
TECHNISCHE UNIVERSITÄT MÜNCHEN
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Prüfer*innen der Dissertation: 1. Prof. Dimitrios Karampinos, Ph.D.

2. Prof. Dr. Julia Herzen

3. Prof. Karin Shmueli, Ph.D.

Die Dissertation wurde am 09.05.2023 bei der Technischen Universität München

eingereicht und durch die Fakultät für Medizin am 30.09.2023 angenommen.





Abstract

Quantitative susceptibility mapping (QSM) estimates the magnetic susceptibility of

tissue and constitutes an unique contrast in magnetic resonance imaging (MRI). The

field of QSM has seen a surge of research attention and focus since the early 2010s, with

an ever-growing number of studies being conducted. QSM has been applied mainly in the

brain to investigate physiology, pathology, and function. Specifically, QSM has been used

to measure blood oxygen saturation, to quantify iron deposition in multiple sclerosis, to

detect cerebral microbleeds, to measure iron accumulation in demyelinating disease, to

distinguish intracranial calcifications from hemorrhages and many more. However, QSM

is also of high interest for applications outside the brain, which has traditionally been

an under-explored area of research. Nevertheless, a few studies have been performed

proposing QSM for the quantification of hepatic iron overload, the visualization of

prostatic calcifications, the assessment of bone mineral density (BMD), the measurement

of heart chamber oxygenation, the detection of hemosiderin deposition in hemophilic

arthropathy, the measurement of placental oxygenation, the characterization liver

fibrosis, the assessment of renal tissue microstructure, the assessment of cartilage

degeneration and calcium changes in the fetal spine.

The majority of existing applications for QSM in the body have been explored using

methodologies originally developed for brain studies. Directly adopting these approaches

for body regions may result in inaccurate susceptibility estimations, as some methods,

such as the widely used Laplacian Boundary Value (LBV) technique for background field

removal, contravene inherent assumptions when applied outside the brain. Moreover, an

accurate field map is sometimes simply not available. As a result, the primary objective

of this thesis is to devise and implement technical methodologies explicitly designed for

QSM applications within the body, while validating these proposed techniques through

in silico and in vivo assessments.

The present cumulative thesis bundles five journal publications in the field of body

QSM aiming i) to show that accurate field-mapping is an essential prerequisite to

estimate accurate local susceptibility, ii) to use advanced QSM reconstruction algorithm

to reliably remove susceptibility induced phase changes, iii) to develop advanced body
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QSM reconstruction algorithms to allow robust QSM in the presence of multiple chemical

species (water, fat, and silicone) for the first time, and iv) to develop a new acquisition

methodology that allows for substantially faster acquisitions of QSM images in the

body.

In the first journal publication, a graph-cut based optimization algorithm was devel-

oped for the estimation of high-resolution field maps. Traditionally, the field map has

often been regarded as a secondary parameter, and the performance of the algorithms

has largely been assessed with respect to the accuracy of the water- and fat-separated

images or the estimation of a proton density fat fraction (PDFF). Since the field map

parameter was of limited interest, extensive smoothing was frequently applied to achieve

more robust water/fat separation results. However, this smoothing of the field map

significantly constrained the estimation of susceptibility, as values at interfaces of differ-

ent tissue types largely determine the bulk susceptibility of the tissue. The proposed

methodology was examined through simulations and in vivo scans and was found to

produce non-wrapped, non-smoothed high-resolution field maps in a reduced processing

time. Susceptibility maps based on the field maps obtained using the proposed method

demonstrated a significant increase in both accuracy and precision.

The second journal publication proposes the use of an specifically tailored QSM

algorithm to estimate and remove susceptibility-induced phase changes in double-echo

gradient-echo magnetic resonance (MR) thermometry measurements. The proton

resonance frequency shift (PRFS) of water with temperature allows for the volumetric

estimation of temperature changes. This can be of high value in mild hyperthermia

assisted chemotherapy or high intensity focused ultrasound (HIFU) ablation treatments.

However, the phase is often dominated by susceptibility artifacts from the movement of

air between shots and can be a few orders of magnitude larger than the temperature-

induced phase shift. The proposed method showed significantly improved accuracy and

precision over conventional B0-drift corrected temperature maps or temperature maps

corrected by previously proposed methods for susceptibility-induced phase removal.

In the third journal publication, a novel dipole inversion algorithm was proposed,

designed to estimate susceptibility directly from complex multi-echo gradient-echo

data in regions where both water and fat coexist. As the multi-echo data contain

Gaussian noise, the negative log-likelihood of the probability density function takes

the well-known form ||y − Ax||22, where y represents the measurements, A denotes the

forward model, and x signifies the parameter of interest. Due to the accurate noise

modeling, the proposed method exhibited reduced noise amplification in silico and in

vivo compared to previously proposed methods. Moreover, this approach inherently
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eliminates the need for heuristic modeling of input data accuracy, which is commonly

performed in most dipole inversion methods. In a small patient study, QSM maps based

on the proposed method successfully differentiated between osteolytic and osteoblastic

bone metastases, corroborating the findings of reference computed tomography (CT)

images.

In the fourth journal publication, effective multipeak in-phase echo times were

devised for the simplified acquisition of QSM maps in water/fat regions. This novel

methodology suggested utilizing meticulously chosen echo times to eliminate the phase

contributions of fat. The derived echo times allow for the reduction of acquired echoes

and enabled a more streamlined and accelerated field map estimation. Through a

simulation, a phantom study, and in vivo examinations across various anatomies, the

proposed methodology demonstrated quantitative performance equivalent to water/fat

separation-based techniques, while offering a considerably faster approach.

In the fifth journal publication, a preconditioned total field dipole inversion algorithm

was proposed for the direct estimation of susceptibility from complex multi-echo gradient-

echo data in the breast, accounting for the presence of water, fat, and silicone. This

method expands upon the approach presented in the second journal publication to

accommodate three chemical species. However, addressing the chemical shift of silicone

is not the sole challenge; the substantial susceptibility difference compared to breast

tissue must also be considered. Firstly, silicone implants are utilized to enhance the

problem’s conditioning when present. Secondly, the spatial homogeneity of the silicone

implant is exploited by incorporating a regularization term that enforces uniform

susceptibility within the silicone. The proposed method results in significantly reduced

quantitative and qualitative errors in both in silico and in vivo evaluations.
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1 Introduction

Tomographic imaging is an integral part of modern medicine as it allows for the

non-invasive assessment of pathologies that don’t have manifestations that are readily

apparent on a clinical exam. Among others, magnetic resonance imaging (MRI) is one of

these techniques. MRI is especially known for its high soft tissue contrast in comparison

to X-ray based methodolgies such as computed tomography (CT). Conventionally, MRI

has been used as qualitative imaging modality, where pixel values have no intrinsic

value but are assessed visually by relative differences between different tissue types.

MRI not only features an outstanding soft tissue contrast, but furthermore allows to

yield an abundance of different tissue contrasts. MRI is the only imaging methodology,

where the measured signal is emitted by the tissue itself. This allows to design a

plethora of different imaging experiments that yield the different contrasts, including

but not limited to T1- and T2-weighted imaging, diffusion-weighted imaging (DWI)

[1], perfusion-weighted imaging (PWI) [2], susceptibility-weighted imaging (SWI) [3–5],

functional MRI (fMRI) [6], magnetic resonance spectroscopy (MRS) [7], magnetic

resonance elastography (MRE) [8, 9], chemical exchange saturation transfer (CEST)

[10, 11] or magnetization transfer imaging (MT) [12].

In recent years there have been significant efforts to develop so-called quantitative

magnetic resonance imaging (qMRI) techniques. Rather than obtaining qualitative

contrast, qMRI techniques aim for the measurement of quantitative parameters that

are independent of hardware, software, pulse sequences or other experimental factors.

The pixel value of a quantitative parameter itself is aimed to be conclusive whether or

not the imaged tissue is healthy or if there are any pathological changes.

The magnetic susceptibility is such a quantitative parameter and represents a funda-

mental physical tissue property. Quantitative susceptibility mapping (QSM) techniques

aim to estimate the magnetic susceptibility [13, 14]. This can be achieved by performing

multi-echo gradient-echo experiments where the phase contains two main components.

Firstly, the chemical shift induced phase changes of hydrogen containing bonds other

then water, for example fat or silicone in silicone breast implants. Secondly, the

susceptibility-induced phase changes. While the first effect is a local effect due to the
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1 Introduction

polarization of electron clouds in different components, the susceptibility-induced phase

is a non-local distortion of the main magnetic field. Most QSM methods estimate

the mean bulk susceptibility of a voxel. However, there have also been efforts to

estimate paramagnetic and diamagnetic sources independently [15–18]. QSM has one

intrinsic characteristic that sets it apart from most other MR contrasts. Due to the

non-local nature of susceptibility-induced phase changes in the imaging experiment,

QSM can even approximate susceptibility values of MR invisible structures such as air,

or materials with a very short relaxation time such as calcified structures. Calcified

structures are of particular interest for medical MR applications as they constitute

the main component of bony structures. The skeletal system can hardly be imaged

with conventional relaxation-based MR techniques due to the short relaxation time.

Therefore, the skeletal system is mainly imaged using X-ray based techniques. In

contrast to MR, X-ray is an ionizing radiation delivering immediate damage to the

tissue it passes through. For repeated examinations such as screening for breast cancer

or for young patients, which are more susceptible to ionizing radiation, an X-ray free

methodology would be desirable. QSM constitutes such a MR-based contrast that

might allow the assessment of calcified structures.

Early works have indicated the value of QSM for body applications [14]. However,

body QSM is challenging due to various reasons, including i) the presence of different

materials such as fat and silicone and their corresponding chemical shift, ii) the strong

susceptibility difference between different tissue types such as muscle, adipose tissue

and bone, iii) frequently the very short relaxation time of tissue of interest such as of

bone or other calcifications or iv) low SNR due to the large distance of the tissue from

the imaging coils. Furthermore, QSM methods were predominantly developed for brain

applications, where the challenges are different, and have been applied directly to body

regions meanwhile sometimes violating their intrinsic assumptions. Therefore, there is

a need for general purpose body QSM methodologies to alleviate artifacts that can be

introduced by the challenging conditions introduced above.

1.1 Thesis Purpose

To obtain susceptibility maps from multi-echo data-echo data four major steps have

to be performed including i) the estimation of the susceptibility induced B0 field

inhomogeneities, ii) unwrapping of the obtained inhomogeneity map, iii) the background

field removal, and iv) the field-to-susceptibility inversion. Only a few studies have

attempted to develop tailored methods for body applications ([19], steps 1 and 2)
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and primarily for the dipole inversion step in liver applications [20–22]. Nevertheless,

considering the broad spectrum of potential applications—including visualizing calcified

structures like breast, aortic, or prostatic calcifications; measuring liver iron overload;

assessing blood oxygenation levels in the heart or placenta; and ultimately estimating

bone mineral density as a biomarker for fracture risk—it is desirable to develop methods

tailored to the QSM technology stack. Previous results indicate that accuracy and

precision must be substantially improved, particularly for the quantitative evaluation

of bone health [23–25]. A comprehensive visual representation of the (body) QSM

pipeline can be found in Figure 1.1, which also highlights the specific stages where each

publication within this cumulative thesis makes its contributions.

Consequently, the objective of this work is to develop advanced algorithms to en-

hance the accuracy and precision of body QSM to foster clinical applicability of the

susceptibility contrast. Furthermore, the work aims to develop optimized acquisition

methodologies that allow for faster acquisition of data for body QSM.

3
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Figure 1.1: An illustrative depiction of the (body) QSM technology stack is presented.
Initially, a multi-echo gradient-echo sequence is executed to acquire complex
images at various echo times. Subsequently, the B0 field inhomogeneities
must be assessed by estimating all pertinent model parameters, such as
water, fat, R∗2, and the field map. Following this step, the background field
is removed from the total field map. Ultimately, the internal field map
is inverted to generate a susceptibility map. In the accompanying figure,
the individual journal publications of this cumulative thesis are denoted
as JP-I through JP-V, indicating the corresponding processing steps. JP-
IV is omitted, as it pertains to optimizing the data acquisition step for
accelerated acquisition. However, this method precludes the estimation of
water, fat, and allows to estimate R∗2 only under specific circumstances, and
thus represents an alternative pipeline.
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1.2 Thesis Structure

The present cumulative thesis is structured in the three following parts. In chapter 2, a

brief introduction into the theoretical background for body QSM is given. In chapter 3

the comprised journal publications are presented. Chapter 4 of the work provides a

context of the cumulative thesis with respect to the literature, analyzing the results,

and suggesting potential avenues for future research.
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2 Quantitative Susceptibility Mapping

in the Body

In order to extract susceptibility information, multi-echo gradient echo (mGRE) images

must be acquired. The mGRE protocol is a versatile MR experiment that has been

employed to obtain various quantitative MR contrasts, such as chemical shift encoding-

based water-fat separation and corresponding parameters like proton density fat fraction

(PDFF) [26] or proton density silicone fraction (PDSF) [27]. Additionally, it has

been utilized for myelin water imaging [28], metabolite imaging [29], and fatty acid

composition imaging [30].

The complex voxel signal evolution in an mGRE experiment at echo time tn can be

described as [31]

sn =
P∑

m=1

ρme
iφme(iωm−rm)tn , (2.1)

where P represents the number of chemical species in the voxel, each with a corresponding

magnitude ρm, phase at t = 0 given by φm, resonance frequency ωm, and transverse

relaxation rate rm.

To derive susceptibility maps from mGRE data, four key steps must be performed,

comprising i) estimation of the B0 field inhomogeneities induced by susceptibility

(field-mapping), ii) unwrapping of the resulting inhomogeneity map, iii) removal of

the background field, and iv) inversion of the field-to-susceptibility relationship, as

described in detail below.

2.1 Field-mapping

2.1.1 The water–fat signal model

In body regions, fat is the most prevalent chemical species and is composed of various

types, each exhibiting a distinctive chemical shift and an anatomic specific composition

[32–34]. Most body tissue types contain water and fat, where fat itself exhibits 9
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individual resonance frequencies. Based on Equation 2.1, the total number of free

parameters per chemical species is four, resulting in 40 parameters when 10 spectral

peaks (9 fat and water) are present. That would require a minimum of 20 complex

echo images acquired at different time points to estimate the 40 free parameters.

However, MRI acquisitions are notoursely slow, especially when compared to X-ray

based techniques. For example a scan of the breast with an FOV of 220×382×192.4mm3,

an isotropic voxel size of 1.3mm and 6 echo times results in a scan time of over 25 min

when no acceleration is used. 25 min are already a clinically infeasible long scan time,

especially considering the limited spatial resolution. For a 20 echo acquisition the

same scan would take well above 1hr. However, assuming the resonance frequency of

water to be fB = ω1, a priori known fat spectrum obtained from MR spectroscopy such

that ρme
φp = ρFap=m−1, ωm = fB −∆ωp=m−1, and a shared transverse relaxation rate

R∗2 = rm and assign ρW = ρ1e
iφ1 and ρFap = ρ2e

iφ2 , the signal evolution simplifies to

the well-established single-R∗2 water–fat signal model [35]:

s(tn) = (ρW + cnρF ) eγtn , γ = i2πfB −R∗2 (2.2)

cn =
P∑
p=1

ape
i2π∆fptn , with

P∑
p=1

ap = 1,

where the parameters are better known as, ρW and ρF as the complex signal of the water

and fat components and fB as the field map. The fat spectrum with P spectral peaks

with corresponding relative amplitudes ap and chemical shift ∆fp. In this formulation,

the amount of free parameters is reduced to 6 and is independent of the fat model. As

a result, the number of required echo times is reduced to 3 and the field map parameter

fB predominantly exhibits the susceptibility-induced phase contributions. In Figure 2.1

the individual recorded echo time magnitude images and parameters of Equation 2.2

are illustrated for the above 6 echo breast scan.

To obtain the parameters, Equation 2.2 can be rewritten into its matrix representation

s =


eγt1 eγt1

∑P
p=1 ape

i2π(∆fp)t1

...
...

eγtn eγtn
∑P

p=1 ape
i2π(∆fp)tn


︸ ︷︷ ︸

A(γ)

[
ρW

ρF

]
︸ ︷︷ ︸
ρ

, (2.3)

8



2 Quantitative Susceptibility Mapping in the Body

and the least-squares parameter estimation can hence be formulated as

{ρW, ρF, fB, R
∗
2} = arg min

ρ′,γ′
||A(γ′)ρ′ − ŝ||22 , (2.4)

where ŝ are the acquired complex echo data.

2.1.2 Field map estimation

The above cost function can be solved using gradient descent methods [31, 36]. However,

this only yields accurate results in the case of reasonably small field map variations.

When field inhomogeneities are large, the estimated parameters are susceptible to

artifacts, particularly water-fat swaps. These swaps lead to errors in the field map

parameter and incorrectly assign energy between ρW and ρF . Therefore, the accurate

estimation of field maps is crucial for obtaining reliable parameter estimates.

To reformulate the problem as a field map estimation problem and to reveal the

whole residual space in dependence on the field map parameter, Variable Projection

(VARPRO) can be used to substitute the linear parameters by [37]

ρ = A+(γfB = i2πfB)s, (2.5)

where A+(γfB) is the Moore-Penrose pseudo-inverse of A(γfB) and R∗2 was neglected

for the field map estimation as both parameters are sufficiently uncorrelated [38]. This

results in the following field map only dependent least-squares VARPRO formulation of

Equation 2.4

fB = arg min
γfB

∣∣∣∣(I−A(γfB)A+(γfB)
)

ŝ
∣∣∣∣2

2
. (2.6)

This minimization problem can efficiently be solved by rewriting A+(γfB) = Λ(γfB)Φ,

where

Λ(γfB) = diag
[
eγt1 , · · · , eγtn

]
, Φ(γfB) =


1
∑P

p=1 ape
i2π(∆fp)t1

...
...

1
∑P

p=1 ape
i2π(∆fp)tn

 . (2.7)

The pseudo-inverse can subsequently be rewritten to A+(γfB) = Φ+Λ(−γfB), consider-

ing that Λ−1(γfB) = Λ(−γfB). In this formulation, only one pseudo-inverse has to be

calculated for the whole field map range as it is not dependent on it. Hence, equation

2.6 can efficiently be solved using search methods and parallel programming techniques

9



2 Quantitative Susceptibility Mapping in the Body

[27, 37].

Although the VARPRO formulation allows for the estimation of the global voxel-wise

minimum, this method shows problems in voxels which are predominantly water or

fat or voxels with low SNR. Both cases exhibit two dominant minima with similar

values, and determining the absolute minimum strongly depends on the noise. To

overcome the problems of voxel wise parameter estimation, different approaches such

as region-growing and global problem formulations have been proposed. Methods that

incorporate a neighborhood regularization term, which enforces spatial smoothness on

the field map, have been particularly successful [38–40]

fB = arg min
γfB

∑
r

∣∣∣∣(I−A(γfB)A+(γfB)
)

ŝ
∣∣∣∣2

2
+ λ

∑
r′∈N (r)

w(r)

i2π
|γfB(r)− γfB(r′)|2

 ,
(2.8)

where N (r) contains the neighbouring voxels at position r, λ is the regularization

parameter balancing data consistency and regularization term, and w(r) ∈ [0,1] is

a voxel-wise weighting term that can be used to incorporate the reliability of the

individual voxel in the minimization problem, for instance, by setting it as the signal

magnitude. The above minimization problem in Equation 2.8 can be solved using graph

cut methods. Despite being successful for water-fat separation tasks, the proposed

methods suffer from field map smoothing, long computation times, or limitations in the

problem formulation or graph construction.

2.1.3 The water–fat–silicone signal model

When the FOV contains multiple chemical species, such as silicone in breast implants,

the conventional water-fat signal model presented in Equation 2.2 can be extended to a

water-fat-silicone signal model.

s(tn) =
(
ρW + cnρF + ρse

i2π∆fStn
)
eγtn , (2.9)

where ρS is the complex signal of silicone and ∆fS is the chemical shift of silicone. For

field-mapping, the above VARPRO formulation and neighborhood regularization can

be similarly used without the loss of generality as in Equation 2.3-2.8 [27].

In Figure 2.2 exemplary field-mapping results of different methods are illustrated for

the above breast scan.
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Figure 2.1: Illustrative magnitude echo images and parameter maps of a multi-echo
gradient echo experiment with subsequent parameter separation based on
Equation 2.2. The first row shows the magnitude of the signal at different
echo times. The second row shows the water and fat image, proton density
fat fraction, R∗2- and field map.

Figure 2.2: Results of different field-mapping algorithms. The gradient descent method,
which minimizes Equation 2.4 using conventional gradient-based techniques,
struggles to resolve the pronounced field map variations, particularly in the
right breast. In contrast, the VARPRO approach from Equation 2.6, which
extracts the global minima within a voxel, is capable of resolving much
larger field map variations, resulting in substantially improved outcomes
in the right breast. Nonetheless, a significant number of wraps can still be
observed in the field map. By minimizing a global neighborhood-regularized
cost function using a graph cut, as in Equation 2.8, it is possible to obtain
a non-wrapped field map. However, this comes at the expense of field map
blurring.
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2.2 Field map unwrapping

From Equation 2.2 it is apparent that the field map parameter fB is periodic with an

period length of

fperiod =
1

∆TE
=

1

tn+1 − tn
, (2.10)

in the case of equidistant echo time spacing, which is usually the case. Therefore, the field

map parameter is subject to wrapping. When a susceptibility map is sought to estimated,

the field map has to be unwrapped as the jumps in the field map are inherently assumed

to originate from large susceptibility sources by the field-to-susceptibility inversion

algorithms, hence leading to severe artifacts in the resulting map.

Unwrapping itself is an ill posed problem since many values of the true phase lead to

the same value in the wrapped phase. Unwrapping algorithms assume the phase to be

slowly varying. In a one-dimensional case that means that a wrap is assumed to have

occurred when |φ(r + 1)− φ(r)| > π or for the case of the above field map parameter

|fB(r + 1) − fB(r)| > fperiod
2

. This problem is generally solved using path-following

methods where a voxel is compared to the adjacent voxel. The difference in the different

methods in the literature primarily lies in the path(s) used for unwrapping.

A uniquely different approach to perform the unwrapping is the use of a for-

mulation similar to Equation 2.8. In this case, the first term does not reflect a

data consistency term but contains the wrapped possible solutions of the true phase

[φ(r), φ(r) + 2π, . . . , φ(r) + n2π], n ∈ N. This approach follows the same inherent

assumption of a smooth field map, however using graph cut techniques the unwrap-

ping can be performed simultaneously in the whole three-dimensional FOV and is not

dependent on the heuristic optimization of the path in path-following algorithms.

In Figure 2.3 the difference between a wrapped and unwrapped field map is illustrated.

Figure 2.3: Illustrative Figure showing a wrapped and unwrapped field map

12
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2.3 Background Field Removal

The field map fB contains two separable sources of susceptibility. First the so-called in-

ternal fields fin originated from susceptibility sources inside the ROI χin and background

fields fbg that originate from susceptibility sources outside the ROI χbg. Therefore the

global susceptibility can be written as

χ(r) =

χbg(r) ∀r /∈ Ω

χin(r) ∀r ∈ Ω
, (2.11)

where Ω contains all voxels inside the ROI. The relation between internal and background

field and susceptibility by a dipole approximation reads [13]

fB = fbg + fin = d ∗ (χbg + χin), (2.12)

where ∗ is the convolution operator and d is the unit dipole kernel

d(r) =

0 |r| = 0

3 cos2Θ−1
4π|r| otherwise

. (2.13)

For efficient calculation of the convolution, the dipole kernel can used in its Fourier

space representation

D(k) = F
(
d(r)

)
=

0 |k| = 0

1
3
− k2z

k2
otherwise

, (2.14)

where F is the Fourier transform. Equation 2.15 hence reduces to a simple multiplication

in k-space

fB = F−1
(
D ∗ F(χ)

)
, (2.15)

where F−1 is the inverse Fourier transform. For simplicity, the image space formulation

of the field-to-susceptibility relation with convolution operator is used throughout the

thesis. However, in practice dipole-based methods are predominantly implemented

using the Fourier representation.

Now, in order to estimate the parameter of interest χin, the background field contri-

butions fbg have to be removed from the total field map fB. The background fields can

be uniquely separated from the local fields as the background fields are harmonic in

the ROI and the local fields are not [41]. Hence, background field removal techniques
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generally aim to remove harmonic components from the total field. As the background

fields are harmonic in the ROI, they are a solution to the Laplace equation

∇2fbg = 0, r ∈ ∂Ω, (2.16)

where ∂Ω is the boundary of Ω, or the equivalent Poisson equation

∇2fin = ∇2fB, r ∈ ∂Ω. (2.17)

As the background field can be one or two orders of magnitude bigger than the local

field, Equation 2.17 is solved with the approximation

fin � fB ⇐⇒ fB
∣∣
∂Ω

= fbg

∣∣
∂Ω
. (2.18)

Through the definition of the boundary conditions and the inclusion of necessary

approximations, the above equations can be solved, allowing for the estimation and

subsequent removal of background magnetic field components from the measured total

field

fin = fB − fbg. (2.19)

The method that employs Equations 2.16 through 2.19 is commonly referred to as

the Laplacian Boundary Value (LBV, [42]) method. LBV generally yields accurate

results, when the conditions in Equation 2.18 are met. However, in body regions the

above approximations can be violated when the boundary ∂Ω includes voxels of strong

susceptibility such as subcutaneous fat [43] or bone. The resulting artifacts decrease

with an increase in distance from the boundary.

Based on the spherically harmonic nature of the background fields evident from

Equation 2.16 and 2.17 and the corresponding mean value property gives basis to a

second class of background field removal techniques. The kernel based background field

removal:

fin = (δ − κ) ∗−1
(

(δ − κ) ∗ fB
)
, (2.20)

where δ is the Dirac distribution, κ a spherical convolution kernel and ∗−1 the de-

convolution operator. A plethora of methods have been proposed that use the above

formulation [41]. However, kernel-based methods suffer from the implicit assumption of

no background field sources close to the boundary ∂Ω. Violating this assumption can

introduce errors, but some of these errors can be mitigated by selecting a variable kernel

size that reduces in size near the boundary. However, even with such adjustments, these
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Figure 2.4: Illustrative Figure showing the separation of the total field fB into the
background fbg and internal fin field. The separation is based on the
projection onto dipole fields method [44]. While most of the breast tissue
shows a proper separation of both fields, strong artifacts are visibile in
the posterior direction originating from the lung/tissue interface where
the internal field still exhibits significant harmonic contributions from the
background field.

methods can still exhibit artifacts near the boundary, which decrease in magnitude with

increasing distance from the boundary.

Another method for background field removal is projection onto dipole fields (PDF)

[44], which minimizes the following objective function

χbg = arg min
χbg
′(r), r/∈Ω

||fB − d ∗ χbg
′|| . (2.21)

Projection onto dipole fields is based on the Hilbert Projection Theorem [45]. The

assumption is that the dipole fields spanned by sources in and outside the ROI are

orthogonal. However, this assumption is violated in the proximity to ∂Ω, where in the

above unregularized formulation, sources of the local field are erroneously estimated to

be based on background sources. When the background susceptibility is successfully

estimated, the background field removal contributions can be removed the following

fin = fB − d ∗ χbg. (2.22)

Figure 2.4 provides a representative example of the separation of the total field into

background and internal fields, utilizing the projection onto dipole fields technique.

This figure highlights the challenges faced by all individual background field removal

methods, as they often achieve only a partial separation of the fields. As a result,

harmonic fields may still be present in the purported internal field map, indicating the

limitations of these techniques.

As indicated above, all background field removal techniques can exhibit artifacts

in proximity to the boundary region with decreasing effect with increasing distance
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from the boundary. In body applications the artifacts are generally more prominent, as

assumptions of the methods are regularly violated.

2.4 Field-to-susceptibility Inversion

The final step of QSM is the field-to-susceptibility dipole inversion. From Equation

2.15, it is known that the internal susceptibility is directly connected to the internal

field.

fin = d ∗ χin. (2.23)

In order to estimate χin, the field-to-susceptibility inversion has to be formulated as

an inverse problem. As indicated by Equation 2.14, it is known that the dipole kernel

contains zero values in k-space. This not only renders the dipole inversion ill-conditioned,

but also precludes the possibility of directly estimating susceptibility by dividing the

field map in k-space by the dipole kernel, such as χ = F−1
(
F(fB)
D

)
. However, based on

Equation 2.23, an inverse problem can be formulated as follows:

χin = arg min
χ′
||fin − d ∗ χ′||22. (2.24)

This inverse problem can efficiently be solved using conjugate gradient. However, as

previously mentioned, the dipole kernel contains zero elements where k2
z = |k|2/3,

specifically a cone-shaped surface consisting solely of zeros, which notably intersects the

center of k-space. This leads to three additional implications. Firstly, the mean of the

estimated susceptibility map is zero, causing the susceptibility to field relationship to be

not a one-to-one problem, but rather a many-to-one problem. This renders the inverse

problem ill-posed. Secondly, the estimated susceptibility map serves only as a relative

measurement. In order to obtain absolute measurements, reference strategies must be

employed. One such strategy is selecting a tissue with well-known susceptibility, which

importantly remains unchanged in the presence of pathologies. The tissue of interest

can then be referenced to this stable tissue. Thirdly, due to the zero cone surface and

surrounding values approaching zero, noise in fB is substantially amplified, resulting

in the notorious streaking artifacts in the estimated susceptibility distribution. The

noise amplification is generally addressed by introducing two additional modifications to

Equation 2.24. A noise weighting term W is incorporated, which includes information

about the reliability of the field map information in specific voxels. Common choices are

echo-based magnitude information, such as the maximum intensity projection across
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echo times, or the residual error of the parameter separation in the field-mapping step.

The second modification entails introducing a regularization term that incorporates

additional prior information into the dipole inversion. The resulting minimization

problem reads:

χin = arg min
χ′
||W (fin − d ∗ χ′)||22 + λR(χ′), (2.25)

where λ is the regularization parameter that balances the data consistency term with

the regularization term R(χ). Numerous methods have been proposed, featuring diverse

variations of R(χ) and W , and employing different minimization algorithms. One

particularly notable approach is the smoothness-promoting regularizer R(χ) = ||∇χ||22,

for which a closed-form solution exists. The primary advantage of a closed-form solution

lies in its remarkably rapid reconstruction time. However, there are some drawbacks,

including the resulting oversmoothed susceptibility distributions, limitations in the

choice of regularization term, and the constraint to use the `2-norm, while `1-norm

based regularization has been demonstrated to enhance the dipole inversion.

2.4.1 Morphology enabled dipole inversion

The most popular iterative reconstruction algorithms is the so-called Morphology-

Enabled Dipole Inversion (MEDI) [46, 47], where the regularization parameter is

R(χ) = λ||Mg∇χ||1. (2.26)

The MEDI regularization parameter integrates additional information from the echo

images. Specifically, MG serves as a weighting term that incorporates edge information

from the magnitude image. The underlying assumption in MEDI regularization is that

edges in the magnitude image are likely to correspond with edges in the susceptibility

map. MG itself is subject to heuristic optimization; for instance, it can be a binary mask

indicating the presence of an edge in the magnitude image or a value on the interval

[0, 1] for more nuanced edge occurrence information. Common methods for obtaining

MG include using the total variation of the magnitude images or applying a Sobel or

Canny operator. The `1 norm in the MEDI regularizer promotes sparse susceptibility

distributions in the gradient domain, which supports the prior assumption of piecewise

constant susceptibility distributions of the total variation-based regularizer.

In addition to the enhanced regularization term, MEDI-based algorithms frequently

employ a so-called nonlinear formulation of the data fidelity term, which strengthens

the stability of the dipole inversion against noise and errors arising from the unwrapping
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step. The nonlinear dipole inversion cost function with MEDI regularizer, which can be

considered the state-of-the-art method, reads [47]

χin = arg min
χ′
||W (eid∗χ

′ − eifin)||22 + λ||Mg∇χ′||1. (2.27)

Although this formulation was introduced over a decade ago, it remains state-of-the-art

and is the most widely employed approach across various anatomies and pathologies.

While there have been advancements in the formulation of the data fidelity term and

the adoption of total generalized variation over total variation for the regularization

term, the core concept of edge-based masking continues to be a key component.

Additionally, in MEDI-based methods, the weighting term W is frequently optimized

during minimization iterations using a technique called Model Error Reduction through

Iterative Tuning (MERIT). MERIT adjusts W at each iteration or after a few iterative

steps, based on the evaluation of the residual error in the objective function. This

approach assigns less significance to voxels with highly erroneous field map values and

effectively reduces the occurrence of shadowing artifacts.

2.4.2 Total field inversion

A significant advancement in the field has been the formulation of the dipole inversion as a

total field inversion (TFI) [48]. TFI algorithms directly estimate the global susceptibility

distribution χ from the total field map fB. In doing so, the orthogonality assumption

of norm-based background field removal techniques, such as PDF, is not violated, and

the internal and background susceptibility can be more effectively separated. However,

χin and χbg exhibit significant differences in susceptibility magnitudes. To address slow

convergence or convergence to an improper separation of internal and background fields,

TFI algorithms employ preconditioning. A preconditioner P is constructed based on Ω

to implicitly differentiate between internal and background regions, with its simplest

variant taking the following form:

P (r) =

PB ∀r /∈ Ω

1 ∀r ∈ Ω
, (2.28)

where PB is chosen such that PHP ∝ |χbg−χin|. Additional refinements to P have been

proposed, allowing it to automatically adapt to the scanned anatomy and potentially

to a manually constructed Ω [49]. In general, the preconditioner can integrate more
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2 Quantitative Susceptibility Mapping in the Body

nuanced information about tissues with significant susceptibility variations within

Ω. This information can primarily be obtained from the field-mapping/parameter

estimation step. For example, the R∗2-map is correlated with susceptibility magnitude.

Since the preconditioner only contains information about whether a voxel exhibits

strong susceptibility but not its sign, data from the R∗2 map can be directly incorporated

into the preconditioner. In body regions where both water and fat are present and a

PDFF is estimated during the field-mapping step, this information can be encoded in

the preconditioner, as fat exhibits a substantially different susceptibility compared to

most predominantly water-containing tissue types.

Including the preconditioner in the inverse problem formulation, the total field

inversion cost function can be expressed as [48]

y = arg min
y′
||W (fB − d ∗ Py′)||22 + λ||MG∇Py′||1, (2.29)

where in the minimization the auxiliary variable y is minimized. After minimization the

global susceptibility is obtained by χ = Py. Figure 2.5 illustrates the results obtained

minimizing some of the inverse QSM formulations introduced above.

2.4.3 Multi-echo complex total field inversion

Recently, a significant advancement has been made in the data consistency term. Rather

than minimizing the difference between the field map and susceptibility, susceptibility

can be directly estimated from complex multi-echo data. In the brain, where no fat

signal is present, the dipole inversion problem can be reformulated by setting ρW = 0

and fB = d ∗ Py into Equation 2.2, resulting in the following minimization problem

[50], termed multi-echo complex total field inversion (mcTFI):

{ρW , R∗2, y} = arg min
ρW ′,

∗
2
′,y′

Necho∑
j=1

||ρW ′e−R
′∗
2 tjei2πtj d ∗Py

′ − Sj||22

+ λ1||Mg∇Py′||1 + λ2||MCP
(
y′ − y′MC

)
||22,

(2.30)

where Sj is the complex echo image at echo time tj. mcTFI also incorporates a

second regularization term λ2, which enforces homogeneity in regions where a uniform

susceptibility is expected. In the brain, the cerebrospinal fluid (CSF) within the

ventricles exemplifies such a structure. This approach further diminishes shadowing

artifacts, and these homogeneous regions are frequently employed as reference tissue to
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2 Quantitative Susceptibility Mapping in the Body

determine absolute susceptibility values.

