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1  |  INTRODUCTION

The management of ecosystems is a ‘wicked’ problem (DeFries & 
Nagendra, 2017). The question of how to simultaneously combat 
biodiversity loss and maintain ecosystem functioning while improv-
ing human welfare remains open. ‘Multifunctional landscapes’ have 

evolved as a key concept for addressing multiple goals in the selec-
tion of land- cover alternatives (Sayer et al., 2013). These goals can 
be quantified as ecosystem services (Manning et al., 2018), or more 
generally, as indicators. These may also include non- use ecosystem 
functions and biodiversity indicators, as well as social preferences 
(Knoke et al., 2016). Designing multifunctional landscapes means 
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Abstract
1. How to simultaneously combat biodiversity loss and maintain ecosystem func-

tioning while improving human welfare remains an open question. Optimization 
approaches have proven helpful in revealing the trade- offs between multiple 
functions and goals provided by land- cover configurations. The R package optim-
Landuse provides tools for easy and systematic applications of the robust multi-
objective land- cover composition optimization approach of Knoke et al. (2016).

2. The package includes tools to determine the land- cover composition that best 
balances the multiple functions a landscape can provide, and tools for under-
standing and visualizing the reasoning behind these compromises. A tutorial 
based on a published dataset guides users through the application and highlights 
possible use- cases.

3. Illustrating the consequences of alternative ecosystem functions on the theo-
retically optimal landscape composition provides easily interpretable informa-
tion for landscape modelling and decision- making.

4. The package opens the approach of Knoke et al. (2016) to the community of 
landscape modellers and planners and provides opportunities for straightfor-
ward systematic or batch applications.
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deciding upon the composition and configuration of land- cover 
types, given that landscape patterns drive the landscape‘s ecological 
value (Duarte et al., 2018) and its ability to satisfy societal demands 
(Biber et al., 2015; Grass et al., 2020; Kremen & Merenlender, 2018).

Land- cover allocation models have proven helpful in revealing 
trade- offs between multiple objectives and services provided by 
different land- cover compositions (e.g. Cavender- Bares et al., 2015). 
They allow for the exploration of theoretically optimal land- cover 
compositions, which satisfy specific sets of requirements on a land-
scape (Bateman et al., 2013). Optimization procedures, among these 
particularly Goal Programming and Reference Point approaches, 
have shown great potential in solving these questions of ‘where to 
put what’, (Kaim et al., 2018; Yousefpour et al., 2012), with the land- 
cover shares being the decision variables in the objective function 
(e.g. Bateman et al., 2013). In landscape planning and environmental 
modelling, each land- cover type is assigned a set of ecosystem func-
tions, which are predictions that are subject to uncertainties and 
risks. This is, for example, due to observable natural variability, mea-
suring errors, estimation errors, gaps in knowledge or disturbances 
(Messerer et al., 2017; Yousefpour et al., 2012).

Incorporating uncertainty into the objective function has a 
long tradition in landscape modelling. One prominent approach is 
based on risk reduction through diversification (Markowitz, 1952), 
which has been applied to landscape portfolios by Flora (1964) and 
Macmillan (1992), for example. The contributions of land- cover 
types to ecosystem functions or services are interpreted as asset 
returns with continuous probability distributions. A risk- reduction 
effect is achieved if those asset returns are not perfectly correlated. 
This has also become an important argument for diversified land-
scape patterns. A common property of all Markowitz approaches is 
that they require information about the expectations, uncertainties 
and also the dependencies between the parameters: that is, any co-
variances between ecosystem functions across different land- cover 
types need to be considered. As those parameters are often gath-
ered through Monte Carlo simulations, data requirements in classic 
Markowitz portfolio optimizations are usually very high, and finding 
solutions is computationally demanding since only nonlinear solvers 
are applicable (Knoke et al., 2015).

