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Abstract: Modeling inland water quality by remote sensing has already demonstrated its capacity to
make accurate predictions. However, limitations still exist for applicability in diverse regions, as well
as to retrieve non-optically active parameters (nOAC). Models are usually trained only with water
samples from individual or local groups of waterbodies, which limits their capacity and accuracy
in predicting parameters across diverse regions. This study aims to increase data availability to
understand the performance of models trained with heterogeneous databases from both remote
sensing and field measurement sources to improve machine learning training. This paper seeks to
build a dataset with worldwide lake characteristics using data from water monitoring programs
around the world paired with harmonized data of Landsat-8 and Sentinel-2. Additional feature
engineering is also examined. The dataset is then used for model training and prediction of water
quality at the global scale, time series analysis and water quality maps for lakes in different continents.
Additionally, the modeling performance of nOACs are also investigated. The results show that
trained models achieve moderately high correlations for SDD, TURB and BOD (R2 = 0.68) but lower
performances for TSM and NO3-N (R2 = 0.43). The extreme learning machine (ELM) and the random
forest regression (RFR) demonstrate better performance. The results indicate that ML algorithms
can process remote sensing data and additional features to model water quality at the global scale
and contribute to address the limitations of transferring and retrieving nOAC. However, significant
limitations need to be considered, such as calibrated harmonization of water data and atmospheric
correction procedures. Moreover, further understanding of the mechanisms that facilitate nOAC
prediction is necessary. We highlight the need for international contributions to global water quality
datasets capable of providing extensive water data for the improvement of global water monitoring.

Keywords: remote sensing; water quality; harmonize RS data; machine learning; global modeling

1. Introduction

Monitoring water quality of inland waters in different countries is mostly conducted
individually by each nation. Global integration of their data is often constrained by a lack
of worldwide projects or collaborations [1]. When possible, the countries measure the water
quality mainly inside their borders through their monitoring systems and the data are
stored locally. Therefore, an important quantity of data that is collected every year is usually
not available or is difficult to access for external researchers or international institutions.
Currently, there are international projects that aim to homogeneously integrate water
quality data from several countries for applications in water resources [2]. However, these
programs are in early stages and up to now there no comprehensive and unique sources
for global and homogeneous water quality data. At the same time, the global coverage
of operational monitoring stations is insufficient or lacks acceptable levels of confidence
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and precision [1,3,4]. This situation limits considerably the application of current data-
driven methods that use big datasets to learn from water quality patterns. Therefore,
monitoring water quality remains limited by only conventional analysis such as collection
of water samples in the field and laboratory analysis [5,6]. Conventional methods are highly
accurate, but also expensive, time demanding and limited in spatial and temporal coverages.
Additionally, it is complex to develop a representative understanding of the water quality
status in a waterbody from punctual field measurements or limited field campaigns over
the course of large periods of time. A solution to increase the scope and capabilities of
monitoring water quality is the use of remote sensing data, which contributes to provide
data from remote sensors that couple field data and increase the analysis in time and space.
International institutions such as the United Nations already encourage the coupling of
monitoring systems with remote sensing technologies through its Environment Program [1].
When paired with field data, combined water and remote sensing measurements allow
monitoring at a larger scope, since they have the potential to analyze waterbodies at regional
or global locations. This is achieved by studying water quality from indicator parameters
and dealing with better cost–benefit methods in comparison with the extensive spatial and
temporal scales that are analyzed. Several modeling techniques associate remote-sensed
signals, mostly in the visible and near-infrared wavelengths (400–900 nm), with the water
parameter of interest to derive information of the waterbody. The relationship between
optically active constituents (OAC) such as chlorophyll-a (Chl-a), total suspended matter
(TSM) and surface radiation arises due to the interaction between the radiation and the
OAC through processes such as absorption and scattering [7]. Remote sensing is suited
to analyze these relationships because of the high sensitivity in the radiometric resolution
of several satellite sensors. As water absorbs within the visible spectrum, low reflectance
occurs in the water column in contrast to the high reflectance of land. Therefore, high
sensitivity in the spectral sensors is required to detect the slight changes in water reflectance
that surpass the absorption of water [8,9]. Currently, sensors such as Landsat-8 OLI and
Sentinel-2 MSI are suited to provide remote sensing data for water quality monitoring
because of their radiometric and temporal resolutions [10]. While remote-sensing-based
models can reproduce the patters and dynamics of key water parameters, it becomes
relevant to improve the confidence and accuracy of such methodologies and the data
that are provided to calibrate them. From the different approaches developed in the last
decades, machine learning algorithms currently offer accurate and precise models for water
quality monitoring [11–14]. Machine learning comprises statistical methods which are able
to learn from the data they are provided through iterative processes of error adjustment
between training and prediction datasets. The process involves providing data to the
selected algorithm which is trained with known or predefined features or objects that
allows detection, classification or pattern recognition in semi-automated or automated
learning. Methodologies combining machine learning with remote sensing data have been
used to successfully model water quality [14–21]. Some algorithms are considered standard
for machine learning evaluations, such as support vector machines (SVR) and random
forest regression (RFR) [22]. Furthermore, deep learning, a subset of machine learning
based on neural networks, has demonstrated higher accuracy than other methodologies
used to model water quality such as bio-optical or band/ratio models [13,23–26]. Due to its
novelty, there are still open challenges in the application of machine learning which require
further research [24,27–30].

The availability of paired remote sensing and field water quality data is highly limited
because of the independent nature of acquiring both types of data. Monitoring water
quality programs in different countries were not designed to take into consideration remote
sensing acquisitions or satellite overpasses. Therefore, an important percentage of field data
are not feasible to be coupled with remote sensing images [31]. Moreover, remote sensing
data originate from multiple instruments with different characteristics. This heterogeneous
data, in terms of frequency, spatial and radiometric resolution, demand further data pre-
treatment and better machine learning models to reveal meaningful information and may
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make difficult model transferability. Inherent challenges regarding modeling processes
also exist, in particular for deep learning. Yet, a deeper neural network may retrieve
more accurate results but at a higher computational cost and with associated risks of
overfitting. To determine optimal conditions and parameters of these elements is still
a crucial research question [32]. In addition, important water quality parameters such as
nutrient concentrations, indicators of oxygen levels or organic compounds are not feasible to
be directly retrieved by remote sensing because of their inaction over the spectral response
of the water when dissolved, and are therefore known as non-optically active compounds
(nOACs). Current research poses the possibilities to determine these parameters on indirect
correlations with other optically active components such as chlorophyll-a, turbidity or
suspended solids [33]. Finally, due to the nature of machine learning models trained
with remote sensing data being inherently empirical, they are expected to be valid mainly
in the region from where their training data are originated, and most of these models
are applicable only at their specific regions or waterbodies. As these models rely on
optical characteristics, which may vary from waterbody to waterbody in complex waters,
their transferability is further limited to the origin of their training data. However, a key
characteristic of machine learning methodologies is that they learn patterns and behaviors
from great amounts of data. Therefore, the existence of a worldwide integrated dataset
of water quality and remote sensing data gives the possibility to develop a data-driven
approach with the capacity for global estimations of water quality by comprising global
lake characteristics in a single dataset. In this study, we aim to create this dataset with the
available resources for remote sensing image processing and open-access field water quality
measurements. Harmonization of remote sensing data contributes to the increase in data
availability by combining remote sensing data from different sensors. A recent example is
the harmonization process for Landsat-8 OLI and Sentinel-2 MSI, which have been subject
to treatment to homogenize their spectral response and spatial resolution [10,14,34]. This
method aims to standardize these differences to produce harmonized datasets that can be
used together for various applications such as land cover classification and change detection.
This harmonization process represents a significant improvement in multi-temporal and
multi-sensor analysis, making it possible to better track changes in the Earth’s surface over
time. Despite some processes of the harmonization not being specifically designed for
inland waters, such as the 6S atmospheric correction, it is already widely used in remote
sensing, showing promise for improving the accuracy of water quality retrievals in the
future. Similarly, the results of its usage require caution when being interpreted. Ultimately,
the adoption of these methodologies enabled the construction of a global dataset for model
development and contributed to understanding the potential of machine learning with
increased data availability.

