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Abstract

Hydropower is considered an important form of renewable energy, often involving

hydropeaking. While the effects of hydropeaking on aquatic communities in areas

downstream the dam are well understood, there is a lack of studies investigating

potential impacts on tributaries located further upstream. In this study, we tested the

effects of hydropeaking operations on upstream tributaries in a restored area of the

Danube River, with a focus on the periods of backlog and release of water (up-

ramping and down-ramping, respectively) during the filling and release of the reser-

voir. We used brown trout egg and larval mortality, linked to hydraulic, sedimentary

and physiochemical changes in spawning grounds as an indicator. We compared

hydropeaking-affected versus non-affected sites in upstream tributaries using

HydroEcoSedimentary Tools (HESTs) loaded with clean gravels and brown trout eggs.

Egg and larval mortalities were significantly higher in the hydropeaking-affected site

with more than 80% egg mortality and almost 100% larval mortality compared to

values of 55–63% and 80–85%, respectively, in non-affected sites. Spawning ground

quality was significantly altered in the hydropeaking-affected site, where the highest

mortalities were observed. Overall, duration of time periods with flow velocities close

to zero were a key variable, potentially decreasing oxygen supply for eggs and larvae.

Such periods of close to zero flow velocities were driven by backlog periods during

the filling of the reservoir, revealing that such events can severely impair ecological

integrity of spawning sites in tributaries upstream of dams by slowing the flows in

upstream tributaries. Such altered processes can reduce fish population recruitment

and need to be considered in future restoration projects.
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1 | INTRODUCTION

Increasing energy demand and energy decarbonization drive the con-

struction of new hydropower plants in Eastern Europe and developing

countries in Asia, Africa and South America (Lehner, Czisch, &

Vassolo, 2005; Zarfl, Lumsdon, Berlekamp, Tydecks, &

Tockner, 2015). In central Europe, where hydropower has had a long

tradition and where its potential is almost fully exploited, power plants

Received: 27 October 2021 Revised: 27 January 2022 Accepted: 1 February 2022

DOI: 10.1002/rra.3953

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2022 The Authors. River Research and Applications published by John Wiley & Sons Ltd.

River Res Applic. 2023;39:389–400. wileyonlinelibrary.com/journal/rra 389

https://orcid.org/0000-0002-8322-9374
https://orcid.org/0000-0002-7139-8859
https://orcid.org/0000-0001-7698-3443
mailto:geist@tum.de
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/rra


are being optimized, changing to more effective turbine technologies

(Sari et al., 2018) or operation modes (Wagner, Hauer, &

Habersack, 2019) that increase the implementation of hydropeaking

regimes (Smokorowski, 2021). The need for the operators to run the

power plant as efficient as possible makes it attractive for them to use

hydropeaking as an operational tool to feed peaks of energy demand

and maximise energy production revenue (Venus, Smialek, Pander,

Harby, & Geist, 2020). Sudden stops and starts of the turbines to

store and release water efficiently typically results in hydropeaking.

Hydropeaking regimes are well known to negatively affect river

ecology downstream of power plants (Greimel et al., 2018; Hauer,

Siviglia, & Zolezzi, 2017; Moreira et al., 2019; Schmutz et al., 2015).

Extreme and sudden changes in discharge can lead to the degradation

of river habitat quality (Bruder et al., 2016; Casas-Mulet, Alfredsen,

Hamududu, & Timalsina, 2015; Greimel et al., 2018), the alteration of

stream thermal regimes (Casas-Mulet, Saltveit, & Alfredsen, 2016;

Choi & Choi, 2018), the dewatering of spawning grounds (Casas-

Mulet, Saltveit, & Alfredsen, 2015; Grabowski & Isely, 2007), and the

stranding of fish (Auer, Zeiringer, Führer, Tonolla, & Schmutz, 2017;

Bartoň et al., 2021; Puffer et al., 2015; Schmutz et al., 2015). Fishes

are known to be fast colonisers of aquatic habitats (Matthews, 1986;

Pander, Mueller, & Geist, 2015b) that can readily spawn during high

water phases of hydropeaking at spawning grounds that may then fall

fully dry during low water phases (Grabowski & Isely, 2007), leading

to increased mortality.

