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The field of Bioinorganic Supramolecular Chemistry is an emerging research

area including metal-based supramolecules resulting from coordination-driven

self-assembly (CDSA), whereby metal ions and organic ligands can be easily

linked by metal–ligand bonds via Lewis’ acid/base interactions. The focus of

this ‘In a Nutshell’ review will be on the family of supramolecular coordina-

tion complexes, discrete entities formed by CDSA, which have recently cap-

tured widespread attention as a new class of versatile multifunctional

materials with broad biological applications including molecular recognition,

biosensing, therapy, imaging and drug delivery. Herein, we provide a sum-

mary of the state-of-the-art use of these systems in biomedicine, with some

selected representative examples, as well as our visions of the challenges and

possible directions in the field.
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Supramolecular chemistry, the chemistry “beyond the

molecule” as described by Lehn [1] was cemented on

his own, Pedersen’s and Cram’s works on the con-

struction of molecules capable of recognizing and host-

ing smaller entities. This concept is reminiscent of the

lock-key principle stated early by Emil Fischer [2] to

describe the enzyme-substrate selective interaction.

These non-covalent host–guest interactions have

acquired further significance as synthetic supramolecu-

lar chemistry developed in recent decades, reaching

high levels of complexity.

The design of supramolecular entities is, in part, dri-

ven by the creation of tailored empty spaces capable

of hosting guests of interest [3]. Within this area, sev-

eral supramolecular metal-based structures/molecules

were explored. The directionality and dynamic nature

of metal coordination and the possibility of designing

directional multitopic ligands are the base for the syn-

thesis of Metal–Organic Frameworks (MOFs) and

supramolecular coordination complexes (SCCs). The

former are highly crystalline porous materials formed

by metal centres or clusters linked by bridging ligands

forming a 3D network [4,5]. The research on the

biomedical applications of MOFs is a rapidly growing

field that has been revised thoroughly in recent works

[6–9]. On the other hand, SCCs are discrete molecular

arrangements [10,11], which can exist and maintain

their structure and porosity also in solution and will

be the focus of the present manuscript.

Supramolecular coordination complexes can be mor-

phologically classified broadly into three main types:

metallacycles, metallacages and helicates [12,13]. The
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metallacycles and metallacages are characterized by

the existence of a cavity. In metallacycles, the void is

delimited only in two dimensions by a ring-shaped

coordination compound. In the case of metallacages,

the cavity is limited in the three dimensions, with the

combination of the ligands and metal centres defining

the vertex, faces and edges around it. Instead, helicates

are not necessarily porous, but are compact and robust

structures with well-defined surfaces that have binding

affinities for different target molecules. Perhaps, from

this initial description, the reader can already depict

the attractive features towards biomedical applications

of these families of compounds. For instance, much of

the attention given to the metallacages and metallacy-

cles is related to their potential as carriers to host and

further deliver cargos of pharmaceutical interest, either

for therapy or imaging [11]. On the other hand, heli-

cates have demonstrated the potential to stabilize bio-

logical structures, a promising feature for blocking

biomolecular processes. Furthermore, the metal-based

nature of SCCs provides them with additional valuable

characteristics regarding their biomedical applications

[10]. Depending on the metal ions and ligands in their

structure, SCCs can be intrinsically cytotoxic and act

as drugs, be luminescent and act as signalling agents

and for molecular recognition, be radioactive for ther-

apy and/or imaging, and can be catalytic to perform

bio-orthogonal reactions. Finally, in the pinnacle of

SCCs design, more than one type of metal centre and

different functional organic moieties can be combined

to generate tandem-multifunctional systems. This fron-

tiers review presents, in a nutshell, the basic design

principles and some of the most noticeable biomedical

applications of SCCs. For deeper insights into struc-

tural and synthetic design principles, the reader is

referred to extensive review works [14–17].

