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Abstract 

In the field of microbial ecology, one of the most fundamental questions to ask is "who is there?" 

There are different ways to find an answer to this question; however, one of the gold standards 

that has stood the test of time is to sequence 16S ribosomal RNA (rRNA) gene. In the study of 

bacterial phylogeny and taxonomy, the use of 16S rRNA gene sequences has been by far the 

most prevalent housekeeping genetic marker employed for a number of reasons. However, usage 

of the 16S rRNA gene platform has limitations in both technical and computational aspects 

during different stages of analysis. For instance, during the amplification, primers can induce 

bias as they may bind to specific hypervariable regions, which are not 100% conservative. 

Similarly, there are different computational challenges such as the selection of proper pipelines, 

reference databases and parameters during downstream analysis. In addition, there is an ongoing 

debate on inferring functional profiles of microbial communities from 16S rRNA gene 

sequences. It remains an open question if metagenome prediction tools are also suited for more 

subtle contrasts related to human health. Comprehensive benchmark studies discussing these 

challenges are scarce. In this thesis, these computational challenges were studied. Moreover, we 

also focused on providing reliable solutions and recommendations for biomedical researchers. 

In a comparative study benchmarking different 16S rRNA gene pipelines, we demonstrated that 

targeting the variable region V3-V4 of the 16S rRNA gene enabled the most precise 

characterization compared to other primer regions. Amplicon sequence variants or zero-radius 

operational taxonomic units were found to be the best option for taxonomic characterization, 

especially when using SILVA or RDP as the reference databases. In a systematic benchmark of 

16S-based functional inference tools, I found that these tools had varying levels of accuracy and 

precision in functional predictions. Among selected functional inference tools, PICRUSt2 

outperformed the other tools but failed to provide accurate results as compared to metagenome 

functional diversity. I recommended the use of a combination of methods so that a thorough 

evaluation of the results can bolster the overall performance. In summary, functional prediction 

tools based on 16S rRNA gene data results in limited sensitivity in detecting differences related 

to human health and disease. Hence, it can be used in hypothesis generation in conjunction with 

other methods, such as metagenome profiling. Combining all the best pipelines and methods that 

we identified from our benchmark analyses, we developed a user-friendly tool called Namco, 

which provides end-to-end analysis for 16S rRNA gene analysis that covers upstream analyses 

such as raw data processing and taxonomic binning and downstream analyses including basic 

statistics, machine learning and network analysis, among other features. Overall, the analysis of 

16S rRNA gene amplicon data requires careful consideration of experimental design, data 

processing and downstream analysis methods to ensure accurate and reliable results. Findings 

from each chapter can help researchers to make informed decisions about which primers to use 

based on their research goals and which tools to select for 16S rRNA gene-based functional 

profiling. Finally, integrating my recommendations into a user-friendly tool can help researchers 

to carry out microbial analysis more efficiently and accurately.  
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Kurzfassung 

Auf dem Gebiet der mikrobiellen Ökologie ist eine der grundlegendsten Fragen, die man sich 

stellen muss, "Wer ist da?". Es gibt verschiedene Möglichkeiten, eine Antwort auf diese Frage 

zu finden; einer der Goldstandards, der sich seit langem bewährt hat, ist jedoch die 

Sequenzierung von 16S ribosomalen RNA (rRNA)-Genen und die Charakterisierung der 

mikrobiellen Population. Bei der Untersuchung der bakteriellen Phylogenie und Taxonomie ist 

die Verwendung von 16S rRNA-Gensequenzen aus verschiedenen Gründen der bei weitem am 

häufigsten verwendete genetische Housekeeping-Marker. Die Verwendung der 16S rRNA-

Genplattform unterliegt jedoch in den verschiedenen Phasen der Analyse sowohl technischen als 

auch bioinformatischen Einschränkungen. So führen die für die Amplifikation verwendeten 

Primer während der Amplifikation zu Verzerrungen, da sie an spezifische hypervariable 

Regionen binden, die nicht zu 100 % konserviert sind. In ähnlicher Weise gibt es verschiedene 

bioinformatische Herausforderungen wie die Auswahl geeigneter Pipelines, 

Referenzdatenbanken und Parameter während der nachgeschalteten Analyse. Darüber wird  über 

die Ableitung von Funktionsprofilen mikrobieller Gemeinschaften aus 16S rRNA-

Gensequenzen debattiert. Es bleibt eine offene Frage, ob Metagenom-Vorhersagewerkzeuge 

auch für subtilere Kontraste im Zusammenhang mit der menschlichen Gesundheit geeignet sind. 

