properties for subcooled water, supercritical water/steam,
superheated steam, saturation data, and high-temperature steam.

Cladding

The fuel plate cladding is made of AlFeNi. The literature regarding material properties of
AlFeNi is rather sparse. However, the Siemens licensing report for FRM II [5] stated the thermal
conductivity of AlFeNi to be around 216 W m−1 K−1. Additionally, according to a document
published by the International Atomic Energy Agency (IAEA) [80], the properties of AlFeNi are
believed to be similar to the aluminum 8000 series, which exhibit a thermal conductivity ranging
from 167 W m−1 K−1 to 220 W m−1 K−1 as stated in [81]. Based on this, the quoted value of
216 W m−1 K−1 seems reasonable. No temperature variation of the thermal conductivity is taken
into account.

For the specific heat capacity of AlFeNi, the cp of pure aluminum is used, which is determined
via [82]:

cAl
p

[
J kg−1 K−1

]
= 892 + 0.46 · T [◦C] (9.10)

Since the specific heat capacity of the cladding does not exhibit severe change over the temperature
range of 40 ◦C to 95 ◦C2, a stable value of 903 J kg−1 K−1 is used.

Aluminum Frame

The picture frame that surrounds the fuel meat is made of AlMg2, which has a noticeably
lower thermal conductivity (150 W m−1 K−1) compared to AlFeNi. In the previous studies on the
thermal-hydraulic behavior of FRM II, the frame was considered as AlFeNi based on the rationale
that the low thermal conductivity is not expected to affect the overall results in a significant
way. In this work, both cases were calculated, using the actual AlMg2 and AlFeNi for the picture
frame to assess the influence and validity of the assumptions on the plate’s thermal-hydraulic
behavior. These calculations show that the previously made assumptions about the picture frame
material are justified, as shown in Chapter 12.

2Roughly 3.8%
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9.1 Thermal Hydraulics

Quantity Value inner fuel Value outer fuel

ρ
(
g m−3) 5.20 3.96

cp
(
J m−1 K−1) 475.0 630.4

k
(
W m−1 K−1) 109 165

Table 9.3: U3Si2 - Al material properties for the HEU core [5].

Tubing

Even though the tubing of the core is made of AlMg3, it was assumed to be AlFeNi. This
assumption is justified by the fact that the tubing is not expected to have a high temperature;
therefore, for the sake of simplification, all cladding and tubing material is set to AlFeNi. The
results shown in Chapter 12 validate this assumption.

Dispersed U3Si2 - Al fuel

The current fuel of the FRM II is U3Si2 dispersed in an aluminum matrix, as mentioned in
Chapter 1. The volume fraction of the porosity in the fuel can be calculated by [83]:

VP = 0.072 · VF − 0.275 · V 2
F + 1.32 · V 3

F (9.11)

where VF is the fuel’s volume fraction, and the fuel accounts for the rest of the volume fraction.

The specific heat capacity of U3Si2 is calculated as:

cU3Si2
p

[
J kg−1 K−1

]
= 199 + 0.104 · T [◦C] (9.12)

Then the heat capacity for the fuel is:

cU3Si2−Al
p

[
MJ m−3 K−1

]
= 0.0122 · VF · cU3Si2

p + 0.0027 · (1 − VF − VP )cAl
p (9.13)

The thermal conductivity of U3Si2 - Al fuel was measured at Argonne [82] in dependence on the
uranium loading. Since the thermal conductivity of pure U3Si2

(
15 W m−1 K−1) is about 14 times

smaller than that of aluminum, reduction of the thermal conductivity of the fuel is expected
when the uranium loading is increased. This is shown in Figure 9.4. From Figure 9.4, it can be
deduced that the value for the thermal conductivity of U3Si2 - Al fuel is 180 W m−1 K−1 upon
13.7% U3Si2 volume fraction. This value agrees with the values reported on the licensing process
of FRM II [5]. The temperature-independent values stated in Table 9.3 are used for this work.
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9 Neutronics - Hydraulics Coupling

Figure 9.4: Thermal conductivity of U3Si2 - Al in dependence to the volume uranium loading. Source: [82].
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9.1 Thermal Hydraulics

Monolithic UMo fuel

Currently, a monolithic form of UMo is considered for the LEU core. In contrast to the uranium
silicide dispersed fuel, the material data from the literature for the monolithic UMo is relatively
bountiful since this fuel has also been the proposed option for the U.S. High-Performance Research
Reactors (USHPRR) conversion.

One of the latest reports on the material properties of UMo alloys published at Argonne looks
over the whole range of available studies on UMo [9]. The data shown here and used in the
simulations constitute the best fit as presented in [9]. Furthermore, only the unirradiated material
properties are used in this work.

Based on [9], the density can be expressed in a linear form in terms of temperature in the
following relation:

ρ
[
g cm−3

]
= 17.15 − 8.766 · 10−4 · T (9.14)

The specific heat capacity is given by:

cp

[
J g−1 ◦C−1

]
= 0.133 + 6.99 · 10−5 · T (9.15)

The thermal conductivity can be given in terms of temperature:

k
[
W m−1 ◦C−1

]
= 0.0355 · T + 13.29 (9.16)

Equation (9.16) is applicable in the temperature range from 50 ◦C to 800 ◦C.

In the Serpent 2 – CFX LEU calculations, temperature-dependent material properties are defined
by the above equations.

9.1.7 Initial Conditions

Simple conditions were assumed for initiating the analysis, such as vin = vz = 9.83 m s−1,
Tw = Tinlet = 37 ◦C. The pressure was initialized with roughly 7.5 bar. For the aluminum and fuel
domains, slightly higher temperatures were used as initial conditions. In the transient calculations,
the results obtained from the steady-state ones were used as starting conditions.

The thermal-hydraulic calculations’ output parameters have an residual smaller than 10−5.
Additionally, all the quantities were monitored, and their convergence was confirmed.

94
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9.2 Coupling

There are two approaches to couple Serpent 2 and CFX. The first approach consists on a so-called
subsequent coupling, or one-way] coupling. This type of coupling relies on the subsequent data
sharing between the codes. More specifically, first the Serpent 2 model is built and run. Then,
the power density results are exported from Serpent 2 and imported to CFX by means of a
profile initiation. The second approach is based on continuous data exchange between the codes.
First, the Serpent model is solved and the power deposition is mapped onto the fuel domains in
CFX. Then, CFX continues its routine with solving for temperature, pressure, velocity, density.
Furthermore, the density and temperature profiles are transferred into Serpent 2. This loop
progresses until a previously defined convergence criteria is reached in each code as well as
globally. The full coupling is performed by means of a python wrapper.

The Serpent 2-CFX results shown in this thesis rely purely on the sequential coupling.

Figure 9.5: A simple schematics of Serpent 2 - Ansys CFX subsequent coupling.
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CHAPTER10
Thermal-Fluid-Structure Interaction

(TFSI)

In this chapter, the approach of modeling the thermal-fluid-structure interaction is presented. The
content is split in two parts: one-way and two-way Thermal-Fluid-Structure Interaction (TFSI).
In each of these parts, the thermal mechanical, thermal hydraulics modeling and the coupling
between the two are described.

10.1 One-way FSI

As mentioned in Chapter 7, the one-way TFSI refers to a sequential coupling between Ansys
CFX (CFX) and Ansys Mechanical. The goal of this type of coupling is to assess the effects of
the temperature and pressure fields on the deformation behavior of the plates. CFX is used to
solve for the thermal-hydraulic behavior in a conjugate heat transfer approach. The CFX setup
is equivalent to the model described in Chapter 9. The variables calculated by CFX such as
pressure and/or temperature fields are inserted in Ansys Mechanical as boundary conditions.
Moreover, the corresponding deformation and stress are calculated. The workflow for the one-way
TFSI coupling is shown in Figure 10.1.

10.1.1 Thermal Hydraulics

The thermal hydraulics setup used for the one-way TFSI calculations is identical to the setup
described in Chapter 9.
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Figure 10.1: Schematics of one-way TFSI used in this work. The power density calculated by Serpent 2 is post
processed by means of a script which is described in Chapter 9. Furthermore, the pressure and temperature fields
obtained by CFX are used as boundary conditions for Ansys Mechanical. The deformation and stress are calculated
by Ansys Mechanical.

10.1.2 Mechanics

The CAD model of the plate built in SolidWorks, was transferred to Spaceclaim1 where the fluid
domain was suppressed and the mesh of the solid parts, cladding, fuel and tubing was generated.
The plate is meshed by hexahedra elements.

The bonded contact type is used to describe the contact between the fuel and cladding, plate and
tubing, plate and combs. It implies that the surfaces where the contact is defined stay bonded
and no separation can occur. A zero displacement boundary condition in all three directions is
placed on the outer tubing surfaces and combs.