Upstream effects of hydropeaking are less well understood. In

the headwater area directly upstream of the power plant, hydro-

peaking potentially impairs fish habitat by increasing water depth and

reducing current speed, leading to more uniform conditions that

favour generalist or limnophilic aquatic species and communities

(Greimel et al., 2018; Mueller, Pander, & Geist, 2011). During the

water storage phase, when the turbines stop, a water backlog may be

formed, reducing flow velocity. Low flow velocities may increase fine

sediment deposition and potentially affect ecologically relevant pro-

cesses in the interstitial zone. Most relevant is streambed clogging

impairing spawning ground quality (Hauer, Holzapfel, Tonolla,

Habersack, & Zolezzi, 2019), altering streambed communities

(Bondar-Kunze, Kasper, & Hein, 2021; Casas-Mulet, Alfredsen,

et al., 2015; Elgueta et al., 2021; Salmaso, Servanzi, Crosa, Quadroni, &

Espa, 2021), and potentially also affecting the river productivity

(Greimel et al., 2018; Mueller et al., 2011). An understudied aspect of

these processes is the potential effect that such hydropeaking-

induced backlogs may have on aquatic habitat of upstream tributaries.

This lack of knowledge is surprising given the key role tributaries play

as aquatic habitats for spawning, larval development and juvenile

growth of many riverine fish species such as rheophilic salmonids and

cyprinids (Naus & Reid Adams, 2018; Pracheil, Pegg, & Mestl, 2009).

In this study, we aim at tackling the lack of understanding of

upstream effects of hydropeaking, with a focus on tributaries and

hydropeaking-induced backlog events. We assessed the upstream

effects of hydropeaking of the power plant Ingolstadt in the European

River Danube on a structurally restored tributary located within a

large floodplain restoration area (Stammel et al., 2012), which is

known to provide several spawning grounds for lithophilic fish along

its course (Pander et al., 2015b; Pander, Knott, Mueller, &

Geist, 2019; Pander, Mueller, & Geist, 2018). We hypothesized that a

backlog resulting from hydropeaking operations in the main river will

impair spawning ground quality in the upstream tributary. In particu-

lar, the changed hydrograph of the tributary will have severe conse-

quences on water depth, current speed, fine sediment deposition and

oxygen supply, leading to unfavourable conditions in the interstitial

spaces of the spawning grounds and reducing the recruitment success

of brown trout in affected sites compared to sites in the same system

not affected by hydropeaking.

2 | MATERIAL AND METHODS

2.1 | Site description

The Ottheinrichbach (OHB) River is located in the middle section of

a large scale floodplain restoration project at the upper River Dan-

ube (mean annual discharge = 333 m3�s�1) in Bavaria,

south-Germany (Fischer & Cyffka, 2014; Pander et al., 2015b;

Stammel et al., 2012; 48�44055,7 N, 11�16035,7 O; Figure 1a). It was

constructed to restore the impaired fish migration within the Dan-

ube due to the construction of the power plant Bergheim, to

increase groundwater dynamics, to provide additional habitat for

keystone organisms and to re-wet one of the last remaining fluvial

forests along this large European River (Pander et al., 2015b, Pander,

Mueller, Knott, Egg, & Geist, 2017, Pander et al., 2018, Pander

et al., 2019; Stammel et al., 2012; Stammel, Fischer, Gelhaus, &

Cyffka, 2016). Due to its location in spatial proximity to the hydro-

power plants Ingolstadt and Bergheim and its important function as

a fish nursery (Pander et al., 2015b), the OHB represents an ideal

model stream for tributaries located along heavily modified water

bodies affected by hydropower generation. Due to hydropeaking of

the Ingolstadt Plant, the confluence OHB–Danube is subject to

severe flow fluctuations largely driven by the power plants' backlog

(Figure 2). The backlog effect reaches from 700 to 1,200 m into the

OHB, depending on the discharge of the River Danube, potentially

impairing one of the spawning grounds that were newly built in the

year 2010 during the floodplain restoration (Figure 3). The OHB has

a variable discharge between 0.5 and 5 m3�s�1 and can be addition-

ally flooded with another 25 m3�s�1 to mimic natural dynamics of

flood scenarios that were historically present in the alluvial forest

(Fischer & Cyffka, 2014; Pander et al., 2019; Stammel et al., 2012).

