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Abstract

Background: Flow cytometry is a powerful tool for identifying and quantifying various

cell markers, such as viability, vitality, and individual cell age, at single-cell stages. How-

ever, cell autofluorescence andmarker fluorophore signals overlap at low fluorescence

intensities. Thus, these signals must be unmixed before determining the age fraction.

Methods and Results: A comparison was made between principal component regres-

sion (PCR) and random forest (RF) topredict autofluorescence signals of Saccharomyces

pastorianus var. carlsbergensis in a flow cytometer. RF provided better prediction results

than the PCRandwas therefore determined to be better suited for unmixing signals. In

the subsequent application for unmixing the autofluorescence signal from the marker

fluorophore signal, the Gaussian mixture analysis based on RF was in better agree-

mentwith themicroscopy-determined replicative age distribution than thePCR-based

method.

Conclusion: The proposed approach of single-laser spectral unmixing and subsequent

Gaussian mixture analysis showed that the microscopy data was consistent with the

unmixed fluorescence spectra. The demonstrated approach enables fast and reli-

able unmixing of flow cytometric spectral data using a single-laser spectral unmixing

method. This analysis method enables age determination of cells in industrial pro-

cesses. This age determination allows for quantifying the yeast cell’s age fractions,

providing a detailed view of age-related changes. Additionally, the bud scar labeling

technique can be used to determine age-related changes in Pichia pastoris yeast for

biotechnological applications or recombinant protein expression.
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1 INTRODUCTION

Biological entities such as cells or organisms undergo various changes

during their lifetimes, which can be induced by external causes, includ-

ing the physical or chemical environment. The physical influences

include temperature, light, electric or magnetic fields, and gravity.

Chemical effects include acidic or alkaline environments, gases, and

solvents. For biotechnological analysis, the analysis of changes during

a lifetime in high-throughput result in two main problems: (i) autofluo-

rescence variance, limiting the detection of weak fluorophores result-

ing from overlapping signals of autofluorescence and fluorophore, and

ii difficulties in single-cell age analysis using chitin staining, due to the

small amounts of fluorophore binding sites on the cell surface. The

internal causes of changes in organisms include cell growth, aging,

and mutation.1 Organisms respond to such changes by changing their

molecular properties, such as emission signals. For example, Saccha-

romyces cerevisiae yeast cells were subjected to the accumulation of

3,3′-dipropylthiacarbocyanine iodide (dis-C3(3)) and batch curing in a

glucose (0.2%)medium.2 A redshift in themaximumfluorescence (λmax)

from569 to 582nmwas observed, in addition to the usual redshift that

appearswhen the aqueousmedium is changed frompolar to nonpolar.3

Also, the autofluorescence signal of Escherichia coli (E. coli) cells was

reported to increase when they struggle to survive.3 Thus, the molec-

ular properties of cells are affected in various ways in response to

external stimuli.

Many studies have used flow cytometry and luminescence detec-

tion results with plate readers to evaluate the fluorescence of cellular

material.4–7 Photoluminescence has also been used as a detection

method in flow cytometry.6,8–14 However, the presence of intrinsic cel-

lular autofluorescence emissions (e.g., from the tryptophan residues

of proteins in Lactobacillus sp. or Saccharomyces sp.,15 nicotinami-

dadenindinukleotid (NADH),16 or protoporphyrin IX17) can signifi-

cantly limit the detection of fluorescent-labeled antibodies due to the

use of antigenic determinants in flow cytometry. This limitation can

be overcome using two principal methods. The first method uses two

laser wavelengths: one for exciting the fluorescence and autofluores-

cence transitions and the second for exciting the autofluorescence

transitions only.8,9 The autofluorescence spectra are then subtracted

on a cell-by-cell basis to filter the desired fluorescence signals.9 The

second method uses several detection filters to monochromatize the

fluorescence signals.1

The unmixing process may be facilitated by staining the cells with

autofluorescence emitters.12 This method has been improved using

microplate readers, which are sensitive to the specific lines of relax-

ation signals.12–14,18–25 However, themicroplate readers only estimate

the mean response of the cell population, so information about slight

variations around themean is lost.1 However, this existingmethod1 has

some limitations in that it only uses two channels (525 and 585 nm) for

the entire signal, which may not provide sufficient signal resolution. In

particular, the green fluorescent protein (GFP), which dominates the

525-nm channel, does not vanish at the 585-nm channel because of

signal broadening.