The load coming from the thermal hydraulics solver CFX, is imported and applied to the
corresponding geometrical feature in Ansys Mechanical. For instance, the temperature of the
fuel and aluminum domains from CFX is imported to the fuel and aluminum domains in
Ansys Mechanical, while the pressure is imported and assigned to the fluid-solid interface.
The zero-displacement surfaces are shown in Figure 10.2a and 10.2b for the Highly-Enriched
Uranium (HEU) and Low Enriched Uranium (LEU) plates, respectively. CFX is able to import
two types of results to mech, namely pressure and temperature. Therefore, for one-way TFSI,
four cases were considered:

• Case 1: Only pressure load is used as a boundary condition in Ansys Mechanical.

• Case 2: Only temperature load is used as a boundary condition in Ansys Mechanical.

• Case 3: Both pressure and temperature loads are used as boundary conditions in Ansys
Mechanical.

• Case 4: Both pressure and temperature loads are used as a boundary condition in Ansys
Mechanical. Additionally, the combs are not fixed, but free to move.

1Spaceclaim is a meshing software, part of Ansys Products.
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10 Thermal-Fluid-Structure Interaction (TFSI)

Figure 10.2: The fixed boundary conditions in one-way FSI for the HEU plate (a) and LEU plate (b). Magenta
expresses the fully fixed surfaces.

10.2 Two-way FSI

In the two-way coupling, the power deposition from Serpent 2 is taken into account in the
Ansys Mechanical solver. Therefore, the subsections here are referred to as Thermal Mechanics
and Hydraulics. A simple schematics of the coupling is shown in Figure 10.3.

10.2.1 Thermal Mechanics

The structural setup in the two-way TFSI approach is similar to the one-way TFSI with a
few exceptions. For instance, in the two-way TFSI, the fluid-structure interface is defined by

Figure 10.3: Schematics of two-way FSI used in this work. The setup is built in Ansys Workbench.
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means of a boundary condition and it implies that system coupling transfers data between the
structural solver and the hydraulic one. Furthermore, the two-way TFSI coupling includes a
coupled structural-thermal setup. The thermal load which constitutes of the heat generation data
exported from Serpent 2, is applied to the solid domain within Ansys Mechanical, in contrast
to the one-way TFSI, where the power deposition is applied within CFX and the conjugate
heat transfer solver is used. In order to create a structural-thermal coupling within the static
structural application in Ansys Mechanical, commands assigning the power deposition to each
mesh element are used. Additionally, the element type is switched to SOLID226. SOLID226
elements have displacement and temperature degrees of freedom, thus being able to represent
the physics of a coupled thermal-structural solver.

10.2.2 Hydraulics

For the hydraulics setup, all the solid domains are omitted from the hydraulic solver. The water
domain is split into three parts. The used mesh is exactly the same as the mesh described in
Chapter 9, with the difference that here no solid domain is part of the meshing process.

For the inlet, the velocity profile calculated from the sieve (shown in Appendix VI) is used.
The outcome of the preliminary sieve calculation is a developed velocity profile. The outlet
boundary condition consists of a static pressure of 2.3 bars. A roughness of 2.4 µm is applied
to the fluid-solid interface. The fluid-solid interface data exchange is set to "System Coupling",
which implies that data such as force and temperature will be exchanged between CFX and
Ansys Mechanical. Furthermore, the mesh deformation is activated.

10.3 Material Properties

Cladding

The Impulse Excitation Technique (IET) experiments described in Chapter 8 revealed the Young’s
modulus of the AlFeNi plate to be 74.24 GPa ± 0.05 GPa. This value is found to be conforming
to the literature values that estimate the AlFeNi cladding to exhibit similar material properties
as the aluminum 8000 series [80, 84], whose E-modulus ranges from 72 GPa to 78 GPa [81].
Therefore, in the mechanical calculations, the experimentally measured E-modulus of 74.24 GPa
was used for the cladding.

Picture Frame

AlMg2 is the picture frame material with E-modulus of 68 GPa and thermal conductivity of
150 W m−1 K−1 [85].
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Tubing

The material of the tubing is AlMg3; however, since the tubing is a fixed boundary condition and
it is not expected to reach high temperatures AlFeNi was used instead of AlMg3, same as in [12].

U3Si2 - Al fuel

The Young’s modulus of the fuel plate measured with IET is 75.83 GPa ±1.69 GPa, a value which
is comparable to the E-modulus of the AlFeNi plate. For both fuel densities, the mechanical
calculations use the E-modulus of 75.83 GPa.

The influence of statistical uncertainty of the material properties measured by IET on the
deformations is entirely negligible. The related-sensitivity analysis is shown in Appendix VI.

UMo

The best fit of the material properties summarized in [9] is used in this work. The material
properties used in the thermal-hydraulic calculations, such as density, specific heat capacity, and
thermal conductivity of UMo are shown in Chapter 9. Young’s modulus, yield strength, and
thermal expansion are shown here.

The Young’s modulus in terms of temperature is given by:

EUMo[GPa] = 90 − 0.13T (10.1)

where T is in ◦C.

The yield strength as provided in [86] is:

σUMo[MPa] = 1027 − 1.48T (10.2)

where T is in ◦C.

As for the Poisson ratio, the value of 0.35 is used, as stated in [9].

The thermal expansion can be calculated by:

α = 7.91 + 0.0121T (10.3)

α is given in 1 · 10−6 1/K and the temperature in K.

In the mechanical simulations, the material properties at room temperature are used. The
properties are summarized in Table 10.1.
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Material

Thermal
Expansion
Coefficient

(K−1)

Thermal
Conductivity
(W m−1 K−1)

Density
(kg m−3)

Specific Heat
Capacity

(J kg−1 K−1)

Young’s
Modulus
(GPa)

Poisson’s
Ratio (-)

AlMg2 23 150 2700 900 68 0.33
AlFeNi 23 216 2770 903 74.2 0.33
Fuel 3.0 gU/cc 15.2 109 5200 475 75.8 0.30
Fuel 1.5 gU/cc 15.2 167 3960 630 75.8 0.30
Fuel UMo 11.5 15 17100 142 88 0.35

Table 10.1: Material properties at room temperature used in the computational models. Sources: [5, 80, 81, 85].
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CHAPTER11
Verification and Validation

In this chapter, the semantics of verification and validation and their meaning related to high-flux
research reactors are laid out in the first and second section, respectively. The two experiments
used for verification and validation are described and their simulation results are shown and
discussed in detail.

11.1 Semantics of Verification and Validation

Verification and validation are synonyms in the English language. However, a distinction can
be made between these two words in terms of quality assurance related to building confidence
in Computational Fluid Dynamics (CFD) and Computational Structural Mechanics (CSM)
calculations. This being said, the difference between verification and validation is established by
Boehm [87], Blottner [88] and Roache [89]:

"Validation ≈ solving the right equations."
"Verification ≈ solving the equations right."

In CFD and CSM, the code user defines which partial differential equations and boundary
conditions are being solved and shows that they are solved correctly and consistently within the
chosen accuracy order. This is known as verification. Validation, on the other hand, is whether
the equations represent the physics of the problem at hand which is observed and characterized in
an experiment [90]. In the strict sense of the word, a "code" cannot be validated; only a range of
calculations performed with a code can be validated. A code can be verified for various problems;
however, using a verified code for a new problem is insufficient. Therefore, for simulating a new
problem, the numerical errors or uncertainties must be tackled by performing mesh convergence
tests.
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11.2 Code Verification and Validation for High-Flux Research
Reactors

Commercial CFD and CSM codes are widely used for various applications, including nuclear power
plants [91, 92]. However, their usage for problems related to high-flux research reactors, such as
Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II), High Flux Isotope Reactor (HFIR)
and High Flux Reactor (RHF), is sporadic. Therefore, to rely on these codes for future projects,
they must be verified and validated for high-performance research reactor conditions. Additionally,
building confidence and credibility in using commercial codes is highly beneficial to the Low
Enriched Uranium (LEU) conversion process. As mentioned in Section 11.1, experimental data
that reflect the key features of high-flux research reactors is essential. However, the availability of
these experiments is not abundant. Two experiments assessing the behavior of high-flux research
reactors are Gambill & Bundy and Cheverton & Kelley experiments, performed as part of HFIR
licensing. In the present work, the code verification relies on the code-to-code comparison of
numerical solutions. The code validation is based on comparing the simulation results to an
experimental outcome.

Ansys CFX (CFX) is validated using the Gambill–Bundy experiments and verified further within
Involute Working Group (IWG) with Star-CCM+ and Comsol (see Chapter 11.3). Similarly,
Ansys Mechanical is validated with Cheverton–Kelley experiments and verified against Star-
CCM+ and Comsol (see Chapter 11.4). In the verification and validation (V&V) process, only
the results obtained with CFX and Ansys Mechanical are shown, since these are the codes of
choice for this work. For further details regarding the comparison between codes, the reader can
refer to the corresponding publications [15, 16, 38, 93, 94].

