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1 | INTRODUCTION

Martin Grunow'

Abstract

Academic approaches considering demand uncertainty in lot sizing are seldom used in
practice. Industry typically implements deterministic models and accounts for uncer-
tainties by using a rolling-horizon planning framework with frequent forecast updates.
This paper bridges this gap by proposing a stochastic lot-sizing methodology adapted to
rolling-horizon processes. Using the martingale model of forecast evolution (MMFE),
we are able to anticipate the forecast updates from rolling-horizon planning in stochas-
tic lot sizing. Our formulation is extended with production recourse to reflect the
replanning flexibility of rolling-horizon planning. Extensive simulations on both syn-
thetic and real-world data show the value of forecast evolution models. Forecast
evolution models reduce actual costs by 14% on average compared to traditional deter-
ministic planning. The advantage of the extended model with production recourse
depends on several factors including capacity, correlation, and uncertainty. Sensitivity
analyses show that recourse can reduce costs by an additional 3% on average and up to
10% in specific settings. Using real-world and synthetic data, we provide the first anal-
ysis of the value of additive and multiplicative MMFE-based planning models when
the true forecast evolution process is unknown. We show that, contrary to the existing
consensus, the additive model performs more robustly than the multiplicative model on
a wide array of problem settings.

KEYWORDS
additive and multiplicative martingale model of forecast evolution, forecast evolution, lot sizing, recourse,
rolling horizon

distributions altogether. Stochastic lot-sizing approaches suit-
able for industry adoption should exploit the data contained

Demand uncertainty has been studied extensively in stochas-
tic lot sizing using probability distributions to model the
uncertain demand. However, the use of these models in
industry has been limited. A major shortcoming is that they
cannot be integrated properly into the periodic planning pro-
cesses that manufacturing companies use to update demand
forecasts. Thus, the substantial information technology (IT)
support, human resources, and time dedicated to forecasting
are ignored. In fact, previous research on stochastic lot siz-
ing has neglected the value of forecasts in generating demand
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in historic forecasts. Demand distributions must be updated
dynamically based not only on the latest demand realizations
but also on forecasts to fit rolling-horizon processes.

The use of forecast evolution models can bridge between
stochastic lot-sizing models and rolling-horizon planning in
industry. Different from demand distributions used in tradi-
tional stochastic lot sizing, they model demand uncertainty
as encountered in rolling-horizon planning. The martingale
model of forecast evolution (MMFE) developed by Graves
et al. (1986) and Heath and Jackson (1994) models future
forecast changes as a stochastic process. Two methods for
modeling the forecast evolution process according to the
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MMEFE have been proposed. The additive model measures
the difference between successive forecasts and assumes that
these differences follow a multivariate normal distribution.
The multiplicative model measures the ratio between succes-
sive forecasts and assumes that this ratio follows a log-normal
distribution. While it has been argued that the multiplicative
model is more relevant when demand fluctuates over time
(Hausman, 1969; Heath & Jackson, 1994), extensive compar-
isons of the two MMFE models are still missing. In particular,
the cost of modeling error, that is using the additive or mul-
tiplicative model when the true process is unknown, has
not been evaluated so far. Hence, MMFE models can be
estimated directly from the history of past demand and
successive forecasts revisions routinely collected in industry.

Demand forecasting is typically an organizational align-
ment step that is part of the sales and operations planning
processes. Hence, the forecasts observed in each planning
period can be a mix of expert judgmental forecasts and fore-
casts obtained from forecasting algorithms. Chen and Lee
(2009) review how the MMFE generalizes several classi-
cal prediction models such as autoregressive moving average
models. Here, the MMFE parameters can be determined
exactly. Still, the strength of MMEFE lies in its ability to inte-
grate a combination of model-based quantitative forecasts
and expert-based judgmental forecasts (Heath & Jackson,
1994). In this context, MMFE model parameters have to be
estimated from historical data. Yet, despite the central role of
data, the application of MMFE to real-world cases is rare and
many questions remain open regarding the applicability and
value of forecast evolution models.

Lot-sizing approaches suitable for rolling-horizon plan-
ning must not only account for the forecast updating process
but also for the ability of planners to adapt production
plans. Ignoring this replanning opportunity leads to overly
conservative decisions and ultimately higher costs. In the
stochastic lot-sizing literature, the replanning opportunity
has been captured by introducing recourse production deci-
sions that react to demand observations. With MMFE-based
models, recourse decisions respond not only to the real-
ized demand but also to forecast updates for the entire
horizon, providing richer information and representing indus-
trial planning processes. Lot-sizing approaches that capture
this planning flexibility while maintaining computational
tractability are lacking. Moreover, even though rolling-
horizon schemes shape planning processes in manufacturing
companies, only limited attention has been given to the per-
formance of stochastic lot-sizing models in rolling-horizon
planning. Hence, the value of these methods compared to
traditional deterministic planning is not always clear.

This work is motivated by our collaboration with a large
producer of chemicals used in agriculture that manages
expensive multipurpose equipment in the face of an uncer-
tain demand. Demand has a yearly seasonal pattern, which
is especially challenging due to uncertainties in both the
volume and timing of the peak selling season. In a sim-
ilar setting, Schlapp et al. (2022) study a stylized model
without forecast evolution and production constraints. How-
ever, since capacity is limited, production often starts ahead

of the peak season, which can lead to substantial on-hand
inventory. Moreover, expensive cleaning operations have to
be conducted each time the equipment is set up for a dif-
ferent product family. The company’s planning problem
thus exhibits the key trade-off between demand satisfaction,
inventory costs, and setup costs that is captured by a lot-sizing
problem. Because early forecasts often have poor accuracy,
planning is implemented in a rolling-horizon fashion to
benefit from frequent forecast updates.

We contribute to the state of the art in the following
ways.

1. We elevate modeling demand uncertainty from distribu-
tions to MMFE in lot-sizing models to account for the
central role of forecast evolution processes in real-world
rolling-horizon planning. We show that both the addi-
tive and the multiplicative MMFE-based lot-sizing models
can be solved efficiently using existing linearization tech-
niques. The stochastic planning models can be solved
to optimality without resorting to approximations for
capacity allocation. Our modeling approach covers impor-
tant real-world considerations including fixed setup costs,
multiple products sharing limited capacity, and a com-
plex correlation structure of the forecast updates. While
we focus on the classical production planning problem
of lot sizing, our solution approach is applicable to a
wide range of problem settings. By showing that MMFE
can be applied to rich production planning problems, we
aim to foster the adoption of forecast evolution models in
research and industry.

2. We demonstrate the value of forecast evolution for lot-
sizing models in rolling-horizon planning on synthetic and
real-word data. We show that stochastic models based on
forecast evolution consistently outperform deterministic
models in rolling horizon. On average, they reduce overall
costs by around 14%. In contrast, stochastic models that
only account for demand uncertainty but ignore forecasts
and their evolution fail to reduce costs compared to sim-
ple deterministic models. These results clearly show that
the evolution of forecasts must be considered in effective
decision-support systems for rolling-horizon planning.

3. We assess the strengths and weaknesses of the additive
and multiplicative models. We analyze the performance
when the true forecast evolution process is unknown but
has to be estimated from data. We show that the addi-
tive MMFE is more robust in a wide array of problem
settings, even when demand fluctuates over time. The mul-
tiplicative model, on the other hand, lacks robustness to
unknown forecast evolution processes and can even lead
to significant cost increases compared to the determinis-
tic benchmark. The superior performance of the additive
MMEE, also observed on real-world data, refutes the pre-
vious consensus on the suitability of the two forecast
evolution models.

4. We develop an extended model that allows production
recourse and measure the value of recourse in repeated
rolling-horizon simulations. We show that production
recourse leads to around 3% cost savings on average. We
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also identify key parameters that influence the value of
recourse such as the correlation of forecast updates of
different products and time periods. When the forecast
evolution process is positively correlated over products
and negatively correlated over time periods, the value
of recourse can be up to 10%. In our extended model,
a high value of recourse can be obtained with small
scenario trees, allowing for computationally efficient
implementations.

In the following section, a brief review of related literature
is presented. In Section 3, we introduce the additive and
multiplicative MMFE and describe how they can be used to
dynamically update the demand distributions over the hori-
zon. In particular, we recall how to obtain the distributions of
demand and cumulative demand from the forecast evolution
process and analyze the effect of forecast update correla-
tion on the variance of the cumulative demand for additive
and multiplicative MMFE. Section 4 provides the MMFE-
based lot-sizing formulation. We then introduce a multistage
formulation that allows production recourse with a scenario-
based representation of demand uncertainty. In Section 5,
we assess the value of forecast evolution models and the
value of recourse in extensive rolling-horizon simulations
using synthetic and real-world data. Our findings are sum-
marized in Section 6, where we also provide suggestions for
future research.

2 | LITERATURE REVIEW

In this section, we review the literature on stochastic lot sizing
and forecast evolution. We locate our work at the intersec-
tion of the two research streams and highlight gaps in the
existing literature.

2.1 | Stochastic lot sizing and rolling-horizon
planning

The analysis of the value of adapting lot-sizing decisions
in rolling-horizon planning can be traced back to Book-
binder and Tan (1988), who introduce different strategies
to update decisions. Using the static strategy, decisions are
determined all at once and fixed over the planning horizon.
The dynamic strategy, on the other hand, allows decisions to
be adapted as new information is observed in rolling horizon.
The authors emphasize that dynamic planning approaches are
especially relevant when demand distributions are dynami-
cally updated in rolling horizon. Dynamic strategies can be
implemented through scenario-based formulations in which
production decisions are set as recourse variables. Escudero
et al. (1993) present several lot-sizing formulations that allow
increasing levels of recourse in a multistage scenario tree.
Brandimarte (2006) investigates the value of scenario-based
stochastic lot sizing in rolling-horizon planning by means of
repeated simulations. They show that scenario models allow

good performance through recourse decisions but require
long computation times. Recently, Thevenin et al. (2020)
use a combination of heuristics and advanced sampling tech-
niques to implement dynamic strategies in a multiechelon
lot-sizing context.

