

Selective sweeps linked to the colonization of novel habitats and climatic changes in a wild tomato species

Kai Wei* 🝺, Gustavo A. Silva-Arias* 🝺 and Aurélien Tellier 🝺

Population Genetics, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Liesel-Beckmann Strasse 2, 85354 Freising, Germany

Summary

Author for correspondence: Gustavo A. Silva-Arias Email: gustavo.silva@tum.de

Received: *12 July 2022* Accepted: *16 November 2022*

New Phytologist (2023) **237:** 1908–1921 **doi**: 10.1111/nph.18634

Key words: age of sweeps, climate change, gene network, local adaptation, selective sweeps.

• Positive selection is the driving force underpinning local adaptation and leaves footprints of selective sweeps on the underlying major genes. Quantifying the timing of selection and revealing the genetic bases of adaptation in plant species occurring in steep and varying environmental gradients are crucial to predict a species' ability to colonize new niches.

• We use whole-genome sequence data from six populations across three different habitats of the wild tomato species *Solanum chilense* to infer the past demographic history and search for genes under strong positive selection. We then correlate current and past climatic projections with the demographic history, allele frequencies, the age of selection events and distribution shifts.

• Several selective sweeps occur at regulatory networks involved in root-hair development in low altitude and response to photoperiod and vernalization in high-altitude populations. These sweeps appear to occur in a concerted fashion in a given regulatory gene network at particular periods of substantial climatic change.

• Using a unique combination of genome scans and modelling of past climatic data, we quantify the timing of selection at genes likely underpinning local adaptation to semiarid habitats.

Introduction

Adaptation to abiotic conditions often occurs by means of positive selection. In heterogeneous environments, however, plants may be strongly influenced by locally variable selection. This can lead to the divergence of populations at key loci (Savolainen et al., 2013; Tiffin & Ross-Ibarra, 2014), and results in tradeoffs where native alleles show a fitness advantage relative to foreign alleles (antagonistic pleiotropy) culminating in local adaptation (Kawecki & Ebert, 2004). Positive selection also underlies plant adaptation when colonizing new habitats (Savolainen et al., 2013; Tiffin & Ross-Ibarra, 2014), and/or when the environment changes in time at a given location (Polechová et al., 2009). With recent advances in sequencing technologies, it is possible to study genomes of many individuals across different populations to reveal the genetic bases underpinning adaptation to abiotic stress. This can be achieved by genome scans for genes exhibiting signatures of selection in genome-wide polymorphism data, correlation between allele frequencies and environmental variables, and/or genome-wide association studies with relevant phenotypes (review in e.g. Savolainen et al., 2013; Josephs et al., 2017; Fagny & Austerlitz, 2021). Revealing the genetic bases of adaptation is important not only from an evolutionary biology perspective, but also to predict a species' ability to colonize new niches and for applications to agriculture, whereby

*These authors contributed equally to this work.

crops could be improved for stress tolerance using key adaptation genes found in related species.

Phenotypic traits of tolerance to abiotic stresses involve a set of complex and intertwined physiological, molecular, biochemical, and hormonal mechanisms and signals (Tardieu & Tuberosa, 2010), and therefore are complex (polygenic) traits encoded by many genes involving several gene networks or pathways. There has been a growing interest in the evolution of such polygenic traits, with several theoretical predictions regarding the speed and genetic architecture of adaptation to either the local optimum of a newly colonized habitat (Chevin et al., 2010), or the moving environmental optimum, that is a changing environment in time at a given location (Polechová et al., 2009; Matuszewski et al., 2014; Jain & Stephan, 2017a). Under large enough population sizes and strong shifts in the environmental optimum, both models predict that more significant steps of adaptation occur first at sites with strong selective coefficients, possibly generating selective sweeps (Chevin et al., 2010; Matuszewski et al., 2014; Jain & Stephan, 2017a). The so-called (hard) selective sweeps are polymorphism patterns (footprints) in the genome due to the rapid (tens to hundreds of generations) fixation of advantageous alleles and the associated hitchhiking effect (Smith & Haigh, 1974; Kim & Stephan, 2002). In other words, the theory of selective sweeps is not incompatible with that of polygenic selection (Barghi et al., 2020), and different numbers of major genes exhibiting selective sweep signatures are expected to underlie fast and strong adaptation of complex (polygenic)

Fig. 1 Geographic distribution and population structure of *Solanum chilense*. (a) Map with distribution of all *S. chilense* populations by the Tomato Genetics Resource Center, the six *S. chilense* populations in this study (black circles), the four population groups (circles with other colours) and the two reconstructed southward colonization events, first to the south-coast and second to the south-highland (SH) (black arrows). (b) Principal component (PC) analysis of 63 current climatic variables from all *S. chilense* populations (Dataset S5). Population structure using SNP data based on (c) PC analysis and (d) structure analysis reveals the suitable subgroups (optimal *K* value is 4; Fig. S1b).

traits. The number and identity of these genes depend on the distribution of selection coefficients among the multiple genes involved in the traits, the efficiency of selection (a function of effective population size and recombination rate), the architecture of the traits, place of genes in gene networks/pathways and gene pleiotropy (Jain & Stephan, 2017b; Barghi *et al.*, 2020). Hard selective sweeps represent indeed one possible but more easily observable outcome of strong positive selection when considering that genes act in complex networks (polygenic quantitative traits) determining adaptation to new environmental conditions, for example abiotic stress. We focus here on detecting genes that have been under strong positive selection in the past and which underlie plant adaptation to new habitats or to

changing environmental conditions in the wild relative tomato species *Solanum chilense*.

Solanum chilense (Dunal) Reiche is an outcrossing species found in southern Peru and northern Chile in mesic to very arid habitats (Nakazato *et al.*, 2010). Its ancestral range is likely to be in marginal desert habitat of the coast and mid-altitude 'pre-cordillera' regions (800–2000 m altitude) of southern Peru. *Solanum chilense* colonized independently two different southern isolated regions around the Atacama Desert at different time periods (Fig. 1a; Böndel *et al.*, 2015; Stam *et al.*, 2019b): an early divergence (older than 50 thousand years ago (ka)) with the colonization of coastal habitats (in Lomas formations) and a more recent lineage divergence (< 25 ka) restricted to highland altitudes (above 2400 m) of

the Andean Plateau. Signatures of natural selection (positive or balancing) of genes involved in stress adaptation were found when scanning few candidate genes for biotic and abiotic stress response (Xia et al., 2010; Fischer et al., 2011; Böndel et al., 2015, 2018; Nosenko et al., 2016; Stam et al., 2019b). In the present study, we obtained full-genome sequence data for 30 diploid and highly heterozygous plants from six populations representing the three main habitats of the species (Fig. 1a; Böndel et al., 2015): the central group (area of origin at low-to-high altitude, denoted as group C), south-coastal (SC) group and south-highland (SH) group. The SH group strongly differs from the central group in terms of current climatic conditions (higher daily and annual temperature ranges, summer potential evapotranspiration and solar radiation), while the SC appears as only marginally different from the environment prevailing in the central group (higher minimum temperature in summer and winter and frequent fog episodes; Fig. 1b). Our aims are first to infer accurately the past demographic history of species colonization and to reconstruct recent dynamics of the species' distribution range in response to climatic history. Second, we conduct genome scans for selective sweeps and assign functions and gene network topology to the genes located within the sweeps. Third, we link climatic and genetic data at candidate genes using a genotype-environment association (GEA) analysis to highlight the relevance of key gene regulatory networks (pathways) for adaptation. We finally discuss the history of adaptation in S. chilense and future empirical studies needed to test and validate our results.