Umfassende Benchmark-Studien, die diese Herausforderungen diskutieren, sind rar.  In dieser 

Arbeit wurden diese bioinformatischen Herausforderungen bei der Sequenzierung von 16S 

rRNA-Genen untersucht. Darüber hinaus konzentrierten wir uns auf die Bereitstellung 

zuverlässiger Lösungen und Empfehlungen für die biomedizinische Forschung. In einer 

vergleichenden Studie, in der verschiedene 16S rRNA-Gen-Pipelines verglichen wurden, haben 

wir gezeigt, dass die variable Region V3-V4 des 16S rRNA-Gens im Vergleich zu anderen 

Primerregionen die präziseste Charakterisierung ermöglicht. Amplikon-Sequenzvarianten oder 

operative taxonomische Einheiten mit Nullradius erwiesen sich als die beste Option für die 

taxonomische Charakterisierung, insbesondere bei Verwendung von SILVA oder RDP als 

Referenzdatenbanken. In einem systematischen Benchmarking von 16S-basierten Werkzeugen 

für funktionelle Inferenzen stellte ich fest, dass diese Werkzeuge bei funktionellen Vorhersagen 

ein unterschiedliches Maß an Genauigkeit und Präzision aufweisen. Unter den ausgewählten 

Werkzeugen für die funktionelle Inferenz übertraf PICRUSt2 die anderen Werkzeuge, lieferte 

jedoch im Vergleich zur funktionellen Vielfalt des Metagenoms keine genauen Ergebnisse. Ich 

empfahl die Verwendung einer Kombination von Methoden, damit eine gründliche Bewertung 

der Ergebnisse die Gesamtleistung verbessern kann. Zusammenfassend lässt sich sagen, dass 

funktionelle Vorhersageinstrumente auf der Grundlage von 16S rRNA-Gen-Daten nur eine 

begrenzte Sensitivität bei der Erkennung von Unterschieden im Zusammenhang mit 

menschlicher Gesundheit und Krankheit aufweisen. Daher können sie bei der 

Hypothesenbildung in Verbindung mit anderen Methoden, wie z. B. der Metagenomprofilierung, 

eingesetzt werden. Durch die Kombination der besten Pipelines und Methoden, die wir bei 

unseren Benchmark-Analysen identifiziert haben, haben wir ein benutzerfreundliches Tool 

namens Namco entwickelt, das eine  umfassende Analyse für die 16S rRNA-Genanalyse bietet, 

die u. a. vorgelagerte Analysen wie die Verarbeitung von Rohdaten und taxonomisches Binning 

sowie nachgelagerte Analysen einschließlich grundlegender Statistik, maschinelles Lernen und 



6 

Netzwerkanalysen umfasst. Insgesamt erfordert die Analyse von 16S rRNA-Genamplikondaten 

eine sorgfältige Berücksichtigung der Versuchsplanung, der Datenverarbeitung und der 

nachgeschalteten Analysemethoden, um genaue und zuverlässige Ergebnisse zu gewährleisten. 

Die Erkenntnisse aus den einzelnen Kapiteln können Forschenden dabei helfen, fundierte 

Entscheidungen darüber zu treffen, welche Primer sie je nach ihren Forschungszielen verwenden 

und welche Tools sie für die 16S rRNA-Gen-basierte funktionelle Profilerstellung auswählen 

sollten. Schließlich kann die Integration meiner Empfehlungen in ein benutzerfreundliches 

Werkzeug helfen, mikrobielle Analysen effizienter und genauer durchzuführen. 
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Graphical abstract 

 

Figure 1: Overview of the thesis 

This thesis mainly focuses on different computational challenges in 16S rRNA gene data 

analysis. In the first chapter, the influence of selection of primer, pipeline and parameters 

were studied. In the second chapter, the focus was on analysing the accuracy of functional 

prediction tools using 16S rRNA. The best and recommended outcomes under each 

benchmark analysis (in chapter one and chapter two) are highlighted in dark pink boxes. 

Dotted lines explains that best candidates obtained from each analysis are incorporated in 

the tool called Namco, which is the final chapter of this thesis. (Source: own work)  
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1. Chapter one: Introduction  

1.1. The vocabulary of microbiome research 

The term "microbial community" refers to a group of coexisting microorganisms. More 

specifically, multi-species assemblages of (micro)organisms that interact with one another in a 

continuous environment are referred to as microbial communities. The term "microbiome" was 

initially defined in 1988 by Whipps and colleagues who studied the ecology of rhizosphere 

microorganisms 1,2. They defined the "microbiome" as the combination of the terms “micro” and 

“biome”, designating as its “theatre of activity a characteristic microbial community” in a “fairly 

well-defined habitat with specific physio-chemical features”. 

