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Summary

� Positive selection is the driving force underpinning local adaptation and leaves footprints of

selective sweeps on the underlying major genes. Quantifying the timing of selection and

revealing the genetic bases of adaptation in plant species occurring in steep and varying envi-

ronmental gradients are crucial to predict a species’ ability to colonize new niches.
� We use whole-genome sequence data from six populations across three different habitats

of the wild tomato species Solanum chilense to infer the past demographic history and search

for genes under strong positive selection. We then correlate current and past climatic projec-

tions with the demographic history, allele frequencies, the age of selection events and distri-

bution shifts.
� Several selective sweeps occur at regulatory networks involved in root-hair development in

low altitude and response to photoperiod and vernalization in high-altitude populations.

These sweeps appear to occur in a concerted fashion in a given regulatory gene network at

particular periods of substantial climatic change.
� Using a unique combination of genome scans and modelling of past climatic data, we quan-

tify the timing of selection at genes likely underpinning local adaptation to semiarid habitats.

Introduction

Adaptation to abiotic conditions often occurs by means of posi-
tive selection. In heterogeneous environments, however, plants
may be strongly influenced by locally variable selection. This can
lead to the divergence of populations at key loci (Savolainen
et al., 2013; Tiffin & Ross-Ibarra, 2014), and results in trade-
offs where native alleles show a fitness advantage relative to for-
eign alleles (antagonistic pleiotropy) culminating in local adapta-
tion (Kawecki & Ebert, 2004). Positive selection also underlies
plant adaptation when colonizing new habitats (Savolainen et al.,
2013; Tiffin & Ross-Ibarra, 2014), and/or when the environ-
ment changes in time at a given location (Polechov�a
et al., 2009). With recent advances in sequencing technologies, it
is possible to study genomes of many individuals across different
populations to reveal the genetic bases underpinning adaptation
to abiotic stress. This can be achieved by genome scans for genes
exhibiting signatures of selection in genome-wide polymorphism
data, correlation between allele frequencies and environmental
variables, and/or genome-wide association studies with relevant
phenotypes (review in e.g. Savolainen et al., 2013; Josephs
et al., 2017; Fagny & Austerlitz, 2021). Revealing the genetic
bases of adaptation is important not only from an evolutionary
biology perspective, but also to predict a species’ ability to colo-
nize new niches and for applications to agriculture, whereby

crops could be improved for stress tolerance using key adaptation
genes found in related species.

Phenotypic traits of tolerance to abiotic stresses involve a set
of complex and intertwined physiological, molecular, biochemi-
cal, and hormonal mechanisms and signals (Tardieu & Tuber-
osa, 2010), and therefore are complex (polygenic) traits encoded
by many genes involving several gene networks or pathways.
There has been a growing interest in the evolution of such poly-
genic traits, with several theoretical predictions regarding the
speed and genetic architecture of adaptation to either the local
optimum of a newly colonized habitat (Chevin et al., 2010), or
the moving environmental optimum, that is a changing environ-
ment in time at a given location (Polechov�a et al., 2009; Matus-
zewski et al., 2014; Jain & Stephan, 2017a). Under large enough
population sizes and strong shifts in the environmental opti-
mum, both models predict that more significant steps of adapta-
tion occur first at sites with strong selective coefficients, possibly
generating selective sweeps (Chevin et al., 2010; Matuszewski
et al., 2014; Jain & Stephan, 2017a). The so-called (hard) selec-
tive sweeps are polymorphism patterns (footprints) in the gen-
ome due to the rapid (tens to hundreds of generations) fixation
of advantageous alleles and the associated hitchhiking effect
(Smith & Haigh, 1974; Kim & Stephan, 2002). In other words,
the theory of selective sweeps is not incompatible with that of
polygenic selection (Barghi et al., 2020), and different numbers
of major genes exhibiting selective sweep signatures are expected
to underlie fast and strong adaptation of complex (polygenic)*These authors contributed equally to this work.
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traits. The number and identity of these genes depend on the
distribution of selection coefficients among the multiple genes
involved in the traits, the efficiency of selection (a function of
effective population size and recombination rate), the architec-
ture of the traits, place of genes in gene networks/pathways and
gene pleiotropy (Jain & Stephan, 2017b; Barghi et al., 2020).
Hard selective sweeps represent indeed one possible but more
easily observable outcome of strong positive selection when con-
sidering that genes act in complex networks (polygenic quantita-
tive traits) determining adaptation to new environmental
conditions, for example abiotic stress. We focus here on detect-
ing genes that have been under strong positive selection in the
past and which underlie plant adaptation to new habitats or to

changing environmental conditions in the wild relative tomato
species Solanum chilense.

Solanum chilense (Dunal) Reiche is an outcrossing species found
in southern Peru and northern Chile in mesic to very arid habitats
(Nakazato et al., 2010). Its ancestral range is likely to be in mar-
ginal desert habitat of the coast and mid-altitude ‘pre-cordillera’
regions (800–2000m altitude) of southern Peru. Solanum chilense
colonized independently two different southern isolated regions
around the Atacama Desert at different time periods (Fig. 1a;
B€ondel et al., 2015; Stam et al., 2019b): an early divergence (older
than 50 thousand years ago (ka)) with the colonization of coastal
habitats (in Lomas formations) and a more recent lineage diver-
gence (< 25 ka) restricted to highland altitudes (above 2400m) of

