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When the semiclassical Herman–Kluk propagator is used for evaluating quantum-
mechanical observables or time-correlation functions, the initial conditions for
the guiding trajectories are typically sampled from the Husimi density. Here, we
employ this propagator to evolve the wavefunction itself. We investigate two grid-
free strategies for the initial sampling of the Herman–Kluk propagator applied to
the wavefunction and validate the resulting time-dependent wavefunctions
evolved in harmonic and anharmonic potentials. In particular, we consider
Monte Carlo quadratures based either on the initial Husimi density or on its
square root as possible and most natural sampling densities. We prove
analytical convergence error estimates and validate them with numerical
experiments on the harmonic oscillator and on a series of Morse potentials
with increasing anharmonicity. In all cases, sampling from the square root of
Husimi density leads to faster convergence of the wavefunction.
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1 Introduction

Semiclassical initial value representation techniques [1, 2] have evolved into useful tools
for calculations of the dynamics of atoms and molecules [3]. Frozen Gaussians and their
superposition were introduced by Heller in 1981 [4] as an extension to the thawed Gaussian
approximation [5] in order to capture non-linear spreading of the wavepackets. Herman and
Kluk justified the frozen-Gaussian ansatz and introduced an improved approximation [6–8],
now known as the Herman–Kluk propagator, which contains an additional prefactor that
rigorously compensates for the fixed width of these frozen Gaussians and ensures unitarity of
the time evolution in the stationary-phase limit [7]. The Herman–Kluk approximation keeps
the trajectories of the individual Gaussians uncoupled, which sets it apart from the more
accurate, but computationally more demanding approaches like the coupled coherent states
[9] or the variational multi-configurational Gaussian method [10].

In the spirit of the semiclassical initial value representation, the Herman–Kluk
propagator avoids the root search problem [2, 11]. Because of its high accuracy, this
propagator belongs among the most successful semiclassical approximations [12–18]
and has been derived in many different ways [9, 19–22]. There are observables, such as
low-resolution vibronic spectra in mildly anharmonic systems, which can be well
described by the more efficient thawed Gaussian approximation [23, 24] and other
single-trajectory methods [25–30]. In chaotic and other systems, however, increased
anharmonicity leads to wavepacket splitting and non-trivial interference effects. In such

OPEN ACCESS

EDITED BY

Craig Martens,
University of California, Irvine,
United States

REVIEWED BY

Arkajit Mandal,
Columbia University, United States
Irene Burghardt,
Goethe University Frankfurt, Germany

*CORRESPONDENCE

Fabian Kröninger ,
fabian.kroninger@epfl.ch

Caroline Lasser ,
classer@ma.tum.de

Jiří J. L. Vaníček ,
jiri.vanicek@epfl.ch

SPECIALTY SECTION

This article was submitted to Physical
Chemistry and Chemical Physics,
a section of the journal
Frontiers in Physics

RECEIVED 23 November 2022
ACCEPTED 17 January 2023
PUBLISHED 23 March 2023

CITATION

Kröninger F, Lasser C and Vaníček JJL
(2023), Sampling strategies for the
Herman–Kluk propagator of
the wavefunction.
Front. Phys. 11:1106324.
doi: 10.3389/fphy.2023.1106324

COPYRIGHT

© 2023 Kröninger, Lasser and Vaníček.
This is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 23 March 2023
DOI 10.3389/fphy.2023.1106324

https://www.frontiersin.org/articles/10.3389/fphy.2023.1106324/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1106324/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1106324/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2023.1106324&domain=pdf&date_stamp=2023-03-23
mailto:fabian.kroninger@epfl.ch
mailto:fabian.kroninger@epfl.ch
mailto:classer@ma.tum.de
mailto:classer@ma.tum.de
mailto:jiri.vanicek@epfl.ch
mailto:jiri.vanicek@epfl.ch
https://doi.org/10.3389/fphy.2023.1106324
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2023.1106324


situations, the single-trajectory methods break down, whereas
the Herman–Kluk propagator often remains accurate and, at the
least, provides a qualitatively correct insight (see, e.g., Figure 1).
However, in its basic form, the Herman–Kluk propagator cannot
describe non-adiabatic dynamics and quantum tunneling. To
overcome this limitation, various extensions have been
developed: For example, surface hopping Herman–Kluk initial
value representation [31, 32] captures non-adiabatic dynamics,
whereas higher-order semiclassical corrections to the
Herman–Kluk propagator [33, 34] incorporate nuclear
tunneling.

The multi-trajectory nature of the Herman–Kluk propagator is
not only its advantage, but also its bottleneck. In particular,
converged computations might require an extremely large
number of trajectories. For this reason, several groups designed
various methods, whose goal is reducing the number of trajectories
required by the Herman–Kluk propagator. These include, e.g.,
Filinov filtering [13, 35–37], time-averaging [38–41], semiclassical
interaction picture [42, 43], multiple-coherent states [44], hybrid
dynamics [45–47], mixed quantum-semiclassical dynamics [48–50],
and many others, which achieve the reduction in the number of
trajectories by applying one of several possible further
approximations.