Supramolecular coordination
complexes design

The synthesis of SCCs is based on the concept of

coordination-driven self-assembly (CDSA) [18]. This

process relies on the rational combination of ligands

(Lewis bases) and metal centres (Lewis acids). On one

hand, the ligands can be designed to display the donor

atoms in certain positions, pre-programming their direc-

tionality to bond metal centres. On the other, each tran-

sition metal ion is characterized by well-defined

preferred coordination numbers and geometries – i.e.

the quantity and spatial orientation, respectively, of the

coordination bonds it would form – as well as by given

affinity for certain ligands. CDSA uses these characteris-

tics to form structures with tailored dimensions, shapes

and physicochemical characteristics (Fig. 1A). Two

main types of CDSA can be defined, namely, (a) edge-

directed self-assembly [17], in which bitopic ligands are

used as edges to coordinate to the metal nodes of the

self-assembled system – this is the principal strategy for

the obtainment of metallacycles and helicates and it is

also useful in the assembly of metallacages – and (b)

face directed self-assembly combining 2D-multitopic

ligands forming the planar faces of polyhedra in which

the vertex are typically metal centres, evidently this kind

of approach is most valuable in the building of cage-like

structures (Fig. 1A) [26]. With these simple approaches,

a virtually infinite number of SCCs can be obtained.

Conveniently, their size, shape and functionality can be

tailored by selecting the combination of ligands and

metal centres to form them. However, CDSA is a

dynamic process, and other criteria as the moderate sta-

bility of metal–ligand bonds, in comparison with typical

covalent ones, and other kinetic and thermodynamic

effects that can lead to possible competing structures

have to be taken into account and frequently need to be

sorted to achieve the designed structures [27].

The generation of new SCCs has been a hot topic in

the last few decades. From the relatively simple earliest

helicates of Lehn [19], and the metallasquares [20,21,28]

and metallacages [21] reported in the early ‘90s

(Fig. 1B), the number and variety of these systems have

grown incrementally [29]. A plethora of structures with

diverse geometries, sizes and shapes have been generated

and the current synthetic developments achieve struc-

tural complexity that challenges the geometricians

(Fig. 1C) [23], but also has granted access to systems

including functional features, in particular, component

design and functionalization [30]. Both coordination

and organometallic metal–ligand bonds have been used

to achieve scaffolds with different stability. Thanks to

this progress, some applications, particularly in separa-

tion [25,31] and catalysis [24,32,33], have proven the

huge potential of these types of supramolecular entities

(Fig. 1D,E). In the next section, we briefly summarize

some selected advances in the application of this type of

system in biomedicine. More comprehensive reviews are

available [10–12,15,34–38].

Biomedical applications of SCCs

Therapy, imaging and theranostic

Besides surgery, chemotherapy is the most common

alternative to treat cancer [39]. The wide use of

platinum-based drugs has inspired the investigation of

diverse metal complexes as chemotherapeutic agents

[40]. The metal-based nature of SCCs renders many of
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them attractive as novel inorganic drugs [11,37,41–43].
Moreover, the ability of some SCCs to interact with

pharmacologically relevant molecular targets in cancer

treatment (e.g. nucleic acid structures) is also attractive

and could work synergistically with the metal-related

mode of action.

The most intuitive advantage of SCCs in chemother-

apeutic applications is their capability to act as a mul-

tifunctional platform that contains multiple

chemotherapeutic and imaging units within a single

molecule. For example, Zhen and collaborators [44]

designed a hexagonal metallacycle, composed of three

cytotoxic bis-organoplatin linkers which assemble with

three bipyridyl ligands (Fig. 2A) [44]. The resulting

platform features well-defined size, geometry and Pt

drug loading. The sole self-assembled structure showed

cytotoxicity comparable to the anticancer drug cis-

platin in different cancer cell lines. Furthermore, as

the bipyridyl ligands can be functionalized, the metal-

lacycle was used to integrate three Pt(IV) prodrugs

into the structure increasing remarkably the cytotoxic-

ity. Importantly, the bioactivity was proven to be due

to the self-assembled molecule itself, as the mixture of

the non-assembled components did not perform in the

same way (Fig. 2A) [44]. Overall, this is a representa-

tive example of a supramolecular platform with well-

defined size, geometry and Pt drug loading.