The mcTFI formulation offers two key improvements over field map-based formula-

tions. First, methods such as the previously introduced MERIT are no longer necessary.

Since MERIT itself relies on heuristic optimization, eliminating its dependency is

advantageous. Second, all above inverse problem formulations inherently assume

Gaussian-distributed noise in the observable. While this is not accurate for the field

map parameter, it holds true for the real and imaginary parts of the complex signal.

Consequently, mcTFI is hypothesized to significantly enhance susceptibility estimation

in low SNR regions. Moreover, additionally to the background field removal step, this

formulation potentially renders the field map estimation and unwrapping step obsolete

if the parameters ρW , R
∗
2, y can be initialized with zeros or an adequate initialization is

otherwise achieved. However, mcTFI is only applicable to regions with a single chemical

species, such as the brain, and cannot account for the chemical shift of fat. As a result,

it is not directly applicable to regions outside the brain.
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2 Quantitative Susceptibility Mapping in the Body

Figure 2.5: Illustrative comparison of the results obtained using various field-to-
susceptibility inversion algorithms. The naive method, which minimizes
Equation 2.24, yields a susceptibility distribution primarily dominated by
artifacts, despite the visibility of some local structures. Introducing a noise
weighting term similar to W in Equation 2.25 leads to a substantial en-
hancement in the results. However, it is only through employing the MEDI
method, as described in Equation 2.27, that the local fibrograndular tissue
can be effectively resolved. The first three methods, nonetheless, struggle
with the inaccurate separation of background and local fields, as depicted in
Figure 2.4, which serves as their foundation. By utilizing the TFI method
from Equation 2.29, artifacts arising from the background field removal step
can be significantly reduced, revealing only the local susceptibility. It is
worth noting, though, that this method exhibits a decreased SNR when
compared to MEDI.
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3 Comprising Journal Publications

This thesis comprises five original first-authored journal publications that cover a novel

joint field-mapping and unwrapping method (Section 3.2), a QSM algorithm to remove

susceptibility-induced phase-variations in double-echo gradient-echo (DEGRE) acqui-

sition for MR thermometry (Section 3.3), a general purpose body QSM methodology

that jointly removes background field contributions and estimates local susceptibility

(Section 3.4), a optimized acquisition framework for the fast acquisition of body QSM

data (Section 3.5) and a QSM methodology specifically tailored for breast applications

with the potential presence of silicone (Section 3.6).

3.1 Compliance with Ethical Standards

All investigations performed in studies involving human participants were in accordance

with the ethical standards of the institutional and/or national research committee and

with the 1964 Helsinki declaration and its later amendments or comparable ethical

standards. Informed consent was obtained from all individual participants included in

the studies.

3.2 Journal Publication I:

Improved body quantitative susceptibility mapping

by using a variable-layer single-min-cut graph-cut

for field-mapping

The publication entitled Improved body quantitative susceptibility mapping by using a

variable-layer single-min-cut graph-cut for field-mapping was published in Magnetic

Resonance in Medicine (ISSN: 0740-3194). The manuscript was authored by Christof

Boehm, Maximilian N. Diefenbach, Marcus R. Makowski and Dimitrios C. Karampinos.

It is available online (DOI: 10.1002/mrm.28515) as an open access article under the
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terms of the Creative Commons Attribution-NonCommercial License. Preliminary

results were also presented in the conference contribution C1 and C2, where C2 was

awarded with an ISMRM Magna Cum Laude Merit Award and selected as an oral

presentation at the ISMRM annual meeting 2019. The publication was selected as

Editor’s pick for March 2021. A summary of the publication is provided in Section

3.2.1, the author contributions are listed in Section 3.2.2 and the full text is included

subsequently on the following pages.

3.2.1 Abstract

Purpose

The field map estimation is an important step in the estimation of tissue magnetic

susceptibility. This work proposes a methodology based on the variable projection

of the water–fat signal model and a neighborhood-regularized spatially global cost

function, which is minimized using a graph-cut algorithm with a problem-specific graph

construction.

Methods

Variable projection (VARPRO) was used to reduce the parameter estimation of the

voxel water–fat signal model to a field map estimation problem. Using an efficient

CUDA [51] implementation, all global and local minima of the VARPRO field map

cost function were calculated and extracted. Subsequently, all identified minima were

encoded in a neighborhood-regularized spatially global cost function. The proposed

methodology was tested in numerical simulations, a scanner phantom and in vivo in

the head/neck region and the spine.

Results

The simulations showed that accurate, unwrapped and fast field map estimation and

water–fat separation are only possible using the proposed methodology. In vivo in the

head/neck region, the proposed algorithm is able to resolve a the field map dynamic

range of 5430 Hz in a 3T scanner. In the spine scans, susceptibility values based on the

field map of the proposed methodology of the cortical bone shell are much closer to

literature reference values when compared to other field map estimation algorithms.
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Conclusion

Accurate field map estimation especially close to susceptibility interfaces is important

for an accurate estimation of tissue magnetic susceptibility. The proposed graph-cut

algorithm is superior in the estimation of strong field map variations close to MR signal

voids or in regions with high R∗2 values when compared to formerly proposed methods.

3.2.2 Author contributions

The first author developed the problem-specific graph construction for the efficient

minimization of the neighborhood-regularized problem formulation; implemented the

optimization code in MATLAB; performed the numerical simulations; built the scanner

phantom; performed the MR measurements of the scanner phantom and the in vivo spine

data sets. With the help and consultation from the coauthors, the first author acquired

the head/neck data, analyzed and interpreted the data, and wrote the manuscript.

3.2.3 Original Article
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Purpose: To develop a robust algorithm for field-mapping in the presence of water–
fat components, large B0 field inhomogeneities and MR signal voids and to apply 
the developed method in body applications of quantitative susceptibility mapping 
(QSM).
Methods: A framework solving the cost-function of the water–fat separation prob-
lem in a single-min-cut graph-cut based on the variable-layer graph construction con-
cept was developed. The developed framework was applied to a numerical phantom 
enclosing an MR signal void, an air bubble experimental phantom, 14 large field 
of view (FOV) head/neck region in vivo scans and to 6 lumbar spine in vivo scans. 
Field-mapping and subsequent QSM results using the proposed algorithm were 
compared to results using an iterative graph-cut algorithm and a formerly proposed 
single-min-cut graph-cut.
Results: The proposed method was shown to yield accurate field-map and suscep-
tibility values in all simulation and in vivo datasets when compared to reference 
values (simulation) or literature values (in vivo). The proposed method showed 
improved field-map and susceptibility results compared to iterative graph-cut field-
mapping especially in regions with low SNR, strong field-map variations and high 
R∗

2 values.
Conclusions: A single-min-cut graph-cut field-mapping method with a variable-layer 
construction was developed for field-mapping in body water–fat regions, improving 
quantitative susceptibility mapping particularly in areas close to MR signal voids.

K E Y W O R D S

chemical shift encoding-based water–fat separation, Dixon imaging, field-mapping, graph-cuts, 
quantitative susceptibility mapping
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1 |  INTRODUCTION

Quantitative susceptibility mapping (QSM)1 is an MR 
technique directly probing a fundamental tissue property, 
the magnetic susceptibility. QSM is an emerging imaging 
method in the study of brain physiology,2 pathology,3 and 
function.4 QSM has been also recently applied in tissues 
outside the brain, for example, for measuring liver iron over-
load,5-7 prostatic calcifications,8 cartilage degeneration,9 
and bone density.10,11 The main premise of QSM is that it 
overcomes limitations of R∗

2-mapping by distinguishing be-
tween para- and diamagnetic susceptibility sources, which 
would similarly result in increased R∗

2 values.12 Furthermore, 
recent studies have shown that QSM may lead to a reduced 
dependence on the microscopic distribution of the bone mar-
row bone microstructure13 or the microscopic distribution of 
iron14 compared to R∗

2-map.
QSM inverts the measured main magnetic field inhomo-

geneities, the so-called field-map, to the magnetic suscepti-
bility map. When applied in body regions, QSM processing 
needs to particularly address the presence of fat with its 
chemical shift effect.5 The first QSM step, the magnetic 
field-mapping, therefore connects QSM to the sub-domain 
of chemical shift encoding-based water–fat separation, which 
also can be reformulated as a field-map estimation prob-
lem.5,11,15 Field-mapping in the body can be challenging for 
mainly two reasons: (a) the presence of large background 
fields possibly due to concave geometry of the anatomy or air 
inclusions in the field of view (FOV),16 and (b) the presence 
of signal voids in regions of low signal-to-noise ratio (SNR) 
due to MR invisible or short-T2 tissues, for example, bone.17 
Field-mapping in water–fat regions relies on optimizing a 
least-squares optimization problem due to the nonlinearity of 
the field-map term.5,18,19 Most methods previously proposed 
for solving the above non-convex optimization problem have 
been investigated in terms of the achieved accuracy on the 
water- and fat-separated images and not on the field-map. In 
water–fat imaging, the field-map is typically treated as a nui-
sance parameter, whereas in QSM the field-map is of central 
importance.

Most existing approaches proposed to solve the water–
fat separation problem have been relying on a smoothness 
constraint on the field-map18,20-22 and some of them were 
incorporated in the 2012 ISMRM fat–water toolbox.23 
Algorithms formulating the water–fat separation problem as 
a graph search have been particularly successful in solving 
the constrained optimization problem using either min-cuts 
iteratively20 or single-min-cut approaches.24,25 The formula-
tion of the water–fat separation problem as a graph search 
was first introduced in the seminal work by Hernando et al.,20 
showing excellent water–fat separation results and was in-
cluded in the 2012 ISMRM fat–water toolbox. Specifically, 
for each voxel, only two field-map candidates are taken and 

a graph-cut is used to solve the cost function in a so-called 
jump move. If the cost function decreases, the field-map 
candidate is taken. This procedure is repeated until a defined 
convergence criterion is met and the method is therefore la-
beled as an iterative graph-cut approach (iGC). However, the 
original iterative graph-cut in20 does not necessarily converge 
to the global minimum of its defined cost function, smoothes 
the field-map by construction and allows for adopting only 
two-dimensional neighborhood information in the field-map 
smoothness constraint term (interslice regularization is not 
possible). A single-min-cut graph-cut can address the above 
problems of the iterative graph-cut technique and guarantees 
to find the globally optimal solution. A single-min-cut graph-
cut method, labeled as rapid globally optimal surface esti-
mation (rGOOSE)25 was recently introduced and proposed 
to restrict the field-map candidates to be only local minima 
of the voxel-wise field-map estimate. However, rGOOSE al-
lows for the same amount of minima per voxel for the whole 
volume and includes the residual error of each minima in 
the global cost function similarly to the iterative graph-cut. 
Therefore, rGOOSE is associated with long computation 
times and can in some cases miss the optimal solution due to 
its graph construction.

Therefore, the purpose of the present work is (a) to de-
velop an accelerated single-min-cut graph-cut algorithm 
for field-mapping in the presence of water–fat using a vari-
able-layer graph construction and (b) to demonstrate the 
advantages of the developed field-mapping technique when 
applied for body QSM in the presence of large background 
fields and signal voids. The ability of the proposed vari-
able-layer graph-cut (vlGC) based algorithm to overcome 
limitations of current state-of-the-art body field-mapping 
methods is particularly examined with simulations and in 
vivo measurements of body QSM.

2 |  THEORY

2.1 | Cost function of the water–fat 
separation problem

Assuming the widely used single-R∗
2 multi-fat-peak water–fat 

voxel signal model,26,27 the complex signal at the n-th echo is 

with t1, t2, . . . , tN the different echo times, fB the local fre-
quency shift due to static field inhomogeneity and �W and �F 
the complex signal of the water and fat components assuming 
to have an equal transverse relaxation rate R∗

2. The fat spectrum 

(1)
smodel(tn)=(

�W+cn�F
)

e�tn , � = i2�fB−R∗
2

cn =
P∑

p= 1
apei2�Δfptn , with

P∑
p= 1

ap =1,
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is assumed to have P spectral peaks with corresponding rel-
ative amplitudes ap and chemical shift Δfp. The above signal 
model can be rewritten into its matrix representation24,28: 

When the fat spectrum and its relative amplitudes are as-
sumed to be known, the remaining unknown parameters are 
obtained by minimizing the least-squares error between the 
model and the measured data: 

Since the above voxel-wise minimization problem depends 
on many parameters the VARPRO19 approach is used to de-
couple them. Specifically, the above least-squares error is min-
imized with respect to some of the variables by assuming the 
others to be fixed. Minimizing the above cost function with  
respect to the complex water and fat signal �0 assuming γ to be 
fixed, the signal estimates as �0 = (ΨT

�Ψ� )−1ΨT
�y. Substituting 

�0 back in Equation (3), and solving for γ, we obtain24: 

To obtain a cost function that is only dependent on fB the 
above expression can again be minimized with respect to R∗

2 
24: 

However, minimizing (fB) voxel by voxel is undesirable, be-
cause   has several local and global minima,18,29 is non-con-
vex, periodic in the field-map dimension and sensitive to noise. 
Therefore, a penalized maximum likelihood cost function is em-
ployed and minimized allowing to impose spatial smoothness: 

where fB(r) is the field-map. At each voxel r, field-map values 
are restricted to only local minimizers of (fB(r)). The restric-
tion to only local minimizers solely enforces the data consis-
tency. N(r) is the voxel neighborhood that has to be selected. 
Furthermore, the minimization of Equation (6) is restricted to 
signal only regions by setting: 

where T is a threshold which needs to be chosen appropriately 
and MIPTE is the the maximum intensity projection of the sig-
nal over echo times.

2.1.1 | The sampling interval of the voxel 
independent field-mapping estimate

The voxel maximum likelihood estimate Equation (5) is peri-
odic in the field-map dimension for equidistant echo times tn 
with a period length of: 

where ΔTE is the echo time step. This is the bandwidth of the 
field-map that should at least be sampled to obtain every exist-
ing local and global minima per voxel. The number of minima 
at each voxel depends on the fat model, the number of recorded 
echoes and the measured signal.

When two adjacent voxels v1, v2 whose signal only differs 
in their field-map value fB1 , fB2 are considered, the sampling 
bandwidth of Equation (8) needs to be extended to: 

to ensure that every minima at each voxel is correctly encoded 
into the graph without a false value in the penalization term. If 
the sampling interval was chosen too small, a minima would 
be wrapped around to the other end of the interval due to the 
periodicity in the field-map dimension.

The above idea can be generalized to an arbitrary number 
of voxels: 

where max(̂fB) and min(̂fB) are the maximum and minimum 
value of the global field-map estimate, respectively.

The sampling interval is finally defined as the above total 
bandwidth centered around zero: 

3 |  METHODS

A novel field-mapping algorithm was first developed based 
on a variable-layer graph construction concept and the novel 
formulation of the data consistency as introduced in Equation 
(6). The developed method was then applied to a numerical 

(2)

⎛
⎜⎜⎜⎜⎝

e�t1 e�t1
�P

p=1 apei2�(Δfp)t1

⋮ ⋮

e�tn e�tn
�P

p=1 apei2�(Δfp)tn

⎞
⎟⎟⎟⎟⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Ψ�

⎛
⎜⎜⎝
�W
�F

⎞
⎟⎟⎠

⏟⏟⏟
�

=

⎛
⎜⎜⎜⎜⎝

y(t1)
⋮

y(tn)

⎞
⎟⎟⎟⎟⎠

⏟⏟⏟
y

.

(3){�W, �F, �}= arg min
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(5)
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(r, �)
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(fB(r))

.

(6)f̂B = argmin
fB(r)

∑
r

∑
s∈N(r)

|fB(r)− fB(s)|2,

(7)r∈M and M=
{(x, y, z) ∣MIPTE(x, y, z)>T

} ,

(8)fperiod =
1

ΔTE = 1
tn+1− tn

,

(9)ftotal = fperiod+ |fB1 − fB2 |,

(10)ftotal = fperiod+ |max(̂fB)−min(̂fB)|,

(11)fsampling =
[
−

ftotal
2 , ftotal

2
]

.
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phantom, an experimental phantom, in vivo large FOV head/
neck scans and in vivo spine scans and compared to the state-
of-the-art iGC method from20 as included in the ISMRM fat–
water toolbox23 and the previously proposed single-min-cut 
graph-cut rGOOSE method.25

3.1 | Proposed single-min-cut variable-layer 
graph-cut algorithm

The maximum intensity projection across echoes MIPTE, 
thresholded at 5% of its maximum value, was used to distin-
guish between signal and no-signal regions for the mask (see 
Equation 7). In the calculation of the VARPRO residual, a 
sampling step size of 2 Hz was used, defined empirically in 
order to keep the discretization error reasonably small.19 The 
residual was computed over the period defined in Equation 
(8) and replicated until it matched the sampling interval de-
fined in Equation (11). To determine the sampling interval, 
max(̂fB) and min(̂fB) in Equation (10) needed to be estimated. 
This was done by choosing the central slice of the volume 
and using a large sampling interval such that the range of 
field-map values in the slice lies within this interval. The 
proposed vlGC was subsequently applied on the central slice 
with the large sampling interval and max(̂fB) and min(̂fB) were 
extracted. The voxel-wise residuals were then computed for 
the whole volume for the sampling interval determined by 
max(̂fB) and min(̂fB). All local and global minima per voxel 
were finally extracted using matlab (R2017b, MathWorks) 
built-in functions.

The minimization of the global maximum likelihood cost 
function defined in Equation (6) can be transformed into a 
surface estimation problem using the graph-cut algorithm in-
troduced in.30 The graph-cut algorithm in30 was designed for 
graphs with irregularly sampled spacings and a convex reg-
ularization term (quadratic distance measure in the present 
setting) and hence guarantees the convergence to the global 

minimum of Equation (6). The ability of the algorithm to in-
corporate irregularly sampled spacings is necessary since the 
frequency distance of the extracted local and global minima 
in the present problem is typically not equidistant. Based on 
the cost function values for the set of local minima at each 
voxel, the graph was constructed. Since each node needs to 
be identifiable, each node was assigned with a distinct identi-
fication number (ID). The order x, y, z, frequency was used to 
create a node index array. Lists with all edges were next cal-
culated and transformed into a equivalent sparse adjacency 
matrix, which fully defined the graph. Figure 1 shows an ex-
ample of the constructed graph for two adjacent voxels. Edges 
between nodes were calculated according to.30 The matlab-
implementation of the Boykov-Kolmogorov max-flow al-
gorithm was applied on the constructed graph. The above 
algorithm was found to be most efficient to solve graph-cut 
problems like the mapping of a cost function similar to the 
proposed global cost function.31 Boykov-Kolmogorov max-
flow algorithm returned the max-flow in the network (which 
was of no further interest) and two lists of node IDs belong-
ing either to the source or to the terminal node. The graph 
was constructed based on the convention introduced in30 that 
the highest ID in a voxel belonging to the subset of the source 
was the searched solution.

3.2 | Speed comparison

The vlGC was compared to the former proposed single- 
min-cut graph-cut algorithm rGOOSE.25 Therefore, the three 
central slices of a head/neck region were selected (please see 
below for details). The vlGC was applied to obtain a refer-
ence field-map and run-time. The rGOOSE method was 
repeatedly applied to the dataset while increasing the num-
ber of layers at each iteration from 1 to 30. The resulting 
run-time was normalized with the run-time from the vlGC 
to increase system comparability. Since the absolute error is 

F I G U R E  1  Variable-layer graph construction in 2 adjacent voxels arbitrarily extracted from one lumbar spine dataset. The voxel-wise field-
mapping estimate (fB) is sampled over the same interval in both voxels, resulting in 2 and 3 minima, respectively, as illustrated in the left and 
right plots. From (fB) only the local minima are extracted and encoded in the graph as illustraded in the center plot. The edges in the graph are 
calculated according to30
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   | 1701BOEHM Et al.

of no interest, the error between the reference and the field-
map yielded by rGOOSE was determined by computing the 
normalized root mean square error (NRMSE) between both 
and rescaling it into % of its maximum value. The methods 
were run on a 2017’s iMac with a 4.2 GHz CPU (Intel Core 
i7, 7700, 4 processors) and 32 GiB RAM. Additionally, the 
run-time of the iGC, the rGOOSE method, and the vlGC 
were measured for the field-map estimation of the numerical 
phantom with the sharp air-tissue interface (please see details 
below).

3.3 | Air bubble phantom: Numerical 
simulation and experimental measurement

To investigate the behavior of the developed field-map-
ping method close to signal voids (eg air inclusions), a 
numerical phantom with an air bubble in the center, sur-
rounded by a tissue with fat fraction of 30% was set 
up. A FOV=128 × 128 × 60 mm3, an isotropic voxel  
size = 1 × 1 × 1 mm3 and a single R∗

2 = 40Hz for the whole 
volume were used. The radius of the air bubble was set to 
r = 20 mm. The phantom generation was performed twice: 
once with a sharp air-tissue interface and once with a smooth 
air-tissue interface. By applying a Gaussian filter with a 
standard deviation of σ = 6 and a mean of μ = 0 the inter-
face from air to tissue was smoothed out to have a continuous 
transition. A χ-map with �air = 9 ppm and � fat = 0.6 ppm in 
reference to �water = 0 was created. In the area of the tran-
sition, Wiedemanns additive law was used to calculate the 
χ values accordingly.32 Wiedemanns additive law states 
that the overall magnetic susceptibility of a mixture is the 
weighted sum of the magnetic susceptibilities of the constitu-
ents. A corresponding field-map was then forward simulated. 
With the echo times TE = [2.2, 3.4, 4.6, 5.8, 7.0, 8.2] ms, a 
field strength of 3 T and a multi-peak fat model specific to 
bone marrow33 the signal was also forward simulated using 
the signal model displayed in Equation (1).

The numerical phantom signal values were used to evalu-
ate the performance of the iGC algorithm and of the developed 
single-min-cut graph-cut algorithm first for field-mapping. 
The computed field-maps were subsequently used for QSM 
processing. The QSM processing used for the dipole inver-
sion a closed-form �2-regularized algorithm without data 
weighting as in.34 Field-mapping and QSM processing were 
performed for both the phantom with the smooth air-tissue 
interface and the phantom with the sharp air-tissue interface. 
The field-mapping results comparison was based on the re-
sults from the phantom with the smooth air-tissue interface 
to especially examine partial volume effects close to signal 
voids. The QSM comparison was based on the results from 
the phantom with the sharp air-tissue interface to assure edge 
preservation.

To validate the numerical simulation, an air bubble 
phantom was built consisting of an air-containing ball with 
a thin plastic shell and a radius of r = 20 mm placed in the 
center of a large water reservoir. Scanning was performed 
on a 3  T scanner (Ingenia, Philips Healthcare, Release 
5.4, Best, The Netherlands) using a monopolar time-in-
terleaved multi-echo gradient echo sequence,35 acquiring 
6 echoes with 3 echoes per interleave. TEmin = 1.12  ms, 
ΔTE = 0.98 ms, orientation = coronal, readout direction =  
feet-head, and an isotropic acquisition voxel size of 
1.5 mm in every dimension. The phantom was repeatedly 
scanned varying the shimming parameters from no shim-
ming to only a linear shimming field in z-direction of 
B0,shimming(z) = [0.2, 0.4, 0.6]  mT/m. To obtain susceptibil-
ity maps the pipeline of the numerical simulation was used 
in addition to the Laplacian boundary value method36 to 
remove the background fields.

3.4 | In vivo measurements

The vlGC was applied to in vivo scans of both healthy volun-
teers and patients. Approval by the institutional review board 
(Klinikum Rechts der Isar, Technical University of Munich, 
Munich, Germany) was granted beforehand and informed 
written consent was obtained from all scanned volunteers 
and patients. Scanning was performed on the aforementioned 
3 T scanner.

Specifically, 14 scans of the head/neck region of healthy 
volunteers, scans of the lumbar spine of 4 healthy volunteers 
and scans of the lumbar spine of two osteoporotic patients 
were evaluated.

The head/neck region was selected as a region with 
large B0 inhomogeneities to assess the performance of 
the vlGC in field-mapping of regions with a rapidly spa-
tially varying field-map. A monopolar multi-echo gra-
dient echo sequence with 3 echoes acquired in a single 
TR was used35 with TEmin = 1.06  ms, ΔTE  =  1.59  ms, 
orientation = coronal, readout direction = feet-head, 
FOV = 480 × 480 × 224 mm3 and acquisition voxel size =  
2 × 2 × 4 mm3.

The lumbar spine was selected to assess the performance 
of the vlGC on field-mapping used for subsequent QSM 
processing. For the spine scans, the aforementioned mo-
nopolar time-interleaved multi-echo gradient echo sequence 
was used. For the osteoporotic spine, imaging parameters 
were set to TEmin =1.33 ms, ΔTE = 1.08 ms, orientation =  
sagittal, readout direction = anterior-posterior, FOV = 
220 × 220 × 79.2 mm3, acquisition voxel size of 1.8 mm3 
isotropic and for the healthy spines to TEmin = 1.12  ms, 
ΔTE = 0.87 ms, orientation = sagittal, readout direction = 
anterior-posterior, FOV = 220 × 220 × 79.2 mm3 and acqui-
sition voxel size of 1.8mm3 isotropic. For QSM processing 
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1702 |   BOEHM Et al.

in the lumbar vertebral column region, an algorithm with 
joint background field removal and dipole inversion was used 
solving the following �1 total-variation regularized optimiza-
tion problem37: 

where fB is the field-map estimate, the Larmor frequency �2� B0, 
dipole kernel d, magnitude weighting W, and a MEDI-like edge 
regularization damping M.1 The joint background field and di-
pole inversion method has been chosen since it does not require 
the definition of a background and foreground region-of-inter-
est in order to perform the background field removal. To eval-
uate the quantitative performance of the performed QSM, the 
susceptibility values of the spinous process cortical bone region 
were determined in all subjects. Specifically, the ROIs were 
manually drawn in the cortical bone sites of the spinous process 
at the level of the L3 lumbar vertebral body. In addition, one 
subject was re-positioned and re-scanned to assess the repeat-
ability of the estimated spinous process magnetic susceptibility.

3.5 | In vivo field-mapping 
consistency check

An obvious challenge while comparing the performance of 
different field-mapping methods in vivo is the absence of 
an established gold-standard measurement of the field-map. 
A heuristic method to verify correct field-mapping is the 

examination of the water–fat separated images, as applied in 
previous works. Given anatomical prior knowledge, it should 
be known which anatomy is mainly water- or fat-containing. 
Based on the above knowledge, the corresponding water–fat 
images were checked if the separation has correctly worked. 
All head/neck datasets processed with both the iGC and the 
vlGC were visually rated and categorized in results with 
and without water–fat swaps, where regions in the heart and 
only a few voxels close to the object boundaries were not 
regarded. The overall counts of datasets with and without 
residual water–fat swaps served as a more global metric on 
how the vlGC performed in a challenging anatomy across all 
14 datasets.

4 |  RESULTS

4.1 | Speed comparison

Figure 2 compares the computational speed of the rGOOSE 
method to the speed of the vlGC. The three central slices of 
one head/neck region were selected for the speed comparison. 
With increasing number of layers the run-time of rGOOSE 
drastically increases and the difference between the field-
map obtained by the rGOOSE compared to the field-map ob-
tained by the vlGC decreases. The difference between the two 
methods becomes minimal from 22 layers, where the com-
putational time for the rGOOSE is 14 times longer than the 
computational time for the vlGC. In absolute time units, the 
rGOOSE requires 1 hr 31 mins and the vlGC requires 7 mins.

4.2 | Air bubble phantom: Numerical 
simulation and experimental measurement

Figure 3 compares the field-mapping accuracy of the different 
methods in the numerical phantom. The field-map obtained by 
the iGC shows significant errors particular close to the signal 
void in the center of the volume (region with a small MR signal 
due to the simulated partial voluming effect) and a strong ring-
shaped artifact reaching to the borders of the volume. The field-
map from the iGC shows primarily larger errors in regions with 
small MR signal. The field-map obtained by the vlGC shows 
errors smaller than the field-map discretization step through-
out the volume. The field-mapping errors propagate into the 
water–fat separated images. The error maps of the water–fat 
separated images from the iGC show a ring-shaped artifact, 
similar to the field-map, and largest errors close to the signal 
void. The above errors of the iGC lead to a significant false es-
timation of the water and fat components and to partial swaps, 
whereas the vlGC shows negligible errors and no swaps.

The first row of Figure 4 shows the field-maps of the iGC, 
rGOOSE and the vlGC in the sharp boundary numerical 

(12)� = arg min
� �

||||
||||WΔ

(
fB−

�
2�B0d∗� �

)||||
||||2+�||||M∇� �||||1,

F I G U R E  2  Speed comparison of the vlGC to a previously 
proposed single-min-cut graph-cut method (rGOOSE).25 The 
underlying dataset is one of the head/neck datasets. With increasing 
layers in rGOOSE the resulting field-map converges to the field-map 
of the vlGC. When the difference between the two methods becomes 
minimal, rGOOSE takes 14 times as long as the vlGC. In25 it was 
suggested to use 8 layers in the graph, this point is indicated in the plot 
and represents a suboptimal solution
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   | 1703BOEHM Et al.

phantom. The field-map of the iGC method follows the ref-
erence starting at the periphery of the volume until a certain 
point close to the boundary with the signal void and the er-
rors become then significant until the center of the volume. 
The field-map of rGOOSE follows the reference for a wider 
spatial extent but also fails very close to the signal void on 
one side of the air-tissue interface. Only the field-map of the 
vlGC follows the reference for the whole volume.

The second row of Figure 4 shows the closed-form �2-reg-
ularized dipole inversion results for the different field-maps 
plotted in the first row of Figure 4. The magnetic susceptibil-
ity results based on the vlGC are much closer to the ground 
truth and show greatly reduced streaking artifacts. The cor-
responding line plot show that the χ-maps based on the iGC 
method drastically overshoot outside and inside the air-con-
taining signal void. While there is still a significant under-
estimation of χ values outside the signal void, the results 
based on rGOOSE already show a significant improvement 

over the iGC. However, the field-map jump close to the in-
terface clearly introduces artifacts in the susceptibility map. 
The vlGCs χ-maps are closest to the reference, compared to 
the iGC and the rGOOSE method. Figure 5 shows that the 
simulation depicted in Figure 4 are in close agreement with 
the experimental measurements of the air bubble phantom. 
Furthermore, the vlGC is significantly more robust to the 
strong background field variations introduced by the shiming 
fields and yields comparable susceptibility values at different 
shimming settings. The QSM results based on the iGC sig-
nificantly overestimate the susceptibility of air and include 
large errors at strong background fields

4.3 | In vivo results

Figure 6 shows the field-mapping results and the corre-
sponding water–fat separated images in one large-FOV 

F I G U R E  3  Field-mapping (first row), water- (second row) fat (third row) separation results of the numerical phantom with smooth air-tissue 
interface at the central slice using the iGC and the vlGC. The first column shows the reference water and fat images, the second column shows the 
difference of the results from the iGC to the reference, and the third column shows difference of the results from the vlGC to the reference. The 
field-mapping errors in the numerical phantom propagate into water–fat separation, where the error in the iGC method becomes up to 61%, while 
for the proposed vlGC it stays below 1.4% in the whole volume

 15222594, 2021, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

rm
.28515 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [18/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1704 |   BOEHM Et al.

head/neck scan. The vlGC is able to resolve the large dy-
namic range of 5340 Hz on the shown field-map, without an 
additional unwrapping step, resolving even the very rapid 
field-map variation at the bottom of the FOV. The volu-
metric field-mapping data from the head/neck region of 14 
subjects are provided as Supporting Information Video S1-
S14. The visual reading of the 14 head/neck datasets yields 
swaps in the results by the iGC in all subjects obtained by 
the iGC. Furthermore, the location of the swaps changes 
significantly along the slice direction. The vlGC shows 
water–fat swaps in 3 subjects.

Figure 7 shows a lumbar spine with an intradiscal air in-
clusion. The derived χ-map based on the field-map of the 
vlGC reveals the true underlying paramagnetic property of 
the air-like gas (of the order of 9.4 ppm). The χ-map based on 
the field-map of the iGC indicates a paramagnetic suscepti-
bility source. The presence of the air-inclusion was verified 
on a computed tomography (CT) scan. The CT scan showed 
an additional calcification on the top of the FOV, which also 
results in an MR signal void in the corresponding image of the 
magnitude of the first echo. QSM based on both field-map-
ping methods is able to correctly estimate the diamagnetic 
property of the calcification.

Figure 8 shows field-mapping and QSM results of a sec-
ond lumbar spine scan with the trabecular bone structure of 
a spinous process as the region-of-interest (arrow). The esti-
mated QSM maps show first that the field-map estimated by 
the iGC was very smooth when compared to the vlGC and 

second that the smoothed field-map translated to a significant 
underestimation of the susceptibility values of the cortical 
bone structure in the ROI.

Figure 9 shows the results of the mean magnetic suscepti-
bility value analysis of the spinous process cortical bone region 
of the L3 vertebra in the lumbar spine of the 4 scanned volun-
teers. QSM based on the vlGC yields susceptibility values that 
are significantly closer to the literature value of cortical bone 
than QSM based on the iGC. Furthermore, in a repeatability 
experiment in one subject the mean susceptibility value within 
the ROI was stable when using the field-map from the vlGC.

5 |  DISCUSSION

The present work aimed to develop a method for improved 
field-mapping in challenging anatomical water–fat regions and 
to particularly apply the developed method in body applica-
tions of QSM. Specifically, this work first proposed a global 
penalized maximum likelihood cost function with a novel for-
mulation to enforce the data consistency and then introduced 
the solution of the cost function using a single-min-cut graph-
cut on a variable-layer graph that allows to select the same 
field-map range for each voxel. The work then examined the 
effect of the field-mapping accuracy on the estimated mag-
netic susceptibility in particular close to MR signal voids and 
applied the developed field-mapping method in body QSM of 
regions enclosing water, fat, and MR signal voids.

F I G U R E  4  Field-mapping (first row) and QSM (second row) results of the numerical simulation with sharp air-tissue interface of an MR-
invisible air bubble in an environment with 30% fat fraction using a simple closed-form �2-regularized dipole inversion. The time given below each 
method’s name represents the run-time of the respective method. The first column shows the reference field- and susceptibility-map, the second 
column shows the results from the iGC, the third column shows the results from the rGOOSE and the fourth column the results from the vlGC and 
the fifth column shows line plots for the field-mapping and susceptibility-map for all methods. Compared to the iGC the vlGC is able to greatly 
reduce streaking by correctly estimating field-map values close to the signal void and the shape of the sphere is preserved while the computational 
cost is only reasonably increased. The rGOOSE is already performing significantly better in the parameter estimation than the iterative graph-cut. 
However, it suffers from its graph construction leading to a long run-time and a accidental rejection of the correct field-map solution close the 
signal void in the algorithms default settings
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   | 1705BOEHM Et al.

