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Abstract: Low-grade gliomas are a heterogeneous group of infiltrative neoplasms. Radiomics allows
the characterization of phenotypes with high-throughput extraction of quantitative imaging features
from radiologic images. Deep learning models, such as convolutional neural networks (CNNs),
offer well-performing models and a simplified pipeline by automatic feature learning. In our study,
MRI data were retrospectively obtained from The Cancer Imaging Archive (TCIA), which contains
MR images for a subset of the LGG patients in The Cancer Genome Atlas (TCGA). Corresponding
molecular genetics and clinical information were obtained from TCGA. Three genes included in the
genetic signatures were WEE1, CRTAC1, and SEMA4G. A CNN-based deep learning model was used
to classify patients into low and high-risk groups, with the median gene signature risk score as the
cut-off value. The data were randomly split into training and test sets, with 61 patients in the training
set and 20 in the test set. In the test set, models using T1 and T2 weighted images had an area under
the receiver operating characteristic curve of 73% and 79%, respectively. In conclusion, we developed
a CNN-based model to predict non-invasively the risk stratification provided by the prognostic gene
signature in LGGs. Numerous previously discovered gene signatures and novel genetic identifiers
that will be developed in the future may be utilized with this method.

Keywords: deep learning; radiomics; neural networks; gliomas; LGG; gene signatures

1. Introduction

Precision oncology calls for finer characterization of tumors than the current classifi-
cations, enabling more patient-specific treatment and, thus, better outcomes. Low-grade
gliomas (LGGs) form a heterogeneous group of infiltrative neoplasms with astrocytic and
oligodendroglial morphology [1]. They differ significantly in progression-free survival
(PFS) and overall survival (OS) [2]. Some LGGs rapidly progress to glioblastomas [GBM
(WHO grade IV)], while others will progress slower or remain stable [3,4]. Moreover, their
treatment response varies significantly, with survival ranging from 1 to 15 years [3,4]. These
differences in prognosis and response to treatment are mainly due to the high molecu-
lar heterogeneity caused by different genetic alterations during tumor development [5,6].
Hence, genomic biomarkers were first integrated into the WHO Classification of Tumors
of the Central Nervous System (CNS) in 2016 [5] to explain the variability in the LGGs’
behavior, and the number of genomic identifiers has recently increased in the 2021 fifth
edition classification [7]. IDH mutations [8], 1p/19q codeficiency [9], ATRX mutation [10],
and TERT promoter mutation [11] are among the known prognostic molecular markers for
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LGGs. However, the complex genetic mechanisms and heterogeneity of LGGs require more
prognostic markers to explore better risk stratification strategies and efficient treatment
modalities. Genetic signatures integrating multiple biomarkers are believed to be superior
to single predictive biomarkers [12]. In recent years, gene signatures integrating multiple
genes were proposed for LGGs. Zeng et al. reported a 3-gene (EMP3, GSX2, EMILIN3)
prognostic signature [13]; Zhang et al. reported a 4-gene (EMP3, GNG12, KIF2C, IFI44)
model [14]; and Xiao et al. constructed a 3-gene (WEE1, CRTAC1, SEMA4G) signature [12].
In the study by Xiao et al., the proposed model was proved to have better prognostic value
in predicting 1-, 3- and 5-year OS rates than other models [12].

Within the limits of the current technology, genetic and molecular profiling of gliomas
has a few drawbacks. First, it requires direct tumor sampling, which involves invasive pro-
cedures such as surgical resection or biopsy. Since the standard of care for LGGs include sur-
gical removal of the tumor in many cases, it is not too much to say that the samples obtained
during the surgery will not allow tailored surgical strategies [1]. Multiple biopsy-based
approaches may allow more patient-specific treatment, but the diagnostic information that
biopsy yields may be limited due to sampling error and intratumor heterogeneity [15,16].
On the other hand, high cost and time-consuming remain serious shortcomings for the
widespread clinical use of conventional genetic and molecular profiling methods [17,18].
For these reasons, noninvasive determination of genetic and molecular profiles could allow
more individualized treatment options and prognostication for the patients.