Fig. 1 Geographic distribution and population structure of Solanum chilense. (a) Map with distribution of all S. chilense populations by the Tomato
Genetics Resource Center, the six S. chilense populations in this study (black circles), the four population groups (circles with other colours) and the two
reconstructed southward colonization events, first to the south-coast and second to the south-highland (SH) (black arrows). (b) Principal component (PC)
analysis of 63 current climatic variables from all S. chilense populations (Dataset S5). Population structure using SNP data based on (c) PC analysis and (d)
structure analysis reveals the suitable subgroups (optimal K value is 4; Fig. S1b).
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the Andean Plateau. Signatures of natural selection (positive or bal-
ancing) of genes involved in stress adaptation were found when
scanning few candidate genes for biotic and abiotic stress response
(Xia et al., 2010; Fischer et al., 2011; B€ondel et al., 2015, 2018;
Nosenko et al., 2016; Stam et al., 2019b). In the present study, we
obtained full-genome sequence data for 30 diploid and highly
heterozygous plants from six populations representing the three
main habitats of the species (Fig. 1a; B€ondel et al., 2015): the cen-
tral group (area of origin at low-to-high altitude, denoted as group
C), south-coastal (SC) group and south-highland (SH) group. The
SH group strongly differs from the central group in terms of cur-
rent climatic conditions (higher daily and annual temperature
ranges, summer potential evapotranspiration and solar radiation),
while the SC appears as only marginally different from the environ-
ment prevailing in the central group (higher minimum tempera-
ture in summer and winter and frequent fog episodes; Fig. 1b).
Our aims are first to infer accurately the past demographic history
of species colonization and to reconstruct recent dynamics of the
species’ distribution range in response to climatic history. Second,
we conduct genome scans for selective sweeps and assign functions
and gene network topology to the genes located within the sweeps.
Third, we link climatic and genetic data at candidate genes using a
genotype–environment association (GEA) analysis to highlight the
relevance of key gene regulatory networks (pathways) for adapta-
tion. We finally discuss the history of adaptation in S. chilense and
future empirical studies needed to test and validate our results.

Materials and Methods

Sample collection, sequencing, and bioinformatics

Plants were grown in standard glasshouse conditions from seeds
obtained from the Tomato Genetics Resource Center (TGRC,
University of California, Davis, CA, USA). We sampled five
diploid plants from accessions C_LA1963, C_LA3111,
C_LA2931, SH_LA4330, SC_LA2932 and SC_LA4107 repre-
senting the three main geographic groups (Fig. 1a; Table S1).
Genomic DNA was extracted using the extraction kit from Qia-
gen and sequenced on an Illumina HiSeq 2500 with standard
library size of 300 bp (Eurofins Genomics, Ebersberg, Germany).
The whole-genome sequencing data are available on ENA in
BioProject PRJEB47577.

We performed quality control of the raw reads and trimmed
calls with insufficient quality or adapter contamination. The
clean reads were mapped to the Solanum pennellii reference gen-
ome (Bolger et al., 2014) available from Solanaceae Genomics
Network using the BURROWS–WHEELER ALIGNMENT tool
(v.0.7.16) with default settings (Li & Durbin, 2009) and sorted
with SAMTOOLS (v.1.5; Wysoker et al., 2009). The raw align-
ments were then processed to add read groups, mark duplicates,
and fix mates. Variant calling was performed using the HAPLO-

TYPECALLER tool of GATK (McKenna et al., 2010) with default
parameters. Individual genomic variant files were then combined
into a variant matrix with the GENOTYPEGVCFS tool and anno-
tated based on the gene annotation of the S. pennellii reference
(details in Methods S1).

Population genetics analyses and inference of demographic
history

For all population genetics analyses, we used S. pennellii LA0716
as outgroup when needed. We built a maximum likelihood phy-
logenetic tree and performed a principal component analysis
(PCA) and the inference of population structure with ADMIXTURE

(Alexander et al., 2009). Population genetics statistics, namely
nucleotide diversity (p), Tajima’s D and FST for each population
(or pairs of populations), were calculated with ANGSD v.0.937
(Korneliussen et al., 2014) over 100-kb sliding nonoverlapping
windows. The linkage disequilibrium (LD) levels were calculated
per population as the genotype correlation coefficient (r2)
between two loci using VCFTOOLS (Danecek et al., 2011) with a
maximum distance of 1000 kb.

The demographic inference was conducted using the Multiple
Sequentially Markovian Coalescent method (MSMC2) with
phased VCF files and 40 hidden states (Malaspinas et al., 2016).
The cross-coalescence analysis was performed for each pairwise
comparison of genomes between pairs of populations to estimate
divergence times and migration rates with MSMC-IM (Wang
et al., 2020). Phasing was generated with SHAPEIT v.2 under the
LD mode (Delaneau et al., 2012), assuming generation time of
5 yr (uncertainty interval 3–7) and mutation rate per generation
of 19 10�8 (uncertainty interval 5.19 10�9–2.59 10�8, based
on Roselius et al., 2005), accounting for uncertainty in these esti-
mates (details in Methods S1).

Modelling present and past species distribution

We reconstructed the environmental space occupied by
S. chilense extracting the environmental conditions at the current
occurrence points and summarize them by PCA (Fig. 1b; Legen-
dre & Legendre, 2012). The environmental data include 63 cli-
matic layers obtained from three databases: WorldClim2 (Fick &
Hijmans, 2017), ENVIREM (Title & Bemmels, 2018) and the
Consultative Group on International Agricultural Research (Tra-
bucco & Zomer, 2019; Dataset S5). The PCA was performed by
the prcomp function in R (R Core Team, 2020).

We then performed an ensemble modelling framework (Ara-
ujo & New, 2007) using the BIOMOD2 package (Thuiller
et al., 2009, 2014) in R, using eight modelling algorithms, five
cross-validation replicates and 10 pseudo-absence sampling sets,
therefore completing a total of 400 models. Consensus niche
models were obtained using a TSS-weighted average method to
account for the predictive power of each fitted model (models
with TSS < 0.7 were discarded). All fitted suitability models were
then projected to infer the distribution of suitable habitats of
S. chilense under current climatic conditions and during the Last
Glacial Maximum (LGM; c. 21 ka) (details in Methods S1).