Yet, the number of guiding trajectories can already be
significantly reduced simply by choosing the sampling density
of the initial conditions wisely. Although the acceleration of the

convergence may be smaller than with the previously mentioned
approximate methods, the advantage of this “purely numerical”
approach based on improved exact sampling of the unaltered
Herman–Kluk initial value representation is that the converged
results agree exactly with the converged results of the original
Herman–Kluk propagator. For this reason, an early numerical
study [8] of the Herman–Kluk wavefunction employed the square
root of the Husimi distribution as the sampling density of the
initial state, whereas most calculations of observables, time-
correlation functions, and wavepacket autocorrelation
functions, i.e., quantities quadratic in the wavefunction,
correctly employ sampling from the Husimi density [2, 51]. In
contrast to observables and correlation functions, the
Herman–Kluk wavefunction itself has not been studied much
since the early papers [6, 8] and rigorous numerical analysis has
been presented only recently [52, 53]. However, the choice of the
optimal sampling density for the Herman–Kluk wavefunction
itself has not been analyzed in detail.

The goal of this work is, therefore, to analyze the
convergence of the Herman–Kluk wavefunction for different
initial sampling strategies and to understand the convergence
error as a function of time. Specifically, we investigate two
mesh-free discretization approaches for the initial
sampling—first analytically and then numerically on the
examples of harmonic and Morse oscillators with increasing
anharmonicity. In a follow-up paper, an analogous detailed
analysis of the convergence of the norm, energy, and other
expectation values will be presented.

The remainder of this paper is organized as follows. In the
next section we briefly introduce the Herman–Kluk propagator
and its components necessary for numerical computations. We
define the initial sampling densities and specify the algorithm
used for numerical experiments. In the main Section 3, we
analyze the errors at the initial and final times due to the
phase-space discretization. In particular, we prove that in the
harmonic oscillator this error is a periodic function of time. Our
numerical experiments in Section 4 confirm the theoretical error
estimates and provide further insights into the anharmonic
evolution generated by Morse potentials, which are not
accessible to explicit analytical calculations.

2 Discretising the Herman–Kluk
propagator

2.1 Herman–Kluk propagator

Evolution of a quantum state |ψ(t)〉 is governed by the time-
dependent Schrödinger equation

iZ
d

dt
|ψ t( )〉 � Ĥ|ψ t( )〉, |ψ 0( )〉 � |ψ0〉 (1)

where Z is the reduced Planck constant and Ĥ is the Hamiltonian
operator. Here, we assume the Hamiltonian to be the time-
independent operator

Ĥ � 1
2m

p̂T · p̂ + V q̂( ), (2)

FIGURE 1
Upper panel: Spectra of a Morse potential evaluated using the
exact quantum dynamics, Herman–Kluk (HK) propagator, and thawed
Gaussian approximation (TGA). Both approximations yield accurate
results. Lower panel: Position density at time t ≈ 392 fs
propagated in the same Morse potential. In contrast to the
Herman–Kluk propagator, the thawed Gaussian approximation does
not capture interference between faster and slower components of
the wavepacket. For more details, see the last paragraph of Section 4.
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wherem is the mass (after mass-scaling coordinates), and q and p are
D-dimensional position and momentum vectors. Under the usual
regularity and growth assumptions on the potential energy function
V, the spectral-theorem [54] provides for all times t ∈ R a well-
defined unitary propagator

Ût :� exp −iĤt/Z( ), (3)

in terms of which the solution of (1) can be expressed as

|ψ t( )〉 � Ût|ψ0〉 (4)
for all square integrable initial data ψ0(x) � 〈x|ψ0〉 ∈ L2(RD).

Solving the Schrödinger equation numerically is notoriously
difficult for various reasons. With respect to the atomic scale, the
nuclear mass is rather large, so that the presence of the factorm−1 in
the kinetic energy operator induces highly oscillatory motion both
with respect to time and space. More importantly, for most
molecular systems the dimension D of the configuration space is
so large that grid-based integration methods are very expensive if
not infeasible. Therefore, one often resorts to mesh-free
discretization methods or semiclassical approximations, both of
which alleviate this “curse of dimensionality” at least partially.

The semiclassical Herman–Kluk propagator utilizes frozen
Gaussian functions

gγ
z x( ) � detγ

πDZD
( )1/4

× exp − x − q( )T · γ · x − q( )/2 + ipT · x − q( )[ ]/Z{ } (5)

with a centre at the phase-space point z � (q, p) ∈ R2D and with a
fixed, real, symmetric, positive-definite width-matrix γ ∈ RD×D. The
frozen Gaussians {|gγ

z〉: z ∈ R2D} form an over-complete subset of
the Hilbert space of square integrable functions. They have the
striking property that any |ψ〉∈ L2(RD) can be decomposed as [55]

|ψ〉 � ∫
R2D

〈gγ
z|ψ〉|gγ

z〉d], (6)

with the scaled phase-space measure d] = dz/(2πZ)D. Using this
decomposition for our solution of the time-dependent Schrödinger
equation, we obtain

Ût|ψ0〉 � ∫
R2D

〈gγ
z|ψ0〉Ût|gγ

z〉 d]. (7)

Approximating the exact propagator Ût with the Herman–Kluk
propagator

Û
HK

t :� ∫
R2D

R t, z( )e iS t,z( )/Z|gγ
z t( )〉〈gγ

z|d] (8)

yields the Herman–Kluk wave function

|ψHK t( )〉 :� Û
HK

t |ψ0〉

� ∫
R2DR t, z( )e iS t,z( )/Z〈gγ

z|ψ0〉|gγ
z t( )〉d].