Radiomics is a generic term to refer to the analytical technologies in medical imaging
and the image features obtained by this approach. Research on the relationship between
medical images and the genome is called ‘radiogenomics’. Radiomics allow the characteri-
zation of imaging phenotypes with high-throughput extraction of quantitative imaging
features from radiologic images [19]. Commonly, the radiomic approach includes image
acquisition, preprocessing of the images, region of interest (ROI) delineation (segmenta-
tion), feature extraction, selection of the most relevant features, and building predictive
models for the desired outcome [20]. Extracted radiomic features in many studies are
pre-engineered or handcrafted, such as shape, intensity, texture, and wavelet features.
These are usually low-order features, even if their number can reach thousands. Most of the
studies in the literature utilized different machine learning algorithms using these extracted
and selected radiomic features for model construction [21]. Deep learning offers better-
performing models and a simplified pipeline by automatic feature learning. Convolutional
neural networks (CNNs) are one form of deep learning that consists of a series of chained
convolutional layers followed by an output vector of class probabilities [22]. Multiple
convolutional layers with non-linear activation functions allow the learning of complex
features. CNNs have shown promising capabilities in automatic segmentation [23,24],
classification of molecular subtypes in gliomas [25,26], and survival outcomes [27,28].

To our knowledge, no previous study has applied a deep learning-based radiomic ap-
proach for novel biomarkers, such as the aforementioned multiple-gene genetic signatures.
Our study utilized the 3-gene signature that stratifies LGG patients into high- and low-risk
groups, according to Xiao et al. [14]. We aimed to determine whether neuroimaging features
on preoperative MRI studies entered into a CNN pipeline could facilitate the proposed
LGG stratification.

2. Materials and Methods
2.1. Patient Cohort

The results shown here are in whole or part based upon data generated by The
Cancer Genome Atlas (TCGA) Research Network (http://cancergenome.nih.gov/) and
The Cancer Imaging Archive (TCIA) (accessed on 18 May 2022) [29,30]. No institutional
review board approval was required to use information from TCIA and TCGA databases in
the present study since these databases contain publicly available datasets in which all data
are anonymized. MRI data were retrospectively obtained from TCIA, which contains MR
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images for a subset of the LGG patients from TCGA. Corresponding molecular genetics
and clinical information were obtained from TCGA. There were no missing data.

We used a candidate prognostic three-gene signature biomarker developed in a recent
publication for LGG as the genomic classifier [12]. Genomic data came from TCGA-LGG
collection and were based on RNA-seq data. Based on the proposed gene signature model,
the risk score [(0.4470 × expression level of WEE1) + (−0.1530 × expression level of
CRTAC1) + (−0.3723 × expression level of SEMA4G)] of each patient was calculated.
Patients were divided into low- and high-risk groups, with the median risk score as the
cut-off value. In the original publication, the high-risk group had significantly poorer
survival results than the low-risk group (hazard ratio (low-risk vs. high-risk) = 0.198,
95% CI (0.120–0.325)) with this classification [12].

All patients identified met the following criteria: (i) pathologically confirmed WHO
grade II and III gliomas; (ii) available preoperative MR imaging consisting of pre-contrast
axial T1-weighted (T1), post-contrast axial T1-weighted (T1C), axial T2-weighted (T2), and
T2-weighted fluid attenuation inversion recovery (FLAIR) images; (iii) available genomic
data for calculation of the adopted gene signature; (iv) available clinical data including age,
sex, and Karnofsky performance status (KPS); (v) available ROI segmentations supplied
in TCIA.