Genome-wide selection scans and statistical power

We identified selective sweeps using biallelic SNPs by SWEED
(Pavlidis et al., 2013) and OMEGAPLUS (Alachiotis et al., 2012).
The CLR statistics in SWEED were calculated with default
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parameters with 10-kb intervals. OMEGAPLUS statistics (ω) were
computed at 10-kb intervals. We specified a minimum window
of 10 kb and a maximum window of 100 kb to be used for com-
puting LD values between SNPs. Outlier CLR and ω statistics
indicative of a selective sweep are defined in comparison with
genome-wide distribution values. To reduce false-positive outliers
derived from demographic processes, the cut-off values of the
CLR and ω statistics were defined by coalescent simulations of
the inferred demographic history. The maximum value of each
statistic was extracted from each simulated dataset, and we thus
obtained a distribution of 10 000 maximum values for each
statistic. The 95th percentile of this maximum distribution was
specified as the threshold to identify outlier windows. We used
the coalescent simulator SCRM (Staab et al., 2015) to generate
10 000 neutral datasets of 10Mb based on the demographic his-
tory of each population and assuming a varying recombination
rate every 100 kb within each 10Mb simulated block (recombi-
nation rate varied between 0.1 9 h and 10 9 h). Using the geno-
mic coordinates, we then extracted only the overlap regions
between the two methods, which are regarded as high confident
selective sweep regions. As independent confirmation of the
sweep regions, we used McSwan (Tournebize et al., 2019) to
detect sweeps and estimate their age. McSwan was run with the
same parameters as SWEED.

To evaluate the sensitivity of our sweep detection, we simu-
lated 1000 selective sweeps assuming five Ne-scaled selection
coefficients from nearly neutral to strong selection (2Nes = 0.1, 1,
10, 100 and 1000) for each of the six populations under the in-
ferred demographic model, with five different sweep ages (8, 14,
29, 50 and 71 ka). We used the function generate_pseudoobs based
on MSMS simulator implemented in the MCSWAN R package
(Ewing & Hermisson, 2010; Tournebize et al., 2019). We then
ran SWEED, OMEGAPLUS and MCSWAN on all simulated datasets
using the same parameters and thresholds defined above to quan-
tify the percentage of sweeps detected per population (and age of
the sweeps) (details in Methods S1).

Gene Ontology enrichment analysis and gene networks

Due to the lack of a complete gene function annotation database,
we performed a BLASTX against the NCBI database of nonredun-
dant proteins (nr) screened for green plants (e-value cut-off was
10�6) and used BLAST2GO to assign Gene Ontology (GO) terms
for each gene within the sweep regions (Conesa et al., 2005; Con-
esa & G€otz, 2008) and a BLAST to the Arabidopsis thaliana dataset
TAIR10 to remove redundant terms (Berardini et al., 2015). The
false discovery rates were calculated to estimate the extent to
which genes were enriched in given GO categories (significance
cut-off of P < 0.05). For each of the genes enriched in specific
biological processes, we retrieved the interacting gene neighbours
using GeneMANIA (Warde-Farley et al., 2010). We generated
aggregate interaction networks in GeneMANIA, based on physi-
cal interactions, in silico predictions and co-expression. Finally,
we performed hierarchical clustering and manually optimized the
weighted value cut-off for displaying the gene network (details in
Methods S1).

Redundancy analysis

We tested for GEA using redundancy analysis (RDA; Capblancq
& Forester, 2021) using the rda function from the VEGAN package
in R (Oksanen et al., 2015), modelling genotypes as a function of
the same climatic predictor variables used for the niche recon-
struction analyses and producing constrained axes and representa-
tive predictors. Multicollinearity between representative
predictors was assessed using the variance inflation factor (VIF);
since all predictor variables showed VIF < 20, none were
excluded. This may still cause some collinearity, but it is benefi-
cial to find more connections between genotypes and environ-
ments. The significance of RDA-constrained axes was assessed
using the anova.cca function, and significant axes were then used
to identify candidate loci (P < 0.001). Candidate loci were identi-
fied using 2.5 SD as cut-off (two-tailed P = 0.012). In order to
measure the rate of false-positive associations due to the demo-
graphic history, we also performed the same RDA analysis using
a set of 1000 randomly chosen SNPs from nonsweep regions,
and polymorphism data from the neutral simulations are used to
calibrate the SWEED and OMEGAPLUS thresholds (details in Meth-
ods S1).

Results

Past colonization events and climatic variations in
S. chilense

We sequenced whole genomes of 30 heterozygous plants from
S. chilense from six populations (C_LA3111, C_LA1963,
C_LA2931, SC_LA2932, SC_LA4107 and SH_LA4330;
Fig. 1a; Table S1). All individuals show high-quality sequence
and mapping scores with > 97% of mapping paired reads, indi-
vidual genome coverage ranging between 16 and 24 reads per
base, and > 70% genome coverage per sample (Dataset S1). After
SNP calling and filtering, a total of 34 109 217 SNPs are identi-
fied across all samples (Table S2) for a genome size estimated
approximately to be 914Mb (Stam et al., 2019a). Phylogenetic
analysis, PCA and population genetics statistics (Figs 1c, S1, S2;
Tables S3, S4) support the population structure into three
genetic groups, confirming the results in B€ondel et al. (2015): a
central group (C_LA1963, C_LA3111 and C_LA2931), the SH
group (SH_LA4330) and the south-coast group (SC_LA2932
and SC_LA4107). The two south-coast populations constitute
independent groups (best K = 4; Figs 1d, S1b–d). Only the indi-
viduals of the population C_LA2931 (the southernmost of the
central group) display small admixed ancestry coefficients (< 5%)
with the SH group (SH_LA4330; Fig. 1d). There is no signifi-
cant correlation between genetic (pairwise Nei’s distance) and
geographical distance (Pearson test, r = 0.35, P = 0.20; Fig. S1e).