To contribute to clarifying the above challenges, this work aims (i) to gather open-
access water quality monitoring datasets of the relevant parameters from different regions
in the world for their synergistic use with remote sensing; (ii) to maximize the data avail-
ability of coupled field and sensor acquisitions by using an image homogenization process
for L8 and S2 and produce harmonized images from both satellites, enabling both sensors
to be used synergistically and increasing the size available spectral data; (iii) to build
a comprehensive dataset created from the coupling of the global dataset and the harmo-
nized remote sensing products; and (iv) to model relevant water quality parameters using
machine learning and validate the use of the developed models for global water quality
predictions. In addition, we investigate the results using this dataset and machine learning
approaches to understand better the optimal balance between computational demand and
retrieved accuracy as well as the possibilities of nOAC direct or indirect retrievals.

2. Materials and Methods
2.1. Sources of Global Water Quality Dataset

The main source of field data is the open-access data portals from water and envi-
ronment national agencies of different countries which make public their archives of field



Remote Sens. 2023, 15, 1390 4 of 27

measurements and monitoring activities. A summary of agencies and links of acquisition
is provided in Table 1. In its raw form, the dataset contained almost 300,000 total samples.
A summary of the number of observations and lakes by region is displayed in Table 2.
The global locations of all the stations from the above-mentioned data sources are shown
in Figure 1.
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Table 1. Source of national and international water quality datasets acquired in this study.

Source Data Location Region

Water Quality Portal (WQP) waterqualitydata.us
(accessed on 15 January 2022) United States

European Environment Agency (EEA) Waterbase eea.europa.eu/data-and-maps/data/waterbase
(accessed on 13 January 2022) Europe

Mexican National Water Monitoring Network gob.mx/conagua/articulos/calidad-del-agua
(accessed on 1 September 2021) Mexico

Open Government Portal of Canada open.canada.ca/en/od
(accessed on 15 January 2022) Canada

General Chilean Water Directorade dga.mop.gob.cl/servicioshidrometeorologicos
(accessed on 15 January 2022) Chile

Global Freshwater Quality Database (GEMStat) gemstat.org/data
(accessed on 7 January 2022) Global

Table 2. Overview of the number of observations and lakes per region in the raw dataset.

Region n Lakes

United States 263,699 43
Europe 17,681 64
Mexico 9086 32
Canada 5412 2
Japan 1292 3
Chile 897 16

Russia 32 1

Recent research of Thorslund and van Vliet [35], indicates that the current state of
the global water quality stations monitoring lakes and reservoirs is focused mainly on
the U.S. followed by Europe, Mexico and South Africa. Australia has a great number of
stations, near 90,000, but most of them are for groundwater, and only 5 are located on
lakes or reservoirs. For this study, the gross part of the data components comes from
the U.S. and European sources since their data archives are open access and easy to
acquire through their respective portals. The U.S. data were acquired from the Water
Quality Portal [36] (https://www.waterqualitydata.us/, accessed on 15 January 2022),
which is a cooperative service sponsored by the United States Geological Survey (USGS),
the Environmental Protection Agency (EPA) and the National Water Quality Monitoring
Council (NWQMC) that integrates publicly available water quality data from the USGS
National Water Information System (NWIS), the EPA STOrage and RETrieval (STORET)
Data Warehouse and the USDA ARS Sustaining The Earth’s Watersheds—Agricultural
Research Database System (STEWARDS). Data from the European continent were acquired
through the European Environment Agency (EEA) Waterbase (https://www.eea.europa.
eu/data-and-maps/data/waterbase-water-quality-icm-2, accessed on 13 January 2022),
which contains time series of nutrients, organic matter, hazardous substances and other
chemicals in rivers, lakes, groundwater and transitional, coastal and marine waters (EEA
2021). Additionally, datasets from the National Water Monitoring Network of Mexico (https:
//www.gob.mx/conagua/articulos/calidad-del-agua, accessed on 1 September 2021) [37],
the Canadian Great Lakes (https://search.open.canada.ca/en/od/, accessed on 15 January
2022) [38], and the Chilean General Water Directory (DGA) lake’s database [39] were also
acquired (https://dga.mop.gob.cl/servicioshidrometeorologicos/Paginas/default.aspx,
accessed on 15 January 2022). Finally, the Global Freshwater Quality Database (GEMStat)
(https://gemstat.org/data/, accessed on 7 January 2022), which is a GEMS/Water Program
of the United Nations Environment Program (UNEP), was also acquired to account as
much as possible for remaining global data around the world. The GEMStat is hosted by
the GEMS/Water Data Centre (GWDC) within the International Centre for Water Resources
and Global Change (ICWRGC) in Koblenz, Germany [2].

waterqualitydata.us
eea.europa.eu/data-and-maps/data/waterbase
gob.mx/conagua/articulos/calidad-del-agua
open.canada.ca/en/od
dga.mop.gob.cl/servicioshidrometeorologicos
gemstat.org/data
https://www.waterqualitydata.us/
https://www.eea.europa.eu/data-and-maps/data/waterbase-water-quality-icm-2
https://www.eea.europa.eu/data-and-maps/data/waterbase-water-quality-icm-2
https://www.gob.mx/conagua/articulos/calidad-del-agua
https://www.gob.mx/conagua/articulos/calidad-del-agua
https://search.open.canada.ca/en/od/
https://dga.mop.gob.cl/servicioshidrometeorologicos/Paginas/default.aspx
https://gemstat.org/data/
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2.2. Field Dataset Compliance by Lake Selection, Satellite Coincidence and Data Curation

For lake selection, the minimum surface area to consider a waterbody was set to
20 km2. This size ensures the avoidance of adjacency errors in the NIR region from the
surrounding land surfaces and bottom reflectance in the sensor acquisitions [40]. At the
same time, this area is on the limit to retrieve an adequate number of pixels from the image
acquisition based on the spatial resolution per pixel (30 × 30 m) of the intended OLI and
MSI sensors to be used as the source of radiometric data.