(9)

Here, z(t) = (q(t), p(t)) is the solution to the underlying classical
Hamiltonian system

_w � J · ∇h w( ), w 0( ) � z, (10)
for the Hamiltonian function h(q, p) = T(p) + V(q), where

J � 0 IdD
−IdD 0

( ) ∈ R2D×2D (11)

is the standard symplectic matrix. S denotes the classical action
integral

S t, z( ) � ∫ t

0

d

dτ
q τ( ) · p τ( ) − h z τ( )( )[ ]dτ (12)

which solves the initial value problem

_S t, z( ) � T p t( )( ) − V q t( )( ), S 0, z( ) � 0, (13)
for all z � (q, p) ∈ R2D. In (9), the Herman–Kluk prefactor

R t, z( ) � 2−D/2 · det Mqq + γ−1 ·Mpp · γ − iMqp · γ + iγ−1 ·Mpq( )1/2
(14)

depends on the matrices

Mαβ � zαt/zβ0 ∈ RD×D α, β ∈ q, p{ }( ), (15)

i.e., the fourD ×D block components of the 2D × 2D stability matrix
M. Stability matrix, defined as the Jacobian M(t) = zz(t)/zz of the
flow map, is the solution to the variational equation

_M t( ) � J ·Hess h z t( )( ) ·M t( ), M 0( ) � Id2D, (16)
with Hess h the Hessian of the Hamiltonian function h.

The Herman–Kluk approximation (9) has been mathematically
justified in different works [53, 56–58]. It has been shown that the
exactly evolved quantum state is approximated by the Herman–Kluk
state (9) with an error of the order of Z. More precisely,

sup
t∈ 0,T[ ]

|||ψ t( )〉 − |ψHK t( )〉||L2 ≤C T( )Z, (17)

for all initial data |ψ0〉 of norm one, where T > 0 is a fixed time and
C(T) > 0 is a constant independent of Z and independent of |ψ0〉. If
the potential is at most quadratic, then the approximation is exact
[53]. For the expectation value of an observable Â, the error of the
Herman–Kluk approximation can be pessimistically estimated as

〈ψ t( )|Â|ψ t( )〉 � 〈ψHK t( )|Â|ψHK t( )〉 +O Z( ), (18)
by using the triangle inequality. In particular, this gives an upper
bound for the error of the squared norm (if Â � Î) or energy (if
Â � Ĥ). However, this coarse estimate is potentially not sharp, since
it cannot account for error cancellation due to oscillation.

2.2 Discretisation

Evolving the wavefunction (9) with the Herman–Kluk propagator
requires evaluating an integral over the phase spaceR2D and the overlap
of the initial state with a frozen Gaussian. Furthermore, the algorithm
needs to propagate the trajectories z(t) = (q(t), p(t)), the classical action
S(t, z), and the Herman–Kluk prefactor R(t, z) according to Hamilton’s
equations ofmotion for all chosen quadrature points z ∈ R2D. The latter
can be achieved using symplectic integration methods to preserve also
the symplectic structure of the classical Hamiltonian system. Due to the
curse of dimensionality, for high D the integral on R2D must be
evaluated using mesh-free discretization, such as Monte Carlo
methods [59].
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To evaluate the Herman–Kluk wavefunction (9) byMonte Carlo
sampling, we rewrite the integral from Eq. 9 as

|ψHK t( )〉 � 〈r z( )|ϕ t, z( )〉〉ρ z( ), (19)
where we introduced the notation

〈|ψ t, z( )〉〉ρ z( ) :� ∫
R2D |ψ t, z( )〉 dμ

� ∫
R2D |ψ t, z( )〉ρ z( ) d] (20)

for the phase-space average of |ψ(t, z)〉 with respect to a probability
measure μ with density ρ(z) = dμ/d] and defined a time-dependent
state

|ϕ t, z( )〉 :� R t, z( )e iS t,z( )/Z|gγ
z t( )〉, (21)

i.e., a propagated frozen Gaussian multiplied by the Herman–Kluk
and phase prefactors, and a time-independent function

r z( ) :� 〈gγ
z|ψ0〉 ρ z( )−1. (22)

The Monte Carlo estimator is then given by

|ψN t( )〉 � 1
N
∑N
j�1

|ψ(t, zj)〉, (23)

where ψ(t, zj) is the state obtained from initial condition zj and z1, z2,
. . . , zN are sampled from probability density ρ(z).

As for any importance sampling, there are infinitely many ways
to decompose the time-independent part of the phase-space
integrand in Eq. 9 into the product 〈gγ

z|ψ0〉 � r(z)ρ(z) of a
prefactor r with a normalized sampling density ρ. If one
computes observables and correlation functions, which are
quadratic in the initial state, ρ(z) is typically taken to be the
Husimi probability density

ρH z( ) :� |〈gγ
z|ψ0〉|2 (24)

of the initial state |ψ0〉. For Husimi distribution, the prefactor r(z)
becomes

rH z( ) � 〈ψ0|gγ
z〉−1. (25)

However, since the wavefunction evolved with the Herman–Kluk
propagator is first- and not second-order in |ψ0〉, it is natural to also
test the square root of the Husimi density and to consider the probability
density

~ρ z( ) :� |〈gγ
z|ψ0〉|∫

R2D |〈gγ
w|ψ0〉|d]

(26)

with a bounded prefactor

~r z( ) :� 〈gγ
z|ψ0〉 ~ρ z( )−1. (27)

Indeed, in their early paper [8], Kluk et al. used this “square-root”
approach for computing the Herman–Kluk wavefunction and
mentioned that it was “especially appealing because it [was] a
well defined, non-arbitrary way of choosing the basis [. . .].” In
the following, we shall show that the square-root approach is indeed
optimal, but the number of samples still suffers from an exponential
dependence on the dimension.