Thus, Lichten et al.’s method1 should be optimized for flow cytom-

etry, which offers a more detailed cell description of, for example,

autofluorescence and cell size.8,10,11

Furthermore, flow cytometry detects the entire signal using differ-

ent channels, including the 525-nm GFP channel and other channels

that detect signals except for the GFP broadening signals. Using these

channels, the autofluorescence signals at the 525-nm channel can be

predicted. Several approaches have been reported in the literature for

such signal predictiondata analysis, such as principal component analy-

sis (PCA) for gene expression analysis of yeast cells,26 principal compo-

nent regression (PCR) for columnar ozone prediction,27 and Bayesian

PCA for yeast genomic changes and protein expression analyses.28 The

random forest (RF) regression method is another promising approach

with high precision for automated use in taxonomic studies.29–31 The

main advantage of RF is that it can address non-linearity, and it avoids

overfitting when scaling to higher dimensions.32

Overcoming the problemof unmixing autofluorescence signals from

marker fluorescence signals is essential for correctly analyzing cell age

distributions inmixed yeast populations.

Over the last three decades, S. cerevisiae has also evolved into a

model organism for studying cell aging. However, aging is a very com-

plex process, even in a eukaryote as simple as S. cerevisiae. In research

into agingmechanisms, twoapproaches describing cell aging havebeen

established: replicative cell age (RLS) and chronological cell age (CLS).

However, the aging of S. cerevisiae is more likely to be affected by

RLS than CLS.33 Mortimer and Johnson made the first approach for

studying RLS on yeast. They dissected 36 yeast cells and counted the

number of bud scars, an indicator of replicative aging.34 After this

first experiment, later studies have shown that the average lifespan

of yeast is relatively constant for a given strain.35 However, the aging

process negatively impacts different cell compartments like telom-

eres and genetic integrity,36 and an increase in RLS is associated with

decreased metabolic activity and generation time. Many studies have

been performed in yeast cell separation37 or microscopic age distribu-

tion analysis,38 but all studies were limited by the non-representative

cell numbers used for investigations. Studies according to the cell age

of Pichia pastoris yeast, an essential industrial strain used for recombi-

nant protein synthesis, have been performed at a lower level but are

limited by similar causes. Flow cytometric analysis methods were still

limited in the autofluorescence data. This signal overlap is why calibra-

tion curves were required to calculate the population’s mean bud scar

numbers,39 limiting the results.

In this study, we developed an approach for spectral unmixing of flu-

orescence signals from autofluorescence of S. pastorianus yeast cells

tagged with a GFP-containing protein linker for replicative age deter-

mination. The developed method can be used with flow cytometry

to detect single-cell fluorescence in six channels. However, unmix-

ing the measured signals is non-trivial. Two regression methods, PCR

and RF, were compared to predict autofluorescence signal intensity in

the GFP-fluorescence channel. To facilitate this comparison, samples

of pure yeast cells and samples with a protein linker were measured

to calibrate the single fluorescence–emission sources. This unmixing
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approach allowed isolating a fluorophore signal from measurement

data combining the autofluorescence signals and newly appearingGFP

signals of the mixed spectrum, enabling an in detail replicative cell

age analysis of yeast in high-throughput as well as representative cell

numbers for the first time.

2 MATERIALS AND METHODS

2.1 Experiments

Details regarding the yeast strains and their cultivation are given in

theSupporting InformationSectionS1.1. Thebindingmechanismof the

protein to the bud scars of the yeast cells and details of themicroscopy

measurements are described in Sections S1.2 and S1.3, respectively.

As described in Section S1.4, flow cytometry was performed on yeast

cells without the protein linker to obtain the autofluorescence data.

As described in Section S1.5, an adsorption isotherm was used to

determine the binding parameters ofHis6-Sumo-sfGFP-ChBD to yeast

cells.

2.2 Analysis methods

The amount of chitin can be used as an indicator for the replicative

age of yeast cells. This indicator is correlated with the number of yeast

cells with a bud scar, which corresponds to the GFP-containing protein

linker signal. However, yeast cells also have autofluorescence, which is

linearly convoluted with the GFP fluorescence:

fi = ai + gi, (1)

where fi is the fluorescence-signal intensity, ai is the autofluorescence

signal intensity, and gi is theGFP signal intensity at wavelength i. In this

study, PCR and RF regression were compared for their suitability for

the prediction and subsequent unmixing of autofluorescence data.