Scenario-based models are notoriously hard to solve. To
improve computational performance, Helber et al. (2013)
develop piecewise-linear approximations (PLAs) of the
expected inventory and backlog functions and show that they
outperform scenario-based formulations without recourse.
These formulations have proved flexible and have been used
in several production planning settings. Rossi et al. (2015) use
PLA to determine the parameters of near-optimal production
policies. De Smet et al. (2020) include sequence-dependent
changeovers in a lot-sizing and scheduling problem. Tem-
pelmeier and Hilger (2015) and van Pelt and Fransoo (2018)
introduce fill-rate service-level constraints. Sereshti et al.
(2021) extend this work showing that PLAs can be used to
formulate many types of service-level constraints in stochas-
tic lot sizing. However, PLA methods may lead to overly
conservative production plans as they do not allow for
recourse decisions. To incorporate the replanning opportunity
in lot-sizing problems, Tavaghof-Gigloo and Minner (2021)
integrate a heuristic in an extended PLA formulation and
investigate its benefits in rolling-horizon simulations.

A significant limitation of the above-cited works is that
they assume the demand distributions to be known. Yet,
demand distributions are seldom available in practice. This
problem was discussed by Klabjan et al. (2013) who propose
nonparametric approaches to estimate demand distributions
from past observations. Still, this work ignores forecasts and
their updates stemming from the rolling-horizon processes.
We contribute to this research stream in two ways. First,
we show that forecast evolution models can provide demand
distributions that are dynamically updated in rolling-horizon
planning and readily integrated in lot-sizing models using
existing methods. Second, we extend existing PLA formu-
lations to allow production recourse over discrete scenarios.
Thus, we combine the strengths of PLA and scenario methods
to allow flexible decisions while ensuring fast computation.

2.2 | Forecast evolution models

Since the early analyses of forecast revision processes con-
ducted by Hausman (1969) and Hausman and Peterson
(1972), the MMFE has been applied to a wide variety
of problems including defining supply contracts (Donohue,
2000), capacity planning (Boyac1 & Ozer, 2010), and inven-
tory management (Bicer & Seifert, 2017; lida & Zipkin,
2006; Ozer & Wei, 2004; Wang & Tomlin, 2009; Wang
et al., 2012). The aforementioned research focuses on deter-
mining optimal policies analytically but does not consider
complex production planning settings such as managing mul-
tiple products with limited capacity and fixed setup costs
for production. Further, it does not consider the rolling-
horizon implementation of production plans. In particular,
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unconditional production decisions that do not depend on
demand scenarios should be determined over the short-term
horizon. This provides a reference plan that can be commu-
nicated to upstream and downstream partners in the supply
chain in each review period. Pinge et al. (2020) apply the
findings of Wang et al. (2012) on multiplicative MMFE for
multiordering newsvendor to a real-world data set of a large
product portfolio. They discuss the challenges of applying
MMEFE-based planning models from real-world data but do
not investigate the out-of-sample value of their method when
the true forecast evolution model is unknown.

A second research stream studies the rolling-horizon
implementation of forecast evolution models. Norouzi and
Uzsoy (2014) determine the key properties of the uncertain
demand under additive and multiplicative MMFE and derive
the optimal base-stock policy for a single-product, unca-
pacitated planning problem with a chance constraint. Albey
et al. (2015) extend this work with a heuristic that solves
the multiproduct problem based on a predetermined capacity
allocation. They evaluate the rolling-horizon performance of
the MMFE model in a real-world case study in the semicon-
ductor industry. Ziarnetzky et al. (2018) adapted the method
to a multiplicative MMFE and evaluate it in rolling-horizon
planning with synthetic data. Albey et al. (2016) combine
the model with a genetic algorithm to allocate capacity to
products. They show the benefits of the improved allocation
in a simulation study under additive MMFE. Ziarnetzky
et al. (2020) perform extensive rolling-horizon simulations
to evaluate and compare the performance of the additive
and multiplicative MMFE. The forecast evolution is set
to follow either the additive or multiplicative MMFE and
the forecast and production plan updates are performed in
a rolling-horizon fashion. However, the ability of MMFE
models to generalize when the true forecast evolution process
is unknown has not been studied so far.

We extend the research stream on MMFE by further relax-
ing the limiting assumptions of the model. We consider
a general lot-sizing setting with multiple products, limited
capacity, inventory holding costs, and fixed costs for setup
operations. The model does not rely on a predetermined allo-
cation of capacity and can be solved to optimality. Further,
we provide insights into the strengths and weaknesses of
the additive and multiplicative MMFE, analyze their ability
to generalize from historical data, and evaluate performance
through rolling-horizon simulations on both synthetic and
real-world data.

3 | FROM FORECAST EVOLUTION TO
DEMAND DISTRIBUTIONS

In this section, we introduce the additive and multiplicative
MMEFE as formalized by Heath and Jackson (1994). For
each model, we recall how the probability distributions
underlying the uncertain demand can be deduced from
the stochastic forecast evolution process over the planning
horizon. This fully describes the dynamic updating of the

demand distribution as new forecasts are observed in rolling
horizon. Then, we show how to obtain the distributions
of the cumulative demand over the horizon by adapting
the results from Norouzi and Uzsoy (2014). This step is
essential to derive linearized lot-sizing formulations that
are tractable, as will be shown in Section 4. Finally, we
analyze the effect of forecast update correlation on the cumu-
lative demand variance for the additive and multiplicative
MMEE.

3.1 | Problem setting

Consider the rolling-horizon planning of K products with a
horizon of T periods. In each review period, updated forecasts
are observed and used to calculate a production plan. Let F® €
R&XT) be the forecast vector obtained at the beginning of
period s given by F* = [F‘;‘,l’ s F‘;,T’ s F;%,I’ s F;(’T]T,
where F i , is the forecast of product & in the 7-th period of the
planning horizon as seen in review period s. An initial fore-
cast vector denoted by F is available. In each review period,
a new forecast is also obtained for the last period in the plan-
ning horizon. The demand observed at the end of period s
is denoted by Di. After the demand has been observed, the
forecast is no longer updated.

3.2 | Additive MMFE

The additive MMEFE describes the evolution of the forecast
vector by the relation

Fp =P+, M

s+1

where the forecast update vector ¢ is observed at

the beginning of review period s+ 1. The postup-
S _ s s+1 s+1 s+1

date forecast vector FpoSt =[D’, Fl’1 s F1,2 Y ey FLT_I, s

s s+1 s+l 97 : S

DK, F K12 F KT 1] contains both the demand Dk

observed at the end of period s for all products k and the
updated forecasts F ;J;l of all products over the horizon. In
period s + 1, the planning horizon is rolled forward by one
period. The forecast vector FS*! is then composed of the
updated forecasts in F} . and the initial forecasts F;:‘T] of all
products k in the T-th period of the planning horizon.

The forecast update vector follows a multivariate nor-
mal distribution &' ~ MN'(0, Z). The covariance matrix = €
REXTEXT) can be expressed as

1\2 LT 1T
(@) P k%1%
_ Ly Iy I
Y= Pi k%% Tk , 2)
T1 T 1 T\2
Px19k9) (O'K)
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FIGURE 1

where cl’( is the standard deviation of the #-th period of the

forecast updating process for product k, and p,i‘l’t,i is the cor-

relation between the forecast update of product &, at time #,
and product &, at time #,. The covariance matrix describes the
uncertainty of the forecast updating process over the horizon
and the correlation between the forecast updates of different

products and time periods.

3.2.1 | Demand distribution

The demand follows the same updating process as the fore-
cast and is given by D, = F]s(,1 + 815:1]. In any review period
s, the demand for the #-th period in the planning horizon is
subject to ¢ forecast updates. As such, the demand in period

s+t — 1 as seen from period s follows the relation

t
s+i—1 _ s S+T
Dk - Fk,r + 2 Ek,t—r+1' 3)
=1
Since the forecast update vectors ¢ are independent and nor-
mally distributed, the demand in period s+t — 1 follows

a normal distribution D‘,i”_l ~ N(F;, 07,0, where 07 > =

Z;: ] (alf)2 is the residual uncertainty of the ¢-th period in the
planning horizon. The residual uncertainty depends only on
how far the demand period is in the planning horizon and is
a direct measure of the forecast accuracy over the horizon.
The demand and forecast revision process are illustrated in
Figure 1 for three review periods.

3.2.2 | Demand covariance

Although the forecast update vectors are observed indepen-
dently in each review period, the update of different products
and time periods described in Equation (1) can be correlated.
It follows that the demand distributions of a product in dif-
ferent periods of the planning horizon may be correlated. In
review period s, the covariance between the demands of prod-
uct k in periods #; and t, of the planning horizon is given

Demand and forecast observed at three successive review periods [Color figure can be viewed at wileyonlinelibrary.com]

by

1t s+t1—1 s+—1
yk' 2—C0V<D; ! ,D,i 2 )

min(ty )

t—1+1,6—7t+1 _tj—7t+1 _tr—7+1
Z Prei o o . “@

=1

The demand correlation depends only on how many forecast
update vectors are observed in which the two periods are both
in the planning horizon. The covariance between demand
observations in different periods is necessary to determine the
distribution underlying the cumulative demand.