In the OHB, three sites known to function as spawning grounds

for lithophilic fish species were chosen for active bioindication with

trout eggs (Pander & Geist, 2013). Site 1 (23 m2) is located in the

upper reach of the OHB (48�4401200N, 11�1505600E) approximately

280 m downstream of a weir where the OHB is released from the

Danube. Site 1 comprises a flow gradient of 0.64% and is not affected

by the hydropeaking-induced backlog of the power plant Ingolstadt.

Site 2 is located in the middle reach of the OHB (48�44025”N,

11�1802300E), has a larger flow gradient (0.80%) and covers 36 m2.
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Despite its location close to a connection to the Danube, it is not

influenced by the backlog due to the steepness of the OHBs river

course on the lowermost 100 m on its way to the Danube (Figure 1b).

Site 3 covers 20 m2 and is located 200 m upstream of the final conflu-

ence of the OHB in spatial proximity to the Danube. This site is highly

affected by the backlog of the Danube, comprising strongly fluctuat-

ing water levels and changes in current speed and direction

(Figure 1b). During low discharge conditions and outflow of the

discharge back into the Danube, the OHB site 3 comprises a flow gra-

dient of 0.50%.

2.2 | Hydroecological assessment

In order to assess the potential effects of the hydropeaking-driven

backlog, we compared the quality of the spawning grounds between

F IGURE 1 Illustration of the study
area within Europe (a) and location of the
three investigated spawning sites within a
large scale floodplain restoration at the
Danube River (b) including a schematic
top-view on the study area between the
power plants Bergheim and Ingolstadt
with an indication of the backlog caused
by the power plant Ingolstadt in side view.

Red arrows indicate the variability of the
affected backlog area. Coloured triangle,
circle and square indicate the location of
the three assessed spawning sites; black
arrows indicate the flow directions. Light
blue arrows indicate the location of the
two principle connections the
Ottheinrichbach has to the Danube River.
The lowermost Panel (c) indicates
placement and construction of the
HydroEcoSedimentary Tool (HEST) in site
3 as an example [Color figure can be
viewed at wileyonlinelibrary.com]
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sites. At each site, we installed 27 HydroEcoSedimentary Tools

(HESTs) loaded with brown trout eggs (Salmo trutta fario L.)

(Figure 1c). HESTs were made out of interlocked plastic containers

(AUER Packaging GmbH, Amerang, Germany), creating top (T) and

bottom (B) compartments. We placed a temperature logger in each

compartment, and installed a 1.5 m long Sahleberg® TubeTec silicon

tubing of 4.5 mm inner diameter (Sahleberg GmbH, Feldkirchen,

Germany) to enable water samples extraction. Three sets of different

HEST types were applied to distinguish longitudinal, (L) lateral (X),

and vertical (V) infiltration of fines. Each of the infiltration openings

was covered with Jaera® perforated metallic plates (2 mm diameter

round holes, JAERA GmbH & Co. KG, Laatzen, Germany). For full

details of HESTs design, see Casas-Mulet, Pander, Prietzel, and

Geist (2021).

Before exposure, each HEST was pre-filled with sediment trun-

cated at the 6.3 mm fraction. We followed granulometry curves from

the OHB’s natural streambed material, described in Pander

et al. (2015b), to mimic the corresponding sediment sizes at each site.

Brown trout eggs were purchased from a local fish farm (Forellenhof

Nadler, Eching, Germany). Brown trout eggs were inserted in the eye-

F IGURE 2 Hydrograph of the
Danube’s discharge during the exposure
of the brown trout eggs in comparison to
water level changes in the hydropower-
affected site 3 (a) as well as for
representative medium (b) and low
(c) discharge conditions during the egg
exposure. Light blue arrows in panel c
indicate flow direction towards the