2.2.1 Principal component regression

Principle component analysis reduces the dimensionality of the

datasets using covariance analysis between factors.27 PCA maximizes

the correlation between the original and new mutually orthogonal

variables.40 This method is suitable for analyzing highly correlated

independent variables. In this study, we evaluated the use of PCA

combined with subsequent regression (PCR) to reduce the size of the

original dataset by excluding the prediction variable of pure yeast cells

to one principal component and correlating this data with the aut-

ofluorescence data. For example, the original data of all fluorescence

detectors excluding 525 nm were transformed. Then this principal

component was used in a linear regression with the 525-nm autoflu-

orescence data (code fragments are shown in Section S2.1). We then

transformed the training dataset to the first principal component for

verifying the approach. Then, PCRwas used to predict the autofluores-

cence signal at the 525-nm channel for yeast samples, which was then

coupledwith the protein linker to subtract this value from the rawdata.

2.2.2 Random-forest model

RF is a versatile machine-learning algorithm for classification and

regression tasks, which is well suited for fitting complex datasets. The

RF model can be used for regression and classification problems.41,42

RF regression models calculate the sum of single full-grown decision

trees built using classification and regression tree algorithms.43 Each

tree can be seen as a logical interpretation of an if-then criterion.

Therefore, this model has a low tendency for overfitting and can be

explained as a sum of weak regressions resulting in one strong regres-

sion tree. A disadvantage of the RF model is that it is a black box, i.e., it

can create predictions and forecasts but usually lacks transparency.

To apply the RF model, the fluorescence signals excluding 525 nm

were used for autofluorescence prediction. The code line using the ran-

domforest package of R44 is shown in Section S2.2, which implements

the RF function published by Breiman et al.45 Because the predic-

tion variable at the 525-nm channel is not a factor, nonlinear multiple

regression is used instead of classification.

2.3 Autofluorescence analysis

This study aimed to develop a model for predicting the autoflu-

orescence of yeast cells. The flow cytometry data consists of six

parameters: front scatter (FSC), side scatter (SSC), and fluorescence

signals at 525 nm (525–40), 585 nm (585–42), 610 nm (610–20), and

780 nm (780–60).We used all parameters, excluding the 525-nm chan-

nel of a reference sample (pure yeast cell), to predict the 525-nmsignal.

PCR and RF were used to predict and remove the overlapping autoflu-

orescence signal tomeasure the pure fluorescence signal of the protein

linker binding to the bud scars of yeast cells. The subtracted data were

fitted tomicroscopy data of 11 datasets and compared to the results of

Gaussianmixture analysis.

The flow cytometry data were gated via multivariate outlier analy-

sis using the software R46 and the aqplot function from the mvoutlier

package47,48 to remove dust particles and data points associated with

properties uncharacteristic of yeast cells. The FSC and fluorescence

signal at 525 nmwere used for outlier detection. The fluorescencewas

measured as front scatter data (FSC-A) and increased with increas-

ing cell size, as shown in Figure 1 (top). A previous study3 revealed

that the intensities of autofluorescence signals changes according to

the fermentation media and conditions. The yeast cells were coupled

with a protein linker that binds specifically to chitin components such

as bud scars, which resulted in fluorescent bud scars and increased

the fluorescence-signal intensity. The fluorescence data of yeast cells

coupled with the protein linker (test data) and uncoupled yeast cells

(control data) showed as overlapping, as shown in Figure 1 (bottom).

The fluorescence intensities of the yeast cells with and without the
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F IGURE 1 Comparison of fluorescence data at 525 nm and the
cell size. Increase of autofluorescence signal intensity with size (top);
comparison of yeast cells with andwithout protein linker, indicated by
an increase in fluorescence-signal intensity (bottom)

protein linker differed significantly. Therefore, the obtained data

required spectral unmixing for precise age determination of the yeast

cells.

2.4 Determination of BSN distribution

To date, no method exists that could determine BSN distributions

without the use of microscopy. To address this, microscopic and flu-

orescence data were fitted toward each other. Microscopic BSN data

were obtained as follows:Microscopywas used to count the number of

visible bud scars on the yeast cell surface. Then, theBayes theoremwas

used to predict the number of nonvisible bud scars based on a correla-

tion between the cell surface and replicative age. This correlation was

assumed in twoways: (i) linear transformation as shown in S3.1; and (ii)

logarithmic transformation as demonstrated in S3.2.

After this step, autofluorescence-filtered data was evaluated in two

ways, which were then compared against each other: (i) the micro-

scopic data were fitted linearly to autofluorescence-cleaned data,

which resulted in two coefficients; and (ii) the fluorescence data were

fittedwithGaussianmixture analysis and the resultswere compared to

microscopic data. In this analysis, 11 independent yeast samples were

used. The resulting approach enabling the determination of age distri-

butions of yeast cells will providemore profound knowledge about the

budding process in running fermentations.