2.2. Image Preprocessing and Segmentation

All MR images were downloaded via the National Biomedical Imaging Archive (NBIA)
Data Retriever (version 4.3, The Cancer Imaging Archive, Bethesda, MD, USA, https://wiki.
cancerimagingarchive.net/display/NBIA/Downloading+Images+Using+the+NBIA+Data+
Retriever, accessed on 20 March 2021) and were converted from DICOM to NifTI for-
mat using dcm2niix (version 1.0, Chris Rorden, https://github.com/rordenlab/dcm2niix,
accessed on 20 March 2021) [31]. To remove intensity nonuniformity with low-frequency,
N4 bias field correction was applied [32]. Skull stripping was then applied using the
Brain Extraction Tool (BET) from the Functional Magnetic Resonance Imaging of the
Brain (FMRIB) software library (version 1.1, FMRIBGroup, Oxford, United Kingdom;
http://www.fmrib.ox.ac.uk/fsl/, accessed on 21 March 2021) [33]. All imaging modalities
(T1C, T1, T2, FLAIR) were co-registered using the FMRIB’s Linear Image Registration Tool
(FLIRT; http://www.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT, accessed on 20 March 2021) [34].
Registration with a linear affine transformation algorithm using 12 degrees of freedom,
trilinear interpolation, and a mutual-information cost function was implemented. The refer-
ence volume was the postcontrast axial T1-weighted acquisition. After image registration,
signal intensity normalization was performed using the WhiteStripe R package [35]. We
obtained region-of-interest (ROI) masks drawn for the four MRI sequences (T1C, T1, T2,
and FLAIR) for 81 patients from the previous study by Zhou et al. [36].

2.3. Convolutional Neural Network and Model Implementation

We designed our neural network to consist of 7 main sections, including the input
and the output layers. Three of these main sections employ 3D convolutional layers,
which have different numbers of filters and kernel sizes. These hyperparameters are fine-
tuned with controlled experiments to reach the model with the best pattern recognition
capabilities for our input data. After every 3D convolutional layer, a max pooling layer
was employed, reducing the dimensionality of its input to allow for sharper patterns
to be recognized. The dimensionality reduction also decreased the network complexity.
Finally, batch normalization was integrated at the end of these three main sections. Batch
normalization allowed for using much higher learning rates and being less careful about
initialization while also acting as a regularizer [37]. A global average pool layer provided
the transition from 3D to 1D by averaging the neuron values in 2 dimensions. Global
average pooling enforced correspondence between feature maps and categories and acted
as a structural regularizer [38]. Fully connected layers were used with dropout layers to
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prevent overfitting before completing the network with a sigmoid-activated output layer.
The network structure is shown in Figure 1.
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Keras API was used with the PlaidML for AMD graphical processing unit (GPU)
package as the backend in our implementation. Non-linear activation functions were
utilized in every layer, including Leaky ReLu for 3D Convolutional layers and ReLu for
fully connected layers. A widely adopted sigmoid classifier with a binary cross-entropy
objective function was used to classify inputs in the final layer as low-risk or high-risk. The
weight optimization was done with Adamax, a generalized version of the Adam optimizer.
The Adam optimizer is easy to implement, computationally efficient, has minor memory
requirements, is invariant to diagonal rescaling of the gradients, and is well suited for
significant problems in terms of data and parameters [39]. A batch size of 2 was used,
leading to longer training times and higher model quality. We trained the network on
an AMD Radeon Pro 5300M GPU.

2.4. Model Evaluation

The data were randomly split into training and test sets, with 61 patients in the training
set and 20 patients in the test set. To compensate for the data scarcity, a data augmentation
method was employed. While training the network, new training data was generated using
random rotations up to 90 degrees on existing data. This method prevented the model from
overfitting to the train set. The primary evaluation metric of the binary classifier was the
test set classification accuracy. The area under the curve (AUC) of the receiver operating
characteristic (ROC) and F1-score were additional metrics considered when evaluating
the model.
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2.5. Statistical Analysis

All statistical analyses were performed in R 4.1.3 [40] with RStudio 2022.02.1+461 [41].
The normality of data distributions was assessed via the Shapiro-Wilk test. The descriptive
analyses were reported as means ± standard deviations for normally distributed variables,
medians (interquartile ranges) for non-normally distributed variables, and frequencies
for categorical variables. Group differences were tested using the independent t-test for
normally distributed variables with equal variances, the Mann-Whitney U test for non-
normally distributed variables, or the chi-square test for categorical variables. A two-tailed
p-value of 0.05 was considered to indicate statistical significance.

2.6. Source Code

The source code for the described methods is available on GitHub (mertkarabacak/LGG-
GS (https://github.com/mertkarabacak/LGG-GS, accessed on 20 March 2021).