As we confirm that S. chilense independently colonized the
coastal and highland southern habitats from a lowland area
located north of the central group region (B€ondel et al., 2015;
Stam et al., 2019b), we further refine our estimates of the histori-
cal changes in effective population size (Ne, Figs 2a, S3), diver-
gence and potential postdivergence gene flow (Fig. S4) and
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finally construct a consensus demographic model (Fig. 2b;
Dataset S2; see Fig. S3 accounting for mutation rate and genera-
tion time uncertainties). These estimates are compared in Fig. 2
(b) with the reconstructed past climatic variation highlighting five
marine isotope stage (MIS) climatic periods (Lisiecki &
Raymo, 2005; Ritter et al., 2019). The two south-coast popula-
tions found in Lomas habitats (SC_LA2932 and SC_LA4107)
show early divergence consistent with the admixture analysis
(during the Last Interglacial period, MIS5) likely from the low-
land area of the central group (C_LA1963). The colonization of
the highlands likely occurred later, first in the central group
region (C_LA3111, C_LA2931) between the Last Interglacial
and LGM periods (c. 75–130 ka, MIS3–4) and then with further
colonization of southern highlands (from 30 ka, MIS1–2,
SH_LA4330). All populations show a moderate effective size
reduction matching with the estimated time of the LGM charac-
terized as a cold and dry period and supported by a contraction
of the suitable habitats to a narrow strip in lower altitudes, and a

subsequent expansion thereafter (Fig. 2a,c). Indeed, the local
habitat at the current location of C_LA2931 and SH_LA4330
was likely unsuitable for the establishment of southern highland
populations until 15 ka (after the LGM, i.e. during MIS1–2;
Fig. 2c). The lower genetic diversity of the south populations
(and estimated Ne) is thus due to a mild colonization bottleneck
during the southward expansion (Figs 2a,c, S2; Table S3). Both
south-coast populations show consistent signals of the long-term
history of colonization, subsequent isolation with negligible gene
flow and possible local specialization to sparsely suitable Lomas
habitats along the coast (Figs 2b,c, S3).

The divergence between the central group populations (during
MIS3–4) occurs in parallel to the colonization of the coastal habi-
tat (Figs 2b, S4), but before the colonization of the SH
(SH_LA4330). Moreover, strong postdivergence gene flow and
low differentiation are found in the central group, especially
among the pairs C_LA1963-C_LA3111 and C_LA3111-
C_LA2931 (Figs S2c, S4), consistent with their geographical

Fig. 2 Demographic history and species distribution model of Solanum chilense for current and Last Glacial Maximum (LGM) climate conditions. (a) The
estimation of historical patterns of effective population size (Ne) for 10 pairwise genome comparisons per population using the Multiple Sequentially
Markovian Coalescent (MSMC) model. (b) Interpreted demographic scenario for the six sample populations of S. chilense including the likely estimations
of effective population size, divergence times and gene flow. The width of the boxes represents the relative effective population size; arrows represent the
migration between population pairs. Grey background boxes indicate five Marine isotope stages (MIS) in climatic periods. (c) Overlay of the reconstruction
of the distribution model for S. chilense using current climatic variables (red) and LGM past climatic variables (blue). Darker colour of the gradient indicates
higher suitable habitat for a given climatic period.
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and/or environmental proximity (Fig. 1a,b) and the range con-
traction during the LGM (MIS2 in Fig. 2). The colonization of
high-altitude regions in the central group is thus accompanied by
high levels of gene flow despite these populations ranging across a
large altitudinal gradient (2500 m of altitude difference between
C_LA1963 and C_LA3111 or C_LA2931). The divergence his-
tory results in the south-coast and SH populations being fairly
isolated from one another (as separated by the Atacama Desert)
supporting the suggestion of an incipient speciation process
(Figs 2b, S4; Raduski & Igi�c, 2021). In contrast to the study of
B€ondel et al. (2015), our smaller number of populations and the
independent divergence histories of the two southern groups do
not allow us to find a significant signature of isolation by dis-
tance.

Selective sweeps underpin local adaptation

In total, we find 2921 candidate sweep regions with SWEED
(mean size 212 858 bp� 3938) and 13 106 with OMEGAPLUS
(mean size 59 618 bp� 521) across all six populations (Table 1),
yielding a total of 520 overlapping regions (mean size
41 082 bp� 1618). Although we calculate SWEED and OMEGA-

PLUS statistics by 10 kb intervals, we found in fact that the esti-
mated sweeps in SWEED are larger than those in OMEGAPLUS.
Therefore, in most cases sweep regions identified from SWEED
overlap with multiple sweep regions identified from OMEGAPLUS.
These regions contain 799 protein-coding candidate genes
assumed to be under positive selection (Fig. S5; Dataset S3). In
SC_LA4107, we find 61 candidate genes and c. 100 candidate
genes are detected in each of the other four populations (Table 1).
The largest number of candidate genes (354) is found in
SH_LA4330 (Table 1), likely because the population has been
established recently (Fig. 2a,b), and its habitat is ostensibly differ-
ent from the rest of the species range (Fig. 1b).