2.4.1 Spectral unmixing of fermentation data

The experiment aimed to compare the BSN distribution determined by

microscopywith the fluorescence intensity determined by flow cytom-

etry. The fluorescence data using PCR andRFmethodswere compared

and fitted to the density distribution of the microscopy-determined

BSN distribution, which had the linear form of a1 × BSN + a2. Fluores-

cein isothiocyanate (FITC)-coupledwheat germagglutinin (WGA-FITC)

is the current standard for chitin labeling. It was used as a reference for

comparing the density distribution of the subtracted data and the BSN

distribution determined bymicroscopy.

2.4.2 Gaussian mixture analysis

Gaussian mixture analysis was performed using the R and sklearn

package to evaluate the microscopy-determined BSN distribution’s

empirical cumulative density fit plots and filtered fluorescence spec-

tra. We assumed that cells with a similar BSN have comparable

fluorescence intensities. Therefore, the whole non-normal distributed

fluorescence spectra data stems fromdifferent overlappingnormal dis-

tributions. Each normal distribution (Gaussian curve) represents cells

of similar age. The number of Gaussian curves was varied between

1 and 15 to determine the best fit to the subtracted fluorescence

spectra. For every sample, the probability of the best-fit mixture was

calculated and graphically visualized. The minimum Bayesian informa-

tion criterion (BIC) was used as a criteria to measure the optimum

number of curves as well as the curves’ center and weight. Each

curve represents one age cluster of the yeast cell population. Each

curve’s location andweight was compared to the content of the empir-

ical cumulative density fit curve for the microscopy-determined BSN

distribution.

2.4.3 Empirical age distribution simulation

A simulation of the age distribution under ideal conditions was

performed to confirm a deviation of the age distribution from the

theoretical age distribution and create an empirical distribution to

compare our data to. Therefore, the generation time of yeast cells was

used according to their singular cell age. Wang et al.49 demonstrated

by simulation that daughter cells have the exact duration of the G1

phase as the second-generation mother cells. Using these parameters

of Wang et al.,49 based on experimental data of Adams50 and Yang

et al.51 for estimated cell cycle length, we simulated the age fraction

distributions in the exponential growth phase of yeast cells. Due to the

description of the rare event of budding in a large population,52 as well
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as the independent occurrence of budding,53 we assumed a Poisson

process, with n randomly and independent occurring events of a Pois-

son distribution, corresponding to the “rpois” function54 in R. λ was

taken as N divided by the corresponding cell cycle length, reported by

Wang et al.49

The initial bud scar distributionwas assumed as arithmetic distribu-

tion, as reported by Steinkraus et al.,55 corresponding to 50%daughter

cell content, 25%mother cells 1st generation, and so on.

2.5 Transfer of the model using Pichia pastoris

Pichia pastoris cells were stained using the His6-Sumo-sfGFP-ChBD

protein (S1.2) and then evaluated using flow cytometry. For compari-

son with the presented protein linker,WGA-FITCwas used. Moreover,

the cells were analyzed via microscopy, and the specific staining of the

bud scarswas verified (S1.3). Finally, protein affinity determinationwas

performed using an adsorption isotherm, as described in S1.5.

3 RESULTS

3.1 Prediction of Autofluorescence

In order to measure how accurately the fluorescence intensity at

525 nm (𝛽525), which corresponds to the autofluorescence of the yeast

cells, could be predicted, a training set of 13 sets (yeast samples inoc-

ulated on different days) of 3 yeast cell samples without the protein

linker were prepared. In each set of yeast samples, the three samples

were inoculated at the same time, prepared, and handled under simi-

lar conditions as described in S1.2. The samples were then measured

using flow cytometry as described in Section S1.4 and FSC as well as

fluorescence signals at 585, 610, and 780 nmwere used to predict the

fluorescence signal at 525 nm. For each sample RF and PCR were cali-

brated. Based on this calibration, the coefficient of determination was

recorded for the prediction of the fluorescence signal at 525 nm in

the sample, as well as the coefficient of determination for the predic-

tion of the other two samples in the set. These will be referred to as

the in-sample coefficient of determination (R2IS) and the out-of-sample

coefficient of determination (R2OOS), respectively.

The PCR was generated for each sample using the two principal

components, which generally accounted for most of the total variance

within the data. When using PCR, the mean R2IS for the samples was

0.775 while the mean R2OOS for the samples was 0.538. Each RF was

optimized on the in-sample data using k-fold cross-validation, with k

being 3. RF provided a mean R2IS of 0.95 for the samples and a mean

R2OOS of 0.803.When comparing the results, RF performed significantly

better than the PCR both in the sample (p < 0.01) and out of the sam-

ple (p < 0.01). An example of the fit of the prediction can be seen

in Figure 2 for both RF (top) and PCR (bottom). A comparison of the

subtracted fluorescence spectra of RF (left) and PCR (right) can be

found in the Supplementary Section in Figure S1. Therefore, for future

autofluorescence prediction, the RFmodel is used.