Due to the rapid development of this field, there is an uncertainty regarding the terminology used 

to describe the many aspects of these communities. The incorrect usage of terminology such as 

“metabolomic”, “metagenome”, “metagenomics”, and “microbiome”, among other words, has 

led to misinterpretation and confusion by both the scientific and general public about many study 

findings 3. Some of the important vocabulary used in microbial research are as follows: 

● Microbiome: refers to the entire micro-organisms including archaea, bacteria, viruses, 

lower and higher eukaryotes and their genomes 3 along with their ecosystems  

● Microbiota: refers to the collection of microorganisms that inhabit a particular  environment 

● Metataxonomics: is defined as a high-throughput method for characterising the complete 

microbiota and producing a metataxonomic tree that illustrates the relationship between all 

sequences. 

● Metagenome: refers to the collection of genes and genomes from microbiota 

● Microbiota diversity: a metric that measures the number of distinct species present and, 

depending on the diversity indices used, the evenness of their distribution within the 

community. 

Studies involving metataxonomic analyses that depend on 16S rRNA gene sequencing and 

analysis frequently make mistakes in terms of terminology. Many times, terms such as "16S 

survey", 16S sequencing, and analysis are used in the literature. It is not a correct term. The "S", 

in 16S, stands for the Svedberg uniunit, a non SI unit for sedimentation. The subunits that make 

up the 30S small ribosomes of bacterial, archaeal, and bacterial ribosomes contain 21 proteins. 

There is also one structural 16SRNA. This rRNA has approximately 1540 ncleotides.  

  

https://paperpile.com/c/G11r3b/ZHzj+P3Ms
https://paperpile.com/c/G11r3b/IuA6
https://paperpile.com/c/G11r3b/IuA6
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1.2. The human gut microbiome 

The human body is one of the suitable habitats for microbial communities. The human hosts 

different microbiota including bacteria, protozoa, archaea, and viruses on and within different 

sites of the body such as the gastrointestinal system (GI), genital organs, respiratory tract, skin 

and oral cavity 4,5. Among different body sites, the GI tract hosts 1014 microbiome, which is 

nearly 10 times more bacteria cells compared to human cells and 100 times more microbiome as 

compared to the human genome 6,7. It is generally believed that the diversity or development of 

the microbiome originates from the placenta 8–10 and diverges throughout the human lifespan. In 

the early stages, microbiomes are known to be dominated by the main phyla, which are 

Proteobacteria and Actinobacteria 11. The diversity of the gut microbiome becomes comparably 

stable during adulthood and then decreases in the elderly age 12. In young adults, Clostridium 

cluster XIVa is found to be dominant, in contrast, in elderly years, the abundance of Bacteroidetes 

phyla and Clostridium cluster IV are found to be the dominant groups 13.  

Gut microbiota plays a crucial role in maintaining human health by facilitating several important 

functions such as including food fermentation, host defence, immune response stimulation, and 

vitamin generation 14. For example, the gut microbiome helps to train the immune system to 

recognize and respond to pathogens, while also helping to prevent overactive immune responses 

to harmless antigens. The gut microbiome also aids in the development of gut-associated 

lymphoid tissue (GALT), which is a key component of the immune system. Additionally, certain 

microorganisms produce anti-inflammatory compounds that can help to regulate the immune 

response and maintain immune homeostasis 15. In the meanwhile, dysbiosis or an imbalance in 

the gut microbiota is also proved to be a major contributor to the pathogenesis of extra-intestinal 

disorders such as allergies, asthma 16, type 1 diabetes 17, cardiovascular disease 18, metabolic 

syndrome, and obesity as well as intestinal disorders like inflammatory bowel disease (IBD) 19,20 

and irritable bowel syndrome (IBS) 21. Commensal gut bacteria may also be crucial in reducing 

inflammation and bacteremia, according to certain theories 22. However, it should be noted that 

the composition of the microbiome can vary greatly between individuals and can also change 

over time within an individual due to a variety of factors such as lifestyle, dietary habits, illness, 

antibiotic treatment etc 23,24. 

1.2.1. Factors shaping the GI microbiota 

There is a plethora of internal and external factors that modify gut microbial compositions and 

ultimately affect human health. Change of microbial intestinal colonisation begins concerning 

the delivery pattern 25. There are a couple of studies that proved that the gut microbial 

composition of infants born by vaginal delivery is different from infants delivered by caesarean 
26,27. Infants born via caesarean are more prone to the risk of developing different diseases such 

as juvenile arthritis, inflammatory bowel disease, immune deficiencies, leukaemia and asthma 
28,29.  