Since the vlGC will always find the global minimum of 
the cost function,30 the correct estimation of the field-map 
and the occurrence of resulting water–fat swaps only de-
pend on the design of the cost function. Consequently, the 
proposed field-mapping method introduces some important 
novel features for solving the water–fat problem using graph-
cuts. First, the vlGC algorithm enforces the data consistency 
solely by the extraction of the minima from the voxel-wise 

estimates. In the iGC and in the rGOOSE methods,20,25 the 
voxel-wise residual is used for data consistency. The pres-
ently proposed enforcement of the data consistency by ex-
tracting only the local minima equalizes the significance of 
all voxels in the volume in reference to the smoothness con-
straint. The ability of the vlGC to find the global minimum 
of the cost function potentially comparing a manifold of 
voxel-wise solutions is a strong advantage when compared 

F I G U R E  5  Field-mapping (first two rows) and QSM (last two rows) results of the experimental air bubble phantom with sharp air-water 
interface and varying shim fields. The iGC is challenged in estimating the sharp boundary of the phantom estimating non-physical values within 
the signal void. Furthermore, the iGC is only able to pick up the background field variation for the first shim field setting of 0.2 mT/m and is 
showing wraps at higher shim field settings. The difference of the vlGC field-map and of the iGC field-map for the first shim setting is in the order 
of 440 Hz and refers to a total swap for the iGC. QSM based on the vlGC yields homogeneous and robust results for all shim field strengths while 
slightly underestimating the susceptibility within the air inclusion. QSM based on the iGC shows a strong dependence on the underlying shim field 
strength
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1706 |   BOEHM Et al.

to the iGC. In the iGC, for each voxel only two field-map 
candidates are taken and a graph-cut is used to solve the 
cost function value in a so-called jump move. If the cost 
function decreases, the field-map candidate is taken. This 
procedure is repeated until a defined convergence criterion 
is met. In contrast to the vlGC, the iGC needs to perform 
several graph-cuts in several jump move steps. While each 
graph-cut is guaranteed to find the globally optimal solution 
to the corresponding binary sub-problem, this is not neces-
sarily true for the global cost function. Furthermore, since 
in the iGC the candidates are not restricted to be only local 
minima of the voxel-wise field-map estimate, the field-map 
estimation is inherently dependent on the use of an addi-
tional data consistency term.

Second, the vlGC requires an a priori defined field-map 
sampling interval. Specifically, the present work first defined 
an optimal sampling interval over which the voxel-wise cost 
function Equation (5) needs to be sampled in order to obtain 
phase unwrapped field-map solutions in the whole volume. 
Overestimating the size of the field-map sampling interval 
still leads to the global minimum of the cost function, but with 
a longer run-time of the graph routine. Since f̂B is unknown, 
finterval = |max(̂fB)−min(̂fB)| must be estimated with prior 

knowledge. Since overestimating the size of the sampling 
interval f still leads to the global minimum of the cost func-
tion, one can choose the sampling interval in this first step 
arbitrarily large. For f> finterval+n ⋅ fperiod, n∈ℕ, Equation (6) 
becomes periodic with n+1 solutions. Since the graph-cut al-
gorithm will yield only one solution, the graph-cut solution 
can lead to field-maps not centered around zero but in a dif-
ferent period of the field-map estimate. Which exact solution 
is yielded simply depends on rounding and numerical errors. 
However, all above solutions are correct and can be brought 
into the same period centered around zero by computing the 
mean of the field-map estimate modulo the period length.

Third, the vlGC uses a graph construction enabling ac-
celerated computations. The introduced advancements in 
the graph construction related to the variable-layer archi-
tecture and the inclusion to the graph of signal-only regions 
lead to the smallest possible size of the graph for a given 
a priori known sampling interval ftotal. After the field-map 
sampling interval is defined, it is important to point out that 
the variable-layer graph architecture significantly reduces 
the number of nodes per voxel compared to formerly pro-
posed single-min-cut graph-cut algorithms. Usually, in re-
gions with high SNR there are only two minima per period 

F I G U R E  6  Field-mapping (first column) and water- (second column) fat (third column) separation results in a large FOV head/neck 
region scan. The first row shows the results from the iGC and the second row the results from the vlGC. The vlGC is able to resolve the large 
dynamic range of 5340 Hz on the shown field-map resolving even the very rapid field-map variation at the bottom of the FOV. The iGC yields a 
significantly reduced dynamic range and shows phase-wraps. The phase-wraps propagate into the water–fat separated images (arrows). Similar 
datasets are provided in the supplementary material as videos showing the methods comparison across slices
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in . Only in voxels with low SNR there are commonly 
more. Compared to GOOSE24 and rGOOSE,25 the size of 
the graph using the vlGC can be reduced by approximately 
a factor of 50 and 4 for voxels with high SNR, respectively, 
and by factor of 200 and 16 for voxels with low SNR, re-
spectively. Such a reduction in the graph size results in a 
decrease of the required run-time by an order of magnitude. 
However, in the case of strong background field-map vari-
ations as shown in Figure 6 the vlGC could potentially be 
combined with a phase-unwrapping methods such as38 or 
coarse to fine grid approaches as used in39 in order to further 
reduce the run-time. The variable-layer graph construction 
is also a significant advantage over the rGOOSE method 
that only allows for the same amount of minima per voxel 
for the whole volume. However, when the same field-map 
range is sampled for the voxel-wise field-map estimate, the 
number of minima in a voxel depends on the SNR and can 
consequently vary voxel by voxel. Although rGOOSE guar-
antees convergence to its global minimum, the restriction 
in the graph-construction can lead either to an accidental 

miss of the correct voxel field-map estimate or to a signifi-
cant increase in run-time making the method infeasible for 
clinical datasets of large sizes. Furthermore, the vlGC has 
been demonstrated to be able to directly yield non-wrapped 
field-maps. An accurate and inherently non-wrapped field-
map is particularly important for quantitative susceptibility 
mapping. Field-map errors and wraps are expected to trans-
late in strong susceptibility artifacts.16 Since QSM is based 
on the field-map estimate, errors in the field-map estimation 
propagate into the susceptibility maps as demonstrated in 
Figures 4 and 5. Using the proposed method, an erroneous 
algorithmic step in the QSM processing pipeline can be cir-
cumvented. It has also been demonstrated that despite the 
long-range effect of the dipole field and the corresponding 
kernel,1 field-map values at the border to an MR signal void 
containing a strong susceptibility source like air are import-
ant to map correctly in order to obtain correct susceptibility 
values. Correct field-map values at a certain distance to the 
signal void and data weighting are not sufficient. Therefore, 
it becomes essential to accurately estimate field-map values 

F I G U R E  7  Field-mapping (first row) and susceptibility (second row) results in a pathological lumbar spine with a calcification at the top of 
the FOV and a intradiscal gas inclusion at the bottom leading to an MR signal void region, both highlighted by arrows. The first column shows 
the magnitude of the first echo , the second column shows the results from the iGC, the third column shows the result from the vlGC, and the last 
column shows line plots over the intradiscal gas inclusion. All susceptibility maps can correctly estimate the calcification to be diamagnetic. The 
line profiles over the intradiscal gas inclusion illustrate the significantly different values yielded by the iGC and the vlGC in this region. Only the 
vlGC is able to reveal the true underlying paramagnetic property of the air-like gas (of the order of 9.4 ppm). The susceptibility map based on the 
field-maps of the iGC falsely indicates the air inclusion to be mainly diamagnetic. The result is verified by the CT scan
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as close as possible to an MR signal void. This conclusion 
is supported by the spine with an intradiscal air inclusion. 
QSM based on the vlGC is able to reveal the strong para-
magnetic susceptibility value of the air-like gas. The correct 
estimation of the air inclusion magnetic susceptibility was 
not achieved with the field-maps of the iGC. Furthermore, 
the vlGC is able to estimate susceptibility values much 
closer to the literature value in a cortical bone region-of-in-
terest in several subjects as shown in Figures 8 and 9.

The present work has some limitations. In order to bene-
fit from the full 3D neighborhood information, the graph for 
the whole volume needs to be loaded into the RAM, which 
can be in the order of several 10  GiB. Furthermore the 
graph-cut itself is intrinsically not parallelizable without the 
loss of accuracy40-42 and the run-time drastically scales with 
the number of nodes. Due to possible computation time re-
strictions with big datasets, a chunked minimization can be 
applied, which does not only minimize partial volumes (eg, 
slices) independently, but applies the smoothness constraint 
from Equation (6) from one chunk to the adjacent. A more 
detailed description of the chunked minimization is pro-
vided in the supplementary material. However, the run-time 
for a clinical relevant dataset like in the presented lumbar 

F I G U R E  9  Mean magnetic susceptibility value analysis of the 
spinous process cortical bone region-of-interest at the L3 in 4 subjects 
as well as a repeatability test of the fourth subject by re-positioning and 
re-scanning the subject. QSM based on the iGC yields in all subjects 
a significant underestimation of susceptibility values of cortical bone 
while susceptibility values based on the vlGC are significantly closer 
to the literature value

F I G U R E  8  Field-mapping (first row) and susceptibility (second row) results in the spinous process cortical bone region-of-interest (arrows). The 
first column shows the magnitude of the first echo, the second column shows the results from the iGC, the third column shows the result from the vlGC, 
and the last column shows line plots over the cortical bone region. QSM based on the vlGC is able to estimate the literature susceptibility value of bone 
of approximately -2 ppm at the spinous process while the QSM based on the iGC yields significantly reduced susceptibility values of only −1 ppm
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spine is in the reasonable order of 5 minutes. Second, the 
selection of the size of the neighborhood N(r) of the global 
cost function has not been optimized. The 6-connected von 
Neumann voxel neighborhood including the adjacent voxel 
in x-, y-, z-direction was presently used but a 26-neighbor-
hood would be also possible. A larger neighborhood trans-
lates into an increased importance of the spatial smoothness 
term in Equation (6), which has to be considered. Since only 
local minima that have a predefined distance in frequency 
are extracted, the global optimal field-map is piece-wise 
constant with respect to the size of the penalization term 
and therefore the global minimum might not be effected. 
Third, studies on field-map and QSM generally have the 
limitations that results can only heuristically be evaluated 
in the water–fat domain or be compared to literature values 
for susceptibility values. The present work showed that the 
present methodology yields robust field-map and suscepti-
bility results in numerical simulations of air-tissue geome-
tries, in a phantom scanned at different settings and in vivo 
spine measurements. However, the present methodology 
would strongly benefit from a large scale validation of its 
performance in estimating magnetic susceptibility in further 
body QSM applications.

6 |  CONCLUSION

A single-min-cut graph-cut field-mapping method with a 
variable-layer construction was proposed for field-mapping 
in body water–fat regions. The proposed method shows the 
following significant improvements over an iterative graph-
cut field-mapping method: (a) it can resolve strong field-
mapping variations close to MR signal voids, (b) it performs 
significantly better in regions with strong field-map varia-
tion and high R∗

2 values, (c) it can directly yield non-smooth 
field-maps like a voxel-wise method, and (d) it significantly 
improves subsequently performed quantitative susceptibility 
mapping particularly in areas close to MR signal voids.
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VIDEO S1. Volunteer 1: Field-mapping (first column) and 
water– (second column) fat (third column) separation results 
in large FOV head/neck region scan. The first row shows the 
results from the iGC and the second row the results from the 
vlGC. The vlGC is able to resolve the large dynamic range 
of the field-map in the subject resolving even the very rapid 
field-map variation at the bottom of the FOV. The iGC yields 
a significantly reduced dynamic range of the field-map and 
shows water–fat swaps. The location of water–fat swaps in 
the iGC results strongly varies along slice direction
VIDEO S2. Volunteer 2: Field-mapping (first column) and 
water– (second column) fat (third column) separation results 
in large FOV head/neck region scan. The first row shows the 
results from the iGC and the second row the results from the 
vlGC. The vlGC is able to resolve the large dynamic range 
of the field-map in the subject resolving even the very rapid 
field-map variation at the bottom of the FOV. The iGC yields 
a significantly reduced dynamic range of the field-map and 
shows water–fat swaps. The location of water–fat swaps in 
the iGC results strongly varies along slice direction
VIDEO S3. Volunteer 3: Field-mapping (first column) and 
water– (second column) fat (third column) separation results 
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in large FOV head/neck region scan. The first row shows the 
results from the iGC and the second row the results from the 
vlGC. The vlGC is able to resolve the large dynamic range 
of the field-map in the subject resolving even the very rapid 
field-map variation at the bottom of the FOV. The iGC yields 
a significantly reduced dynamic range of the field-map and 
shows water–fat swaps. The location of water–fat swaps in 
the iGC results strongly varies along slice direction
VIDEO S4. Volunteer 4: Field-mapping (first column) and 
water– (second column) fat (third column) separation results 
in large FOV head/neck region scan. The first row shows the 
results from the iGC and the second row the results from the 
vlGC. The vlGC is able to resolve the large dynamic range 
of the field-map in the subject resolving even the very rapid 
field-map variation at the bottom of the FOV. The iGC yields 
a significantly reduced dynamic range of the field-map and 
shows water–fat swaps. The location of water–fat swaps in 
the iGC results strongly varies along slice direction
VIDEO S5. Volunteer 5: Field-mapping (first column) and 
water– (second column) fat (third column) separation results 
in large FOV head/neck region scan. The first row shows the 
results from the iGC and the second row the results from the 
vlGC. The vlGC is able to resolve the large dynamic range 
of the field-map in the subject resolving even the very rapid 
field-map variation at the bottom of the FOV. The iGC yields 
a significantly reduced dynamic range of the field-map and 
shows water–fat swaps. The location of water–fat swaps in 
the iGC results strongly varies along slice direction
VIDEO S6. Volunteer 6: Field-mapping (first column) and 
water– (second column) fat (third column) separation results 
in large FOV head/neck region scan. The first row shows the 
results from the iGC and the second row the results from the 
vlGC. The vlGC is able to resolve the large dynamic range 
of the field-map in the subject resolving even the very rapid 
field-map variation at the bottom of the FOV. The iGC yields 
a significantly reduced dynamic range of the field-map and 
shows water–fat swaps. The location of water–fat swaps in 
the iGC results strongly varies along slice direction
VIDEO S7. Volunteer 7: Field-mapping (first column) and 
water– (second column) fat (third column) separation results 
in large FOV head/neck region scan. The first row shows the 
results from the iGC and the second row the results from the 
vlGC. The vlGC is able to resolve the large dynamic range 
of the field-map in the subject resolving even the very rapid 
field-map variation at the bottom of the FOV. The iGC yields 
a significantly reduced dynamic range of the field-map and 
shows water–fat swaps. The location of water–fat swaps in 
the iGC results strongly varies along slice direction
VIDEO S8. Volunteer 8: Field-mapping (first column) and 
water– (second column) fat (third column) separation results 
in large FOV head/neck region scan. The first row shows the 
results from the iGC and the second row the results from the 
vlGC. The vlGC is able to resolve the large dynamic range 

of the field-map in the subject resolving even the very rapid 
field-map variation at the bottom of the FOV. The iGC yields 
a significantly reduced dynamic range of the field-map and 
shows water–fat swaps. The location of water–fat swaps in 
the iGC results strongly varies along slice direction.
VIDEO S9. Volunteer 9: Field-mapping (first column) and 
water– (second column) fat (third column) separation results 
in large FOV head/neck region scan. The first row shows the 
results from the iGC and the second row the results from the 
vlGC. The vlGC is able to resolve the large dynamic range 
of the field-map in the subject resolving even the very rapid 
field-map variation at the bottom of the FOV. The iGC yields 
a significantly reduced dynamic range of the field-map and 
shows water–fat swaps. The location of water–fat swaps in 
the iGC results strongly varies along slice direction
VIDEO S10. Volunteer 10: Field-mapping (first column) and 
water– (second column) fat (third column) separation results 
in large FOV head/neck region scan. The first row shows the 
results from the iGC and the second row the results from the 
vlGC. The vlGC is able to resolve the large dynamic range 
of the field-map in the subject resolving even the very rapid 
field-map variation at the bottom of the FOV. The iGC yields 
a significantly reduced dynamic range of the field-map and 
shows water–fat swaps. The location of water–fat swaps in 
the iGC results strongly varies along slice direction
VIDEO S11. Volunteer 11: Field-mapping (first column) and 
water– (second column) fat (third column) separation results 
in large FOV head/neck region scan. The first row shows the 
results from the iGC and the second row the results from the 
vlGC. The vlGC is able to resolve the large dynamic range 
of the field-map in the subject resolving even the very rapid 
field-map variation at the bottom of the FOV. The iGC yields 
a significantly reduced dynamic range of the field-map and 
shows water–fat swaps. The location of water–fat swaps in 
the iGC results strongly varies along slice direction
VIDEO S12. Volunteer 12: Field-mapping (first column) and 
water– (second column) fat (third column) separation results 
in large FOV head/neck region scan. The first row shows the 
results from the iGC and the second row the results from the 
vlGC. The vlGC is able to resolve the large dynamic range 
of the field-map in the subject resolving even the very rapid 
field-map variation at the bottom of the FOV. The iGC yields 
a significantly reduced dynamic range of the field-map and 
shows water–fat swaps. The location of water–fat swaps in 
the iGC results strongly varies along slice direction
VIDEO S13. Volunteer 13: Field-mapping (first column) and 
water– (second column) fat (third column) separation results 
in large FOV head/neck region scan. The first row shows the 
results from the iGC and the second row the results from the 
vlGC. The vlGC is able to resolve the large dynamic range 
of the field-map in the subject resolving even the very rapid 
field-map variation at the bottom of the FOV. The iGC yields 
a significantly reduced dynamic range of the field-map and 
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1712 |   BOEHM Et al.

shows water–fat swaps. The location of water–fat swaps in 
the iGC results strongly varies along slice direction. The 
vlGC and the iGC show a water–fat swap in the upper part 
of the brain
VIDEO S14. Volunteer 14: Field-mapping (first column) and 
water– (second column) fat (third column) separation results 
in large FOV head/neck region scans. The first row shows the 
results from the iGC and the second row the results from the 
vlGC. The vlGC is able to resolve the large dynamic range 
of the field-map in the subject resolving even the very rapid 
field-map variation at the bottom of the FOV. The iGC yields 
a significantly reduced dynamic range of the field-map and 

shows water–fat swaps. The location of water–fat swaps in the 
iGC results strongly varies along slice direction. The vlGC and 
the iGC show a water–fat swap in the upper part of the brain

How to cite this article: Boehm C, Diefenbach MN, 
Makowski MR, Karampinos DC. Improved body 
quantitative susceptibility mapping by using a 
variable-layer single-min-cut graph-cut for field-
mapping. Magn Reson Med. 2021;85:1697–1712. 
https://doi.org/10.1002/mrm.28515
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3 Comprising Journal Publications

3.3 Journal Publication II:

Susceptibility artifact correction in MR

thermometry for monitoring of mild radiofrequency

hyperthermia using total field inversion

The publication entitled Susceptibility artifact correction in MR thermometry for

monitoring of mild radiofrequency hyperthermia using total field inversion was published

in Magnetic Resonance in Medicine (ISSN: 0740-3194). The manuscript was authored

by Christof Boehm, Marianne Goeger-Neff, Hendrik T. Mulder, Benjamin Zilles, Lars

H. Lindner, Gerard C. van Rhoon, Dimitrios C. Karampinos, and Mingming Wu. It is

available online (DOI: 10.1002/mrm.29191) as an open access article under the terms

of the Creative Commons Attribution-NonCommercial License. Preliminary results

were also presented in the conference contribution C15, which was awarded with an

ISMRM Magna Cum Laude Merit Award and selected as an oral presentation at the

ISMRM annual meeting 2021. A summary of the publication is provided in Section

3.3.1, the author contributions are listed in Section 3.3.2 and the full text is included

subsequently on the following pages.

3.3.1 Abstract

Purpose

Mild radiofrequency hyperthermia (RF-HT) of cancerous tissue during chemotherapy

has shown to significantly increase the survival rate. Exact measurement of the tissue

temperature is critical in the procedure to prevent tissue damage by overheating.

Conventionally, sensor probes are placed invasively inside the tumor before therapy

starts. However, this method has a few drawbacks, including the invasive nature of

the probe placement during which cancer cells could be spread outside the tumor and

the only localized temperature measurement. MRI can theoretically record 3D relative

temperature maps non-invasively due to the proton resonance frequency shift of water

with temperature. However, susceptibility artifacts often dominate the temperature

changes by several orders of magnitude. In this work the use of a TFI algorithm for

susceptibility contribution estimation and removal is proposed and applied to overcome

limitations of previously proposed susceptibility removal methods.

42



3 Comprising Journal Publications

Methods

A `1-norm-based TFI algorithm was developed and compared to the Laplacian boundary

value and projection onto dipole fields background field removal techniques. The

comparison encompassed a simulation, a phantom scan, four volunteer scans, and

patient scans from four individuals—one with cervical cancer, two with sarcoma, and

one with seroma—undergoing mild RF-HT treatment.

Results

The simulation revealed that both TFI and the BFR methods remove the suscepti-

bility induced background fields while preserving the phase of temperature. In the

phantom heating experiment TFI yields the most accurate results, while PDF tends

to underestimate the temperature at air tissue interfaces and LBV removes valuable

pixel layers. In the 4 volunteers scans, TFI resulted in the least cumulative error. In

the patient scans, the temperature estimated via correction with TFI correlated best

with the temperature probe inside the tumor.

Conclusion

The proposed `1-norm based TFI algorithm outperforms previously suggested BFR

method for susceptibility artifact correction in terms of accuracy and robustness.

3.3.2 Author contributions

The first author developed the problem specific inverse model for the susceptibility

source removal and implemented the optimization code in Python. The data were

acquired with help from the coauthors. The first author furthermore analyzed and

interpreted the data, and wrote the manuscript.

3.3.3 Original Article
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Purpose: MR temperature monitoring of mild radiofrequency hyperthermia
(RF-HT) of cancer exploits the linear resonance frequency shift of water with
temperature. Motion-induced susceptibility distribution changes cause artifacts
that we correct here using the total field inversion (TFI) approach.
Methods: The performance of TFI was compared to two background field
removal (BFR) methods: Laplacian boundary value (LBV) and projection onto
dipole fields (PDF). Data sets with spatial susceptibility change and B0-drift were
simulated, phantom heating experiments were performed, four volunteer data
sets at thermoneutral conditions as well as data from one cervical cancer, two
sarcoma, and one seroma patients undergoing mild RF-HT were corrected using
the proposed methods.
Results: Simulations and phantom heating experiments revealed that using
BFR or TFI preserves temperature-induced phase change, while removing sus-
ceptibility artifacts and B0-drift. TFI resulted in the least cumulative error for all
four volunteers. Temperature probe information from four patient data sets were
best depicted by TFI-corrected data in terms of accuracy and precision. TFI also
performed best in case of the sarcoma treatment without temperature probe.
Conclusion: TFI outperforms previously suggested BFR methods in terms of
accuracy and robustness. While PDF consistently overestimates susceptibility
contribution, and LBV removes valuable pixel information, TFI is more robust
and leads to more accurate temperature estimations.
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1 INTRODUCTION

Mild hyperthermia (HT) treatment (40-44◦C) of various
cancer types has shown to sensitize tumors to radio- and
chemotherapy, thus increasing the survival rate.1 Regional
heating of tissue can be induced with radiofrequency (RF)
antennas that create a focus in the target area. This treat-
ment modality has become part of clinical practice for the
treatment of various cancer types, including the treatment
of sarcoma patients and patients with cervical cancer.2-4 To
prevent tissue damage by overheating, many procedures
rely on temperature probes that are placed intralumi-
nally or superficially onto the skin. Sometimes, a catheter
is inserted into the tumor. In addition to these limited
local temperature information, the only feedback origi-
nates from the patient’s complaint to feeling local heat.
MR temperature mapping can provide the required tis-
sue coverage to detect unwanted hot-spots, and to monitor
whether the desired thermal dose is applied to the tumor.

MR temperature monitoring of aqueous tissue exploits
the linear proton resonance frequency shift (PRFS) of
water with temperature, that can detect relative tempera-
ture changes with regards to a reference image.5-7 Using
PRFS of water can lead to accurate temperature readings
when other phase confounders are accounted for.8

The conductivity change of tissue with temperature
leads to different phase offsets at different time points
and thus to significant temperature estimation errors.9
This becomes especially important in the context of mild
regional heating as the heated volume is large and as a
high accuracy of temperature estimation is important for
the small temperature change. The double echo gradient
echo (DEGRE)9 scheme or a phase-cycled fast spin echo
(FSE) sequence10 can correct for the conductivity bias.

Spatiotemporal drift of the main magnetic field B0 as a
result of hardware heating and hardware instabilities may
be misinterpreted as temperature change if not corrected
for.11 The installation of additional reference tubes in the
scanned field of view (FOV) containing substances with
negligible PRFS with temperature, such as oil or silicone,
allows to detect the B0-drift in these areas.12 Signal outside
the heated area had been used as a reference as well.13 The
field drift is subsequently extrapolated onto the scanned
FOV and subtracted from the phase difference map. The
concept of B0-drift correction using magnetic field probes
was shown previously14 and applied more recently to eval-
uate the specific absorption rate using MR thermome-
try.15 However, this setup requires additional hardware.
Another approach suggested the acquisition of free induc-
tion decay (FID) signals across multiple channels and the
use of coil sensitivity profiles to generate B0-drift maps.16

Monitoring organs affected by periodic respiratory
motion requires a high temporal resolution and thus

oftentimes only allow for two-dimensional (2D) slice cov-
erage.17 Motion compensation techniques in the con-
text of tissue ablation and mild HT using MR-guided
high-intensity focused ultrasound (MRgHIFU) include the
multi-baseline approach, which acquires a dictionary of
images at different respiratory states that can be used as the
best matching reference.18-20 This addresses periodic tissue
displacement during ablation using MRgHIFU in abdomi-
nal organs21 as well as periodic B0-fluctuations during mild
HT using MRgHIFU in the head and neck region.22

Another approach used during MRgHIFU is referred
to as the “referenceless” approach.23 It uses the phase of
the current image outside the heated area as reference and
interpolates a smooth function for the phase distribution
into the heated area.24 It resolves both the motion problem
from reference images acquired at a different motion state
and B0-drift simultaneously, but only works if the heat-
ing is spatially confined, which is not the case during mild
regional RF-HT.

It has been shown previously, that respiratory-induced
B0-fluctuations are negligible during PRFS-based MR ther-
mometry of mild RF-HT in the pelvic region.25 The pre-
dominant artifact source here originates from dynamic
changes of susceptibility distribution leading to dipole
artifacts that propagate to neighboring tissues.26 Due
to intestinal motion, the paramagnetic gases and dia-
magnetic water tissue exchange position, and cause
large susceptibility distribution changes during treatment.
The observed field perturbation equals the susceptibility
change map convoluted with a dipole kernel. Further-
more, moving air bubbles inside a cooling water bolus
during MR temperature monitoring of thermal therapies
lead to strong susceptibility artifacts.25

Recently, it was proposed to correct for both the suscep-
tibility artifacts and the B0-drift up to a spatially first-order
phase distribution in PRFS-based MR thermometry by
solving the Laplacian boundary value problem (LBV)27

or by projection onto dipole fields (PDF).25,28 These two
methods are well known in the context of quantitative sus-
ceptibility mapping (QSM) for separating the foreground
from the background fields and were demonstrated to be
advantageous in comparison to other background field
removal (BFR) methods.29,30 PDF is formulated as an opti-
mization problem where the magnetic field inside the
foreground mask is minimized by placing origins of dipole
fields into a background mask. LBV solves the Laplace
operator at the interface between foreground and back-
ground under the assumption that the field contribu-
tions at this layer of pixels originate only from the back-
ground field. However, PDF is known to overestimate the
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122 BOEHM et al.

background field, especially at air–tissue interfaces.29,31

The LBV-based BFR method removes at least one pixel
layer at the air–tissue border in order to calculate the
Laplace operator, resulting in a loss of valuable tempera-
ture information.

Total field inversion was introduced for QSM and
improves the quality of the QSM maps by incorporat-
ing background and local field estimation in one single
step.31-33 In this paper we applied TFI to DEGRE data
acquired during mild RF-HT to correct for motion-induced
susceptibility artifacts and resolve B0-drift. We show that
TFI can overcome the problem of PDF to overfit the back-
ground phase contribution as well as the problem of LBV
to erase one pixel layer.

2 METHODS

2.1 MR thermometry

The phase difference from DEGRE was extracted as given
in formula 1 in Reference 10. The resulting phase differ-
ence map to the reference time point was then unwrapped
using the unwrap_phase method of the scikit-image
python library (https://scikit-image.org/). The TFI and
the BFR were then applied to the unwrapped phase as
described in Reference 25. TFI and both BFR remove a
spatially linear and constant phase distribution. This ren-
dered the B0-drift correction using the signal from refer-
ence tubes obsolete. However, as we observed a spatially
constant temperature increase within the sarcoma and
seroma patient, and a spatially linear temperature increase
in the phantom experiment, we used the signal within
the reference tubes to discern temperature and B0-drift, as
shown in Supporting Information Figure S1 of Reference
25. A polynomial function of first order was fit over the
three-dimensional (3D) volume using the signal from all
four vials for that purpose. In the following, we used the
notation “B0-drift corrected” for this approach.

2.2 Total field inversion

The total field inversion method consists of minimizing the
following cost function:

y = arg min
y′

= ||W(f − d ∗ Py′)||1 + 𝜆||MG∇Py′||1, (1)

where || . ||1 is the 𝓁1-norm, W is the magnitude weight-
ing, f is the unwrapped phase, d is the dipole kernel, ∗
denotes a convolution, P is the preconditioner, 𝜆 is the reg-
ularization parameter, MG is the MEDI-like edge mask34

and ∇ is the gradient operation.35 The final QSM map was

computed as 𝜒 = Py. The estimated susceptibility distri-
bution 𝜒 was forward simulated to a phase map and
subsequently demodulated from the original phase map.
By design, the preconditioner P implicitly distinguishes
between regions of background and local susceptibility
sources.31 To distinguish between background and local
regions (region-of-interest [ROI]), a binary mask Mi per
time point was calculated based on the maximum inten-
sity projection (MIP) across echo times thresholded at 10%
of its maximum value. A foreground mask per time point
was subsequently defined where both the aforementioned
thresholded MIP and the MIP at the reference time point
had enough signal. For the LBV method three pixel layers
were eroded from the foreground mask to obtain robust
results through subjects and anatomies. Outside Mi, the
preconditioner was calculated as a continuous cubic decay
fitted to background susceptibility values obtained by the
PDF method28 as proposed in Reference 36. Inside Mi, the
preconditioner was set to 1. Consequently, the precondi-
tioner was automatically adapted to the ROI. To obtain
the edge mask MG, the Sobel filter in all three spatial
dimensions was applied on the MIP. The regularization
parameter 𝜆 was determined by a normalized root mean
square error (RMSE) analysis of the numerical simula-
tion (see below) and set to 1 for all datasets. For the
normalization the averaged Euclidean norm of the refer-
ence map was used. The processing was mainly performed
in Python 3.8 and CuPy 8.3.037 on a NVIDIA GeForce
GTX 1080 Ti. Only for LBV the Matlab implementation
available from Cornell University (http://pre.weill.cornell.
edu/mri/pages/qsm.html) was used. The Matlab function
was called from Python using the Matlab Engine API for
Python.

2.3 Materials

The phantom heating experiment, the volunteer data
sets as well as the cervical cancer RF-HT treatment
were acquired on a 1.5T GE system (GE Discovery
MR450w) in combination with a BSD2000-3D Sigma Eye
MR-compatible RF applicator (PYREXAR Medical). The
RF applicator consisted of 24 dipole antennas arranged
in three rings of eight antennas. Water circulation was
not turned on during the phantom measurement nor the
volunteer study. Water was circulated during the patient
treatment, but stopped during MR measurements to avoid
flow artifacts as described in Reference 38. The sarcoma
patients were monitored in a 1.5T Philips system (Philips
Ingenia 1.5T) and treated using a Sigma Eye MR Uni-
versal, or the Sigma 30 MR (PYREXAR Medical) in case
of the single-leg treatment. RF-immune thermistors with
high-impedance carbon wires (“Bowman” temperature
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BOEHM et al. 123

probes39) with an accuracy of 0.1◦C were used to validate
MR thermometry data.

2.4 Simulations

The effect of motion-induced susceptibility changes on the
phase distribution by field disturbances were simulated
with a numerical water phantom. A spherical change of
susceptibility values from water to air was simulated in
the image center. This corresponds to a temporal field dif-
ference between an air-filled sphere at a reference time
point and a water-filled sphere at the current time point.
A FOV= 150 × 150 × 150 mm, an isotropic voxel size=
1 × 1 × 1 mm3 and a susceptibility of 9.44 ppm40 for air in
reference to water was used. A 3D temperature increase
following a Gaussian profile with a peak value of 10◦C and
a standard deviation of 5 voxels was added to the image.
Furthermore, a spatially variant 1st order phase was added
to imitate B0-drift.

2.5 Phantom measurements

A 2D multislice DEGRE with slice-interleaved acquisi-
tion scheme was used to monitor temperature. Using
the phase signal at both TEs compensated for conductiv-
ity change-induced phase offsets9 (TR= 620 ms, 25 slices,
total scan time= 83 s, TE1 = 4.8 ms, TE2 = 19.1 ms, matrix
size= 128 × 128, FOV= 50 cm × 50 cm, flip angle= 40◦,
slice thickness= 10 mm, bandwidth= 325.5 Hz/px). A
cylindrical phantom (with a diameter of 30 cm and a
depth of 40 cm) consisting of demineralized water, “super
stuff” (TX-151), a hydrophilic organic polymer solidifying
powder, and NaCl, to mimick the electrical properties of
human tissue was used, for details see Reference 10. The
phantom temperature started at 20◦C and 400 W heating
was performed for 25 min. This was repeated twice to show
repeatability. Within the phantom, temperature sensors
were placed which served as a reference measurement for
the MR-based temperature maps. The mean MR temper-
ature and standard deviation at the sensors’ tips was esti-
mated within a region of interest with the size of 8 voxels.

2.6 Volunteers

Single echo datasets were acquired in the pelvic region
of four volunteers at constant temperature (three
male, one female) adhering to local ethics regulations
(TE/TR= 15 ms/21 ms, 20 slices, matrix size= 128 × 160,
FOV= 50 cm × 50 cm, flip angle= 14◦, slice thick-
ness= 10 mm). As no temperature change was expected,
the conductivity bias did not need to be considered, and

thus, a double echo acquisition scheme was not required.
Between the acquisition of the reference baseline scan and
the second scan for calculating the temperature difference
map we waited for 30 min. Any temperature change would
result purely from motion-induced susceptibility artifacts.

2.7 Patients

Patient treatment scans were performed with the approval
of the respective local ethics board at two hospitals with
specialization on the treatment of cervical tumors and
sarcoma patients, respectively. The cervical tumor was
treated with the aforementioned BSD2000-3D Sigma Eye
applicator inside a 1.5T GE system. One patient with a
sarcoma, and one with a seroma after surgical removal
of the sarcoma in the thigh, were treated with a Sigma
Eye MR Universal inside a 1.5T Philips system. Tempera-
ture probes were inserted within catheters into the tumor.
Every 5 or 10 min the temperature probe was retracted
and reinserted within the catheter to map the temper-
ature distribution along the catheter. Another sarcoma
patient was treated using a single-leg applicator (Sigma
30 MR) and no invasive temperature probe was inserted
into the tumor. A DEGRE acquisition corrected for the
conductivity bias. In the GE system the echo times were
set to TE= [4.8, 19.1]ms, and TE= [4.60, 18.41]ms in the
Philips scanner, respectively. Other sequence parameters
were identical to the ones used for the phantom heat-
ing experiment. The total RF-HT treatment duration was
about 90 min with an initial ramp-up time of 30 min
and subsequent maintenance of the temperature of about
60 min. Depending on the scanning protocol, DEGRE
scans were acquired. A detailed summary of the patient
treatment scans is given in Table 1.

2.8 L1 versus L2 norm

To compare the presently adopted 𝓁1 data consistency
term to the previously proposed 𝓁2-based TFI,31 both
approaches were applied and compared with each other
in two of the volunteer scans at constant temperature,
one treatment of a sarcoma, and a treatment of a cervical
tumor.

2.9 Cumulative distribution function
analysis

For the detailed analysis of the error distribution for cases
where no or small temperature changes are expected, the
cumulative distribution function can serve as the cumula-
tive error and can be calculated as
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124 BOEHM et al.