In the case of three-dimensional SCCs, these are

endowed with the capability to recognize and interact

with targets of interest. Remarkably, several SCCs

have shown promising behaviours as stabilizers for

guanine–quadruplex (G4) structures. These non-

canonical secondary DNA structures are present in the

promoter and telomer regions of oncogenes and their

stabilization has been identified as a strategy to control

the transcription and inhibit telomerase activity,

Fig. 1. (A) Coordination-driven self-assembly of: An edge-directed metallacage with linear ligands and metal centres featuring a square pyra-

midal coordination sphere (top); an edge-directed square metallacycle with the same linear ligand and metal centres with 90° angular coordi-

nation (medium); a face-directed metallacage with square ligands and metal centres with trigonal-pyramidal geometry (bottom). (B) Single-

crystal X-ray diffraction (SCXRD) structures of pioneer examples of SCCs: A Cu3L2 helicate (L = 6,60-bis(((60-methyl-[2,20-bipyridine]-6-yl)
methoxy)methyl)-2,20-bipyridine) [19], a Pt4L4 metallasquare (L = 4,40-bipyridine) [20] and a Pd6L4 metallacage (L = 2,4,6-tris(4-pyridyl)-triazine)

[21]. Balls and stick representations are generated in mercury [22]. The colour code is as follows: C, grey (burgundy or teal in the left panel);

N, blue; O, red; P, orange; Cu, ochre; Pd, cyan; Pt, silver. (C) Pd48L96 metallacage (L = 4,40-(3,4-dimethoxyselenophene-2,5-diyl)dipyridine)

[23] the inset shows the unprecedented Goldberg tet-G(2,2) polyhedral structure of the compound. Adapted by permission from reference

[23]. (D) Pd12L24 metallacage hosting a 1.1 M concentration of catalyst in the inner cavity. Adapted by permission from reference [24]. (E)

Tetrahedral metallacages behaving as permanent porous ionic liquid applied in the separation of alcohols and fluorocarbons. Adapted by per-

mission from reference [25].
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processes of great interest in the treatment of cancers

[48]. G4s are known to interact preferentially with pla-

nar, aromatic and positively charged molecules. Thus,

SCCs presenting extended planar ligands have good

possibilities of acting as G4 binders. For example, Pt

(II) metallasquares assembled with 4,40-Bipyridine [45]

ligands (Fig. 2B) have been shown to stabilize the

telomeric F21T G4 structure and inhibit telomerase

activity in cancer cells. Other metallacycles [49–52] and

some helicates [53] have also been studied as G4 stabi-

lizers. More recently, stabilization of G4s by metal-

lacages has been achieved; in this case, the placement

of aromatic-planar domains constituting the faces of

the cage can promote interactions with the nucleic acid

structures. That is the case of the tetrahedral [Ni4L6]
8+

(L = 4,40-bis(2-pyridylimine)biphenyl), which was

shown to importantly stabilize F22T G4 structures [54].

Besides the cytotoxic potential of SCCs, their design

can be directed to endow them with other interesting

therapeutic properties, such as achieving photody-

namic therapy (PDT). PDT is a non-invasive proce-

dure based on the generation of reactive oxygen

species (ROS) at the cancer site by the activity of pho-

tosensitizers (PS) that generate ROS as a response to

photoexcitation, ideally by red or IR irradiation [55].

The in situ generated ROS causes oxidative stress that

can lead to apoptosis in cancer cells. As representative

examples, [Ru(bipy)3]
2+ (bipy = bipyridine) compounds

are among the most efficient available photosensitizers.