3.2.3 | Cumulative demand distribution

The cumulative demand of product k in period ¢ of the
planning horizon at review period s, CD; , = z;: | D‘]‘:rf_l,
is uncertain since demand is uncertain over the plan-
ning horizon. As a sum of correlated, normally distributed
random variables, the cumulative demand CDi,; follows

o . t .
a normal distribution with mean ) _, F; and variance

1 1
Zzlzl thzl Vllcl’lz'

The variance of the cumulative demand depends only
on the covariance of the demand distributions of the same
product. The variance of the cumulative demand increases
linearly with the forecast update correlation between two time
periods. The cumulative demand distribution describes the
demand uncertainty over the planning horizon. Determining
the cumulative demand distributions allows the stochastic lot-
sizing problem to be solved with the formulation introduced
in Section 4.

3.3 | Multiplicative MMFE
In the multiplicative MMFE, the forecast evolution process
follows the relation

_ o1
F.,=F

ret1 " SXPEL 1) o)
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where the forecast update vector € follows a multivariate
normal distribution &' ~ MWN (i, £) and each marginal distri-
2

bution is given by g, ~ N’ —%, U/E, .)- The forecast updating
process is unbiased, as for the additive model. However, there
is a key difference between the two models: In the addi-
tive model, forecast uncertainty depends only on the variance
of the forecast update distribution, whereas in the multi-
plicative MMFE, the uncertainty associated with a forecast
update is relative to the forecast value. Further, since the
multiplicative MMFE is based on a log-normal distribution,
the forecast evolution distribution has a heavier tail than the
normal distribution underlying the additive MMFE.

The variance of the forecast updating process depends
both on the forecast update covariance matrix X and on the
forecast vector F°. Because of these properties, the mul-
tiplicative MMFE has been described as more relevant in
practice since forecasts tend to be reviewed in a relative
manner. The multiplicative model can also be suitable when
demand has significant fluctuations over time. In fact, apply-
ing a log-transformation is a well-known technique to achieve
homogeneous variance when data are heteroscedastic such
as time-series forecasting with nonstationary data. Yet, there
remain many open questions on how to apply the multiplica-
tive model using available forecast and demand data. In the
numerical study in Section 5, we detail the estimation pro-
cess of the multiplicative model from data and assess its
performance in rolling-horizon planning.

3.3.1 | Demand distribution
The demand of product k in each review period s follows
the same relation as the forecast update so that D, = F} | -

exp(slijl). From this relation and Equation (5), the demand in

period s + ¢ — 1 as seen from review period s is given by

t
Dj:“’_l :Fligt-exp<zgi’+t;+l). (6)
=1

The demand in period s + ¢ — 1 follows a log-normal distribu-
~ 2
tion, log(D{*™") ~ N (log(F; ) — ‘%f,o-;{,,z), where o7,> =

Z;:] (UZ)Z is the residual uncertainty of the r-ahead period.
The residual uncertainty in the log domain is independent
of the review period, as for the additive model. How-
ever, demand variance depends on both the forecast update
variance and the value of the forecast.

3.3.2 | Demand covariance

The demands of product k in periods #; and ¢#, of the planning
horizon in review period s are correlated with covariance

y]t(‘ 2 — Cov <log (Di“l_1 ), log <Di+t2_1 ))

min(ty,t)

H—t+l6—1+1 _t;—1+1 _tr—7+1
2 Prk o O . ™)

=1

The demand covariance can be deduced similarly as for
the additive case by analyzing the covariance of the
forecast evolution process in the log domain. The covari-
ance of the demand periods is used to estimate the
parameters of the distribution underlying the cumulative
demand.

3.3.3 | Cumulative demand distribution
Contrary to the additive case, there is no closed-form expres-
sion for the cumulative demand since it is the sum of
correlated log-normal distributions. However, it has been
observed that the sum of log-normal distributions can be
well approximated by a log-normal distribution. To esti-
mate the cumulative demand distributions with multiplicative
MMEFE, we follow the approach of Norouzi and Uzsoy (2014)
and apply the Fenton—Wilkinson approximation (FWA). The
method is attractive because of its computational simplic-
ity and overall high approximation quality over a wide
range of parameters. The approximation is based on match-
ing the first two moments of the approximating log-normal
distribution with the moments of the sum of the cor-
related log-normal distributions (Abu-Dayya & Beaulieu,
1994).

Following the  moment-matching  approximation,
the cumulative demand CDy, approximately follows
a log-normal distribution, 10og(CDy ) ~ N (my,vi,),

with parameters my, = 2log(y;) — %log()@) and v, =

log(y,) — 2log(y,), where y; = ¥ _| Fy; and

t

v = ) (F)Pexp (o7.)

=1

=1t min(i,j)
+2 Z Z Fk,iFk‘/' exp < p;(;(r+],/—r+lo_j(_1—+1o_;(—‘(+l ) (8)

i=1 j=i+1 =1

This approximate cumulative demand distribution is
used in Section 4 to solve the stochastic lot-sizing
problem.

3.4 | Influence of forecast update correlation
on the cumulative demand variance

The variance of the cumulative demand has been shown
to depend linearly on the forecast update correlation
for the additive model. In the multiplicative model,
although the relation between the forecast update cor-
relation and the cumulative demand variance appears
exponential, it is approximately linear over the relevant
domain.

Proposition 1. Under multiplicative MMFE, the variance of
the cumulative demand of product k in period t, Var(CDy,,), is
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FIGURE 2
wileyonlinelibrary.com]

approximately linear in the forecast update correlation p;{‘}:z
for t,t, <t with slope given by

0 Var(CDy,) oo -+l
W ~ 20,0 exp (6;) Z Finivic1Frnvicts

kk i=1
©)

_ b=l it +i—T g +i-T _bh+i-T
where i = 3 1. i Py % %

Proposition 1 implies that ignoring the correlation between
demand periods can lead to under- (resp. over-) estimation
of the cumulative demand variance if the correlation is pos-
itive (resp. negative). The proof is provided in Supporting
Information EC.1. The effect of the correlation coefficient
is proportional not only to the variance but also to the fore-
cast values. Thus, ignoring correlation has a greater impact
for large forecasts. Moreover, Proposition 1 suggests that the
multiplicative model is more sensitive to estimation errors
of correlation parameters than the additive model when
forecasts are large.

We analyze the evolution of the variance of the cumula-
tive demand distribution with the forecast update correlation
and compare the additive and multiplicative MMFE. We con-
sider a single product planned over a horizon of 7' = 2 periods
and investigate the effect of forecast update correlation on
the cumulative demand CD?. The forecast updating process is
defined with standard deviation o! = o = 20 for the additive
model and ¢! = ¢ = 0.2 for the multiplicative model. The
initial forecast in periods 1 and 2 are set equal F' = F? and
chosen within the set {50, 100, 150}. The effect of time cor-
relation on the variance of the cumulative demand in period 2
is shown in Figure 2 for the additive and multiplicative mod-
els. The figure highlights the linear relationship between the
forecast update correlation and the variance of the cumula-
tive demand for both the additive and multiplicative cases.
It further illustrates the impact of the forecast value on the
variance of the cumulative demand for the multiplicative
model.

0
-1 -0.8-0.6-04-0.2 0 02 04 0.6 0.8 1
Correlation p'?

Evolution of variance with correlation coefficient for the (a) additive and (b) multiplicative MMFE [Color figure can be viewed at

3.5 | Summary

In this section, the multivariate forecast evolution process
has been introduced for additive and multiplicative MMFE.
The parameters of the resulting demand and cumulative
demand distributions have been obtained. The cumulative
demand distributions can be determined exactly for the addi-
tive model and approximately for the multiplicative model.
Finally, we have analyzed the dependency of the cumulative
demand variance on the forecast update correlation coeffi-
cient. In the next section, we derive efficient formulations
for the stochastic lot-sizing problem based on the cumulative
demand distributions estimated from the MMFE.

4 | INTEGRATING FORECAST
EVOLUTION IN STOCHASTIC LOT SIZING

We integrate the additive and multiplicative MMFE in
lot-sizing problems through the cumulative demand distri-
butions derived in the previous section. We introduce the
PLA formulation that can be solved efficiently and extend
the model with scenario-based production recourse. The
extended model combines the strengths of PLA and scenario
methods, providing fast computations and flexible decisions.

4.1 | Problem setting

In each review period, the planner determines the production
quantity Oy, for all K products over the planning horizon of T
periods. The products share the same equipment with limited
capacity cap in each period. The planner aims to satisfy the
uncertain demand while minimizing costs. The operational
costs include inventory costs hc; incurred at the end of each
period and setup costs sc;, incurred each time a new product
is set up. Unsatisfied demand is backordered and penalized
with per-unit cost bcy. The initial inventory is denoted by ing
and can be positive or negative depending on whether there
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is on-hand inventory or backlog. As demand is uncertain, the
inventory I, , and backlog By, at the end of each period are
random variables. Since they depend on the production quan-
tity, determining their expected value would require nonlinear
constraints and lead to intractable formulations.

4.2 | Linearization of inventory and backlog
functions

To obtain tractable formulations, the PLA method has been
developed. It evaluates the first-order loss function at a
selected number of breakpoints and determines the slope of
the expected inventory and backlog between these break-
points (Helber et al., 2013). Rossi et al. (2014) provide
analytical bounds on the approximation error of PLA when
the uncertain variable follows a normal distribution, which
applies under additive MMFE. They show that the approxi-
mation error is small with only a few linearization points.