We present two arguments supporting that our cut-off values
are well designed on the basis of the population demography to
reasonably discriminate between demography and selection sig-
nals (as shown in Huber et al., 2014). First, the comparison of
genome-wide genetic diversity statistics (hp and Tajima’s D)
between the observed data and the neutral simulations shows that

our demographic scenario captures well the genomic diversity
patterns in all populations (Fig. S2). Second, we estimate by sim-
ulations the accuracy (statistical power) to detect sweeps under
our demographic model and a range of selection coefficients and
sweep ages. The accuracy is found to be between 0–53.6% for
nearly neutral to weak selection coefficients (2Nes = 0.1–10),
20.3–90.5% for strong selection (2Nes = 100) and 64.7–93.8%
for very strong selection (2Nes = 1000; Fig. S6). From the simu-
lations, SH_LA4330 exhibits higher statistical power than the
other populations (Fig. S6). Furthermore, the detection power
increases for intermediate sweep ages (14–50 ka; Fig. S6). This
demonstrates that our defined thresholds for sweep detection are
conservative and allow minimizing the rate of false positives, at
the small cost of not detecting all selective sweeps, especially if
the selection coefficients are too small and the sweeps are too
recent or too old (Fig. S6). Furthermore, only a few candidate
genes are shared among different populations, with the central
and SH populations sharing a small number of candidate genes,
while almost none are shared between the two SC populations
(Fig. S5c). This lack of common candidate genes among popula-
tions is likely due to the high effective population sizes (Fig. 2a)
generating new variants across many genes, which are then differ-
entially picked up by selection across different populations; the
relatively old interpopulation divergence and timing of local
adaptation; and the marked environmental differences between
the central and the two southern regions promoting sweeps in
different pathways.

An overview of population genetics statistics shows that our
candidate regions exhibit typical characteristics (lower nucleotide
diversity, higher LD, more negative Tajima’s D and higher pair-
wise FST values) of positively selected regions when compared to
the genome-wide statistics (see Notes S1; Fig. S7; Tables S3, S4).
Furthermore, we find an overlap between our candidate genes
and genes exhibiting signals of positive selection in previous stud-
ies in S. chilense, which are based on different plants, populations
and sample sizes. Among our candidate genes, we indeed find
three genes (JERF3, TPP and CT189) involved in abiotic
stress tolerance such as salt, drought or cold (B€ondel et al., 2015)
as well as three nucleotide-binding leucine-rich repeats
(SOLCI006592800, SOLCI001535800 and SOLCI005342400)

Table 1 Summary of genome scans and estimation of sweep age.

Population

Genome scans Sweep age

NSweeD NOmegaPlus Noverlaps1 Ngenes1 NMcSwan Noverlaps2 Ngenes2 Agemean (kyr)

C_LA1963 385 2474 98 86 267 16 14 38 � 16
C_LA2931 517 2268 109 125 355 24 28 20 � 10
SC_LA2932 374 1717 46 101 302 15 29 36 � 15
C_LA3111 663 2307 105 107 377 22 22 23 � 11
SC_LA4107 203 2047 37 61 194 11 13 34 � 10
SH_LA4330 779 2293 125 354 438 36 71 17 � 8

Agemean, mean age� SD of overlaps2; Ngenes1, number of candidate genes in overlaps1, and all candidate genes show in Dataset S3; Ngenes2, number of
genes in overlaps2; NMcSwan, number of outlier regions from McSwan; NOmegaPlus, number of outlier regions from OMEGAPLUS; Noverlaps1, number of
overlapping regions between SWEED and OMEGAPLUS; Noverlaps2, number of overlapping regions between MCSWAN and overlaps1; NSweeD, number of outlier
regions from SWEED.
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possibly linked to resistance to pathogens (Stam et al., 2019b).
We also find that two of the seven most up-regulated genes under
cold conditions in a transcriptomic study of S. chilense (Nosenko
et al., 2016) do appear in our selection scan in high-altitude pop-
ulations: CBF3 (Solyc03g026270) in C_LA2931 and CBF1
(Solyc03g026280) in SH_LA4330. These results indicate that
our genome-wide selective sweep scan generalizes the previous
studies in S. chilense and supports the functional relevance of our
candidate genes.

Gene regulatory networks underlying local adaptation in
S. chilense

A GO enrichment analysis of the 799 candidate genes reveals
common GO categories in all populations for basic cell metabo-
lism, immune response, specific organ development and response
to external stimuli (Fig. S8). Most interesting are four GO cate-
gories restricted to populations with distinct habitats (1) root-
hair cell differentiation functions are enriched in 15 candidate
genes, only in the three coastal populations (C_LA1963,
SC_LA2932 and SC_LA4107); (2) response to circadian rhythm,
photoperiodicity and flowering time are enriched in 12 candidate
genes in two high-altitude (C_LA3111 and SH_LA4330) and a
south-coast (SC_LA2932) population; (3) vernalization response
is enriched in eight candidate genes in the three high-altitude
populations (C_LA2931, C_LA3111 and SH_LA4330); and (4)
protein lipidation is enriched in seven candidate genes in the SH
population (SH_LA4330). Based on the wealth of available data
in cultivated tomato, S. pennellii and A. thaliana, we further
study the gene regulatory networks to which the candidate genes
belong.

For adaptation to high-altitude conditions, 15 candidate genes
are interconnected in a flowering gene network, which is itself
subdivided into two sub-networks related to flowering, photope-
riod and vernalization control pathways (Fig. 3a; Dataset S4).
Photoperiod-responsive genes can sense changes in sunlight and
affect the circadian rhythm to regulate plant flowering (Johansson
& Staiger, 2015; Song et al., 2015), while vernalization genes reg-
ulate flowering and germination through long-term low tempera-
ture (Guo et al., 2018; Xu & Chong, 2018; Iida &
M€ah€onen, 2020). These two sub-networks are connected
through several key genes, some of which appear as candidate
genes entailing local adaptation in our populations: FL FLOW-
ERING LOCUS C, FLOWERING LOCUS T and
AGAMOUS-LIKE genes (AGL; Fig. 3a,b). These key genes are
essential regulators acting on the flowering regulation pathway
(Michaels & Amasino, 1999; Sheldon et al., 2000; Turck
et al., 2008; Putterill & Varkonyi-Gasic, 2016). Some candidate
genes in the recently diverged SH population (SH_LA4330)
aggregate into an independent network involved in circadian
rhythm regulation, connected to the photoperiod network by
JUMONJI DOMAIN CONTAINING 5 and also a candidate
gene in C_LA3111 (Fig. 3a). In the central-highland population
(C_LA3111), several other candidate genes of the photoperiod
network also regulate circadian rhythm and flowering time. The
three high-altitude populations (C_LA3111, C_LA2931 and

SH_LA4330) have AGL gene family candidates in the vernaliza-
tion network (Fig. 3a). We also note that the network of protein
lipidation genes appears to be related to the synthesis of fatty
acids in the SH population (Fig. 3d; Dataset S4). We speculate
that this latter adaptation may be related to adaptation to the
lowest-temperature stress of SH_LA4330 (Dataset S5; Maksimov
et al., 2017; Jiang et al., 2018). Adaptation to high altitude
involves the regulation of flowering, including photoperiod and
vernalization pathways, but through different genes in different
populations, while cold stress and its consequence (adaptation in
lipidation pathway) may be relevant for adaptation to the highest
altitudes (SH_LA4330).