Stang and collaborators [46] studied a Pt(II)-based

metallacycle featuring Ru(bipy)3-like metalloligands

(Fig. 2C). The assembly efficiently produced singlet

oxygen and could undergo two-photon excitation

(800 nm), allowing its application in A549 lung

cancer-bearing xenograft models in vivo. The mice

treated with the metallacycle underwent tumour

growth suppression only in presence of light irradia-

tion, and the treatment was proven low systematic tox-

icity. Besides Ru(II) compounds, porphyrins are also

benchmarking PSs for PDT and can be designed as

panels in SCCs [56]. Noteworthy, porphyrin-

containing metallacages are intrinsically cytotoxic

[57,58]. Furthermore, their use as PS can lead to

remarkable results in terms of cancer treatment. For

example, porphyrin metallacage-loaded polymeric

nanoparticles can eradicate tumours in 4T1 orthotopic

Fig. 2. (A) Self-assembled and cytotoxic hexagonal metallacycle

bearing Pt(IV) prodrug units; the inset plot shows the superior cyto-

toxicity of the assembly in A549 lung cancer compared to that of its

components and cisplatin [44]. Adapted by permission from refer-

ence [12]. (B) Interaction of Pt(II) metallasquares with telomeric F21T

G4. Adapted by permission from reference [45]. (C) Structure of the

metallacycle containing Ru(bipy)3-like metalloligands applied in PDT

[46]. (D) SCXRD structure of the porphyrin-based cage used as dual

cytotoxic/PS agent [47]. The plot shows the efficient tumour-grown

suppression obtained by the combination of chemotherapeutic and

PDT properties of cage 1. Adapted by permission from reference

[47]. Balls and stick representations are generated in mercury [22].

The colour code is as follows: C, grey; N, blue; O, red; P, orange; Pt,

silver. H atoms were omitted for clarity.
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breast cancer-bearing mice after a single treatment by

a combination of their chemotherapeutic and PDT

effects (Fig. 2D) [47]. Besides cancer treatment, the use

of SCCs as PS has been recently proposed also in the

treatment of rheumatoid arthritis [59], and bacterial

infections [60].

Supramolecular coordination complexes can be

designed to include in their structure ligands, metal cen-

tres or functional groups that provide them with lumi-

nescent properties useful to study their cellular

accumulation, sub-cellular distribution and overall fate

in biological systems by optical imaging methods [61].

Using the intrinsic luminescence of lanthanides [62,63],

polyethylene glycol (PEG)-functionalized europium-

based helicates proved to stain living cells in a

concentration-dependent manner without affecting their

viability (Fig. 3A) [64]. In a different approach, the teth-

ering of luminophores in the outer structure of Pd2L4

metallacages (L = 3,5-bis(3-ethynylpyridine)phenyl) has

been used to unravel their intracellular distribution and

uptake mechanisms [68–70]. Organic luminophores can

also be modified to generate luminescent ligands capable

to assemble into SCCs, as demonstrated by the boron

dipyrromethene (BODIPY)-based metallacycles

reported by Gupta et al. [71,72].

Benefiting from their host–guest chemistry, metal-

lacages can also be used to encapsulate and transport

imaging agents [65]. As an example, fluorescent dyes

have been encapsulated in tetrapyridyl-panelled metal-

lacages and subsequently tracked in cancer cells by fluo-

rescence microscopy; furthermore, the functionalization

of the cages with morpholine has shown to direct the

dye-loaded cages selectively to lysosomes (Fig. 3B) [65].

The possibility to change the encapsulated dye allows a

selection of the label wavelength while preserving the

targeting unit [65]. Besides fluorescence imaging, metal-

lacages can serve for the encapsulation of radioac-

tive molecules such as pertechnetate [99mTc]TcO4
�, a c-

emitter used in single-photon emission computed

tomography (SPECT) imaging. Hosting the anion in a

kinetically robust tetrahedral Co4L6 cage (L = 5-(5-

bipyridine-2,20-yl)-2,20-bipyridine), lead to a radical

change in its biodistribution, diminishing thyroid accu-

mulation observed with the free anion (Fig. 3C) [66].