Recently, robust optimization procedures have become popular 
for solving portfolio- based land- cover composition problems (Knoke 
et al., 2015; Yousefpour et al., 2012). Robust approaches do not re-
quire any distributional or stochastic information, as the indicator's 
individual uncertainty spaces are solely defined by their individual 
best-  and worst- case contributions to the land- cover types. The 
average effect that a land- cover option has on the indicators and 
one measure of uncertainty are sufficient to construct a range of 
contribution that a land- cover type may have on an indicator. The 
optimization program's state space is then constructed by all possi-
ble combinations of all best-  and worst- case indicator contributions. 
Robust solutions guarantee the feasibility of the land allocation over 
the uncertainty space. The so defined allocation problem is solvable 
by linear programming, making the solution unique, exact and re-
producible. The solver requires no arguments for convergence, and 

the demands on computational time and resources are very low 
(Messerer et al., 2017). This formulation also allows for deriving a 
robust solution that reduces underperformance across a range of 
multiple indicators. This could be an important attempt towards ex-
ploring multifunctional landscapes.

We here present an adaptation of the successfully established 
and applied robust land- cover optimization approach for multiple 
objectives by Knoke et al. (2016) for the statistical programming 
language R (R Core Team, 2022). With this package, we aim to open 
the method to the community of landscape modellers and planners, and 
to enhance the possibilities for systematic applications, such as sensi-
tivity analysis, for that approach. We introduce the theoretical op-
timization framework, sketch the package structure, and explain its 
functionality using example data from a recently published scientific 
study.

2  | METHODOLOGICAL BACKGROUND

The core concept of the robust optimization approach presented 
here is to find the land- cover composition that minimizes the dis-
tance of the worst- performing indicator to its own theoretically 
best- achievable contribution out of the set of all indicators. We use 
indicators to describe the relevant functions or services of the land- 
cover types. The best- case contributions and worst- case contribu-
tions of an indicator construct individual uncertainty spaces around 
each indicator and span a broad state space of the optimization pro-
gram in comparison to approaches without a consideration of un-
certainty. The indicators' possible contributions of a land- cover type 
are bounded by the worst-  and best- case outcomes. The robust un-
certainty spaces of the indicators are therefore each defined by two 
parameters. The entire robust uncertainty space of the optimization 
problem is then framed by all resulting combinations of all indica-
tor contributions. The corners of the state space of the optimization 
program are determined by all possible combinations of the indica-
tors' worst-  and best- case contributions (Knoke et al., 2016).

For each indicator, the number of possible combinations with 
all indicators' worst-  and best- case contributions, also called uncer-
tainty scenarios, is calculated by NU = 2NL with NL being the number 
of decision alternatives, that is, land- cover options. For a number of 
NI indicators, this results in a total number of uncertainty scenarios 
NS of NS = NU ⋅ NI.

The solution is the land- cover composition that minimizes the rel-
ative distance of the worst- case scenario, for the worst- performing 
indicator, to its (hypothetical) maximum achievable level. The solu-
tion of the program is thus solely determined by the worst- case sce-
nario, that is, the indicator combination that shows under a given 
land- cover allocation the highest distance to its individually achiev-
able level. Unlike in ordinary goal- programming approaches, the in-
dicators or scenarios with higher performances do not compensate 
for the worse performing indicators (Knoke, Paul, et al., 2020). The 
program searches the minimum out of the set of maximum distances 
diu. diu are the distances of each indicator to its best- achievable level 
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out of all possible combinations of indicator contributions. Or in 
other words, the only variable to be minimized is the distance of 
the worst- performing scenario to its individual maximum achievable 
level, which we called �, thus

� is not only the objective variable to be minimized, but also determines 
the maximum threshold of the distances that each indicator in each 
scenario is allowed to have. This ensures that � represents the worst- 
case scenario. It builds the right- hand side limitations for the con-
straints of the performances of all indicators (Knoke, Paul, et al., 2020), 
which makes the right- hand side of the optimization program dynami-
cally dependent on the objective.