Materials and Methods

Sample collection, sequencing, and bioinformatics

Plants were grown in standard glasshouse conditions from seeds obtained from the Tomato Genetics Resource Center (TGRC, University of California, Davis, CA, USA). We sampled five diploid plants from accessions C_LA1963, C_LA3111, C_LA2931, SH_LA4330, SC_LA2932 and SC_LA4107 representing the three main geographic groups (Fig. 1a; Table S1). Genomic DNA was extracted using the extraction kit from Qiagen and sequenced on an Illumina HiSeq 2500 with standard library size of 300 bp (Eurofins Genomics, Ebersberg, Germany). The whole-genome sequencing data are available on ENA in BioProject PRJEB47577.

We performed quality control of the raw reads and trimmed calls with insufficient quality or adapter contamination. The clean reads were mapped to the *Solanum pennellii* reference genome (Bolger *et al.*, 2014) available from Solanaceae Genomics Network using the BURROWS–WHEELER ALIGNMENT tool (v.0.7.16) with default settings (Li & Durbin, 2009) and sorted with SAMTOOLS (v.1.5; Wysoker *et al.*, 2009). The raw alignments were then processed to add read groups, mark duplicates, and fix mates. Variant calling was performed using the HAPLO-TYPECALLER tool of GATK (McKenna *et al.*, 2010) with default parameters. Individual genomic variant files were then combined into a variant matrix with the GENOTYPEGVCFs tool and annotated based on the gene annotation of the *S. pennellii* reference (details in Methods S1).

Population genetics analyses and inference of demographic history

For all population genetics analyses, we used *S. pennellii* LA0716 as outgroup when needed. We built a maximum likelihood phylogenetic tree and performed a principal component analysis (PCA) and the inference of population structure with ADMIXTURE (Alexander *et al.*, 2009). Population genetics statistics, namely nucleotide diversity (π), Tajima's *D* and *F*_{ST} for each population (or pairs of populations), were calculated with ANGSD v.0.937 (Korneliussen *et al.*, 2014) over 100-kb sliding nonoverlapping windows. The linkage disequilibrium (LD) levels were calculated per population as the genotype correlation coefficient (r^2) between two loci using VCFTOOLS (Danecek *et al.*, 2011) with a maximum distance of 1000 kb.

The demographic inference was conducted using the Multiple Sequentially Markovian Coalescent method (MSMC2) with phased VCF files and 40 hidden states (Malaspinas *et al.*, 2016). The cross-coalescence analysis was performed for each pairwise comparison of genomes between pairs of populations to estimate divergence times and migration rates with MSMC-IM (Wang *et al.*, 2020). Phasing was generated with SHAPEIT v.2 under the LD mode (Delaneau *et al.*, 2012), assuming generation time of 5 yr (uncertainty interval 3–7) and mutation rate per generation of 1×10^{-8} (uncertainty interval 5.1×10^{-9} – 2.5×10^{-8} , based on Roselius *et al.*, 2005), accounting for uncertainty in these estimates (details in Methods S1).

Modelling present and past species distribution

We reconstructed the environmental space occupied by *S. chilense* extracting the environmental conditions at the current occurrence points and summarize them by PCA (Fig. 1b; Legendre & Legendre, 2012). The environmental data include 63 climatic layers obtained from three databases: WorldClim2 (Fick & Hijmans, 2017), ENVIREM (Title & Bemmels, 2018) and the Consultative Group on International Agricultural Research (Trabucco & Zomer, 2019; Dataset S5). The PCA was performed by the *prcomp* function in R (R Core Team, 2020).

We then performed an ensemble modelling framework (Araujo & New, 2007) using the BIOMOD2 package (Thuiller *et al.*, 2009, 2014) in R, using eight modelling algorithms, five cross-validation replicates and 10 pseudo-absence sampling sets, therefore completing a total of 400 models. Consensus niche models were obtained using a TSS-weighted average method to account for the predictive power of each fitted model (models with TSS < 0.7 were discarded). All fitted suitability models were then projected to infer the distribution of suitable habitats of *S. chilense* under current climatic conditions and during the Last Glacial Maximum (LGM; *c.* 21 ka) (details in Methods S1).

Genome-wide selection scans and statistical power

We identified selective sweeps using biallelic SNPs by SwEED (Pavlidis *et al.*, 2013) and OMEGAPLUS (Alachiotis *et al.*, 2012). The CLR statistics in SwEED were calculated with default

parameters with 10-kb intervals. OMEGAPLUS statistics (ω) were computed at 10-kb intervals. We specified a minimum window of 10 kb and a maximum window of 100 kb to be used for computing LD values between SNPs. Outlier CLR and ω statistics indicative of a selective sweep are defined in comparison with genome-wide distribution values. To reduce false-positive outliers derived from demographic processes, the cut-off values of the CLR and ω statistics were defined by coalescent simulations of the inferred demographic history. The maximum value of each statistic was extracted from each simulated dataset, and we thus obtained a distribution of 10 000 maximum values for each statistic. The 95th percentile of this maximum distribution was specified as the threshold to identify outlier windows. We used the coalescent simulator SCRM (Staab et al., 2015) to generate 10 000 neutral datasets of 10 Mb based on the demographic history of each population and assuming a varying recombination rate every 100 kb within each 10 Mb simulated block (recombination rate varied between $0.1 \times \theta$ and $10 \times \theta$). Using the genomic coordinates, we then extracted only the overlap regions between the two methods, which are regarded as high confident selective sweep regions. As independent confirmation of the sweep regions, we used McSwan (Tournebize et al., 2019) to detect sweeps and estimate their age. McSwan was run with the same parameters as SWEED.

To evaluate the sensitivity of our sweep detection, we simulated 1000 selective sweeps assuming five N_e -scaled selection coefficients from nearly neutral to strong selection $(2N_es = 0.1, 1, 10, 100 \text{ and } 1000)$ for each of the six populations under the inferred demographic model, with five different sweep ages (8, 14, 29, 50 and 71 ka). We used the function *generate_pseudoobs* based on MSMS simulator implemented in the MCSWAN R package (Ewing & Hermisson, 2010; Tournebize *et al.*, 2019). We then ran SWEED, OMEGAPLUS and MCSWAN on all simulated datasets using the same parameters and thresholds defined above to quantify the percentage of sweeps detected per population (and age of the sweeps) (details in Methods S1).

Gene Ontology enrichment analysis and gene networks

Due to the lack of a complete gene function annotation database, we performed a BLASTX against the NCBI database of nonredundant proteins (nr) screened for green plants (e-value cut-off was 10^{-6}) and used BLAST2GO to assign Gene Ontology (GO) terms for each gene within the sweep regions (Conesa et al., 2005; Conesa & Götz, 2008) and a BLAST to the Arabidopsis thaliana dataset TAIR10 to remove redundant terms (Berardini et al., 2015). The false discovery rates were calculated to estimate the extent to which genes were enriched in given GO categories (significance cut-off of P < 0.05). For each of the genes enriched in specific biological processes, we retrieved the interacting gene neighbours using GeneMANIA (Warde-Farley et al., 2010). We generated aggregate interaction networks in GeneMANIA, based on physical interactions, in silico predictions and co-expression. Finally, we performed hierarchical clustering and manually optimized the weighted value cut-off for displaying the gene network (details in Methods **S1**).

Redundancy analysis

We tested for GEA using redundancy analysis (RDA; Capblancq & Forester, 2021) using the *rda* function from the VEGAN package in R (Oksanen et al., 2015), modelling genotypes as a function of the same climatic predictor variables used for the niche reconstruction analyses and producing constrained axes and representapredictors. Multicollinearity between representative tive predictors was assessed using the variance inflation factor (VIF); since all predictor variables showed VIF < 20, none were excluded. This may still cause some collinearity, but it is beneficial to find more connections between genotypes and environments. The significance of RDA-constrained axes was assessed using the anova.cca function, and significant axes were then used to identify candidate loci (P < 0.001). Candidate loci were identified using 2.5 SD as cut-off (two-tailed P = 0.012). In order to measure the rate of false-positive associations due to the demographic history, we also performed the same RDA analysis using a set of 1000 randomly chosen SNPs from nonsweep regions, and polymorphism data from the neutral simulations are used to calibrate the SWEED and OMEGAPLUS thresholds (details in Methods S1).