Fig. 3. (A) SCXRD structure of Eu2L3 helicate [63] and concentration-dependent emission microscopy in living HeLa cells reached by a PEG-

functionalized analogous. Adapted by permission from reference [64]. (B) SCXRD representation of morpholine functionalized metallacage

used to transport different dyes for the staining of lysosomes and in-vitro fluorescence images of the different transported dyes. Adapted

by permission from reference [65]. (C) SCXRD diagram of the Co4L6 metallacage capable of transport [99mTc]TcO4
� for SPECT imaging and

different distribution profile observed in comparison with the free anion. Adapted by permission from reference [66]. (D) Multimodal thera-

nostic metallacage capable of different imaging techniques together with NIR fluorescence (top) and PET (bottom) imaging of tumour-

bearing nude mice following i.v. injection of metallacage-polymer nanoparticles. The white circles denote the tumour site. Adapted by per-

mission from reference [67]. SCXRD balls and stick representations generated in mercury [22]. The colour code is as follows: C, grey (also

burgundy and teal in panel a); N, blue; O, red; P, orange; Co, purple; Tc, cyan; La, turquoise; Pt, silver; H atoms were omitted for clarity.
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The multifunctional capabilities of self-assembled

systems are probably their biggest strength, and it has

prompted the next generation of theranostic systems.

For example, the group of Zhang reported the synthe-

sis of a platinum-based biotinylated metallacage

including tetraphenyl ethylene (TPE) luminophores

[73]. Although the system showed moderate cytotoxic-

ity, it was highly selective towards biotin receptors

overexpressing cancer cells. The system could also be

visualized in cancer cells in vitro thanks to TPE’s

motion-restricted emission [73]. The direct targeting-

functionalization of metallacages has both pros and

cons: while the possibility of generating multivalent

systems with a high density of targeting units per ther-

apeutic molecule is considered advantageous [74], on

the other hand steric and electronic factors may

decrease the stability of the resulting SCCs in solution.

In order to generate more efficient delivery systems

based on SCCs, their integration in nanoparticulated

systems, endowed with passive targeting capability via

the enhanced permeability and retention (EPR) effect,

has been explored. The group of Stang designed TPE-

bearing metallacages which are highly emissive and

possess alkyl chains promoting their self-assembly

within the hydrophobic core of PEG/1,2-distearoyl-

phosphatidylethanolamine (DSPE) copolymer

nanoparticles [75]. Further biotin-functionalized

nanoparticles were also generated showing cytotoxicity

in biotin receptor-positive cancer cells. The systems

showed enhanced antitumor activity and lower toxicity

than typical platinum-based drugs in hepatocellular

carcinoma (HeLa) xenograft models [75]. A more

sophisticated system came using porphyrin-containing

metallacages [67]. The porphyrin conferred the metal-

lacages ROS generating capabilities and emission in

the near-IR (NIR) region (desirable for imaging in tis-

sues). Furthermore, the chelating structure of the por-

phyrin ligand was exploited to include metal ions for

further imaging application, i.e., 64Cu for positron

emission tomography (PET) or Mn(II) for magnetic

resonance imaging (Fig. 3D) [67]. While the metal-

lacages showed moderate cytotoxicity in vitro, the

combination of chemotherapy and PDT displayed syn-

ergistic efficacy both in vitro and in vivo. In particular,

the formulation was capable of suppressing orthotopic

breast (4T1 and LM3) tumour models [67]. Very

recently, a different approach has attained second

NIR (1005 nm)-emitting metallacages which were

loaded in PEG–PLGA polymeric particles [76]. Second

NIR emitters are ideal for fluorescent imaging due

to in-depth penetration of the radiation and can be

applied also as photothermal sensitizers for anticancer

therapy [55,77].

Drug delivery

In 2008, the “complex in a complex” strategy for deliv-

ering drugs into cancer cells was first proved by Therrien

and coworkers. In their first work, a water-soluble Ru-

clipped cage featuring tpt (2,4,6-tri(pyridine-4-yl)-1,3,5-

triazine) panels was synthesized and used as a host for

square planar metal complexes (Fig. 4A) [78]. In their

following works, harvesting from the high affinity of

this type of hosts for aromatic pyrene molecules, strong

DNA-intercalators, this type of cage was proposed to

host and deliver various pyrene-functionalized mole-

cules such as the antimetastatic Floxuridine (Fig. 4A)

[79–81]. Similar systems have been used to encapsulate

photosensitizers for PDT, e.g., porphin [82].