11.3 Gambill-Bundy Experiments

In the early 60s, Gambill and Bundy performed a few thermal-hydraulic tests in the framework
of HFIR program. As the reactor design was being finalized, a research paper regarding the
forced convection of water in heated thin rectangular channels was published by Levy et al. [95].
In this paper, the authors suggested that the heat transfer coefficient for forced convection in
a rectangular channel is 15% to 30% lower than in a round tube and 32% to 57% lower than
the Sieder-Tate correlation predicts. Hence, Gambill and Bundy were tasked with performing
tests of a HFIR representative model and conditions, studying the heat transfer coefficients, and
determining the correlation best suited to HFIR thermal-hydraulic safety analysis. HFIR, RHF
and FRM II are very similar to each other. Therefore, by extension, Gambill-Bundy experiments
are also representative for RHF and FRM II.

The experimental setup consists of an electrically heated vertical rectangle aluminum channel.
The water coolant from a tank containing 1150 liters of water was pumped into the heated
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Figure 11.1: Picture of the Gambill and Bundy experimental setup. The test section is shown in the red rectangle.
Source:[13].
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section with a mass flow of roughly 0.277 kg s−1. Figure 11.1 shows a picture of the experimental
setup. The test section consisted of the aluminum plate, Mycelex insulators, backup plates, and
the end blocks. These parts are shown in Figure 11.2 and Figure 11.3.

Figure 11.2: The disassembled test section: the aluminum channel, including the insulator, backup plates, and
end blocks, is shown. Source: [13].

Figure 11.3: The assembly of the test section. Source: [13].

In order to measure the temperature of the wall and coolant, twelve thermocouples were placed
every 5 cm on alternately opposing sides along the channel length. The pressure was measured by
a gauge that was calibrated during steady-state operation. The inlet temperature was regulated
by a steam beam coil and the test section was insulated. It was decided that the aluminum
channel would not have a constant thickness due to possible heat flux peaking at the edges. The
shape and dimensions of the channel are shown in Figure 11.5. In total, 11 experiments were
performed; however, only run 8 of Test 7 is reported, also shown in Figure 11.4.

The bulk temperature was assumed to be increasing linearly with the channel length from 69 ◦C
at the inlet to 154 ◦C at the outlet. According to [13], a calculation was done and this assumption
was deemed acceptable. The thermocouples measured the temperature at the outer wall and
evaluated the temperature drop through the wall as:

∆tw = ϕα

2k
(11.1)

where ϕ is the wall to water heat flux, α is the thickness of the channel and k is the thermal
conductivity of aluminum. The wall temperature went from 111 ◦C to 209 ◦C from inlet to outlet.
The wall roughness was 1.6 µm and the local heat transfer coefficient was calculated by:
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Figure 11.4: Plot showing the variation of the wall temperature, bulk temperature, saturation temperature, and
heat transfer coefficient from Test 7, run 8. Taken from Gambill–Bundy report [13].
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h = ϕx

(twall − tbulk)x
(11.2)

where the index x is the distance from the heated inlet.

In their report, Gambill and Bundy compared the experimentally determined heat transfer
coefficients to Sieder-Tate and Hausen correlations. For Sieder-Tate, it was concluded that
Equation (2.11) with a correction of 0.024 is representative of HFIR conditions, while for Hausen
correlation a correction of 0.105 in Equation (2.12) was proposed.

11.3.1 Simulation of Gambill and Bundy experiments with Ansys CFX

Throughout the timeline of this thesis, there have been many developments in modeling the
Gambill-Bundy experiments utilizing CFD codes within IWG. This multi-dimensional work has
resulted in different publications [15, 38]. In mid 2023, a rather large analysis of an extended
range of Reynolds numbers in a reduced geometry was performed. The CFD results of the
Gambill-Bundy simulations that are presented here are based on an expanded version of already
published material [15, 38]. Furthermore, in this thesis, only the results obtained with CFX are
shown. The interested reader can refer to [96].

11.3.1.1 CAD Model and Mesh

The computer-aided design (CAD) model used in these simulations was built in SolidWorks
and included the aluminum and water domains. An extra 10 cm long unheated extension was
attached to the inlet, allowing the flow to develop before going into the heated section. The full
CAD model is shown in Figure 11.5. The geometry was then meshed by using ICEM CFD1. Two
different mesh densities with different y+ values were explored, a fine one with y+< 1 and a
coarse one with y+ ≈ 30. Both meshes are shown in Figure 11.6.

11.3.1.2 Material Properties

The water material properties were taken from the international steam tables IAPWS-97 [79].
The material properties of AA-6061 aluminum type were used for the aluminum channel. The
fluctuation of the density, specific heat capacity and thermal conductivity in the expected
temperature range (149 ◦C - 288 ◦C) was deemed negligible. Table 11.1 gives the used material
property values.

1Meshing software part of Ansys Product Suite
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Figure 11.5: The isotopic (a) and top (b) view of the CAD representing the Gambill & Bundy test section.

(a) (b)

Figure 11.6: The coarse mesh (a) and the fine mesh (b) used for calculations.

Material Property Value

Density (kg m−3) 2700
Specific heat capacity (J kg−1 K−1) 903
Thermal Conductivity (W m−1 K−1) 235

Table 11.1: Material properties used for the aluminum domain.
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11.3.1.3 Boundary Conditions

The following boundary conditions were applied to the setup:

• Inlet velocity vin= 15.7 m s−1

• Inlet temperature Tin = 69 ◦C

• Outlet pressure pout = 27.9 bar

• Wall roughness = 1.6 µm

Since the Gambill and Bundy report does not contain specific information regarding the heat
applied to the aluminum channel, a value for the heat source was estimated from the published
data using:

Q = mcp∆T (11.3)

where ∆T is the difference between outlet and inlet temperature, about 82 ◦C in this case. cp

and m are the specific heat capacity at constant pressure and mass of water, respectively.

In order to properly simulate the Joule heating of the aluminum channel without adding
unnecessary computational complexity to the setup, a volumetric heat depending on the electrical
resistivity was applied. Furthermore, due to the dependence of the electrical resistivity on the
temperature, the heat generated in aluminum increases with temperature. The total power
generated by a current is calculated as:

P = I2R = I2 ρ(T )
A

l (11.4)

The volumetric heat is then defined as:

P

V
= I2

A2 ρ(T ) (11.5)

where P is the power, V is the voltage, I is the current, R is the resistance, ρ(T ) is the
temperature-dependent resistivity, A the cross-section and l the length of the heated channel.

The resistivity of the aluminum was defined as [97]:

ρ(T ) = ρ0(1 + α · (T − T0)) (11.6)

where ρ0 = 2.99 · 10−8 Ω m at 293.15 K.
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The data extraction was done in the following way: all the bulk-related variables such as bulk
velocity, density, specific heat capacity, thermal conductivity and bulk temperature are extracted
as mass flow average at 6 xy-planes located at different heights from the outlet, exactly as in the
experiments:

• Plane 1: z=0.42 m

• Plane 2: z=0.34 m

• Plane 3: z=0.26 m

• Plane 4: z=0.19 m

• Plane 5: z=0.114 m

• Plane 5: z=0.038 m

The wall properties, such as wall temperature and heat flux, were extracted at a point located at
the wall in the middle of the channel in x-direction. Furthermore, the viscosity values at wall
and bulk temperatures are calculated via temperature-dependent polynomials such that:

µ = T 3 · 1 · 10−9 + 3 · 10−7 · T 2 − 3 · 10−5 · T + 0.0015 (11.7)

For the plots presented in Section 11.3.2, the Nusselt number (Nu) number is plotted in terms of
Reynolds number (Re) number. The Nu number normalized to Re number according to Hausen
correlation, shown in Equation (2.12), is:

NuH−Norm = Nux

Pr1/3

[
1 + 1

3

(
D

Lh

)2/3
]−1 (

µw

µb

)0.14
(11.8)

Nu number normalized to Re number according to Sieder-Tate correlation is:

NuST −Norm = Nux

Pr1/3 ·
(

µw

µb

)0.14
(11.9)

The Nu number evaluated at a position x is :

Nu = hx · dh

kx
(11.10)

where hx and kx are the heat transfer coefficient and coolant thermal conductivity at axial
position x, respectively.
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11.3.2 Results

The wall temperature profiles calculated using CFX are shown in Figure 11.7. For the coarse
mesh (Figure 11.7a), all three turbulence models calculate similar wall temperature, with the
largest relative difference of 3.5% between SST and RS (see Chapter 4.3). Nevertheless, the wall
temperature values obtained by CFD compare well to the experimental data with a maximum
statistical deviation of 10%. For the fine mesh, the wall temperatures calculated by K-ϵ and RS
model are roughly 8 ◦C (0.04%) higher than for SST. This can be related to the scalable wall
functions used in K-ϵ and RS. The scalable wall function limit the turbulence implementation
at y+ = 11.06, while SST can resolve the turbulence in all y+ ranges. The turbulence models
show a change of the slope of wall temperature profiles at the beginning of the channel, while
in the experimental data, such a phenomenon is not observable. It is important to note that in
the experimental setup, aluminum parts surrounded the test section at the inlet, which could
potentially enhance heat conduction from the test section. These aluminum end blocks were not
simulated in CFX; thus, the slope may vary. Furthermore, the slope is more prominent in the
simulations that use fine meshes. This is due to the fact that the fine mesh has a higher element
count, and therefore, more data points are available. The modeling of the surrounding components
in CFX was not achievable since insufficient information was provided in the experimental report.
Going from the inlet to roughly 5 cm into the test channel, the discrepancy between the experiment
and the simulations is substantially reduced. For 5 cm from the heated inlet until the end of the
channel, the calculated wall temperatures are within the experimental data points in both coarse
and fine meshes.