T A B L E 1 Overview on mild radiofrequency hyperthermia treatment details on patient data. One cervix cancer patient, two sarcoma
patients and one seroma patient were included in this paper. Three out of four patients had a temperature probe placed inside the tumor
that was matched with MR thermometry data. The retraction frequency describes how frequently the temperature probe was retracted and
reinserted in order to map a one-dimensional temperature distribution. The respective echo times for the double echo gradient echo
sequence are also given.

Tumor type Applicator MR system

Probes +
retraction
frequency

TE1∕TE2
(ms)

Cervical tumor Figure 6 BSD2000-3D
Sigma Eye applicator

1.5 T GE
Discovery MR450w

1 (tumor)
every 10 min

4.8∕19.1

Seroma Figure 7 BSD2000-3D
Universal applicator

1.5 T Philips
Ingenia

1 (tumor)
every 5 min

4.6∕18.41

Sarcoma Figure 8 BSD2000-3D
Universal applicator

1.5 T Philips
Ingenia

1 (tumor)
every 5 min

4.6∕18.41

Sarcoma Supporting Information
Figure S1

Sigma 30 MR
Single leg applicator

1.5 T Philips
Ingenia

none 4.6∕18.41

cdf(ΔT) = 1
N

N∑
i=0

n(ΔTi), n(ΔTi) =

{
1, ΔTi ≤ ΔT
0, else

,

where N is the number of voxels and ΔTi the estimated
temperature at voxel i.

3 RESULTS

3.1 Simulations

The comparison of the three aforementioned susceptibil-
ity artifact correction methods in a numerical simulation
revealed that all three methods can eliminate both the
linear phase as well as the dipole, while preserving the
simulated Gaussian heat distribution (Figure 1). The LBV
method led to the least cumulative error and performed
best. PDF and TFI performed similarly, as seen in the
cumulative error plot and the cross-sectional slice. How-
ever, TFI performed best close to the air inclusion in the
center while LBV eroded valuable pixel information, PDF
showed residual artifacts at the air–water interface. How-
ever, the TFI-corrected map showed diagonal streaks of
over-estimated temperatures originating from the simu-
lated heating spot.

3.2 Phantom measurements

Temperature difference maps of the phantom heating
experiment are shown in Figure 2. In addition, the local
temperature estimation around two temperature sensor
tips are plotted against the reference temperature probe

F I G U R E 1 Results of temperature mapping in numerical
simulations. The simulated phase included a Gaussian-shaped
temperature change, as well as a dipole field caused by a moving air
inclusion within surrounding water, and a first-order B0-drift. The
second row illustrates the corrected temperature difference maps,
where B0-drift and the susceptibility artifact have been removed, but
the temperature was preserved. The Laplacian boundary value-based
temperature map showed the least residual artifacts at the cost of a
reduced region-of-interest, especially around the air inclusion in the
center. Projection onto dipole fields and total field inversion (TFI)
performed similarly, while the TFI-based temperature map showed
less artifacts especially at the air–water interface in the center of the
field of view. However, streaking could be observed for TFI. On the
top right, the cumulative error is plotted for all cases.

data in Figure 3. In the beginning, as observed in the
temperature maps, PDF overestimated the background
field effect, which is particularly prominent at the bor-
der of the phantom (arrow). This was also reflected in

 15222594, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

rm
.29191 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [18/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



BOEHM et al. 125

F I G U R E 2 Results of temperature
mapping in a gel phantom heating
experiment. In general, all methods showed
the highest temperature in the center of the
phantom which was the selected target area
for the heating microwaves. However, before
correction, the temperature map was
heterogeneous and showed unphysical
negative temperature values, while the
projection onto dipole fields-corrected
temperature map showed decreased
temperature values at air/phantom interfaces
(arrow). Laplacian boundary value and total
field inversion correction performed similarly
and yielded homogeneous temperature maps.

F I G U R E 3 Correlation between
sensors and MR temperature in the phantom
depicted in Figure 2. Sensors 1 and 2 refer to
the sensor position indicated in the
magnitude image in Figure 2. A root mean
square error analysis between MR
temperature and sensor data yielded 0.61,
0.81, 0.69, 0.68 for Laplacian boundary
value, the projection onto dipole fields
method, total field inversion, and the B0-drift
corrected data in sensor 1, respectively, and
1.31, 0.59, 0.82, 0.88 in sensor 2. As seen, MR
temperature mapping with susceptibility
correction or B0-drift correction was able to
follow the trend of an increasing temperature
for the phantom heating experiment.

the sensor matching data, where PDF-corrected MR data
predominantly underestimated the temperature increase
(Figure 2). At the same time, TFI underestimated the
temperature, however, it followed the probe data more
closely. At early time points, the LBV-corrected temper-
ature was underestimated in reference to the probe data
while overestimating at later timepoints. A RMSE anal-
ysis between MR data and probe data yielded 0.61, 0.81,
0.69, 0.68 for LBV, PDF, TFI, and the B0-drift corrected
data in sensor 1, respectively, and 1.31, 0.59, 0.82, 0.88
in sensor 2. It is to be noted, that the small RMSE dif-
ferences between the methods remain difficult to inter-
pret due to both a high spatial temperature distribution
gradient and a residual uncertainty of the exact probe
location. Yet, the phantom measurement has proven that
all three methods successfully removed the B0-drift effect
while largely preserving the temperature-induced phase
change, as the maps were in good agreement with the
sensor probe data. However, when calculating the stan-
dard deviation inside the region of interest around the
sensor probe, a smaller value could be observed for the
BFR and TFI-corrected maps compared to the B0-corrected

maps, which can be explained by a subvoxel sinking of
the phantom during the heating experiment and creation
of small local dipoles that were corrected by both BFR
and TFI.25

3.3 Volunteers

The temperature difference maps of four volunteers at con-
stant temperature showed strong susceptibility artifacts
before correction (Figure 4). The artifacts were signifi-
cantly reduced in the LBV- and PDF-corrected maps, but
residual artifacts, especially in the water bolus at the poste-
rior part of the image were visible. TFI was able to further
reduce these artifacts and performs best in terms of cumu-
lative error in all four volunteers (Figure 5). Furthermore,
the TFI-corrected maps contained less noise. The charac-
teristic of noise can best be assessed in the cumulative error
plots, in which TFI showed the smallest interval between
the 5 and 95 percentile for all subjects. The LBV-corrected
maps showed a reduced remaining ROI due to the inherent
need for erosion.
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F I G U R E 4 Results of temperature
mapping in four volunteers at constant
temperature. The temperature maps before
correction showed strong bowel
motion-induced susceptibility artifacts.
While in subjects 2–4 residual artifacts
remained especially in the posterior region,
the total field inversion method was able to
remove them.

F I G U R E 5 The cumulative error plots
were calculated including all pixels within a
common foreground mask. The plots
indicate that total field inversion results in
the least residual phase error in all four
volunteer datasets. For subjects 3 and 4, the
projection onto dipole fields and Laplacian
boundary value (LBV) method performed
similarly and are thus displayed on top of
each other. In contrast to the cumulative
error plot from the simulated data (Figure 1),
LBV was here more vulnerable to noise.
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F I G U R E 6 Results of temperature mapping for a cervical cancer patient during mild radiofrequency hyperthermia of the tumor. In the
uncorrected temperature map strong susceptibility artifacts close to the intestines can be observed, caused by inter-scan gas motion. After
correction the residual phase errors were reduced (arrows). However, the Laplacian boundary value (LBV) method was challenged with the
removal of the error and dipole phase propagates into the surrounding tissue. While projection onto dipole fields could further reduce the
range of the phase error it was minimal in the total field inversion-corrected map. Furthermore, the LBV method resulted in the loss of
valuable pixels. The comparison of the corrected temperature with a sensor illustrates how severe the susceptibility artifacts were in the
uncorrected DEGRE.

3.4 Patients

The performance of the methods was evaluated for a
mild RF-HT treatment of a patient with cervical can-
cer (Figure 6). Before susceptibility artifact correction,
motion-induced temperature errors led to dipole-shaped
artifacts amounting to more than 130◦C and below −80◦C
locally. LBV could reduce the susceptibility artifacts at the
cost of eroding pixel layers. PDF and TFI preserved the
pixel information close to the air tissue interface, while TFI
showed the smallest residual dipole artifact (arrow). Par-
ticularly noteworthy is that due to the spatial extension of
the susceptibility artifact it propagated inside the silicone
reference tubes. Hence, B0-drift correction using the signal
inside the reference tubes was not possible.

The temperature mapping results of the treatment of
a patient with a seroma in the right thigh are shown in
Figure 7. B0-drift correction, LBV, PDF, and TFI yielded
apparent sufficiently corrected temperature change maps
and followed the trend of temperature increase over time
compared to a temperature sensor inside the sarcoma.
However, the coronal and sagittal view revealed two sus-
ceptibility artifacts (arrows) in proximity to the tumor
and thus influencing temperature mapping accuracy. The
dipole visible in the head direction of the FOV originated
from bowel motion including gas and the dipole visible
in the anterior part of the image in the sagittal views
was introduced by a moving gas bubble inside the water
bolus. In case of the LBV method, the axial and sagit-
tal view revealed the estimation of unrealistic negative

temperature values in the water bolus. PDF and TFI appear
to remove all susceptibility artifacts and yielded a simi-
lar temperature map. On the right-hand side of Figure 7
the mean temperature is calculated over the tumor mask
delineated with black lines in the views for the B0-drift
corrected maps. When correlating the mean temperature
estimated via MR with the temperature sensor inside
the tumor over time, the B0-drift correction, PDF, and
LBV yielded unstable results across time points, while the
TFI-corrected temperature map followed the temperature
sensor most accurately and robustly. A mean difference
analysis of the the MR-based temperature with the sensor
yielded −0.01◦C for B0-drift correction, −0.11◦C for LBV,
−0.21◦C for PDF, and−0.40◦C for TFI, while a RMSE anal-
ysis yielded 0.71◦C for B0-drift correction, 0.56◦C for LBV,
0.57◦C for PDF, and 0.49◦C for TFI.

Figure 8 shows the temperature mapping results of
the last time point of a patient with a sarcoma in the left
thigh. B0-drift correction, LBV and PDF were challenged
in this subject and show a poor correlation with the tem-
perature sensor. However, the TFI-corrected data is in good
agreement with the temperature sensor. A mean differ-
ence analysis of the MR-based temperature with the sensor
yielded 0.42◦C for B0-drift correction, −3.41◦C for LBV,
−3.57◦C for PDF, and 0.09◦C for TFI while a root mean
square error analysis yielded 1.61◦C for B0-drift correction,
3.80◦C for LBV, 4.05◦C for PDF, and 0.21◦C for TFI.

The significance of correcting for susceptibility arti-
facts also for regions distant to the intestines becomes
apparent in another mild RF-HT of a sarcoma in the left
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F I G U R E 7 Temperature change maps derived from the last time point of a mild radiofrequency hyperthermia in a seroma patient after
different correction schemes are shown on the left. The black line in the first column depicts the contours of the tumor in the right thigh. In
the B0-drift corrected temperature maps, a susceptibility artifact could be observed in the coronal and sagittal view (arrows). This
susceptibility artifact was successfully removed in Laplacian boundary value (LBV)-, projection onto dipole fields (PDF)-, and total field
inversion (TFI)-based maps. However, negative temperature value could be observed in the water bolus in the LBV-corrected maps. In the
correlation between a temperature sensor within the seroma and the mean temperature in the tumor estimated by the different methods, the
B0-drift, LBV, and PDF corrected temperature values showed strong fluctuations and outliers between time points while the trend of
temperature increase was picked up. Only the TFI-based temperature map correlated continuously across time points.

F I G U R E 8 Temperature change maps derived from the last time point of a mild radiofrequency hyperthermia (RF-HT) targeting a
sarcoma in the left thigh are shown. The contour of the tumor is depicted in the first column, on the B0-drift corrected maps. The B0-drift
corrected map showed a residual first order variation in the right-left direction, while projection onto dipole fields (PDF) and especially
Laplacian boundary value (LBV) showed predominantly negative temperature values in the entire FOV. Total field inversion (TFI) correction
yielded consistently positive temperature values. The same was reflected in the probe matching evaluation on the right that reflect the
temperature evolution over the time of the entire mild RF-HT. The mean temperature inside the tumor estimated with MR was compared to
a reference temperature sensor using the mean value from signal inside the tumor region. In the correlation with a temperature sensor in the
thigh, B0-drift, LBV, and PDF correction showed heterogeneous values across time points, while TFI-corrected temperature points were in
good agreement with the sensor.

thigh (Supporting Information Figure S1). The B0-drift cor-
rection using the silicon reference tube signal failed to
remove the first-order drift visualized in the axial view
(arrow), as the susceptibility effects dominated the sig-
nal. Furthermore, strong susceptibility artifacts could be
observed in the sagittal plane (arrows), originating from

gas motion in the anterior part of the water bolus. LBV,
PDF, and TFI successfully removed both the B0-drift and
the susceptibility artifacts. However, one susceptibility
artifact remained across all method revealed in the coronal
plane at the hollow of the knee (arrows). Furthermore, the
PDF method yielded negative temperature at the air-bolus
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BOEHM et al. 129

F I G U R E 9 Results of temperature
mapping in two volunteers (first two columns)
and two patients (last two columns). Magnitude
images (first row), corrected temperature maps
based on the total field inversion method with an
𝓁2-based data consistency term (second row),
and a 𝓁1-based data-consistency term (last row),
are shown. In subject 1, the 𝓁1-based method was
able to reduce the noise artifacts. In subject 2, the
𝓁1-based method reduced the noise artifacts as
well as artifact in the posterior of the field of view
(arrow). In subject 3, the 𝓁1-based method
yielded positive temperature values within the
right leg (arrow), while the 𝓁2-based map showed
negative values. In subject 4, both methods
performed similarly.

interface (axial view arrows), while TFI yielded the most
homogeneous temperature map.

3.5 L1 versus L2 norm

Figure 9 compares the performance of a 𝓁2 and the
presently employed 𝓁1 data consistency term in the TFI
cost function equation (1). In subjects 1 and 2 the 𝓁1
TFI reduced the background noise. In subject 2 the 𝓁1
TFI reduced the artifact in the posterior region almost
to noise level (arrow). In subject 3, the 𝓁2 TFI-corrected
temperature map showed nonphysical negative tempera-
ture values, which are estimated to be positive in the 𝓁1
TFI-corrected map (arrow). In subject 4 the two methods
yielded almost the same temperature map.

4 DISCUSSION

TFI-correction of MR thermometry data hampered by
motion-induced susceptibility artifacts were superior to
conventional B0-drift corrected temperature maps and out-
performed the recently proposed susceptibility artifact cor-
rection methods LBV and PDF in all examined data sets,
except for the simulation data, where LBV revealed the
least cumulative error after correction.

A TFI algorithm with a 𝓁1 norm data consistency
term was proposed as it has proven to be more robust
against phase inconsistencies and to perform better in
low signal-to-noise ratio (SNR) regions in the domain
of susceptibility mapping.41 Furthermore, the proposed
𝓁1-based TFI algorithm was proven to perform more
robustly in the presence of noise, as seen in the phan-
tom and volunteer measurements and is thus in agreement
with susceptibility mapping literature. This is advanta-
geous in the context of mild RF hyperthermia treatments,
as the heating device precludes the use of MR receive coils

other than the body coil and thus suffers from low SNR. In
contrast to LBV, TFI-corrected maps preserved all pixels.
This is particularly useful in tumors that are located next
to intestinal gas, and thus at the edge of the foreground
mask, as it is the case for cervical or rectal cancer. Further-
more, TFI is known to be robust against the selection of a
foreground mask33 and enables a robust automatic mask
generation based on a magnitude threshold across sub-
jects and anatomies. The PDF method also preserves all
pixels, however, it can suffer from its tendency to overfit,
especially at air-tissue interfaces.

A B0-drift with a spatial distribution following a first
order polynomial is robustly removed using the proposed
methods, as seen in the simulated data, the volunteer,
and the pelvic tumor treatment. However, we observed a
temperature rise following a spatially first-order polyno-
mial for the phantom measurement and a spatially zeroth
order polynomial (i.e., a constant temperature offset) for
the patient heating data in the leg. To discern the con-
tribution of temperature and the contribution of B0-drift,
we could use the signal within the silicon reference tubes
(Supporting Information figure S1 in Reference 25). It is
important to note that in presence of large susceptibility
artifacts it becomes impossible to correct for B0-drift by
using the signal inside the reference tubes, which was the
case both for the presented volunteer and patient scans in
the pelvis. As the dipole-shaped artifact propagated to the
reference tubes, fitting a first-order polynomial to only the
reference tubes worsened the phase error. It is to be noted
that a more efficient cooling during the cervical tumor
treatment (water of around 20◦C was used in compari-
son to 33◦C in the sarcoma treatment) likely prevented a
zeroth-order temperature rise in the data. B0-drift correc-
tion methods for MR thermometry were proposed recently
by acquiring additional FIDs16 or using nuclear MR field
probes.15 In the absence of susceptibility change-induced
dipole fields, both BFR and TFI can also remove a
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spatially first-order B0-drift, rendering aforementioned
methods obsolete. Furthermore, the aforementioned
methods would falsely identify the susceptibility
change-induced dipole fields as B0-drift, and a wrong field
model would be applied, as neither the coil sensitivity
profiles, in case of the FID acquisitions, nor the spherical
harmonics functions, in case of the field probe approach,
represent the dipolar field change correctly. The slow
temperature increase during mild RF-HT allows for a low
temporal resolution of the MR sequence, compared to MR
monitoring sequences during ablation therapies. Thus,
a large volume can be covered during imaging. This is
needed to detect unintended hot-spots outside of the heat-
ing target. Moreover, it provides the phase distribution
in 3D that is necessary to remove the susceptibility arti-
facts with high accuracy. Removing susceptibility artifacts
from 2D data had been shown using PDF during ablation
therapy, but is less robust.17

Crucial to PRFS-based MR thermometry that uses
phase information are correctly represented phase maps.
Influences from breathing-induced B0 fluctuations in the
pelvis were excluded in a previous study that showed the
stabilizing effect of the water bolus on the phase signal.25

This is partly explained by the restricting effects of the
water bolus on respiratory motion, but mainly with the
absence of susceptibility distribution changes: In absence
of a surrounding water bolus, breathing would imply peri-
odic susceptibility distribution change of tissue with air,
causing periodic field perturbations. In the presence of the
water bolus, tissue moves within the water bolus, leading
to much smaller susceptibility distribution changes with
time and thus the elimination of B0-fluctuation inside the
pelvis.

Certain limitations remain: GPU with at least 6GiB of
RAM is needed for the processing to finish in a reason-
able time frame. The processing of one time point took
around 13, 6, and 25 s for TFI, PDF, and LBV, respectively,
while only TFI and PDF used the GPU. Furthermore,
intra-scan motion artifacts originating from bulk motion
and intestinal gas motion affect image quality. These scans
can be seen as outliers in the temperature quantification
maps and need to be discarded or repeated. Inter-scan
bulk motion occurs as neither the pelvis nor the legs are
externally fixed. This leads to misalignment of the current
phase map with the reference map. It was not observed in
the datasets we presented in this paper, but can be solved
by using the image after bulk motion as the reference
for subsequent images and performing nonrigid image
registration of the temperature maps as suggested in Refer-
ence 42. In our study, we did not optimize the MR sequence
details for speed or temperature-to-noise ratio,10 but
evaluated data obtained with clinically established stan-
dard sequences.

5 CONCLUSION

Susceptibility artifacts hamper MR temperature estima-
tion during mild RF-HT in the pelvis and the legs due
to motion of gas, inside the bowel due to digestion, or
inside the cooling water bolus. These susceptibility dis-
tribution changes superimpose the temperature-induced
phase change of 0.01 ppm/◦C. LBV, PDF, and TFI success-
fully remove susceptibility artifacts while preserving the
temperature-induced phase change, as seen in the simu-
lation and the phantom heating experiment. For in vivo
data however, TFI performed more robustly. In contrast
to the PDF algorithm, TFI did not show the tendency
to overestimate the background field contribution, and
in contrast to the LBV method, TFI preserved all pixels,
which was expected. Apart from the simulated dataset, TFI
consistently outperformed both BFR methods. It resulted
in the least cumulative error for the volunteer scans, and
matched best to the reference temperature probe for all
three patient treatments with a temperature sensor. TFI
can thus be used for gaining accurate temperature maps
during mild RF-HT treatments.
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SUPPORTING INFORMATION
Additional supporting information may be found in the
online version of the article at the publisher’s website.

Figure S1 Temperature change maps of the last time
point of a patient treatment targeting a sarcoma using a

single-leg applicator. The B0-drift corrected map shows a
residual first-order temperature change in AP direction
and strong susceptibility artifacts at the anterior edge of
the image originating from moving air inside the water
bolus (see arrow in sagittal view). Laplacian boundary
value (LBV)-, projection onto dipole fields (PDF)-, and
total field inversion (TFI)-corrected maps show no B0-drift
artifact and removed the susceptibility artifacts in the ante-
rior part of the image. However, some smaller residual
dipole artifacts remain after correction (arrows in the coro-
nal view) in all correction schemes. Again, an overestima-
tion of the background field can be observed for PDF at
the edge of the field of view (arrows in the axial view). The
LBV-corrected maps also led to large areas with a negative
temperature inside the water bolus and the fat.
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artifact correction in MR thermometry
for monitoring of mild radiofrequency hyperthermia
using total field inversion. Magn Reson Med.
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3 Comprising Journal Publications

3.4 Journal Publication III:

Preconditioned water-fat total field inversion:

Application to spine quantitative susceptibility

mapping

The publication entitled Preconditioned water-fat total field inversion: Application

to spine quantitative susceptibility mapping was published in Magnetic Resonance in

Medicine (ISSN: 0740-3194). The manuscript was authored by Christof Boehm, Nico

Sollmann, Jakob Meineke, Stefan Ruschke, Michael Dieckmeyer, Kilian Weiss, Claus

Zimmer, Marcus R. Makowski, Thomas Baum, and Dimitrios C. Karampinos. It is avail-

able online (DOI: 10.1002/mrm.28903) as an open access article under the terms of the

Creative Commons Attribution-NonCommercial License and Figure 6 of the manuscript

was the cover image of the journal in January 2022 (DOI: 10.1002/mrm.29087). Prelimi-

nary results were presented in the conference contribution C14, which was awarded with

an ISMRM Summa Cum Laude Merit Award and selected as an oral presentation at

the ISMRM annual meeting 2021. Furthermore, the abstract made the 3rd place of the

best trainee abstracts on susceptibility technology issued by ISMRM’s Electro-Magnetic

Tissue Properties Study Group. A summary of the publication is provided in Section

3.4.1, the author contributions are listed in Section 3.4.2 and the full text is included

subsequently on the following pages.

3.4.1 Abstract

Purpose

The single-orientation dipole-based susceptibility estimation is a ill-posed and ill-

conditioned minimization problem. Conventionally, the susceptibility estimation consists

of four main steps: field map estimation, field map unwrapping, background field re-

moval and local field-to-susceptibility inversion. This work proposes the use of a

preconditioned water–fat total field inversion (wfTFI) algorithm to estimate tissue

susceptibility directly from complex multi-echo gradient-echo images in regions where

both water and fat are present. wfTFI allows to simultaneously perform the previously

four independent steps of QSM.
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3 Comprising Journal Publications

Methods

The tissue magnetic susceptibility estimation was formulated as and IDEAL-like mini-

mization problem, where the only searched parameter was the susceptibility. To compare

the proposed method to formerly proposed disjoint background field removal and local

field inversion methods, a numerical simulation and the data from 1 healthy volunteer

and 10 patients with metastatic bone disease were included in the analysis. In the 10

patients scans, the ability of QSM-based differentiation of osteoblastic and osteolytic

changes in reference to computed tomography was evaluated.

Results

The proposed wfTFI method reduces the normalized root mean square error in the

numerical simulation when compared to formerly proposed susceptibility estimation

methods. In vivo, wfTFI results show reduced BFR artifacts, better noise performance

and reduced streaking artifacts. In the differentiation of osteoblastic from osteolytic

changes, the proposed wfTFI method provided a significantly higher diagnostic confi-

dence compared to formerly proposed methods.

Conclusion

The proposed wfTFI is able to increase the accuracy of tissue magnetic susceptibility

estimation in water–fat regions and can thus improve the delineation between osteoblatic

and osteolytic bone changes.

3.4.2 Author contributions

The first author developed the problem formulation; implemented the minimization

code in Python; performed the numerical simulation; performed the MR measurement

for the healthy volunteer data set. With the help and consultation from the coauthors,

the first author evaluated, analyzed and interpreted the data from the patient cohort

and wrote the manuscript.

3.4.3 Original Article
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Purpose: To (a) develop a preconditioned water- fat total field inversion (wfTFI) 
algorithm that directly estimates the susceptibility map from complex multi- echo 
gradient echo data for water- fat regions and to (b) evaluate the performance of the 
proposed wfTFI quantitative susceptibility mapping (QSM) method in comparison 
with a local field inversion (LFI) method and a linear total field inversion (TFI) 
method in the spine.
Methods: Numerical simulations and in vivo spine multi- echo gradient echo meas-
urements were performed to compare wfTFI to an algorithm based on disjoint back-
ground field removal (BFR) and LFI and to a formerly proposed TFI algorithm. The 
data from 1 healthy volunteer and 10 patients with metastatic bone disease were 
included in the analysis. Clinical routine computed tomography (CT) images were 
used as a reference standard to distinguish osteoblastic from osteolytic changes. The 
ability of the QSM methods to distinguish osteoblastic from osteolytic changes was 
evaluated.
Results: The proposed wfTFI method was able to decrease the normalized root mean 
square error compared to the LFI and TFI methods in the simulation. The in vivo 
wfTFI susceptibility maps showed reduced BFR artifacts, noise amplification, and 
streaking artifacts compared to the LFI and TFI maps. wfTFI provided a significantly 
higher diagnostic confidence in differentiating osteolytic and osteoblastic lesions in 
the spine compared to the LFI method (p = .012).
Conclusion: The proposed wfTFI method can minimize BFR artifacts, noise ampli-
fication, and streaking artifacts in water- fat regions and can thus better differentiate 
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418 |   BOEHM Et al.

1 |  INTRODUCTION

The spine is the most frequent skeletal site for bone me-
tastases.1,2 In clinical routine, bone metastases are catego-
rized to be either predominantly osteoblastic or osteolytic. 
Osteoblastic changes are characterized by the formation of 
new bone structures that might be weak and deformed while 
osteolytic meastastases are associated with bone destruction. 
The detection of bone metastases and their categorization into 
osteoblastic/osteolytic can be clinically important for sev-
eral reasons, including the assessment of therapy response,3 
fracture risk,4 or to support the search for an unknown pri-
mary tumor.1,5 Due to its excellent soft tissue contrast, MRI 
is routinely used for assessing metastatic spread in vertebral 
bone marrow.6 However, the delineation of osteoblastic and 
osteolytic metastases based on standard T1-  and T2- weighted 
images cannot be achieved reliably.6,7 Therefore, computed 
tomography (CT) remains the clinical standard for the osteo-
blastic/osteolytic categorization of bone metastases.

Susceptibility- weighted imaging (SWI) has been proposed 
and successfully applied for the MR- based differentiation of 
osteolytic and osteoblastic bone metastases at the spine.7 
Specifically, spine SWI has used the magnetic susceptibility 
to visualize the more diamagnetic properties of osteoblastic 
lesions (with locally increased mineralization) than osteolytic 
lesions (with locally decreased mineralization).7 However, 
SWI only allows the qualitative assessment of bone miner-
alization changes and is also affected by changes in water- fat 
composition. Quantitative susceptibility mapping (QSM)8 
has been proposed to overcome the qualitative limitation of 
SWI. QSM is an MR technique that directly estimates the 
magnetic susceptibility and has been extensively used in the 
study of cerebral brain physiology,9 pathology,10 and func-
tion.11 QSM has recently also been combined with water- fat 
separation techniques and has been applied in body regions 
outside the brain, for example, for measuring liver iron over-
load,12- 14 prostatic calcifications, 15 cartilage degeneration ,16 
and bone density.17- 20

QSM inverts the measured main magnetic field inhomo-
geneities, called the “field map,” to the magnetic susceptibil-
ity map. The field map is thought to originate from two main 
sources: (1) the local field map that originates from MR- 
visible susceptibility sources within the region- of- interest 

(ROI) and (2) background field map contributions originat-
ing from MR- visible susceptibility sources outside the ROI, 
the concave geometry of the anatomy, the large susceptibil-
ity difference at the borders between tissue and air, flow, or 
breathing. In most imaging situations, the background field 
dominates the local field map by one or two orders of magni-
tude. Consequently, the background field map contributions 
need to be accounted for in order to estimate the local sus-
ceptibility map. A plethora of methods have been proposed 
to remove the background field contributions in a separate 
preprocessing step21- 25 before the local field inversion (LFI) 
is performed. However, background field removal (BFR) 
methods often suffer from an improper separation of back-
ground and local fields introduced by the assumptions of the 
adopted method. The improper separation of background 
and local fields can be particularly problematic at tissue- air 
boundaries.8,12,21 Single- step methods have been proposed to 
simultaneously perform the steps of BFR and LFI to over-
come the limitations associated with performing separately 
the two steps.26,27 Most of the single- step methods implic-
itly remove the background field by a Laplacian operation. 
However, Laplacian- based single- step methods have shown 
to yield significantly reduced contrast in the finally estimated 
susceptibility maps in the applications also including spine 
QSM.28- 30

A linear TFI algorithm has been proposed to perform the 
background field removal and estimate local susceptibility 
sources.28 The proposed TFI algorithm reportedly overcomes 
the limitations of disjoint BFR and LFI and is able to robustly 
remove background field contributions. In addition, the adop-
tion of a nonlinear QSM model has been proven to reduce 
streaking artifacts, particularly in regions with strong suscep-
tibility sources and low SNR.31 Strong susceptibility differ-
ences in the ROI are particularly common in body regions 
at the border of soft tissue and air (9.44 ppm)32 or between 
tissue and the cortical bone shell (−2 ppm).33 However, nei-
ther the linear TFI method nor the nonlinear QSM model can 
totally eliminate streaking artifacts in the presence of strong 
susceptibility differences. Therefore, the use of an iterative 
re- weighting method (MERIT)31 was proposed and applied 
in both methods to alleviate remaining artifacts. In methods 
that use the Gauss- Newton approach for the minimization of 
the cost function, MERIT re- weights the voxels in the data 

between osteoblastic and osteolytic changes in patients with metastatic disease com-
pared to LFI and the original TFI method.

K E Y W O R D S

MEDI, osteoblastic, osteolytic, spine, QSM, TFI, vertebral metastases
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consistency term according to their residual error at each 
Gauss- Newton step. Voxels with high model mismatch are 
weighted down to reduce the influence of outliers in oth-
erwise normally distributed data. However, MERIT can be 
subject to heuristic optimization and it can deteriorate the de-
piction of strong susceptibility sources.34

A recently proposed TFI method that directly estimates 
the susceptibility map from complex multi- echo gradient 
echo data (mcTFI)34 combines the advantages of a nonlinear 
QSM model and a total field inversion method by reducing 
noise amplification and BFR artifacts. Additionally, mcTFI 
is able to reduce streaking artifacts without the use of the 
MERIT method. However, the original mcTFI can only be 
applied to regions with one chemical species and cannot ac-
count for the chemical shift of fat. Therefore, a new method 
is required to estimate the susceptibility map from complex 
multi- echo gradient echo data outside of the brain where both 
water and fat species are present.

Therefore, the purpose of this study is to (a) develop a 
water- fat total field inversion (wfTFI) method that directly 
estimates the susceptibility map from complex multi- echo 
gradient echo data in water- fat regions, and (b) to demon-
strate the advantages of the developed method when applied 
in spine QSM of patients with metastatic bone disease where 
the the chemical shift of fat, large background fields, signal 
voids, and large susceptibility differences are present.

2 |  METHODS

2.1 | Proposed preconditioned water- fat 
total field inversion algorithm

The proposed water- fat total field inversion (wfTFI) algo-
rithm consists of 3 main steps (Figure 1). First, the water 
and fat image, field map, and R∗

2- map were estimated using a 
recently proposed graph- cut algorithm35 and a water- fat sig-
nal model accounting for a single R∗

2 decay and employing a 
multi- peak fat model specific to bone marrow.36 Second, an 
initial susceptibility map in the background and local region 
(see below regarding the determination of the background and 
local region) was estimated using a linear preconditioned TFI 
algorithm.28 Finally, the susceptibility map was computed by 
estimating the susceptibility distribution directly from the 
complex multi- echo data by using a single- R∗

2 multi- fat- peak 
water- fat signal model minimizing the following precondi-
tioned water- fat total field inversion cost function:

(1)

y= argmin
y�

=
Necho∑
j= 1

|| (�W +cn�F
)

e−R∗
2 tj eitj d ∗Py� −Sj||22+�||Mg∇Py�||1

(2)cn =
Np∑

p= 1
apei2�Δfptj , with

Np∑
p= 1

ap =1,

F I G U R E  1  Pipeline of the proposed water- fat TFI algorithm. The acquired multi- echo data are separated into water and fat image, field- , and 
R ∗

2 −map using a variable- layer single- min- cut graph- cut algorithm.35 An initial �- map is estimated based on the field- map using the original TFI 
method.28 Finally, the water- fat total field inversion algorithm is initiated with the initial �- map, water and fat image, and R ∗

2- map. The final �- map 
is directly estimated from the multi- echo data
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where t1, t2,…, tN are the different echo times, d is the dipole 
kernel, P is the preconditioner, MG is the MEDI- like edge 
mask, 37 and ∇ is the gradient operation,8�W and �F are the com-
plex signal of the water and fat components assumed to have 
an equal transverse relaxation rate R∗

2. The fat spectrum was 
assumed to have Np spectral peaks with corresponding relative 
amplitudes ap and chemical shift Δfp. The final QSM map was 
computed as � = Py.

By design, the preconditioner P implicitly distinguishes 
between regions of background and local susceptibility 
sources.28 To distinguish between background and local re-
gions (region- of- interest (ROI)), a binary mask M was calcu-
lated based on the maximum intensity projection (MIP) across 
echo times thresholded at 5% of its maximum value. Outside 
M, the preconditioner was calculated as a continuous cubic 
decay fitted to background susceptibility values obtained by 
the projection onto dipole fields method22 as proposed in Ref. 
[38]. Inside M, the preconditioner was set to 1. Consequently, 
the preconditioner was automatically adapted to the ROI.

To obtain the edge mask MG, the Sobel filter in all 3 spa-
tial dimensions was applied on the MIP. The regularization 
parameter � was via L- curve analysis of a numerical simula-
tion (see below) and was set to 100 for all data sets. The cost 
function in Equation (1) was minimized using the iterative 
Gauss- Newton algorithm with a conjugate gradient solver at 
each step. In total, 30 Gauss- Newton steps were performed.

2.2 | Comparison methods

The proposed wfTFI method was applied and compared to 
(1) a methodology combining the Laplacian boundary value 
(LBV)21 method for BFR and MEDI for LFI (labeled as 
LBV+MEDI),31 (2) a methodology combining the projection 
onto dipole fields (PDF)22 for BFR and MEDI for LFI (la-
beled as PDF+MEDI), and (3) the original TFI methodology 
with MERIT (labeled as TFI).28 All methods were initialized 
with a field map obtained by the aforementioned graph- cut 
method.35

The presently employed MEDI- regularized LFI used the 
following nonlinear formulation of the field to susceptibility 
inversion31:

where W is the magnitude weighting and fl is the local field 
map. The cost function was minimized with the aforementioned 
Gauss- Newton algorithm.