We used the Level-1 and Level-2 database from the Global Lakes and Wetlands
Database (GLWD) developed by the World Wildlife Fund (WWF) and the Center for Envi-
ronmental Systems Research, University of Kassel, Germany (https://www.worldwildlife.
org/pages/global-lakes-and-wetlands-database, accessed on 20 January 2022) [41], to
apply lake selection.

The first GLDW product, GLWD-1, comprises 3067 lakes (area > 50 km2) and 654 reservoirs
(storage capacity > 0.5 km3) worldwide, and includes extensive attribute data. The second
GLDW product, GLWD-2, comprises permanent open waterbodies with surface areas
larger than 0.1 km2, from which the minimum area of 20 km2 was established. Additionally,
we applied a rigorous data cleaning process which involved the rejection of samples that
(i) predate the launch of Landsat-8 and Sentinel-2, (ii) are not within the ±3 days range of L8
and S2 images, (iii) were taken deeper than 1.0 m, (iv) are duplicate records, (v) are labeled
as of poor or suspect data quality, (vi) are below and above the detection limits for every
parameter, (vii) have fill values, (viii) are detected as outliers and faulty study parameter
measurements or (ix) belong to not-studied parameters. Additionally, it is important to
mention that shape of a waterbody, along with its size, is an important factor to consider
when accounting for a detailed selection. Narrower waterbodies tend to have a higher
adjacency effect due to the reflection of light off the edges of the lake and into the water
column. Small waterbodies such as rivers and canals are particularly affected, while larger,
more open waterbodies may have a lower adjacency effect.

In its cleaned form the dataset contained almost 7000 total samples. An overview of
the number of observations and lakes per region in the cleaned dataset and their respective
number of samples per parameter are shown in Tables 3 and 4, respectively. Descriptive
statistics of the parameters are provided in Table 5.

Table 3. Overview of the number of observations and lakes per region in the cleaned dataset.

Region n Lakes

United States 2032 33
Europe 1540 54
Mexico 2875 32
Canada 16 2
Japan 202 3
Chile 206 14

Russia 13 1

Table 4. Number of cleaned samples per parameter. Type column refers to optically active constituents
(OAC) and non-optically active constituents (nOAC).

Parameter n Type

Chlorophyll-a (Chl-a: mg/L) 1080 OAC
Turbidity (TURB: NTU) 554 OAC

Total suspended matter (TSM (mg/L) 291 OAC
Secchi disk depth (SDD: m) 694 OAC

Dissolved oxygen (DO: mg/L) 1872 nOAC
Total phosphorus (PTOT: mg/L) 987 nOAC

Nitrate (NO3-N: mg/L) 711 nOAC
Biochemical oxygen demand (BOD: mg/L) 214 nOAC

Chemical oxygen demand (COD: mg/L) 481 nOAC

https://www.worldwildlife.org/pages/global-lakes-and-wetlands-database
https://www.worldwildlife.org/pages/global-lakes-and-wetlands-database
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Table 5. Descriptive statistics of our study parameters. Abbreviations as follows: (St.Dev: Standard
Deviation, Perc.: Percentage).

Parameter Chl-a TURB TSM SDD DO PTOT NO3-N BOD COD

Count 1080 711 1872 987 694 291 554 214 481
Mean 26.87 2.89 8.80 0.20 2.73 40.65 24.48 11.25 30.39

St. Dev. 52.53 23.98 2.24 0.39 3.31 54.71 55.11 12.65 27.98
Min 0.00 0.00 1.30 0.00 0.00 1.00 0.10 0.50 2.10

25% Perc. 1.90 0.04 7.60 0.03 0.67 12.00 2.30 3.42 13.00
Median 6.80 0.18 8.90 0.07 1.20 20.00 5.30 5.99 22.00

75% Perc. 22.90 1.41 10.00 0.18 3.20 43.72 18.00 17.00 39.00
Max 561.07 443.00 27.00 5.73 18.00 520.00 578.70 94.00 270.00

2.3. Harmonization of Landsat-8 and Sentinel-2 Data

To increment data availability, harmonization of data from different remote sensors
was applied as a feasible solution to increase availability of remote sensing data and,
therefore, to increase the possibilities to match up with available water quality measure-
ments. Harmonization is a novel approach, and its implementation has been in develop-
ment for general applications such as land or crop modeling. Recently, harmonization of
Landsat-8 and Sentinel-2 data has been applied for water quality retrievals with promising
results [14,33]. However, this process is still challenging and requires several stages of
image processing [42], especially when it is intended to be used at a global scale and using
entire collections of remote sensors, as in this study. For the purposes of this study, there
is the need of an implementation in a cloud platform capable of processing the complete
imagery of both Landsat-8 and Sentinel-2. Additionally, atmospheric correction applicable
to all images is also necessary to retrieve remote sensing reflectance (Rrs). Google Earth
Engine (GEE) is a cloud platform that provides excellent access to complete archives of both
Landsat and Sentinel data and allows operations and corrections over the entire imagery.
Currently, there are studies that describe and apply this methodology for different cases
and study purposes. Particularly, we use the methodology described in [34], which is
based on the original methodology by [10]. Following the above-mentioned methodology,
the collections of Landsat-8 (L8) top-of-atmosphere (TOA) and Sentinel-2 (S2) Level-1C
(L1C) were acquired via Google Earth Engine (GEE) for the studied lakes and dates of
measurement. Images were then atmospherically corrected using the Second Simulation
of the Satellite Signal in the Solar Spectrum (6S) developed by [43], which uses Radiative
Transfer Models (RTMs) to simulate the passage of solar radiation across the atmosphere.
The 6S algorithm was adapted to a Python (Py6S) interface [44] and implemented recently
for its use with Google Earth Engine [45] via a Python API and Docker container. For
cloud detection in L8 images, we applied the CFMask algorithm on GEE based on the
implementation of [34]. Cloud detection in S2 images was performed with single-scene
pixel-based cloud detector method developed by [46], in which cloud detection is expressed
as a machine learning problem that can outperform current threshold-based cloud detection
algorithms such as Fmask or Sen2Cor. This detector is already available as the s2cloudless
Python package and as a tool of the sentinelhub-py library. Cloud shadow detection was
conducted via the Temporal Dark Outlier Mask (TDOM) [34], which is a version adapted
from [47]. TDOM applies dark pixel anomaly [48] to predict the position and the extent of
a cloud’s shadows by using the cloud’s shape, height and position of the sun at that
time [49]. Co-registration was performed by measuring the misalignment between L8 and
S2 images (up to 38 m) [42] and aligning the L8 with its corresponding S2 [50]. Afterwards,
reprojection was applied to account for possible differences in band scale and projection [51].
L8 bands from B2 through B7 were reprojected with respect to the red band of S2 (WGS84),
and each band’s resolution was re-scaled to 30 m using bicubic interpolation [52,53]. The
Bidirectional Reflectance Distribution Functions (BRDF) model developed by [47] was
applied to reduce the directional effects due to the differences in solar and view angles
between L8 and S2 [10]. This correction is based on fixed c-factors provided by [54], where
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the view angle is set to nadir and the illumination is set based on the center latitude of the
tile [10]. The implementation of BRDF correction in GEE is based on results from different
studies [54,55]. Topographic correction, which accounts for variations in reflectance due
to slope, aspect and elevation, was implemented using the SRTM V3 (30 m SRTM Plus)
and GTOPO30 (Global 30 ArcSecond Elevation) products to cover all Earth regions [56].
Adjustment in L8 bands was performed using cross-sensor transformation coefficients
from [57] to solve spectral differences with S2 due to independent radiometric and geo-
metric calibration processes. In [57], the absolute difference metrics and major axis linear
regression analysis over 10,000 image pairs across the conterminous United States was
used to obtain these transformation coefficients. The above process retrieves harmonized
Landsat-8 and Sentinel-2 (HLS) images which have corrected surface reflectance with equal
spectral and spatial characteristics. A detailed overview of the harmonization process is
shown in Figure 2. Pixel extraction of the remote sensing reflectance (Rrs) was performed
from the described location (latitude and longitude) of the field stations. We selected the
main six bands from the visible, infrared and shortwave infrared, which are relevant for
remote sensing of inland waters to reduce processing time.
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2.4. Feature Engineering and Dataset Arrangement