Figure 11.7: The comparison between the wall temperature values measured by Gambill & Bundy and calculated
by Ansys CFX for the coarse (a) and fine mesh (b).

The results of CFX compared to the experimental data and the Hausen and Sieder-Tate cor-
relations are depicted in Figure 11.8 and Figure 11.9, respectively. The comparison between
coarse and fine mesh is also shown for each correlation. Depending on the correlation used in
each plot (Hausen or Sieder–Tate), the ordinate and abscissa of the plot is modified accordingly.
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For example, in Figure 11.8, the results obtained with Hausen correlation are shown by plotting
the Nu normalized according to Hausen correlation shown in Equation (2.12). Therefore, the
x-axis expresses the normalized Re as Re2/3 − 125. In Figure 11.9 where the results obtained with
Sieder–Tate correlation are shown, simply Re number remains in the x-axis, since Sieder–Tate
correlation depends on Re number as previously seen in Equation (2.11).

When using Hausen correlation on the coarse mesh (Figure 11.8a), all three turbulence models
perform similarly, with a maximum Nu number deviation of 10% from the correlation. Nu
numbers calculated for SST on the fine mesh are slightly higher than the Hausen correlation and
the Nu number calculated for the same models with the coarse mesh. The SST turbulence model
with fine mesh seems to estimate the Nu number values to be larger by roughly 7% compared to
K-ϵ and Reynold Stress (RS) and approximately 12% from the Hausen correlation. However, Nu
numbers calculated by all turbulence models have a good agreement with Nu numbers from the
experiment.

A more significant similarity is observed for Nu number calculated by CFX and the Sieder-Tate
correlation. For the coarse mesh, all three turbulence models perform alike. For the fine mesh,
Nu number calculated by the SST turbulence model is larger by roughly 8% from RS and K-ϵ
turbulence model and about 10% from the Sieder-Tate correlation.

Figure 11.8: The comparison between the Gambill & Bundy experiment, Hausen correlation and the Ansys CFX
outcome for the coarse (a) and fine mesh (b). The term Re2/3 − 125 is x-axis expressed the normalized Re according
to Hausen correlation.

The heat transfer coefficients were calculated in each case for 200 axial positions using Equa-
tion (11.2). The results obtained by CFX are shown in Figure 11.10 in comparison to the
experimental data from Gambill and Bundy. In principle, the CFX results reproduce the experi-
mental trend that the heat transfer coefficient undergoes a sharp decrease at the inlet followed
by an increase as the flow proceeds through the channel. Gambill and Bundy suggested that the
steep decrease of the heat transfer coefficient at the inlet emerged from the thermal boundary
layer development. This effect is less prominent in the CFD calculations as a result of the
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Figure 11.9: The comparison between the Gambill & Bundy experiment, the Sieder-Tate correlation and the
Ansys CFX outcome for the coarse (a) and fine mesh (b).

simplifications made at the inlet section. The discrepancy between the experiments and the
CFX simulation is expected to diminish if the heat conduction between the channel and end
blocks at the inlet is modeled. Further along the channel, the heat transfer coefficient increase is
similar for all three turbulence models for coarse and fine meshes. SST calculates higher heat
transfer coefficients in both coarse and fine meshes than K-ϵ and RS. This is expected since SST
turbulence model resolves the boundary layer better than the K-ϵ model, thus increasing the
efficiency of the heat transfer process. A similar statement can be made for the RS model used
here, since it uses the same scalable wall functions as K-ϵ (see Chapter 4.2.1).

Figure 11.10: The comparison between the heat transfer coefficients from Gambill & Bundy experiment and Ansys
CFX outcome for the coarse (a) and fine mesh (b).
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11.3.3 Conclusions

Overall, all turbulence models provide results that match the well-known empirical correlations,
such as Hausen and Sieder-Tate. The maximum difference between CFD and correlations is 10%
for Hausen. Furthermore, it was shown that the heat transfer process can be captured well with
all three turbulence models, especially at the end of the channel. The verification of CFX towards
other CFD codes is shown in [15]. The differences between CFD codes can arise on account of
different discretization methods.

Based on this analysis and previous work done by IWG, it is crucial to confirm that CFX is able
to provide computational results comparable to corresponding experimental data. Furthermore,
the comparison of CFX results to other CFD codes, such as Star-CCM+ and Comsol, gives
additional assurance on the validity of the computational methods. Therefore, it is concluded
that CFX is verified and validated and can be used as a prediction tool during further analysis.
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11.4 Cheverton-Kelley Experiments

Cheverton and Kelley [14] performed a series of experiments in the late 60s intending to evaluate
the plate stability under thermal and pressure differential conditions on the HFIR reactor during
its licensing process. The experiments were performed on a mock-up of the HFIR outer involute
fuel plate.

The HFIR core has two concentric fuel elements, where each plate is spot welded to the side
plates in 24 locations along the length of the plate. The plates in the inner cylinder have a
smaller involute radius; therefore, they are more curved than those in the outer cylinder. It
was concluded that the outer plate has a higher buckling tendency and was the subject to
investigation. Consequently, the Cheverton-Kelley experiments rely on testing the buckling
tendency of HFIR’s outer plate under temperature and pressure loads. In an involute plate-type
reactor, the temperature distribution in one plate is not uniform due to the varying power profile
dependent to where the absorber materials are located in the reactor core. Furthermore, the
possible imperfections on the involute plates can induce different pressure differentials on each
side of the plates that affect the buckling behavior. Exploring the replicability of the Cherverton-
Kelley experiments using CSM is crucial since a successful simulation of these experiments is
not only essential to the CSM code validation. Additionally, the influence of different pressure
and temperature loads on the deformation behavior of involute plates deepens the general
understanding of the mechanical behavior of involute plate-type reactors. The comprehension
of involute plate deformation and buckling can be further used during the FRM II conversion
process.

Cheverton and Kelley performed several tests with a uniform temperature load up to 316 ◦C,
uniform pressure load of 207 kPa, as well as temperature and pressure load applied simultaneously.
24 tabs were attached to each side of the plate to imitate the welding spots. Two types of tabs
with 6.35 mm and 3.175 mm width were tested. In addition to the solid base, a split base was
used in a few tests to replicate the rotating side plates of HFIR that allow for radial expansion
of the plate. A few tests were performed by substituting 2 inches on both ends of the plate with
steel to represent the unfueled regions at the HFIR plate, also called "cold" ends.

The experimental setup is shown in Figure 11.11. It includes the plate attached to a base, on top
of which a bridge with seven styluses measuring the deformation of the plate was installed. The
positions of the styluses along the involute arc length were: (1) 3.175 mm, (2) 14.605 mm, (3)
26.035 mm, (4) 37.465 mm, (5) 48.895 mm, (6) 60.325 mm, (7) 71.755 mm. The styluses are
shown in numbers in Figure 11.11b. Furthermore, the bridge was mounted on a track and could
be moved axially for more measurements. The accuracy of styluses was reported to be 0.0254 mm
[14]. In order to apply the temperature loads, the whole experimental setup was put in an oven
and brought to the desired temperature. The two short sides of the involute plate were sealed for
the pressure load, and air with the required pressure was applied to the concave side.
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In a few tests, the measured deflections fluctuated considerably. This was noticed to be stronger
in the cases where the degree of end fixation was a variable. Furthermore, imperfections on
the initial shape of the plate as well as slight changes in the shape of the plate caused by the
installation, were observed. The deviation of the subjected plate from the involute reached up
to 0.3 mm in the measured data. Three tests were performed on the plates to estimate the
uncertainty of the deflections, which resulted to a maximum difference of 11% from the mean
value [14].

11.4.1 Simulation of Cheverton–Kelley Experiments in Ansys Mechanical

In this section, the details of the simulation of Cheverton–Kelley experiments in Ansys Mechanical
are presented. First, the geometry of the model is shown in Section 11.4.1.1. Furthermore, the
material properties and boundary conditions are discussed in Sections 11.4.1.2 and 11.4.1.3. In
Section 11.4.1.4, the outcome of mesh sensitivity analysis is shown. Finally, in Section 11.4.2 the
results obtained with Ansys Mechanical are shown.

11.4.1.1 Geometry of the model

Figure 11.11: The geometry of the model in a perspective view (left) and (right) a front view of the experimental
setup. Source [16].

Figure 11.12 shows the plate geometry with the tabs. The CAD model is built in SolidWorks with
the support of a few pictures reported by Cheverton and Kelley. However, since the drawings
are not sufficient in order to understand all the details necessary to build a CAD model, simple
assumptions are made. For instance, the analysis does not include the bolts, screws, and other
attachments. The pictures depicting the experimental assembly are shown in Figure 11.11.
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Figure 11.12: Side view of the involute plate with 6.35 mm wide tabs (top) and 3.175 mm wide tabs (bottom).
Source [16].