� can be interpreted as the maximum relative distance of the 
worst- performing scenario to its scenario- individual achievable 
level out of the set of all scenarios and thus the worst- case sce-
nario of all possible consequences. We thus minimize the worst 
possible combination of indicators, reflected by the maximum dis-
tance. The vector with the scenarios' distances diu has the length 
of the number of scenarios NS. It contains the relative differences 
of each scenario to its theoretically best- achievable level. The dis-
tances are calculated as the differences between the maximum 
achievable level in that scenario, reflected by the most desired in-
dicator contribution for Rliu, and the performance of the scenario 
under a given land- cover composition. Dividing the distances by 
the range of the lowest and highest uncertainty adjusted indica-
tor �min,maxiu

 normalizes the distances.1 As the diu are calculated by 
their individual, theoretical best- possible contribution for each in-
dicator i  within scenario u as

the approach can also be referred to as a Reference Point ap-
proach. The Rliu are the uncertainty adjusted indicators, which de-
pend on whether the indicator is considered as best case or worst 
case. As an example, the calculation for indicators where more is 
better is:

with Rli being the expectations, and SDli being the uncertainty of the 
indicators i  for the distinct land- cover options l , delivered by the 

user. fu enables changing uncertainty levels, for example, for sensi-
tivity analysis of the risk attitude of the stakeholders. Figure 3 illus-
trates the distances diu for all indicators and uncertainty scenarios 
(circles) for an explicit example. The maximum of diu is the relative 
distance of the worst- performing scenario u of the worst- performing 
indicator i  and thus the worst- case consequence of a land- cover de-
cision under all possible combinations. The difference between the 
highest and the lowest uncertainty adjusted indicator �min,maxiu

 builds 
the best- achievable level of the scenario iu and, accordingly, can 
be interpreted as the reference of this scenario. max

(
Rliu

)
− Riu , or 

Riu −min
(
Rliu

)
 if less is better, in the enumerator expresses to which 

level this reference is not achieved in the respective scenario iu. The 
normalization makes all scenarios comparable, independent of their 
units or scales. The actual distances of a certain land- cover compo-
sition Riu are the averaged means in the scenarios

with L being the set of land- cover options and al being the proportion of 
land- cover option l . Thus, Riu is the only component that contains the 
proportions of the land- cover composition. The two technical constraints

restrict the parameter spaces of the land- cover alternatives. The third 
constraint

implements the connection of the constraints to the objective and 
reveals the compromise nature of the approach. All distances to the 
references diu must in all scenarios at least hold the performance of 
the worst- performing scenario of the worst- performing indicator, ex-
pressed by � (Equation 2). The best- possible compromise between the 
land- cover options is achieved by minimizing the underperformance of 
the indicators provided.

In most recent applications of the approach (e.g. Gosling 
et al., 2021; Rössert et al., 2022), the distances to the maximum 
achievable level (the reference) diu (Equation 3) and the actual dis-
tances under a certain land- cover composition Riu (Equation 5) are 
calculated with different levels of uncertainties f∗

u
. The aim is to 

stretch the uncertainty space, such that the state space of the actual 
distances is not limited by an overly restrictive uncertainty space. 
While the calculation of Riu (Equation 5) remains unchanged on the 
basis of Rliu with uncertainty level fu (Equation 4), the distances d∗

iu
 are 

calculated with different uncertainty level R∗

liu
 as

(1)min� .

(2)

�= max
(
diu

)
, with

i∈ I, being thesetof indicators and

u∈Ui being thesetof individual uncertainty scenarios for i.

(3)diu =

⎧
⎪⎪⎨⎪⎪⎩

max
�
Rliu

�
−Riu

�min,maxiu

ifmore is better,

Riu−min
�
Rliu

�
�min,maxiu

if less is better,

(4)Rliu=

⎧
⎪⎨⎪⎩

Rli+ fu ⋅SDli if in scenario u the indicator i is denoted as best−case,

Rli− fu ⋅SDli otherwise,

(5)Riu =
∑
l∈ L

Rliu ⋅ al ,

(6)
∑
l∈ L

al = 1, and

(7)al ≥ 0, ∀ l ∈ L

(8)diu ≤ � , ∀ i ∈ I, and ∀u ∈ Ui ,

(9)R∗

liu
=

⎧
⎪⎨⎪⎩

Rli+ f∗
u
⋅SDli ifmore is better,

Rli− f∗
u
⋅SDli if less is better,
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which also means that the �min,maxiu
 is calculated with the different un-

certainty level f∗
u
.

The optimization program can be straightforwardly solved 
by linear programming. We nevertheless split the solving proce-
dure into a two- stage, nested approach to enable more flexibility 
for possible further developments. � is minimized in the outer op-
timization (Equation 1). The inner optimization maximizes the dis-
tances diu (Equation 2) regarding the land- cover allocation al under 
the known �. In its current version, the outer optimization is solved 
by a self- programmed grid search. The inner optimization is solved 
by linear programming using the R- package lpSolveAPI (Konis & 
Schwendinger, 2020).