The first-order loss function of a real variable x and random
variable w with p.d.f. ¢ and c.d.f. ® is defined as

+o00
L(x,w) = E[max(w — x,0)] = / max(t — x,0) - p(r)dt

+0o0
_ / (1 — D). (10)

Let u = (uy,;) be the set of L+ 1 breakpoints determined
independently for each product and time period. The first
breakpoint is set to uy ;o = ing, which can be either positive or
negative, and the last breakpoint is set to the highest inventory
position attainable at the end of period ¢ with full capacity uti-
lization as uy,; = ing + cap - t. The remaining breakpoints
are set uniformly between these two bounds. For each seg-
ment, the slope of the expected inventory and backlog can be
determined as

L (w141, CDyy) — L£(ug 1 CDyy )

!
AL = ., an
4 Ukt 1+1 — Ul

Al = L (11141, CDry) + g 11 = Ly 11, CDy ) = g

L=
bt Up r1+1 — Ukl

>

12)

where CDy, is the cumulative demand distribution of prod-
uct k in period t. When demand forecasts evolve according to
the MMFE, the cumulative demand distributions are updated
over the planning horizon in each review period. Hence,
the linearization procedure should also be conducted in
each period.

Section 3 showed that the cumulative demand follows a
normal and log-normal distribution for additive and multi-
plication MMFE, respectively. Calculating the slopes of the
L segments of the expected inventory and backlog requires
evaluating the first-order loss function K - 7' - (L + 1) times in
each review period. This evaluation is computationally cheap

for a normal distribution since the first-order loss function
of a normal variable can be expressed as a function of the
first-order loss function of a standard normal (Rossi et al.,
2014), and can thus be calculated offline. The calculation is
more expensive for a log-normal variable since it requires
evaluating many integrals as in Equation (10). Note also that
the domain of the c.d.f. of a log-normal variable needs to
be extended for negative values since the initial inventory
in each period may be negative. The PLA method can be
linked back to separable programming, a general framework
to solve nonlinear problems using PLAs. Early approaches
to solve the resulting model included an adaptation of the
simplex algorithm (Bazaraa et al., 2006, section 11.3). We
leave for future research to investigate how the special struc-
ture of PLA-based MILP could be exploited as a subclass of
separable programming to further improve solution times.

The PLA of two demand distributions following a nor-
mal and log-normal with equal mean and variance is shown
in Figure 3. For the chosen parameter values, the functions
for both distributions are very similar. The figure shows
that the expected inventory and backlog functions can be
already well approximated with only L = 6 segments for
both distributions.

In practice, the feasible domain of the production variable
Q € [0,cap] can be large, especially when many prod-
ucts share the same production resource. The inventory
and backlog functions are nonlinear only on a restricted
part of this domain, as is also illustrated in Figure 3. In
principle, techniques could be used to reduce the num-
ber of required breakpoints, and thus the calculation times
(see, e.g., De Smet et al., 2020). Such approaches would
require a search procedure for optimizing the placement of
breakpoints. However, in our rolling-horizon problem, the
nonlinear part may change for each planning period and the
placement of breakpoints needs to be adapted accordingly.
The benefit of reduced calculation times for the MILP is
therefore reduced by the search time for the breakpoints.
Hence, we use a large number of fixed, equidistant break-
points in our numerical study to ensure that the nonlinear
domain is always well covered.

4.3 | Stochastic lot sizing without recourse

The PLA formulation of the stochastic lot-sizing problem
approximates the expected inventory and backlog with vari-
ables EI;, and EBy,, respectively. The key difference in our
approach is that the cumulative demand distributions and
their linearization are dynamically updated in each review
period, following the results presented in Section 3. Addition-
ally, we also adapt the formulation of van Pelt and Fransoo
(2018) to account for penalty cost for backlogs. The formu-
lation requires the introduction of auxiliary variables wy ,; to
measure the cumulative production from period 1 to ¢ asso-
ciated with segment / and binary auxiliary variables 4; ,; to
ensure that the L segments are used consecutively. The model
is formulated as the following mixed-integer linear program:
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The objective function in (13a) minimizes the expected
costs of inventory, backlog, and setup for all products over
the horizon. Constraints (13b) and (13c) approximate the
expected inventory and backlog using the slopes of the first-
order loss function previously determined. Constraint (13d)
determines the production volume from the cumulative pro-
duction over the linearization segments. Constraints (13e)
and (13f) ensure that the linearization segments are used in
increasing order through the auxiliary variable A; ;. These
constraints and auxiliary variables are required since the
expected backlog function is not convex in the production
quantity over the prediction horizon (van Pelt & Fransoo,
2018). Constraint (13g) ensures that the production over
all products is limited by the available capacity in each

PLA of expected inventory and backlog for demand following (a) a normal distribution and (b) a log-normal distribution [Color figure can

period. Constraint (13h) states that production of a product
can occur only if a setup operation is conducted. Con-
straints (131) and (13j) describe the domain of positive and
binary variables, respectively.

4.4 | Extended lot-sizing formulation with
production recourse

The stochastic lot-sizing formulation in (13) provides signif-
icant computational improvements compared to traditional
scenario-based stochastic formulations. However, it ignores
that the planner has the opportunity to react to forecast
updates in each review period. More precisely, Problem (13)
defines all production decisions as first-stage variables, which
can lead to overly conservative decisions. Scenario trees
can model multistage stochastic processes with recourse
decisions. However, they require notoriously long compu-
tation times that grow exponentially with the size of the
problem instance and scenario tree. We combine PLA and
scenario-based formulations in a single model to allow fast
computations and flexible decisions. To reflect the flexibility
of this strategy in the planning model while maintaining a
reasonable computational effort, we introduce recourse deci-
sions on production variables but not on setup variables.
Partial recourse structures can be traced back to Escudero
etal. (1993), and are also closely linked to the static—dynamic
strategy of Bookbinder and Tan (1988) that implements flex-
ible production decisions with fixed setup decisions. Our
numerical studies show that this partial recourse structure
improves planning flexibility with only a moderate increase
in solution times. In this section, we describe the integration
of PLA and scenario-based recourse decisions, build multi-
stage scenario trees from the MMFE models, and formulate
the extended model.

44.1 |
recourse

Combining PLA and scenario-based

In a multistage stochastic optimization approach, our
extended model connects first-stage decisions for early
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periods obtained through PLA with recourse decisions
for later periods obtained from demand scenarios. For
early periods, PLA provides an accurate approximation of
the expected inventory and backlog. In parallel, a multi-
stage scenario tree is created to describe the demand and
forecast uncertainty over the planning horizon. Applying
the first-stage production decisions from PLA, different
inventory positions are reached in the scenario tree. In
later periods, the multistage scenario tree allows recourse
decisions to react to the different positions created by the
first-stage decisions. Because of the added flexibility, the
model can take less conservative first-stage decisions in
the short-term horizon. Formally, we define #, € {1,...T}
such that PLA is applied from period 1 to #, and scenario
recourse is applied from period t, + 1 to T. Clearly, t, = 1
and f, = T reduce the approach to a multistage scenario-
based lot-sizing formulation and the PLA model in (13),
respectively.

The scenario-based extension of the PLA model can be
seen as an approximation of the optimal production pol-
icy that would be obtained if the corresponding dynamic
programming model were solved. The scenario part of the
model acts as a look-ahead approximation of the optimal
policy (Powell, 2016). There are two main advantages for
applying PLA for early periods and scenario trees with
recourse for later periods. First, it is well known that
the approximation quality of scenario-based formulations
increases with the number of scenarios. Multistage sce-
nario trees grow exponentially over the planning horizon
because of their branching structure. As such, only few
scenarios describe the uncertainty in the short-term hori-
zon and the approximation error is high specifically for
the immediate periods that are most important for planners.
By using the PLA formulation over the short-term hori-
zon, we ensure low approximation error in the periods with
few scenarios while still benefiting from the flexibility of
multistage models over the long-term horizon. Second, the
introduction of recourse production decisions leads to a lack
of a reference plan since production decisions are condi-
tioned on the discrete scenarios. By using only first-stage
decisions over the short-term horizon, our method ensures
the availability of a reference plan, which is often indis-
pensable in industry. The trade-off between flexibility and
availability of a reference plan is adjusted through choosing
parameter ¢;,.

Let N, be the set of demand scenarios in period
t. Over the planning horizon, there are [N;,N,,...,N7]
scenarios where N, is the number of demand scenar-
ios in period 7. The combination of PLA and scenario-
based recourse in our approach is illustrated in Figure 4.
Here, the multistage scenario tree is generated with a
branching factor of 2 over a planning horizon of T =
6 periods with t, = 3. Thus, there are [2,4,8,16,32,64]
demand scenarios, [1,2,4,8,16,32,64] inventory posi-
tions, and [1,1,1,8,16,32] production decisions over the
horizon.

442 |
evolution

Generating scenario trees from forecast

The demand scenario tree is generated from the MMFE
from period 1 to T by updating the initial forecast F* with
forecast update vectors sampled in each node. The fore-
cast update vectors are drawn from the multivariate forecast
evolution distribution. The forecast of product k in period
t of the horizon in scenario node n can be expressed as

Fi,=Fr, + ZT 0 ZTt("; for the additive MMFE and Fy,

Fr, - exp(z =0 Z’I(")) for the multiplicative MMFE where

£% ™ is the forecast update vector obtained at node a,(n), the
7-th ancestor node of node n with ag(n) = n.

Many techniques have been developed to generate sce-
nario trees from probability distributions. In this paper, we
use Latin Hypercube because of the high variance reduction
observed empirically (Linderoth et al., 2006) and the simplic-
ity of its implementation. To sample the high-dimensional,
correlated forecast update vectors in each node, we apply
the Latin hypercube with multivariate uniformity (LHMU)
method developed by Deutsch and Deutsch (2012) designed
to reduce sampling variability for high-dimensional multi-
variate random variables. Other techniques such as optimal
quantization or moment matching may also be applied
although they often increase computation times (Heitsch &
Romisch, 2009; Lohndorf, 2016).