11.4.1.2 Material Properties

Cheverton and Kelley experimented on two types of plates: a) aluminum plates with fuel and
b) pure aluminum AA-6061-T0 plates. According to their report, the difference in deformation
between the fueled and pure aluminum plates was small. Based on this statement, it was assumed
that simulating the pure aluminum plate should give a reasonable estimate of the deformations
for a "real" reactor plate [93]. For the cold ends, carbon steel was used. The base material was
varied between Monel, Invar and carbon Steel, depending on the case. Cheverton and Kelley chose
the base material based on their low thermal expansion coefficient ranging from 1.3 µm m−1 K−1

for Invar to 12.9 µm m−1 K−1 for carbon Steel. The specific values of the material properties
were not mentioned in the original Cheverton-Kelley report. It was, however mentioned that
the plate exhibited elastic behavior in most tests, with a few exceptions of plastic deformations
in a few cases. The material properties used in this study were reported by Jain et al. [94]
and Sitek et al. [93] in previous computational structural mechanics studies of the Cheverton-
Kelley experiments. The material properties are shown in Table 11.2 and correspond to room
temperature. Furthermore, an isotropic model was used for all the metals, representing the
behavior in the elastic regime.

Material

Thermal
Expansion
Coefficient

(µm m−1 K−1)

Thermal
Conductivity
(W m−1 K−1)

Density
(kg m−3)

Specific Heat
Capacity

(J kg−1 K−1)

Young’s
Modulus
(GPa)

Poisson’s
Ratio (-)

AA-6061-T0 23.26 167 2700 896 69 0.33
Carbon Steel 12.9 47.4 7850 477 203 0.29
Invar 1.3 10.15 8050 515 141 0.3
Monel 13.9 21.8 8800 427 169 0.295

Table 11.2: Material properties used in the computational models at room temperature. Provided by [94].
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11.4.1.3 Loads and Constraints

Cheverton and Kelley experimented on a broad range of parameters. For the validation of
Ansys Mechanical, 11 cases were taken into account, starting from simple setups containing
only the plate under a pressure load and continuing to more complicated cases such as the
plate mounted on a solid/split base under thermal load. These cases are chosen to simulate
a variety of loads, materials and boundary conditions that summarize the experimental work
done by Cheverton and Kelley. Cases 0-4 were performed with a pressure load, Cases 5-9 with a
thermal load and Case 10 with both loads combined. Two models are proposed to simulate the
experiments; one containing only the plate (Case 0-5), and the other one also containing the
base and the plate (Case 6-10).

Single-plate Model (Case 0-5)

It has been shown in [93] and [94] that the model with a single plate can produce accurate
deformations in the cases where no thermal load is present or the cases where the thermal load
does not induce a significant deformation of the base in addition to the plate. Furthermore, the
computational effort in the single plate model is substantially lower than in plate plus base
models, enabling the simulation of a broad range of loads quickly.

Plate and Base Model (Case 6-10)

The base material in the CK experiments varied between Invar and Monel. Both these materials
have lower thermal expansion coefficients than aluminum, allowing for a different level of constraint
on the plate under thermal load. Furthermore, the steel ends that were attached to the plate in
a few tests to simulate the unfueled regions in the HFIR plate introduce an additional constraint
to the system. The bottom surfaces of the base have been constrained in the normal direction
but are allowed to move in-plane. One edge at the middle of one end plate is fully constrained
to eliminate rigid body motion. The location of the edge was chosen to have the least possible
influence on the total deformation of the model. The base was used as a whole for two setups,
Case 6 and Case 10. For Cases 7, 8 and 9, the base was split in two parts. Under a thermal
load, the two parts of the base can move relative to each other, causing a displacement of the
tabs and deformation of the plate. The CAD models for the solid and split base are shown in
Figure 11.13a and Figure 11.13b, respectively.

The base model consists of the base (split or solid), the two top bars used for fixing the tabs, and
two end plates. The contact implementation is the following: bonded contact between the base
and the end plates, as well as the plate and the base, and no-separation contact between the
thin strips and the base. The summary of the cases and the corresponding boundary conditions
are summarized in Table 11.3.

In general, the deformations normal to the convex surface of the involute are obtained in different
lengths of the plate. For instance, the extraction line for deformations at the mid-length plate, at
the end plate and along the plate length is shown in Figure 11.14.
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(a) (b)

Figure 11.13: The geometry of the solid (a) and split (b) base. In (b) the arrow points to the slit in the base.
Source: [16]

Figure 11.14: The locations where the normal deformations are deducted. The red line refers to the mid-length
plate, the purple to the end of the plate, and the orange to the data along the length of the plate.
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Case Load Material Constraint

Ref C0

Uniform Pressure load
207 kPa applied to the
concave surface of the
involute. Aluminum plate

C1 Uniform Pressure load
207 kPa applied to the
concave surface of the
involute and the side
strips of each plate. For
each type of constraint,
the load varies from 69
kPa to 207 kPa.

C2

C3

C4

C5
Uniform temperature
load of 477 K. Initial
temperature 300 K.

Aluminum plate

C6 Aluminum plate,
solid Invar base

C7 Aluminum plate,
split Invar base

C8 Aluminum plate,
split Steel base

C9
Aluminum and
steel plate, split
Invar base

C10

Uniform temperature
load of 477 K. Initial
temperature 300 K.
Uniform pressure load
equal to 207 kPa applied
to the concave surface
of the involute and the
straight side strips
of the plate.

Aluminum plate,
solid Monel base

Table 11.3: Summary of each case simulated by Ansys Mechanical and the corresponding boundary conditions.
The constraint of each model are shown in the last column. Magenta is referred to as zero displacements, the
green as the zero normal displacements, while yellow and blue represent the bonded and compression-only contacts.
Source: [16].
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11.4.1.4 Mesh Sensitivity Analysis

A mesh sensitivity analysis was conducted to find a suitable mesh in terms of accuracy-
computational effort ratio for the plate under investigation. For this, the CAD model of the
involute plate is meshed in SpaceClaim2 with three different cell densities, shown in Table 11.4.
The plate is then uploaded into Ansys Mechanical, where a pressure load of 69 kPa is applied to
the concave side of the plate. Additionally, the tabs, as well as the short edges of the plate are
fully constrained. Three mesh densities were calculated: a coarse mesh with 2 x 50 x 400 elements,
a medium mesh with 4 x 100 x 400 elements and a fine mesh with 8 x 200 x 400 elements in
thickness, span and length, respectively. The deformations normal to the convex surface were
obtained and compared between the different mesh densities.

Mesh # Nodes Max Deformation
(mm)

Min Deformation
(mm)

Relative Change
Max (%)

Relative Change
Min (%)

Coarse 1.89 · 105 0.057 −0.019 5% 6%
Medium 6.27 · 105 0.059 −0.020 1% 1%
Fine 21.7 · 105 0.060 −0.021 ref ref

Table 11.4: Mesh sensitivity analysis with three different mesh densities.

The maximum normal deformation calculated by the fine, medium and coarse mesh is 0.06 mm,
0.057 mm and 0.057 mm. Since the relative difference in deformations between the medium and
fine mesh is small and the computational effort for the medium mesh is substantially lower than
the fine one, the medium mesh was selected for the study. Furthermore, the maximum normal
deformations calculated by all three meshes do not exceed 0.06 mm, which is an acceptable value
for a reactor. The normal deformations calculated with three different mesh densities are shown
in Figure 11.15.

Figure 11.15: Normal deformation at the plate mid-length as calculated with three different mesh densities in
Ansys Mechanical. Refurbished from source [16] to focus on the Ansys results.

2SpaceClaim is a meshing software part of Ansys product suite.
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11.4.2 Results: Pressure Load

Reference Case C0

In order to get a better understanding of the replicability of Cheverton & Kelley experiments
using Ansys Mechanical, a straightforward setup such as the involute plate without grooves nor
tabs is first simulated under pressure loads using linear and nonlinear solvers. The pressure load
of 207 kPa is applied to the concave surface of the involute plate, where the short and long edges
of the plate are constrained. The primary goal of this calculation is to assess the dependence of
the solution on the stress-displacement relationship. All the calculations were also performed
with Star-CCM+ and Comsol as part of the IWG work frame to perform a thorough verification
and validation of the used codes. This is, however, not part of the thesis; therefore no details
related to the modeling in Star-CCM+ and Comsol are provided here. The interested reader can
refer to the publication on this topic [16].

The normal deformations as shown in Figure 11.16, are extracted at an edge located at the
mid length of the plate. The coordinate system is set so that negative displacements imply that
the involute deforms towards the concave side, while positive displacement implies deformation
towards the convex side. As mentioned in Chapter 5.3.1, the nonlinear solver is usually used
in scenarios where the displacement is large compared to the smallest dimension of the body,
which in this case is the thickness. As Figure 11.16 shows, the displacement calculated by the
nonlinear solver is roughly 7 % of the plate thickness. Therefore, the upcoming calculations are
only performed with the linear solver. The difference between the linear and nonlinear solutions
is about 12.4% in Ansys Mechanical.