Results

Past colonization events and climatic variations in *S. chilense*

We sequenced whole genomes of 30 heterozygous plants from S. chilense from six populations (C_LA3111, C_LA1963, C_LA2931, SC_LA2932, SC_LA4107 and SH_LA4330; Fig. 1a; Table S1). All individuals show high-quality sequence and mapping scores with >97% of mapping paired reads, individual genome coverage ranging between 16 and 24 reads per base, and >70% genome coverage per sample (Dataset S1). After SNP calling and filtering, a total of 34 109 217 SNPs are identified across all samples (Table S2) for a genome size estimated approximately to be 914 Mb (Stam et al., 2019a). Phylogenetic analysis, PCA and population genetics statistics (Figs 1c, S1, S2; Tables S3, S4) support the population structure into three genetic groups, confirming the results in Böndel et al. (2015): a central group (C LA1963, C LA3111 and C LA2931), the SH group (SH_LA4330) and the south-coast group (SC_LA2932 and SC_LA4107). The two south-coast populations constitute independent groups (best K = 4; Figs 1d, S1b-d). Only the individuals of the population C_LA2931 (the southernmost of the central group) display small admixed ancestry coefficients (< 5%) with the SH group (SH_LA4330; Fig. 1d). There is no significant correlation between genetic (pairwise Nei's distance) and geographical distance (Pearson test, r = 0.35, P = 0.20; Fig. S1e).

As we confirm that *S. chilense* independently colonized the coastal and highland southern habitats from a lowland area located north of the central group region (Böndel *et al.*, 2015; Stam *et al.*, 2019b), we further refine our estimates of the historical changes in effective population size (N_e , Figs 2a, S3), divergence and potential postdivergence gene flow (Fig. S4) and

Fig. 2 Demographic history and species distribution model of *Solanum chilense* for current and Last Glacial Maximum (LGM) climate conditions. (a) The estimation of historical patterns of effective population size (N_e) for 10 pairwise genome comparisons per population using the Multiple Sequentially Markovian Coalescent (MSMC) model. (b) Interpreted demographic scenario for the six sample populations of *S. chilense* including the likely estimations of effective population size, divergence times and gene flow. The width of the boxes represents the relative effective population size; arrows represent the migration between population pairs. Grey background boxes indicate five Marine isotope stages (MIS) in climatic periods. (c) Overlay of the reconstruction of the distribution model for *S. chilense* using current climatic variables (red) and LGM past climatic variables (blue). Darker colour of the gradient indicates higher suitable habitat for a given climatic period.

finally construct a consensus demographic model (Fig. 2b; Dataset S2; see Fig. S3 accounting for mutation rate and generation time uncertainties). These estimates are compared in Fig. 2 (b) with the reconstructed past climatic variation highlighting five marine isotope stage (MIS) climatic periods (Lisiecki & Raymo, 2005; Ritter et al., 2019). The two south-coast populations found in Lomas habitats (SC_LA2932 and SC_LA4107) show early divergence consistent with the admixture analysis (during the Last Interglacial period, MIS5) likely from the lowland area of the central group (C LA1963). The colonization of the highlands likely occurred later, first in the central group region (C_LA3111, C_LA2931) between the Last Interglacial and LGM periods (c. 75-130 ka, MIS3-4) and then with further colonization of southern highlands (from 30 ka, MIS1-2, SH LA4330). All populations show a moderate effective size reduction matching with the estimated time of the LGM characterized as a cold and dry period and supported by a contraction of the suitable habitats to a narrow strip in lower altitudes, and a

subsequent expansion thereafter (Fig. 2a,c). Indeed, the local habitat at the current location of C_LA2931 and SH_LA4330 was likely unsuitable for the establishment of southern highland populations until 15 ka (after the LGM, i.e. during MIS1–2; Fig. 2c). The lower genetic diversity of the south populations (and estimated N_e) is thus due to a mild colonization bottleneck during the southward expansion (Figs 2a,c, S2; Table S3). Both south-coast populations show consistent signals of the long-term history of colonization, subsequent isolation with negligible gene flow and possible local specialization to sparsely suitable Lomas habitats along the coast (Figs 2b,c, S3).

The divergence between the central group populations (during MIS3–4) occurs in parallel to the colonization of the coastal habitat (Figs 2b, S4), but before the colonization of the SH (SH_LA4330). Moreover, strong postdivergence gene flow and low differentiation are found in the central group, especially among the pairs C_LA1963-C_LA3111 and C_LA3111-C_LA2931 (Figs S2c, S4), consistent with their geographical

Population	Genome scans				Sweep age			
	N _{SweeD}	N _{OmegaPlus}	N _{overlaps1}	N _{genes1}	N _{McSwan}	N _{overlaps2}	N _{genes2}	Age _{mean} (kyr)
C_LA1963	385	2474	98	86	267	16	14	38 ± 16
C_LA2931	517	2268	109	125	355	24	28	20 ± 10
SC_LA2932	374	1717	46	101	302	15	29	36 ± 15
C_LA3111	663	2307	105	107	377	22	22	23 ± 11
SC_LA4107	203	2047	37	61	194	11	13	34 ± 10
SH_LA4330	779	2293	125	354	438	36	71	17 ± 8

 Table 1
 Summary of genome scans and estimation of sweep age.

Age_{mean}, mean age \pm SD of overlaps2; N_{genes1} , number of candidate genes in overlaps1, and all candidate genes show in Dataset S3; N_{genes2} , number of genes in overlaps2; N_{McSwan} , number of outlier regions from McSwan; $N_{OmegaPlus}$, number of outlier regions from OMEGAPLUS; $N_{overlaps1}$, number of overlapping regions between SWEED and OMEGAPLUS; $N_{overlaps2}$, number of overlapping regions between McSWAN and overlaps1; N_{SweeD} , number of outlier regions from SWEED.

and/or environmental proximity (Fig. 1a,b) and the range contraction during the LGM (MIS2 in Fig. 2). The colonization of high-altitude regions in the central group is thus accompanied by high levels of gene flow despite these populations ranging across a large altitudinal gradient (2500 m of altitude difference between C_LA1963 and C_LA3111 or C_LA2931). The divergence history results in the south-coast and SH populations being fairly isolated from one another (as separated by the Atacama Desert) supporting the suggestion of an incipient speciation process (Figs 2b, S4; Raduski & Igić, 2021). In contrast to the study of Böndel *et al.* (2015), our smaller number of populations and the independent divergence histories of the two southern groups do not allow us to find a significant signature of isolation by distance.

Selective sweeps underpin local adaptation

In total, we find 2921 candidate sweep regions with SWEED (mean size 212 858 bp \pm 3938) and 13 106 with OMEGAPLUS (mean size 59 618 bp \pm 521) across all six populations (Table 1), yielding a total of 520 overlapping regions (mean size 41 082 bp \pm 1618). Although we calculate SWEED and OMEGA-PLUS statistics by 10 kb intervals, we found in fact that the estimated sweeps in SweeD are larger than those in OMEGAPLUS. Therefore, in most cases sweep regions identified from SWEED overlap with multiple sweep regions identified from OMEGAPLUS. These regions contain 799 protein-coding candidate genes assumed to be under positive selection (Fig. S5; Dataset S3). In SC_LA4107, we find 61 candidate genes and c. 100 candidate genes are detected in each of the other four populations (Table 1). The largest number of candidate genes (354) is found in SH_LA4330 (Table 1), likely because the population has been established recently (Fig. 2a,b), and its habitat is ostensibly different from the rest of the species range (Fig. 1b).