443 | Extended lot-sizing formulation

The extended stochastic lot-sizing formulation with PLA and
scenario-based recourse is given by:

K tp
min Z (Z (th . EIk,[ + bCk . EBk,t)

=1 \i=1
a hc bc
hey k
+ Z Z Lt Z By n +2S0k Xt
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L
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L
Z(Wk,t,/ — We—1,0= Qi Vk,t <t1,,  (14d)
=1
Wi i—12 W i—1 — Wi 1-2) Ak 05 Vk,t < 1,122,
(14e)
Wi < g = Wi -1 g1, Vk,t < 1,1, (14



DYNAMIC STOCHASTIC LOT SIZING WITH FORECAST EVOLUTION

459
Production and Operations Management J—

Planning 1 2 3

4 5 6

horizon !

Demand
scenario tree

Inventory
positions tree

v

Production
decisions

PLA first-stage decisions

Scenario-based recourse decisions

FIGURE 4
wileyonlinelibrary.com]

K
Z Oy.+< cap, vVt <ty, (14g)
k=1
Or < cap - Xi 4, Vk,t <1, (14h)
Leon = Bien = Tii—10 = Biymin + Qi —Fi, Vhon,t <1y,
(141)
Biin = Biin = Lii—10 — Bry—1n +Qk,t,a|(n) _Flr;’p Vk,n,t > 1,
(14j)
K
2 Or1n=< cap, Vn,t > 1, (14k)
k=1
Ok cap - Xy, Vk,n,t > 1, (14D)
01> 0, Vk, t, (14m)
Qk,l,al(n)9 Ik,t,m Bk,t,nZ 09 Vk’ t,n, (14n)
Xieps A€ {0513, Vk,t, 1. (140)

The objective function in (14a) minimizes the PLA expected
inventory and backlog costs over the first #;, periods and the
sample average inventory and backlog costs over the remain-
ing T — 1, + 1 periods. Constraints (14b) to (14h) are adapted
from the PLA model to the first #, periods. Constraints (141)
and (14j) describe the discrete inventory positions through
the planning horizon with first-stage and recourse produc-
tion decisions, respectively. The operator a;(n) returns the

Demand observations, production decisions, and inventory trajectories over T = 6 periods with 7, = 3 [Color figure can be viewed at

index of the direct ancestor of node n in the multistage
scenario tree. This formulation implicitly enforces the so-
called nonanticipativity constraints, ensuring that decisions
in a time period cannot use information obtained in later
periods, as is also illustrated in Figure 4. Note that the dis-
crete inventory and backlog determined in Constraint (141)
are not used in the objective function. They determine sample
inventory positions at the end of periods ¢, resulting from the
first-stage decisions. Constraints (14m) and (14n) specify the
domain of the continuous first-stage and recourse variables.
Constraint (140) specifies the binary variables.

4.5 | Summary

This section has introduced a general stochastic lot-sizing
approach apt for use in rolling-horizon planning. The forecast
evolution models described in Section 3 are integrated in the
lot-sizing problem through the cumulative demand and fore-
cast evolution distributions. We have shown that both additive
and multiplicative MMFE models can be readily included in
lot-sizing problems through PLA. The model was extended
to allow for production recourse for later periods through a
discrete scenario tree. We have shown how the scenario tree
can be constructed by sampling the multivariate distribution
describing the forecast evolution process.

S | NUMERICAL STUDY

The numerical study investigates the use of forecast evolu-
tion models in stochastic lot sizing from model estimation
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to application. Our assessment is based on extensive rolling-
horizon simulations. We answer the following questions:

* How can MMFE model parameters be estimated from real
data?

* What is the value of forecast evolution models in practice?

* What are the strengths and weaknesses of the additive and
multiplicative MMFE?

* What is the value of recourse provided by our multistage
formulation?

* What factors influence the value of recourse?

The numerical study is composed of three main parts. First,
we solve the real-world case study of a global company in the
process industry. A large data set of forecast and demand his-
tory is used to estimate the MMFE models and assess their
performance. Simulations are run in an out-of-sample set-
ting in which the forecast evolution process is unknown and
can only be estimated from historical data. Second, we use
synthetic data to analyze in detail the effect of not knowing
the distribution underlying the forecast evolution. We spec-
ify the forecast evolution distributions for the additive and
multiplicative models and simulate them in a rolling-horizon
fashion. Since the forecast evolution process is fully known
in these experiments, we are able to evaluate the value of
using the additive model when the actual forecast evolution
follows a multiplicative model and conversely. Further, we
quantify the value of recourse for the MMFE model with a
known forecast evolution process. Sensitivity analyses are set
up to identify parameters that drive the performance of fore-
cast evolution models including demand fluctuation, capacity,
and the variance of MMFE models. In a third part, we sum-
marize our findings and provide general recommendations on
the use of MMFE models.

The numerical study is implemented in Julia (Bezanson
et al., 2017). The optimization problems are modeled in
JuMP (Dunning et al., 2017) and solved with Gurobi 9.0.
The relative objective gap of the solver is set to 1% for all
models. The calculations are run on an Intel(R) Core(TM) i7-
4810MQ processor at 2.80 GHz using 16GB of RAM. The
code used to produce the results and figures based on syn-
thetic data is made publicly available on the online repository
(https://github.com/alexforel/DynMMFE).

5.1 | Real-world case study

We apply our approach to the real-world case study of a large
company manufacturing chemical products used in agricul-
ture. Demand follows the growth cycle of crops and exhibits
strong seasonality and high uncertainty. In each planning
period, demand forecasts are obtained through a sales and
operations planning (S&OP) process that combines expert
evaluations and automated calculations. The demand fore-
casts are determined for all products of a large product
portfolio. We focus on the tactical planning level with a
long production horizon. At this level, planning decisions

are made on an aggregated product-family level. The fam-
ilies have been designed such that cleaning operations are
required each time a new family is set up. Thus, our analy-
sis covers K = 6 product families (henceforth referred to as
products) that share the same production resource. Together
with our industry partner, we gathered the history of forecasts
and demand at a monthly granularity over 4 years. We then
aggregate the forecast and demand data on the family level.
Data and costs are reported in unit of measurement (u.0.m.)
and cost unit (c.u.), respectively, for confidentiality reasons.

The historical demand and its clear yearly seasonality are
shown in Figure 5. The planning horizon is set to 7 = § to
capture the majority of the season while keeping computa-
tion times low. The inventory costs are determined together
with our industry partner and range between 0.04 and 0.1 c.u
per u.o.m. per month across the products. The backlog costs
are set to b. = 15 - h.. and the setup costs to s. = 15 c.u. The
initial inventory is set to zero. The monthly production capac-
ity is given as cap = 4934 u.o.m. per month. The PLA-based
lot-sizing models introduced in Section 4 are implemented
with L = 60 breakpoints. The extended model uses a scenario
tree with [3,6,6,12,12,24,24,48] nodes over the planning
horizon sampled with LHMU. The extended model is param-
eterized with 7, =4 so that the first half of the planning
horizon uses first-stage decision variables and the second half
uses production recourse.

5.1.1 | Estimating MMFE models from
historical data

Simulations are run in an out-of-sample fashion to provide
unbiased estimates of model performance and to assess the
ability of MMFE models to generalize from past observa-
tions. In each review period, only past observations of the
forecast evolution process are used to estimate the MMFE
parameters. The simulation starts in period 25 so that half
the data set is available to estimate the MMFE parameters in
the first simulation period, and half the data set is used for
the rolling-horizon evaluation. In each review period, model
parameters are re-estimated from the history of forecast
updates in an online fashion.

While the empirical mean and covariance matrix of the
additive MMFE can be estimated easily, the occurrence of
zero values for the forecast and demand complicates the
estimation for the multiplicative model. Because the mul-
tiplicative model assumes that demand and forecasts are
always positive, all forecast and demand vectors in which
at least one value is zero are removed from the data set. In
total, this amounts to around 50% of the data set. We then
determine the parameters of the log-normal distribution as
the empirical mean and covariance of the log of the forecast
updates. Thus, we find the maximum likelihood estimators of
the forecast update distribution parameters for both additive
and multiplicative MMFE. To conform to the assumption of
an unbiased forecast underlying the MMFE models, we addi-
tionally correct the sample bias. The estimated covariance
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matrices exhibit complex correlation structures. Interestingly,
the additive MMFE exhibits strong positive correlation for the
first three products over the horizon, while the multiplicative
MMEE has high positive time correlations for the two last
products. The difference between the correlation parameters
of the two MMFE models can be explained by the censoring
of forecast updates with a value of zero in the multiplicative
model. Such updates occur more frequently in the low season.

After estimating the distribution parameters, a practitioner
might be interested in evaluating the goodness-of-fit of the
forecast update samples to the distributional assumptions of
the additive and multiplicative models. Intuitively, one would
think that the goodness-of-fit provides a first measure of the
expected performance of the MMFE models. A Shapiro—Wilk
test is performed over the whole data set on each marginal
distribution of the additive and multiplicative models. The
statistical tests reject the hypothesis that the forecast updates
are normally distributed with strong confidence for all prod-
ucts and all time periods for the additive model. The results
are more nuanced for the multiplicative model as the dis-
tribution hypothesis cannot always be rejected with strong
confidence. This first analysis suggests that the multiplicative
model, having a better fit to the data, is likely to provide good
results whereas the additive model should perform poorly.
The detailed results of the goodness-of-fit tests are provided
in Supporting Information EC.2.

5.1.2 | Out-of-sample simulation results

In our numerical simulations, we notice that the presence
of outliers can significantly impact model performance.
In this context, outliers are understood as large forecast
updates (positive or negative), which disrupt the estima-
tion of the MMFE parameters. To remove outliers, forecast
updates belonging to the upper and lower a quantiles are
ignored when estimating MMFE parameters in each plan-
ning period. This method is known as trimming and has
been used in diverse settings such as robust regression
(Bertsimas et al., 2017). Outlier data are removed indepen-
dently for each product and time period in the planning
horizon so that the marginal distributions of trimmed MMFE
models are assumed independent. We choose the value a =

22 24 26 28 30 32 34 36 38 40 42 44 46 48
Time period

Four-year demand history for the six families of chemical products investigated in the industry case [Color figure can be viewed at

10% for the trimming factor as a good compromise between
generalization and robustness to outliers.