The two probability densities ρH(z) and ~ρ(z) can now be used to
compute the phase-space integral by Monte Carlo integration. To
sum up, we have two cases, in which we evaluate |ψHK(t)〉 either as

|ψHK t( )〉 � 〈rH z( )|ϕ t, z( )〉〉ρH z( ) (Case H)
or as

|ψHK t( )〉 � 〈~r z( )|ϕ t, z( )〉〉~ρ z( ). (Case sqrt ‒ H)

In general, the integral overRD defining the overlap of the initial
wavefunction with a Gaussian has to be computed by numerical
quadrature. However, for important specific cases analytical
formulas are available. If the initial wavefunction is a Gaussian
wavepacket |ψ0〉 � |gγ

z0〉 centred at some phase-space point
z0 � (q0, p0) ∈ R2D, then

〈gγ
z|ψ0〉L2 RD( ) � exp − 1

4Z
z − z0( )T · Σ0 · z − z0( )[ ]

· exp i

2Z
p + p0( )T · q − q0( )[ ], (28)

where Σ0 : � γ 0
0 γ−1( ) is the matrix containing the width

parameters of the initial coherent state. Then, the Husimi density
is given by

ρH z( ) � exp − 1
2Z

z − z0( )T · Σ0 · z − z0( )[ ], (29)
whereas the second approach provides the density

~ρ z( ) � 2−D exp − 1
4Z

z − z0( )T · Σ0 · z − z0( )[ ] (30)
and prefactor

~r z( ) � 2D exp
i

2Z
p + p0( )T · q − q0( )[ ]. (31)

2.3 Summary of the numerical algorithm

Taking into account all the previous considerations, we slightly
extend the natural numerical algorithm (described, e.g., Section 4 of
Ref. [52]) for finding the Herman–Kluk approximation to the
wavefunction at time t.

Algorithm 1: (Herman–Kluk propagation)

1. Draw independent samples z1, . . . , zN ∈ R2D from a distribution
with density ρH(z) or ~ρ(z) given by Eqs. 29 and 30.

2. For all j ∈ {0, 1, . . . , N}:
2.1 Set initial values z(0) = zj, M(0) = Id2D and S(0) = 0.
2.2 Compute approximate solutions to Eqs. 10, 13 and 16 up to

time t with a symplectic integration method [60] based on the
Störmer–Verlet scheme [61, 62].

2.3 Compute the Herman–Kluk prefactor R(t, zj) from M(t) while
choosing the correct branch of the complex square root [63],
which guarantees continuity of R(t, zj) as a function of t.

3. Calculate |ψN(t)〉 by means of formula (23) with |ψ(t, zj)〉 replaced
with either

|ψH(t, zj)〉 � rH(zj)R(t, zj)e iS(t,zj)/Z|gγ
zj t( )〉 (32)

or
|~ψ(t, zj)〉 � ~r(zj)R(t, zj)e iS(t,zj)/Z|gγ

zj t( )〉,
(33)
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where rH(zj) and ~r(zj) are given by Eqs. 25, 28 and 31.
We note that Eqs. 10, 13 and 16 can be evaluated simultaneously

with a single numerical integrator. To increase the accuracy of the
time integration one can use higher-order compositionmethods [64,
65]. They increase the order of the time integrator, but also its
numerical cost. A higher-order time integrator is not necessarily
useful since the phase-space error occurring from the Monte Carlo
quadrature usually dominates the time integration error.

3 Phase space error analysis

Algorithm 1 relies on the discretisation of the phase-space
integrals and of the system of ordinary differential equations.
Here we focus only on the phase-space discretisation error. A
similar, but less formal phase-space error analysis was applied to
various algorithms for computing fidelity and classical correlation
functions [66–69].

3.1 Moments of the integrand

To assess the accuracy of the Monte Carlo estimator (23), we
examine the moments of the two different integrands: |ψH(t)〉 and
|~ψ(t)〉. First, we observe that for any s > 0,

E ‖~ψ t( )‖s[ ] � ∫
R2D

|R t, z( )|s |~r z( )|s d~μ z( )<∞, (34)

since ~r(z) and the Herman–Kluk prefactor R(t, z) are both bounded
functions. For a discussion of the boundedness of R(t, z), see Section
1 of the Supplementary Material. In contrast,

E ‖ψH t( )‖s[ ] � ∫
R2D |R t, z( )|s |rH z( )|s dμH z( )

� ∫
R2D |R t, z( )|s |〈gγ

z|ψ0〉|2−s d]
(35)

ceases to be finite for s ≥ 2. However, both integrands have a finite
first moment, so that the strong law of large numbers (Theorem
2.4.1 in Ref. [70]) provides convergence of the estimator,

|ψN t( )〉→|ψHK t( )〉 as N → ∞, (36)
with probability one. Divergence of the secondmoment for (Case H)
does not violate convergence of the estimator, but results in a slightly
worse convergence rate than the one for (Case sqrt-H). Numerical
results in Section 4 confirm this expectation. This shows that the
initial sampling density has to be chosen carefully.