We present two arguments supporting that our cut-off values are well designed on the basis of the population demography to reasonably discriminate between demography and selection signals (as shown in Huber *et al.*, 2014). First, the comparison of genome-wide genetic diversity statistics (θ_{π} and Tajima's *D*) between the observed data and the neutral simulations shows that our demographic scenario captures well the genomic diversity patterns in all populations (Fig. S2). Second, we estimate by simulations the accuracy (statistical power) to detect sweeps under our demographic model and a range of selection coefficients and sweep ages. The accuracy is found to be between 0-53.6% for nearly neutral to weak selection coefficients ($2N_{es} = 0.1-10$), 20.3–90.5% for strong selection ($2N_e s = 100$) and 64.7–93.8% for very strong selection ($2N_{es} = 1000$; Fig. S6). From the simulations, SH_LA4330 exhibits higher statistical power than the other populations (Fig. S6). Furthermore, the detection power increases for intermediate sweep ages (14-50 ka; Fig. S6). This demonstrates that our defined thresholds for sweep detection are conservative and allow minimizing the rate of false positives, at the small cost of not detecting all selective sweeps, especially if the selection coefficients are too small and the sweeps are too recent or too old (Fig. S6). Furthermore, only a few candidate genes are shared among different populations, with the central and SH populations sharing a small number of candidate genes, while almost none are shared between the two SC populations (Fig. S5c). This lack of common candidate genes among populations is likely due to the high effective population sizes (Fig. 2a) generating new variants across many genes, which are then differentially picked up by selection across different populations; the relatively old interpopulation divergence and timing of local adaptation; and the marked environmental differences between the central and the two southern regions promoting sweeps in different pathways.

An overview of population genetics statistics shows that our candidate regions exhibit typical characteristics (lower nucleotide diversity, higher LD, more negative Tajima's D and higher pairwise $F_{\rm ST}$ values) of positively selected regions when compared to the genome-wide statistics (see Notes S1; Fig. S7; Tables S3, S4). Furthermore, we find an overlap between our candidate genes and genes exhibiting signals of positive selection in previous studies in *S. chilense*, which are based on different plants, populations and sample sizes. Among our candidate genes, we indeed find three genes (*JERF3*, *TPP* and *CT*189) involved in abiotic stress tolerance such as salt, drought or cold (Böndel *et al.*, 2015) as well as three nucleotide-binding leucine-rich repeats (SOLCI006592800, SOLCI001535800 and SOLCI005342400)

possibly linked to resistance to pathogens (Stam *et al.*, 2019b). We also find that two of the seven most up-regulated genes under cold conditions in a transcriptomic study of *S. chilense* (Nosenko *et al.*, 2016) do appear in our selection scan in high-altitude populations: *CBF3* (Solyc03g026270) in C_LA2931 and *CBF1* (Solyc03g026280) in SH_LA4330. These results indicate that our genome-wide selective sweep scan generalizes the previous studies in *S. chilense* and supports the functional relevance of our candidate genes.

Gene regulatory networks underlying local adaptation in *S. chilense*

A GO enrichment analysis of the 799 candidate genes reveals common GO categories in all populations for basic cell metabolism, immune response, specific organ development and response to external stimuli (Fig. S8). Most interesting are four GO categories restricted to populations with distinct habitats (1) roothair cell differentiation functions are enriched in 15 candidate genes, only in the three coastal populations (C LA1963, SC LA2932 and SC LA4107); (2) response to circadian rhythm, photoperiodicity and flowering time are enriched in 12 candidate genes in two high-altitude (C_LA3111 and SH_LA4330) and a south-coast (SC LA2932) population; (3) vernalization response is enriched in eight candidate genes in the three high-altitude populations (C_LA2931, C_LA3111 and SH_LA4330); and (4) protein lipidation is enriched in seven candidate genes in the SH population (SH_LA4330). Based on the wealth of available data in cultivated tomato, S. pennellii and A. thaliana, we further study the gene regulatory networks to which the candidate genes belong.

For adaptation to high-altitude conditions, 15 candidate genes are interconnected in a flowering gene network, which is itself subdivided into two sub-networks related to flowering, photoperiod and vernalization control pathways (Fig. 3a; Dataset S4). Photoperiod-responsive genes can sense changes in sunlight and affect the circadian rhythm to regulate plant flowering (Johansson & Staiger, 2015; Song et al., 2015), while vernalization genes regulate flowering and germination through long-term low temperature (Guo et al., 2018; Xu & Chong, 2018; Iida & Mähönen, 2020). These two sub-networks are connected through several key genes, some of which appear as candidate genes entailing local adaptation in our populations: FL FLOW-ERING LOCUS C, FLOWERING LOCUS T and AGAMOUS-LIKE genes (AGL; Fig. 3a,b). These key genes are essential regulators acting on the flowering regulation pathway (Michaels & Amasino, 1999; Sheldon et al., 2000; Turck et al., 2008; Putterill & Varkonyi-Gasic, 2016). Some candidate genes in the recently diverged SH population (SH_LA4330) aggregate into an independent network involved in circadian rhythm regulation, connected to the photoperiod network by JUMONJI DOMAIN CONTAINING 5 and also a candidate gene in C_LA3111 (Fig. 3a). In the central-highland population (C_LA3111), several other candidate genes of the photoperiod network also regulate circadian rhythm and flowering time. The three high-altitude populations (C LA3111, C LA2931 and

SH_LA4330) have AGL gene family candidates in the vernalization network (Fig. 3a). We also note that the network of protein lipidation genes appears to be related to the synthesis of fatty acids in the SH population (Fig. 3d; Dataset S4). We speculate that this latter adaptation may be related to adaptation to the lowest-temperature stress of SH_LA4330 (Dataset S5; Maksimov *et al.*, 2017; Jiang *et al.*, 2018). Adaptation to high altitude involves the regulation of flowering, including photoperiod and vernalization pathways, but through different genes in different populations, while cold stress and its consequence (adaptation in lipidation pathway) may be relevant for adaptation to the highest altitudes (SH_LA4330).

Regarding adaptation to coastal conditions, we find 11 candidate genes related to root development and cellular homeostasis functions clustered in a single network (Fig. 3c; Dataset S4). We speculate that the drought and water shortage typical of the coastal conditions (Dataset S5) would promote the differentiation and extension of plant roots (Xiong *et al.*, 2013; Li *et al.*, 2017). The cell WALL ASSOCIATED LINASE 4, a candidate gene identified in SC_LA4107, acts as a linker of signal from the cell wall to the plasma membrane and thus serves a vital role in lateral root development (He *et al.*, 1999; Lally *et al.*, 2001). We also find genes involved in cell homeostasis (Fig. 3c; Dataset S4), which would be critical for the coastal drought and salinity conditions to maintain the stability of the intracellular environment in the coastal habitats (Forni *et al.*, 2017; Zhao *et al.*, 2020). Further details can be found in Notes S2.

Candidate genes show genotype-environment associations

Our candidate loci are hypothesized to be responsible for adaptation to local climatic conditions, so we test for GEA using RDA. We perform first a 'present day' RDA using 144713 SNPs from all candidate regions and 63 climatic variables representing current conditions for temperature, precipitation, solar radiation and wind (Dataset \$5). We find that the two first RDA axes are significant (ANOVA, P<0.001) and retain most (38% and 21%) of the putative adaptive genetic variance identified in the genome scans in all populations (Fig. 4a). Tables S5 and S6 summarize outlier SNPs in different RDA models and their correlation with climatic variables. In concordance with the PCAs of both climatic and genomic variation (Fig. 1b,c), the two main RDA axes cluster the individuals into three groups corresponding to the main geographical regions (central, SH and SC), supporting that those axes synthesize the principal selective pressures for local spatial adaptation along with the species distribution (Fig. 4a; Table S6). RDA1 represents the differentiation of the two south-coast populations in correlation with higher precipitation of the coldest quarter (Bio19) and annual variation of solar radiation (CV_R), and RDA2 summarizes a climatic gradient differentiating the SH population mainly driven by annual potential evapotranspiration and temperature annual range (Bio7; Table S6).