Currently, our company partner implements a deterministic
planning in a rolling-horizon fashion. We introduce a deter-
ministic model that uses the available point-estimate forecasts
directly and ignores demand uncertainty to benchmark this
practice. Due to the seasonality of demand, only few obser-
vations of the demand process are available. As such, we
do not implement a stochastic benchmark based only on the
demand data. The simulation results over the 24 periods are
presented in Table 1. The additive MMFE model with PLA
reduces costs by 11% compared to the deterministic model,
thanks to relevant safety stock that increase inventory costs
but provide a significant reduction in backlog and setup costs.
The extended additive model with production recourse fur-
ther reduces costs by 3% through less conservative inventory
decisions. The multiplicative model performs poorly over the
simulation as it builds large inventory reserves. These results
are particularly noteworthy for two reasons. First, they con-
tradict the goodness-of-fit analysis that suggested that the
additive MMFE would not be an appropriate model. Second,
they contradict the consensus that multiplicative MMFE is
preferable when demand fluctuates over time.

To explain the poor performance of the multiplicative
model, we conduct a sensitivity analysis of the trimming fac-
tor . The trimming factor is varied between 0% and 25%.
Because zero forecast values are removed when estimating
the parameters of the multiplicative model, only few sam-
ples are available as the trimming factor increases. It is not
possible to investigate trimming factors greater than o = 25
since only one sample is then available and the parameters
of the multiplicative MMFE cannot be estimated. The results
of the sensitivity analysis are shown in Figure 6. The sen-
sitivity of the multiplicative model to the trimming factor
is striking. In fact, the multiplicative model performs best
when it uses as few samples as possible, thereby artificially
reducing the overconservativeness of the model. On the other
hand, the additive model performs robustly and consistently
outperforms the deterministic benchmark.

Several factors explain the worse performance of the mul-
tiplicative model. First, the censoring of forecast update with
a value of zero leads to an overestimation of demand variance
in the multiplicative model. Second, the multiplicative model
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TABLE 1 Results of out-of-sample case study: Realized costs (in c.u)
Model Total cost (rel.) Inventory cost (rel.) Backlog cost (rel.) Setup cost (rel.)
Deterministic 3513 (100%) 796 (100%) 1442 (100%) 1275 (100%)
Additive PLA 3116 (89%) 1293 (162%) 803 (56%) 1020 (80%)
Extended Add. PLA 3015 (86%) 1112 (140%) 868 (60%) 1035 (81%)
Multiplicative PLA 3612 (103%) 2424 (304%) 288 (20%) 900 (71%)
Extended Mult. PLA 3560 (101%) 2431 (305%) 259 (18%) 870 (68%)
Costs relative to deterministic model use an additive model, we perform an extensive numerical
300 | ——DET study with synthetic data in the following section. In particu-
g T g)l??_ ADD lar, we evaluate the cost of model misspeficiation for demand
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FIGURE 6 Sensitivity analysis of model performance to outlier
trimming [Color figure can be viewed at wileyonlinelibrary.com]

has a higher sensitivity to estimation error as discussed in
the interpretation of Proposition 1. Since uncertainty is rel-
ative to the forecast itself, an estimation error on variance
parameters can have a large effect on the peak of the sea-
sonal demand. This can be further amplified by the presence
of outliers in the data, as is shown in the trimming analy-
sis. Another explanation is that the multiplicative model fails
to generalize to settings in which the true forecast evolution
process does not follow a multiplicative MMFE. Goodness-
of-fit tests measure how well the historical data follow the
distributional assumption of the MMFE models and sug-
gest that the multiplicative MMFE better fits past data. They
assess the normality of the log-updates but do not provide any
guarantee on the performance of the MMFE-based model in
rolling-horizon planning.

Minimizing estimation errors and minimizing planning
costs are two different tasks (Elmachtoub et al., 2020;
Elmachtoub & Grigas, 2022). In fact, prediction models with
low estimation error may yield higher costs than other seem-
ingly less precise models (Ferber et al., 2020). Hence, an
explanation of the poor performance of the multiplicative
model may be that the estimation error minimized when
fitting the model is less closely linked to the planning
costs than the estimation error used when fitting the addi-
tive model. Adapting the model fitting procedure to take
into account planning costs is an interesting but challenging
research direction. Differing from the simpler class of prob-
lems studied by Elmachtoub and Grigas (2022), our problem
is dynamic and implemented in a rolling-horizon fashion.
Further, the uncertain parameters have nonlinear effects on
the objective function.

To better understand the shortcomings of the multiplica-
tive model and to identify situations in which it is better to

In this section, the forecast evolution process described by
the MMEFE is simulated on artificial instances. By perform-
ing sensitivity analyses of key parameters, we evaluate the
performance of MMFE-based models in a variety of prob-
lem settings. In particular, we vary the capacity, uncertainty,
and demand patterns. We also aim to provide insights on the
use of MMFE-based models in real-life situations in which
underlying probability distributions are unknown. To this end
we employ the additive model when the true forecast evolu-
tion process is multiplicative and conversely. Then, we assess
our multistage extension and identify drivers that influence
the value of recourse enabled by it.

5.2.1 | Simulation instances

We consider K =2 products over a prediction horizon of
T = 6 periods. Each simulation contains S = 12 review peri-
ods. The inventory holding costs are sampled randomly for
the two products as k. ~ U'[1, 1.5]. The backlog cost is set
to b. = 10 - k. and the setup cost is set to 5. = 150. The ini-
tial inventory is set to in’ = 50 for each product. The PLA
method uses L = 40 segments, which ensures a low approx-
imation error. The extended model uses a scenario tree with
[3,6, 12,24, 48, 48] nodes over the planning horizon sampled
with LHMU. We set 7, = 3 so that the first half of the plan-
ning horizon is modeled with PLA and the second half with
scenario recourse.

The capacity in each period is chosen as cap € {300, 500}
to reflect settings with limited and ample capacity. The ini-
tial forecast values are generated from three demand patterns
with different dynamics. Stationary, random, and seasonal
patterns are used as illustrated in Figure 7. The stationary pat-
tern sets the initial forecasts to a constant value F' = 100 over
the simulation length. The random pattern samples each ini-
tial forecast from the uniform distribution U°[50, 150]. The
seasonal pattern is generated with periodicity S/2 from a
sine function, which yield values [16,93, 145, 159, 129, 65]
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as initial forecasts over the season length. The three demand
patterns have the same average demand over the simula-
tion length but different dynamics, which may impact the
additive and multiplicative MMFE models differently. The
forecast evolution models are set unbiased and uncorrelated
with equal forecast update variance for all products and time
periods. Low, medium, and high forecast uncertainty settings
are defined with variance o € {100,400, 700} for the addi-
tive model and o2 € {0.01,0.04,0.07} for the multiplicative
model. Thus, the two forecast evolution models have the same
variance under the average demand.

5.2.2 | MMFE models and benchmarks

In practice, the true forecast evolution is unknown. To esti-
mate the value of MMFE-based lot sizing when using a
mismatched forecast evolution model, we run two distinct
sets of simulations in which the forecast evolution process
follows the assumptions of the additive and multiplicative
MMFE. The mismatched model is estimated from a simu-
lation of the true forecast evolution process over 1 million
periods. The sampled forecast updates are measured accord-
ing to the mismatched MMFE model and used to estimate
its parameters.

As in the previous real-world case study, the estimation
procedure of the multiplicative model is not straightforward.
When the forecast evolution process follows an additive
MMEFE, demand is normally distributed and demand obser-
vations may be zero (or negative, which is corrected to zero
in all simulations of additive MMFE). It is also possible that
a forecast with value of zero is updated to a positive fore-
cast. These two cases, while frequently occurring in practical
settings, are not compatible with the multiplicative MMFE.
Thus, when estimating the parameters of the multiplicative
MMFE, we remove all sampled forecasts that contain at
least one zero value. For the setting with low uncertainty,
this amounts to removing 0%, 1%, and 41% of samples for
the stationary, random, and seasonal patterns, respectively;
13%, 26%, and 64% for the medium uncertainty setting; and
37%, 50%, and 74% for the high-uncertainty setting. Clearly,

Review period s

Review period s

Mean demand for (a) stationary, (b) random, and (c) seasonal patterns over simulation of eight periods

more sample updates are removed from the data set as the
demand pattern is more dynamic and as uncertainty increases.
The high number of unusable samples is an important short-
coming of multiplicative MMFE since collecting data is an
expensive process.