The original TFI algorithm was used as the third compar-
ison method. The original TFI minimizes the following pre-
conditioned linear formulation of the field to susceptibility 
inversion28:

where the final QSM map was computed as � = Py. The same 
preconditioner P was used as in the proposed wfTFI method. 
Due to the nonlinearity of the regularization term, the above 
cost- function was again minimized with the above Gauss- 
Newton algorithm. At each Gauss- Newton step, MERIT re- 
weighting was applied to the magnitude weighting W, where 
each voxel was re- weighted according to their residual error.31

The regularization parameter � was determined via L- 
curve analysis of a numerical simulation (see below) and was 
set to 1/250 for MEDI and 1/2500 for TFI, respectively. The 
stopping criterion for both methods was a relative residual of 
< 0.01. The edge mask MG in the regularization term, repre-
sented by the second term in Equations (1), (3), and (4), was 
the same for all methods, including the proposed wfTFI. All 
processing was performed in Python 3.8 and CuPy 8.0.039 on 
a NVIDIA GeForce GTX 1080 Ti.

2.3 | Numerical simulation in the 
thoracolumbar spine

To investigate the difference between the presently proposed 
wfTFI method, the separate BFR and LFI methods and the 
formerly proposed TFI method, a numerical simulation based 
on the Duke phantom was performed using the annotated geo-
metrical data from.40 All of the body mesh data was converted 
into a three- dimensional volume corresponding to maps of 
1.5 mm isotropic resolution. In order to assign bone marrow 
and the cortical bone shell with their respective susceptibil-
ity values, the binary erosion operation was applied on the 
bone mask and the difference between the original bone mask 
and the eroded mask was used as the mask for the cortical 
bone region. Each tissue was assigned with either their lit-
erature value or values extracted from in vivo scans as listed 
in Supporting Information Table S1. Based on the values in 
Supporting Information Table S1, fat fraction, R∗

2-  and �- 
maps were generated. Additionally, SimpleITK41 was used to 
manually add regions of air into the gastrointestinal system. 
To reduce the artificial piece- wise constant property of the 
generated maps, an independent Gaussian- filtered white noise 
distribution was added to each of the maps. The �- map was 
forward simulated to a field map fB using the dipole kernel in 
k- space. The widely used single- R∗

2 multi- fat- peak water- fat 
voxel signal model 42,43 was used to forward simulate the fat 
fraction ff , R∗

2, and field maps to complex multi- echo data:

(3)� = argmin
� �

= ||W(eid∗� � −eifl )||22+�||Mg∇� �||1,

(4)y= argmin
y�

= ||W(fB−d ∗Py�)||22+�||Mg∇Py�||1,

(5)
s(tn) =((1− ff )+cnff

)
e�tn , � = i2�fB−R∗

2

cn =
P∑

p= 1
apei2�Δfptn , with

P∑
p= 1

ap =1.
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The echo times were set to TEmin = 1.1 ms, ΔTE = 1.1 ms. A 
field strength of 3 T and the aforementioned fat model specific 
to bone marrow were used. An additional parabolic signal drop 
in posterior- anterior direction was added to account for the sig-
nal drop observed in the in vivo spine scans due to the common 
lack of surface coils placed on top of patients (anterior body 
region). Independent Gaussian noise was added to the real and 
imaginary part of the echo data with an signal- to- noise ratio 
(SNR) of 50. The SNR was defined as the maximum signal 
amplitude of the first echo divided by the standard deviation. 
To obtain water-  and fat- separated images, field map and R∗

2
- map from the simulated multi- echo data, the aforementioned 
graph- cut based field- mapping method was used. Based on the 
maps estimated by the graph- cut method, the proposed wfTFI 
method was applied and compared to the aforementioned com-
parison methods (LBV+MEDI, PDF+MEDI, TFI). The esti-
mated �- maps were visually examined for BFR and streaking 
artifacts and noise amplification.

2.4 | In vivo measurements

The aforementioned processing of graph- cut based field 
mapping and water- fat separation followed by LBV + 
MEDI, PDF + MEDI, TFI, and wfTFI QSM methods was 
applied to in vivo scans of a healthy volunteer and patients. 
Approval by the institutional review board (Klinikum re-
chts der Isar, Technical University of Munich, Munich, 
Germany) was granted for the patient scans and informed 
consent was received. The scanning was performed on a 3 T 
scanner (Ingenia, Philips Healthcare, Release 5.4, Best, The 
Netherlands) using a monopolar time- interleaved multi- echo 
gradient echo sequence,44 acquiring 6 echoes in 2 interleaves 
with 3 echoes per interleave. For all subjects, the imaging 
parameters were set to TEmin = 1.12  ms, ΔTE = 0.96  ms, 
orientation = sagittal, readout direction = anterior- posterior, 
FOV = 219.6 × 219.6 × 79.2 mm3, and an isotropic acquisi-
tion voxel size of 1.8 mm.

In the patient study, only data were included from pa-
tients who received a CT and MRI examination, including 
T1- weighted turbo spin echo (T1w TSE), T2- weighted Dixon 
in- phase (T2w IP), and water (T2w water) from the standard 
clinical routine protocol. The CT scans were acquired within 
30 days before or after the MRI due to clinically indicated 
reasons, including sagittal reformations of the spine (slice 
thickness of 3 mm). Specifically, 1 scan of the lumbar spine 
of a healthy volunteer and 10 scans of the spine of patients 
with osteolytic/osteoblastic changes due to metastatic disease 
were evaluated. The scans covered the lumbar spine in 7 pa-
tients, the cervical spine in 2 patients, the thoracic spine in 
one patient, and the lumbar spine in the volunteer.

The scans derived from the 10 scans in patients were 
evaluated and graded by two radiologists (a board- certified 

radiologist with 11 years of experience and a resident with 8 
years of experience in neuroradiological imaging). The scans 
were read in a consensus- like setting and the readers were 
strictly blinded to the reports created during the clinical rou-
tine and to the characteristics of the metastases (osteolytic/
osteoblastic) similiar to.7 First, the CT images were evalu-
ated via consensus reading in order to provide the reference 
standard for osteolytic and osteoblastic metastases. After an 
interval of about four weeks to avoid recall bias, the conven-
tional MR sequences (T1w TSE, T2w IP, T2w water) and the 
QSM sequence results were separately evaluated for differen-
tiating metastases between osteolytic and osteoblastic. In the 
reading of the conventional MR sequences, metastases that 
were predominantly hypointense on T1- weighted images and 
hyperintense on T2- weighted images were classified as os-
teolytic, and, conversely, metastases that were predominantly 
hypointense on T1-  and T2- weighted images were classified 
as predominantly osteoblastic.7 In the reading of the QSM 
maps, metastases were graded as osteoblastic if they were 
hypointense on MIP across echo times and hypointense on 
the QSM map, and, conversely, metastases that were hyperin-
tense in the MIP and neutral on the QSM map (values around 
zero) were classified as osteolytic. The diagnostic confidence 
of the QSM methods to distinguish between osteolytic and os-
teoblastic changes was graded as 1 (low confidence), 2 (me-
dium confidence), or 3 (high confidence). Additionally, the 
three �- maps estimated by the PDF+MEDI, TFI, and wfTFI 
QSM methods were graded for the overall image quality on a 
scale from 1 (low quality) to 3 (high quality). A Wilcoxon test 
was employed for comparing the diagnostic confidence and 
the image quality of the susceptibility maps derived with the 
wfTFI method and the PDF+MEDI method.

3 |  RESULTS

3.1 | Numerical simulation in the 
thoracolumbar spine

Figure 2 compares the aforementioned QSM methods with 
respect to BFR artifacts, noise amplification, and susceptibil-
ity values. The first row of Figure 2 shows that the employed 
graph- cut based field mapping and water- fat separation 
method is able to yield a non- wrapped field-  and fat fraction 
map. LBV+MEDI and PDF+MEDI show BFR artifacts in 
the whole ROI and significantly reduced susceptibility val-
ues of the vertebral bodies and the fat region surrounding 
the spinous processes. The TFI method does not suffer from 
BFR artifacts but shows noise amplification and further re-
duced susceptibility values in the spinous process fat region. 
The proposed wfTFI appears less noisy and shows reason-
able susceptibility values in the vertebral bodies and spinous 
process fat region. Additionally, the wfTFI method shows 
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422 |   BOEHM Et al.

significantly decreased streaking artifacts in comparison to 
all other methods, which can be best illustrated within in the 
cerebrospinal fluid region. A normalized root mean square 
error analysis (NRMSE) of the QSM maps yields an error of 
0.89 for the proposed wfTFI method, 0.93 for TFI, 0.91 for 
PDF+MEDI, and 1.00 for LBV+MEDI.

3.2 | In vivo measurements

Figure 3 compares the QSM methods with respect to BFR 
artifacts, noise amplification, and streaking artifacts in a 
healthy volunteer. The first row shows that the employed 
graph- cut based field- mapping method is able to estimate 
water- fat- swap- free field- , fat fraction- , and R∗

2- map in an 
in vivo scan. The different QSM methods show the same 

behavior as in the numerical simulation shown in Figure 2. 
LBV+MEDI and PDF+MEDI show severe BFR artifacts. 
Furthermore, they show strong streaking artifacts around air 
inclusions in the bowel at the bottom of the FOV. The TFI 
method significantly reduces the BFR artifacts while elevat-
ing the noise level. However, the TFI method still shows sig-
nificant streaking around the air inclusion in the bowel. The 
proposed wfTFI method shows no noise amplification and 
the weakest streaking artifact from the air inclusion in the 
bowel, compared to the other methods.

Among the 10 patients (4 females and 6 males, mean age: 
71.5 ± 10.9  years, age range: 49.2- 83.3  years), 3 patients 
suffered from metastasized prostate cancer, 2 patients each 
from breast cancer and lung cancer. The other patients suf-
fered from mouth floor carcinoma, kidney cancer, and a neu-
roendocrine tumor, respectively. Figure 4 compares the QSM 

F I G U R E  2  Results of water- fat imaging (first row) and QSM (second row) results in the numerical multi- echo lumbar spine simulation. The 
first row shows the maximum intensity projection over echo times (MIP) of the 6 simulated echos and reveals the simulated cubic signal drop in 
posterior- anterior direction. Furthermore, the estimated fat fraction, field map, and R ∗

2- map are shown in the first row. The graph- cut based field 
mapping is able to estimate a non- wrapped field map and fat fraction. In the LBV + MEDI and the PDF + MEDI method, BFR artifacts appear 
in the whole ROI. Both methods indicate an artifactual diamagnetic source present at the air- tissue interface to the lungs (blue arrow). Decreased 
susceptibility values can be observed in the center of the spine (white arrow) and inside all vertebral bodies. The simulated susceptibility of fat 
around the spinous processes (orange arrow) is significantly reduced in comparison to the true susceptibility. The TFI method does not show BFR 
artifacts but shows strongly elevated noise and reduced susceptibility values in the spinous process region. The wfTFI does not show BFR artifacts, 
yields reasonable susceptibility values inside the vertebral bodies and shows significantly reduced streaking, especially in cerebrospinal fluid. 
Furthermore, the susceptibility of fat surrounding the spinous processes is closer to the reference values when estimated by the wfTFI method in 
comparison to the other methods (susceptibility ROI values within the white box reported within the Figure)
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methods in a subject with metastatic disease and mainly os-
teoblastic changes of the spine. The MIP shows that the ver-
tebral bodies have almost no signal. Despite the low signal 
in the vertebral bodies, all QSM methods are able to pick 
up the strong diamagnetic property of the calcified vertebral 
bodies. However, the LBV + MEDI method shows a strong 
artifactual paramagnetic susceptibility source in the spinous 
process region of the T10 vertebra and the fat region at the 
L5 level (arrows). The PDF + MEDI shows a BFR artifact 
in the subcutaneous fat region of the T11 vertebra and the 
same BFR artifact as the LBV + MEDI method posterior to 
the L5 vertebra (white arrows). The TFI method yields a map 
without BFR artifacts. However, the noise in the TFI method 
is significantly elevated and it shows an artifactual increase 
of susceptibility values in the intervertebral discs (IVD). The 
proposed wfTFI method shows no BFR artifacts, minimal 
noise amplification, and reduced artifactual paramagnetic el-
evation in the IVDs.

Figure 5 plots the TFI susceptibility maps at different 
regularization parameters. When the regularization pa-
rameter � is increased in the TFI method in order to de-
crease the noise, the overall susceptibility contrast quickly 

degrades (Figure 5). Furthermore, increasing the regular-
ization parameter induces paramagnetic susceptibility val-
ues in the IVDs.

Figure 6 shows the water- fat imaging, clinical T1w TSE, 
T2w IP, T2w water, CT, and wfTFI results in a female patient 
diagnosed with breast cancer and both osteoblastic and os-
teolytic bone metastases at the lumbar spine. The osteoblastic 
components in the vertebrae L3- L5 according to CT show 
T1-  and T2- hypointense correlates. The osteoblastic compo-
nents are in good agreement with the results of the wfTFI 
QSM methods. The wfTFI QSM method is able to pick up 
intravertebral variations as present in the L2 vertebra, where 
a localized increased bone deposition can be observed in the 
posterior inferior part of the vertebra. This directly translates 
to diamagnetic values in the same region in the susceptibility 
of the wfTFI method.

Figure 7 shows the water- fat imaging, clinical T1w TSE, 
T2w IP, T2w water, CT, and wfTFI results in a female patient 
diagnosed with renal cancer and mainly osteolytic bone me-
tastases of the T4 and T5 vertebral body. However, the clini-
cal sequences suggest an osteoblastic lesion, since the lesion 
appears as T1-  and T2- hypointense. The MIP together with 

F I G U R E  3  Results of water- fat imaging (first row) and QSM (second row) in a healthy volunteer. The first row shows that the graph- 
cut based field mapping method is able to estimate a non- wrapped field map and fat fraction. In both QSM methods where BFR and LFI are 
independent steps, BFR artifacts appear in the whole ROI. In the LBV + MEDI method, there is an artifactual strong paramagnetic susceptibility 
source present in the spinous process region (blue arrow). In both BFR + LFI methods, a systematic underestimation of susceptibility values in the 
cerebrospinal fluid can be observed (white arrow). Air in the bowel causes strong streaking artifacts in the surrounding tissue (orange arrow). The 
streaking artifacts of the air in bowel are reduced when the original TFI method is used but the artifacts are still present. BFR artifacts are greatly 
reduced in the TFI method. However, the noise in the vertebral body region is elevated. The wfTFI method does not show BFR artifacts, shows no 
noise amplifications in the vertebral bodies, and shows the weakest streaking artifacts around the air inclusion in the bowel
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wfTFI suggests an osteolytic lesion, thus being in agreement 
with CT. Figure 8 shows the water- fat imaging, clinical T1w 
TSE, T2 IP, T2 water, CT, and wfTFI results in a male patient 

diagnosed with prostate cancer and mainly osteoblastic bone 
metastases. The QSM map estimated by the proposed wfTFI 
method is in good agreement with the CT scan. It reveals 

F I G U R E  4  Results of water- fat imaging (first row), CT (bottom left image), and QSM (second row) in a subject with mainly osteoblastic 
bone metastases. The fat fraction and R ∗

2- map indicate a pathological change of the vertebral bodies by showing significantly reduced fat fraction 
and elevated R ∗

2  values, respectively. In the estimation of the vertebral body susceptibility, all 4 QSM methods agree very well with the CT scan. 
However, the BFR + LFI methods show severe BFR artifacts, especially in the spinous process region of the T10 and T11 vertebra (orange arrows) 
in the LBV and PDF based maps, respectively, and the fat region in the height of the L5 vertebra (white arrow). The TFI method shows significant 
noise amplification in the anterior to the spinal cord (white arrow) and artifactual strong paramagnetic susceptibility values in all IVDs (blue 
arrow). The wfTFI shows no noise amplification, no BFR artifacts, and reduced artifactual paramagnetic elevation in the IVDs

F I G U R E  5  TFI results for varying the 
regularization parameter �. When increasing 
the regularization parameter, the overall 
susceptibility contrast decreases while the 
noise artifacts are only slightly reduced. 
The artifactual paramagnetic estimation 
of the IVD regions remain strong for high 
regularization parameters
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the T12- L3 vertebra to be mainly osteoblastic and L4 and L5 
to be mainly osteolytic. Additionally, the susceptibility map 
reveals the intradiscal air inclusions between sacrum- L5, L5- 
L4, L4- L3, and L3- L2, as verified by the CT scan. The detec-
tion of the air inclusion is not possible in conventional MRI 
sequences, MIP, or R∗

2- map.
The results of the reading of 10 subjects showed a 

mean diagnostic confidence of 2.1 ± 0.7 for PDF+MEDI, 
2.6 ± 0.66 for TFI, and 2.8 ± 0.4 for wfTFI. The diagnostic 
confidence was significantly higher with the wfTFI method 
compared to the PDF+MEDI method (p = .012). The wfTFI 
method showed higher diagnostic confidence rating com-
pared to the TFI method in 2 patient scans and equal diagnos-
tic confidence to the TFI method in the rest. Furthermore, the 
image quality was estimated to be 1.1 ± 0.3 for PDF+MEDI, 
2.4 ± 0.66 for TFI and 2.8 ± 0.4 for wfTFI. The image quality 
was also significantly higher with the wfTFI method com-
pared to the PDF+MEDI method (p < . 001). The wfTFI 
method increased the image quality rating compared to the 
TFI method in 3 patient scans and showed equivalent image 
quality to the TFI method in the rest. Within the reading of 
conventional sequences, only in 8/10 patients could the bone 
metastases correctly be identified as predominantly osteo-
blastic/osteolytic, while within the reading of the �- maps of 
the wfTFI method a correct classification in relation to CT 
was possible in all patients.

4 |  DISCUSSION

The present study aimed to develop a method for improved 
QSM in water- fat regions. Specifically, the present study 
proposed to use a preconditioned water- fat TFI algorithm 
that directly estimates the susceptibility map from complex 
multi- echo gradient echo data. The study then examined the 
performance of the proposed wfTFI method in comparison 
to PDF + MEDI, LBV + MEDI, and a formerly proposed 
preconditioned linear TFI method in a numerical simulation, 
a healthy volunteer, and 10 patients with metastatic bone dis-
ease. The wfTFI results of the patients were graded by two 
senior radiologists with (a) respect to diagnostic confidence 
to distinguish osteolytic from osteoblastic bone metastases 
and (b) overall image quality. The proposed wfTFI method 
yielded a high diagnostic confidence and image quality for 
data derived from the patients, which may be due to the 
combination of advantages of formerly proposed methods, 
including the reduction of BFR artifacts, noise amplification, 
and streaking artifacts.

First, QSM based on the LBV and PDF both show BFR 
artifacts at the air- tissue interface of the lungs, the fat, and 
areas of hypointense values at some distance to convex ge-
ometry. In general, BFR artifacts appear as a slowly vary-
ing susceptibility distribution or as streaking artifacts at the 
local/background region interface. In the present study, the 

F I G U R E  6  Results of water- fat imaging (first row), clinical T1w TSE, T2 IP, T2 water, CT, and QSM (second row) in a female patient 
diagnosed with breast cancer and mainly osteoblastic bone metastases along the displayed lumbar spine. In detail, the osteoblastic components in 
the vertebrae L3- L5 according to CT show T1-  and T2- hypointense correlates, which are in good agreement with the results of the wfTFI QSM 
method that show diamagnetic values in the specific regions
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BFR artifacts in LBV+MEDI are more dominant than in 
PDF+MEDI. The BFR artifacts within LBV can be reduced 
by optimizing the local region mask at the cost of reduced 
visible tissue. However, it has been shown that the LBV 
method is problematic in body applications when the edges 
of the region mask contain strong susceptibility sources 
such as subcutaneous fat.45 When the edges of the ROI mask 
contain strong susceptibility sources, the approximative as-
sumption of the LBV method is violated: the local field in 
the selected boundary voxels is not much smaller than the 
local field. Hence, values close to the boundary are shifted 
towards zero. This limitation of the LBV can cause strong 
artifacts in body regions, when the ROI mask is not adjusted 
manually. A similar decrease in susceptibility values close 
to the ROI mask can be observed in the susceptibility map 
based on PDF BFR. However, in the PDF method, the un-
derestimation of susceptibility in the ROI originates from 
the tendency of the PDF algorithm to overfit at the local/
background region interface.22,38 Consequently, susceptibil-
ity originating from the ROI is falsely estimated to origi-
nate from the background region. The significant reduction 
of BFR artifacts in the proposed wfTFI method originates 
from the simultaneous estimation of background and local 
susceptibility and was described in Ref. [28]. Furthermore, 

in Ref. [28] the use of a preconditioner is proposed to in-
crease the speed of convergence and is presently adapted in 
self- adapting variant similar to.38 However, in the original 
TFI, the use of a preconditioner was mainly proposed to im-
prove the rate of convergence and the use of the precondi-
tioner was assumed to be optional. However, in the present 
study, the preconditioner has proven to be essential. When 
the preconditioner was removed, the estimation of local sus-
ceptibility was not possible and the result was dominated by 
artifacts. The preconditioner therefore contains the remain-
ing necessary implicit assumption to distinguish regions of 
local and background susceptibility based on prior knowl-
edge. However, the method was robust to the selection of 
the binary mask that distinguishes the above regions. The 
MIP across echo times thresholded at 5% of its maximum 
value has been proven to be robust across subjects and re-
gions and was applied in all subjects and the simulation. 
In general, the results in the ROI have proven to be robust 
against the selection of the threshold. Furthermore, the BFR 
performance and susceptibility value estimation were robust 
against variations of the above binary mask selection.

Second, using a linear QSM model can (1) lead to the 
amplification of noise and (2) wraps in the field- map can-
not be accounted for. While wraps in the field map can be 

F I G U R E  7  Results of water- fat imaging (first row), clinical T1w TSE, T2w IP, T2w water, CT, and QSM (second row) in a female patient 
diagnosed with renal cancer and mainly osteolytic bone metastases of the vertebrae T4 and T5 according to CT. The metastatic lesion appears 
T1-  and T2- hypointense, thus suggesting an osteoblastic mass. The results of the wfTFI QSM method and the MIP, however, suggest an osteolytic 
pattern, therefore being in agreement with CT as the reference standard
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eliminated by the correct parameter selection in the field 
mapping and water- fat separation method employed,35 the 
noise amplification can be accounted for by an improved 
problem formulation. A nonlinear formulation of the field- 
to- source relation can be used to alleviate the abovemen-
tioned noise amplification problem.31 The proposed wfTFI 
explicitly formulates the susceptibility estimation as a non-
linear problem by fitting the nonlinear water- fat signal model 
to the multi- echo gradient echo data. Additionally, the direct 
use of echo data benefits from the fact that the assumption of 
Gaussian noise is well justified in all voxels in contrast to the 
linear TFI model, where this assumption is only true in vox-
els with high SNR.31 In body regions, voxels with low SNR 
frequently occur for different reasons, including (1) short T2 
tissues such as cortical bone in the ROI,46 (2) air within in 
the ROI, for example, the lungs, air in the bowel or intraspi-
nal air,35 or (3) the general low signal strength due to coil 
sensitivity effects in standard clinical body MR protocols.29 
The estimation of susceptibility values within the original 
linear TFI method was not possible in regions with very 
low signal eg, anterior to the spine. QSM based on the lin-
ear TFI was not able to depict structures in this region while 
PDF+MEDI and the wfTFI method did. Furthermore, the 
linear TFI showed a significant overestimation in the IVDs in 
Figure 4. The proposed wfTFI showed that the formulation 
used in the present study can significantly reduce the noise 

in QSM in regions with low SNR voxels that arise for the 
above reasons.

Third, the direct estimation of the susceptibility map from 
multi- echo has proven to reduce streaking artifacts originat-
ing from large susceptibility differences in the ROI. In QSM 
a plethora of methods have been proposed to reduce streaking 
artifacts originating from the zero- cone surface of the dipole 
kernel in k- space and many of them are based on regulariza-
tion. One of the most well- established QSM regularization 
methods MEDI.37 The assumption in MEDI regularization 
is that edges occurring in magnitude images are also likely 
to occur in the susceptibility map and was presently imple-
mented in the wfTFI method. Despite the effectiveness of 
the MEDI regularization to reduce streaking artifacts, they 
still appear in many imaging situations. To further reduce 
streaking artifacts, the use of MERIT was proposed to alle-
viate remaining artifacts.31 However, this method can lead to 
an artifactual distortion of regions with strong susceptibility 
sources34 and the method itself requires appropriate opti-
mization. A previous method ,called mcTFI, which directly 
estimates susceptibility from multi- echo data in the brain 
could reduce streaking artifacts, while the depiction of strong 
susceptibility sources was improved without the need for the 
MERIT method.34 The proposed wfTFI shows the same re-
duction in streaking artifacts as shown in Figure 3 close to 
the air in the bowel and in all depicted spine regions in the 

F I G U R E  8  Results of water- fat imaging (first row), clinical T1w TSE, T2w IP, T2w water, CT, and QSM (second row) results in a male 
patient diagnosed with prostate cancer and mainly osteoblastic bone metastases along the displayed thoracolumbar spine. The osteoblastic 
components in the vertebrae T12- L5 according to CT show T1-  and T2- hypointense correlates that are in good agreement with the results of the 
wfTFI QSM method
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cerebrospinal fluid region. However, noteworthy is that the 
proposed wfTFI only optimizes over the susceptbility map 
after an initialization with the complex water and fat image 
and R∗

2- map, while mcTFI additionally optimizes over the 
complex signal and R∗

2.
Finally, the proposed wFTFI method shows improved di-

agnostic confidence in the particular application setting: the 
assessment of metastatic bone disease in order to distinguish 
between osteolytic and osteoblastic changes. It is clinically 
important to distinguish between osteolytic and osteoblastic 
metastases for several reasons: (1) vertebral bodies with os-
teolytic metastases have a higher probability of pathological 
fractures compared to osteoblastic metastases,4 (2) osteolytic 
metastases can be subject to a sclerotic transformation after 
therapy,3 and (3) the differentiation can support the search 
for an unknown primary tumor. The search for an unknown 
primary tumor is supported because osteolytic metastases 
are predominantly associated with renal, thyroid, colorectal, 
lung, and breast cancer in contrast to osteoblastic metastases 
that are predominantly associated with breast and prostate 
cancer.1,5 The sensitivity to detect osteoblastic and osteo-
lytic changes in standard T1-  and T2- weighted spine MRI 
sequences has been estimated to be 89% and 73%, respec-
tively.7 In the present small patient study, the metastases in all 
patients could be correctly classified as predominantly osteo-
lytic or osteoblastic based on the QSM maps of the proposed 
wfTFI method.

The present study has some limitations. First, in order to 
solve the proposed minimization problem in a reasonable 
timeframe a GPU with enough RAM is necessary. The de-
picted spine data sets needed approximately 6 GiB of RAM 
and the runtime for graph- cut based field- mapping and QSM 
was around 40 seconds on a NVIDIA GeForce GTX 1080 
Ti consumer GPU used in the study. Second, the present 
wfTFI methodology would strongly benefit from a large- 
scale validation of its performance in more patients with 
bone metastases and other body QSM applications. Third, the 
improvement in the susceptibility value estimation was only 
evaluated in a qualitative setting. Therefore, the proposed 
method would benefit from a more quantitative validation. 
However, despite the fact that the proposed method is able to 
significantly reduce artifacts commonly present in the com-
parison methods and yields robust results across the present 
in vivo measurements, the aformentioned artifacts may still 
appear in some imaging situations.

In conclusion, the present study proposed a precondi-
tioned water- fat total field inversion method for QSM in 
water- fat regions. The proposed method shows the following 
significant improvements over former proposed QSM meth-
ods: (1) it significantly reduces background field removal 
artifacts, (2) noise amplification, and (3) streaking artifacts, 
and thereby (4) improves the depiction of local susceptibility 
in water- fat regions.

5 |  CONCLUSION

A preconditioned water- fat total field inversion method 
was proposed for QSM in water- fat regions. The proposed 
method shows the following significant improvements over 
former proposed QSM methods: (1) it significantly reduces 
background field removal artifacts, (2) noise amplification 
and (3) streaking artifacts while (4) improving the accuracy 
of the local susceptibility estimation

ACKNOWLEDGEMENTS
This study was supported by the European Research Council 
(grant agreement no. 677661, ProFatMRI). This study only 
reflects the authors’ view and the EU is not responsible for 
any use that may be made of the information it contains. The 
authors also acknowledge the research support provided by 
Philips Healthcare. Open Access funding enabled and organ-
ized by Projekt DEAL. Technische Universitat Munchen.

CONFLICT OF INTEREST
Jakob Meineke is an employee of Philips Research and 
Kilian Weiss is an employee of Philips Healthcare. Dimitrios 
Karampinos receives grant support from Philips Healthcare.

DATA AVAILABILITY STATEMENT
The Python implementation of all QSM methods as well as 
an example lumbar spine data set will be made freely avail-
able for download at https://github.com/BMRRg roup/wfTFI.

ORCID
Christof Boehm http://orcid.org/0000-0003-1321-5804 

TWITTER
Christof Boehm   @BoehmChristof 

REFERENCES
 1. Yochum T, Rowe L. Rowe’s Essentials of Skeletal Radiology. 

Philadelphia: Lippincott/Williams & Wilkins; 2005.
 2. Kirchhoff SB, Becker C, Duerr HR, Reiser M, BaurMelnyk 

A. Detection of osseous metastases of the spine: comparison 
of high resolution multi- detector- CT with MRI. Eur J Radiol. 
2009;69:567- 573.

 3. Kesavadas C, Santhosh K, Thomas B, et al. Signal changes in cor-
tical laminar necrosis- evidence from susceptibility- weighted mag-
netic resonance imaging. Neuroradiology. 2009;51:293- 298.

 4. Freeman A, Sumathi V, Jeys L. Metastatic tumours of bone. 
Surgery (Oxford). 2017;36.

 5. Freyschmidt J. Skeletterkrankungen: Klinisch- Radiologische 
Diagnose und Differenzialdiagnose. Berlin, Germany: Springer; 
2008.

 6. Lange MB, Nielsen ML, Andersen JD, Lilholt HJ, Vyberg M, 
Petersen LJ. Diagnostic accuracy of imaging methods for 
the diagnosis of skeletal malignancies: a retrospective anal-
ysis against a pathology- proven reference. Eur J Radiol. 
2016;85:61- 67.

 15222594, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

rm
.28903 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [18/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



   | 429BOEHM Et al.

 7. Böker SM, Adams LC, Bender YY, et al. Differentiation of pre-
dominantly osteoblastic and osteolytic spine metastases by using 
susceptibility- weighted MRI. Radiology. 2019;290:146- 154.

 8. Wang Y, Liu T. Quantitative susceptibility mapping (QSM): de-
coding MRI data for a tissue magnetic biomarker. Magn Reson 
Med. 2014;73:82- 101.

 9. Liu C, Li W, Tong KA, Yeom KW, Kuzminski S. Susceptibility- 
weighted imaging and quantitative susceptibility mapping in the 
brain. J Magn Reson Imaging. 2014;42:23- 41.

 10. EskreisWinkler S, Zhang Y, Zhang J, et al. The clinical utility of 
QSM: disease diagnosis, medical management, and surgical plan-
ning. NMR Biomed. 2016;30.e3668

 11. Sun H, Seres P, Wilman A. Structural and functional quantitative 
susceptibility mapping from standard fMRI studies. NMR Biomed. 
2016;30.e3619

 12. Sharma SD, Hernando D, Horng DE, Reeder SB. Quantitative sus-
ceptibility mapping in the abdomen as an imaging biomarker of 
hepatic iron overload. Magn Reson Med. 2014;74:673- 683.

 13. Lin H, Wei H, He N, et al. Quantitative susceptibility mapping in 
combination with water- fat separation for simultaneous liver iron 
and fat fraction quantification. Eur Radiol. 2018;28:3494- 3504.

 14. Jafari R, Sheth S, Spincemaille P, et al. Rapid automated liver 
quantitative susceptibility mapping. J Magn Reson Imaging. 
2019;50:725- 732.

 15. Straub S, Laun FB, Emmerich J, et al. Potential of quantitative 
susceptibility mapping for detection of prostatic calcifications. J 
Magn Reson Imaging. 2016;45:889- 898.

 16. Wei H, Lin H, Qin L, et al. Quantitative susceptibility mapping 
of articular cartilage in patients with osteoarthritis at 3T. J Magn 
Reson Imaging. 2018;49:1665- 1675.

 17. Dimov AV, Liu Z, Spincemaille P, Prince MR, Du J, Wang Y. 
Bone quantitative susceptibility mapping using a chemical species- 
specific R∗

2  signal model with ultrashort and conventional echo 
data. Magn Reson Med. 2017;79:121- 128.

 18. Diefenbach MN, Meineke J, Ruschke S, Baum T, Gersing A, 
Karampinos DC. On the sensitivity of quantitative susceptibility 
mapping for measuring trabecular bone density. Magn Reson Med. 
2019;81:1739- 1754.

 19. Bray TJ, Karsa A, Bainbridge A, et al. Association of bone mineral 
density and fat fraction with magnetic susceptibility in inflamed 
trabecular bone. Magn Reson Med. 2019;81:3094- 3107.

 20. Jerban S, Lu X, Jang H, et al. Significant correlations between 
human cortical bone mineral density and quantitative susceptibil-
ity mapping (QSM) obtained with 3D cones ultrashort echo time 
magnetic resonance imaging (UTE- MRI). Magn Reson Imaging. 
2019;62:104- 110.

 21. Zhou D, Liu T, Spincemaille P, Wang Y. Background field removal 
by solving the laplacian boundary value problem. NMR Biomed. 
2014;27:312- 319.

 22. Liu T, Khalidov I, de Rochefort L, et al. A novel background field 
removal method for mri using projection onto dipole fields (PDF). 
NMR Biomed. 2011;24:1129- 1136.

 23. Özbay PS, Deistung A, Feng X, Nanz D, Reichenbach JR, Schweser 
F. A comprehensive numerical analysis of background phase cor-
rection with V- SHARP. NMR Biomed. 2016;30.e3550

 24. Li W, Avram AV, Wu B, Xiao X, Liu C. Integrated laplacian- based 
phase unwrapping and background phase removal for quantitative 
susceptibility mapping. NMR Biomed. 2013;27:219- 227.

 25. Schweser F, Deistung A, Lehr BW, Reichenbach JR. Quantitative 
imaging of intrinsic magnetic tissue properties using MRI signal 

phase: an approach to in vivo brain iron metabolism? NeuroImage. 
2011;54:2789- 2807.

 26. Langkammer C, Bredies K, Poser BA, et al. Fast quantitative sus-
ceptibility mapping using 3D EPI and total generalized variation. 
NeuroImage. 2015;111:622- 630.

 27. Chatnuntawech I, McDaniel P, Cauley SF, et al. Single- step quan-
titative susceptibility mapping with variational penalties. NMR 
Biomed. 2016;30:e3570.

 28. Liu Z, Kee Y, Zhou D, Wang Y, Spincemaille P. Preconditioned 
total field inversion (TFI) method for quantitative susceptibility 
mapping. Magn Reson Med. 2016;78:303- 315.

 29. Diefenbach MN, Van A, Meineke J, et al. Vertebral column 
quantitative susceptibility mapping using joint background field 
removal and dipole inversion. Proceedings 26. Paris, France: 
Annual Meeting International Society for Magnetic Resonance in 
Medicine; 2018:0191.