Further RDA analyses based on gene variants of the GO categories circadian rhythm-photoperiodism, vernalization, root-hair differentiation and protein lipidation highlight combinations of climatic variables and genetic variants related to local spatial

Fig. 3 Interaction genetic networks of candidate genes in six population of *Solanum chilense*. (a) The network of flowering regulation involved two subnetworks, photoperiod and vernalization pathways, for regulation of flowering. (b) The schematic diagram of flowering regulation involved photoperiod, and vernalization is adapted from Xu & Chong (2018). ' \dashv ' indicates repressive effects on gene expression; ' \rightarrow ' indicates promotive effects on gene expression. (c) The network of root development and cell homeostasis. (d) The networks of protein lipidation. Connections represent gene interactions based on physical interactions, informatics predictions and co-expression analyses. Connection thickness is proportional to weighted value of the connected genes. The black lines connect two subnetworks, genes under selection are connected by solid lines, and other genes are connected by dashed line. Node colours correspond to genes detected in genome scans for different populations. Grey circles represent genes not detected in genome scan, but present in *S. chilense*; grey squares not present in *S. chilense*.

Fig. 4 Redundancy analysis (RDA) ordination biplots between the climatic variables, populations and genetic variants in all candidate sweeps. RDA using (a) current climatic variables and (b) Last Glacial Maximum (LGM) climatic variables. Arrows indicate the direction and magnitude of variables correlated with the populations. Abbreviations of climatic variables are provided in Dataset S5.

adaptation (Fig. S9a,c,e,g). These analyses show that the two main RDA axes explain 40% of the variation. Climatic variables representing temperature variability through the year such as temperature seasonality (Bio4) and temperature annual range (Bio7) are consistently correlated with adaptive variation of the SH population (Figs 4a, S9). A total of 68 SNPs within candidate genes of the population SH_LA4330 are strongly associated with these two variables in three of the RDA based on the GO categories (circadian rhythm-photoperiodism, vernalization and protein lipidation; Dataset S6). The RDA based on the root-hair differentiation GO category exhibits a strong differentiation between lowland and highland populations based on atmosphere water vapour availability variables (ann_Vmin, ann_AET; Fig. S9e). Note that the RDA testing for false positives implemented on 1000 random SNPs from nonsweep regions and neutral simulations produced no significant RDA axes and correlations with any climatic variable.

To assess the occurrence of selection in S. chilense as a response to past climatic changes, we implement an LGM-RDA using 37 climate variables projected to the LGM conditions (Figs 4b, S9b, d,f,h; Dataset \$5). This LGM-RDA analysis aims to uncover additional genomic variation selected in response to temporal climatic changes and underlying the SH colonization (Fig. 1b). The LGM-RDA analyses capture a smaller proportion of the genetic variability in the first two constrained axes (30%) compared with the current climatic variables. About 30% of outlier SNPs are identified in genomic regions correlated with past climatic variables and not with the current variables (Tables S5, S6). For example, the central populations C LA3111 and C LA2931 are separated in the past RDA of vernalization genes using LGM climatic variables indicating that warmer climate after LGM may drive gene flow among central populations as seen in the current RDA (Figs 2b, S4, S9c,d). The LGM-RDA unveils that highaltitude populations, especially SH_LA4330, have SNPs correlating with temperature (i.e. annual mean minimum temperature, ann mTmin and temperature annual range; Bio7), whereas coastal population SNPs do correlate with precipitation and potential evapotranspiration of the coldest and driest seasons (Fig. 4b). We use caution in the interpretation of the LGM-RDA results as we do not know the species distribution during the LGM. The projection of the species distribution model indicates persistence in lowland regions but less likely in the highlands. However, we cannot rule out possible local persistence in some highland areas given the mild bottlenecks shown by the demographic analysis (Fig. 2a,c). This analysis is nevertheless useful for identifying alleles that arose in response to sudden changes in adaptive climatic optima during glacial-interglacial transitions, especially in the highland populations.

Age of selective sweeps and timing of selection

We finally estimate the age of 112 selective sweep regions, that is the time since the fixation of the selected alleles, that overlap between the three positive selection detection methods (McSwan, SWEED and OMEGAPLUS; Table 1). These regions contain 175 genes and exhibit a mean sweep age of c. 28 ka. The ages of sweeps range from as early as 65 ka up to 2.5 ka (Table 1; Fig. 5). The highland populations exhibit more recent sweeps (2.5-35 ka) than those at the coastal populations, consistent with the recent (re)colonization of higher altitudes (Fig. 5). The SC populations exhibit older and large distributions of sweep age consistent with older events of colonization (2.5-65 ka). Regarding the key gene networks of relevance for local adaptation highlighted above (root hair, protein lipidation, vernalization and photoperiod), each of them exhibits a narrow range of sweep age values across several populations (Fig. 5). The averages of sweep ages observed (Table 1) are perfectly in line with the estimates obtained from the sweep simulations under our demographic

Fig. 5 Distribution of estimated age of 112 selective sweeps highlighting five marine isotope stage (MIS) periods of climatic variation and sweeps containing genes within the four Gene Ontology categories related to local adaptation in *Solanum chilense*. The points represent mean age and lines, the 95% confidence intervals. Generation time = 5; $\mu = 10^{-8}$.

model (Table S7), demonstrating that our statistical power is adequate to estimate sweep ages under the demographic model and that old sweeps in the highland populations cannot be recovered (even if they occurred) in contrast to the coastal populations.

Discussion

Our study is the first to attempt to dissect in plants the complex selective processes and their genetic bases involved during and after the colonization of new highly stressful environments around the Atacama Desert. We not only provide a set of candidate genes and functional networks possibly underpinning adaptation to arid conditions but also propose mechanisms for the emergence of adaptive variation in relation to the demographic history of the species, driven by climate change processes. We nevertheless acknowledge that the ultimate evidence for local adaptation and the relevance of genes underpinning adaptive morpho-physiological traits remains incomplete without functional validation.

Taking our demographic and selection results altogether, we formulate the following scenario for the highland colonization. During the past colder climate phases (LGM-MIS2 at 30-15 ka), the suitable areas of the species likely decreased at high altitude (Fig. 2c). We speculate that the populations were already established at high altitude before the LGM (MIS3–5; Fig. 2) likely in the northern part of the range (from the location of C_LA3111 up to that of C_LA2931), before a contraction of

© 2022 The Authors *New Phytologist* © 2022 New Phytologist Foundation

the species range occurred towards lower altitudes during the LGM, and the subsequent colonization of new southern locations concluded c. 15 ka (post-LGM, SH_LA4330). The highland populations (C_LA3111, C_LA2931 and SH_LA4330) show likely adaptation by a burst, that is over a short time, of numerous selective sweeps across several gene networks (Fig. 5). Interestingly, the population SH_LA4330 exhibits selective sweeps in the vernalization and photoperiod, which pre-date its establishment. These selective events likely occurred in the northern part of the range (C_LA3111 and C_LA2931) during MIS2-4 acting as preadaptation for colonizing the more divergent and extreme environments of the SHs (SH_LA4330; Fig. 1b). Although the southward colonization may artificially increase the number of sweeps in the southern populations (especially SH_LA4330; Slatkin & Excoffier, 2012), we argue that this effect is likely a minor source of bias. Based on current occupancy data and estimation of the past spatial distribution (Fig. 2), S. chilense would not exhibit a sufficiently continuous spatial distribution with frequent extinction-recolonization to give rise to an expansion wave generating strong allele surfing (Excoffier et al., 2009). Instead, the species occurs in discrete habitats such as sheltered valleys, and colonization towards the south may have likely occurred through discrete dispersal events. Moreover, it is more plausible that the higher proportion of sweeps in SH_LA4330 is due to the past demography of this population maximizing the statistical power to detect sweeps (especially recent ones).