3  | OPTIM L AN DUSE  FUNCTIONS AND 
WORKFLOW

The functions of the package are structured into three successive 
working steps: initialization, solving and post- processing. The distinct 
functions network provides higher flexibility and possibly saves cal-
culation time in batch analyses. An initialized object could, for exam-
ple, be recycled for multiple optimizations. The functions of the third 
working step contain tools for reappraisal and interpretation of the 
results (Figure 1).

3.1  |  Initialization

The initScenario() function integrates the user settings into the 
data and returns an optimLanduse- object ready for solving. It is 
capable of processing a long- oriented type of data structure (cf. 
Gosling et al., 2020; Reith et al., 2020). A detailed example of the 
data structure required is provided in Chapter 2 in the README of 
Husmann et al. (2022). The function exampleData() provides an ex-
ample with the required input structure to be passed as argument 
coefTable. In the data table, all indicators are vertically listed with 

their average expectations (indicatorValue) Rli and uncertainties SDli 
(indicatorUncertainty) for the different land- cover alternatives. Our 
approach allows for one uncertainty measure per indicator and land- 
cover alternative. The actual entry for uncertainty chosen by the 
user crucially influences the result and the result's interpretation. 
Natural variability is usually reflected by the standard deviation, 
whereas the standard error of the mean usually reflects model con-
fidence. Choosing extreme values, as for example, applied in Knoke 
et al. (2022), ensures that the entire space of possibilities is covered. 
coefTable further contains a column with the direction for each indi-
cator to indicate whether more or less of the indicator is desirable 
(see Equation 3). Three optional arguments can be used to specify 
the optimization program further:

• uValue is the argument for the uncertainty level fu (Equation 4). A 
higher uValue reflects a higher risk aversion of the decision- maker.

• optimisticRule specifies whether the best- case contributions of 
each indicator Rliu (Equation 3) should be defined either (a) di-
rectly by its average, or (b) by its average plus their uncertainty (if 
more is better) or minus its uncertainty (if less is better). The former 
option is most frequently used in recent literature (e.g. Gosling  
et al., 2020; Knoke, Gosling, & Paul, 2020; Knoke, Paul,  
et al., 2020) and therefore acts as the default.

• fixDistance allows the user to define an uncertainty level f∗
u
 

(Equation 9) for the calculation of the uncertainty space inde-
pendently of fu of the averaged distances of a certain land- cover 
composition Riu. The fixDistance argument is enabled when the 
user provides a numeric value. If NA is provided, fixDistance 
equals the uValue. fixDistance is set to 3 per default.

3.2  |  Solver

solveScenario() requires the initialized optimLanduse object and only 
a few optional solver- specific arguments. The function allows the 
optimization precision to be defined and the shares allocated to each 

F IGURE  1 Overview of the functions 
of the optimLanduse package. Green 
diamonds: input and output data; blue 
rectangles: functions; grey parallelograms: 
optional function settings

coefTable uValue optimisticRule fixDistance

initScenario

solveScenario

calcPerformance

list with
results

optional
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land- cover option to be restricted. As the solving process has no sto-
chastic element, the calculation time depends almost entirely on the 
number of digits calculated. digits Precision therefore provides the 
only possibility for the user to influence the calculation time. solveS-
cenario() returns an updated optimLanduse object with the optimized 
land- cover composition and the distance of the worst- performing 
scenario to its individual maximum achievable level (�, Equation 1). 
Also, a scenarioTable with all scenarios and all calculated interim vari-
ables (Equations 3 to 5) is provided.

3.3  |  Post- processing

The calcPerformance() function calculates and attaches the port-
folio performances to the solved optimLanduse object. The perfor-
mances are calculated by subtracting the scenario distances diu from 
1. They can be interpreted as the degree of fulfilment of an indica-
tor in the solution and enable a graphical interpretation and detailed 
data analysis of diu and �. They also reveal which indicators perform 
poorly and thereby define the solution.