 30. Böhm C, Diefenbach MN, Meineke J, Haase A, Karampinos DC. 
Improved body quantitative susceptibility mapping by using a 
variable- layer single- min- cut graph- cut algorithm for field- mapping. 
Proceedings 27. Montreal, Canada: Annual Meeting International 
Society for Magnetic Resonance in Medicine; 2019:0693.

 31. Liu T, Wisnieff C, Lou M, Chen W, Spincemaille P, Wang Y. 
Nonlinear formulation of the magnetic field to source relationship 
for robust quantitative susceptibility mapping. Magn Reson Med. 
2012;69:467- 476.

 32. Collins CM, Yang B, Yang QX, Smith MB. Numerical calculations 
of the static magnetic field in three- dimensional multi- tissue mod-
els of the human head. Magn Reson Imaging. 2002;20:413- 424.

 33. Hopkins JA, Wehrli FW. Magnetic susceptibility measurement of 
insoluble solids by NMR: magnetic susceptibility of bone. Magn 
Reson Med. 1997;37:494- 500.

 34. Wen Y, Spincemaille P, Nguyen T, et al. Multiecho complex 
total field inversion method (mcTFI) for improved signal mod-
eling in quantitative susceptibility mapping. Magn Reson Med. 
2021;86:2165-2178.

 35. Boehm C, Diefenbach MN, Makowski MR, Karampinos DC. 
improved body quantitative susceptibility mapping by using a 
variable- layer single- min- cut graph- cut for field- mapping. Magn 
Reson Med. 2021;85:1697- 1712.

 36. Ren J, Dimitrov I, Sherry AD, Malloy CR. Composition of adipose 
tissue and marrow fat in humans By1h Nmr At 7 Tesla. J Lipid Res. 
2008;49:2055- 2062.

 37. Liu T, Liu J, de Rochefort L, et al. Morphology enabled dipole inver-
sion (MEDI) from a single- angle acquisition: comparison with cos-
mos in human brain imaging. Magn Reson Med. 2011;66:777- 783.

 38. Liu Z, Wen Y, Spincemaille P, et al. Automated adaptive precon-
ditioner for quantitative susceptibility mapping. Magn Reson Med. 
2020;83:271- 285.

 39. Okuta R, Unno Y, Nishino D, Hido S, Loomis C. CuPy: a NumPy- 
compatible library for NVIDIA GPU calculations. In: Proceedings 
of Workshop on Machine Learning Systems (LearningSys) in The 
Thirty- first Annual Conference on Neural Information Processing 
Systems (NIPS). 2017.

 40. Gosselin MC, Neufeld E, Moser H. Development of a new gen-
eration of high- resolution anatomical models for medical de-
vice evaluation: the virtual population 3.0. Phys Med Biol. 
2014;59:5287- 5303.

 41. Yaniv Z, Lowekamp BC, Johnson HJ, Beare R. Simpleitk image- 
analysis notebooks: a collaborative environment for education and 
reproducible research. J Digital Imaging. 2017;31:290- 303.

 15222594, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

rm
.28903 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [18/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



430 |   BOEHM Et al.

 42. Yu H, Shimakawa A, McKenzie CA, Brodsky E, Brittain JH, 
Reeder SB. Multiecho water- fat separation and simultaneous R∗

2  
estimation with multifrequency fat spectrum modeling. Magn 
Reson Med. 2008;60:1122- 1134.

 43. Bydder M, Yokoo T, Hamilton G, et al. Relaxation effects in the 
quantification of fat using gradient echo imaging. Magn Reson 
Imaging. 2008;26:347- 359.

 44. Ruschke S, Eggers H, Kooijman H, et al. Correction of phase 
errors in quantitative water- fat imaging using a monopolar time- 
interleaved multi- echo gradient echo sequence. Magn Reson Med. 
2016;78:984- 996.

 45. Van AT, Diefenbach MN, Meineke J, Kooijman H, Haase A, 
Karampinos DC. Background field removal in the presence of 
subcutaneous fat in body QSM. In: 4th International Workshop on 
MRI Phase Contrast & QSM, Graz, Austria. 2016.

 46. Fortier V, Levesque IR. Phase processing for quantitative suscepti-
bility mapping of regions with large susceptibility and lack of sig-
nal. Magn Reson Med. 2018;79:3103- 3113.

SUPPORTING INFORMATION
Additional Supporting Information may be found online in 
the Supporting Information section.
Table S1 Fat fraction, R∗

2 and χ values of different body struc-
tures used for the numerical simulation of multi- echo lumbar 
spine data. The values were taken from either the literature 
or extracted from in vivo scans of the specific anatomical 
structure

How to cite this article: Boehm C, Sollmann N, 
Meineke J, et al. Preconditioned water- fat total field 
inversion: Application to spine quantitative 
susceptibility mapping. Magn Reson Med. 
2022;87:417- 430. https://doi.org/10.1002/mrm.28903

 15222594, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

rm
.28903 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [18/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



3 Comprising Journal Publications

3.5 Journal Publication IV:

On the water–fat in-phase assumption for

quantitative susceptibility mapping

The publication entitled On the water–fat in-phase assumption for quantitative suscep-

tibility mapping was published in Magnetic Resonance in Medicine (ISSN: 0740-3194).

The manuscript was authored by Christof Boehm, Sarah Schlaeger, Jakob Meineke,

Kilian Weiss, Marcus R. Makowski and Dimitrios C. Karampinos. It is available online

(DOI: 10.1002/mrm.29516) as an open access article under the terms of the Creative

Commons Attribution-NonCommercial License. Preliminary results were also presented

in the conference contribution C16 and C26. A summary of the publication is provided

in Section 3.5.1, the author contributions are listed in Section 3.5.2 and the full text is

included subsequently on the following pages.

3.5.1 Abstract

Purpose

Conventionally, multiple echoes are recorded for the estimation of quantitative sus-

ceptibility maps in regions where both water and fat are present. This is necessary

to remove the phase contributions induced by the chemical shift of fat. However,

this leads to long acquisition times, a limited resolution and introduces the need for

sophisticated field-mapping techniques that either might simply not be available or have

long computation time. Therefore, this work proposes effective in-phase echo times

to allow for body QSM acquisitions with less then 3 echoes and simplified field map

estimation.

Methods

A single-voxel simulation was performed to estimate the echo times where the phase

contributions of fat are zero. The echo times were estimated for different fat models

including the in vivo liver, in vivo bone marrow and ex vivo peanut oil. The estimated

effective in-phase echo times were validated in a Monte Carlo simulation, a liver

simulation, in an peanut oil phantom and in vivo in the liver, spine and breast.
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Results

QSM based on the proposed effective multipeak in-phase echo times achieve the same

quantitative accuracy as QSM based on conventional water–fat separation based echo

acquisition and parameter separation.

Conclusion

QSM based on the proposed effective multipeak in-phase echo times has the same

quantitative performance as water–fat separation based QSM. Effective multi-peak

echo times hence allow for a much faster acquisition of QSM maps when compared to

water–fat separation based acquisitions by reducing the required number of recorded

echoes. Furthermore, the computational cost of the field map estimation is significantly

reduced.

3.5.2 Author contributions

The hypothesis of the existence of zeros in the phase of the water-fat signal evolution

function for physiological multi-peak fat models was devised by the first author. In sup-

port of this hypothesis, the first author developed all necessary code for the manuscript,

including single voxel simulations, Monte Carlo simulations, numerical liver simulations,

as well as the field-mapping and QSM methods. The scanner phantom was constructed

by the first author, who also collected all experimental data. With the guidance and

input of coauthors, the first author analyzed and interpreted the data, and authored

the manuscript.

3.5.3 Original Article
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Purpose: To (a) define multi-peak fat model-based effective in-phase echo times
for quantitative susceptibility mapping (QSM) in water–fat regions, (b) ana-
lyze the relationship between fat fraction, field map quantification bias and
susceptibility bias, and (c) evaluate the susceptibility mapping performance of
the proposed effective in-phase echoes in comparison to single-peak in-phase
echoes and water–fat separation for regions where both water and fat are
present.
Methods: Effective multipeak in-phase echo times for a bone marrow and a liver
fat spectral model were derived from a single voxel simulation. A Monte Carlo
simulation was performed to assess the field map estimation error as a function
of fat fraction for the different in-phase echoes. Additionally, a phantom scan
and in vivo scans in the liver, spine, and breast were performed and evaluated
with respect to quantification accuracy.
Results: The use of single-peak in-phase echoes can introduce a worst-case sus-
ceptibility bias of 0.43 ppm. The use of effective multipeak in-phase echoes shows
a similar quantitative performance in the numerical simulation, the phantom
and in all in vivo anatomies when compared to water–fat separation-based QSM.
Conclusion: QSM based on the proposed effective multipeak in-phase echoes
can alleviate the quantification bias present in QSM based on single-peak
in-phase echoes. When compared to water–fat separation-based QSM the
proposed effective in-phase echo times achieve a similar quantitative perfor-
mance while drastically reducing the computational expense for field map
estimation.
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field map, in phase, quantitative susceptibility mapping, susceptibility
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2 BOEHM et al.

1 INTRODUCTION

Quantitative susceptibility mapping (QSM)1 has been
applied in tissues outside the brain, for example, to distin-
guish osteolytic/osteoblastic bone changes in the spine,2
to characterize lesions and calcifications in breast dis-
ease,1,3 to measure bone density,4-7 or liver iron over-
load.8-10 However, QSM in the body remains challenging
for several reasons including the large susceptibility differ-
ence between bone, soft tissue, and air and the presence
of fat. To obtain a field map without fat phase contribu-
tions, multi-echo acquisitions and subsequent extraction
of the water–fat model parameters such as the water- and
fat-images, R∗2- and field map11 are commonly performed.
However, water–fat separation-based field-mapping itself
is a large field of research and subject to a variety of
restrictions and limitations.

First, the echo times have to be carefully selected for
a robust separation of water and fat and consequently for
the correct estimation of the field map parameter.12,13 At
3T, optimal echo time step for a 6 echo acquisition has
been estimated by Cramer–Rao analysis to be of the order
of 1ms.13 However, such a short echo time step either
limits the achievable resolution or the echoes cannot be
recorded in a single repetition time (TR), especially while
using monopolar gradients. A possible solution to the trade
off between echo time selection and resolution is a time
interleaved sequence14 and has successfully been applied
to QSM in water–fat regions.2,5,11 However, such an acqui-
sition comes at the cost of an increased scan time since
the echo times are not acquired in a single TR. Therefore,
typically a low number of echoes is used resulting in a
comparably short maximum echo time. Longer maximum
echo times can be desirable for QSM due to the increased
phase weighting and the associated increase in sensitivity
for the field map parameter.

Second, the separation of water–fat images and the
field map is challenging due to the nonconvex inverse
problem, where the solution space is known to include
several local and global minima.15,16 A plethora of
field-mapping methods have been proposed to solve the
field map estimation problem and many of them rely
on a spatial smoothness constraint on the field map.17-19

Graph-cut-based field-mapping methods have been par-
ticularly successful in solving the constraint optimization
problem. However, graph-cut-based methods are notori-
ously computationally intensive and can show processing
times of up to hours for scans with either a high resolution
or a large field of view.11

To sidetrack the above problems of water–fat
separation-based field-mapping in body regions, gradi-
ent echo imaging using only in-phase echoes has been
proposed for the estimation of susceptibility and has

primarily been used in the spine.6,7 By definition, in-phase
echoes are acquired when water and fat are in phase. Con-
ventionally, a single-peak fat model is assumed for the
definition of in-phase echo times. When using in-phase
echo times, the signal model is convex within the period
of the phasor and thus the field map can robustly be
estimated using gradient descent-based nonlinear least
squares techniques. However, physiological fat spectra are
known to be spectrally complex rendering the definition
of single-peak in-phase echo times problematic.20 The
use of single-peak in-phase echo times has been shown to
introduce significant susceptibility quantification bias21

in regions where the fat spectrum is spectrally complex.
Therefore, the purpose of this work is to (a) gen-

eralize the approach of single-peak in-phase echoes to
the use of effective multipeak in-phase echo times, (b)
to investigate the correlation between fat fraction, field
map estimation bias and susceptibility bias and to (c)
demonstrate the feasibility of effective multipeak in-phase
echo times to successfully alleviate the quantification bias
of single-peak in-phase echoes. Therefore, susceptibility
mapping based on effective multipeak in-phase echoes,
conventional single-peak in-phase echoes and water–fat
separation were compared in a numerical liver simula-
tion, a phantom and in vivo in the liver, the spine, and the
breast.

2 METHODS

Multipeak effective in-phase echo times

In regions where water and fat are present, the
well-established single-R∗2 multipeak water–fat signal
model can be used to describe the voxel signal evolution
with time as follows:22

s(tn) = (𝜌W + cn𝜌F) e𝛾tn , 𝛾 = i2𝜋fB − R∗2,

cn =
P∑

p=1
apei2𝜋Δfptn , with

P∑
p=1

ap = 1, (1)

where tn are the echo time points, 𝜌W and 𝜌F are the
complex signal of the water and fat components with
an equal transverse relaxation rate R∗2 and fB is the field
map. The fat spectrum is assumed to have P spectral
peaks with corresponding relative amplitudes ap and
chemical shift Δfp. Conventionally, for the definition of
in-phase echo times, the fat spectrum is assumed to have
only one spectral peak P = 1. Thus, Equation (1) can be
simplified to

s(tn) =
(
𝜌W + 𝜌Fei2𝜋fptn

)
e𝛾tn , 𝛾 = i2𝜋fB − R∗2, (2)
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BOEHM et al. 3

where fp is the chemical shift of a single fat peak. Under
the above assumption of only one spectral peak, the water
and fat signal are in-phase when the following condition
ei2𝜋fptn = 1 ⇔ fp ⋅ tn = b, b ∈ N for the fat-phasor is met.
Often, the methylene peak is set as fp

23 due to its pre-
dominant amplitude in different fat compositions and has
a chemical shift of −3.4 ppm relative to water24 and is
presently employed.

In case of the more accurate multipeak signal model in
Equation (1), the definition of in-phase echo times is not
possible due to the complexity of the fat-phasor where at
any time after t = 0 the different fat constituents are never
simultaneously aligned again. However, effective in-phase
echoes can be defined, meaning the time points, where
the fat-phasor in Equation (1) meets the condition ∠cn =
0, representing the time points where the phase of the
fat-phasor is zero.

2.1 Field map estimation

For the field map estimation from complex multi-echo
data a graph-cut algorithm was used.11 In the case of
water–fat separation based field map estimation, the
graph-cut method was used as described in Reference
11. In the case of single-peak and multipeak in-phase
echoes, the signal model in the graph-cut was reduced
to a single species estimation. Specifically, the term
describing the contributions of fat was removed since
both the single-peak and the multipeak in-phase echoes
are hypothesized to contain no phase contributions
of fat.

2.2 Numerical simulations

2.2.1 Single voxel simulation

For the estimation and visualization of the difference
between conventional single-peak and effective multipeak
fat-model and to find the effective multipeak echo times,
a single voxel simulation was performed using Equation
(1) with either a single-peak fat spectral model using
the above chemical shift frequency, a fat-model specific
to bone marrow25 or fat spectral model specific to the
liver,26 a fat fraction of 70%, R∗2 = 30 (Hz) and fB = 0.
The bone marrow and the liver spectral fat model both
have nine fat peaks. The position of the fat peaks is Δf =
[−3.8,−3.4,−3.1,−2.68,−2.46,−1.95,−0.5,0.49, 0.59] ppm
for both models. The relative amplitude of the fat
peak is a = [0.09, 0.583, 0.06, 0.085, 0.06, 0.015, 0.04, 0.01,
0.057] ppm for the bone marrow model and a =
[0.088, 0.642, 0.058, 0.062, 0.058, 0.006, 0.039, 0.01, 0.037]

ppm for the liver model, respectively. The two spectral
models were selected based on the evidence that liver and
adipose tissue have different triglyceride composition.
The fat fraction and R∗2 were selected for a realistic and
clear visualization of the signal evaluation. The variation
of both parameters do not influence the zero crossings of
the fat phasor.

2.2.2 Monte Carlo simulation

A Monte Carlo simulation was performed for assessing
the field map estimation error at different fat fractions
using both conventional single-peak or effective multipeak
in-phase echo times. The fat fraction values were var-
ied from 0% to 100%, R∗2 = 30(Hz) and fB = 0 were used.
Independent Gaussian noise was added to the real and
imaginary part of the echo data with an signal-to-noise
ratio (SNR) of 100. The SNR was defined as the maxi-
mum signal amplitude of the first echo divided by the SD
of noise. Based on the above values, the signal at differ-
ent time points was simulated using Equation (1) with
the single-peak fat model, the multipeak fat liver model
or the multipeak bone marrow fat model. Subsequently,
the field map from the three different signals were esti-
mated for each fat fraction using each, the single-peak
in-phase echoes and the effective multipeak in-phase
echoes based on the liver and bone fat-model. Based on
the above simulation, the accuracy of field map estima-
tion choosing the echo times in accordance to the under-
lying fat model as well as cross-model correlation were
estimated.

2.2.3 Correlation between field map
estimation error and susceptibility
quantification bias

In order to quantify how the field map estimation error
translates into susceptibility error without the potential
bias of a selected inversion method, a simulation of a
sphere with varying susceptibility difference from out-
side to inside and of an infinite flat surface of two
materials with a susceptibility difference was performed.
The susceptibility map was forward simulated to a field
map and the field map difference was measured at
the surface.

2.2.4 Numerical liver simulation

In order to assess the quantification bias induced by the
in-phase assumption in a realistic anatomy, a numerical
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4 BOEHM et al.

simulation based on the Duke phantom was performed
using the annotated geometrical data from Reference 27.
Each tissue was assigned with either their literature value
or values extracted from in vivo scans and forward simu-
lated using Equation (1). To account for the significantly
different fat-models of the liver and other fatty tissues, the
above liver fat-model was used within the liver and in all
other fatty tissues the bone marrow model was used. In
the simulation, either conventional water–fat separation
echo times with six echoes, TEmin∕ΔTE = 1.0 ms, conven-
tional single-peak in-phase echo times or effective in-phase
echo times for the two above-mentioned fat-models were
used. In the case of in-phase echo times the first three
echo times were used due to there equidistant nature
(see below in Results). A background field was simu-
lated based on air outside the subject (9.94 ppm28) and in
the lungs (13.36 ppm29). An SNR of 50 was added simi-
lar to the above Monte Carlo simulation. The field map,
water(–fat)-images and R∗2-map were estimated using a
graph-cut algorithm.11 The field maps were inverted to
a susceptibility map using a linear total field inversion
algorithm.30 Since the linear total field inversion algorithm
method only obtains relative susceptibility maps, the sus-
ceptibility maps were referenced using the subcutaneous
fat layer. Within the subcutaneous fat layer the suscep-
tibility distribution is assumed to mainly originate from
fatty tissue and not altered by diseases such as hep-
atic iron overload.8 Normalized root mean square errors
(NRMSE) were calculated in reference to the ground
truth.

2.2.5 Phantom measurements

To validate the numerical results, a scan of a vial filled
with peanut oil in the center of a water reservoir was
performed. Scanning was performed on a 3 T scanner
(Ingenia Elition, Philips Healthcare) using a monopo-
lar time-interleaved multi-echo gradient echo sequence14

for reference water–fat separation, acquiring six echoes
with 3 echoes per interleave. An isotropic voxel size of
1.5 mm, a field of view =[120,120, 141], TE1 = 1.23 ms
and ΔTE = 0.99ms were used. For the effective in-phase
echo times a fat model specific to peanut oil was used.31

Both the single peak in-phase echo times and the effective
in-phase echo times were temperature corrected32 to 23◦C
and were recorded with TEsingle peak = [2.21, 4.42, 6.63]ms
and TEpeanut oil = [2.29, 4.44, 6.59]ms, respectively. The
above processing of graph-cut-based field-mapping and
linear total field inversion algorithm dipole inversion
was used and the difference susceptibility between an
region-of-interest (ROI) in the vial and the water reservoir
was measured.

2.3 In vivo measurements

The aforementioned processing of graph-cut-based
field-mapping followed by linear total field inversion
algorithm QSM was applied in in vivo scans of the spine,
the breast and the liver of 10 volunteers, where in six
volunteers only the spine was acquired, in three volun-
teers the spine and liver were acquired and in one subject
only the breast was acquired. Approval by the institu-
tional review board (Klinikum rechts der Isar, Technical
University of Munich) was granted for the scans and
informed consent was received by all subjects. Scanning
was performed on the aforementioned scanner. Reference
field maps were estimated using the above monopolar
time-interleaved multi-echo gradient echo sequence,
where the liver fat model was used for the liver scan
and the bone marrow model for the scan of the spine
and breast, respectively. In all anatomies scans based
on conventional single-peak in-phase echoes were per-
formed. Additionally, the liver was scanned once with
effective multi-peak echo times based on the liver model
and once based on the bone marrow model. The spine
and breast were scanned once with effective multipeak
in-phase echo times based on the bone marrow model.
The scanning parameters for each anatomy are given in
Table 1. For a quantitative assessment of the results, a
difference measurement within the susceptibility map
was performed between different tissue types. Fat8 and
paraspinal muscles33 have previously been used for refer-
encing of susceptibility maps and hence were presently
adopted. For the liver scan, the difference between subcu-
taneous fat and a ROI in the liver of the size of ∼ 12 cm3

and an ROI in the paraspinal muscle of the size of ∼ 4 cm3

and the ROI in the liver were measured (see Figure 5).
For the subcutaneous fat layer mask, all voxels with a fat
fraction greater than 75% were selected. In the lumbar
spine scans, the difference between the posterior sub-
cutaneous fat layer (orange arrow in Figure 6) and the
spinal canal between the upper plate of the L3 vertebra
and the base plate of the L5 vertebra was measured. Since
in healthy adults the spinal cord ends at the height of the
L1/L2 vertebrae, the segmented part of the spinal canal is
predominantly filled with cerebrospinal fluid (CSF, white
arrow) which is often used in brain QSM for referencing.34

The subcutaneous fat layer mask was generated as for the
liver scan. The CSF region was manually segmented. In
the breast scan, the difference between fatty and fibrog-
landular tissue in the right breast was measured. First, the
right breast was segmented using the deep neural network
and weights from Reference 35. Within the right breast,
the fat mask was again based on all voxels with a fat frac-
tions greater than 75%. The fibroglandular tissue mask
was based on all voxels with a fat fraction from 0%–20%.
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BOEHM et al. 5

T A B L E 1 MR scan parameters for the in vivo acquisitions for the respective anatomy

Parameter Liver Spine Breast

Field of view 400 × 320 × 180 mm3 220 × 220 × 79.2 mm3 220 × 382 × 192.4 mm3

Voxel size 2 × 2 × 5 mm3 1.8 mm isotropic 1.3 mm isotropic

Flip angle 3◦ 3◦ 3◦

Acceleration Compressed sensing (R = 4) None Compressed sensing (R = 6)

Acquisition for water–fat separation

Type Interleaved (2) Interleaved (2) Interleaved (2)

TE NTE = 4 TEmin = 1.09 ms
ΔTE = 0.80 ms

NTE = 6 TEmin = 1.33 ms
ΔTE = 1.05 ms

NTE = 6 TEmin = 1.58 ms
ΔTE = 1.28 ms

TR 4.7 ms 8.1 ms 10 ms

Scan time 0:16 min 3:12 min 4:15 min

Acquisition of effectivemultipeak in-phase echoes

Type Single acquisition (all echoes
in one TR)

Single acquisition (all echoes in
one TR)

Interleaved (2)

TE (Liver model) NTE = 3 TEmin = 2.35 ms
ΔTE = 2.24 ms

(Bone marrow model) NTE = 3
TEmin = 2.38 ms ΔTE = 2.22 ms

(Bone marrow model)
NTE = 4 (3 used) TEmin = 2.38
ms ΔTE = 2.22 ms

TR 8.5 ms 8.3 ms 11 ms

Scan time 0:17 min 1:52 min 3:21 min

Note: All acquisitions used monopolar gradients.

On the fibroglandular tissue mask, binary erosion was
applied once in order to remove the skin layer from the
mask. All manual segmentations namely, the drawing
of the ROI in the subcutaneous fat, the ROI in the liver,
the ROI in the paraspinal muscle and the spinal chanel
between L3 and L5 were performed by a radiologist (with
6 years experience).

3 RESULTS

3.1 Numerical simulations

3.1.1 Single voxel simulation

Figure 1 shows the signal evolution of a voxel containing
both water and fat for different fat models. The dashed
lines in gray indicate the time points where water and fat
are in-phase in the case of the single-peak assumption
(TEmin∕ΔTE = 2.3 ms). The dashed lines in green indicate
the time points, where the phase is zero and refer to the
effective in-phase echo times The first six effective in-phase
echoes are TE = [2.38, 4.6, 6.81, 9.17, 11.62, 13.92] and
TE = [2.35, 4.59, 6.83, 9.2, 11.6, 13.89] for the bone mar-
row and the liver model, respectively. In the case of
the bone marrow model the first three echoes are

almost equidistant. Echo times of TE = [2.38, 4.6, 6.82]
(TEmin∕ΔTE = 2.38∕2.22 ms) were subsequently used
as the effective in-phase echo times for the bone mar-
row fat model. In the case of the liver model the
first three echo times are exactly equidistant with
TEmin∕ΔTE = 2.35∕2.24 ms and are subsequently
referred to as effective in-phase echo times for the liver
fat model.

3.1.2 Monte Carlo simulation

Figure 2 shows the quantification bias of the field map as
a function of the fat fraction for different fat models. The
plots in the first column show the quantification bias of
the single-peak in-phase assumption. For the single-peak
assumption and a voxel with a fat fraction of 100% the field
map error is almost −0.1 ppm for the liver fat model and
−0.13 ppm for the bone marrow fat model, respectively
(yellow background). The plots on the diagonal (blue back-
ground) reveal that the use of effective multi-peak in-phase
echoes can reduce the field map quantification bias down
to the noise level for both multipeak fat models. Measur-
ing with effective in-phase echo times cross model (green
background), the field map quantification bias for voxel
with a fat fraction of 100% is significantly smaller than
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6 BOEHM et al.
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F I G U R E 1 Magnitude and phase evolution for different fat models in a voxel containing both water and fat. The dashed line in gray
refer to the time points at which the phase of fat in the single-peak assumption is zero (TEmin∕ΔTE = 2.3 ms). The dashed lines in green refer
to the time points, where the fat phase is generally zero. For the single-peak fat model both time points coincide. In case of both the multi-peak
liver and the bone marrow model the green and gray lines generally do not coincide and are shifted in both directions around the single-peak
in-phase time points. Most importantly, in both multipeak fat models the time points where the fat phasor is zero are not equidistant and
read TE = [2.38, 4.6, 6.81, 9.17, 11.62, 13.92] and TE = [2.35, 4.59, 6.83, 9.2, 11.6, 13.89] for the bone marrow and the liver fat spectrum model,
respectively. While the first three echo times for liver model are equidistant this is not true for the bone marrow fat model. However, in the
case of the bone marrow model either the first or the third echo time can be shifted by 0.01 ms to obtain three equidistant echoes

for the single-peak assumption and is 0.03 ppm. The plots
with the red background show the correlation for the case
of fatty tissue with only a single-fat peak estimated with
effective multipeak in-phase echo times. Fatty tissue with
only a single-fat peak is nonphysiological and is given for

completeness. Noteworthy is that the correlation for phys-
iological meaningful combinations (second and third row)
are nonlinear. The correlations are well approximated
using a second-order polynomial (see 𝜒2-test in each sub-
plot’s legend).
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BOEHM et al. 7

F I G U R E 2 Analysis of the quantification bias of the field map in dependence of the fat fraction for different in-phase models. Each row
shows the bias for the different fat model which were used to forward simulate the signal, while each column shows the bias for the different
fat models which were used to define the (effective multi-peak) in-phase echo times used for the field map estimation. On the diagonal (blue
background) plots, the results are shown when for a fat model the corresponding (effective) in-phase echo times were used. Using the correct
in-phase echoes, the field map quantification bias can be alleviated for each fat model. When single-peak in-phase echo times are used to
measure in the liver or the bone marrow (yellow background). The field map quantification bias correlates quadratically with fat fractions
and reaches up to −0.1 ppm for the liver model and −0.13 ppm for the bone marrow model, respectively. Measuring with effective in-phase
echo times cross model (green background), the field map quantification bias also correlates quadratically with fat fraction. In a voxel with a
fat fraction of 100% the field map quantification bias in a cross-model measurement is significantly smaller than for the single-peak
assumption and is 0.03 ppm. The case where the voxel only contains a single species, but are estimated with a multipeak fat model (red
background) is only given for completeness.

3.1.3 Correlation between field map
estimation error and susceptibility
quantification bias

Figure S1 shows how the field map quantification error
propagates into susceptibility mapping error without the
bias of the selected dipole inversion method. The field
map quantification error correlation for a spherical sur-
face and an infinite surface is −0.304 and −0.332 when
the surface is parallel to B0 and 0.608 and 0.664 when the
surface is perpendicular to B0, respectively. The difference
between both surface types is 9.2%. The field map error in a

voxel with a fat fraction of 100% measured with single-peak
in-phase echoes hence translates into worst-case suscepti-
bility estimation error of −0.1ppm

−0.304 = 0.33 ppm in the liver

and −0.13ppm
−0.304 = 0.43 ppm in bone marrow, respectively.

3.1.4 Numerical liver simulation

Figure 3 shows field- and susceptibility-mapping results in
a numerical liver simulation. The second row shows the
reference field map and the difference between reference
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8 BOEHM et al.
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F I G U R E 3 Results of field- and susceptibility-mapping in a numerical liver simulation. The first column shows the reference fat
fraction, field map and susceptibility map used in the forward simulation. The rest of columns show the maximum intensity projection across
echo times, the difference field maps with respect to the reference map and the susceptibility maps. The in-phase models (yellow
background) refer to an acquisition based on the respective echo times specific to the fat model. For the water–fat separation-based
estimation (blue background), the same echo times were used while in the separation the respective fat models were employed. The field
map quantification bias correlates (i) with the fat fraction and (ii) with the employed estimation method. The use of single-peak in-phase
echoes shows the largest field- and susceptibility-mapping error. Results based on effective bone marrow in-phase echoes (i) perform better
than the liver model echo times and (ii) the normalized root mean square errors is comparable to water–fat separation-based results.
However, general underestimation of susceptibility in all methods can be observed.

field map and estimated field map for each method. The
difference map for the single-peak in-phase assumption
yields the largest NRMSE of 0.053 ppm. The offset is
dependent on the fat fraction and is always negative. The
field map difference map of the liver effective in-phase
model yields a NRMSE of 0.015 ppm. Using effective
in-phase echoes based on the liver fat model, no field map
quantification bias can be observed within the liver. How-
ever, a negative correlation with the fat fraction in other
fatty tissue can be observed which is significantly smaller
than in the single-peak in-phase echo-based map. The field
map difference map based on the bone marrow model
has an NRMSE of 0.007 ppm and quantification bias only
within the liver. The quantification bias in the case of the
bone marrow model has a positive correlation with the fat
fraction. The correlations observed in the numerical liver
simulation are in good agreement with the cross-model
correlations shown in Figure 2. The error of the referenced
susceptibility maps directly correlates with the error of the
underlying field map. The higher the field map error, the
higher the susceptibility error. However, a general overes-
timation of susceptibility values can be observed even in
the method with the lowest NRMSE.

3.1.5 Phantom measurements

In the phantom scan shown in Figure 4 the difference
between the ROI in the vial and the water reservoir

yielded−0.068 ppm for single-peak in-phase echoes, 0.035
for effective in-phase echoes and −0.039 for water–fat
separation-based susceptibility mapping. The use of con-
ventional single-peak in-phase echo times shows a under-
estimation of field map and susceptibility values in the
vial. Furthermore, in the susceptibility map based on
single-peak in-phase echoes strong streaking artifacts
around the oil-filled vial can be observed. Field-mapping
and QSM results based on effective multipeak in-phase
echoes show similar results to water–fat separation-based
estimation. Mean, SD, and ROI size of the water reservoir
and the oil vial can be found in Table S1.

3.2 In vivo measurements

In a exemplary scan of the liver shown in Figure 5 the
used ROIs in the paraspinal muscle and the liver for
the difference measurements are depicted. The mean
difference across all subject between the subcutaneous
fat layer and the ROI in the liver yielded (0.15 ± 0.01)
ppm for single-peak in-phase echoes, (0.24 ± 0.06) ppm
and (0.28 ± 0.08) ppm for effective multipeak in-phase
echoes based on the liver and bone marrow fat model,
respectively, and (0.29 ± 0.05) ppm based on water–fat
separation-based susceptibility mapping. The mean dif-
ference across all subject between the ROI in the back
muscle and the ROI in the liver yielded (−0.03 ± 0.04) ppm
for single-peak in-phase echoes, (−0.08 ± 0.05) ppm and
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BOEHM et al. 9

F I G U R E 4 First echo (first row),
field-mapping (second row) and
susceptibility mapping (last row) results
in the scan of a oil filled vial in a water
reservoir. The in-phase models (yellow
background) refer to an acquisition
based on the respective echo times
specific to the model. Both the in-phase
and the water–fat separation fat model
used fat spectracs temperature
corrected to 23◦C. For comparison, the
difference susceptibility between an
region-of-interest in the vial (white
circle) and the water reservoir was
measured. The single-peak in-phase
estimation shows an underestimation
in field map and susceptibility value
and strong streaking artifacts around
the vial in the susceptibility map. The
use of peanut oil model-based effective
in-phase echoes shows similar results to
reference water–fat separation-based
estimation. Specifically, the differences
measurement between the vial and the
water reservoir yield −0.068 ppm for
the single-peak in-phase estimation,
−0.035 ppm for the effective multi-peak
in-phase echoes and −0.039 ppm for
water–fat separation-based estimation.

(−0.10 ± 0.06) ppm for effective multipeak in-phase
echoes based on the liver and bone marrow fat model,
respectively, and (−0.12 ± 0.09) ppm based on water–fat
separation-based susceptibility mapping.

Using effective bone marrow in-phase echo times in
the spine (exemplary Figure 6), similar susceptibility val-
ues in the anterior subcutaneous fat (orange arrows)
can be observed as in the susceptibility map based
on a water–fat separation-based field map. The use of
single-peak in-phase echoes significantly underestimate
regions with high fat fractions. Particularly noteworthy
is the CSF region in the susceptibility map based on
single-peak in phase echoes (white arrow) that shows
strong streaking artifacts. The CSF region in the sus-
ceptibility map based on water–fat separation and on
effective multipeak in-phase echoes is less effected by
streaking artifacts. Furthermore, the susceptibility map
based on water–fat separation shows the highest SNR and
hence minimal noise compared to both in-phase maps.
The mean susceptibility difference across the nine sub-
jects between the subcutaneous fat layer and the CSF
yielded (0.07 ± 0.07) ppm for single-peak in-phase echoes,
(0.30 ± 0.09) ppm for effective multipeak in-phase echoes
based on the bone marrow model and (0.31 ± 0.08) ppm

for water–fat separation-based susceptibility mapping,
respectively.

The in vivo breast scan shown in Figure 7 yielded
comparable results. The water–fat separation-based sus-
ceptibility allowed for a good delineation between fatty
and dense breast tissue (arrow) and showed the least noisy
image. A lot of contrast between the tissue types was lost in
the single-peak-based map and noise was increased. The
susceptibility map based on effective in-phase echo times
showed a similar contrast between the tissue types at the
arrow position. However, also an increase in residual back-
ground field removal artifacts was observed especially in
proximity to the sternum and thoracic bones. The suscep-
tibility difference measurement between fatty breast tissue
and fibrograndular tissue yielded 0.22 ppm for single-peak
in-phase echoes, 0.29 ppm for effective multipeak in phase
echoes based on the bone marrow model and 0.30 ppm for
water–fat separation-based susceptibility mapping, respec-
tively.