Figure 11.16: The normal deformation calculated by using a linear and nonlinear solver in the reference Case 0.
Refurbished from source [16] to focus on the Ansys results.
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Case 1 to Case 4

The normal deformations calculated in cases 1 through 4 are shown in Figure 11.17. In Case 1, 2
and 3, the tabs have 6.35 mm-wide tabs and the boundary conditions consist of all tabs and
side strips being fixed in Case 1, all tabs fixed in Case 2, and every other tab is fixed in Case 3.
Case 4 explores the 3.175 mm-wide tabs, where all the tabs are fixed. In all these scenarios, the
short ends of the plate are fixed and the pressure load is applied to the concave surface of the
involute in three-step loads: 69 kPa, 138 kPa and 207 kPa. The experimental deformations were
taken from sensors #2 and #5 located at 14.6 mm and 48.9 mm arc length from the generating
circle, respectively.

The normal deformations calculated by Ansys Mechanical agree very well with the experimental
results in Case 1 with an absolute deviation of 0.0016 mm at 69 kPa, 0.001 mm at 138 kPa and
0.003 mm at 207 kPa, as seen in Figure 11.17a. Once the restriction on the side strips is lifted in
Case 2, higher deformations are observed. This is conveyed well by Ansys Mechanical with a
maximum difference between the calculated values and the experiment of 0.01 mm at 69 kPa,
0.009 mm at 138 kPa and 0.04 mm at 207 kPa. These results are shown in Figure 11.17b.

When the weld between the involute plate and the side plates in the reactor core is missing or has
failed, the plate experiences an increase in deformation due to the lost constraint. This scenario
is simulated in Case 3, where only every other tab is a constraint, while the rest are free to move.
The normal deformations for Case 3 are shown in Figure 11.17c. The calculated deformation at
138 kPa is 0.038 mm smaller than the experimental result. At 207 kPa on the other hand, the
code underestimates the deformations by approximately 0.14 mm. This comes as a result of the
plate undergoing plastic deformation in the experiment. The calculations are unable to capture
this behavior since the used solvers are linear and describe the plate behavior exclusively in the
elastic regime (see Chapter 5.3).

The tabs width was reduced to 3.175 mm in Case 4 and the resulting deformations are shown in
Figure 11.17d. The involute plate experiences slightly larger normal deformations compared to
Case 2 due to the reduced tab width. The calculated deformations are in very good agreement
with the experimental data at 138 kPa, with a maximum difference of 0.01 mm.
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Figure 11.17: The normal deformation calculated at the plate’s mid-length in Case 1 (a), Case 2 (b), Case 3 (c)
and Case 4 (d). Refurbished from source [16] to focus on the Ansys results.

11.4.3 Results: Temperature Load

Case 5

The involute plate is tested under a uniform temperature of 204 ◦C where the initial temperature
was 27 ◦C in Case 5. In the Cheverton–Kelley experiments, this test is done with the plate
mounted on an Invar base. Since the thermal coefficient expansion of Invar is much lower than
aluminum’s, the base is removed from the setup. The results for Case 5 are shown in Figure 11.18.
Ansys Mechanical predicts normal deformations very close to the experimental values, with a
maximum absolute difference of 0.02 mm.
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Figure 11.18: The normal deformation at the plate mid-length calculated by Ansys Mechanical and measured in
the experiment for Case 5. Refurbished from source [16] to focus on the Ansys results.

Case 6

The plate, including the base, was used for the rest of the simulations. Cases 6 and 7 are essentially
similar to Case 5, but more complex situations in terms of the presence of the solid base (Case 6)
and split base (Case 7) in the setups. A bonded contact is applied between the tabs and the
base in both cases. A no-separation contact is applied to the side strips and the base, ultimately
limiting the movement in normal direction but allowing small in-plane sliding. The bottom
surfaces of the base are constrained in normal direction, and the middle edge of one of the end
plates is completely fixed in order to block rigid body motion. The results for Case 6 and Case 7
are shown in Figure 11.19a and Figure 11.19b, respectively. The calculated normal deformations
at the plate’s mid-length have a maximum deviation of 0.02 mm from the experimental data.
The deformations are similar at the end of the plate with a maximum difference of 0.09 mm.
Essentially, the deformation shape is well captured by Ansys Mechanical at both the middle and
end of the plate.

Case 7

The base was split in Case 7 in order to accommodate for radial expansion of the plate, which leads
to smaller deformations of the plate compared to the solid base. This can be seen in Figure 11.19b.
The shape of deflections calculated by Ansys Mechanical is similar to the experiment. The
maximum calculated normal deformations are about 0.22 mm smaller than the experimental
data at the plate mid-length and 0.09 mm smaller at the plate end.
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(a) (b)

Figure 11.19: The normal deformation calculated at the plate mid-length for Case 6 (a) and Case 7 (b). Refurbished
from source [16] to focus on the Ansys results.

Case 8

Case 8 comprises the aluminum plate installed in a split carbon steel base. Since carbon steel
has a higher thermal expansion coefficient than Invar used in Case 7, the base is expected
to deform more than in Case 7, leading to smaller deflections of the aluminum plate. These
results are depicted in Figure 11.20 for the mid-length of the plate. Ansys Mechanical is able
to reproduce well the maximum deformation behavior at the mid-length of the plate with a
maximum difference of 0.03 mm from the experimental data. The situation is slightly different
at the end of the plate, where the deflections are underestimated at the smaller arc lengths
(left), but accurately captured at higher arc lengths. The deformation shapes differ from the
experimental data. Nevertheless, Ansys Mechanical predicts results in good agreement with the
experiment, with a maximum difference in maximum deformations of 0.09 mm.

Figure 11.20: The normal deformation at the plate mid-length calculated by Ansys Mechanical and measured in
the experiment for Case 8. Refurbished from source [16] to focus on the Ansys results.
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11.4 Cheverton-Kelley Experiments

Case 9

HFIR plates have a 5 cm long unfueled section at each end, which leads to a localized abrupt
temperature change. In their experiments, Cheverton and Kelley modeled this feature by replacing
5 cm at each end of the aluminum plate with carbon steel. Since carbon steel has a lower thermal
expansion coefficient than aluminum, it would serve to approximate the response of HFIR plate
to thermal load. The model uses Invar for the base, and the same boundary conditions described
in Case 6 apply. Only the reading from sensor #5 was provided in the CK report [14]. The effect
of the carbon steel ends is depicted in Figure 11.21, where the deformation shape has changed
compared to a case without carbon steel ends, such as Case 7. The deflections have higher values,
especially at the short ends of the plate, due to the presence of cold ends. Figure 11.21 shows the
normal deformations at the mid-length. Ansys Mechanical calculates deflections 0.26 mm smaller
than the experiment at the mid-length of the plate and roughly 0.38 mm larger deflections at the
ends of the plate. This difference in deflections between the simulation and experiment could be
attributed to plastic flow. In the report published by Cheverton and Kelley [14], it is mentioned
that plastic flow may occur in the plate’s aluminum section due to aluminum’s higher thermal
conductivity.

Figure 11.21: The normal deformation at the plate mid-length calculated by Ansys Mechanical and measured in
the experiment for Case 9. Refurbished from source [16] to focus on the Ansys results.

11.4.4 Results: Pressure and Temperature Loads

An aluminum plate was installed in a solid Monel base in Case 10 and was subjected to
temperature and pressure loads. First, the temperature was increased from 27 ◦C to 204 ◦C, then
the pressure load of 207 kPa was applied. In this case, an additional boundary condition was
used; namely, the short ends of the plate were fixed. Figures 11.22a and 11.22b show the normal
deformations for the plate under thermal load and pressure plus thermal load, respectively.

Upon thermal load only, the plate mid-length deformation measured in the experiment is roughly
0.46 mm. Upon pressure application, the maximum deflections measured in the experiment
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(a) (b)

Figure 11.22: The normal deformation at the plate mid-length for Case 10 without pressure (a) and with pressure
(b). Both plots depict results at a temperature of 204 ◦C. Refurbished from source [16] to focus on the Ansys results.

increase to 0.52 mm. The deformations calculated by Ansys Mechanical are roughly 0.05 mm
larger than the experimental results for both steps (with and without pressure).

11.4.5 Conclusions

As for the single plate model, it has been found that the plate deflections are reasonably accurate
in the cases where only elastic deformation is observed in the experiments, such as Cases 1, 2, 4
and 5. The deflections calculated in these cases are much smaller compared to the coolant channel
at HFIR reactor, which has a thickness of 1.27 mm. In order to provide a further understanding
of what these values mean to an involute plate shape reactor like HFIR, the deformation of
0.025 mm (observed in Case 2, load 69 kPa) is very comparable to the oxide layer thickness
under Advanced Neutron Source (ANS) thermal-hydraulic conditions [98]. The deformation of
0.025 mm is about twice as high compared to the oxide layer thickness observed for the current
FRM II plate, as reported in [99]. Furthermore, the deflections calculated in the single plate
models are smaller overall than 1.27 mm, which corresponds the thickness of the plate. In Case 3,
where plastic deformation occurs, the magnitude of the deformation could not be replicated with
the linear elastic material models.