Regarding adaptation to coastal conditions, we find 11 candi-
date genes related to root development and cellular homeostasis
functions clustered in a single network (Fig. 3c; Dataset S4). We
speculate that the drought and water shortage typical of the
coastal conditions (Dataset S5) would promote the differentia-
tion and extension of plant roots (Xiong et al., 2013; Li et al.,
2017). The cell WALL ASSOCIATED LINASE 4, a candidate
gene identified in SC_LA4107, acts as a linker of signal from the
cell wall to the plasma membrane and thus serves a vital role in
lateral root development (He et al., 1999; Lally et al., 2001). We
also find genes involved in cell homeostasis (Fig. 3c; Dataset S4),
which would be critical for the coastal drought and salinity con-
ditions to maintain the stability of the intracellular environment
in the coastal habitats (Forni et al., 2017; Zhao et al., 2020). Fur-
ther details can be found in Notes S2.

Candidate genes show genotype–environment associations

Our candidate loci are hypothesized to be responsible for adapta-
tion to local climatic conditions, so we test for GEA using RDA.
We perform first a ‘present day’ RDA using 144 713 SNPs from
all candidate regions and 63 climatic variables representing cur-
rent conditions for temperature, precipitation, solar radiation
and wind (Dataset S5). We find that the two first RDA axes are
significant (ANOVA, P < 0.001) and retain most (38% and 21%)
of the putative adaptive genetic variance identified in the genome
scans in all populations (Fig. 4a). Tables S5 and S6 summarize
outlier SNPs in different RDA models and their correlation with
climatic variables. In concordance with the PCAs of both climatic
and genomic variation (Fig. 1b,c), the two main RDA axes cluster
the individuals into three groups corresponding to the main geo-
graphical regions (central, SH and SC), supporting that those axes
synthesize the principal selective pressures for local spatial adapta-
tion along with the species distribution (Fig. 4a; Table S6). RDA1
represents the differentiation of the two south-coast populations in
correlation with higher precipitation of the coldest quarter (Bio19)
and annual variation of solar radiation (CV_R), and RDA2 sum-
marizes a climatic gradient differentiating the SH population
mainly driven by annual potential evapotranspiration and temper-
ature annual range (Bio7; Table S6).

Further RDA analyses based on gene variants of the GO cate-
gories circadian rhythm-photoperiodism, vernalization, root-hair
differentiation and protein lipidation highlight combinations of
climatic variables and genetic variants related to local spatial
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Fig. 3 Interaction genetic networks of candidate genes in six population of Solanum chilense. (a) The network of flowering regulation involved two
subnetworks, photoperiod and vernalization pathways, for regulation of flowering. (b) The schematic diagram of flowering regulation involved
photoperiod, and vernalization is adapted from Xu & Chong (2018). ‘┤’ indicates repressive effects on gene expression; ‘?’ indicates promotive effects on
gene expression. (c) The network of root development and cell homeostasis. (d) The networks of protein lipidation. Connections represent gene
interactions based on physical interactions, informatics predictions and co-expression analyses. Connection thickness is proportional to weighted value of
the connected genes. The black lines connect two subnetworks, genes under selection are connected by solid lines, and other genes are connected by
dashed line. Node colours correspond to genes detected in genome scans for different populations. Grey circles represent genes not detected in genome
scan, but present in S. chilense; grey squares not present in S. chilense.
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adaptation (Fig. S9a,c,e,g). These analyses show that the two
main RDA axes explain 40% of the variation. Climatic variables
representing temperature variability through the year such as
temperature seasonality (Bio4) and temperature annual range
(Bio7) are consistently correlated with adaptive variation of the
SH population (Figs 4a, S9). A total of 68 SNPs within candidate
genes of the population SH_LA4330 are strongly associated with
these two variables in three of the RDA based on the GO cate-
gories (circadian rhythm-photoperiodism, vernalization and pro-
tein lipidation; Dataset S6). The RDA based on the root-hair
differentiation GO category exhibits a strong differentiation
between lowland and highland populations based on atmosphere

water vapour availability variables (ann_Vmin, ann_AET;
Fig. S9e). Note that the RDA testing for false positives imple-
mented on 1000 random SNPs from nonsweep regions and neu-
tral simulations produced no significant RDA axes and
correlations with any climatic variable.