The correlation of the difference measurements
between reference water–fat separation-based suscepti-
bility estimation and an estimation based on (effective)
in-phase echoes yields a strong correlation between effec-
tive in-phase echoes based on the bone marrow fat model.
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F I G U R E 5 First echo (first row), field-mapping (second row) and susceptibility-mapping (last row) results in the liver scan of a
volunteer. The in-phase models (yellow background) refer to an acquisition based on the respective echo times specific to the model. The
field map quantification bias correlates (i) with the fat fraction and (ii) with the employed estimation method. For comparison of the different
susceptibility estimation methods, the difference between the subcutaneous fat layer (orange arrow) and an region-of-interest in the liver
(white box) was measured and is given above the susceptibility maps. The susceptibility maps based on single-peak and on effective in-phase
echoes based on the liver model show a significant underestimation of the difference when compared to water–fat separation-based
susceptibility estimation. Susceptibility mapping based on effective in-phase echoes based on the bone marrow modal only show a small
deviation water–fat separation-based result.

Using single-peak in-phase echoes results in a significant
underestimation of susceptibility and an increase in vari-
ability (Figure 8). effective in-phase echoes based on the
liver fat model shows a moderate underestimation of sus-
ceptibility values. Mean, SD, and ROI size for each subject,
anatomy and ROI can be found in Table S1.

4 DISCUSSION

The present study aimed to enable the field map estima-
tion and subsequent susceptibility mapping in water–fat
regions without the need of the often computational inten-
sive water–fat separation. First, the concept of effective
multipeak in-phase echo times was introduced which gen-
eralizes single fat peak in-phase echo times to the more
physiological meaningful multipeak fat models. Specifi-
cally, for a in vivo liver, a in vivo bone marrow and a ex vivo
peanut oil multipeak fat spectral model the effective multi-
peak in-phase echo times were defined as the time points,
where the sum of the individual fat phasors is zero. These
time points have the same effect in the multipeak water–fat
signal model as in-phase echoes in the single-peak model,
meaning the nulling of fat phase contributions by echo
time selection. The study then quantified the field map

estimation error for single-peak in-phase echoes and mul-
tipeak effective in-phase echoes for the above in vivo mul-
tipeak fat models at different fat fractions. Next, the study
estimated how field map quantification bias translates into
susceptibility map based on a forward simulation at an
infinite surface and a sphere. The different echo times were
then tested in a numerical simulation of the liver and in
vivo measurements in the liver, spine, and breast. In the
simulation, multipeak effective in-phase echo times based
on the bone marrow model was able to achieve a signif-
icantly reduced NRMSE when compared to conventional
single-peak-based in-phase echo times. In a phantom scan,
QSM based on effective in-phase echoes yielded the same
results as water–fat separation-based estimation while
single-peak in-phase echo estimation showed a underesti-
mation of susceptibility of the oil vial and strong streaking
artifacts. In vivo, multipeak effective in-phase echo times
showed comparable results to water–fat separation-based
field- and susceptibility-mapping and was able to espe-
cially alleviate the quantification bias of the single-peak
in-phase echoes-based estimation in regions with high
fat fraction such as the subcutaneous fat layer or fatty
breast tissue. Furthermore, the study showed that the bone
marrow fat model yields improved susceptibility mapping
results in the liver when compared to the use of a fat
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F I G U R E 6 First echo (first row), field-mapping (second row) and susceptibility-mapping (last row) results in the scan of the lumbar
spine in a volunteer. The in-phase models (yellow background) refer to an acquisition based on the respective echo times specific to the
model. For comparison of the different susceptibility estimation methods, the difference between the posterior subcutaneous fat layer (orange
arrow) and the cerebrospinal fluid (CSF, white arrow) was measured and is displayed above the susceptibility maps. The susceptibility map
based on single-peak in-phase echoes shows a significant underestimation in the subcutaneous fat layer and strong streaking artifacts in the
CSF when compared to both effective multipeak in phase echo times and water–fat separation-based susceptibility-mapping. The
susceptibility map based on the water–fat separation shows the highest signal-to-noise ratio due to the acquisition of twice as many echo time
points compared to in-phase acquisition. The differences measurement between the CSF and subcutaneous fat yield 0.38 ppm for the
single-peak in-phase estimation, 0.61 ppm for the effective multipeak in-phase echoes and 0.68 ppm for water–fat separation-based estimation.

model specific to the liver fat composition. The use of
(effective) in-phase echoes can be advantageous for sev-
eral reasons including (a) the simplified signal model,
(b) reduced scan time, and (c) the selection of larger
echo time steps compared to water–fat separation-based
sequences.

First, the simplified signal model allows for the
robust estimation of the field map parameter by using
least squares techniques followed by an unwrapping
step that are both generally computationally inexpensive
when compared to water–fat separation-based techniques

such as IDEAL36 or generalized IDEAL-like methods,37

which iteratively alternate between linear and nonlin-
ear terms, or graph-cut-based methods11,18,19,38 that are
known to yield a high accuracy in field map quantifi-
cation at the cost of long-run times of several min-
utes up to hours.11 Although the presently employed
field-mapping technique for the in-phase echoes is based
on a graph-cut algorithm introduced in Reference 11,
the reduction of computational cost within the graph-cut
method is significant in the case of a convex cost function
within one period. The underlying graph-cut algorithm
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Difference: 0.22 Difference: 0.29 Difference: 0.30

F I G U R E 7 First echo (first row), field-mapping (second row) and susceptibility-mapping (last row) results in the scan of the breast in a
volunteer. The in-phase models (yellow background) refer to an acquisition based on the respective echo times specific to the model. For
comparison of the different susceptibility estimation methods, in the righ breast (white arrow) the difference between fatty and nonfatty
breast tissue was measured and is given above the susceptibility maps. The susceptibility map based on in-phase echoes (first column) shows
a underestimation of the fatty breast tissue when compared to the water–fat separation-based susceptibility estimation (third column). The
results based on effective multipeak in-phase echo times (second column) shows a similar difference to the water–fat separation based.
However, the bone marrow in-phase susceptibility map shows strong residual susceptibility variations especially between the breast and
close to the lungs originating from an improper removal of the background field. Additionally, an increase in noise can be observed in the
in-phase-based susceptibility maps.

(boykov-kolmogorov) has a worst case complexity of(n2m|C|), where n are the number of nodes, m the
number of edges and C the cost of the minimum cut.39

The number of nodes n scales with the complexity of
the signal model and unwrapping range needed while m
also scales quadratically with the number of nodes n.11,40

The achieved estimation times per in-phase field map
in the present work was below 10 s for all cases, while
water–fat separation-based field-mapping in a similar
breast scan can take up to 1 h using the same graph-cut
method.13

Second, although the selection of echo times for
water–fat separation seems more flexible when compared
to single-peak or effective multipeak in-phase echo times,
this is generally not true. Echo times for water–fat sepa-
ration have to be carefully selected and are itself subject
to optimization. For example, the first echo time and the
echo time step has to be chosen for robust species sep-
aration and high SNR,13 and are both of the order of 1
ms at 3T. To achieve a reasonable resolution while acquir-
ing the above echo times and using monopolar gradients,
sequences such as a time-interleaved multi-echo gradi-
ent echo sequence14 are necessary, which was presently

adopted. However, the above sequence comes at the cost
of increased scan time. When two shots are employed
only half of the echo times are recorded per TR hence
approximately doubling the scan time. In order to achieve
a reasonable total scan time the maximum echo time is
reduced to reduce the TR. However, a late maximum echo
time can be desirable in the realm of susceptibility map-
ping due to the increased susceptibility weighting of the
later echoes.

Finally, susceptibility mapping is well known to only
estimate relative susceptibility maps, since the dipole ker-
nel is zero at the center of k − space. Therefore, a reference
strategy is needed to compare different dipole inversion
method within one subject, and, more importantly, to
allow for cross-subject comparison. In the liver, the sub-
cutaneous fat and the paraspinal muscle were used for
referencing since they are both known to not accumulate
iron, which is important for the assessment of iron accu-
mulation in the liver.8 Referencing was also employed for
the numerical liver simulation for the comparison of the
different methods and was based on the subcutaneous fat.
In the spine, the difference between the posterior subcu-
taneous fat and the CSF was measured and in the breast

 15222594, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

rm
.29516 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [18/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



BOEHM et al. 13

Liver

S

B

F I G U R E 8 Correlation between reference water–fat
separation-based susceptibility difference measurements and
difference measurements based on (effective) in-phase acqusitions
of all volunteer scans. The correlation based on single-peak
in-phase echoes shows a significant underestimation of
susceptibility and strong variability. Effective in-phase echoes based
on the liver model shows a better correlation with the reference
while effective in-phase echoes based on the bone marrow model is
almost identical with the reference with the smallest variability.

the difference between fatty breast tissue and fibrograndu-
lar tissue was measured. In the spine, only the posterior
subcutaneous fat was chosen since the anterior part of
the body is affected by motion due to the free breath-
ing nature of the acquisition protocol. In the brain, the
CSF is often used as a reference and is assumed to have a
susceptibility of zero.34 Therefore the difference between
subcutaneous fat and CSF in the spine region should be
constant for different methods and even between sub-
jects. When using effective multipeak in-phase echo times
based on the bone marrow model, the measured sus-
ceptibility difference in all three anatomies is similar to
the water–fat separation-based difference. The water–fat
separation-based susceptibility maps can serve as a refer-
ence measurement for the removal of phase contributions
of fat in the field map, since water–fat separation-based
field maps are not prone to erroneous fat phase contribu-
tions. Particularly noteworthy is that field- and susceptibil-
ity mapping in the numerical simulation based on the bone
marrow model achieved lower NRMSE in both multipeak
effective in-phase echoes acquisition and water–fat separa-
tion when compared to the liver model. The same can be
observed in the in vivo liver, where the difference measure-
ments based on the liver fat model shows a larger deviation

in reference to water–fat separation than when based on
the bone marrow model. In the case of referencing in the
subcutaneous fat, this can be explained by the employed
referencing strategy and the different fat fractions in the
liver and subcutaneous fat. The subcutaneous fat has a fat
fraction of above 80% and is significantly higher than for
fatty livers which can have up to 40%. In the cross-model
field map quantification bias simulation with fat fraction
shown in Figure 2 it was shown that the error correlates
quadratically with the fat fraction. Therefore, when the rel-
ative susceptibility between subcutaneous fat and liver is
tried to be measured, the error is smaller when the error
in the subcutaneous fat is minimized. In the case of ref-
erencing the liver to the paraspinal muscle the improved
results based on the bone marrow model may originate
from the reduction of the total field map estimation error.
The paraspinal muscle is close to subcutaneous fat and
field map estimation error in the fat potentially propagates
nonlocally into the susceptibility map.

The use of effective multipeak in-phase echoes still
has one apparent limitation. The presently adopted liver
and bone marrow signal model used for the definition
of the respective effective multipeak in phase echoes only
represent a fraction of fatty tissue compositions. In fact,
most of the different adipose tissue types show a different
fat composition including abdominal superficial subcuta-
neous adipose tissue, deep subcutaneous adipose tissue,
visceral adipose tissue and the aforementioned bone mar-
row and liver fat compositions.24 For all the above fat mod-
els different effective multipeak in-phase echo times can be
defined. However, based on the tissue of interest and the
employed referencing strategy, one set of effective multi-
peak in-phase echo times has to be selected. However, only
the liver spectral fat model shows a significantly different
composition when compared to all other fat models. In this
work it was shown that field- and susceptibility-mapping
based on effective multipeak in-phase echoes derived from
the bone marrow fat model show less quantification bias
then in-phase echoes based on the liver fat model. This
is also true, when the liver is the tissue of interest and,
more importantly, the referencing strategy is based in non-
fatty regions such as the paraspinal muscle. Arguably, the
in-phase echoes based on the bone marrow fat model
might be the best choice for all fat-containing anatomies.

5 CONCLUSION

The use of of effective multipeak in-phase echo times was
proposed for QSM in water–fat regions. The proposed
in-phase echoes successfully remove the field map quan-
tification bias of single-peak based in-phase echoes and
show similar results to water–fat separation based field-
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and susceptibility-mapping. The use of effective multipeak
in-phase echoes allows for a rapid field map estimation due
to the simplified signal model and can reduce the scan time
compared to a time interleaved multi-echo gradient echo
sequence.
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Figure S1. Correlation between susceptibility and field
map based on a forward simulation at a sphere and an infi-
nite surface. The correlation for a spherical surface and
an infinite surface is −0.304 and −0.332 when the sur-
face is parallel to B0 and 0.608 and 0.664 when the surface
is perpendicular to B0, respectively. Based on the results
in Figure 2, the field map quantification bias in a voxel
with a fat fraction of 100% measured with single-peak in
phase echo translates into a susceptibility estimation error
of −0.1ppm

−0.304 = 0.33 ppm in the liver and −0.13ppm
−0.304 =

0.43 ppm in bone marrow, respectively.
Table S1: Mean susceptibility, standard deviation
and size of all ROIs for all scans. In brackets the
region of the ROI is given (fat, muscle, fibroglandu-
lar, etc.). The subscripted text refers to the estimation
method, hence 𝜒(fibroglandular)WFI refers to the mean
susceptibility and standard deviation of fibroglandu-
lar tissue based on waterŰfat separation field map
estimation.
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3 Comprising Journal Publications

3.6 Journal Publication V:

Robust quantitative susceptibility mapping in the

breast in the presence of silicone

The publication entitled Robust quantitative susceptibility mapping in the breast in

the presence of silicone was published in Magnetic Resonance in Medicine (ISSN:

0740-3194). The manuscript was authored by Christof Boehm, Jonathan K. Stelter,

Jakob Meineke, Kilian Weiss, Zimmer, Alexander Komenda, Tabea Borde, Marcus R.

Makowski, Eva M. Fallenberg, and Dimitrios C. Karampinos. It is available online

(DOI: 10.1002/mrm.29694) as an open access article under the terms of the Creative

Commons Attribution-NonCommercial License. Preliminary results were also presented

in the conference contribution C29. A summary of the publication is provided in Section

3.6.1, the author contributions are listed in Section 3.6.2 and the full text is included

subsequently on the following pages.

3.6.1 Abstract

Purpose

Breast microcalcifications (MCs) constitute a marker of malignant early stage breast

tumors. X-ray based mammography is routinely used due to the excellent contrast of

calcified structures. However, an MR based screening method is desirable for target

sub-cohorts at high risk or young patients to reduce radiation dose. QSM is an

established MR technology to visualize and quantify calcified structures. After skin

sparing mastectomy, the residual breast tissue is routinely monitored for recurrent

cancer. Therefore, an MR-based methodology needs to address the presence of silicone

with its chemical shift and strong susceptibility. Hence, this work proposes a QSM

methodology specifically tailored for breast applications in the presence of silicone

breast implants.

Methods

A recently proposed graph-cut algorithm is employed to obtain water-, fat-, and

silicone-separated images from multi-echo gradient-echo images. From these separated

images, a silicone fraction map is derived. Utilizing the silicone fraction map, a silicone

implant mask is generated. An additional term, based on the silicone implant mask,

is introduced in the dipole inversion to enforce homogeneous susceptibility within

90
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regions of silicone. This approach is combined with a data consistency term that

directly estimates susceptibility from complex multi-echo images. The proposed method

was applied to a numerical breast simulation and in vivo for five patient scans. The

method was compared to previously proposed QSM approaches that do not explicitly

or implicitly account for the presence of silicone.

Results

In the simulation, the proposed method successfully reduces the normalized root mean

squared error by 62% compared to previously proposed QSM methods. Both the

simulation and in vivo maps exhibit reduced artifacts in the residual breast tissue

adjacent to silicone implants when employing the proposed methodology.

Conclusion

In contrast to previously proposed QSM methods, the proposed method accounts for

the strong susceptibility and the chemical shift of silicone and consequently allows for

the visualization of local susceptibility values in proximity to silicone breast implants.

3.6.2 Author contributions

The first author developed the problem-specific inverse problem formulation; imple-

mented the optimization code in Python; performed the numerical simulation; enrolled

the patients and acquired the patient data with help of the coauthors; analyzed and

interpreted the data, and wrote the manuscript.

3.6.3 Original Article
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Purpose: To (a) develop a preconditioned water–fat–silicone total field inver-
sion (wfsTFI) algorithm that directly estimates the susceptibility map from
complex multi-echo data in the breast in the presence of silicone and to (b) eval-
uate the performance of wfsTFI for breast quantitative susceptibility mapping
(QSM) in silico and in vivo in comparison with formerly proposed methods.
Methods: Numerical simulations and in vivo multi-echo gradient echo breast
measurements were performed to compare wfsTFI to a previously proposed field
map-based linear total field inversion algorithm (lTFI) with and without the
consideration of the chemical shift of silicone in the field map estimation step.
Specifically, a simulation based on an in vivo scan and data from five patients
were included in the analysis.
Results: In the simulation, wfsTFI is able to significantly decrease the nor-
malized root mean square error from lTFI without (4.46) and with (1.77) the
consideration of the chemical shift of silicone to 0.68. Both the in silico and in
vivo wfsTFI susceptibility maps show reduced shadowing artifacts in local tissue
adjacent to silicone, reduced streaking artifacts and no erroneous single voxels
of diamagnetic susceptibility in proximity to silicone.
Conclusion: The proposed wfsTFI method can automatically distinguish
between subjects with and without silicone. Furthermore wfsTFI accounts for
the presence of silicone in the QSM dipole inversion and allows for the robust
estimation of susceptibility in proximity to silicone breast implants and hence
allows the visualization of structures that would otherwise be dominated by
artifacts on susceptibility maps.
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1 INTRODUCTION

Breast cancer is the most common malignancy in women
worldwide.1 To provide an adequate and successful treat-
ment, early detection and correct size estimation is nec-
essary.2 Breast calcifications are common and mostly
benign, but certain distributions of especially microcalci-
fications constitute a marker of malignancy.3 Microcalcifi-
cations detected by mammographic screening account for
the detection of 30%–50% of nonpalpable breast tumors.4
X-ray-based mammography examinations are routinely
used for screening and provide excellent contrast of calci-
fied structures but is limited in detecting masses in dense
breasts.5,6 However, this technique is not ideal for imag-
ing young patients, particularly women with a genetic
predisposition to breast cancer, who may require screen-
ing as early as the age of 25–30 years7-9 as these young
patients are more sensitive to radiation.10 Nevertheless, a
portion of these patients are presenting with microcalci-
fications as the only sign of malignancy. Another patient
population for whom mammography is limited is those
with silicone implants. Due to the two-dimensional nature
of mammography, silicon can obscure significant portions
of breast tissue, masking masses or calcifications. As a
result, implants are better imaged using MRI or ultra-
sound.11,12 Therefore, the use of an MR-based technique to
detect calcified structures would be desirable especially for
young patients receiving repeated examinations.13 Exist-
ing clinical breast MRI examinations cannot detect and
characterize breast calcifications due to the invisibility of
calcified structures caused by their short T2 components.
Quantitative susceptibility mapping (QSM)14,15 is a com-
mon methodology to assess calcified structures and has
been used to depict brain calcifications16-18 and prostatic
calcifications,19,20 to quantify calcium changes in the fetal
spine,21 to measure bone density22-25 and to categorize
osteoblastic bone metastases which are characterized by
the formation of new bone structures.26 QSM is able to
overcome the limitations of routine MRI protocols in mea-
suring the susceptibility of short T2 components due to the
long range effect of susceptibility-induced phase changes
into MR visible tissues around the MR invisible struc-
ture. Some early works have reported on the ability to
detect breast calcifications with QSM.27-29 However, QSM
in the breast remains challenging by the presence of mul-
tiple species such as water, fat, and potentially silicone.
Specifically silicone has to be addressed due to its chem-
ical shift and its strong susceptibility when compared to
local breast tissue. If not accounted for, silicone induces
strong susceptibility artifacts that dominate the local tis-
sue around it.30 In patients with a history of breast can-
cer and subsequent skin sparing mastectomy and recon-
struction with implants, the regular check of the residual

breast tissue around the implant for cancer formation
and distributions of microcalcifications is of high clinical
relevance.31,32

Total field inversion (TFI) algorithms33 that directly
estimate the susceptibility map from complex multi-echo
data26,34 have been particularly successful in removing
background field effects and solving the ill-posed and
ill-conditioned dipole inversion problem and yield sus-
ceptibility maps with reduced artifacts. However, all of
them rely on an robust initialization based on the field
map parameter. To obtain a bias free field map, an opti-
mal experimental design (especially echo times) has to
be performed and all parameters have to be separated.
In the case of water–fat regions, optimal experimental
design35 and echo data-based TFI-based dipole inversion26

have successfully been applied. However, the above meth-
ods do not account for the chemical shift of silicone in
breasts with silicone implants. Therefore, a new method is
required to estimate the susceptibility map from complex
multi-echo gradient echo data in the breast where water,
fat and silicone may be present. Recently, a graph-cut
based field-mapping algorithm has been proposed for the
robust and automatic water–fat–silicone separation with
optimized echo time selection36 that allows for the bias
free field map estimation in the breast. The field-mapping
algorithm in Reference 36 would result in an accurate
estimation of the field map in the breast, which could sub-
sequently used to generate an initial susceptibility map.
The susceptibility map can be then refined by estimation
the susceptibility map from the complex multi-echo data.

Therefore, the purpose of the present work is to (a)
develop a preconditioned water–fat–silicone TFI (wfsTFI)
method that directly estimates the susceptibility map from
complex multi-echo gradient echo data in the breast,
and to (b) demonstrate the advantages of the developed
method in silico and in vivo.

2 METHODS

The proposed wfsTFI algorithm consists of three
main steps (Figure 1). First, the water-, fat- and
silicone-separated images, field map, and R∗2-map
were estimated using a recently proposed hierarchi-
cal multiresolution graph-cut algorithm36 employing a
water–fat–silicone signal model accounting for a single
R∗2 decay and employing a multipeak fat model specific
to adipose tissue.37 Second, an initial global suscepti-
bility map was estimated using a linear preconditioned
TFI algorithm (see below).33 Finally, the susceptibility
map was computed by estimating the susceptibility dis-
tribution directly from the complex multi-echo data by
using a single-R∗2 multi-fat-peak water–fat–silicone signal
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Multi-echo data

Field-map

Tissue mask

Preconditioner

r2* map

Water image

Fat image

Silicone image

Parameter estimation
via graph-cut algorithm

Silicone implant mask

Water–fat(–silicone)
total field inversion

algorithm

Silicone preconditioner

Initial
susceptibility map

Final susceptibility map

Linear
total field inversion

algorithm

F I G U R E 1 Pipeline of the proposed water–fat–silicone total field inversion (wfsTFI) algorithm. Water-, fat-, and silicone-separated
images, field- and R∗2-map are estimated using a graph-cut algorithm. Additionally a tissue mask is derived from the magnitude data and an
initial preconditioner is calculated. When silicone is detected, a silicone implant mask is generated and added to the preconditioner. Based on
the field map an initial susceptibility map is calculated. Next, the wfsTFI is initialized with the initial susceptibility map and the water-, fat-,
silicone-separated images R∗2-map and silicone implant mask are added as constant parameters. Finally, the susceptibility distribution is
directly estimated from the complex multi-echo data.

model minimizing the following preconditioned TFI cost
function:

y = arg min
y′

Necho∑
𝑗=1

|| (𝜌W + cn𝜌F + 𝜌sei2𝜋ΔfSt𝑗
)

× e−R∗2 t𝑗 ei2𝜋t𝑗d∗Py′ − S𝑗||22
+ 𝜆1||Mg∇Py′||1 + 𝜆2||MSP

(
y′ − y′

MS
)
||22,

cn =
Np∑

p=1
apei2𝜋Δfpt𝑗 , with

Np∑
p=1

ap = 1, (1)

where 𝜌W , 𝜌F , and 𝜌S are the complex signal of the water,
fat, and silicone components, t𝑗 are the echo times, ΔfS is
the chemical shift of silicone, R∗2 is the transverse relax-
ation rate, d is the dipole kernel, P is the preconditioner, S𝑗
are the echo time data, 𝜆1 is the regularization parameter
and MG is an edge mask,38 𝜆2 is the silicone regularization
parameter, MS is the silicone implant mask and y′

MS is the
mean susceptibility within the silicone implant mask MS.
The fat spectrum is assumed to have Np spectral peaks with
corresponding relative amplitudes ap and chemical shift
Δfp. The final QSM map is computed as 𝜒 = Py.

To generate the binary silicone implant mask MS, the
proton density silicone fraction map (determined as in
Reference 36) was thresholded at 60%. The two largest con-
tinuous areas with a volumetric size larger than 10 cm3

were assigned as silicone implants. Based on the above
silicone implant mask, a scan can be automatically catego-
rized to contain either (i) no, (ii) one, or (iii) two silicone
implants. The silicone implant mask was subsequently
included in the preconditioner, to account for the strong
susceptibility of silicone of around 2 ppm with respect to
tissue.

The preconditioner was automatically adapted to the
region-of-interest following26 for the background region
and was set to 1 in the local tissue region. For the pre-
conditioner and the initial linear TFI algorithm a binary
mask M was calculated to distinguish between background
and local regions (region-of-interest). The binary mask M
was calculated based on the maximum intensity projec-
tion across echo times thresholded at 15% of its maximum
value.

The regularization parameters 𝜆1 and 𝜆2 were based on
a grid parameter sweep in a numerical breast simulation
(see below) and were set to 𝜆1 = 10 and 𝜆2 = 100. The cost
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4 BOEHM et al.

function in Equation (1) was minimized using the itera-
tive Gauss–Newton algorithm with a conjugate gradient
solver at each step. In total, 25 Gauss-Newton steps were
performed.

2.1 Comparison methods

The proposed wfsTFI with silicone regularization was
applied and compared to (a) linear TFI (lTFI) based on a
field map estimation that does not account for the chem-
ical shift of silicone,39 (b) lTFI using the field map of the
hierarchical multiresolution water–fat–silicone graph-cut
algorithm,36 and (c) wfsTFI without silicone regulariza-
tion.30

The lTFI method minimizes the following cost func-
tion:

y = arg min
y′

||W(fB − d ∗ Py′)||22 + 𝜆||MG∇Py′||1, (2)

where fB is the field map parameter. The regularization
parameter 𝜆 for the above lTFI cost-function was set
to 1∕2500 based on Reference 26. Since the field map
parameter is in unitless ppm, the same regularization
parameter can be applied across subjects and anatomies.
Due to the nonlinearity of the regularization term, the
above cost-function was again minimized with the above
Gauss–Newton algorithm. The stopping criterion was a
relative residual of<0.01. All processing was performed in
Python 3.8 and CuPy 9.1.040 on a NVIDIA GeForce RTX
3060.

2.2 Numerical breast simulation

To investigate the difference between the presently pro-
posed wfsTFI with silicone regularization and the afore-
mentioned comparison methods, a numerical simulation
based on the water–fat–silicone separated images of an in
vivo scan was performed. An artificial susceptibility map
was generated from the fat fraction and the silicone frac-
tion, where fatty voxels were weighted with a susceptibility
of 0.8 ppm and silicone voxels with 2.0 ppm. Addition-
ally, a single voxel in close proximity to the silicone breast
implant and within residual breast tissue was assigned
with a negative susceptibility of −2 ppm to mimic the
appearance of a calcification. The 𝜒-map was forward sim-
ulated to a field map fB using the dipole kernel in k-space.
The water–fat–silicone single-R∗2 signal model36 was used
to forward simulate the fat fraction ff , R∗2, field map and
silicone image to complex multi-echo data:

s(tn) =
(
(1 − ff ) + cnff + 𝜌sei2𝜋ΔfSt𝑗

)
e𝛾tn , 𝛾 = i2𝜋fB − R∗2

cn =
P∑

p=1
apei2𝜋Δfptn , with

P∑
p=1

ap = 1. (3)

The echo times were based of the in vivo acquisition
of the data (see below). A field strength of 3T and the a
fat model specific to adipose tissue were used.37 Indepen-
dent Gaussian noise was added to the real and imaginary
part of the echo data with a signal-to-noise ratio of 100.
The signal-to-noise ratio was defined as the maximum sig-
nal amplitude of the first echo divided by the SD of the
noise. A normalized root mean square error analysis with
respect to the reference susceptibility maps was performed
for all methods within the local tissue region (excluding
the silicone implants).

2.3 In vivo measurements

The processing of graph-cut-based field-mapping and
water–fat(–silicone) separation followed by the proposed
method and the above comparison methods was applied
to IRB-approved in vivo scans of five patients with silicone
implants (two unilateral, three bilateral). The scanning
was performed on a 3 T scanner (Ingenia, Philips Health-
care, Release 5.6) using a monopolar time-interleaved
multi-echo gradient echo sequence,41 acquiring six echoes
in two interleaves with 3 echoes per TR. For all sub-
jects, the imaging parameters were set to TEmin = 1.58
ms, ΔTE = 1.28 ms, orientation = axial, readout direc-
tion = anterior-posterior, FOV = 220 × 382.6 × 192.4mm3,
and an isotropic acquisition voxel size of 1.3 mm. The in
vivo measurements were evaluated visually with regard
to susceptibility artifacts originating from (i) erroneous
field-mapping when silicone is not accounted for, (ii) the
strong difference between local tissue susceptibility and
silicone, and (iii) the ability to visualize calcifications in
proximity to silicone breast implants.

3 RESULTS

3.1 Numerical breast simulation

A large field map error can be observed in the field map of
the numerical breast simulation when the chemical shift
of silicone is not accounted for (Figure 2, second row). The
field-mapping error propagates into the susceptibility map
where the silicone implants are falsely identified to be dia-
magnetic. Furthermore, the error propagates non-locally
and strong artifacts can be observed in the surrounding
breast tissue limiting the visualization of the calcifica-
tion (white arrow). When the chemical shift of silicone
is accounted for in the parameter separation, the esti-
mated field map is comparable to the reference field map
(third row). However, the susceptibility map still shows
a significant underestimation of silicone susceptibility
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F I G U R E 2 Field- and susceptibility mapping result in a numerical breast simulation with bilateral silicone implants and a calcification
in the breast tissue of the left breast. When the chemical shift of silicone is not accounted for (second row), the field map within the silicone is
significantly underestimated while the susceptibility map falsely estimates the implants to be diamagnetic. Most importantly, strong artifacts
are present in the whole breast tissue making the visualization of the calcification impossible (white arrow). When the chemical shift of
silicone is accounted for (third row), the field map is correctly estimated. However, there are strong diamagnetic artifacts around the silicone
implant and the susceptibility of silicone is underestimated. Susceptibility mapping based on water–fat–silicone total field inversion (wfsTFI)
without regularization (fourth row) is able to reveal the calcification in the local breast tissue. However, erroneous voxels of diamagnetic
susceptibility values occur close to the silicone implant potentially limiting the visualization of calcifications in the region (blue and orange
arrows). The proposed wfsTFI with silicone regularization (last row) alleviates the remaining artifacts and increases the homogeneity of the
susceptibility distribution within the silicone (black arrow).

and artifacts in the adjacent breast tissue. While the arti-
facts are reduced, the calcification is dominated by arti-
facts and cannot be identified. Using wfsTFI without
silicone regularization (fourth row) the silicone is cor-
rectly estimated to be strongly paramagnetic and the cal-
cification has a good delineation from residual breast
tissue. However, some diamagnetic artifacts remain in
close proximity to the implant (orange and blue arrow)
potentially limiting the visualization of calcifications in
both regions. The proposed wfsTFI with silicone regular-
ization (fifth row) is able to alleviate the remaining arti-
facts in the residual breast tissue and yields a more homo-
geneous susceptibility within the implant (black arrow).
The results of the normalized root mean square error anal-
ysis yield values of 4.46 for water–fat separation and lTFI,
1.77 for water–fat–silicone separation and lTFI, 0.70 for
water–fat–silicone separation and wfsTFI without silicone
regularization, and 0.68 for the proposed wfsTFI with sili-
cone regularization.

3.2 In vivo measurements

Figure 3 shows field-mapping and susceptibility mapping
results for the different methods in a patient with a silicone

implant and a significant amount of residual breast tissue
in the left breast. When the chemical shift of silicone is
not accounted for in the parameter separation (first row),
strong artifacts can be observed in the susceptibility map
dominating almost the whole breast tissue of interest while
silicone is falsely estimated to be diamagnetic. When the
chemical shift of silicone is accounted for in the parameter
separation (second row), the artifacts in the susceptibil-
ity map are strongly reduced. However, the breast tissue
closer to the implant is still significantly underestimated.
When using the wfsTFI without silicone regularization
(third row) most of the artifacts in the breast tissue are
alleviated. However, single voxels with strong diamagnetic
susceptibility (orange arrows), an paramagnetic increase
close to the implant (blue arrow) and a strong streak-
ing artifact can only be reduced using the presently pro-
posed wfsTFI with silicone regularization. Furthermore,
the homogeneity of the susceptibility is strongly increased
when using the presently proposed wfsTFI with silicone
regularization, while without the silicone regularization
the implant shows diamagnetic values in some regions.
The in vivo scan is thus in very good agreement with the
simulation in Figure 2.

Figure 4 yields similar results in a patient with silicone
implants in both breasts. In the left breast, a significant
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F I G U R E 3 Field- and susceptibility mapping results in the scan of a patient with a history of breast cancer and subsequent mastectomy
in the left breast. Both field- and susceptibility-map results agree very well with the simulation shown in Figure 2. When the chemical shift is
not accounted for (first row), the field map of silicone is underestimated which propagates into the susceptibility map wherein silicone is
falsely estimated to be diamagnetic and the susceptibility of the surrounding breast tissue is affected by strong artifacts. When silicone is
accounted for in the parameter separation, the artifacts in the susceptibility map are reduced but are still to strong to allow for a robust
detection of potential calcifications. Using water–fat–silicone total field inversion (wfsTFI) without silicone regularization (third row) yields
almost artifact-free residual breast tissue susceptibility maps. However an shadowing-like paramagnetic increase (blue arrow), single voxels
of strong diamagnetic susceptibility (orange arrow) and a streaking artifact at the bottom of the silicone implant can only be alleviated by
using the proposed wfsTFI with silicone regularization (last row).

F I G U R E 4 Field- and susceptibility mapping results in the scan of a patient with a history of breast cancer, subsequent mastectomy in
the left breast and the formation of calcifications in the residual breast tissue (see mammography in Figure S1). Using water–fat separation
and linear total field inversion (lTFI; first row), the visualization of the calcification is not possible (white and blue arrow). Using
water–fat–separation and lTFI (second row), susceptibility artifacts are reduced, however an overall diamagnetic artifact still dominates the
calcification. Only water–fat–silicone total field inversion (wfsTFI) with and without silicone regularization (third and last row) are able to
reveal the presence of the calcification.
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BOEHM et al. 7

amount of residual breast tissue is present which includes
the formation of several calcifications. Only wfsTFI with
and without silicone regularization (rows three and four
in Figure 4) yield a susceptibility map with sufficiently
reduced artifacts such that the calcification can be iden-
tified (white and blue arrow). The appearance of the cal-
cification is verified by the corresponding mammography
scan (see Figure S1).