F IGURE 2 Comparison of predicted and raw data for
random-forest model (upper) and principal component regression
(lower)

3.2 Model fitting of the microscopy-estimated
BSN distribution

After unmixing fluorescence intensities and autofluorescence, result-

ing in the fluorescence of fluorophores (His6-Sumo-sfGFP-ChBD) on

yeast cell bud scars, the question of interpretation of the fluores-

cence intensity remains. Therefore, a fitting of unmixed fluorescence

intensities with the BSN of yeast cells is necessary.

In a previous study,56 we established a method for bud scar visual-

ization using a fluorescence protein and flow cytometric determination

of the corresponding fluorescence-signal intensities. Furthermore, we

demonstrated a correlation between these fluorescence intensities

and themicroscopy-determinedmedianBSN.MedianBSNdistribution

was determined utilizing a relationship between the BSN distribu-

tion and cell numbers determined by Powell et al.57 However, due

to variances in cell morphology in yeast populations, the regression

parameters determined by Powell et al. cannot be used for every

yeast strain. This method does not always result in a perfect predic-

tion of the absolute BSN. For example, it is unrealistic to obtain a

total BSN of 28 based on zero visible bud scars, as calculated by the

Bayes theorem using the correlation explained earlier. An adjustment

of the regression parameterswas necessary to obtain valid data for the
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F IGURE 3 Comparison of absolute bud scar numbers predicted
by different methods: Powell et al. (top), logarithmic transformation
(middle), and linear transformation (bottom)

subsequent comparison of the flow cytometric fluorescence distribu-

tion withmicroscopic data.

To correct the existing parameters of Powell et al.’s method to the

given data, we considered linear and logarithmic transformations to

obtain the correlation between the number of visible bud scars and

yeast cell surface area. The approach to each transformation and the

resulting coefficients can be found in S3.1 and S3.2.

Figure 3 compares the predicted BSN distribution based on the

parameters reported by Powell et al. with that obtained after linear

or logarithmic transformation. Using either transformation to correct

the distribution resulted in a large number of daughter cells. The

literature suggests that a yeast cell population has a theoretical daugh-

ter cell content of 50%.55 In experiments, a daughter cell content

slightly higher than this theoretical value was determined,38 which

was attributed to differences in cell cycle durations with increasing

replicative aging.49 Considering the cell cycle length, a simulation was

performed in Section 3.4, confirming the distribution calculated by the

logarithmic transformation.

3.3 Verification of microscopic data by the
Gaussian mixture model

In order to determine the BSN distribution from the fluorescence

intensities adirect linear correlationof the fluorescence intensities and

distributions determined throughmicroscopywas investigated (Figure

S2 and S3). This approach proved to be unsuitable as the relation-

ship between fluorescence and BSN varied from batch to batch, see

Section S3.3. To account for this, an alternate method was developed

using Gaussian mixture models to analyze the unmixed fluorescence

intensity distribution and validate the analysis through the Bayesian

estimated BSN distribution from Section 3.2 determined through

microscopy. The Gaussianmixturemodel was used to analyze unmixed

fluorescence intensities of Section 3.1, where the fluorescence spectra

were analyzed independent of each sample’s fluorescence intensities.

F IGURE 4 Gaussianmixture analysis of unmixed fluorescence
spectra. Fluorescence spectra with the best-fitting number of
Gaussian peaks (left). Probability that a defined number of peaks, that
best explains the spectrum (right)

We assumed that each fluorescence spectra is a mixture of Gaus-

sian bell-shaped curves, each curve indicating cells with similar BSN.

This method has the advantage that different yeast strains with vary-

ing amounts of chitin can be analyzed because the Gaussian mixture

only analyzes the density distributions, not fluorescence intensities.

Therefore, the distribution of the bud scars resulting from the loga-

rithmic transformation of Sections 3.2 and S3.2 was verified through

the analysis of the subtracted fluorescence data in the absence of the

microscopic data. Thus, we developed the following hypothesis: the

overall spectrum is a mixture of single Gaussian peaks, and each Gaus-

sian peak explains an age cluster of yeast cells with a similar BSN.