To assess the occurrence of selection in S. chilense as a response
to past climatic changes, we implement an LGM-RDA using 37
climate variables projected to the LGM conditions (Figs 4b, S9b,
d,f,h; Dataset S5). This LGM-RDA analysis aims to uncover
additional genomic variation selected in response to temporal cli-
matic changes and underlying the SH colonization (Fig. 1b). The
LGM-RDA analyses capture a smaller proportion of the genetic
variability in the first two constrained axes (30%) compared with
the current climatic variables. About 30% of outlier SNPs are
identified in genomic regions correlated with past climatic vari-
ables and not with the current variables (Tables S5, S6). For
example, the central populations C_LA3111 and C_LA2931 are
separated in the past RDA of vernalization genes using LGM cli-
matic variables indicating that warmer climate after LGM may
drive gene flow among central populations as seen in the current
RDA (Figs 2b, S4, S9c,d). The LGM-RDA unveils that high-
altitude populations, especially SH_LA4330, have SNPs correlat-
ing with temperature (i.e. annual mean minimum temperature,
ann_mTmin and temperature annual range; Bio7), whereas
coastal population SNPs do correlate with precipitation and
potential evapotranspiration of the coldest and driest seasons
(Fig. 4b). We use caution in the interpretation of the LGM-RDA
results as we do not know the species distribution during the
LGM. The projection of the species distribution model indicates
persistence in lowland regions but less likely in the highlands.
However, we cannot rule out possible local persistence in some
highland areas given the mild bottlenecks shown by the demo-
graphic analysis (Fig. 2a,c). This analysis is nevertheless useful for
identifying alleles that arose in response to sudden changes in
adaptive climatic optima during glacial–interglacial transitions,
especially in the highland populations.

Age of selective sweeps and timing of selection

We finally estimate the age of 112 selective sweep regions, that is
the time since the fixation of the selected alleles, that overlap
between the three positive selection detection methods (McSwan,
SWEED and OMEGAPLUS; Table 1). These regions contain 175
genes and exhibit a mean sweep age of c. 28 ka. The ages of
sweeps range from as early as 65 ka up to 2.5 ka (Table 1; Fig. 5).
The highland populations exhibit more recent sweeps (2.5–
35 ka) than those at the coastal populations, consistent with the
recent (re)colonization of higher altitudes (Fig. 5). The SC popu-
lations exhibit older and large distributions of sweep age consis-
tent with older events of colonization (2.5–65 ka). Regarding the
key gene networks of relevance for local adaptation highlighted
above (root hair, protein lipidation, vernalization and photope-
riod), each of them exhibits a narrow range of sweep age values
across several populations (Fig. 5). The averages of sweep ages
observed (Table 1) are perfectly in line with the estimates
obtained from the sweep simulations under our demographic

Fig. 4 Redundancy analysis (RDA) ordination biplots between the climatic
variables, populations and genetic variants in all candidate sweeps. RDA
using (a) current climatic variables and (b) Last Glacial Maximum (LGM)
climatic variables. Arrows indicate the direction and magnitude of variables
correlated with the populations. Abbreviations of climatic variables are
provided in Dataset S5.

New Phytologist (2023) 237: 1908–1921
www.newphytologist.com

� 2022 The Authors

New Phytologist� 2022 New Phytologist Foundation

Research

New
Phytologist1916



model (Table S7), demonstrating that our statistical power is ade-
quate to estimate sweep ages under the demographic model and
that old sweeps in the highland populations cannot be recovered
(even if they occurred) in contrast to the coastal populations.

Discussion

Our study is the first to attempt to dissect in plants the complex
selective processes and their genetic bases involved during and
after the colonization of new highly stressful environments
around the Atacama Desert. We not only provide a set of candi-
date genes and functional networks possibly underpinning adap-
tation to arid conditions but also propose mechanisms for the
emergence of adaptive variation in relation to the demographic
history of the species, driven by climate change processes. We
nevertheless acknowledge that the ultimate evidence for local
adaptation and the relevance of genes underpinning adaptive
morpho-physiological traits remains incomplete without func-
tional validation.

Taking our demographic and selection results altogether, we
formulate the following scenario for the highland colonization.
During the past colder climate phases (LGM-MIS2 at 30–
15 ka), the suitable areas of the species likely decreased at high
altitude (Fig. 2c). We speculate that the populations were already
established at high altitude before the LGM (MIS3–5; Fig. 2)
likely in the northern part of the range (from the location of
C_LA3111 up to that of C_LA2931), before a contraction of

the species range occurred towards lower altitudes during the
LGM, and the subsequent colonization of new southern loca-
tions concluded c. 15 ka (post-LGM, SH_LA4330). The high-
land populations (C_LA3111, C_LA2931 and SH_LA4330)
show likely adaptation by a burst, that is over a short time, of
numerous selective sweeps across several gene networks (Fig. 5).
Interestingly, the population SH_LA4330 exhibits selective
sweeps in the vernalization and photoperiod, which pre-date its
establishment. These selective events likely occurred in the
northern part of the range (C_LA3111 and C_LA2931) during
MIS2–4 acting as preadaptation for colonizing the more diver-
gent and extreme environments of the SHs (SH_LA4330;
Fig. 1b). Although the southward colonization may artificially
increase the number of sweeps in the southern populations (espe-
cially SH_LA4330; Slatkin & Excoffier, 2012), we argue that
this effect is likely a minor source of bias. Based on current occu-
pancy data and estimation of the past spatial distribution
(Fig. 2), S. chilense would not exhibit a sufficiently continuous
spatial distribution with frequent extinction–recolonization to
give rise to an expansion wave generating strong allele surfing
(Excoffier et al., 2009). Instead, the species occurs in discrete
habitats such as sheltered valleys, and colonization towards the
south may have likely occurred through discrete dispersal events.
Moreover, it is more plausible that the higher proportion of
sweeps in SH_LA4330 is due to the past demography of this
population maximizing the statistical power to detect sweeps
(especially recent ones).

Fig. 5 Distribution of estimated age of 112
selective sweeps highlighting five marine
isotope stage (MIS) periods of climatic
variation and sweeps containing genes within
the four Gene Ontology categories related to
local adaptation in Solanum chilense. The
points represent mean age and lines, the
95% confidence intervals. Generation
time = 5; l = 10�8.
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The S. chilense lineage likely originates from coastal up to ‘pre-
cordillera’ (800–2000 m altitude) habitats in southern Peru,
explaining the early divergence and southward colonization pro-
cess, accompanied by habitat fragmentation and contraction,
which yields two highly isolated populations on the coast
(Fig. 2b,c; SC_LA2932 and SC_LA 4107). The coastal coloniza-
tion process may have involved fewer sweeps than the adaptation
to higher altitudes, for example several selective sweeps at genes
related to root anatomical traits during the LGM-MIS2 period
(Fig. 5). We speculate here that these sweeps may underlie tem-
poral adaptation to changes in the habitat after colonization.
However, some of the adaptive genomic signals in the coastal
populations could be blurred due to stronger genetic drift (long
history in isolation), or be incomplete/partial/soft sweeps (with
small selection coefficients), which we do not detect (e.g. Garud
et al., 2021).