Additional features were derived from the HLS dataset in search of stronger correla-
tions. Similarly, the effect of adding additional features on the model performance was
also evaluated. To this end, different types of datasets were tested. Each dataset contained
different engineered features and inherent characteristics of each lake. The main differences
were based on the usage of common band ratios applied to remote sensing bands [58–64]
and additional non-radiometric features such as time and location characteristics (latitude,
longitude, month and year). Data were scaled to account for better performances in the
modeling process. Additional feature specifications are shown in Table 6. Four different
datasets were evaluated: (i) the harmonized bands (HB) dataset contained purely the
HLS bands; (ii) the feature engineering (FE) dataset contained the HLS bands plus the
additional band ratios; (iii) the harmonized bands plus region and time (HBRT) dataset
which contained the harmonized bands dataset in addition to time and space features,
and (iv) the feature engineering plus region and time (FERT) dataset which contained the
feature engineering data plus region and time. A summary of each dataset description is
provided in Table 7.
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Table 6. List of additional features derived from the HLS dataset and lake inherent characteristics.

Feature Formula Naming

Ratio of red and green plus near infrared Red/Green + NIR SF1
Average of green plus red (Green + Red)/2 SF2
Ration of green and red Green/Red SF3
Ratio of red and green Red/Green SF4

Radio of near infrared and green NIR/Green SF5
Latitude - Lat

Longitude - Lon
Month - Month

Year - Year

Table 7. Summary of the studied datasets.

Dataset Features Description

HB (harmonized bands) HLS bands Original harmonized Landsat–Sentinel bands

FE (feature engineering) H-bands, red/green + NIR, (green + red)/2,
green/red, red/green, NIR/green HLS bands and the radiometric band ratios

HBRT (HLS bands and region and time) HB, latitude, longitude, year and month HB dataset, region and time

FERT (engineering and region and time) FE, latitude, longitude, year and month FE dataset, region and time

2.5. Machine Learning Algorithms

Machine Learning algorithms are data-driven methods, and, therefore, they require
enough in situ water quality observations that contribute to the “learning” of the model.
In this process, the models establish a relationship between water leaving radiance ac-
quired remotely [65] and the in situ observations [33]. Hence, there is an inherent empirical
relationship established between target parameters and predicting features. The learn-
ing characteristic of machine learning algorithms is further evaluated in this study by
considering additional predicting features that, such as the water leaving reflectance of
a specific measuring point, are also intrinsic to each waterbody. This could help to improve
retrievals from purely remote sensing features, which often suffer from high correlation
and collinearity between them [6]. Recently applied regression models in research of re-
mote sensing of inland waters were used as modeling approaches. Supervised learning
algorithms considered were the linear regression (LR) [66–69], support vector regression
(SVR) [70–74] and random forest (RF) [22,75–77]. Additionally, we employed deep learning
algorithms, which have been less commonly applied in the field, from which we focused
on the extreme learning machine (ELM) [13,31,78] and the multilayer perceptron regressor
(MLP) [14,79–81].

For every target parameter, each of the above models and hyperparameter optimiza-
tion with common values in GridSearch was trained and tested. Intensive hyperparameter
tuning was not mainly addressed, since the primary goal was to evaluate differences in
datasets for machine learning models in similar conditions. The settings of the LR model
consider an intercept. Hyperparameters for SVR used a radial basis function (rbf) kernel,
regularization parameter of C = 1.0 and epsilon = 0.1. We employed RFR with squared
error criterion as a function to measure the quality of a split. Different activation functions
were tested for ELM depending on the training data (sig, sin, radbas, hardlim, purelin and
tansig), with common occurrences of sigmoidal function and hidden nodes ranging from
50–1000 for different parameters. MLP was used having five hidden layers with the ADAM
activation function and a learning rate of 0.01, and Bayesian regularized backpropagation
was utilized to train the model. The modeling approach was conducted using SciKit Learn
(v1.0.2) in Python (v.3.10,3) and the Caret package (v2019.03.27) in R (41.3). Google CoLab
was used as the cloud computing platform to perform all calculations.
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2.6. Model Evaluation

Cross-validation with k = 5 folds was selected as our main method of model evaluation.
The train/test split ratio was 80% training and 20% testing. Random selection of samples
in each iteration was performed to ensure representative selection of data in the training
and testing stages. The presence of multicollinearity in the predictors was addressed
by an initial feature selection with mutual info regression as the scoring function and
a second-degree polynomial feature to account for the non-linearity in the data. To ascertain
model performance, we used the following quantitative error metrics: the mean absolute
error (i), mean squared error (ii), root mean squared error (iii) and R2 (iv). Additionally,
we considered the number of features (v) used as a metric for overall comparison among
the models. It was considered that the model with the need for fewer predictors has an
advantage in terms of required computing power. The error metrics were calculated for
both the training and independent testing dataset. Respectively, each performance metric
is defined as

R2(y, ŷ) = 1 − ∑
nsamples−1

i=0 (yi − ŷi)
2

∑
nsamples−1

i=0 (yi − yi)
2

(1)

RMSE (y, ŷ) =

√
1

nsamples
∑

nsamples−1

i=0 (yi − ŷi)
2 (2)

RMSE (y, ŷ) =
1

nsamples
∑

nsamples−1

i=0 (yi − ŷi)
2 (3)

MAE (y, ŷ) = 1 − ∑
nsamples−1

i=0 (yi − ŷi)
2

n
(4)

where ŷi is the estimated value, yi is the observed value and nsamples is the number of samples.

3. Results
3.1. Correlation of Water Parameters and Derived Predictors

The correlation between target parameters and predicting features was investigated
by the Pearson’s coefficient. The range of the coefficient for all features is shown in
Figure 3. The bigger thickness in the arrow indicates a higher correlation with specific
predictors. Individual plots of nodes and arrows and their correlation matrix are provided
in the Supplementary Materials. Overall, the highest positive and negative correlations
are in the order of r ≈ 0.50 and r ≈ −0.48. The green band is moderately correlated
(r ≈ 0.38) with turbidity, SDD, BOD and COD. The red band has a slightly higher correlation
(r ≈ 0.42) with TURB, SDD and COD. The NIR band presented the highest correlations on
average (r ≈ 0.43) with TURB, TSM, BOD and COD. The SWIR bands displayed very weak
correlations (0.17 ≤ r ≤ −0.07).