4  |  EXAMPLE APPLICATION: 
AGROFORESTRY SYSTEMS

This section illustrates applications of optimLanduse based on the 
data and results of Gosling et al. (2020). The study took place in a 
forest frontier region in Eastern Panama and used data from inter-
views with local farmers. The farmers ranked the performances of 
different conventional land- cover types and two agroforestry land- 
cover types against various socio- economic and ecological indica-
tors. From the farmer's rankings of each indicator, a mean score and 
the corresponding standard error of the mean were then calculated 
for every land- cover type (Table 1).

4.1  | Optimizing the land- cover composition with 
optimLanduse

We applied the optimLanduse functions step- by- step to determine 
the optimal farm land- cover composition, which minimizes the 
trade- offs between the different indicators. We imported the ex-
ample dataset (exampleData()) and initialized an optimLanduse ob-
ject using initScenario() (Listing 1). This initial object is the basis for 
the following optimization. We set the uncertainty level (fu, uValue) 
to 2 and the optimisticRule to ‘expectation’. This setting is appropri-
ate to define a risk- averse decision- maker following the philosophy 
of down- side risk measures; that is, the decision- maker wishes to 
only account for risk in the form of potential undesirable deviations 
from expected values. We use the set of indicators to represent 
the stakeholders' preferences and perceptions, using linear ‘disu-
tility’ functions, where distances to the best- achievable indicator 
levels represent ‘dissatisfaction’. We thus do not apply a utility 
maximization, but rather a satisficing approach. The comparison 
of optimal land- cover compositions under differing indicator com-
binations may help to understand how the preferences of stake-
holders design the land- cover compositions. Examples of how to 
calculate and interpret the differences in the performances of the 
here presented multifunctional objective to subsets of objectives 
are given in Chapter 4.2 of the README (Husmann et al., 2022). A 
pay- off matrix is suitable to reveal the synergies and the conflicts 
between individual indicators. We provide a respective example in 
(README Chapter 4.3).

install.packages ("optimLanduse")
library (optimLanduse)
library (readxl)

temp_path <- exampleData ("exampleGosling.xlsx")
dat <- read_excel (path = temp_path)

TABLE  1 Expected values and their uncertainties (standard error of the mean) for each land- cover alternative and indicator of the 
example application. The superscript letters after the indicator names indicate the direction for the optimization, so whether it is better to 
have more of the indicator = (a) or less = (b). N = number of participants in the farmer interviews in the original study (Gosling et al., 2020). 
The data in the format required for the optimLanduse package can be accessed via the exampleData( ) function

1 N Cropland Pasture Alleycropping Silvopasture Plantation Forest

Long- term incomea 32 6.3 ± 0.40 7.9 ± 0.40 7.1 ± 0.32 7.8 ± 0.31 8.3 ± 0.42 3.0 ± 0.47

Labour demandb 32 8.3 ± 0.37 7.2 ± 0.36 7.8 ± 0.33 6.9 ± 0.30 6.5 ± 0.47 1.6 ± 0.38

Meeting household needsa 32 9.6 ± 0.22 8.4 ± 0.23 6.8 ± 0.36 8.0 ± 0.22 4.3 ± 0.40 3.9 ± 0.51

Financial stabilitya 32 5.7 ± 0.45 7.0 ± 0.53 6.4 ± 0.35 7.8 ± 0.42 7.8 ± 0.42 5.7 ± 0.67

Liquiditya 32 7.5 ± 0.33 9.9 ± 0.07 5.9 ± 0.38 8.7 ± 0.28 5.2 ± 0.40 2.9 ± 0.47

Investment costsb 32 7.3 ± 0.37 8.1 ± 0.37 7.4 ± 0.43 7.6 ± 0.36 7.3 ± 0.48 1.3 ± 0.33

Management complexityb 32 8.1 ± 0.40 6.8 ± 0.36 8.6 ± 0.31 7.6 ± 0.32 7.0 ± 0.47 1.9 ± 0.38

Protecting watera 32 4.0 ± 0.43 4.7 ± 0.41 6.8 ± 0.26 7.6 ± 0.21 7.2 ± 0.44 9.9 ± 0.09

Protecting soila 32 5.5 ± 0.46 5.0 ± 0.32 6.5 ± 0.40 6.9 ± 0.32 6.6 ± 0.46 9.1 ± 0.38