Danube (OHB discharges regular into the
Danube); blue arrows indicate flow
direction from the Danube upstream into
the OHB (caused by the backlog of the
Danube) and open rectangles in panel c
indicate time phases with almost no
directed flow [Color figure can be viewed
at wileyonlinelibrary.com]
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point stage to assess their survival, analogously to their use for

bioindication of open (Pander & Geist, 2010) and interstitial water

quality (Pander, Schnell, Sternecker, & Geist, 2009). After receiving

the eggs from the fish farm, they were acclimatized for 30 min includ-

ing a temperature adjustment of 2�C in the laboratory of the Aquatic

Systems Biology Unit, Freising, Germany. Dead eggs were subse-

quently removed, and the remaining live eggs were distributed into

the HESTs. Each HEST compartment (T and B) was loaded with

30 eggs that were randomly picked and placed by forming a small pit

in the HESTs, which was then carefully covered with 5 cm of sub-

strate. The full HESTs were kept submerged in a large tank with aer-

ated water, so the quality of the eggs was preserved during transport

until their installation in the river the next day (see Casas-Mulet

et al., 2021 for further details).

On 18th December 2018, 27 HESTs were installed at each site

into the streambed of the OHB. A hole big enough to fit each of the

HESTs was dug with a common spade, keeping disturbance of the sur-

rounding streambed to a minimum. Each HEST was then inserted so

that its top was even with the gravel surface, and the river´s natural

coarse sediment was used to fill up the gap to the same level. The

HESTs were installed in closed mode and after fines were settled,

they were opened to start the experiment (Casas-Mulet et al., 2021).

After 33 days of exposure, all HESTs were retrieved and immediately

assessed in the laboratory for egg and larvae survival. The HEST com-

partments were opened carefully, data loggers and larger stones were

removed, and the sediment content was emptied into a tray, rinsed

with water and examined for larvae and eggs. A distinction was made

between live and dead eggs as well as between live and dead larvae,

F IGURE 3 Schematic view of
the hydropeaking affected site
3 with the indication of the three
different stages (a) outflowing
conditions (light blue arrows),
(b) back flowing conditions (so called
backlog, blue arrows), and
(c) stagnant conditions (open
rectangles) with high water level and

almost no directed current [Color
figure can be viewed at
wileyonlinelibrary.com]
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as described in Casas-Mulet et al. (2021). All samples were preserved

in a solution of 70% (v/v) ethanol.

Ecologically relevant physico-chemical parameters were measured in

situ for each HEST and in the open water of the river after installation of

the HEST and before retrieval. The interstitial water of each HEST was

extracted following the procedure described in Casas-Mulet et al. (2021)

using 100 mL, Omnifix Solo plastic syringes (B. Braun Melsungen AG,

Melsungen, Germany). Samples of interstitial water were immediately

transferred into clean 100 mL vials and temperature [�C], dissolved oxy-

gen [mg�L�1], electrical conductivity [μS�cm�1, corrected to 20�C], and

pH were measured with a hand-held WTW® Multimeter 340i (WTW

GmbH, Weilheim, Germany). In addition, turbidity [NTU] was assessed

using a WTW® Turb 355 IR measuring set (Pander, Mueller, &

Geist, 2015a). HOBO® temperature loggers (UA-002-064, Onset, US)

installed in the HESTs, and in the water column of each site, were used

to record continuous (at 30 min intervals) temperature data. Measure-

ments of interstitial water are presented in Table 1. To assess fine sedi-

ment deposition in the HESTs, we wet-sieved (Pander et al., 2015a) the

sediment contents of each HEST compartment after retrieval. We used

an AS 200 Retsch sieving machine (Retsch, Haan, Germany) equipped

with sieves ISO 3310-1 of screen sizes 20.0, 6.3, 2.0, 0.85, 0.20 and

0.045 mm. Coarse fractions (> 20.0 mm,> 6.3 mm, > 2.0 mm) were dried

at air temperature for 24 hours, and finer fractions (< 2.0 mm) were

oven-dried at 100�C for 24 h (Pander et al., 2015a). All fractions were

then weighted with a scale (Dini Argeo S.r.l., Modena, Italy) to the

nearest 0.1 g. Water depth [m] and near-bed flow velocity [m�s�1] was

measured with a magnetic inductive flow meter (Ott MF pro, Ott,

Kempten, Germany) directly at the HESTs, 5 cm below the water surface

as well as 3–5 cm above the HESTs.