3. Results
3.1. Patient Characteristics

The average age was 45.8 years. Thirty-eight subjects were female, and 43 were
male. Among 81 patients, 24 were astrocytomas, 24 were oligoastrocytomas, and 33 were
oligodendrogliomas. Regarding tumor grade, 33 were of grade II, and 48 were of grade III.
No statistical difference was found for any variables, including the gene expression values,
between training and test sets. The patient characteristics are described in Table 1.

Table 1. Patient characteristics.

Variables Training Set (n = 61) Test Set (n = 20) p Value High Risk (n = 54) Low Risk (n = 27) p Value

Age at diagnosis 45.2 (14.4) 47.6 (11.6) 0.454 44.6 (13.1) 48.2 (14.8) 0.291

Gender

0.649 1.000Male 31 (50.8%) 12 (60%) 29 (53.7%) 14 (51.9%)
Female 30 (49.2%) 8 (40%) 25 (47.3%) 13 (48.1%)

Histologic Diagnosis

0.789 0.000Astrocytoma 18 (29.5%) 6 (30%) 8 (14.8%) 16 (59.3%)
Oligoastrocytoma 17 (27.9%) 7 (35%) 17 (31.5%) 7 (25.9%)
Oligodendroglioma 26 (42.6%) 7 (35%) 29 (53.8%) 4 (14.8%)

Grade

0.854 0.002II 24 (39.3%) 9 (45%) 29 (53.7%) 4 (14.8%)
III 37 (60.7%) 11 (55%) 25 (47.3%) 23 (85.2%)

Risk Status

1.000
High 41 (67.2%) 13 (65%) - -
Low 20 (32.8%) 7 (35%) - -

Gene expression

WEE1 7.8 (1.3) 7.9 (1) 0.5254 7.3 (0.9) 9.0 (1) 0.000
CRTAC1 9.9 (9.3–10.7) 9.7 (8.7–10.4) 0.7425 10.3 (9.5–10.9) 8.4 (7.5–9.4) 0.000
SEMA4G 8.3 (8–8.7) 8.2 (8–8.5) 0.7633 8.5 (8.2–8.7) 7.8 (7.0–8.2) 0.000

3.2. Model Performance

Two models were trained with two separate input types. The first input type was
T1-weighted (T1), and on the training set, the model had accuracy, sensitivity, specificity,
precision, and AUC of 85%, 65%, 95%, 86%, and 94%, respectively. On the test set, the
model with the T1 input type had accuracy, sensitivity, specificity, precision, and AUC
of 80%, 57%, 92%, 80%, and 73%, respectively. For the input type T2-weighted (T2), the
model had accuracy, sensitivity, specificity, precision, and AUC of 79%, 100%, 73%, 68%,
and 94%, respectively, on the training set. On the test set, the model with the T2 input type
had accuracy, sensitivity, specificity, precision, and AUC of 75%, 100%, 62%, 58%, and 79%,
respectively. The model performances are described in Table 2. Figure 2 depicts the ROC

https://github.com/mertkarabacak/LGG-GS


Appl. Sci. 2023, 13, 3873 6 of 10

curve of the model using T1-WI as input, and Figure 3 depicts the ROC curve of the model
using T2-WI as input.

Table 2. Model performances.

Training Set Test Set

Accuracy AUC Sensitivity Specificity Precision Accuracy AUC Sensitivity Specificity Precision

T1 0.85 0.94 0.65 0.95 0.86 0.8 0.73 0.57 0.92 0.8
T2 0.79 0.94 1 0.73 0.68 0.75 0.79 1 0.62 0.58
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4. Discussion

Significant advances have been made in the exploration of the molecular pathology
of gliomas in recent years. Many molecular markers have been discovered that are useful
for clinical diagnosis, prognostic evaluation, and treatment guidance, such as IDH1/2
gene mutation and chromosome 1p/19q co-deletion [8,9] but can only partially explain the
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prognosis of gliomas at present. Therefore, further efforts are needed to improve prognostic
accuracy and facilitate therapeutic approaches.