3.2 Mean squared error

For (Case sqrt-H) the second moment is finite, so that the mean
squared error of the Monte Carlo estimator (23) is well-defined and
satisfies

E ‖|ψN t( )〉 − |ψHK t( )〉‖2[ ] � V |~ψ t( )〉[ ]
N

, (37)

where the expectation value and the variance are with respect to the
density ~ρ(z). Moreover (see also [52]),

V |~ψ t( )〉[ ] � ∫
R2D‖|~ψ t( )〉 − E |~ψ t( )〉[ ]‖2 d~μ z( )

� ∫
R2D |R t, z( )|2 |~r z( )|2 d~μ z( ) − ‖|ψHK t( )〉‖2. (38)

In the special case of an initial Gaussian initial wavepacket
|ψ0〉 � |gγ

z0〉, this simplifies to

V |~ψ t( )〉[ ] � 4D∫
R2D

|R t, z( )|2 d~μ z( ) − ‖|ψHK t( )〉‖2, (39)

and at initial time t = 0 we obtain

V |~ψ 0( )〉[ ] � 4D − 1, (40)
since the Herman–Kluk prefactor satisfies R(0, z) = 1.

For a more general assessment of the variance, numerical
experiments in Section 4 consider the error between the
approximations with N and 2N samples. By the linearity of the
expectation value and the triangle inequality, this error can be
estimated by

E ‖|ψN t( )〉 − |ψ2N t( )〉‖2[ ]
≤E ‖|ψN t( )〉 − |ψHK t( )〉‖2[ ] + E ‖|ψHK t( )〉 − |ψ2N t( )〉‖2[ ]
� 3
2
V |ψ t( )〉[ ]

N
.

(41)

Note that Eq. 37 gives only the expected convergence error,
i.e., the convergence error averaged over infinitely many
independent simulations, each using N trajectories. The actual
convergence error for any specific simulation with N trajectories
may deviate from this analytical estimate substantially due to
statistical noise. Nevertheless, in Section 2 of the Supplementary
Material, we explain how Eq. 37 can also provide a rigorous lower
bound and asymptotic estimate of the number of trajectories needed
for convergence of a single simulation.

3.3 Other sampling densities

For the special case of an initial Gaussian wavepacket |ψ0〉 � |gγ
z0〉,

the two proposed sampling densities ρH(z) and ~ρ(z) belong to a family
of normal distributions with probability density functions

ρa z( ) � 2
a
( )D exp − 1

aZ
z − z0( )T · Σ0 · z − z0( )[ ] (42)

with a ≥ 2. In the spirit of importance sampling, the Herman–Kluk
wavefunction can accordingly be written as a phase-space average

|ψHK t( )〉 � 〈|ψa t, z( )〉〉ρa z( ). (43)

At time t = 0, the norm of the integrand satisfies

‖|ψa 0, z( )〉‖ � a

2
( )D exp − a − 4

4aZ
( ) z − z0( )T · Σ0 · z − z0( )[ ], (44)

which implies for the variance

V |ψa 0( )〉[ ] � a

4πZ
( )D∫

R2d
exp − a − 2

2aZ
( )|z|2[ ]dz − 1

� a2

2 a − 2( )( )D

− 1.
(45)

For a > 2, the function a↦a2/(2a − 4) attains its minimum at a =
4, which corresponds to the sampling density ~ρ. In other words,
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(Case sqrt-H) is optimal as far as the mean squared error is
concerned. Nevertheless, even this optimal sampling results in an
unfavorable exponential growth with the number of
dimensions D.

3.4 Harmonic motion

The one-dimensional harmonic oscillator

Ĥ � − Z2

2m
d2

dx2
+ mω2

2
x2 (46)

is one of the rare examples for which explicit expressions for the solution
of the Schrödinger equation and for the Herman–Kluk prefactor exist.
For an initial Gaussian wavepacket |ψ0〉 � |gγ

z0〉 with position and
momentum q0, p0 ∈ R, the exact wavefunction is given by [71]

ψex x, t( ) � exp
i

Z

αt
2

x − qt( )2 + pt x − qt( ) + βt[ ]{ }, (47)
where

αt � b
α0 cos ωt( ) − b sin ωt( )
b cos ωt( ) + α0 sin ωt( ), (48)

qt � q0 cos ωt( ) + p0

b
sin ωt( ), (49)

pt � p0 cos ωt( ) − bq0 sin ωt( ) and (50)
βt � β0 +

1
2

qtpt − q0p0 + iZ ln
zt
b
( )[ ] (51)

with the abbreviations zt = b cos(ωt) + α0 sin(ωt), α0 = iγ, and b =
mω. Here, β0 includes the normalization constant for the
wavefunction at time t = 0. The classical action is given by

S t, q0, p0( ) � 1
2
sin ωt( ) p2

0

b
− bq20( )cos ωt( ) − q0p0 sin ωt( )[ ]. (52)