The S. chilense lineage likely originates from coastal up to 'precordillera' (800-2000 m altitude) habitats in southern Peru, explaining the early divergence and southward colonization process, accompanied by habitat fragmentation and contraction, which yields two highly isolated populations on the coast (Fig. 2b,c; SC_LA2932 and SC_LA 4107). The coastal colonization process may have involved fewer sweeps than the adaptation to higher altitudes, for example several selective sweeps at genes related to root anatomical traits during the LGM-MIS2 period (Fig. 5). We speculate here that these sweeps may underlie temporal adaptation to changes in the habitat after colonization. However, some of the adaptive genomic signals in the coastal populations could be blurred due to stronger genetic drift (long history in isolation), or be incomplete/partial/soft sweeps (with small selection coefficients), which we do not detect (e.g. Garud *et al.*, 2021).

We find between 60 and 350 selective sweeps per population showing a large distribution of ages, especially in the SC populations. We suggest that several sweeps can occur concomitantly in a given gene pathway/network at a given time period and could thus promote adaptation to a new habitat or underlie the response to a moving environmental optimum as predicted under the polygenic model of adaptation (Polechová et al., 2009; Chevin et al., 2010; Matuszewski et al., 2014; Jain & Stephan, 2017a). Selective sweeps can be observed because the populations of S. chilense exhibit large effective sizes (Fig. 2; Böndel et al., 2015), especially when compared to the small aboveground abundance (census size) reported in these semiarid habitats (Tellier et al., 2011). Solanum chilense is outcrossing and exhibits persistent seed banking. Both factors contribute to generate large effective population sizes by decreasing LD and the effect of linked selection, buffering the negative impact of bottlenecks and enhancing recovery postcolonization (Fig. 2; Tellier et al., 2011; Živković & Tellier, 2018). We suggested (Živković & Tellier, 2018) and recently demonstrated (Korfmann et al., 2022) that seed banks increase the power to detect selective sweeps and to recover signatures of older selective events. The presence of seed banking changes the patterns of polymorphism around selected sites (linked selection) as well as the efficacy of selection compared with populations without dormancy (Živković & Tellier, 2018; Korfmann et al., 2022). As a result, the detection of old sweeps is possible and stretches beyond the theoretical limit of 0.1 Ne (Kim & Stephan, 2002). Furthermore, in species with seed banks we are able to detect and infer accurately the correct times to the most recent common ancestor (tMRCA) of a sample (Sellinger et al., 2020), even with inference methods that do not account for seed banks. Indeed, the N_e inferred combines the real number of aboveground plants in the population and the influence of the seed bank strength, so that the estimation of tMRCA of a sample is correctly estimated in units of N_e (Sellinger *et al.*, 2020). We argue that our estimates of the sweep ages are likely robust to the presence of seed banks because McSwan (a method ignoring seed banking) infers the tMRCA of the selected window.

As a word of caution, we focus on four main GO categories, which can be reliably associated with physiological traits

underlying adaptation: root-hair differentiation, vernalization, photoperiod and protein lipidation. Pinpointing the regulatory or noncoding SNPs under selection was not possible with our sample sizes and functional information on many candidate genes is still lacking to provide a complete picture. We indeed should not assume that all genes in the outlier windows are under selection, and therefore, we designed a strategy in several steps reducing the amount of potentially hitchhiking genes. First, we reduce the set of candidate genes to only those in the overlapping regions of the outlier windows identified with different methods (SweeD and OMEGAPLUS, which rely on different summary statistics). Second, this subset was then reduced to a set of genes that enriched biological functions showing physiological meaning based on the ecology of the populations (albeit avoiding the caveat described in Pavlidis et al., 2012). Third, we use the GEA analysis to focus only on a subset of outlier genes for demography and which correlate with key current and past climatic variables. We verified that the variants in the selected genes show the expected distributions (hallmarks of selective sweeps) in population genetics statistics compared with genome-wide patterns. We acknowledge the limitations of genomic scans for selection in nonmodel species for which a recombination map is lacking and small sample size limit our ability to zoom in the sweep regions. Therefore, it is likely that our approach despite being conservative may have generated some false positives and missed some genes under selection. Furthermore, we focus here on selective sweeps resulting from strong positive selection as we cannot assess in our data the occurrence of weaker positive (polygenic) selection or signatures of soft or incomplete sweeps (Jain & Stephan, 2017b; Barghi et al., 2020; Garud et al., 2021). Yet, we are confident that most of our candidate genes under selection are likely functionally relevant, as demonstrated by the overlap with previous studies (Böndel et al., 2015; Nosenko et al., 2016; Stam et al., 2019b).

We finally note the possible bias in our results due to the use of accessions maintained and multiplied at TGRC. Indeed, accession multiplication may change allele frequencies and bias some of our demographic and selection inference. We provide in Fig. S10 a summary of the previous data from Böndel et al. (2015) containing the accessions of this study, in which we find that the maintenance at TGRC does reduce the number of rare alleles but only for accessions multiplied more than twice. As the accessions used here have been multiplied only once or twice, we consider that the bias may likely be minor in our inference. A second possible bias is the discrepancy in original sample sizes between our TGRC accessions in the field. This number (7-16 across our accessions) may potentially generate a heterogeneous bias across populations for some population genetic estimates. We observed such an effect in our previous studies with higher sequencing sample sizes (Böndel et al., 2015; Stam et al., 2019b) and thus chose to combine several conservative approaches for inference of demography and selection. Future work is needed to quantify the possible errors in inference due to the choice of different TGRC accessions. Our selection scans are not exhaustive, and future work requires larger sample sizes, original material from S. chilense populations from the field and direct fitness

measures under field-relevant conditions to reveal the full extent of selection in this species.

Acknowledgements

We thank three anonymous reviewers for their comments which helped to improve the manuscript. AT acknowledges funding from DFG (Deutscheforschungsgemeinschaft) grant no.: 317616126 (TE809/7-1). KW was funded by the Chinese Scholarship Council, and GAS-A was funded by the Technical University of Munich. We thank the Tomato Genetics Resource Center (TGRC) of the University of California, Davis for generously providing us with the seeds of the accession included in this study. We thank Daniela Scheikl for assistance with plant work and Christine Würmser for the Illumina sequencing. Open Access funding enabled and organized by Projekt DEAL.

Competing interests

None declared.

Author contributions

GAS-A and AT conceptualized the study. KW and GAS-A contributed to the software, formal analysis and investigation. KW, GAS-A and AT wrote the study. AT acquired the funding. GAS-A and AT supervised the study. KW and GAS-A contributed equally to this work.

ORCID

Gustavo A. Silva-Arias D https://orcid.org/0000-0002-7114-9916

Aurélien Tellier D https://orcid.org/0000-0002-8895-0785 Kai Wei D https://orcid.org/0000-0001-5431-8290

Data availability

The raw pair-end sequencing genomic data used in all the analyses can be accessed at the European Nucleotide Archive (ENA) project accession PRJEB47577. All codes used in this study and other previously published genomic data are available at the sources referenced. The developed scripts and extra data formats are found on our GitLab repository: https://gitlab.lrz.de/ population_genetics/wild-tomato-genomics.

References

- Alachiotis N, Stamatakis A, Pavlidis P. 2012. OmegaPlus: a scalable tool for rapid detection of selective sweeps in whole-genome datasets. *Bioinformatics* 28: 2274–2275.
- Alexander DH, Novembre J, Lange K. 2009. Fast model-based estimation of ancestry in unrelated individuals. *Genome Research* 19: 1655–1664.
- Araujo M, New M. 2007. Ensemble forecasting of species distributions. *Trends in Ecology & Evolution* 22: 42–47.
- Barghi N, Hermisson J, Schlötterer C. 2020. Polygenic adaptation: a unifying framework to understand positive selection. *Nature Reviews Genetics* 21: 769–781.

Bolger A, Scossa F, Bolger ME, Lanz C, Maumus F, Tohge T, Quesneville H, Alseekh S, Sørensen I, Lichtenstein G *et al.* 2014. The genome of the stresstolerant wild tomato species *Solanum pennellii. Nature Genetics* 46: 1034–1038.