In addition to molecular markers, recent studies have identified gene expression pro-
files that make it possible to categorize patients into high- and low-risk groups regarding
survival probabilities. Gene signatures have attracted much attention in recent years and
have shown great potential for prognostic prediction in LGG patients. Zhang et al. con-
structed a five-gene signature that can predict the individual clinical outcome with high
accuracy in LGG patients [42]. Liu et al. developed a ten-gene signature that success-
fully classified LGGs into groups with different prognostic probabilities [43]. Zhang et al.
constructed a robust six-immune-related gene signature and established a prognostic nomo-
gram for risk stratification and prediction of overall survival in LGG patients [44]. The
risk score calculation, based on the three-gene signature we adopted in our study, was
a significant prognostic factor after adjusting for the effects of age, sex, tumor grade, and
treatment modalities. Xiao et al. identified a three-gene model that showed satisfactory
performance in predicting 1-, 3-, and 5-year survival of LGG patients [12]. The AUC value
of classification into low- and high-risk groups in 1-, 3- and 5-year survival graphs was
greater than 0.75, regardless of the training or validation set.

In the current clinical context, determining molecular markers or gene signatures
of gliomas requires invasive procedures, such as surgical resection or biopsy. Given
the considerable high intra-tumor heterogeneity of the lesions and the risk that a tissue
sampling may not adequately represent the overall genomic profile, imaging, which is
performed at the very beginning of the diagnostic process of glioma cases, may be useful
in assessing heterogeneity since the imaging data provides a complete view of the tumor.
Hence, noninvasive characterization of genomic profiles would better aid clinicians in
making more precise treatment and follow-up plans before surgery or biopsy. Genomic
analyses could easily be replaced by models predicting the genetic and molecular profiles
of the tumors based on imaging if they are highly accurate. Even models with moderate
accuracy could potentially be incorporated into diagnostic and therapeutic paradigms.

In this study, we demonstrated the value of CNNs employed to post-process the
radiomics information from conventional routine MRI from a publicly available multi-
institutional dataset to predict a specific gene signature-based risk stratification status in
LGG patients. To our knowledge, this is the first study that attempted to predict a gene
signature-based risk stratification using imaging studies. The deep-learning model was
developed and cross-validated for its performance. AUC values for the test sets were 0.80
and 0.75 for the T1 and T2 input models, respectively. We did not include any clinical
parameters in our models, such as age or KPS. Because these alone have a significant impact
on classifying the survival risk status of the patients, clinicians are already aware that high
age or low KPS indicate likely poor survival outcomes. This method becomes very clinically
useful when clinical parameters fail to inform providers in their decision-making process.
We did not include WHO grade IV gliomas in our analysis either, since they have clinically
distinct survival outcomes compared to LGGs. Identifying high-risk LGG patients early in
the course of their disease may be important in clinical decision-making as it may guide
clinicians through more aggressive treatment options and closer follow-ups.

Despite the promising results, there are a few limitations to be aware of. First, our
sample size was relatively small (80 patients), especially considering that neural networks
necessitate a massive amount of input for high-performing models. To address this limita-
tion, we used data augmentation and tailored an optimized CNN structure. Second, we
applied our proposed model to LGGs only. In clinical scenarios, it would be of higher value
if GBMs were also included. Our methodology requires prior knowledge of the tumor
grade. Though GBMs have distinct features, some LGG-appearing tumors are actually
GBMs. To differentiate LGGs from GBMs at the baseline, advanced MRI techniques, such
as diffusion MRI, perfusion MRI or MR spectroscopy, can be used. Furthermore, models
predicting survival outcomes may show over-optimistic results if they are implemented in
a dataset including both GBMs and LGGs since they have different survival rates inherently.
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Third, our study includes only the T1- and T2-weighted MRI sequences. We did not utilize
advanced MRI techniques, even though they have been shown to provide additional infor-
mation and can improve prediction performance [45,46]. Yet, including these sequences is
also a potential limitation because these sequences are unfortunately not widely available,
just as we did not have them available for our dataset. Lastly, due to the small sample size
and the lack of an external dataset containing both the genomic information we used in
our study and imaging data, there was no independent test set in our study. Instead, we
utilized a commonly used cross-validation technique.

5. Conclusions

In conclusion, we developed a CNN-based model to non-invasively predict a risk
stratification offered by a prognostic gene signature in LGGs. This technique may be
applied to many of the previously discovered gene signatures and novel genetic identifiers
to be developed in the future. Importantly, our approach has the genuine potential to be
incorporated into the clinical decision-making process.
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