The four components of stability matrix M can be obtained, from
their definition (15), by differentiating expressions for qt and pt with
respect to q0 and p0, namely,

M t( ) � cos ωt( ) b−1 sin ωt( )
−b sin ωt( ) cos ωt( )( ). (53)

The Herman–Kluk prefactor satisfies

R t( ) � 1
2

2 cosωt − i sin ωt( ) γ

b
+ b

γ
( )[ ]{ }1/2

, (54)

so that the variance (38) can be written as

V |~ψ t( )〉[ ] � 2 4 cos2 ωt( ) + γ

b
+ b

γ
( )2

sin2 ωt( )[ ]1/2 − 1. (55)

This implies that for (Case sqrt-H) applied to a harmonic oscillator,
the mean squared error of our Monte Carlo estimator oscillates with
a period of π/ω between

3≤V |~ψ t( )〉[ ]≤ 2
γ

mω
+ mω

γ
( ) − 1. (56)

4 Numerical examples

In this section, we complement our previous theoretical results
with numerical examples. We start by examining how the
performance of Algorithm 1 depends on the method to discretise
the phase space. We explore the time dependence of the variance of
the Monte Carlo estimator in one dimension in a harmonic
oscillator as well as in a series of increasingly anharmonic Morse
potentials. The Monte Carlo integration is tested by averaging over
N independent, identically distributed samples of initial conditions.
We approximate its convergence rate by assuming a power law

F N( ) � cN−s (57)
dependence of the mean statistical error on the number of samples
N. The prefactor c and order s of convergence are determined by the
linear fit (in the least-squares sense) of the logarithm of Eq. 57 to the
dependence of the logarithm of the statistical error on the
logarithm of N.

Throughout our numerical examples, we work in atomic units
(Z = 1), mass-scaled coordinates and with an initial state that is a
Gaussian wavepacket with phase-space centre z0 ∈ R2D.

FIGURE 2
Sampling error of the initial wavefunction in one (upper panel)
and four (lower panel) dimensions as a function of the number N of
Monte Carlo points. The plot displays the error for sampling from the
Husimi density (Case H) and its approximated convergence
(marked lines) as well as the error for sampling from the square root of
the Husimi density (Case sqrt-H) and its analytical error estimation
(dotted line).
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4.1 Initial phase-space error

We start by considering a spherical initial Gaussian wavepacket
|ψex(0)〉 � |gγ

z0〉 with a width parameter γ = 2IdD in one and four
dimensions. For D = 1, it is centred at z0 = (−1, 0) and for D = 4, at
z0 = −(1, 1, 1, 1, 0, 0, 0, 0). Figure 2 shows the L2-distance

‖|ψN 0( )〉 − |ψex 0( )〉‖L2 (58)
of the Monte Carlo estimators for (Case H) and (Case sqrt-H) from
the exact wavefunction at initial time as a function of the number of
Monte Carlo quadrature points. We can immediately see that the
analytical prediction (40) of the mean squared error (37) of (Case
sqrt-H) is fulfilled. For (Case H), the curve-fitting approximation
(57) provided (c, s) = (2.56, −0.48) forD = 1 and (c, s) = (19.3, −0.36)
for D = 4. It shows that both cases converge to the correct result and
that (Case sqrt-H) performs slightly better than (Case H).
Additionally, Figure 3 displays the L2-distance of the estimators
for both cases from the exact wavefunction at initial time as a
function of the dimension D. Each wavefunction was approximated
with N ≈ 8 · 105 trajectories. The analytical prediction (40) for (Case
sqrt-H) is realized. Moreover, the error for (Case H) increases faster
with D.

4.2 Harmonic potential

To analyze the effect of dynamics on the convergence, let us
consider a harmonic potential V(x) = x2/2 in one dimension and
explore the dynamics for one full oscillation period. The initial
Gaussian wavepacket is still localized in z0 = (−1, 0) with width γ = 2.
In Figure 4, we compare the exact wavefunction (47) with the
numerical realization of the Herman–Kluk propagator which uses
the exact solution to q(t), p(t), S(t, z) and R(t, z) stated in Eqs 49, 50,
52, 54. Since the Herman–Kluk propagator is exact for harmonic
motion and since we supply exact classical trajectories, the observed
numerical error is only due to the Monte Carlo integration. The
upper panel of Figure 4 shows the time dependence of the L2-error

‖|ψN t( )〉 − |ψex t( )〉‖L2 , (59)
where the semiclassical wavefunctions were generated using N =
216 trajectories. Sampling from the square root of the Husimi
density (Case sqrt-H) results in approximately twice smaller
error than sampling from the Husimi density itself. For (Case
sqrt-H), the figure also displays the analytical error estimate
derived in (55), which matches the numerical error up to small
statistical noise. To remove this statistical noise and to match the
analytical estimate (55) more accurately, in the lower panel of
Figure 4 we plot the empirical root mean square error (RMSE)
[59] S100, where

SK :� 1
K
∑K
j�1

‖|ψ j( )
N t( )〉 − |ψex t( )〉‖2, (60)

K is an integer number of independent simulations (indexed by j)
and each ψ(j)

N was itself approximated using N independent samples.
One can see that

E SK[ ] � E ‖|ψN t( )〉 − |ψex t( )〉‖2[ ] � V |~ψ t( )〉[ ]
N

. (61)

For K = 1, one obtains the result represented in the upper panel of
Figure 4. For K → ∞, due to the strong law of large numbers, SK

FIGURE 3
Dependence of the sampling error of the initial wavefunction on
dimension D for N = 100 · 213 ≈ 8 · 105 points sampled from either the
Husimi density (Case H) or its square root (Case sqrt-H). The analytical
error estimate for the latter sampling is shown by the dotted line.