General preferencesa 35 15 ± 3.44 21 ± 3.85 11 ± 3.05 23 ± 3.94 0 ± 0.00 1 ± 0.99
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init <- initScenario (coefTable = dat,
                                         uValue = 2,
                                         optimisticRule = "expectation",
                                         fixDistance = NA)

Listing 1 Installing the package, loading the example data and defin-
ing an initial optimLanduse- object (init). The coefTable passed 
needs to be strictly formatted in the expected optimLanduse 
format. More information about this format is given in the 
help of the initScenario() function and in Chapter 2 of the 
README (Husmann et al., 2022).

In the next step, we use the solveScenario() function to solve the 
initialized optimLanduse object (init) (Listing 2). The resulting land- cover 
composition is shown in Figure 2. By choosing 0 and 1 (the defaults) as 
boundaries for all decision variables, we do not force any land- cover 
alternative into the farm portfolio, nor do we constrain the maximum 
share of any option. result includes all settings and solutions. It can be 
passed to the built- in post- processing functions or accessed directly by 
the user. To further analyse the performance of each indicator, the post- 
processing function calcPerformance() attaches the portfolio perfor-
mances of all scenarios (Figure 3). The performance is defined as 1— the 
distance to the maximum achievable level for each indicator and uncer-
tainty scenario (Equation 3). The performances reveal trade- offs among 
different indicators and their likely effects on land- cover decisions.

result <- solveScenario (x = init,
                                                 digitsPrecision = 4,
                                                 lowerBound = 0,
                                                 upperBound = 1)
performance <- calcPerformance(x = result)

Listing 2 Executing the optimization process and calculating the 
portfolio's performance.

To analyse how sensitive the optimal land- cover configuration 
reacts towards increasing risk aversion of the stakeholder, we calcu-
lated optimal land- cover portfolios for increasing uValues (Listing 3). 
The resulting data frame can be used to compile standard graphics, 
such as in Figure 4. A more detailed interpretation of the risk attitude 
is attached in Chapter 4.1 of the README (Husmann et al., 2022). As 
a tendency, higher levels of uncertainty lead to more diverse port-
folios, since the uncertainty spaces of all indicators increase with in-
creasing uncertainty levels. These broadened individual uncertainty 
spaces then lead to a broader state space with a higher number of 
possible candidates for lowest- performing scenarios.

# define sequence for uValue argument
u <- seq(0, 3, 0.5)

applyDf <- data.frame(u = u)

applyFun <- function(x) {
    init <- initScenario (coefTable= dat,
                                          uValue = x,
                                          optimisticRule = "expectation",
                                          fixDistance = NA)
    result <- solveScenario(x = init)
    return(c(result$beta, as.matrix(result$landUse)))
}

applyDf <- cbind(applyDf,
                                t(apply(applyDf, 1, applyFun)))

names(applyDf) <- c("u", "beta", names(result$landUse))

Listing 3 Creating a wrapper for optimLanduse to perform batch op-
timization for a sequence of uncertainty values. We use the 
base R function apply() to repetitively execute the wrapper.

5  | DISCUSSION AND CONCLUSIONS

The robust land- cover optimization approach developed by Knoke 
et al. (2016) is innovative in that it allows for the consideration of 
uncertainty in ecosystem function provisioning in a multicriteria 
land- cover allocation model. At the same time, the formulation 
as a linear programming problem meets the calls for parsimoni-
ous models (e.g. Antle et al., 2014). However, so far this approach 
has been implemented exclusively in Microsoft Excel (e.g. Gosling 
et al., 2020; Knoke, Kindu, et al., 2020). These implementations 
have been technically complex, requiring many problem- specific 
settings and very close- to- data spreadsheet designs, which are 
time- consuming and prone to errors. As a result, analyses that re-
quired model repetitions (e.g. sensitivity analyses) were not fea-
sible. optimLanduse was designed to overcome these limitations, 
enable fast and systematic parameterizations, and thus make 

F IGURE  2 Composition of the optimized farm (based on data 
shown in Table 1, including all indicators). Each land- cover option is 
shown in an allocated share (%).
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robust optimizations accessible to a broad community of land-
scape modellers and decision- makers.

optimLanduse provides access to one optimization approach. 
Incorporating alternative approaches would, however, certainly be 
advantageous as it would allow users to choose from a set of ap-
proaches or to straightforwardly analyse the differences between 
these approaches. The package is therefore also meant to serve as a 
platform for seamless cooperation in the development of landscape 
modelling approaches. Programmers are invited to copy our code or 
to fork our project on GitHub as a basis for own landscape- modelling 
approaches, or to jointly integrate their approaches into optimLanduse.