Because different yeast populations have different maximum BSNs,

we did not fix the number of peaks. We applied the Gaussian mixture

analysis to the spectrum to verify this hypothesis. First, the spectrum

was analyzed to obtain the optimal number of Gaussian peaks and the

corresponding probabilities, as shown in Figure 4 (right). The optimal

number of peaks was then used as an overlay for the fluorescence den-

sity, as shown inFigure4 (left). Theoverall spectrumwasbest explained

using five Gaussian peaks. Therefore, the maximum BSN taken into

account by the model was 5. Due to uncertainties in the autofluores-

cence prediction, a small peakwith negative fluorescence intensitywas

obtained after subtraction. A good correlation was observed between

the microscopy-determined number of cells per age cluster and the

clusters according to the Gaussian mixture analysis. A similar peaks

weight was obtained when the same analysis was performed using

WGA-FITC as the staining component. Table 1 shows the weights of

different peaks. Notably, the coverage of the data with WGA-FITC

showed more peaks than the data with the protein linker. Finally, the

autofluorescence was predicted for data subtraction using both the

RF and PCRmethods. The Gaussian mixture analysis of the subtracted

data confirmed the presence of five peaks (Figure S4 and S5). Overall,

the results obtained fromPCRandRFmodelswere similar and the pre-

diction using both methods are in good agreement with the data from

themicroscopymeasurements.38,58

Yeast cells can undergo more than five divisions. Assuming that the

age distribution corresponds to the theoretical distribution described

by Steinkraus et al.,55 the daughter cell contentwas50%,where25%of

the yeast cells have one bud scar, 12.5%of the cells have two bud scars,
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TABLE 1 Theweights of each Gaussian peak andmicroscopy-determined clusters for comparison

Peak 1 2 3 4 5 6

Peakweight RF, corresponding to age fractions 0.553 0.148 0.099 0.062 0.036 -

Peakweight PCR, corresponding to age fractions 0.577 0.206 0.133 0.084 - -

Peak weightWGA and RF, corresponding to age fractions 0.482 0.166 0.132 0.098 0.067 0.0054

Microscopy-determined age fractions obtained using logarithmic transformation 0.517 0.198 0.121 0.072 0.0479 0.030

F IGURE 5 Simulation of bud scar number distribution over time.
The assumption of the G1 duration parameter was taken fromWang
et al. (2017).49

and so on. In this case, only a small number of cells (< 3.125%) have

more than five bud scars and were therefore considered negligible. To

compare our obtained results with an empirical model, we performed a

simulation using the cell cycle length of different aged yeast cells.

3.4 Empirical age distribution simulation

The results obtained from the analysis in Section 3.3 contrast the clas-

sical assumption; that is, age fractions are constant in yeast cell popu-

lations. It is assumed that under optimal conditions, the daughter cell

content is 50%, the mother cell content is 25%, the second-generation

content is 12.5%, and so on.59 A deviation of this assumption can be

explained by the difference in the G1 phase, depending on cell age. To

test, if the age distributions resulting from Section 3.3 are realistic, we

have performed a simulation depending on the age-related differences

in G1 phase.

Assuming that cells are in a division state instead of a chronologi-

cal age phase (stationary phase), Figure 5 illustrates the development

of the cell age fraction in the exponential growth phase without the

impact of stress conditions. The figure shows that the daughter cell

content is > 50%, which is realistic. In the equilibrium phase, a daugh-

ter cell content of 62% could be calculated. A prolonged G1 phase is

explained by the volume of the daughter cell, which is much smaller

than that of mother cells. Thus, daughter cells require more time to

enlarge to the required cell volume for division60 and the daughter cell

content increases to> 50%.

3.5 Transfer toward Pichia pastoris

Pichia pastoris yeast cells are of high interest in the pharmaceutical

industry due to the recombinant synthesis of proteins. But less is

known about the impact of the singular cell age on cell growth, pro-

tein synthesis, or nutrient uptake. Assuming that P. pastoris cells have

a similar heterogeneity as brewing or bakers’ yeast, cell cycle duration

and nutrient uptake highly depend on the singular cell age. Based on

Krainer et al.,61 who first determined chitin compounds on P. pastoris

cell wall, similar staining of bud scars with His6-Sumo-sfGFP-ChBD

should be possible.

3.5.1 Flow cytometry results

First, P. pastoris yeast cells were labeled using the His6-Sumo-sfGFP-

ChBD protein linker, followed by flow cytometry measurements. For

comparison, yeast cells were labeled usingWGA-FITC as the commer-

cial standard for chitin labeling and as already published by Krainer

et al.61 In Figure S6, a comparison of the FSC signals of the three sam-

ples is given, indicating no visual differences in the particle size and,

therefore, cell size due to the binding of protein on the bud scars. The

mean FSC value was 1,666,116 for the reference sample, 1,612,097

for the test sample, and 1,456,880 for the WGA-FITC-labeled yeast.