FIGURE 4
Time dependence of the sampling error of the Herman–Kluk
wavefunction propagated in a harmonic oscillator. The upper panel is
produced by one run with N = 216 = 65,536 trajectories, whereas the
lower panel is produced by K = 100 independent runs, each with
N = 216 = 65,536 trajectories, and averaging the square of the error
over the K runs. The analytical error estimate for the sampling from the
square root of the Husimi density (Case sqrt-H) is shown with the
dotted line.
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converges almost surely to its expectation value and hence to the
analytical error estimate.

The lower panel of Figure 4 shows the empirical RMSE
computed with K = 100 and N = 216. For (Case sqrt-H), it
coincides almost perfectly with the analytical prediction. We note
that the error reaches its maximum whenever the wavefunction
passes through the bottom of the potential and its minimum when
the wavefunction arrives at the turning points. Even though this
analysis makes only sense for finite variance, the figure also displays
the empirical RMSE for (Case H), which is nearly constant. Both
panels show a qualitatively similar error evolution for (Case H),
however, at a magnitude that is considerably larger than the error for
(Case sqrt-H).

4.3 Morse potential

To investigate the convergence of the Herman–Kluk
wavefunction in anharmonic systems, we consider dynamics
generated by a less and more anharmonic Morse potentials. The
parameters were taken from [29]. Our initial state is a Gaussian
wavepacket with zero initial position and momentum (q0, p0) = (0,
0), and with a width parameter γ = 0.00456 a.u. ≈ 1000 cm−1. The
Morse potential

V x( ) � Veq +De 1 − e−a x−qeq( )[ ]2 (62)

is characterized by the dissociation energy De, decay parameter a,
and the position qeq and energy Veq of the minimum.We considered
two Morse potentials, both with Veq = 0.1 and qeq = 20.95 a.u., but
with different values of a and De. The latter two parameters,
however, were chosen so that the global harmonic potential fitted
to the Morse potential at qeq had the same frequency

ωeq �
�������
V′′ qeq( )√

� �����
2Dea2
√ � 0.0041 a.u. ≈ 900 cm−1 (63)

for the two Morse potentials. The anharmonicity of the potentials
was conveniently controlled with the dimensionless parameter

χ � Z
ωeq

4De
, (64)

which is also reflected in the bound energy levels [71]

En � Zωeq n + 1
2

( ) − χ n + 1
2

( )2[ ] (65)

of a Morse oscillator. Then De and a are given by

De � Z
ωeq

4χ
,

a �
�����
2
ωeqχ

Z

√
.

(66)

We choose two different values

χ � 0.005 and χ � 0.01 (67)
of anharmonicity and compare the Herman–Kluk propagation with a
grid-based reference quantum calculation obtained by the Fourier-split
method [72], which is second-order accurate with respect to the time
step. The position grid was set from x = −200 to 1500 with
4096 equidistant points for χ = 0.005 and from x = −200 to

10,000 with 16,384 equidistant points for χ = 0.01. The larger grid
for χ = 0.01 was required to capture oscillations of the wavefunctions in
the tail region, which are due to the increased anharmonicity. For the
time propagation of the Herman–Kluk wavefunction, we used a second
order Størmer-Verlet scheme with step size Δt = 8 a.u. ≈ 0.194 fs.

Because the Herman–Kluk approximation is not exact in a
Morse potential, to separate the statistical convergence error
from the semiclassical error of the fully converged Herman–Kluk
approximation, in Figure 5 we show the L2-error

‖ψN t( ) − ψ2N t( )‖ (68)
between the Herman–Kluk wavefunctions calculated with N and 2N
trajectories as a function of N. Both wavefunctions were propagated in a
Morse potential with anharmonicity χ = 0.005. Each panel includes the
error for the fixed time t after approximately one oscillation (196 time
steps) and ten oscillations (1960 time steps). In addition, the convergence
rates for both sampling schemes were fitted to the same power law (57).
We observe that sampling from the square root of the Husimi density
(Case sqrt-H), shown in the lower panel, performs better than sampling
from the Husimi density (Case H), displayed in the upper panel.

Figure 6 shows the analogous results obtained in a Morse potential
with a larger anharmonicity parameter χ = 0.01. Here, we display the
wavefunctions after 202 and 2020 time steps, which are approximately the
times after the first and tenth oscillations. As expected for anharmonic
evolution, the error after ten oscillations is worse than after one oscillation.

FIGURE 5
Sampling error between the Herman–Kluk wavefunctions
obtained with N and 2N Monte Carlo quadrature points as a function
of N. The wavefunctions are calculated in a Morse potential with
anharmonicity parameter χ = 0.005 after approximately one
(solid line) or ten oscillations (dashed line). The upper panel shows
both errors and their approximated convergence rates for (Case H).
Similarly, (Case sqrt-H) is displayed in the lower panel.
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Increased anharmonicity also increases the error in comparison to
Figure 5. Again, the sampling from the square root of the Husimi
density (Case sqrt-H) has consistently a lower error than (Case H).