Another family of prominent SCCs applied as drug

delivery systems are those based on the cationic Pd2L4

scaffold (L = bitopic monodentate N-donor ligand).

These systems attracted attention from the initial

observation of Crowley and coworkers regarding the

capabilities of cationic Pd2L4 cages (L = 2,6-bis

(pyridine-3-ylethynyl)pyridine) to encapsulate cisplatin

in their cavities (Fig. 4B) [83]. However, the host–guest
complex was not preserved in an aqueous environ-

ment. Later on, Casini and coworkers reported that

the stability of the drug-cage complex can be improved

by modifying the ligand structure, replacing the central

pyridine ring with phenyl units (L = 3,5-bis(3-

ethynylpyridine)phenyl, Fig. 4B), to reduce the hydro-

philic character of the internal cavity [84]. Thus, cis-

platin encapsulation was favoured over the occupancy

of the cavity by water molecules or other polar sol-

vents. Notably, most of the reported metallacages and

their precursors were non-toxic in healthy rat liver tis-

sue ex vivo, making them suitable for application as

drug delivery systems [84]. Based on the latter cage

Fig. 4. (A) “Complex in a complex” tpt-Ru-clipped metallacage (tpt = (2,4,6-tri(pyridine-4-yl)-1,3,5-triazine)) containing oxalate compounds and

the same system hosting the pyrene-functionalized floxuridine. (B) Structure of the cationic Pd2L4 (X = C or N) used to host and deliver cisplatin,

together with the SCXRD structure of the inclusion complex carrying two cisplatin molecules. The cage is represented in balls and sticks and the

cargo as a space fill model, the image was generated in mercury [22]. The colour code is as follows: C, grey; N, blue; O, red; Cl, green; Pt, silver.

H atoms were omitted for clarity. (C) SEM image of the polymer nanoparticles carrying cytotoxic metallacages (MNPs), together with their appli-

cation for NIR fluorescence imaging in cells (laser confocal microscopy) and in cancer-bearing mice (time-dependent fluorescence). The plot

shows the increased survival when the system was used as PS for PDT in a murine model. Adapted by permission from reference [88].
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scaffold, a bioconjugation strategy for the exo-

functionalization of these systems with peptide vectors

was developed to achieve targeted delivery of cisplatin

to cancer cells [69,85]. Different exo-modifications of

the L ligands enabled also the introduction of imaging

groups as discussed above [68,86]. Furthermore,

radioactive pertechnetate was encapsulated in Pd2L4

cage exo-functionalized with PepH3 [86], a blood–
brain barrier (BBB)-translocating peptide derived from

dengue virus capsid protein [87]. The formulation was

demonstrated to cross the BBB in vitro and in vivo.

These results highlight the versatility of SCCs to be

used as multifunctional platforms and the applicability

of their host–guest chemistry to living systems.

Recently, Stang and collaborators used a multicom-

ponent self-assembled cytotoxic cage to encapsulate

octaethylporphine as PS for PDT [88]. In order to

ensure the stability of the host–guest complex and

enhance its solubility in aqueous media, the metal-

lacage was embedded in a polymeric nanoparticle matrix

consistent in self-assembled PED-poly-c-benzyl-L-
glutamate (PBLG) micelles, which were also functional-

ized with RGD peptides as active targeting moieties

(Fig. 4C) [88]. The use of the combined cytotoxic cage

with PDT in cisplatin-resistant ovarian (A2780cis)

tumour-bearing nude mice importantly inhibited

tumour growth and increased the survival time with

respect to the different control groups used (including

cisplatin and non-PDT treated groups). The results

showed that the cages benefited from both the EPR

effect and active targeting ability, and considerably pro-

longed the circulation half-life concerning free cisplatin.

The systemic toxicity of the nanoformulation was also

low vs cisplatin [88].