Two benchmarks are introduced: (1) a deterministic model
that uses the forecast as a point estimate and ignores uncer-
tainty but observes the updated forecasts in each planning
period and (2) a demand-driven stochastic model that ignores
forecasts and their evolution and instead estimates demand
distributions from historical data. For the stationary and
random patterns, the demand-driven model estimates a sta-
tionary demand distribution. For the seasonal pattern, the
demand-driven model estimates independent distributions for
all periods in the season. The model estimates the parame-
ters of normal and log-normal distributions from simulations
of the forecast evolution process over 1 million periods
using additive and multiplicative MMFE, respectively. These
two models benchmark the planning practices of industry
and the traditional stochastic lot-sizing literature, respec-
tively. The performance of stochastic models is traditionally
evaluated by measuring the value of the stochastic solu-
tion (VSS), which is based on a static evaluation of the
deterministic and stochastic models, and the expected value
of perfect information (EVPI), which measures the value
of obtaining perfect forecasts (Birge & Louveaux, 2011).
By comparing the performance of the stochastic models
to the deterministic benchmark implemented in a rolling-
horizon fashion, we extend the VSS to a more realistic
setting in which the deterministic benchmark also benefits
from updated forecasts. Further, the value of improving the
forecasting process is measured by comparing the costs of
MMEFE-based models under the different uncertainty set-
tings, providing a richer performance evaluation than the
EVPL

5.2.3 | Results

Each rolling-horizon simulation of the 36 instances is
repeated 1000 times. Model performance is measured as the
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Multiplicative PLA
(mismatched model)

Extended Add. PLA

(correct model)

4153.6 (88.6%%*)
4152.0 (89.2%%*)
4652.2 (88.6%*)
4589.3 (91.3%%*)
4923.7 (85.2%%*)
4811.5 (89.8%%*)
4020.2 (88.2%%*)
3986.4 (88.7%%*)
4568.2 (86.9%%*)
4473.4 (89.0%%*)
4914.6 (83.3%%*)
4749.0 (87.3%%*)
3968.4 (87.1%*)
3720.9 (89.4%%*)
4575.6 (82.4%%*)
4222.4 (86.2%%*)
5066.8 (81.0%%*)
4501.8 (84.4%%*)

TABLE 2  Simulation results when forecast evolution follows an additive MMFE process
Additive PLA
Demand Uncertainty cap Det. DD-stochastic (correct model)
Stationary Low 300 4707.9 4711.9 (100.6%*)
500 4676.2 4695.8 (100.9%%*)
Medium 300 5312.4 5680.1 (108.2%%)
500 5069.4 5722.9 (114.0%%)
High 300 5927.2 6326.7 (109.5%%)
500 5421.0 6265.6 (117.2%%*)
Random Low 300 4581.2 5365.6 (117.8%%)
500 4515.3 5367.6 (119.5%%)
Medium 300 5336.4 6093.5 (116.0%*)
500 5078.3 6009.9 (119.6%%*)
High 300 6077.4 6645.8 (112.7%%*)
500 5525.4 6523.9 (120.1%%)
Seasonal Low 300 4598.6 4507.7  (99.1%%)
500 4187.3 4229.0 (101.7%%*)
Medium 300 5713.3 5771.8 (104.4%%*)
500 4957.1 5309.8 (108.5%%)
High 300 6609.7 6703.3 (107.7%%*)
500 5425.5 5913.5 (111.1%%*)
Average 5206.6 5658.0 (108.7%%*)

4447.2 (85.4%%*)

41184  (87.9%%)
41298 (88.7%%)
51475 (98.0%*)
49749 (99.19%*)
6689.6 (116.2%*)
5712.9 (106.8%*)
41226 (90.5%%*)
40635 (90.5%%*)
5586.9 (106.4%*)
5134.8 (102.2%%)
7209.2 (123.1%%)
59682 (109.8%*)
5785.4 (127.3%%)
45892 (110.3%%*)
8225.2 (148.8%*)
5931.2 (121.1%%)
9573.1 (156.0%*)
79115 (148.5%%)
58263 (111.9%%)

4135.6 (88.2%%*)
4131.0 (88.8%%*)
4593.8 (87.4%%*)
4541.4 (90.4%%*)
4878.4 (84.4%%*)
4770.0 (89.1%%*)
4007.5 (87.9%%*)
3969.7 (88.3%%*)
4501.4 (85.6%%*)
4418.0 (87.8%%)
4863.4 (82.4%%*)
4712.2 (86.6%%*)
3932.9 (86.3%*)
3683.8 (88.5%%)
4505.9 (81.0%%*)
4159.6 (84.8%%*)
4970.3 (78.5%%*)
4463.4 (83.7%%*)
4402.1 (84.5%%*)

sum of realized inventory, backlog, and setup costs. The
results under additive and multiplicative MMFE are presented
in Table 2 and Table 3, respectively, as the average of the
costs over the 1000 repetitions. The statistical significance of
all relative cost differences from the deterministic model is
assessed using Student’s 7-test. Statistical significance is indi-
cated with the symbol (x) for all relative values for which the
associated p-value is strictly smaller than 5%.

Our simulation results quantify the value of forecast evo-
lution models compared to both traditional deterministic
approaches typical in industry and stochastic models that
focus solely on historical demand data and ignore forecast.
The costs of the deterministic benchmark are especially high
when capacity is tight, uncertainty is high, and demand fluc-
tuates over time. It is also in these settings that the MMFE
models with known forecast evolution provide large cost
reductions. The stochastic, demand-driven model increases
costs compared to the naive deterministic model for almost
all instances. This can be explained by two reasons. First, the
model is overly conservative since it accounts for the whole
demand uncertainty for all periods in the planning horizon.
Second, it is inaccurate because it only aims for the average
observed demand and ignores the forecasts. This is espe-
cially true for the random demand pattern since, even though
demand is stationary, the initial forecast values provide a lot
of information on the final demand observations. On the other
hand, the additive and multiplicative MMFE models reduce
costs by 14% on average compared to the deterministic model
when the forecast evolution process is known.

The value of improving the forecasting process to reduce
forecast uncertainty can be measured by comparing the costs
of the correct MMFE model in different uncertainty settings.
For instance, under additive MMEFE in the seasonal setting
with low capacity, the planner would be willing to pay up
to 580 c.u. to reduce the forecast uncertainty from the high
uncertainty to medium uncertainty, and up to 500 c.u. to
reduce it further to the low uncertainty setting. Interestingly,
the value of information appears higher in the simulation set-
tings with low capacity. This result contrasts with previous
studies that found that advance information was not useful
when utilization is high (Albey et al., 2015; Ziarnetzky et al.,
2018, 2020). This difference can be mainly explained by the
fact that previous literature uses several approximations such
as capacity allocation when determining the safety stocks
of the different products. This severely restricts planning
flexibility when utilization is high. Flexibility is even more
important in our experiments since we consider products with
different cost parameters whereas Ziarnetzky et al. (2018) and
Albey et al. (2015) consider symmetric products. A detailed
analysis of the effect of the simulation parameters and their
interactions is given in Supporting Information EC.3.

The cost of model misspecification is high for the mul-
tiplicative model. Indeed, Table 2 shows that using a
multiplicative forecast evolution model when the true process
is additive can significantly increase costs even compared to
traditional deterministic planning. On average, the costs of
the multiplicative model are 12% larger and more than 50%
when demand is seasonal and uncertainty is high as is the case
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TABLE 3 Simulation results when forecast evolution follows a multiplicative MMFE process
Additive PLA
(mismatched Multiplicative PLA Extended Mult.
Demand Uncertainty cap Det. DD-stochastic model) (correct model) PLA (correct model)
Stationary Low 300 4695.2 4801.1 (102.8%%*) 4179.1 (89.5%%*) 4151.7 (88.9%%*) 4124.0 (88.2%%*)
500 4616.2 4776.1 (104.0%%*) 4190.7 (91.2%%*) 4149.5 (90.3%%*) 4117.3 (89.6%%*)
Medium 300 5452.8 6187.3 (115.4%%*) 4852.8 (90.8%%*) 4785.2 (89.8%%*) 4691.1 (87.7%%*)
500 5059.3 6082.8 (121.3%%*) 4713.1 (94.2%%) 4644.4 (92.9%%*) 4571.7 (91.3%%*)
High 300 6440.5 7368.2 (118.4%%*) 5414.7 (87.6%%*) 5469.3 (90.1%%*) 5223.9 (84.6%%*)
500 5494.7 7168.7 (132.1%%*) 5035.5 (93.3%%*) 5049.4 (94.2%%*) 4909.8 (91.3%%*)
Random Low 300 4634.3 5566.5 (120.9%*) 4088.5 (88.8%*) 4018.2 (87.3%*) 3999.5 (86.8%*)
500 4524.1 5528.9 (122.9%%*) 4019.0 (89.3%%*) 3956.3 (88.0%%*) 3925.1 (87.2%*)
Medium 300 5576.9 6763.9 (124.2%%*) 4851.8 (89.4%%*) 4771.3 (88.4%%*) 4625.9 (85.2%%*)
500 5055.6 6677.1 (133.6%%*) 4637.0 (92.9%%*) 4534.6 (91.1%%*) 4438.6 (89.0%%*)
High 300 6675.1 8012.7 (126.6%*) 5632.6 (89.5%%*) 5596.4 (91.3%%) 5350.8 (85.1%%*)
500 5575.4 7657.9 (139.4%%*) 5048.3 (92.7%%*) 5019.1 (92.9%%*) 4856.8 (89.5%%*)
Seasonal Low 300 4806.4 4761.8 (100.8% ) 4171.4 (87.9%%) 4082.0 (86.4%%*) 4021.5 (84.9%%*)
500 4276.3 4510.2 (106.4%%*) 3856.3 (90.8%%*) 3749.0 (88.3%*) 3701.3 (87.2%%*)
Medium 300 6435.3 6623.6 (109.7%%*) 5265.7 (85.9%%*) 5286.7 (88.7%%*) 5054.5 (82.1%%*)
500 5162.3 6125.6 (120.9%%*) 4635.4 (91.6%%*) 4428.2 (88.1%%*) 4331.7 (86.0%%*)
High 300 7762.7 8105.1 (116.3%*) 6169.5 (87.1%*) 6404.2 (95.0%%*) 5977.3 (82.4%*)
500 5835.7 7329.8 (130.3%%*) 5102.6 (90.5%%*) 5024.9 (90.7%%*) 4780.2 (85.5%%*)
Average 5448.8 6336.0 (116.3%%*) 4770.2 (87.5%%*) 4728.9 (86.8%%*) 4594.5 (84.3%%*)

in our industry application. In contrast, the cost of model mis-
specification is low for the additive model. Table 3 shows that
when the true process is multiplicative, the additive model
yields costs almost as low as the multiplicative model, sug-
gesting that additive MMFE-based models are robust to errors
in modeling the forecast evolution process. These results
explain the superiority of the performance additive model for
our industry case, in which the true forecast evolution process
is unknown.