2.3 | Data analysis

Total percent mortality was calculated as the difference between the

surviving eggs or larvae and the initially loaded egg number for each

of the HESTs retrieved from the three sites. For univariate multiple-

group comparisons of egg and larval mortality as well as abiotic habi-

tat variables, each dataset was tested for normal distribution

(Shapiro–Wilk test) and homoscedasticity (Levene test). Since data did

not fulfil the criteria for parametric testing, the non-parametric

Kruskal–Wallis test was applied to test for significant differences. A

subsequent post-hoc Wilcoxon test with Bonferroni correction for

multiple comparisons was used to determine whether values differed

significantly between HESTs, compartments and/or infiltration direc-

tions. Since no significant differences between longitudinal, lateral

and vertical HEST measurements were observed, the data was pooled

for further investigation. Univariate statistics were carried out using

statistical and graphical open-source software R (R Core Team, 2020,

version 4.0.3R, www.R-project.org/, last accessed on 27 July 2021).

To visualise differences of HESTs in egg and larval mortality

between the three sites, a non-metric multidimensional scaling (NMDS)

using PRIMER v7 (Plymouth Marine Laboratory, Plymouth, UK) was

plotted. For this multivariate comparison, a resemblance matrix was cal-

culated using the full data resolution of egg and larval mortality from

the different retrieval time points of HESTs at the three sites (Clarke,

Gorley, Somerfield, & Warwick, 2014). To test for significant differ-

ences of mortality rates between HESTs and between top and bottom

compartments, one-way analysis of similarities (ANOSIM) based on

Bray–Curtis similarities (Bray & Curtis, 1957) calculated from egg and

larval mortality data (Clarke, 1993) were computed. To analyse the

interaction between the measured abiotic habitat variables and the

ordination of HESTs in the NMDS, the abiotic habitat variables were

displayed in the NMDS using the overlay function in PRIMER.

To test for relations between egg mortality and minimum oxygen

concentration found in the HESTs, the oxygen concentration was

used as predictor variable and plotted against the response variable

egg mortality. To avoid false-negative conclusions due to potentially

non-linear relations, Spearman rank correlation for monotonic trend

were computed and a smooth curve was displayed. This analysis was

also performed using R (R Core Team, 2020). For all testing’s, a signifi-
cance level of p ≤ .05 (= 95% probability) was applied.

3 | RESULTS

3.1 | Brown trout eggs and larval mortality

Univariate comparisons of egg and larval mortality revealed significant

differences (Table 2) between the replicates of hydropeaking-affected

site 3 and the two non-hydropeaking affected sites 1 and 2 that were

TABLE 1 Abiotic spawning ground characteristics of the assessed sites

T O2 pH EC Turb D V DG IR

[�C] [mg�L�1] [pH] [μS�cm�1] [NTU] [m] [m�s�1] [mm] [kg�d�1]

Site 1 3.73 11.45 a 8.29 a 558 a 420 a 0.18 a 0.45 a 2.53 a 0.98 a

0.16–8.67 5.17–12.98 7.66–9.17 488–807 15–1,100 0.07–0.22 0.17–0.77 0.18–5.23 0.02–4.50

Site 2 3.41 11.79 a 8.37 a 628 b 434 a 0.22 b 0.52 b 2.75 a 1.12 a

�1.13–7.39 9.29–13.12 7.86–9.95 525–811 49–1,065 0.11–0.23 0.25–0.86 0.40–5.86 0.03–3.40

Site 3 3.81 9.69 b 7.97 b 592 c 326 b 0.40 c 0.10 c 1.66 b 0.56 b

�0.49–8.45 5.03–12.73 7.38–8.72 331–979 39–1,067 0.10–0.76 0.00–0.70 0.06–5.45 0.02–3.40

Note: Significant differences between pairwise comparisons of sites were indicated with letters behind the respective mean values.