The robust approach provides one single best land- cover compo-
sition under the specific set of preferences out of the entire frontier, 
using equally weighted decision criteria and uncertainty scenarios. 
For example, Kaim et al. (2020) show the advantages of illustrating 
the effect of variable stakeholder preferences in the form of Pareto 
frontiers. The reference point nature of our model allows for iden-
tifying land- cover compositions for which one indicator cannot be 
improved without compromising another indicator (see e.g. Seppelt 
et al., 2013). Reith et al. (2022, Appendix A) show that a robust pen-
dant of such a Pareto frontier may be achieved with our method by 
assigning different weights to different indicators.

F IGURE  3 The performance of each of 
the 10 indicators for the result of the ideal 
farm composition. The coloured points are 
the achieved levels of the indicators of all 
scenarios s. The dotted, horizontal red line 
illustrates the guaranteed performance 
(1 − �), thus the robust feasible solution of 
the program (Equation 1).
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F IGURE  4 Theoretically ideal farm 
compositions under increasing levels of 
uncertainty.
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In the current version, all indicators have equal weights. The con-
sideration of differing indicator combinations can still reflect stake-
holder preferences. Upcoming versions shall provide the possibility 
to weigh the indicators so as to reflect the stakeholder's preferences 
better. These weights could be derived, for example, by an analytical 
hierarchy process or similar methods as a hybrid multi- criteria ap-
proach as, for example, shown by Kaim et al. (2020).

The performances of the indicators give an indication of the 
indicators to which the result reacts sensitive. See Figure 3 and 
Chapter 4.2 of the README (Husmann et al., 2022). The sensi-
tivity towards the risk assumption can be analysed by calculating 
portfolios with different uValues (fu, Chapter 4.1 of the README). 
Necessary parameterizations to calculate the sensitivities have 
to be conducted by the user. We plan to add a built- in sensitivity 
report that provides a set of standard sensitivity measures on de-
mand for the indicator expectations, the indicator uncertainties 
and the uValues. In addition, it may be interesting to analyse how 
much an indicator can be changed without changing the optimal 
land- cover composition.

optimLanduse is capable of studying the effects of compositional 
diversity. With only minor changes, the model could also be used to 
elaborate the influences of structural diversity on the optimal land- 
cover composition. User- definable restrictions would enable defin-
ing groups with different expectations or uncertainty entries of the 
indicators, which could then be interpreted as spatial regions or any 
other systematic group.

Our adaptation as an R package has four main advantages: (1) 
The horizontal and vertical dimensions of the optimization prob-
lem are solely limited by the hardware. Larger problems are not 
usually solvable in Microsoft Excel without the use of potentially ex-
pensive proprietary plugins. (2) The entire optimization process is 
relatively fast since the core solving procedure is a simple Simplex 
approach and the surrounding data processing consists of only a 
few necessary operations. (3) The package enables straightforward 
conduction of repetitive applications. By summarizing all relevant 
information of the optimization in an S3- list object, more in- depth 
analyses, such as systematic scenario comparisons, can be easily 
performed. (4) The R universe opens the door to a further stream-
lining of our approach. Not only does it allow experienced R users 
to reproduce the same workflow on different machines, it also al-
lows less technically trained users to apply this method through 
an interface created using the R package Shiny. This enables col-
laboration between various interest groups and stakeholders. The 
composition of land- cover options has a crucial influence on many 
ecosystem functions. Our package helps to analyse the potential 
of different land- cover alternatives and contributes to the under-
standing of the trade- offs between the different essential ecologi-
cal and socio- economic functions.
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ENDNOTE
 1 The package returns a table with all scenarios containing all calculated 

interim results. See Section 3 for more details.
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