- Böndel KB, Lainer H, Nosenko T, Mboup M, Tellier A, Stephan W. 2015. North–south colonization associated with local adaptation of the wild tomato species *Solanum chilense*. *Molecular Biology and Evolution* **32**: 2932–2943.
- Böndel KB, Nosenko T, Stephan W. 2018. Signatures of natural selection in abiotic stress-responsive genes of *Solanum chilense. Royal Society Open Science* 5: 171198.
- Capblancq T, Forester BR. 2021. Redundancy analysis: a Swiss Army knife for landscape genomics. *Methods in Ecology and Evolution* 12: 2298–2309.
- Chevin L-M, Martin G, Lenormand T. 2010. Fisher's model and the genomics of adaptation: restricted pleiotropy, heterogenous mutation, and parallel evolution. *Evolution* 64: 3213–3231.
- Conesa A, Götz S. 2008. BLAST2GO: a comprehensive suite for functional analysis in plant genomics. *International Journal of Plant Genomics* 2008: 1–12.
- Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. 2005. BLAST2GO: a universal tool for annotation, visualization and analysis in functional genomics research. *Bioinformatics* **21**: 3674–3676.
- Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST *et al.* 2011. The variant call format and VCFTOOLS. *Bioinformatics* 27: 2156–2158.
- Delaneau O, Marchini J, Zagury J-F. 2012. A linear complexity phasing method for thousands of genomes. *Nature Methods* 9: 179–181.
- Ewing G, Hermisson J. 2010. MSMS: a coalescent simulation program including recombination, demographic structure and selection at a single locus. *Bioinformatics* 26: 2064–2065.
- Excoffier L, Foll M, Petit RJ. 2009. Genetic consequences of range expansions. Annual Review of Ecology, Evolution, and Systematics 40: 481–501.
- Fagny M, Austerlitz F. 2021. Polygenic adaptation: integrating population genetics and gene regulatory networks. *Trends in Genetics* 37: 631–638.
- Fick SE, Hijmans RJ. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. *International Journal of Climatology* 37: 4302– 4315.
- Fischer I, Camus-Kulandaivelu L, Allal F, Stephan W. 2011. Adaptation to drought in two wild tomato species: the evolution of the *Asr* gene family. *New Phytologist* 190: 1032–1044.
- Forni C, Duca D, Glick BR. 2017. Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria. *Plant and Soil* 410: 335–356.
- Garud NR, Messer PW, Petrov DA. 2021. Detection of hard and soft selective sweeps from *Drosophila melanogaster* population genomic data. *PLoS Genetics* 17: e1009373.
- Guo X, Liu D, Chong K. 2018. Cold signaling in plants: insights into mechanisms and regulation. *Journal of Integrative Plant Biology* 60: 745–756.
- He Z-H, Cheeseman I, He D, Kohorn BD. 1999. A cluster of five cell wallassociated receptor kinase genes, Wak1–5, are expressed in specific organs of *Arabidopsis. Plant Molecular Biology* **39**: 1189–1196.
- Huber CD, Nordborg M, Hermisson J, Hellmann I. 2014. Keeping it local: evidence for positive selection in Swedish *Arabidopsis thaliana*. *Molecular Biology and Evolution* 31: 3026–3039.
- Iida H, Mähönen AP. 2020. Growth-mediated sensing of long-term cold in plants. *Nature* 583: 690–691.
- Jain K, Stephan W. 2017a. Rapid adaptation of a polygenic trait after a sudden environmental shift. *Genetics* 206: 389–406.
- Jain K, Stephan W. 2017b. Modes of rapid polygenic adaptation. *Molecular Biology and Evolution* 34: 3169–3175.
- Jiang H, Zhang X, Chen X, Aramsangtienchai P, Tong Z, Lin H. 2018. Protein lipidation: occurrence, mechanisms, biological functions, and enabling technologies. *Chemical Reviews* 118: 919–988.
- Johansson M, Staiger D. 2015. Time to flower: interplay between photoperiod and the circadian clock. *Journal of Experimental Botany* 66: 719–730.
- Josephs EB, Stinchcombe JR, Wright SI. 2017. What can genome-wide association studies tell us about the evolutionary forces maintaining genetic variation for quantitative traits? *New Phytologist* 214: 21–33.

Research 1919

Kim Y, Stephan W. 2002. Detecting a local signature of genetic hitchhiking along a recombining chromosome. *Genetics* 160: 765–777.

1920 Research

- Korfmann K, Awad DA, Tellier A. 2022. Weak seed banks influence the signature and detectability of selective sweeps. *bioRxiv*. doi: 10.1101/2022.04. 26.489499.
- Korneliussen TS, Albrechtsen A, Nielsen R. 2014. ANGSD: analysis of next generation sequencing data. *BMC Bioinformatics* 15: 356.
- Lally D, Ingmire P, Tong H-Y, He Z-H. 2001. Antisense expression of a cell wall–associated protein kinase, WAK4, inhibits cell elongation and alters morphology. *Plant Cell* 13: 1317–1332.
- Legendre P, Legendre L. 2012. *Numerical ecology*. Amsterdam, the Netherlands: Elsevier.
- Li H, Durbin R. 2009. Fast and accurate short read alignment with BURROWS– WHEELER transform. *Bioinformatics* 25: 1754–1760.
- Li X, Cai W, Liu Y, Li H, Fu L, Liu Z, Xu L, Liu H, Xu T, Xiong Y. 2017. Differential TOR activation and cell proliferation in *Arabidopsis* root and shoot apexes. *Proceedings of the National Academy of Sciences*, USA 114: 2765–2770.
- Lisiecki LE, Raymo ME. 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ^{18} O records. *Paleoceanography* 20: PA1003.
- Maksimov EG, Mironov KS, Trofimova MS, Nechaeva NL, Todorenko DA, Klementiev KE, Tsoraev GV, Tyutyaev EV, Zorina AA, Feduraev PV. 2017. Membrane fluidity controls redox-regulated cold stress responses in cyanobacteria. *Photosynthesis Research* 133: 215–223.
- Malaspinas A-S, Westaway MC, Muller C, Sousa VC, Lao O, Alves I, Bergström A, Athanasiadis G, Cheng JY, Crawford JE *et al.* 2016. A genomic history of Aboriginal Australia. *Nature* 538: 207–214.
- Matuszewski S, Hermisson J, Kopp M. 2014. Fisher's geometric model with a moving optimum. *Evolution* 68: 2571–2588.
- McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M *et al.* 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Research* 20: 1297–1303.
- Michaels SD, Amasino RM. 1999. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. *Plant Cell* 11: 949–956.
- Nakazato T, Warren DL, Moyle LC. 2010. Ecological and geographic modes of species divergence in wild tomatoes. *American Journal of Botany* 97: 680–693.
- Nosenko T, Böndel KB, Kumpfmüller G, Stephan W. 2016. Adaptation to low temperatures in the wild tomato species *Solanum chilense*. *Molecular Ecology* 25: 2853–2869.
- Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H. 2015. *VEGAN: community ecology package*. R package v.2.3-0. [WWW document] URL https://github. com/vegandevs/vegan [accessed 13 September 2021].
- Pavlidis P, Jensen JD, Stephan W, Stamatakis A. 2012. A critical assessment of storytelling: Gene Ontology categories and the importance of validating genomic scans. *Molecular Biology and Evolution* 29: 3237–3248.
- Pavlidis P, Živković D, Stamatakis A, Alachiotis N. 2013. SweeD: likelihoodbased detection of selective sweeps in thousands of genomes. *Molecular Biology* and Evolution 30: 2224–2234.
- Polechová J, Barton N, Marion G. 2009. Species' range: adaptation in space and time. *The American Naturalist* 174: E186–E204.
- Putterill J, Varkonyi-Gasic E. 2016. FT and florigen long-distance flowering control in plants. *Current Opinion in Plant Biology* 33: 77–82.
- R Core Team. 2020. *R: a language and environment for statistical computing.* Vienna, Austria: Foundation for Statistical Computing.
- Raduski AR, Igić B. 2021. Biosystematic studies on the status of *Solanum* chilense. American Journal of Botany 108: 520–537.
- Ritter B, Wennrich V, Medialdea A, Brill D, King G, Schneiderwind S, Niemann K, Fernández-Galego E, Diederich J, Rolf C *et al.* 2019. Climatic fluctuations in the hyperarid core of the Atacama Desert during the past 215 ka. *Scientific Reports* 9: 5270.