4 DISCUSSION

An MR-based screening technique to delineate between
malignant and benign breast calcifications is of high clini-
cal interest, especially for targeted subcohorts at high-risk
or young patients. Previous work on the visualization of
breast calcifications with QSM have shown the feasibil-
ity of the technique, however, only in subjects without
silicone implants.27,28,30 The visualization of calcifications
in proximity to silicone breast implants is important in
cases of skin and/or nipple spearing mastectomies with
the risk of cancer recurrence in the residual breast tis-
sue.31 Consequently, the present study aimed to develop a
method for robust QSM in the breast where three chem-
ical species, namely water, fat and potentially silicone,
are present. Specifically, the present study proposes to use
a preconditioned water–fat–silicone TFI algorithm with
silicone regularization that directly estimates the suscep-
tibility map from complex multi-echo data. The study
examined the performance of the proposed wfsTFI method
in comparison to (i) a method that neither accounts for
chemical shift of silicone nor the strong susceptibility
of silicone, (ii) a method that accounts for the chemi-
cal shift of silicone but not for its strong susceptibility,
and (iii) a method that accounts for the chemical shift
of silicone and uses a water–fat–silicone TFI algorithm
without silicone regularization. To examine the perfor-
mance of the different methods, a numerical breast sim-
ulation was performed and five patients with a history of
breast cancer and subsequent mastectomy were scanned
and evaluated. The proposed wfsTFI with silicone regu-
larization yielded the best normalized root mean square
error in the numerical simulation and the least arti-
facts in regions close to silicone implants. The improve-
ments of the proposed wfsTFI method is based on three
main factors.

First, the chemical shift of silicone needs to be
accounted for in the parameter separation in order
to obtain a bias-free field map. Although wfsTFI ulti-
mately estimates the susceptibility directly from complex
multi-echo data, it relies on proper initialization. The
proper initialization is a characteristic known for TFI algo-
rithms that directly estimate susceptibility from complex

multi-echo data.26,34 A field map-based linear total field
inversion algorithm is presently employed to generate an
initial susceptibility. Therefore a bias-free field map is an
important prerequisite. Hence, a recently proposed hier-
archical multiresolution graph-cut algorithm specifically
tailored for water–fat–silicone separation was presently
adopted which is able to robustly yield unwrapped and
swap-free field maps.36

Second, the large silicone difference between breast
tissue and silicone needs to be accounted for in the
dipole inversion in order to obtain artifact-free suscep-
tibility values in tissue in close proximity to silicone.
Dipole inversion algorithms are well known to yield
shadowing-like susceptibility artifacts around strong sus-
ceptibility sources as well as streaking artifacts.17,18,26,33,42

In case of preconditioned QSM algorithms, the inclu-
sion of strong susceptibility regions within the precondi-
tioner has been shown to alleviate artifacts in such regions
and was presently adopted.42 Based on the water-, fat-,
and silicone-separated image estimated by the graph-cut
algorithm, a silicone fraction map was derived and sub-
sequently served for the robust and automatic genera-
tion of a silicone implant mask. The silicone mask was
then added to the preconditioner. Particularly noteworthy
is that the preconditioner does not only improve con-
vergence speed as suggested in Reference 33 but also
changes and potentially improves results as presently
shown in normalized root mean square error analysis
of the numerical phantom and previously in the work
by Liu et al.42

Finally, the homogeneity of silicone implants can
be exploited to include additional prior information in
the dipole inversion. The dipole inversion problem is
well-known to be ill-posed and ill-conditioned. To improve
the conditioning of the dipole inversion problem, an addi-
tional regularization term that enforces the susceptibility
within the silicone to be homogeneous is adopted. Simi-
lar regularization terms have been successfully employed
in other regions such as in the cerebrospinal fluid43 when
the cerebrospinal fluid was used for improved referenc-
ing of the susceptibility map, in the carotid artery for
the better delineation of calcified plaque and intraplaque
hemorrhage,44 or in subcutaneous fat.45 The additional sil-
icone regularization is able to reduce shadowing artifacts
around silicone implants, streaking artifacts and, most
importantly, single voxel of strong diamagnetic suscep-
tibility in close proximity to the silicone implant. These
voxel of strong diamagnetic susceptibility can potentially
be misinterpreted as calcifications, which are of particular
interest in the early detection of malignant breast tumor
formation. As of now, silicone cannot be used for refer-
encing as in the above methods, since there are no stud-
ies investigating whether silicone breast implants exhibit
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8 BOEHM et al.

consistent magnetic susceptibility across different models
and vendors.

Nevertheless, the present study some limitation. First,
only macrocalcifications were visualized in the patients
due to the limited spatial resolution. Second, only a lim-
ited number of patients were scanned and a larger patient
study would be required for clinical evaluation.

In conclusion, the present study proposes a precondi-
tioned water–fat–silicone TFI QSM method that allows for
the robust and automatic estimation of breast susceptibil-
ity in the potential presence of silicone implants.
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Figure S1. Mammography image of the left breast
showing the formation of calcifications in the resid-
ual breast tissue between skin and silicone implant.
The highlighted calcification (white arrow) is the
same as the one depicted in the susceptibility maps
in Figure 4.

How to cite this article: Böhm C, Stelter JK,
Weiss K, et al. Robust breast quantitative
susceptibility mapping in the presence of silicone.
Magn Reson Med. 2023;1-10.
doi: 10.1002/mrm.29694
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4 Discussion

This dissertation addresses a multitude of technical challenges for QSM in regions

with several chemical species, such as water, fat, or silicone, laying the foundation for

QSM applications outside the brain using off the shelf MRI scanners. Specifically, no

additional pulse sequences or post-processing are required beyond the QSM estimation

algorithm itself.

Furthermore, this work advances all four major steps of quantitative susceptibility

mapping: i) estimating the susceptibility-induced B0 field inhomogeneities, ii) un-

wrapping the field map, iii) removing the background field, and iv) performing the

field-to-susceptibility inversion. This is accomplished through the joint problem for-

mulation of field mapping and unwrapping, as well as background field removal and

field-to-susceptibility inversion. Consequently, the necessary steps are reduced to two,

minimizing artifact amplification of errors from previous stages.

4.1 Review of Existing Literature

4.1.1 Field-mapping

The field map parameter has historically posed a significant challenge, requiring esti-

mation or approximation in order to attain robust water and fat separation. In the

well-established single-R∗2 multi-fat-peak water–fat voxel signal model [35, 52], the

field map parameter is a periodic and nonlinear parameter with several local minima.

Gradient descent methods are challenging to apply when large B0 field inhomogeneities

are present, as conventional multi-echo gradient-echo sequences do not provide an initial

estimate other than zero. The use of a zero-initialized gradient descent method can lead

to water–fat swaps, where water is identified as fat and vice versa. This poses two issues.

First, when the water and fat images are intended to use, the diagnostic value might be

limited [53]. Second, the estimated field map contains artifactual field map jumps of

approximately 3.4ppm that propagate into the susceptibility map, thereby rendering

the latter useless. When the field map is known, the estimation of all other parameters
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in the above signal model are convex and in the case of known nonlinear parameters

reduces to solving an over-determined system of linear equations. Therefore, accurate

field-mapping is the foundation of both, body quantitative susceptibility mapping and

water–fat separation. To overcome the voxelwise ambiguity of several local minima, a

variable projection method (VARPRO) has been proposed to enable the brute-force

residual calculation of the cost function in dependence on the field map parameter thus

revealing all local minima and enabling the determination of the global voxel minima

[54]. This approach can substantially alleviate water/fat swaps. However, the voxel-wise

VARPRO formulation is sensitive to noise and prone to water-fat swaps when the voxel

consists primarily of water or fat [55] or in the case of low SNR.

To stabilize the field map estimation, the use of spatial neighborhood information

has extensively been explored. Many of the developed methods rely on a smoothness

constraint on the field map. The assumption of a smooth field map only holds true

for background field contributions which follow a Laplace/Poisson equation. On the

other hand, local tissue field maps deviate from this assumption. Nevertheless, the

approximation of a smooth total field map can be considered valid due to the background

field contributions being significantly larger (1-2 orders of magnitude) than the local

field contributions. A variety of algorithms have been developed to enforce a smoothness

constraint on the field map including region-growing [53, 56], cellular automata [57–59],

message passing [60, 61] and global estimation [62] especially using graph cuts [19, 38–

40, 63]. However, all of the above methods focus on accurate water/fat separation and

the estimated field maps being subject to varying degrees of blurring. Only the graph

cut-based R-GOOSE method [40] is able to estimate a high-resolution field map as a

by-product of efforts to enhance processing efficiency. Some of the above water–fat

separation/field-mapping methods can be used as an initialization for a voxelwise

refinement of the field map using methods that minimize the voxel signal model by

alternating between linear and nonlinear parameters [31, 35]. However, the intensity of

field map blurring is often proportional to the gradient of the field map, resulting in a

stronger effect at edges in the field map. The edges in the field map are of particular

interest for susceptibility mapping since they define the bulk susceptibility differences

between different tissue types. Hence, field map blurring can have the same effect as

low resolution averaging of edge voxels [64].

A fundamentally different approach to obtain accurate field map results without the

need to use neighborhood regularization in conjunction with a computational expensive

global minimization problem was presented in [65] and was developed further in [66].

In [65] the use of an objects-based field map estimate was proposed derived from the
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segmentation of magnitude images, the creation of an artificial susceptibility map

assigned with literature values of water, fat and air, the forward simulation to a field

map and the subsequent demodulation of the field map from the echo time data. In

addition to the demodulation of the object-based field map estimate, in [66] it was

proposed to incorporate the information about the inhomogeneities of the scanner

magnet, the shim field and residual fields caused by the approximation of susceptibility

sources outside the FOV. This approach is able to significantly reduce the occurrence

of water/fat swaps and hence also yields increased field map accuracy.

There has also been efforts to simplify the field map estimation in water/fat regions

by means of optimal echo time selection. Specifically, the use of in-phase echoes have

been proposed. This approach removes the need to model fat contributions to the signal

model as only echoes are acquired at timepoints where the phasor of water and fat are

aligned and the remaining phase is assumed to originate only from susceptibility [24, 25].

For the definition of in-phase echoes a single fat peak has to be assumed. However, it is

well known that physiological fat spectra are spectrally complex and they vary across

different fatty tissue types [32, 34]. Therefore, it can be expected that using in-phase

echoes for QSM in body regions is associated with systematic bias correlated with fatty

voxel content.

4.1.2 Field map unwrapping

The process of unwrapping the field map in QSM is related to the vast domain of phase

unwrapping, which itself is a highly researched area. The need to unwrap the field

map stems from the often used linear problem formulation of the field-to-susceptibility

relation [46, 48, 67]. In the linear problem formulation, the potential wrapping in the

field map is not accounted for. This results in large quantification bias as a jump in

the field map is considered to originate from susceptibility differences. There have

been efforts to formulate the dipole inversion problem such that field map wraps are

accounted for in the dipole inversion. However, none of the proposed methods work

without the initialization with an unwrapped field map [47, 50, 68, 69]. Therefore,

accurate unwrapping is needed for accurate susceptibility estimation. There are three

categories of unwrapping methods, so-called Laplacian unwrapping, path-following

methods and graph-cut methods. Laplacian unwrapping minimizes the difference

between the derivatives of the wrapped and the unwrapped phase and finally the

unwrapped phase is obtained by solving the corresponding Poisson equation [70].

Laplacian-based methods are known for their robustness, especially in low SNR cases,
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and are the predominant choice in studies focused on the brain region. Laplacian-

based phase unwrapping techniques offer a convenient and efficient solution that can

effectively handle noise. This resilience, however, comes at the cost of only approximately

estimating the actual phase. This can be addressed to a certain extent by refining the

discretization process, utilizing appropriate weighting and linear solution methods, and

implementing heuristics and congruence operations [71]. In general, these Laplacian-

methods are recommended for data sets with moderate to low SNR, where obtaining

precise quantitative values is not of utmost importance. However, that inability to

estimate accurate phase maps might limit the usability of Laplacian-based methods

when used for quantitative susceptibility estimation.

Path-following methods, on the other hand, determine that a wrap has occurred when

the phase change between two voxels along a path exceeds π. A plethora of methods

have been proposed that apply the above assumption on various ways in one, two or

three dimensions. Some of them are guided by quality of the voxel [72, 73] or by branch

cut lines which impose barriers to paths [74]. Some of the often used path-following

methods in quantitative susceptibility mapping are PRELUDE [75], BEST-PATH [76],

QGU [73], SEGUE [77] or ROMEO [78].

Graph-cut methods have mainly been developed to improve water–fat separation by

enforcing the field map to be smooth (see section 4.1.1). However, all of them rely on a

predefined interval of the field map in which a solution is searched for. Theoretically,

this interval can be as large as the unwrapped field map. In that case, these algorithms

work similar as the path-following methods in a way that phase jumps larger than π

are recognized as wraps. However, this approach has a few limitations. First, some

graph cut algorithms iteratively compare the current field map solution with a potential

better candidate. These candidates however have to be chosen heuristically. Hence,

these algorithms are not guaranteed to converge to the global minimum of their defined

cost function and struggle with an increased unwrapped field map range [19, 38, 39]. A

second type of graph-cut algorithms employs distinct graph constructions that guarantee

the global optimal solution with a single graph cut. However, these graph cuts can

be computationally expensive due to the large number of nodes per voxel [63] or a

suboptimal graph construction that results in either excessively long processing times

or the rejection of the correct solution [40].
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4.1.3 Background Field Removal

The terms ”background field” and ”external field” have traditionally been used inter-

changeably, referring to magnetic inhomogeneities generated outside the ROI. On the

other hand, ”internal fields” or “local fields” are caused by sources within the ROI and

result from the material-related demagnetization fields of dipole moments. Although

the main magnetic field is typically considered homogeneous, small inhomogeneities

may arise due to imperfections in the magnet geometry and shim coils. These factors

contribute to the background field. However, including magnet geometry and shim

coils would simply involve adding a background contribution to the field, which can

be handled by all background field removal techniques. In the process of extracting

tissue susceptibility values, only the local fields are of interest. The background fields

are mainly caused by air-tissue interfaces which generate strong fields due to the large

susceptibility difference between air and tissue. These background fields penetrate

deeply into the tissue and are significantly stronger than the local tissue fields by a

factor of 1 to 2 orders of magnitude. Consequently, the background field must be

removed to obtain the local susceptibility maps. Most methods perform the background

field removal as an independent step [42, 44, 79–83]. These methods rely on the ability

to uniquely separate background and local field contributions [41].

Background field removal techniques can be loosely categorized by their inherent

assumption including i) no harmonic internal and background fields in the boundary

region [42, 83], ii) no sources close to the boundary [79, 81] and iii) minimization of

an objective function [44, 82]. However, all of them show more or less strong artifacts

leading to an improper removal of the background fields. For example, the assumption

that only background fields are present in the boundary region is unjustified and is

equivalent to the assumption that local susceptibility is zero in the boundary. While

this assumption is better justified in the brain, this can lead to severe artifacts in

body regions where the air tissue interface boundary can contain subcutaneous fat

(∼0.6ppm, [43]) or in the case of arbitrary ROIs other strong sources such as cortical

bone (∼2ppm). Although the background field removal step can introduce artifacts,

these are generally confined to regions close to the defined boundary. When the tissue

of interest is situated at a distance from the boundary, its susceptibility can often be

estimated reliably. However, this approach may not be suitable for tissues located near

the boundary, such as the cerebral cortex, liver, or heart.

Another class of background field removal techniques try to simultaneously remove

background fields and estimate local susceptibility values [48, 84–86], so-called single
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step methods. However, single step methods that use a Laplacian operation to remove

the background field [84, 85] are known to significantly underestimate local susceptibility.

Recently, the so-called total field inversion method was proposed that is particularly

successful in the joint susceptibility estimation and background field removal. TFI gener-

ally uses the same problem formulation as a traditional QSM inversion algorithms such

as MEDI [46], however, not only the local susceptibility is estimated but simultaneously

the susceptibility in the entire image volume. Similarily to projection onto dipole fields,

in the background region TFI algorithms estimate a heuristic susceptibility distribution

that model the harmonic background fields. TFI algorithms have the advantage that

they do not violate the orthogonality assumption in the boundary regions [48, 50, 69]

and thus yield accurate background field removal in the internal boundary region.

4.1.4 Field-to-susceptibility Inversion

The main premise of QSM is to overcome the limitations of Susceptibility-Weighted

Imaging (SWI, [87]) and R2*-mapping, where differentiating between sources of oppos-

ing susceptibility is difficult (R2*-mapping) or only limited differentiation is possible

(SWI). For example, in both SWI and R2*-mapping, intracranial calcifications and

hemorrhages appear similar; however, in QSM images, these two conditions can be

clearly distinguished due to the differing signs of their susceptibility [88].

A plethora of field-to-susceptibility inversion algorithms have been developed to solve

the ill-posed and ill-conditioned inverse problem. Most of the developed methods use

regularization to stabilize and improve the conditioning of the inverse problem [89].

In the Bayesian interpretation of regularization, the regularization term is viewed as

a prior probability distribution over the solution space that acts as a way to encode

prior knowledge or assumptions about the problem into the solution process. A large

variety of regularization terms and optimization algorithms have been applied in

the literature. The most common optimization algorithms are alternating direction

method of multipliers (ADMM) [68, 84, 90–92] and quasi-Newton fixed-point solver

where at each step a linearized problem is solved using conjugate gradient [46–48,

50, 69, 93]. Furthermore, so-called direct methods with a closed-form solution exist

[67, 94]. A big advantage of the direct methods is their incredibly speed in the

order of seconds compared to minutes for the above iterative methods. However, the

direct methods perform considerably worse when compared to iterative methods [95].

Despite its limitations, total-variation regularization [96] with sparsity emphasis using

`1 norm and morphological edge weightings has been widely used [46]. While total
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variation regularization promotes piece-wise constant distributions that do not reflect

the underlying physiology, a more anatomically correct approach has been proposed and

explored using Total Generalized Variation (TGV), which promotes piece-wise smooth

distributions [97]. However, the fact that a new set of dipole inversion algorithms

is proposed each year for different anatomies and pathologies indicates that a more

generalizable method has yet to be found [14, 95, 98].

QSM has been mainly performed in the brain to study the presence of iron [99–104],

myelin [105–107], and calcifications [88, 108] but has become increasingly being used

outside the body to characterize lesions and calcifications in breast disease [13, 109],

to measure bone density [23–25, 110], prostatic calcifications [111, 112] liver iron

overload [20, 113, 114], cardiac oxygenation [115], placental oxygenation [116, 117], knee

cartilage degeneration [118] and to quantify calcium changes in the fetal spine [119].

Many of the studies mentioned above utilize methods designed for brain imaging without

incorporating additional information that might be available from, for example, the

water-fat separation. Only for liver applications there have been efforts to incorporate

additional information for improved accuracy [20–22]

With the recent proliferation of deep-learning techniques across a wide range of

applications, there has been a growing interest in developing and employing these

methods in the field of QSM [120]. As a result, significant efforts have been dedicated to

exploring the potential of deep-learning-based QSM methods, with the aim of improving

the accuracy and robustness of QSM [121–124]. Deep-learning methods offer several

advantages over traditional iterative or direct inversion methods. Firstly, they are

computationally efficient and can process high-resolution 3D scans within seconds.

Secondly, while deep-learning methods may not achieve the same level of accuracy as

iterative methods, they can still produce results that are very close [95]. This makes

them a promising tool for applications where speed is a critical factor and/or qualitative

values are sufficient. Additionally, the visual quality of QSM maps generated by deep-

learning methods is often superior to that of maps generated by traditional methods.

This improvement is due to higher apparent SNR and a reduction in well-known artifacts

such as streaking and shadowing.

4.2 Present Work

This work represents a significant advancement in the field of quantitative susceptibility

mapping by developing new techniques specifically tailored for application in the body.

This contribution is particularly important given the unique challenges of body QSM
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and the need for robust and accurate methods to obtain high-quality QSM maps.

By addressing these challenges, this work not only improves our understanding of

the underlying physical principles of QSM, but also expands the potential clinical

applications of this imaging modality. Overall, this work has important implications

for the field of medical imaging and demonstrates the potential of QSM as a powerful

diagnostic tool.

4.2.1 Novelty and Impact

The field-mapping algorithm presented in Section 3.2, is the first method specifically

designed for body QSM applications, with a primary focus on accurate field map

estimation. This proposed algorithm builds on previous work, which aimed to improve

water-fat separation [40]. The novelty of this approach lies in its graph construction

technique [125], which theoretically ensures the global optimal solution of whole 3D

data sets in a single graph cut, while yielding non-smoothed, high-resolution field

maps. However, the implementation in [40] did not account for the possibility of

varying local minima per period and voxel. This can lead to the accidental dismissal

of correct voxel solutions or unbearable computation times, or both (see Figure 4 in

3.2). To address this issue, a new variable-layer graph construction was developed that

accounts for the underlying properties of the voxel-wise problem formulation while

simultaneously ensuring the estimation of the global optimal solution in the defined

field map interval. The proposed graph-cut approach also enables the direct estimation

of a non-wrapped field map, making the additional unwrapping step unnecessary. Joint

problem formulation can prevent errors from propagating from one step to the next

by reducing the risk of artifacts or errors being amplified due to the recognition of an

earlier error as true and reliable.

The QSM algorithm developed in 3.3 is specifically designed to correct MR thermom-

etry by removing susceptibility-induced background fields caused by motion between

shots. These background fields can introduce phase changes that are much larger

than temperature-induced phase changes (103), rendering the obtained temperature

maps useless. Although the Laplacian boundary value method and the Projection onto

dipole fields background field removal techniques have previously been successful in

correcting temperature maps [126], they suffer from problems such as overfitting (PDF)

and pixel-layer erosion and strong dependence on the chosen ROI (LBV). In contrast,

the proposed TFI method provides a robust and automatic removal of susceptibility-

induced phase changes, making it unnecessary to manually draw and test ROIs. By
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demonstrating the effectiveness of the TFI method in MR thermometry correction, the

work presented in 3.3 emphasizes the robustness of TFI algorithms even when used

solely for background field removal.

The wfTFI dipole inversion algorithm presented in 3.4 is a significant contribution

to the field of quantitative susceptibility mapping as it is the first general-purpose

algorithm specifically tailored for body applications, or more specifically, for regions

where water and fat are present. The proposed method belongs to the subclass of

total field inversion algorithms [48, 50, 69] that jointly estimate the local susceptibility

distribution and remove the background field without the use of the implicit assumptions

usually employed in background field removal methods. Unlike most previous methods

that relied on estimating susceptibility based on the field map, the proposed approach

directly estimates the susceptibility from the complex multi-echo data. This approach

shows promising improvements in accuracy and precision of susceptibility values in body

regions. Furthermore, the problem formulation of the proposed method enhances noise

modeling, as the implicit assumption shared by all dipole inversion algorithms—that

noise follows a Gaussian distribution—is well-justified for complex multi-echo data. The

results demonstrate the reduction of streaking artifacts and an increase in apparent SNR.

Moreover, as the proposed method is an TFI algorithm, it enables the free selection of

the ROI in the body without introducing artifacts. This feature offers the flexibility to

choose the ROI freely.

The developed acquisition method in 3.5 shows three main improvements over

previously proposed techniques. Firstly, it allows for susceptibility mapping in the

body without the need for water-fat separation, which is a computationally intensive

step that requires optimized processing and acquisition methods [27, 31, 127]. This

makes the method faster and more efficient. Secondly, it does not rely on more prior

knowledge assumptions than most water-fat separation methods, which assume a prior

known and cross-subject similar fat model. This reduces the potential for errors due to

inaccurate assumptions. Thirdly, it allows for the reduction of necessary echo times

below three, which is typically required for water-fat separation methods. This enables

the acquisition of high-resolution susceptibility maps in the body much faster, or with

greater spatial detail [128].

The dipole inversion algorithm presented in 3.6 improves accuracy of susceptibility

mapping for breast applications when chemical shift encoding field-mapping is employed.

Specifically, the work proposes a specific QSM methodology for breast applications

in the presence of silicone breast implants. The approach involves using a graph-cut

algorithm to obtain water-, fat-, and silicone-separated images from multi-echo gradient-
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echo images and introducing an additional term in the dipole inversion to enforce

homogeneous susceptibility within regions of silicone and the incorporation of silicone

in the preconditioner. The proposed method is able to reduce the normalized root

mean squared error and shows reduced artifacts in residual breast tissue next to silicone

implants in vivo. Compared to previously proposed QSM methods, this methodology

accounts for the strong susceptibility and chemical shift of silicone and allows for the

visualization of local susceptibility values in proximity to silicone breast implants. Most

importantly, it does not yield single voxels of strong negative susceptibility close to the

silicone implant resembling calcifications. For the first time, this method enables robust

MR-based screening for calcifications in the presence of silicone.

4.2.2 Limitations

While the present work represents a significant advancement in the technical development

of QSM methods for body applications, and demonstrates improved accuracy and

precision, limitations still persist for the adoption for some applications.

As the name indicates, quantitative susceptibility mapping aims to estimate a quanti-

tative parameter. However, QSM does not yet provide meaningful results for individual

patients in body applications, as the accuracy is insufficient to derive staging of

pathologies in a single subject. Especially accuracy across subjects remains challenging

[23, 24, 129] and only correlation in cohorts have been obtained. The ill-posedness

of the dipole inversion problem necessitates the use of regularization, which largely

determines the resulting susceptibility maps by balancing data fidelity and regular-

ization term. Typically, the regularization parameter is determined by either visually

comparing different parameters or by using L-curves heuristic. Subsequently, the same

regularization parameter is applied to all subjects in conjunction with a standardized

imaging protocol. However, this approach can be affected by the ratio of the size of the

imaging object to the field of view, and the imaged anatomy can differ substantially

between individuals, leading to significant variations in regularization strength. This

variation might be difficult to detect by visual inspection, but it can have a negative

impact on the accuracy of quantitative values.

Furthermore, an additional fundamental challenge is posed for QSM in measuring the

bone mineral density (BMD) by measuring the trabecular bone density and ultimately

allow to estimate bone strength, fracture risk and associated diseases such as osteoporosis.

This is mainly caused by the cortical bone shell that surrounds the inner trabecular

bone. The cortical bone shell is invisible to conventional echo times later than 1 ms due
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to its high relaxtion rate of over 2600 Hz [130]. The so-called hollow cylinder problem

introduces an additional systematic error in the measurement of the trabecular bone

that is correlated to the ratio of cortical bone volume to total bone volume [131]. The

hollow cylinder problem can be overcome by means of ultra-short echo time imaging

(UTE) [110, 132, 133]. However, UTE imaging poses a challenge to field-mapping

algorithms. Different solutions have been presented by for example ignoring the R∗2-

decay of fat and only modeling the transverse relaxation rate of water [110, 132] or

more physiologically accurate, different models for different regions, assuming a single

component and single R∗2 in the cortical bone and a multipeak single-R∗2 for the rest of

the tissue [133]. However, the latter approach suffers from the difficult segmentation of

cortical bone. Furthermore, cortical bone shows significant different field map values

than the bone marrow and tissue outside of the bone posing additional challenges on

the smoothness assumption of many field-mapping methods (see section 4.1.1)

A common constraint of the computational techniques presented in Sections 3.2 -

3.3 and 3.6 is their considerable computational expense and the consequent lengthy

processing durations. Dipole inversion approaches can only be executed within a

clinically acceptable timeframe, under 2 minutes, when employing a GPU. For the

graph cut-based field-mapping method in 3.2, processing times of under 5 minutes

are achievable exclusively in scans with a relatively small matrix size, such as the

lumbar spine scan featuring 122×122×44 voxels. Consequently, large matrix sizes and

high-resolution scans present significant challenges, particularly in light of the growing

accessibility of advanced acceleration techniques like compressed sensing [134–136] and

high-resolution deep-learning reconstruction methods [137–139].

Although the method proposed in Section 3.3 effectively removes susceptibility-

induced phase changes, the MR-based temperature maps still exhibit variability that

precludes their use in guiding clinical decisions such as adjusting heating during RF-HT

treatments. This variability is evident in the correlation between the temperature maps

and measurements obtained by temperature sensors placed inside the tissue of interest.

Consequently, the use of temperature sensors remains a necessary component of clinical

routine. However, improving further on the accuracy of temperature maps lies beyond

the realm of susceptibility-induced phase removal.

4.3 Perspectives

As discussed in the limitations section, the quantitative nature of QSM is not yet firmly

established. Nevertheless, QSM may still prove valuable for enhancing the contrast
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of calcified structures, with potential applications in the body targeting bones and

calcifications, such as those in the breast, blood vessels, or prostate. In the context of

calcifications, achieving robust visualization alone could be highly beneficial in clinical

practice.

For example, the acquisition methodology introduced in Section 3.5 holds promise for

high-resolution QSM applications, enabling the assessment of previously inaccessible

structures, such as microcalcifications, which are responsible for detecting up to 50% of

non-palpable breast tumors [140]. Currently, clinical routine relies on X-ray mammog-

raphy. However, for young patients, particularly women with a genetic predisposition

to breast cancer requiring screening as early as 25-30 years old [141–143], X-ray mam-

mography is not ideal due to increased radiation sensitivity [144]. As an alternative, a

radiation-free MR-based technique using the proposed acquisition methodology could

be more desirable. Initial work has demonstrated the feasibility of high-resolution QSM

maps for visualizing microcalcifications [128], but validation in larger patient cohorts is

needed to promote clinical adoption.

The proposed acquisition method offers two distinct advantages: first, it enables

high-resolution QSM, making it suitable for applications that necessitate detailed

structural information; second, it facilitates faster acquisitions, making QSM appealing

for dynamic scans, including those with contrast agent-enhanced scans. Given that

contrast agents exhibit a substantially stronger susceptibility compared to tissue, this

approach could potentially serve as an alternative means of measuring perfusion.

Moreover, field-mapping method presented here, when combined with the general-

purpose dipole inversion method for body regions discussed in Sections 3.2 and 3.4,

offers a robust approach for estimating susceptibility maps across various body regions.

Nevertheless, these methods have only been tested in a small sample size and with a

single pathology. Future studies should aim to extend the evaluation to a broader range

of anatomies, larger sample sizes, and multiple pathologies.

Regarding silicone implants, the performance of the effective in-phase echoes from

Section 3.5 remains to be investigated. Women with silicone implants also require

regular checkups for non-palpable tumors. Silicone implants can obscure large portions

of breast tissue due to the limited two-dimensional nature of mammography, potentially

hiding masses or calcifications. Consequently, MRI or ultrasound imaging proves more

effective for visualizing implants in the breast, as supported by literature [145, 146].

However, the effective in-phase echoes used for high-resolution QSM only remove the

phase contributions from fat from the phasor, while the phase of silicone remains. The

question arises whether silicone should be masked and labeled as a background region,
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requiring a segmentation method, or if the acquisition of chemical shift encoded echo

times is the better option. An additional advantage of chemical shift encoded imaging

and subsequent parameter separation is the wealth of information available, such as

water-, fat-, and silicone-separated images and the derived proton density fat fraction

and proton density silicone fraction (PDSF). The PDSF itself might hold significant

clinical relevance for monitoring implant integrity or quantifying silicone accumulation

in lymph nodes following implant ruptures [147].

In general, the methods presented in this work could be useful for re-evaluating

anatomies that have previously been assessed using brain mapping techniques, as they

might lead to improved accuracy and precision in various imaging situations.
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Abbreviations

ADMM Alternating Direction Method of Multipliers

BFR Background Field Removal

BMD Bone Mineral Density

CEST Chemical Exchange Saturation Transfer

CSF Cerebrospinal Fluid

CT Computed Tomography

CUDA Compute Unified Device Architecture

DEGRE Double Echo Gradient Echo

DOI Digital Object Identifier

DWI Diffusion-Weighted Imaging

fMRI functional Magnetic Resonance Imaging

FOV Field-Of-View

HIFU High Intensity Focused Ultrasound

IDEAL Iterative Decomposition of water and fat with Echo Asymmetry and

Least squares estimation

ISMRM The International Society for Magnetic Resonance in Medicine

ISSN International Standard Serial Number

LBV Laplacian Boundary Value method
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MC Microcalcifications

mcTFI Multi-Echo Complex Total Field Inversion

MEDI Morphology Enabled Dipole Inversion

MERIT Model Error Reduction through Iterative Tuning

mGRE Multi-Echo Gradient Echo

MR Magnetic Resonance

MRE Magnetic Resonance Elastography

MRI Magnetic Resonance Imaging

MRS Magnetic Resonance Spectroscopy

MT Magnetization Transfer Imaging

PDF Projection Onto Dipole Fields

PDFF Proton Density Fat Fraction

PDSF Proton Density Silicone Fraction

PRFS Proton Resonance Frequency Shift

PWI Perfusion-Weighted Imaging

qMRI Quantitative Magnetic Resonance Imaging

QSM Quantitative Susceptibility Mapping

R-GOOSE Rapid GlObally Optimal Surface Estimation

RF-HT Radiofrequency Hyperthermia

SWI Susceptibility-Weighted Imaging

TFI Total Field Inversion

TGV Total Generalized Variation

TV Total Variation
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UTE Ultra Short Echo time

VARPRO Variable Projection

wfTFI water–fat Total Field Inversion
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List of Figures

1.1 An illustrative depiction of the (body) QSM technology stack is pre-

sented. Initially, a multi-echo gradient-echo sequence is executed to

acquire complex images at various echo times. Subsequently, the B0

field inhomogeneities must be assessed by estimating all pertinent model

parameters, such as water, fat, R∗2, and the field map. Following this

step, the background field is removed from the total field map. Ulti-

mately, the internal field map is inverted to generate a susceptibility

map. In the accompanying figure, the individual journal publications

of this cumulative thesis are denoted as JP-I through JP-V, indicating

the corresponding processing steps. JP-IV is omitted, as it pertains to

optimizing the data acquisition step for accelerated acquisition. However,

this method precludes the estimation of water, fat, and allows to estimate

R∗2 only under specific circumstances, and thus represents an alternative

pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Illustrative magnitude echo images and parameter maps of a multi-echo

gradient echo experiment with subsequent parameter separation based

on Equation 2.2. The first row shows the magnitude of the signal at

different echo times. The second row shows the water and fat image,

proton density fat fraction, R∗2- and field map. . . . . . . . . . . . . . . 11
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2.2 Results of different field-mapping algorithms. The gradient descent

method, which minimizes Equation 2.4 using conventional gradient-based

techniques, struggles to resolve the pronounced field map variations,

particularly in the right breast. In contrast, the VARPRO approach from

Equation 2.6, which extracts the global minima within a voxel, is capable

of resolving much larger field map variations, resulting in substantially

improved outcomes in the right breast. Nonetheless, a significant number

of wraps can still be observed in the field map. By minimizing a global

neighborhood-regularized cost function using a graph cut, as in Equation

2.8, it is possible to obtain a non-wrapped field map. However, this

comes at the expense of field map blurring. . . . . . . . . . . . . . . . . 11

2.3 Illustrative Figure showing a wrapped and unwrapped field map . . . . 12

2.4 Illustrative Figure showing the separation of the total field fB into the

background fbg and internal fin field. The separation is based on the

projection onto dipole fields method [44]. While most of the breast tissue

shows a proper separation of both fields, strong artifacts are visibile in

the posterior direction originating from the lung/tissue interface where

the internal field still exhibits significant harmonic contributions from

the background field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Illustrative comparison of the results obtained using various field-to-

susceptibility inversion algorithms. The naive method, which minimizes

Equation 2.24, yields a susceptibility distribution primarily dominated

by artifacts, despite the visibility of some local structures. Introducing a

noise weighting term similar to W in Equation 2.25 leads to a substan-

tial enhancement in the results. However, it is only through employing

the MEDI method, as described in Equation 2.27, that the local fibro-

grandular tissue can be effectively resolved. The first three methods,

nonetheless, struggle with the inaccurate separation of background and

local fields, as depicted in Figure 2.4, which serves as their foundation.

By utilizing the TFI method from Equation 2.29, artifacts arising from

the background field removal step can be significantly reduced, revealing

only the local susceptibility. It is worth noting, though, that this method

exhibits a decreased SNR when compared to MEDI. . . . . . . . . . . 21
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