From the band ratios, the SF1 and SF2 had a considerable correlation with the targets.
SF1 displayed (r ≈ 0.39) with TURB, SDD, BOD and COD. SF4 and SF5 were poorly
correlated (0.20 ≤ r ≤ −0.20) with all the parameters, except for an r = -0.30 and r = 0.27
for TURB. From the SF predictors, SF2 and SF3 showed a higher correlation (r ≈ 0.39 and
r ≈ 0.36) with TURB, SDD, BOD and COD. Latitude and longitude were also moderately
correlated with SDD, PTOT, BOD and COD, especially latitude (r ≈ 0.37). Year and month
were poorly correlated with all analyzed predictors (0.20 ≤ r ≤ −0.20). Overall, the most
correlated features were the ones of the visible and near-infrared regions, which showed
higher correlation in comparison with the spectral features and the region and time features.
Green, red and near-infrared bands showed higher correlations with TURB, SDD and BOD
and COD. Short-wave infrared bands 1 and 2 almost completely lacked any significant
correlation. Individual correlations are displayed in the supplementary figures (SF1). The
NIR band and SDD parameters show the highest correlations for a predictive feature and
a target parameter. Similarly, NO3-N and DO show the lower correlations for a feature and
target, correspondingly.
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3.2. Model and Dataset Evaluation

Training and test phases were evaluated using the four available datasets (HB, FE,
HBRT and FERT) for each algorithm (LR, SVR, RFR, ELM and MLP). The best dataset for
each model is then shown in the table alongside the error metrics of better performance.
This evaluation was performed for every target parameter. The entire modeling results are
summarized in Table 8. In general, LR retrieved low-performance models (R2 = 0.33). It
performed better on SDD and COD. However, lower performances were shown for TSS
and TURB. SVR performed better than LR in most of the parameters, both for the nOACs
and OACs, except for COD and Chl-a. Regarding NO3-N, most of the models performed
poorly, with only SVR attaining reasonable results by retrieving R2 = 0.42 using the HBRT
dataset. In the beginning of the calibration process, RFR tended to overfit the data, even
with a relatively low number of estimators in each random forest (n_estimators = 5000).
This was addressed by tuning the maximum depth of each tree and the minimum number
of samples required for a split.
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Table 8. Summary of the best performing dataset for all models and all parameters in train and test
stages. Acronyms and units are as follows: chlorophyll-a (Chl-a: mg/L); turbidity (TURB: NTU);
total suspended matter (TSM (mg/L); Secchi disk depth (SDD: m); dissolved oxygen (DO: mg/L);
total phosphorus (PTOT: mg/L); nitrate (NO3-N: mg/L); biochemical oxygen demand (BOD: mg/L);
chemical oxygen demand (COD: mg/L).

TRAIN TEST

Model Dataset R2 RMSE MSE MAE # Feat Dataset R2 RMSE MSE MAE # Feat

Chl-a
LR HBRT 0.48 38.42 1475.96 20.58 9 HB 0.43 42.25 1784.68 23.34 6

SVR FERT 0.63 33.66 1132.83 13.87 15 FERT 0.42 38.76 1502.37 19.74 15
RFR FERT 0.81 23.92 572.21 9.60 10 HBRT 0.53 35.11 1232.70 16.18 9
ELM FERT 0.53 36.20 1310.31 19.08 15 FERT 0.53 33.61 1129.74 21.77 15
MLP FERT 0.62 60.43 3652.16 25.86 15 FERT 0.37 27.53 758.13 13.53 15

TURB
LR HBRT 0.70 27.53 757.80 13.29 9 HBRT 0.32 45.40 2060.82 21.37 9

SVR FERT 0.97 9.21 84.77 1.60 15 FERT 0.41 52.32 2737.40 19.22 15
RFR HBRT 0.82 22.01 484.41 7.59 9 HBRT 0.47 50.05 2504.73 16.50 9
ELM HBRT 0.43 44.33 1964.97 20.43 10 FERT 0.65 26.97 727.41 16.06 15
MLP HBRT 0.60 30.11 906.71 13.46 15 HBRT 0.61 40.44 1635.66 17.40 10

TSM
LR HB 0.51 32.96 1086.33 22.13 6 HB 0.22 40.58 1646.95 26.72 6

SVR FERT 0.89 16.02 256.70 4.07 15 HBRT 0.28 54.79 3001.95 25.55 10
RFR FERT 0.79 24.18 584.45 15.11 4 HBRT 0.30 52.04 2708.02 28.09 4
ELM FERT 0.30 48.57 2358.74 28.39 15 FE 0.43 40.23 1618.31 25.52 11
MLP HB 0.28 36.27 1315.51 22.28 6 HB 0.30 48.39 2341.57 26.06 6

SDD
LR HBRT 0.70 1.81 3.28 1.18 9 FERT 0.56 2.26 5.10 1.42 12

SVR FERT 0.82 1.39 1.92 0.49 15 HBRT 0.69 2.03 4.14 1.10 7
RFR FERT 0.88 1.18 1.40 0.58 14 HBRT 0.72 1.93 3.73 1.02 6
ELM FERT 0.70 1.84 3.39 1.20 15 FERT 0.72 1.69 2.84 1.17 15
MLP FERT 0.80 2.62 6.87 1.54 15 FERT 0.58 1.65 2.73 0.94 15

DO
LR HBRT 0.40 1.69 2.84 1.17 8 HBRT 0.37 1.75 3.07 1.25 8

SVR HBRT 0.44 1.64 2.68 1.06 6 HBRT 0.39 1.76 3.08 1.19 6
RFR HBRT 0.83 0.94 0.88 0.58 4 HBRT 0.56 1.55 2.39 0.99 4
ELM FERT 0.40 1.72 2.96 1.24 15 FERT 0.32 1.78 3.18 1.32 15
MLP HBRT 0.53 1.88 3.53 1.33 10 FERT 0.37 1.69 2.86 1.19 10

PTOT
LR HBRT 0.52 0.25 0.06 0.14 9 HB 0.22 0.43 0.18 0.17 6

SVR HBRT 0.79 0.17 0.03 0.05 9 HBRT 0.47 0.26 0.07 0.11 9
RFR FERT 0.84 0.15 0.02 0.05 14 FERT 0.56 0.24 0.06 0.09 14
ELM FERT 0.57 0.22 0.05 0.13 15 FE 0.41 0.27 0.07 0.16 11
MLP FERT 0.58 0.31 0.09 0.14 15 FERT 0.40 0.25 0.06 0.10 15

NO3-N
LR HBRT 0.30 4.66 21.71 0.30 2 FERT 0.03 37.25 1387.90 6.07 1

SVR HBRT 0.82 2.48 6.17 0.94 9 FERT 0.42 26.32 692.88 2.96 14
RFR HBRT 0.78 2.64 6.98 0.77 2 FERT -1.52 26.86 721.55 3.19 1
ELM FERT 0.42 14.57 212.43 6.58 15 HBRT 0.43 31.31 980.11 6.96 15
MLP FE 0.05 4.94 24.40 2.61 11 FE 0.21 25.99 675.47 3.93 11