- Roselius K, Stephan W, Städler T. 2005. The relationship of nucleotide polymorphism, recombination rate and selection in wild tomato species. *Genetics* 171: 753–763.
- Savolainen O, Lascoux M, Merilä J. 2013. Ecological genomics of local adaptation. *Nature Reviews Genetics* 14: 807–820.
- Sellinger TPP, Awad DA, Moest M, Tellier A. 2020. Inference of past demography, dormancy and self-fertilization rates from whole genome sequence data. *PLoS Genetics* 16: e1008698.
- Sheldon CC, Rouse DT, Finnegan EJ, Peacock WJ, Dennis ES. 2000. The molecular basis of vernalization: the central role of *FLOWERING LOCUS* (*FLC*). Proceedings of the National Academy of Sciences, USA 97: 3753–3758.
- Slatkin M, Excoffier L. 2012. Serial founder effects during range expansion: a spatial analog of genetic drift. *Genetics* 191: 171–181.
- Smith JM, Haigh J. 1974. The hitch-hiking effect of a favourable gene. *Genetical Research* 23: 23–35.
- Song YH, Shim JS, Kinmonth-Schultz HA, Imaizumi T. 2015. Photoperiodic flowering: time measurement mechanisms in leaves. *Annual Review of Plant Biology* 66: 441–464.
- Staab PR, Zhu S, Metzler D, Lunter G. 2015. scrm: efficiently simulating long sequences using the approximated coalescent with recombination. *Bioinformatics* 31: 1680–1682.
- Stam R, Nosenko T, Hörger AC, Stephan W, Seidel M, Kuhn JMM, Haberer G, Tellier A. 2019a. The *de novo* reference genome and transcriptome assemblies of the wild tomato species *Solanum chilense* highlights birth and death of NLR genes between tomato species. *G3: Genes, Genomes, Genetics* 9: 3933–3941.
- Stam R, Silva-Arias GA, Tellier A. 2019b. Subsets of NLR genes show differential signatures of adaptation during colonization of new habitats. *New Phytologist* 224: 367–379.
- Tardieu F, Tuberosa R. 2010. Dissection and modelling of abiotic stress tolerance in plants. *Current Opinion in Plant Biology* 13: 206–212.
- Tellier A, Laurent SJY, Lainer H, Pavlidis P, Stephan W. 2011. Inference of seed bank parameters in two wild tomato species using ecological and genetic data. *Proceedings of the National Academy of Sciences, USA* 108: 17052–17057.
- Thuiller W, Georges D, Engler R. 2014. BIOMOD2: ensemble platform for species distribution modeling. R package v.3.1-62/r677. [WWW document] URL https://github.com/biomodhub/biomod2 [accessed 14 September 2021].
- Thuiller W, Lafourcade B, Engler R, Araújo MB. 2009. BIOMOD a platform for ensemble forecasting of species distributions. *Ecography* 32: 369–373.
- Tiffin P, Ross-Ibarra J. 2014. Advances and limits of using population genetics to understand local adaptation. *Trends in Ecology & Evolution* 29: 673–680.
- Title PO, Bemmels JB. 2018. ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. *Ecography* 41: 291–307.
- Tournebize R, Poncet V, Jakobsson M, Vigouroux Y, Manel S. 2019. McSwan: a joint site frequency spectrum method to detect and date selective sweeps across multiple population genomes. *Molecular Ecology Resources* 19: 283–295.
- Trabucco A, Zomer R. 2019. Global aridity index and potential evapotranspiration (ET0) climate database v2. *Figshare*. doi: 10.6084/m9. figshare.7504448.v3.
- Turck F, Fornara F, Coupland G. 2008. Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. *Annual Review of Plant Biology* 59: 573–594.
- Wang K, Mathieson I, O'Connell J, Schiffels S. 2020. Tracking human population structure through time from whole genome sequences. *PLoS Genetics* 16: e1008552.
- Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, Franz M, Grouios C, Kazi F, Lopes CT. 2010. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. *Nucleic Acids Research* 38: W214–W220.
- Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 2009. The sequence alignment/map (SAM) format and SAMTOOLS. *Bioinformatics* 25: 2078–2079.
- Xia H, Camus-Kulandaivelu L, Stephan W, Tellier A, Zhang Z. 2010. Nucleotide diversity patterns of local adaptation at drought-related candidate genes in wild tomatoes. *Molecular Ecology* **19**: 4144–4154.

Xiong Y, McCormack M, Li L, Hall Q, Xiang C, Sheen J. 2013. Glucose–TOR signalling reprograms the transcriptome and activates meristems. *Nature* **496**: 181–186.

Xu S, Chong K. 2018. Remembering winter through vernalisation. *Nature Plants* 4: 997–1009.

Zhao C, Zhang H, Song C, Zhu J-K, Shabala S. 2020. Mechanisms of plant responses and adaptation to soil salinity. *The Innovation* 1: 100017.

Živković D, Tellier A. 2018. All but sleeping? Consequences of soil seed banks on neutral and selective diversity in plant species. In: Morris RJ, ed. *Mathematical modelling in plant biology*. Cham, Switzerland: Springer International, 195–212.

Supporting Information

Additional Supporting Information may be found online in the Supporting Information section at the end of the article.

Dataset S1 Summary of mapping results.

Dataset S2 Details of inference of demographic history from Multiple Sequentially Markovian Coalescent method (MSMC2) and migration rate from MSMC-IM.

Dataset S3 Candidate genes under positive selection in different populations.

Dataset S4 Functions of four gene networks.

Dataset S5 Values of climatic variables of each population for current and Last Glacial Maximum conditions.

Dataset S6 Details of outlier SNPs related to climatic variables and coding changes.

Fig. S1 Genetic structure of different populations of *Solanum chilense*.

Fig. S2 Summary statistics of population genetics using real SNPs and neutral simulations in *Solanum chilense*.

Fig. S3 Estimations of effective population size through time from Multiple Sequentially Markovian Coalescent method (MSMC2).

Fig. S4 Inferences of the divergence time and migration rate between populations in *Solanum chilense*.

Fig. S5 Genome scan results of the six *Solanum chilense* populations.

Fig. S6 Validation of our pipeline to detect selective sweeps.

Fig. S7 Comparison of statistics between whole genome and candidate regions in *Solanum chilense*.

Fig. S8 Gene Ontology analysis in candidate genes.

Fig. S9 Redundancy analysis of SNPs of genes related to four specific Gene Ontology terms.

Fig. S10 Population genetics statistics for 30 sequenced loci as a function of the number of multiplication rounds at the Tomato Genetics Resource Center.

Table S1 Geography and habitat information of *Solanum chilense*populations.

Table S2 Summary statistics of variant calling in six populationsof Solanum chilense.

Table S3 Statistics of population genetics in candidate regions and whole genome in six populations of *Solanum chilense*.

Table S4 Pairwise F_{ST} between six populations of *Solanum chilense* in whole genome and candidate regions.

Table S5 Summary of outlier SNPs from redundancy analysismodels using current and Last Glacial Maximum climatic data.

Table S6 Summary of the number of outlier SNPs significantly correlated with climatic variables in implemented redundancy analysis.

Table S7 Power of age estimation using sweep simulations in sixpopulations of *Solanum chilense*.

Methods S1 Detailed methods.

Notes S1 Statistics and confidence in the genome scans for positive selection.

Notes S2 Description of gene network evolution.

Please note: Wiley is not responsible for the content or functionality of any Supporting Information supplied by the authors. Any queries (other than missing material) should be directed to the *New Phytologist* Central Office.