However, the intensity of the fluorescence signals at 525 nm varied

significantly, as determined by the Kruskal–Wallis test and a subse-

quent posthoc Dunn test. The adjusted p-value was < 0.0001 for

all comparative tests. Further, His6-Sumo-sfGFP-ChBD-labeled yeast

cells resulted in fluorescence intensity between 98,400 and 330,123

(1st and 3rd quartile, respectively). In contrast, the WGA-FITC-labeled

yeast cells had a lower fluorescence intensity of 23,405 and84,476 (1st

and 3rd quartile, respectively), indicating a lower affinity toward chitin.

3.5.2 Evaluation of the specific binding parameters

To test this hypothesis of a lower affinity, adsorption isotherms

were performed to determine the binding parameters of the His6-

Sumo-sfGFP-ChBD protein linker toward P. pastoris cells (Figure 6).

Compared to P. pastoris cells, E. coli cells lack chitin components on the

cell surface and are therefore a negative control. From this figure, the

value of qmax, indicating themaximumprotein load per cell surface, was

determined to be 3.417± 0.738× 106 molecules μm−2. In our previous

study56 wedeterminedamaximum loadof2.45±0.11×106 molecules
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F IGURE 6 Left: Adsorption isotherm indicating the specific binding of the protein linker toward Pichia pastoris cells;N= 3; Right: Overlay of
the transmission and fluorescence channel of Pichia pastoris yeast cells labeled with the His6-Sumo-sfGFP-ChBD protein linker

μm−2 for Saccharomyces pastorianus ssp. carlsbergensis, indicating a 40%

higher protein load per cell for Pichia pastoris yeast. This higher pro-

tein load indicated a higher protein binding efficiency and therefore

more binding positions by a higher chitin content or better steric

arrangement of the proteins on the cell surface. E. coli cells showed

no significant increase of the protein load by increasing equilibrium

concentration, indicating no specific protein binding. The dissociation

constant of His6-Sumo-sfGFP-ChBD to P. pastoris was determined to

be 537.95± 261.46 nM indicating a lower affinity ofWGA-FITC, which

was previously determined to be 26.66± 12.08 μM.56 Themicroscopic

images of labeled Pichia pastoris cells are shown in Figure 6b, indicating

a specific protein binding due to the ring structure of the staining on

the cell surface.

3.5.3 Age determination of the Pichia pastoris cells

After successfully demonstrating the specific binding of His6-Sumo-

sfGFP-ChBD to the cell surface of P. pastoris cells, in particular to the

bud scars, the unmixing procedure described in this work were applied

to determine the age distribution of stained P. pastoris cells. The sub-

tracted fluorescence spectra of the P. pastoris yeast cells (Figure S7)

were fitted with Gaussian curves, resulting in the following age frac-

tions: 34.545 ± 2.827% (daughter cells), 30.853 ± 2.524% (mother

cells, 1st generation), 15.424 ± 4.559% (mother cells, 2nd generation),

8.939 ± 1.446% (mother cells, 3rd generation), and 6.282 ± 1.288%

(mother cells, 4th generation) (Figure S7).

4 DISCUSSION

The conventional spectral unmixing is expensive, as it requires the use

of two lasers: one for exciting the fluorescent and autofluorescence

transitions and the second for exciting the autofluorescence transi-

tions. To overcome this limitation, we developed a spectral unmixing

method that uses only one laser and different detector signals. To the

best of our knowledge, this is the first use of spectral unmixing of flow

cytometry data to analyze single-cell fluorophores on the surface of

yeast cells. Other studies have focused on analyzing color deconvo-

lution and autofluorescence in images,62,63 flow cytometry images,64

and microscopy.65 Furthermore, no study that additionally considers

the connection between the fluorescence intensities of the stained

bud scars and the replicative cell age has used the total fluorescence

intensity for data analysis.