BOD
LR HB 0.56 7.33 53.80 4.96 5 HB 0.32 10.08 101.54 6.00 5

SVR HBRT 0.71 6.01 36.15 2.58 9 FERT 0.41 10.55 111.33 5.68 14
RFR HBRT 0.87 4.21 17.72 2.17 7 HBRT 0.56 9.44 89.12 4.74 7
ELM FERT 0.42 9.95 98.96 6.16 15 FERT 0.65 7.41 54.96 5.12 15
MLP HB 0.57 9.67 93.51 7.09 6 HBRT 0.39 9.19 84.44 5.33 10

COD
LR HBRT 0.52 19.21 368.94 12.45 8 HBRT 0.48 21.11 445.72 13.34 8

SVR FERT 0.64 17.86 319.10 8.47 15 HBRT 0.40 20.21 408.63 12.20 6
RFR HBRT 0.83 11.75 138.15 6.07 8 HBRT 0.54 17.94 321.67 10.56 8
ELM FERT 0.38 22.15 490.49 13.92 15 FERT 0.57 16.83 283.16 11.95 15
MLP HBRT 0.39 31.23 975.36 15.72 10 HBRT 0.21 20.09 403.41 13.39 10

From this routine, RFR improved greatly and retrieved most of the parameters in
acceptable values mostly by using the best on HBRT, and except for NO3-N, RFR performed
satisfactorily for DO (R2 = 0.56) and PTOT (R2 = 0.56). Regarding the development of
the deep learning models, it was expected to establish a baseline routine of calibrated
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models with LR and improve it based on the SVR and RFR training methodologies to
finally surpass ensemble learning models with neural networks such as ELM and MLP.
Overall, ELM performed satisfactorily in most of the analyzed parameters. Specifically,
ELM outperformed all algorithms when retrieving Chl-a (R2 = 0.53), TURB (R2 = 0.65),
TSM (R2 = 0.43), SDD (R2 = 0.72), BOD (R2 = 0.65) and COD (R2 = 0.57). However, the
results we obtained from the MLP were subpar in comparison with ELM or RFR. MLP
was trained with relatively high learning rates (1 × 10−2 to 1 × 10−5), and tests of up to 10
deep layers were used together with the Adam optimizer. Weights were initialized with
random normal, as it retrieved better results than Xavier initialization. Except for TURB,
MLP results generally have less accuracy than ELM and RFR.

At this point, the main metrics for model performance were R2, RMSE, MSE, MAE
and the number of features utilized to reach optimal error performance in the test phase
(# Feat). We compared these metrics in a comprehensive evaluation to determine the best
model for each parameter. The five algorithms (LR, SVR, RFR, ELM and MLP) were trained
using the best dataset determined in Table 8 to calibrate each model in its best conditions.
The results of this evaluation are displayed in radial graphs in Figure 4.
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Figure 4. Comprehensive evaluation of tested algorithms based on the relevant error metrics for
optimal performance. The algorithms use the best source dataset in all cases.

In general, ELM and RFR resulted in the best models, which outperformed the rest
of the machine learning techniques for most of the water parameters (Chl-a, TURB, TSM,
SDD, PTOT, BOD and COD) from a comprehensive perspective. SVR performed better for
the challenging NO3-N. Scatter plots of target parameters using the models calibrated with
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the best corresponding dataset are shown in Figure 5 for both train and test datasets. From
the scatterplots it is visible that TSM, NO3-N and to a lesser degree TSM were the most
challenging parameters to model and that SDD was able to be modeled with high accuracy
by the ELM (R2 = 0.72), as seen in the performance in terms of error metrics in Table 8.
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Figure 5. Scatterplots of modeled and measured water quality parameters in the test dataset.

The results also showed that the big majority of the models for all the water parameters
performed better when using any of the two datasets aware of region and time (HBRT and
FERT). Therefore, a deeper analysis was performed in this direction by comparing the R2

of each dataset and the performance of each model when trained with different datasets.
Figure 6 shows the average R2 for the complete modeling process, which includes not
only the best results summarized in Table 8 but the rest of the models as well. Figure 6a
stresses how the performances of both HBRT and FERT are superior to HB and FE for
train and test evaluations. Similarly, Figure 6b shows the performance of the algorithms
when using different datasets. When trained with HBRT or FERT datasets (Figure 6a, red
lines; Figure 6b increased tendency from left to right), all the algorithms reached higher
correlations than when trained with HB or FE (Figure 6a, blue lines; Figure 6b decreasing
tendency from right to left).
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3.3. Model Capabilities

To stage model capabilities, we applied the methodology using harmonized products
for the period March 2021–March 2022 to estimate time series of specific parameters (Chl-a,
DO and SDD) and to model their variations throughout a year. The points marked in
the evolution of the targets were used as a suitable date and to map spatial distribution.
We selected different lakes around the world to test the transferability of the models.
Specifically, Lake Tahoe (U.S.), Lake Trasimeno (Italy) and Lake Vichuquen (Chile) were
selected for Chl-a, DO and SDD, respectively, based on field data availability. Time series
and parameter maps are shown in Figure 7. Chl-a in Lake Tahoe shows concentrations
between 5–10 mg/L for most of the year, but after a breaking point in December 2021,
where the concentration reached its highest level above 20 mg/L, it gradually decreased
and kept a range between (10–15 mg/L). DO shows low variability during the year, and it
is in a range of 8.8–9.5 mg/L in Lake Vichuquen.

The lowest concentration is reached by the end of November 2021, from which it
starts a recovery to higher concentrations above 9 mg/L. March, April and mid-May seem
to be the months of higher availability of DO in the area. The spatial resolution of 30 m
from the harmonized products allows adequate visualization of the distribution of DO
even in a relatively small lake as Vichuquen (40 km2). From the map, it is visible that DO
availability is higher in the outlet and inlets, located at north and south, respectively, likely
caused by the turbulence and stirring of the incoming and leaving water flows. SDD in
Lake Trasimeno ranges on average from 1 to 4 m during the year. The lowest transparency
is seen after August 2021 (≈1 m) and remains in this range until its recovery in January
2022 of 2.5 m. The breaking point in August is selected as the date of interest for a spatial
visualization (31 August 2021). The surface distribution of SDD reveals a big cluster of
lower transparency in the northwest part of the lake. The south part, which is an open bay,
remains clearer.
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August 2021). Background image: harmonized red band in greyscale. The plots show the average of
the parameter for the whole lake. Spatial variation is visible in the maps.
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3.4. Correlation between OAC and nOAC