5.2.4 | Value of recourse

The value of recourse is defined as the difference between
costs of the stochastic model without recourse and the
extended stochastic model combining PLA and scenario-
based recourse, as presented in Table 2 and Table 3. The value
of recourse varies over the simulation settings similarly for
both MMFE models. It is higher for more complex planning
settings: When demand is dynamic, uncertainty is high, and
capacity is limited. Overall, recourse is more beneficial under
multiplicative MMFE. On average, the value of recourse is
around 1.5% and 2.5% across all simulation settings and
can reach 2.3% and 6.2% for the additive and multiplicative
models, respectively. The detailed statistical analysis of the
value of recourse is given in Supporting Information EC.4.
It shows that these results are statistically significant at a
p-value smaller than 5%. The distribution of the value of

recourse is skewed so that in the majority of cases, observed
costs are smaller than the average value. To further investi-
gate the value of recourse in stochastic models and to identify
settings in which it is most beneficial, we perform several
sensitivity analyses.

Impact of product and time correlation
In Section 3, we have shown that positive (resp. negative)
forecast time correlation was equivalent to a higher (resp.
lower) cumulative demand variance for both MMFE mod-
els. For the extended model with recourse, correlation has
an even larger impact since the recourse model can react to
correlated forecast updates. We analyze the impact of the cor-
relation structure on the value of recourse on the simulation
setting with seasonal demand and cap = 300. The influence
of both product and time correlation is investigated. Prod-
uct correlation is set constant over the horizon as p’l’fz = POr
with o, € {—0.6,0,0.6}. Time correlation is set between the
first and second periods of the horizon for both products as
Pyt = p: with p, € {=0.6,0,0.6}. If both product and time
correlation parameters are nonzero, then the first and second
periods of the two products are also correlated. In this case,
we set p) = oy - oy

The costs of the extended model with recourse relative
to the costs of the model without recourse are presented in
Table 4. The statistical significance of the relative cost is
assessed with Student’s #-test and is shown with the symbol
(x) if the p-value is below 0.05. The correlation structure
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TABLE 4  Value of recourse for different correlation structures

Additive MMFE Multiplicative MMFE

P =-06 Pr=0 P =06 P =—0.6 Pe=0 pr =106
p, =—0.6 97.4 (%) 96.9 (*) 96.8 (*) 92.1 (*) 91.2 (*) 89.2 (%)
p, =0 98.3 (*) 98.5 (*) 99.0 (*) 93.9 (*) 94.6 (*) 93.3 (*%)
p, =0.6 98.7 (*) 100.1 100.9 (*) 97.4 (%) 97.1 (%) 95.8 (*)

has a strong impact on the value of recourse. Negative time
correlation yields high value of recourse for both MMFE
models, whereas positive time correlation leads to lower
values than in the uncorrelated case. Recourse decisions can
take advantage of negative time correlation by anticipating
that forecast updates will compensate over time. Specifically,
a forecast increase for the first period in the horizon might
be compensated by a forecast decrease in the second period.
Anticipating this effect leads to less conservative decisions.
Hence, the largest improvements are observed when time
correlation is negative and product correlation is positive.
Here, a compensation over time occurs for both products
and costs can be reduced by more than 10% compared to the
stochastic model without recourse. This analysis shows the
importance of including correlation in stochastic planning
especially when using recourse models. Further, it confirms
the trend that the multiplicative model benefits most from
recourse.

We also perform extensive sensitivity analyses of the
available capacity and scenario structures. The sensitivity
analysis of capacity shows that the value of recourse increases
monotonously with the available capacity under additive
MMEFE. The value of recourse is larger under multiplicative
MMEFE and peaks when capacity is neither too limited nor
too large. The sensitivity analysis of the scenario structure
shows that scenario trees with an intermediate size, such as
the one used throughout this section, are sufficient to bene-
fit from recourse without substantial increase in computation
times. Details on both sensitivity analyses are provided in
Supporting Information EC.5.

The value of flexibility is also studied in a broader con-
text in Supporting Information EC.6 by comparing the value
of recourse to the value of a free-return policy, which
allows to liquidate excess inventory at no cost. The numer-
ical results confirm that flexibility is more valuable under
multiplicative MMFE than additive MMFE. Recourse and
returns decisions are two flexibility levers that provide large
cost reductions under multiplicative MMFE. Recourse deci-
sions are more beneficial when capacity is tight whereas
return decisions prove especially valuable when capacity is
large.

5.3 | Summary and recommendations

The numerical study shows that integrating forecast evolution
models in stochastic lot sizing can significantly improve plan-

ning quality compared to traditional deterministic approaches
and stochastic methods based solely on demand data. The
additive MMFE model is robust and performs well across
all simulation instances: (1) when the forecast evolution pro-
cess is known, (2) when it is unknown and estimated from
mismatched updates, and (3) when it is learned from real-
world historic data. Interestingly, the cost savings provided
by stochastic models based on additive MMFE relative to the
deterministic benchmark are similar on both the real-world
and the synthetic data. On the other hand, the multiplica-
tive model suffers from several limitations, which have been
identified through our extensive numerical studies. First, the
multiplicative model is particularly sensitive to model mis-
specification: When the forecast evolution model is unknown,
the multiplicative model leads to a cost increase and often
performs worse than traditional deterministic rolling-horizon
planning. The performance deteriorates most when uncer-
tainty is high, capacity is limited, and the demand is dynamic,
for example, when there is a strong demand seasonality. This
suggests that the relative forecast error measure, on which
the multiplicative MMFE model is based, is more sensitive
to a distributional error than the absolute measure underlying
the additive model. On top of this limitation, the multiplica-
tive model is more strongly impacted by estimation errors
due to the variance being relative to the absolute value of
the forecast as shown in Proposition 1. Thus, demand peaks
and outliers can strongly impact the multiplicative model’s
performance, which is clearly shown in the real-world case
study. Further, due to its inability to include demand and fore-
casts values of zero, the multiplicative model overestimates
forecast uncertainty when using historical data that include
such periods.

Thus, in contrast to the consensus in the MMFE litera-
ture stating that the multiplicative model better characterizes
forecast revision processes, we advise to prioritize the imple-
mentation of the additive MMFE because of its robustness
in a wide array of problem settings. In any case, we empha-
size that the choice of the relevant MMFE model should not
be based on an a priori goodness-of-fit analysis but instead
on evaluating model performance through out-of-sample
rolling-horizon simulations using historical data.

The extended model with production recourse can provide
consistent cost reductions with both real-world and synthetic
data. Across all simulation settings, the value of recourse is
higher for the multiplicative model. Still, recourse can con-
sistently provide lower costs for the additive model. We have
identified that the value of recourse is especially high when
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demand is dynamic, uncertainty is high and when forecast
updates exhibit negative time correlation.

The extended model with recourse requires managerial
decisions as it impacts planning in several ways including
slightly longer computation times and a reduced reference
plan due to the presence of recourse decisions. In our
analysis, we have provided initial guidelines to tune the
model and find a good compromise between its advantages
and limitations.

6 | CONCLUSION

This paper proposed a methodology for a dynamic,
stochastic, capacitated lot-sizing approach apt for use in
rolling-horizon planning. For this purpose, we integrated
forecast evolution models in tractable lot-sizing formula-
tions. We have shown that cumulative demand distributions
describing the forecast evolution can be integrated efficiently
in stochastic lot-sizing models using existing linearization
techniques. Rolling-horizon planning also allows for a revi-
sion of production plans. We therefore extended our approach
with a scenario-tree representation of uncertainty to allow
for production recourse. We quantified the value of forecast
evolution models in a large-scale numerical study using both
real-world and synthetic data. Forecast evolution models
have been shown to provide significant cost reductions
compared to both traditional deterministic methods used in
industry and stochastic methods that use only demand his-
tory, which are common in the stochastic lot-sizing literature.
On average, production recourse consistently reduces costs
for both additive and multiplicative MMFE. Key parame-
ters that impact the value of recourse such as product and
time correlations have been identified through sensitivity
analyses.

This work proposes the first numerical comparison of
additive and multiplicative MMFE in rolling-horizon plan-
ning when the true forecast evolution process is unknown.
Previous literature stressed that the multiplicative MMFE
better fits industry data than the additive MMFE, which
is also observed in our analysis. However, we find that
multiplicative MMFE-based planning performs poorly when
the true forecast evolution process is unknown. Thus, we
highlight that the MMFE model that best fits the histor-
ical data does not necessarily provide the best planning
performance. The additive model, in contrast, performs
robustly across all simulation instances. Future research
could investigate how to make multiplicative forecast evo-
lution models more robust to an unknown forecast updating
process. The two main steps of defining a forecast evo-
lution model may be challenged: (1) measuring forecast
updates from data and (2) fitting a probability distribu-
tion to the updates. For instance, more robust multiplicative
MMFE models could use novel approaches to measure the
relative forecast updates or investigate alternative estima-
tion techniques to find model parameters from data. The
normality assumption, central to both additive and multi-

plicative forecast evolution models, could also be challenged
by investigating other distributions or applying distribution-
free methods. A last research direction pertains to the link
between the revision of forecasts and the revision of plan-
ning decisions. It is known that frequent planning changes
can cause nervousness in supply chains. Integrating fore-
cast evolution in planning models may allow new methods
to anticipate planning instability in rolling-horizon plan-
ning and derive replanning strategies yielding more stable
plans.
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