We found that PCR gave less precise predictions than RF for spec-

tral unmixing. This supports the previous results66 that the eigenvector

weights from PCR may have no relationship with the predicted vari-

able. In this case, negligible variables become more important than

the actual explanatory variables,which degrades the prediction perfor-

mance.We compared the BSN distributions estimated using the Bayes

theorem following different assumptions. The parameters determined

by Powell et al. were unsuitable for estimating the absolute BSN. In

contrast, the logarithmic transformation gave themost realistic param-

eters basedon the resulting agedistribution and thedetermination of a

precise amount of daughter cells, each indicated by a fluorescent birth

scar. . A result of a daughter cell content of>50% is possible underopti-

mal conditions.59 as shown by the simulation of age distribution in an

exponential growth phase, using age-dependent cell cycle length. Due

to these assumptions and the fact that daughter cells need more time

till the first budding cycle, justified by the necessary volume increase,

the cell division of the daughter cells forms the bottleneck of the cell

age distribution of yeast populations. According to Narziß et al.59 and

Steinkraus et al.,55 a yeast cell can have amaximumBSN of 25 because

of the reduced surface area available for budding. Using microscopy,

Bühligen et al.38 showed that a proportion of 4.3% to 7.75% cells had

five or more bud scars, similar to our determined content and those

in other studies.58 Hagiwara et al. observed a discrepancy in the theo-

retical bud scar distribution.67 They have noticed that nearly no viable

cells with six or more bud scars could be detected by microscopy.67 In

further studies, the maximum BSN of yeast cells varies depending on

the strain68,69 and culture media,67 making it difficult to compare data

from the industrial yeast strain usedwith laboratory strains. Chaudhari

et al. focused on fluorescence-activated cell sorting of YPD cultivated

yeast cells. They demonstrated that this population has a rare content
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of yeast cells with three or more bud scars (12.5%) in the stationary

phase.69 After FACS using WGA-Alexa 488 as bud scar staining fluo-

rophore, the purity of yeast cellswithmore than one scar is around65–

70%.69 These limitations of flowcytometrywere also reportedbyKong

et al.70 Therefore, more recent studies, for example, Kong et al.70 have

determined similar age fraction contents as determined in this study.

To compare the empirical density plots estimated by the direct

analysis of the subtracted fluorescence spectra, the Gaussian mixture

analysis was performed. The weights of each Gaussian peak were ana-

lyzed and comparedwith the age contents determined by the empirical

density plots. The observed deviations were attributed to the stochas-

tic model used for the Gaussian mixture analysis. Furthermore, the

fitting of peaks with higher fluorescence intensity by the Gaussian

mixture analysis was better than lower intensity peaks because there

were feweroverlays at higher intensities thanat lower intensities. Both

approaches, RF and PCR, obtained peak areas that indicated age clus-

ters similar to themicroscopy-determinedage fractions. Thepresented

models’ limitation is that a reference sample is necessary for each yeast

sample. A transfer of the model trained on a specific yeast sample to

a different strain of yeast cells showed low regression values. These

results confirm that the developed model successfully unmixed aut-

ofluorescence and fluorescence signals of the protein linker, enabling

fast and reliable age-fraction calculations. Overall, these results con-

firm the suitability of the logarithmic transformation using the Bayes

theorem for BSN estimation, considering the age-dependent increase

in cell surface area. Furthermore, the Gaussian mixture analysis gave

results similar to that of the Bayes theorem, as confirmed by the

simulation.

The transfer of the proposed model to another yeast species like

Pichia pastorisdemonstrated its applicability.We could show that chitin

is also present in the bud scars of P. pastoris yeast cells and that the

used protein linker His6-Sumo-sfGFP-ChBD stains these specific com-

ponents. Furthermore, we demonstrated that chitin-binding domains

have a higher protein load per cell for P. pastoris than for S. pastori-

anus ssp. Carlsbergensis, resulting in higher fluorescence intensities and

increaseddetection.Compared to Saccharomycesyeast, this higher pro-

tein load indicates higher chitin concentrations in the bud scars and

therefore higher protein binding capacity. The age-fraction analysis of

P. pastoris cells currently has some limitations. The first limitation is

the aggregation behavior of P. pastoris cells, as shown by our micro-

scopic visualization and observed in a previous study.71 Therefore, the

daughter cell content determined by the Gaussian mixture analysis

would be higher if P. pastoris cells were present in the single-cell stage.

This limitation can be overcome by optimizing the staining method;

for example, by changing the buffer system or pH. Nevertheless, our

results confirm the availability of chitin in P. pastoris yeast cells. An

in-depth analysis of the age-related protein synthesis in P. pastoris

cells will be enabled using the chitin-binding protein linker combined

with the proposed method for fluorescence unmixing and bud scar

determination.

In summary, this approachofunmixing fluorescence intensities com-

binedwith Gaussianmixture analysis could be used in further research

to elucidate the relationship between the age-fraction content and cell

growth or metabolite formation in Saccharomyces and P. pastoris yeast.

This spectral unmixing of autofluorescence data from fluorescence

spectra is necessary to prevent false positive data in studies usingweak

fluorophores or antibodies/proteins detecting small antigen amounts

on surfaces. Furthermore, in-depth studies of separation efficiencies

are possible without microscopic approaches by detecting BSNs on

the whole cell surface by flow cytometry instead of microscopic visible

parts.
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