For the specific case of nOACs (DO, NO3-N, PTOT, BOD and COD), their estimation
resulted in a challenging approach, as seen in the results of Table 8 and Figures 4 and 5. For
NO3-N only SVR was able to produce reasonable results (R2 = 0.42). To further evaluate
the possibility of estimating nOAC using indirect means, a correlation analysis between
OAC and nOAC was performed and is displayed in Figure 8. Similar to Figure 3, each
node of the Chor diagram shows the sum of absolute values of Pearson’s correlation.
Separate individual nodes are available in the Supplementary Materials. From the results,
no significant correlations between OAC and nOAC were retrieved, as seen in the total
absolute value of the nodes in Figure 8, which barely overpass r ≈ 0.20 for TSM (Figure 8a),
BOD (Figure 8b) and SDD (Figure 8c). These results stress the difficulty of estimating nOAC
from indirect methods which could rely on relevant correlations with OAC that can be
computed via remote sensing.
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4. Discussion
4.1. Global Water Quality Data Availability

The availability of water quality data at a global scale that can be used in synergy
with remote sensing data is still very limited. In this study, the raw gathered data were
filtered substantially and went from initial 300,000 measurements of all the parameters
around the globe to a final dataset of around 7000 samples after data selection. This is still
an important amount of data in comparison with the available data in previous years or
other studies of water quality in inland waters [12,31,75,82,83]. Regarding the sampling
sites and depths in the considered waterbodies, this study considered the location of the
sites during the cleaning phase of the data and rejected samples that were adjacent to the
shore to avoid the adjacency error. This is a similar approach to a previous study that
successfully utilized a wide range of sampling sites in [31]. Although this work focused
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on the water column and avoided shallow regions close to the coast and bottom of the
reservoir, rejection of lakes or reservoirs based on average depth was not performed. Here,
it is acknowledged that a more targeted approach to sampling could improve the quality
of the results and suggested that future studies consider the location and depth of the
sampling sites to minimize potential errors.

However, it cannot be denied that the water availability at a global level is limited by
several factors that can be improved based on the inter-cooperation of different instances
and technical issues. For example, measuring stations at the global level are limited to
certain areas around the world. In this work, we notice a lack of water information for
large parts of the planet, particularly in South America, Africa and Asia. As exposed in
Section 2, the study of Thorslund and van Vliet [35] indicates that most of the measuring
water stations for lakes and reservoirs were located in North America (with big differences)
and Europe. This exposes how a very important number of inland waters are not being
monitored. Additionally, the integration of global data is constrained by the fact that every
nation is responsible for the technical requirements of water monitoring and making data
public. Therefore, it is likely that already monitored data from several regions in the world
are not yet available to a greater extent due to limitations in this direction, and therefore
their usage may be missed for global applications. In worse cases, gathering global data
could even be limited by trifling facts as ignorance of foreign languages. Thus, international
cooperation is then needed to apply team-work to data availability. In this sense, initiatives
such as the Global Freshwater Quality Database (GEMStat) from the UN Environmental
Program [1] offer an adequate framework for the previously mentioned challenges.

4.2. Harmonized Remote Sensing Data for Water Quality Estimation

In addition to field data availability, remote sensing also has important limitations in
modeling full potential water quality at the global scale. For instance, temporal resolution
limits the coupling of spectral and field data. In this study, we addressed this limitation up
to a certain degree by harmonizing Landsat-8 and Sentinel-2 data, which increased data
availability. This allowed the use of coupled satellite data in a singular dataset, which was
one the main objectives of this study.

However, the current harmonization process is not specifically designed for inland
waters. Similarly, the atmospheric correction used in [34], the Second Simulation of the
Satellite Signal in the Solar Spectrum (6S), is also not designed for waterbodies, as it
occurs with other corrections designed for inland waters such as C2RCC. Therefore, the
results based on this methodology should be taken with caution, since discrepancies
from a harmonization process and an atmospheric correction for different applications
than water quality retrievals are likely to exist. The main reason this study applied these
methodologies was the existing implementation in the cloud platform used for image
processing. There is no current harmonization process or atmospheric correction developed
for cloud computing in GEE that is designed to enhance the spectral characteristics of
water surfaces, and working with the entire collection of Landsat and Sentinel satellites
was not feasible using local computational resources. Developing both a harmonization
procedure and an atmospheric correction for the cloud platform was out of the objectives
of this research. However, the harmonization procedure is still in development, and
it is likely to account for water surface characteristics in the future [84]. Likewise, the
6S atmospheric correction is a common procedure in remote sensing and it has already
been implemented in mapping and water quality monitoring [85]. Adopting the above-
described methodology allowed the building of a global dataset for model development and
contributed to understanding to what extent machine learning can benefit from increased
data availability.

Nevertheless, non-coupled satellite acquisitions and dates of water measurements
were two of the main filters that avoided the usage of a great portion of the gathered data.
The spatial resolution also constrains availability when the resolution is not enough to
retrieve enough pixels from very small reservoirs. The pixel size of harmonized data is
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30 × 30 m, which allows consideration of a big number of lakes and reservoirs. However,
it may not be the best resolution for inland waters below surfaces of 20 km2 due to possible
errors caused by bottom reflection and adjacency errors caused by land next to shores.
Therefore, the revisit time of harmonized data (3 days), even when it may be considered
adequate in the field, is probably not good enough to monitor changes in water parameters
that could exhibit great variations even during one single day and to account for a great
part of the available field data, as seen in this study. Therefore, the tendency to improve
temporal and spatial resolutions is highly important, as some ground-based high-frequency
sensors already demonstrate [86].

4.3. Machine Learning Models and Cloud Computing

ML models provide research in water quality the possibility to model and estimate
different water parameters with a high degree of accuracy based on adequate data avail-
ability [21,87,88]. In addition, the variety and distinct nature of available ML algorithms for
modeling purposes foster rigorous evaluation of the methodology and contribute to reach-
ing stronger and more developed models [14,33]. In this study, we focused on the “learning”
advantage of ML models and tried to provide as much data as possible by means of global
measurements and remote sensing data fusion techniques, with the goal of reaching robust
models that could retrieve water quality parameters accurately. As in previous research
using ML approaches, we could develop models that predict water quality parameters
with reasonable results. Furthermore, a key improvement in the direction of modeling at
the global scale was achieved, which has been one of the main limitations of modeling
water quality of inland waters [6,7] and that was only addressed before by bio-optical
models with more complex approaches in terms of development [7,33,89]. The extent of the
regionalization modeling is precisely the advantage that ML models offer when providing
enough and high-quality data. In this study, we showed how the contribution of enough
high-quality input data and adequate calibration of ML models could start pushing existing
research barriers. In this sense, the potential for improvement of the ML models is still
enormous, particularly with the progressive increment in data availability coming from
more frequent field campaigns, better acquisition sensors and disclosure of non-public
data. Therefore, modeling global water quality in inland waters should be considered as
a continuous area of research and development with the goal to achieve models that
improve continuously from constant monitoring. In addition to the above-mentioned
limitations, challenges regarding computational power and storage space existed. The large
number of models to be tested plus even small calibration techniques resulted in extensive
computing periods which could not be covered by our locally available hardware resources.
Therefore, a cloud computing platform (Google Colab) was required to address this prob-
lem and proceed with model evaluation. Cloud computing allows parallel computing
while focusing cloud servers only for computational tasks. This methodology distributes
more efficiently available resources and should be considered for similar tasks, especially
when dealing with large datasets. Similarly, the usage of Google Earth Engine also allowed
working efficiently with the vast quantity of remote sensing data products of the match ups
with field measurements, and thanks to previous knowledge of state-of-the-art applications
on the harmonizing process [10,14,34,47,54], these limitations were diminished.