Abbreviations: T, temperature [�C]; O2, dissolved oxygen [mg�L�1]; pH, pH-value; EC, electric conductance [μS�cm�1]; Turb, turbidity [NTU]; D, water

depth [m]; V, river bed velocity [m�s�1]; DG, mean particle diameter [mm]; IR, sediment infiltration rate [kg�d�1].
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considered as a reference. In the hydropeaking affected site 3, egg

and larval mortalities were significantly higher (Figure 4, Table 2), with

over 80% egg mortality and almost 100% larval mortality compared to

the non-hydropeaking affected sites. Egg and larval mortality in the

non-hydropeaking affected site 1 (over 63% egg mortality and 85%

larval mortality) and site 2 (55% egg mortality and 80% larval mortal-

ity) were not significantly different (Table 2). In site 2, we found the

lowest egg and larval mortality of the tested spawning grounds

(Figure 4).

Multivariate analyses of brown trout egg and larval mortality

(Figure 5 and Table 3) revealed significant differences (ANOSIM global

test: R = 0.07, p < .001) between reference site 1 and the hydro-

peaking affected site 3 (ANOSIM: R = 0.06, p < .01) as well as

between sites 2 and 3 (ANOSIM: R = 0.14, p < .001). No significant

differences in egg and larval mortality could be found between the

non-hydropeaking affected sites 1 and 2 (ANOSIM: R = 0.14, p > .05).

In addition, significant differences between top and bottom compart-

ments could only be detected in site 3 (ANOSIM: R = 0.07, p < .05)

with 20.5% higher mortality for eggs and 19.6% for larvae in bottom

compartments compared to top compartments (Table 4). Correlating

abiotic habitat variables with egg mortality revealed that mortality

increased sharply with decreasing oxygen supply in the interstitial

zone, with more than 90% egg mortality when oxygen values were

below 10 mg�L�1 (Figure 6).

3.2 | Abiotic habitat variables at the spawning
sites of the OHB

All abiotic habitat variables of sites 1 and 2 differed significantly from

those measured in the hydropeaking-affected site 3, except for tem-

perature (Kruskal–Wallis ANOVA p < .001 and subsequently applied

Wilcoxon signed-ranks post-hoc test, see Table 1). In addition, site

1 differed significantly from site 2 with lower values of electric con-

ductance, depth and current speed (Table 1). However, the differ-

ences for some variables between sites concerning electric

conductance, pH and turbidity were small and within the range of

values required for successful brown trout development. Mean dis-

solved oxygen values were highest at site 2 (11.79 mg�L�1) and

2 mg�L�1 lower at site 3 (Table 1). Mean water depth at site 1 was

0.18 m with a mean flow velocity at the surface of 0.45 m�s�1, whilst

site 2 was 0.22 m deep with slightly higher flow velocities at the sur-

face compared to site 1 (0.52 m�s�1). At site 3, water depth changed

several times a day and ranged between 0.10 and 0.76 m (daily fluctu-

ations in water level up to 66 cm). The water level change induced by

hydropeaking also led to changes in flow velocity and direction at site

3 (Figures 2 and 3). In contrast to site 3, the water level at sites 1 and

2 was rather constant during the day and comprised less water level

fluctuations during the investigation period (seasonal fluctuation

in site 1 = 15 cm and in site 2 = 12 cm). In sites 1 and 2, the flow

TABLE 2 Univariate comparisons of egg and larval mortality for the three different sites

Test Test type Factor levels/pairwise comparison

p-value

Egg mortality Larval mortality

Kruskal–Wallis ANOVA Main test Site 1 - site 2 - site 3 p < .0001 p < .0001

Wilcoxon signed-ranks test Post hoc test Site 1 - site 2 p > .05 p > .05

Post hoc test Site 1 - site 3 p < .01 p < .01

Post hoc test Site 2 - site 3 p < .0001 p < .0001

Note: Site 3 = hydropeaking affected site, sites 1 and 2 = non-hydropeaking affected site. Kruskal–Wallis ANOVA df = 2. Wilcoxon-signed ranks post hoc

test was Bonferroni corrected for multiple comparisons.