To complement the abstract convergence study of the L2-error, in the
upper panels of Figures 7 and 8, we compare the more intuitive position

probability densities of the “exact” quantum grid-based solution with
those of (Case H) and (Case sqrt-H). Both figures were obtained in a
Morse potential with anharmonicity parameter χ= 0.01 at a time after ten
oscillations. The difference lies in the number of trajectories used. The less
converged results in Figure 7 were obtained with only N = 800
trajectories, whereas the fully converged results in Figure 8 employed
N = 100 · 214 trajectories. The lower panels of the two figures display the
absolute errors of the position density for the two cases, measured with
respect to the “exact” grid-based position density. The two panels of
Figure 7 confirm again that sampling from the square root of Husimi
density (Case sqrt-H) results in faster convergence than sampling from
theHusimi density (Case sqrt-H). The upper panel of Figure 8 shows that
in the numerically converged regime, the Herman–Kluk propagator
approximates the exact solution in this system very well, regardless
whether one samples from theHusimi density or its square root. The fact
that results are numerically converged is confirmed in the lower panel of
Figure 8, where the errors of (Case H) and (Case sqrt-H) are
approximately the same, which implies that the common remaining
error is the error of the Herman–Kluk approximation and not the phase-
space discretization error.

Analytical expressions and numerical fits to the convergence rates
for all studied systems are summarized in Table 1.

Finally, we note that Figure 1 in the Introduction was based, as
Figure 8, on the Morse potential with anharmonicity parameter χ = 0.01
and Herman–Kluk calculations used N = 100 · 214 trajectories. For the
computation of the position density, we used the more efficient (Case

FIGURE 6
Same as Figure 5, except that the anharmonicity parameter of the
Morse potential was increased to χ = 0.01.

FIGURE 7
Position probability densities (upper panel) and their absolute
errors (lower panel) in a Morse potential with χ = 0.01 after
10 oscillations (2020 time steps ≈ 392 fs). Position probability densities
of the Herman–Kluk approximation for (Case H) and (Case sqrt-
H) were computed with N = 800 trajectories.

TABLE 1 Summary of convergence rates for (Case sqrt-H) and (Case H) at initial
time, in a harmonic oscillator and in two Morse potentials after one and ten
oscillations.

(Case sqrt-H) (Case H)

Initial time

D = 1
�������(4D − 1)√ ·N−1/2 2.56 · N−0.48

D = 4
�������(4D − 1)√ ·N−1/2 19.3 · N−0.36

Harmonic potential V[|~ψ(t)〉]1/2 ·N−1/2

with variance

from (55)

Morse pot.: χ = 0.005

1 oscillation 2.19 · N−0.49 2.14 · N−0.41

10 oscillations 4.68 · N−0.51 3.24 · N−0.36

Morse pot.: χ = 0.01

1 oscillation 3.35 · N−0.50 3.57 · N−0.42

10 oscillations 8.24 · N−0.50 8.59 · N−0.38
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sqrt-H). The spectra in the upper panel were obtained by the Fourier
transform of the wavepacket autocorrelation function; the Herman–Kluk
autocorrelation function was computed by sampling from the Husimi
density (CaseH), because it gives the exact result (=1) at t= 0 regardless of
the number of trajectories and, therefore, converges faster at short times.

5 Conclusion and outlook

We compared two different sampling strategies for evaluating the
semiclassical wavefunction evolved with the Herman–Kluk propagator.
For the initial phase-space sampling, we either used the Husimi density
(Case H) or its square root (Case sqrt-H). We showed that the square
root sampling produces a Monte Carlo integrand with finite second
moment, while the Husimi sampling comes with an undesirable infinite
second moment. The numerical experiments for the harmonic
oscillator and two Morse oscillators with different extents of
anharmonicity confirm that the infinite second moment results in a
slower convergence of the Monte Carlo estimator. Therefore, we
recommend the square root approach (Case sqrt-H) whenever the
Herman–Kluk propagator is used directly for approximating the
quantum-mechanical wavefunction and the L2-error of the
wavefunction approximation is the relevant accuracy measure.
However, we explicitly verified that at initial time the square root
density’s second moment, even though it is finite, has an unfavorable,
exponential dependence on the dimension, possibly leading to a large
number of trajectories required for a reasonably accurate wavefunction.

Although the wavefunction is a central object in quantum
mechanics, one is often interested directly in observables, which can

be computed as expectation values. It is clearly inefficient to compute
expectation values, such as energy or squared norm, with the
Herman–Kluk propagator by computing the wave function first. A
follow-up paper, in which an analysis similar to that presented here will
be applied to the autocorrelation function as well as to the expectation
values is in preparation. In particular, the approach to expectation
values proposed in [52] will be analysed in detail. Our present analysis
and sampling approaches could, in principle, help increase the efficiency
of any Gaussian-based method, although it is difficult to predict the
possible implications that the coupling between different Gaussians
present in Gaussian basis methods [9, 10] might have for the choice of
the optimal sampling density.
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FIGURE 8
Same as Figure 7, except that the results were computedwithN=
100 · 214 ≈ 1.6 · 106 trajectories and, therefore, are converged.
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