The potential for global monitoring was already addressed by [90] with a synthetic
dataset of top-of-atmosphere and bottom-of-atmosphere reflectances to comprise optical
variability present in inland waters. Regarding field data measured on Earth, and to the
extent of the authors’ knowledge, this is the first attempt to model water quality on a global
scale using remote sensing data based on machine learning algorithms. Therefore, the
comparison of the models developed here is complicated because, until the submission
of this paper, there are no similar studies that attempt similar modeling scales. However,
based on the well-established validation methodology applied, the reasonable performance
of the models and its adequate application in time series and water quality maps, we
posit that our methodology is on the way to establishing a basis for future development in
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this research area. With the distances apart and for an exercise of comparison, the results
here yielded were compared with novel publications that have successfully developed ML
models for inland water quality. For example, error metrics of Chl-a (R2 = 0.53), TURB
(R2 = 0.65) and DO R2 = 0.56) from ELM and RFR are comparable with modeling results
observed in [33] of Chl-a (R2 = 0.48), TURB (R2 = 0.44) and DO R2 = 0.21. On the other hand,
PTOT (R2 = 0.56), NO3-N (R2 = 0.42), BOD (R2 = 0.65) and COD (R2 = 0.57) are comparable
with the results of Zhang et al. [88] regarding phosphorus (R2 = 0.94), nitrogen (R2 = 0.95),
BOD (R2 = 0.91) and COD (R2 = 0.95), which were retrieved from hyperspectral images.
Regarding the poor performance of the MLP, the strategy was to build neural nets deep and
wide enough to first overfit the data and then reduce them. However, this operation could
not be totally completed due to a lack of dedicated GPUs (even in the cloud server) and
time constraints. Even in the best performing parameter (TURB), most of the MLP results
were in the underfitting range, and train and test splits showed similar error metrics. These
results may provide a clear picture of the behavior of a partially optimized MLP.

4.4. Estimation of OAC and nOAC

The estimation of OAC with remote sensing has been addressed extensively in research
for least two decades [12,19,22,60,82,91–99]. Particularly, parameters such as SDD, turbidity or
Chl-a and TSM have been studied with great detail, and their estimation has been the target of
different modeling approaches, from empirical to semi-analytical models [26,83,95,100–110]. nOAC,
however, represented a greater challenge because of its lack of response to absorption or
scattering of the electromagnetic light [7].

A direct estimation of nOAC from RS data has been previously investigated. For
example, [73] used SVM and SPOT5 data for potassium permanganate index (CODmn),
ammonia nitrogen (NH3-N), chemical oxygen demand (COD) and dissolved oxygen (DO)
in the Weihe River with better performance than the statistical regression. Recently, [111]
used ML models for spatial distributions of the annual and monthly DO variability in
Lake Huron from Landsat and MODIS data with consistent values of R2 = 0.88. Simi-
larly, [88] used a Bayesian probabilistic neural network to predict phosphorus, nitrogen,
chemical oxygen demand (COD), biochemical oxygen demand (BOD) and chlorophyll-a
from hyperspectral images in a river from multispectral images. We compared the average
R2 summary of the OAC (Chl-a, TURB, TSM and SDD) and nOAC (DO, PTOT, NO3-N,
BOD and COD) to contrast how the results also show that in general nOAC presents more
challenges than OAC (Figure 9). All the models achieved higher results in OAC, but at the
same time nOAC results were reasonable and did not show an incapacity to model these
parameters. This reinforces the fact that ML models are also suited to deal with parameters
with non-linear relationships between remote sensing data or inherent lake characteristics,
contributing to the improvement of modeling nOAC.
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4.5. Inherent Lakes’ Characteristics as Model Improvers

Typically, semi-empirical models in the field of remote sensing of inland waters do
rely on the physics knowledge of the optics in the water and the response of water or
water constituents to the interaction with the electromagnetic energy. One main objective
of this study was to evaluate this conventional approach against more unconventional
methodology that could rely more on the learning capability of the ML algorithms. On
the basis that these algorithms work better with a higher number of observations and
adequate predictors that explain better the behavior of the targets, we selected additional
characteristics of each lake to evaluate possible improvements in comparison with purely
radiometric remote sensing bands or band ratios already tested in the previous literature.
The cautious evaluation of the impact on model performance is that the addition of these
characteristics would have led to the creation of four different datasets: HB, FE, HBRT and
FERT. Region and time were the selected characteristics added to the original datasets, the
product of the remote sensing data. The correlation analysis revealed a moderate correlation
with the water parameters for latitude and longitude and very weak correlations for year
and month. Figure 10 stresses this situation.
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In Figure 10a it is seen how the visible bands and band ratios show a higher correlation.
SWIR bands and year and month are in a very weak range, as displayed in Figure 10b,
where the region −0.20 ≤ r ≤ 0.20 is covered to highlight stronger correlations. The
occurrence that Lat and Lon are having a stronger correlation than year and month means,
therefore, that a greater utility in model development could be due to the fact that year and
month are not strictly inherent characteristics of a waterbody. Their inclusion was mainly
because of the fact that the time and seasonality have important influences on the behavior
of certain water quality, such as the blooming of algae or the arrival of storms that discharge
waters with sediment, creating turbidity. Nevertheless, the improvement in error metrics
of all the water parameters when ML models used HB and FERT datasets was evident
and validated in our methodology (Figure 11). This leads us to the conclusion that this
approach resulted in an effective improvement of the modeling of water quality parameters
by the addition of inherent lake characteristics that can be useful for ML algorithms.
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Therefore, research in this direction is needed to keep the improvement of the modeling
process and to develop more accurate models. There are several inherent characteristics
that may be useful for such purposes and that can be found in constant patterns in time,
such as trophic state and chemical, biological, physical, limnological or morphological
features. Time features can be improved or added as labels for the season of the year, as
seen in [111].

5. Conclusions

This work developed machine learning models for water quality retrieval at a global
scale using remote homogenized multimodal remote sensing data. This contributed to
overcoming the present state of knowledge in which the transferability of models is limited
by the origin of field data, and modeling water quality in inland waters at different locations
was constrained. These findings directly impact the increment of our ability to analyze
lakes and reservoirs globally, particularly for several water parameters of different nature
and characteristics, which are key in the overall understanding of water quality in lakes and
reservoirs. This work is limited by the amount and origin of the field data gathered and the
extent of the remote sensing archives processed. The application of the models developed
here was demonstrated at the global scale in different lakes separated by continental
distances. However, the usage of these models in regions from where there were no
data in the calibration process is likely to be poorly accurate and would lack reliability
in results. Therefore, the methodology should be improved by gathering data from more
and different sources around the world, particularly from the African, Asian and South
American continents. Remote sensing data can be increased by harmonizing data from
older satellites, such as the Landsat constellation, and extending the current dataset. Thus,
future work should focus on increasing the data availability of both remote sensing and
global data in the field and incorporating the advances in remote sensing research such as
correction of adjacency errors and improvement of atmospheric correction.
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