The plate and base models, such as Case 6 to Case 9, give a good deflection accuracy at the
middle of the plate, where the maximum deflection calculated differs by up to 0.38 mm between
the simulation and experiment. The deflection curves at the mid-length of the plate have similar
shapes and magnitudes. The end deformations are more susceptible to differences in modeling
the interaction between the plate and the base, leading to larger differences in deflections. The
average offset between the experiment and computational results considering all the cases is below
30%, which is completely justified and expected considering that a crucial part of the modeling,
such as the CAD model was done based on a few drawings and assumptions. Furthermore, the
experimental imperfections such as the reported non-ideal initial shape of the plate in the tests
or the possible oversimplification in the modeling approach, may have an influence.
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11.4 Cheverton-Kelley Experiments

Additionally, an important point to mention is that even though Cheverton and Kelley’s exper-
iments measured rather large deformations compared to the channel thickness of an involute
reactor (almost 50 % in the case of FRM II), these experiments aimed to evaluate the plate’s
buckling trend under non-standard operating conditions. Thus, it can be concluded that An-
sys Mechanical is able to express the plate behavior in different scenarios, the non-conventional
ones included. The code-to-code comparison also shows a good agreement. The interested reader
can refer to [16] for more details.

The first goal of calculating the Cheverton-Kelley experiments by using CSM codes such as
Ansys Mechanical, Comsol and Star-CCM+ is to validate and verify these codes against experi-
mental data and each other. Secondly, and more importantly, the objective of these calculations
is to be able to use these codes for prediction purposes for other rector-related scenarios in the
near future such as the LEU conversion scenarios. This successful V&V leads the way to use
these codes as prediction tools. Therefore, the overall modeling results of the Cheverton-Kelley
experiments have substantial predictive capabilities.
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12 Neutronic – Hydraulics Coupling Results

CHAPTER12
Neutronic – Hydraulics Coupling Results

Based on the verification and validation of Ansys CFX (CFX) using the Gambill–Bundy ex-
periments in Chapter 11.3, CFX is used further for the calculation of the thermal-hydraulic
parameters of the current Highly-Enriched Uranium (HEU) core and the potential Low Enriched
Uranium (LEU) core. All calculations are performed under nominal conditions at beginning
of life (BOL). Serpent 2-CFX coupling for the HEU core is verified by using the previously
performed coupling between MCNP and CFX as a verification source. The small differences
observed between the two different coupling frameworks are related to the fact that these studies
are performed at different times, roughly 10 years apart. The capabilities of modeling approaches
have expanded significantly in the past years. Therefore, the differences between the MCNP-CFX
and Serpent 2-CFX coupling can be attributed to newer code versions being available at present.

The thermal-hydraulic behavior of a potential LEU core is assessed and based on these calculations,
the LEU core is deemed scientifically feasible. The results for the current HEU core, a scientifically
possible LEU core, as well as the comparison of fundamental thermal-hydraulic quantities between
the two cores are not included in the public version of this thesis. The rationale for this is based
on the sensitive nature of the results and their role for the FRM II conversion and licensing
process.
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13 Thermal-Fluid-Structure Interaction (TFSI) Coupling Results

CHAPTER13
Thermal-Fluid-Structure Interaction

(TFSI) Coupling Results

In this chapter, the results obtained with the sequential and direct Thermal-Fluid-Structure
Interaction (TFSI) coupling for the current Highly-Enriched Uranium (HEU) core and the
potential Low Enriched Uranium (LEU) core are discussed. First, the sequential coupling results
is performed. Then, the direct coupling and a comparison between the two different couplings is
carried out.

All calculations are performed under nominal conditions at beginning of life (BOL). Similarity is
observed for the deformation magnitudes calculated for the HEU and LEU plates, which means
that the potential LEU core will not present larger deformations than the current one. Additionally,
the plate deformations obtained by the sequential and direct couplings are comparable to each
other. This indicates the deformations undergone by the plate under nominal conditions do not
affect the coolant flow and vice-versa. Therefore, under such conditions, the sequential coupling
is sufficient in capturing the physics at play. Additionally, the influence of the combs on the
plate’s deformation is assessed. It is concluded that the combs do not play a significant role in
the deformations; however, this is not a complete conclusion, since further calculations including
vibration studies are needed to fully evaluate the combs’ importance on the plate’s mechanical
stability.

The detailed TFSI results are not included in the public version of this dissertation, as they
contain sensitive information to the reactor safety and thus cannot be publicly available.
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CHAPTER14
Station Blackout Scenario

In this chapter, the previously settled couplings in Chapter 12 and Chapter 13, are used to assess
the plate’s behavior under an incident scenario, which is a station blackout leading to failure of
primary pumps and reactor SCRAM1.

The station blackout, followed by the reactor SCRAM is assessed in a time-dependent simulation
for the current Highly-Enriched Uranium (HEU) plate. The mass flow and the power were
simultaneously decreased for 200 s after the pump failure detection. The resulting pressure,
temperature, heat flux and plate deformations are shown. Based on these results, it is concluded
that, no pulsating boiling will occur at the plate vicinity, since the calculated heat fluxes are below
the measured critical heat flux shown in the licensing reports of Forschungs-Neutronenquelle
Heinz Maier-Leibnitz (FRM II) [101–103]. However, to fully assess the failure of primary pumps
scenario, the simulation would have to include both fluid and vapor phases, which was not
possible at the present time frame of this work. Assuming that pulsating pressures do occur
at the plate surface, their influence on the plate mechanical stability is assessed in a separate
calculation. Based on the obtained deformations and stress values, the pulsating pressure of
0.8 bar does not impair the plates mechanical integrity.

The detailed results concerning this chapter are not included in the public version of this
dissertation, as they contain sensitive information to the reactor safety and thus cannot be
publicly available.

1SCRAM is a term used internationally for reactor emergency shutdown. The term SCRAM is believed to
originate from Enrico Fermi who built the first nuclear reactor (also known as Chicago Pile 1). This reactor had a
control rod tied to a rope , and a human standing next to it ready to cut the rope upon command. SCRAM was
defined as "Safety Control Rods Activation Mechanism" [100].
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CHAPTER15
Summary and Conclusion

The primary objective of this thesis was to develop a coupled system of codes that accounts for
the thermal-hydraulic and thermal-mechanic behaviors of the current Forschungs-Neutronenquelle
Heinz Maier-Leibnitz (FRM II) Highly-Enriched Uranium (HEU) plate. Furthermore, the appli-
cation of the coupled system as a prediction tool for a potential Low Enriched Uranium (LEU)
core constitutes a complimentary objective, but important nonetheless.

The first step was the verification and validation of Computational Fluid Dynamics (CFD) and
Computational Structural Mechanics (CSM) codes by using experimental data collected by
researchers in the early 60s during the High-Flux Research Reactor (HFIR) licensing program,
Gambill–Bundy and Cheverton–Kelley experiments [13, 14]. Gambill-Bundy experiments aimed at
assessing the heat transfer parameters of a heated thin rectangular channel that is representative
of HFIR conditions [13]. Cheverton-Kelley experiments were performed to estimate the pressure-
and -temperature induced buckling tendencies of the HFIR outer plate [14]. Considering that
the concept and design of FRM II originates from High Flux Isotope Reactor (HFIR), these
experiments can be used, by extension, to represent the thermal hydraulic and mechanical
conditions of FRM II. Consequently, the Gambill–Bundy and Cheverton–Kelley experiments
were simulated using Ansys CFX for the thermal-hydraulics (see Chapter 11.3) and Ansys
Mechanical for thermal-mechanics (see Chapter 11.4). Furthermore, the obtained results were
validated against the experimental data and verified with two other similar codes within the
frame work of Involute Working Group (IWG) [15, 16][38][96]. The successful verification and
validation (V&V) of the CFD and CSM codes builds credibility in the methods and leads the
way to using these codes for prediction purposes in the LEU conversion scenarios.

Further analysis of the current FRM II HEU plate was performed by using a coupling between
the neutronic Monte Carlo code Serpent 2 and the previously validated and verified code, Ansys
CFX (see Chapter 12). The Serpent 2-Ansys CFX (CFX) coupling was verified by using the
FRM II licensing documents and the previously done coupling between MCNP and CFX as
verification bases. The results obtained with the Serpent 2-CFX coupling agree well with the
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calculated and measured values shown in the licensing reports [5], and the previous work on
the HEU plate done with different codes [12]. In the few cases where the results show larger
deviations from the verification sources, the differences can be explained based on the different
boundary conditions of the system. The boundary conditions used here are justified by data
provided by the licensing documents.