F IGURE 4 Box-whisker-plot (25%
quantile, median. 75% quantile, whisker:
minimum and maximum values, circles
represent outliers) of egg and larval
mortality [%] for the three different sites.
Letters below the median indicate
significant differences between sites
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direction was always constant and did not change direction. Mean

particle diameter was largest at site 2 (2.75 mm) and smallest at site

3 (1.66 mm). Site 2 also comprised the highest infiltration rates

(1.12 kg�d�1) of fine sediment, being almost twice as high as at site 3.

4 | DISCUSSION

Hydropower is a growing source of renewable energy worldwide with

negative effects on aquatic habitats and biological communities, par-

ticularly fishes (Auer et al., 2017; Bartoň et al., 2021; Casas-Mulet

et al., 2016; Grabowski & Isely, 2007; Greimel et al., 2018; Hauer

et al., 2017; Moreira et al., 2019; Puffer et al., 2015; Schmutz

et al., 2015). An objective evaluation of the “green” and “red” aspects

F IGURE 5 Non-metric multidimensional scaling (NMDS) comprising comparisons of egg and larval mortality of the HydroEcoSedimentary
Tool (HEST) between the three assessed sites in the Ottheinrichbach. O2 = dissolved oxygen [mg�L�1], pH = pH-value, TL = temperature data
[�C] from loggers exposed in the HEST, D = water depth [m], EC = electric conductance [μS�cm�1] (corrected to 20�C), V = river bed velocity
[m�s�1], Turb = turbidity [NTU], DG = mean particle diameter [mm], S0045 = sediment grain size of 0.045 mm, S02 = sediment grain size of
0.20 mm, S085 = sediment grain size of 0.85 mm. Abiotic habitat variables were correlated on the NMDS ordination plot and are displayed as
blue lines. The length of the blue lines is proportional to the degree of correlation with the arrangement of egg and larval mortality (the blue
circle indicates 100% correlation). 2D-Stress = stress value after Kruskal [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Results of multivariate comparisons of sites with
ANOSIM considering T = top compartment as well as B = bottom
compartment of the HESTs

Pairwise tests R-value p-value

Site 1 - site 2 0.011 >.05

Site 1 - site 3 0.059 <.01

Site 2 - site 3 0.141 <.001

Site 1T - site 2T �0.003 >.05

Site 1T - site 3T 0.003 >.05

Site 2T - site 3T 0.058 <.05

Site 1B - site 2B 0.002 >.05

Site 1B - site 3B 0.119 <.001

Site 2B - site 3B 0.255 <.001

Site 1B - site 1T �0.024 >.05

Site 2B - site 2T �0.022 >.05

Site 3B - site 3T 0.074 <.01

Note: Values in bold indicate significant differences between sites or

compartments.

TABLE 4 Egg mortality and larval mortality detected in the top
and bottom compartments of the HESTs in the three assessed
spawning grounds

Egg mortality [%] Larval mortality [%]

B T B T

Site 1 60.6 56.4 76.4 74.1

0.0–100.0 0.0–93.3 6.7–100.0 13.3–100.0

Site 2 52.2 46.5 69.6 63.2

0.0–100.0 3.3–100.0 6.7–100.0 3.3–100.0

Site 3 84.8 64.3 97.9 78.3

56.7–100.0 6.7–96.7 70.0–100.0 10.0–100.0

Note: Upper layer indicates mean mortality rates for eggs and larvae,

respectively, whilst the lower layer indicates minimum and maximum

values.
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of hydropower production (Geist, 2021) requires a comprehensive

consideration of all effects including those resulting from hydro-

peaking operation. To the best of our knowledge, this is the first study

that describes hydropeaking-induced negative effects to upstream-

located tributaries. Specifically, the study illustrates how egg and lar-

val mortalities were increased in hydropeaking impacted spawning

grounds compared to those in non-hydropeaking affected sites.