We find between 60 and 350 selective sweeps per population
showing a large distribution of ages, especially in the SC popula-
tions. We suggest that several sweeps can occur concomitantly in
a given gene pathway/network at a given time period and could
thus promote adaptation to a new habitat or underlie the
response to a moving environmental optimum as predicted under
the polygenic model of adaptation (Polechov�a et al., 2009; Che-
vin et al., 2010; Matuszewski et al., 2014; Jain &
Stephan, 2017a). Selective sweeps can be observed because the
populations of S. chilense exhibit large effective sizes (Fig. 2;
B€ondel et al., 2015), especially when compared to the small
aboveground abundance (census size) reported in these semiarid
habitats (Tellier et al., 2011). Solanum chilense is outcrossing and
exhibits persistent seed banking. Both factors contribute to gener-
ate large effective population sizes by decreasing LD and the
effect of linked selection, buffering the negative impact of bottle-
necks and enhancing recovery postcolonization (Fig. 2; Tellier
et al., 2011; �Zivkovi�c & Tellier, 2018). We suggested (�Zivkovi�c
& Tellier, 2018) and recently demonstrated (Korfmann
et al., 2022) that seed banks increase the power to detect selective
sweeps and to recover signatures of older selective events. The
presence of seed banking changes the patterns of polymorphism
around selected sites (linked selection) as well as the efficacy of
selection compared with populations without dormancy
(�Zivkovi�c & Tellier, 2018; Korfmann et al., 2022). As a result,
the detection of old sweeps is possible and stretches beyond the
theoretical limit of 0.1 Ne (Kim & Stephan, 2002). Furthermore,
in species with seed banks we are able to detect and infer accu-
rately the correct times to the most recent common ancestor
(tMRCA) of a sample (Sellinger et al., 2020), even with inference
methods that do not account for seed banks. Indeed, the Ne

inferred combines the real number of aboveground plants in the
population and the influence of the seed bank strength, so that
the estimation of tMRCA of a sample is correctly estimated in
units of Ne (Sellinger et al., 2020). We argue that our estimates
of the sweep ages are likely robust to the presence of seed banks
because McSwan (a method ignoring seed banking) infers the
tMRCA of the selected window.

As a word of caution, we focus on four main GO categories,
which can be reliably associated with physiological traits

underlying adaptation: root-hair differentiation, vernalization,
photoperiod and protein lipidation. Pinpointing the regulatory
or noncoding SNPs under selection was not possible with our
sample sizes and functional information on many candidate
genes is still lacking to provide a complete picture. We indeed
should not assume that all genes in the outlier windows are
under selection, and therefore, we designed a strategy in several
steps reducing the amount of potentially hitchhiking genes.
First, we reduce the set of candidate genes to only those in the
overlapping regions of the outlier windows identified with dif-
ferent methods (SWEED and OMEGAPLUS, which rely on differ-
ent summary statistics). Second, this subset was then reduced to
a set of genes that enriched biological functions showing physio-
logical meaning based on the ecology of the populations (albeit
avoiding the caveat described in Pavlidis et al., 2012). Third,
we use the GEA analysis to focus only on a subset of outlier
genes for demography and which correlate with key current and
past climatic variables. We verified that the variants in the
selected genes show the expected distributions (hallmarks of
selective sweeps) in population genetics statistics compared with
genome-wide patterns. We acknowledge the limitations of geno-
mic scans for selection in nonmodel species for which a recom-
bination map is lacking and small sample size limit our ability
to zoom in the sweep regions. Therefore, it is likely that our
approach despite being conservative may have generated some
false positives and missed some genes under selection. Further-
more, we focus here on selective sweeps resulting from strong
positive selection as we cannot assess in our data the occurrence
of weaker positive (polygenic) selection or signatures of soft or
incomplete sweeps (Jain & Stephan, 2017b; Barghi et al., 2020;
Garud et al., 2021). Yet, we are confident that most of our can-
didate genes under selection are likely functionally relevant, as
demonstrated by the overlap with previous studies (B€ondel
et al., 2015; Nosenko et al., 2016; Stam et al., 2019b).

We finally note the possible bias in our results due to the use
of accessions maintained and multiplied at TGRC. Indeed, acces-
sion multiplication may change allele frequencies and bias some
of our demographic and selection inference. We provide in
Fig. S10 a summary of the previous data from B€ondel
et al. (2015) containing the accessions of this study, in which we
find that the maintenance at TGRC does reduce the number of
rare alleles but only for accessions multiplied more than twice. As
the accessions used here have been multiplied only once or twice,
we consider that the bias may likely be minor in our inference. A
second possible bias is the discrepancy in original sample sizes
between our TGRC accessions in the field. This number (7–16
across our accessions) may potentially generate a heterogeneous
bias across populations for some population genetic estimates.
We observed such an effect in our previous studies with higher
sequencing sample sizes (B€ondel et al., 2015; Stam et al., 2019b)
and thus chose to combine several conservative approaches for
inference of demography and selection. Future work is needed to
quantify the possible errors in inference due to the choice of dif-
ferent TGRC accessions. Our selection scans are not exhaustive,
and future work requires larger sample sizes, original material
from S. chilense populations from the field and direct fitness
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measures under field-relevant conditions to reveal the full extent
of selection in this species.
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