The next step consisted of using the newly coupled system between hydraulic and mechanics to
calculate deformations and stresses for the current HEU plate. This assessment was performed
two-fold: in a sequential thermal-fluid-structure interaction (TFSI) coupling and a direct TFSI
coupling (see Chapter 13). The sequential Thermal-Fluid-Structure Interaction (TFSI) coupling
implies that the thermal-hydraulic loads calculated by the Serpent 2–CFX coupling are used as
boundary conditions for the simulation performed in Ansys Mechanical, the goal of which is
determining the influence of temperature and pressure on the plate deformation. In contrast,
the direct TFSI coupling relies on continuous exchange of information between CFX and Ansys
Mechanical, i.e. the deformation caused by thermal expansion in the plate in Ansys Mechanical
is transferred to CFX where the deformation’s effect on the velocity is calculated. Consecutively,
the modified flow field variables such as pressure are sent back to Ansys Mechanical. This loop
continues based on the convergence criteria. Both coupling approaches are applied to the HEU
plate. The deformations obtained with the sequential and direct couplings agree well with each
other with a maximum deviation of 10 µm, which is an indication that the deformations undergone
by the plate are small, and therefore, do not have an impact on the flow field.

An additional point of interest was the assessment of the combs’ influence on the thermal-
hydraulic and mechanical parameters. It is seen that the bottom comb plays a modest role in the
heat transfer parameters of the HEU plate in the sense that it creates turbulence that aids the
convective heat transfer. From a mechanical deformation point of view, it appears that the role
of the comb is minor. However, these calculations are not conclusive in this regard as additional
calculations assessing the combs influence on the plate vibrations are necessary (see Section 15.1.)

The above-mentioned Serpent 2-CFX coupling and thermal-fluid-structure interaction (TFSI)
couplings are used to assess and predict the thermal-hydraulic and thermal-mechanic behavior of
a potential LEU core design for the conversion of FRM II. A potential LEU core design is briefly
described in Chapter 1.3. It is crucial to point out that the potential LEU core discussed in this
work originates from an extensive down-selection process, the details of which are described in [3].
A comparison is made between the two cores in terms of velocities, pressure, heat fluxes and
temperatures. Some of the geometrical and material differences between the current HEU and
potential LEU plate are responsible for the differences in velocities, pressure and temperatures.
However, these differences are understood and justified. Therefore, the potential LEU core
appears scientifically feasible.

Finally, in Chapter 14, the successfully developed coupled system was used to assess the station
blackout scenario for the current FRM II HEU core in which all the primary pumps fail and the
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core is scrammed. The results indicate that no pulsating boiling will occur as the calculated heat
flux is smaller than the experimentally determined critical heat flux which sets the limit for the
onset of pulsating boiling. Furthermore, assuming that pulsated boiling does occur, the influence
of the pulsating pressure on the plate’s mechanical integrity is determined to be minor.

15.1 Outlook

The road to the conversion of FRM II to LEU has many aspects to be considered. Further work is
expected to include an optimized LEU core and a detailed assessment of the mechanical aspects
such as stresses and vibrations undergone by the LEU plate. Furthermore, special attention will
be paid to the multiphase flow analysis of the coolant. Such calculations are expected to include
thermal phase change of the water into vapor by using boiling models in CFX.

15.2 Conclusion

The developed coupling between Serpent 2, Ansys CFX and Ansys Mechanical is a state-of-the-art
solution that can be used for the FRM II conversion program for the years to come. This coupling
includes commercial codes that are widely used not only in the nuclear community, but also in
broader research topics including turbulence and multiphase modeling. It is thereupon believed
that these couplings will facilitate the conversion program of FRM II by shedding light into the
many aspects that the LEU conversion encompasses.
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Velocity Profile Calculations Using the
Sieve

A top view of the sieve that is located upstream of the fuel element in the central channel is
shown in Figure A.1. To obtain a developed velocity profile for the inlet boundary condition of
the fuel plate, a calculation of the sieve is required. Since the sieve has a repetitive structure,
a quarter of it together with the surrounding water domain was modeled in SolidWorks and
then meshed. A picture of the computer-aided design (CAD) model from SolidWorks and the
corresponding mesh are shown in Figure A.2. A more detailed view of the mesh is shown in
Figure A.3

Figure A.1: Top view of the sieve that is located upstream of the fuel element.

Since no heat is present upstream of the central channel, the calculation is isothermal with a
stable temperature of 37 ◦C. The boundary conditions include an inlet mass flow of 68.625 kg s−1,
which correspond to a fourth of the total mass flow. The static pressure of 7.5 bar which is the
calculated pressure for the inlet of the fuel plate was set as the outlet boundary condition.
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Figure A.2: CAD model and mesh of a quarter of the sieve are shown at the top and bottom of the figure,
respectively.

Figure A.3: A more detailed mesh of the sieve and the surrounding water domain is shown.
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Temperature Dependent Material
Properties

The specific heat capacity of U3Si2, aluminum and fuel is shown in Figure A.4 according to the
formulas stated in [82].

Figure A.4: Temperature dependent specific heat capacity for U3Si2, aluminum and fuel.
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Material Properties Sensitivity

To analyze more closely the influence of the material properties on the deformations in the
Highly-Enriched Uranium (HEU) plate, the statistical uncertainty on the material properties
measured by the Impulse Excitation Technique in Chapter 9.1.6 is used. Young’s modulus is
varied within the statistical uncertainty while keeping a constant Poisson ratio of 0.3. Then,
different values of the Poisson ratio are used to determine its influence on the maximum total
deformation. The results are shown in Figure A.5.

As expected, an increase in Poisson’s ratio leads to an increase in the deformation, while a
decrease in the elasticity modulus decreases the deformation.

Figure A.5: Dependence of the maximum total deformation upon Young’s modulus and Poisson’s ratio.

The deformation results differ by 0.034 % from Young’s modulus value used in the calculations.
Applying Poisson’s ratio range of 0.2-0.35 spreads the deformation values by a maximum of
1.78 %. Therefore, it is concluded that the statistical uncertainty of the material properties is
entirely negligible. Furthermore, the independence of the deformation on Poisson’s ratio assures
that keeping a constant value for Poisson’s ratio in the Impulse Excitation Technique (IET)
formulas is Chapter 8 is a well-founded assumption.
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List of Abbreviations

FRM II Forschungs-Neutronenquelle Heinz Maier-Leibnitz

TUM Technische Universität München

ORNL Oak Ridge National Laboratory

Argonne Argonne National Laboratory

ILL Institute Laue Langevin

HFIR High Flux Isotope Reactor

RHF High Flux Reactor

CAD computer-aided design

CFD Computational Fluid Dynamics

CSM Computational Structural Mechanics

CFX Ansys CFX

RANS Reynolds-Averaged Navier-Stokes

HEU Highly-Enriched Uranium
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LEU Low Enriched Uranium

ONB Onset of Nucleate Boiling

DNB Departure from Nucleate Boiling

CHF Critical Heat Flux

SST Shear Stress Transport

RS Reynold Stress

IWG Involute Working Group

1D one-dimensional

FSI Fluid-Structure Interaction

GUI Graphical User Interface

PDE Partial Differential Equation

Re Reynolds number

Nu Nusselt number

Pr Prandtl number

3D three-dimensional

FEM Finite Element Method
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FVM Finite Volume Method

FDM Finite Difference Method

IET Impulse Excitation Technique

TFSI Thermal-Fluid-Structure Interaction

IAEA International Atomic Energy Agency
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List of Symbols

Symbol Unit Meaning
a m s−2 thermal diffusivity
A cm2 area
∆B - modification of wall functions for rough walls
C varying used for constants
cp J kg−1 K−1 specific heat capacity at constant pressure
dh m hydraulic diameter
dM m momentum boundary layer
dT m thermal boundary layer
D Pa elasticity matrix
D W m K−1 thermal conductivity matrix
e m2 s−2 internal energy per unit mass
E J energy
E Pa Young’s modulus
F N force
G Pa bulk modulus
h W m−2 K−1 heat transfer coefficient
h mm sand grain roughness
I % turbulence intensity
k W m K−1 thermal conductivity
K m2 s−2 turbulence kinetic energy per unit mass
K N m−1 stiffness matrix
n - normal vector
Nu - Nusselt number
p Pa or bar pressure
Pr - Prandtl number
Q J m−1 s−3 energy per unit volume and unit time
q W cm−2 heat flux
...
q W cm−1 heat generation rate per unit volume
Re - Reynolds number
T ◦C temperature
T + - dimensionless temperature
t s time
u+ - dimensionless velocity
uτ m s−1 shear or friction velocity
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u∗ - dimensionless velocity (updated scale for scalable wall functions)
u m displacement
v m s−1 velocity
V cm volume
W J work
y+ - dimensionless wall distance
y∗ - dimensionless wall distance (updated scale for scalable wall functions)
α K−1 Secant coefficient of thermal expansion
ϵ mm mm−1 strain
ϵ m2 s−1 turbulence dissipation rate
κ - von Karman constant
λ Pa s bulk viscosity
µ Pa s dynamic viscosity
µt Pa s turbulence viscosity
ν m s−2 kinematic viscosity
ν m s−2 momentum diffusivity
ν - Poisson’s ratio
ω s−1 turbulence frequency
ρ kg m−1 density
σ Pa stress tensor
τ Pa viscous stress tensor
τw Pa s wall shear stress
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