Corresponding to the storage duration driven by the hydropeaking

operations of the power plant Ingolstadt and the discharge of the

Danube, a large backlog (up-ramping) reaching more than 6 km

upstream was evident. This backlog can explain the observed change

in habitat conditions with discharge flowing back into the OHB and

stopping for a certain period of time before running out again. In our

dataset, hydropeaking-induced fluctuations in water depth, as also

described by Grabowski and Isely (2007), additionally contributed to

permanent changes in the hydraulic gradient of site 3. They were

strongest during low discharge conditions of the Danube when cur-

rent directions changed twice a day. Significantly increased water

depth, reduced flow velocity and reduced oxygen supply of the HESTs

at the hydropeaking affecting site 3, all likely contributed to the

reduced hatching rate of eggs and larval survival. The most likely

cause of reduced oxygen supply was because, at the peak of the

incoming backlog, the current of the river almost completely stops for

a certain period impairing the exchange of interstitial water with the

open water. Such exchange between open water and interstitial is

crucial for oxygen supply and successful egg or larval development

(Sternecker, Cowley, & Geist, 2013). It is possible that the stagnant

conditions caused by the backlog were responsible for an oxygen defi-

ciency in the interstitial pores, as the subsurface flow was not enough

to supply the exposed eggs and larvae with oxygen and to transport

the metabolites away. In addition, respiration of organic matter could

have led to reduced oxygen availability in the interstitial spaces. At

site 3, there was no increased sedimentation of fines detectable com-

pared to site 2 or site 1 where egg and larval development was on

average 20%–40% higher. Even though this was not experimentally

tested, based on prior literature, we took the assumption that stag-

nant flow conditions result in an accumulation of a thin layer of the

commonly present fines <0.0045 mm on the eggs, hindering oxygen

supply and removal of metabolites (Greig, Sear, & Carling, 2005). Once

the current started to move outwards again, the fines could have been

transported (see Casas-Mulet, Lakhanpal, & Stewardson, 2018) with-

out being detected due to the coarser temporal sampling resolution

we obtained from applying the HESTs.

In the present study, it needs to be considered that the hydro-

peaking regime of the power plant Ingolstadt affected only site 3 and

not the other two (sites 1 and 2). However, site 3 represents a crucial

access point to suitable habitats of the restored floodplain for key fish

species, highlighting the negative effects that hydropeaking can have

on such important habitat function. Negative effects on other impor-

tant habitat functions such as fish migration and accessibility of tribu-

taries is also possible, but was not investigated here.

We acknowledge that this study represents only one season and

one hydropeaking affected area, and that, in general, spatial and tem-

poral variability in spawning success can be high. However, this case

study helps illustrate that the positive effects of structural

river restoration can be limited in highly hydropower-affected

environments (Pander & Geist, 2013). If constraints such the one illus-

trated here in a hydropeaking-imparied tributary cannot be mitigated,

restoration success may be lower than expected (Geist &

Hawkins, 2016). This is particularly critical for highly specialized river-

ine fish such as rheophilic salmonids and cyprinids, which are all high

on the conservation agenda (Mueller, Bierschenk, Bierschenk, Pan-

der, & Geist, 2020). Such upstream hydropeaking effects can lead to

severe bottlenecks in species recruitment, which is a prerequisite for a

F IGURE 6 Correlation plot of the
oxygen concentration measured in the
HESTs against egg mortality. The smooth
curves are locally weighted regression fits
(Cleveland & Devlin, 1988) to the data
points. LCL = lower critical limit for egg to
fry survival according to Rubin and
Glimsäter (1996) reviewed in Smialek,
Pander, and Geist (2021) [Color figure can

be viewed at wileyonlinelibrary.com]
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successful population development, and is an important factor for the

functionality of river restoration.

5 | CONCLUSION

To the best of our knowledge, this study is the first to provide evi-

dence on the potential ecological upstream effects of hydropeaking,

with a focus on fish habitat quality in tributaries. Spawning grounds

can be severely affected by hydropeaking operations carried out in

the main river, particularly when these comprise strong water level

fluctuations linked to water storage and release phases. The negative

effects of hydropeaking in this study were expressed in reduced sal-

monid hatching rates and larval survival. These could be linked to

water level fluctuations causing temporarily increased water depth

and reduced current speed at the affected spawning grounds, which

may have led to the reduced oxygen availability in the hydropeaking

affected site. Accounting for such effects is critical for the survival of

gravel-spawning early life stages of many fish species. Particularly for

target species of conservation such as rheophilic salmonids and cypri-

nids, such altered processes can result in reduced population recruit-

ment and need to be considered in the design and implementation of

restoration projects.
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