Perspectives

To date, SCCs have been proven capable of generating

supramolecular platforms with singular and multiple

functionalities useful for biomedical applications. The

formation mechanism of these nanoassemblies relies on

the coordination between the functional groups of

organic molecules and the metal ions in different condi-

tions. Notably, their multi-constituent nature enables

the synthesis of complex assemblies featuring multiple

modes of action. From mere cytotoxic supramolecules,

SCCs have gotten more and more sophisticated, and

can now include phototherapeutic properties, imaging

modalities and targeting moieties optimized for drug

delivery. Moreover, certain families of SCCs have been

shown to bind selectively to undruggable targets, such

as RNA domains [89]. Thus, beyond the careful selec-

tion of the metal ions and respective ligands, the

understanding of the relationships between the resulting

SCCs shapes and their interactions is also important.

Overall, the robustness of the synthetic approaches

used to generate multifunctional SCCs has been

demonstrated–via the use of pre- or post-assembly

modifications as well as by the design of heteroleptic

systems–although the scalability of the synthetic proce-

dures has been in most of the cases set aside. This

parameter would be critical for the advance of SCCs-

based systems in pre-clinical applications. Another fea-

ture that is often overseen in the literature is the stabil-

ity of the SCCs and their host–guest complexes in

biological media. Nevertheless, various strategies could

be explored to overcome this challenge, including fine-

tuning of both the thermodynamic and kinetic stability

of the systems via the judicious choice of their building

blocks. It is worth mentioning that the introduction of

a direct organometallic metal-carbon bond in the

SCCs scaffold may also increase the stability of the

system, and leads to the formation of different

supramolecular organometallic complexes (SOCs) [10].

The efficient loading capacity of metal-coordinated

supramolecular nanomedicines can be exploited for

delivering all kinds of molecules, including imaging

agents, detection probes and therapeutic drugs. Consid-

ering radio-pharmacy applications, a critical component

of a radiometal-based construct is the chelator, namely,

the ligand system that binds the radiometal ion in a tight

stable coordination complex, and that can be properly

directed to a desirable molecular target in vivo. Design-

ing the chelator to perfectly fit the metal ion while guar-

anteeing its functionalization with different moieties

(e.g. for targeting) can be challenging. In this context, it

is particularly appealing the possibility to avoid the use

of chelators to entrap the radiometals by directly encap-

sulating them in the cavities of 3D-metallacages, as

shown in the case of pertechnetate [66,86].

Although the inclusion of molecular cargos in the

cavities of SCCs, particularly in metallacages, is a

valid strategy for shielding it from the biological

media, the discrete and relatively small nature of the

SCCs does not address the problems related to the

biodistribution and systemic toxicity that molecular

drugs display. This drawback can be mitigated either

with active targeting or by the inclusion of metal-

lacages in larger DDS, such as nanoparticles. Recently,

the inclusion of SCCs in the scaffold of soft materials,

polymers, membranes, etc. has attracted attention [90–
92], and we believe that the progress in this area will

prompt further application and translation of SCCs-

based materials into other bio-related applications.

So far, the design of SCCs has been based mainly on

the use of rigid and relatively small ligands that, in some
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cases, feature further functional groups, i.e., luminescent

groups, targeting units, solubilizing groups, etc. How-

ever, recently, the group of Fujita [93] has reported the

first examples of peptide-based metallacages, whereby,

upon coordination with metal ions, the flexible peptides

adopt a rigid secondary-like structure. While the initial

design is based on labile mono-dentate pyridine-Ag(I)

coordination, probably not robust enough for biological

media, this new strategy can broaden the possibilities in

the design of SCCs for biomedical applications consid-

ering the therapeutic relevance of peptides [94].

Altogether, SCCs are a diverse and growing family

of potential agents with applications in biomedicine.

The field is still young, but the proof-of-concept appli-

cations pave the way to virtually limitless potential.

Noteworthy, the first example of 18F-functionalized

Pd2L4 cages has been recently reported enabling the

study of their biodistribution by PET in vivo [95]. The

growing complexity of the SCC-based structures step-

wise addresses the main challenges of conventional

theranostics and drug delivery systems. Therefore,

although it is also clear that more research, testing and

evaluation and clinical trials need to be done, we may

expect in the foreseeable future the first steps of these

systems in the clinics.
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