https://paperpile.com/c/G11r3b/feLd+oWo9
https://paperpile.com/c/G11r3b/Rxxc+JoeH
https://paperpile.com/c/G11r3b/2xJN+eiqx+qxuG
https://paperpile.com/c/G11r3b/1G5y
https://paperpile.com/c/G11r3b/d17p
https://paperpile.com/c/G11r3b/bs9D
https://paperpile.com/c/G11r3b/cZqu
https://paperpile.com/c/G11r3b/xvAe
https://paperpile.com/c/G11r3b/DDqY
https://paperpile.com/c/G11r3b/pm7f
https://paperpile.com/c/G11r3b/HjOa
https://paperpile.com/c/G11r3b/GXH74+zPY7
https://paperpile.com/c/G11r3b/mdJL
https://paperpile.com/c/G11r3b/6SDt
https://paperpile.com/c/G11r3b/ZK0X+wvQX
https://paperpile.com/c/G11r3b/9tcN
https://paperpile.com/c/G11r3b/6win+xXGr
https://paperpile.com/c/G11r3b/Pv5P+0Q5i
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Diet is one of the important driving factors in changing the gut microbiome. Several 

interventional studies had proven that dietary habits play a crucial role in the substantial changes 

in the composition 30,31. Major dietary options such as animal or plant-based diets result in 

alterations of the gut microbiome 30. For example, fibre-enriched diets help in increasing 

beneficial bacteria which helps in increasing the production of short-chain fatty acids (SCFA), 

which in turn helps in repairing dysfunctional metabolism 32. In contrast to fibre-enriched diets, 

high-fat diets decrease bacterial diversity and also reduce the production of SCFA 33. A high fat 

diet also leads to several diseases including obesity and type 2 diabetes 34.  

Other than diet and delivery methods, genetics and medications such as antibiotics are also 

responsible for changing microbial compositions. Few studies have shown that blood relatives 

happen to have more similar microbiota than the unrelated and also monozygotic twins have 

more similar microbial communities compared to dizygotic twins 35. Nonetheless, so far, there 

are no genome-wide studies available to prove the relationship between genes and pathways and 

gut microbiome composition 36. 

A large number of small microbiome studies have been published, and the use of high-throughput 

sequencing technologies has led to a rapid increase in the amount of microbiome data being 

generated. It is difficult to provide an exact number, but a search on the SRA 37 database using 

the terms “16S rRNA” AND “human gut metagenome” results in 638 bioprojects with 17,322 

biosamples and 104,855 datasets as of February 2023. A search on pubmed using “16S rRNA 

gene sequencing” yields 55,287 results, indicating that the field is highly active and growing 

rapidly.  

Small microbiome studies are useful for generating hypotheses and identifying associations, 

however, large projects are necessary to provide a more comprehensive and integrated 

understanding of the microbiome and its role in human health and disease. Also, with the rapidly 

growing number of small microbiome studies, standardisation for data collection, storage, 

analysis, and reporting is necessary to compare and integrate results across studies. Hence, 

guidelines and tools have been developed to help researchers to design, conduct and share the 

microbiome data across different studies. Such examples are Human Microbiome Project (HMP) 
38, Earth Microbiome Project 39, The Microbiome Quality Control project 40, International 

Human Microbiome Standards 41 and The American Gut Project 42. 

1.2.2. Human Microbiome Project 

Several large-scale projects have been created to characterise the microbial composition, its 

diversity and functional potential thanks to the low cost of sequencing and molecular assays. In 

2010, the Metagenomes of the Human Intestinal Tract (MetaHIT) project described the gut 

microbiome extracted from stool samples collected from a European cohort irrespective of high 

sequencing cost at that time 43. As a follow-up study, MetaHIT continued to publish new 

metagenomes through different European subprojects 44–46. Followed by the MetaHIT project, in 

https://paperpile.com/c/G11r3b/vXaq+0j6K
https://paperpile.com/c/G11r3b/vXaq
https://paperpile.com/c/G11r3b/uX5E
https://paperpile.com/c/G11r3b/f7wE
https://paperpile.com/c/G11r3b/nbIR
https://paperpile.com/c/G11r3b/LgpD
https://paperpile.com/c/G11r3b/KFgJ
https://paperpile.com/c/G11r3b/bENh
https://paperpile.com/c/G11r3b/iL89
https://paperpile.com/c/G11r3b/Sywf
https://paperpile.com/c/G11r3b/gMwi
https://paperpile.com/c/G11r3b/mDNZ
https://paperpile.com/c/G11r3b/3Vw7
https://paperpile.com/c/G11r3b/e3JS
https://paperpile.com/c/G11r3b/6irW+UH5C+UZaZ
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2012, HMP project was launched and reported the microbial composition from 242 healthy US 

state adults using 16S rRNA gene profiling and from 139 people using metagenomics. Samples 

from HMP represented eighteen different body sites including skin, GI, oral and urogenital tract 
47. The main goal of the HMP project was to understand the microbial diversity in humans and 

also to understand the factors which influence microbial composition. Overall, healthy 

microbiomes from nearly 2000 individuals have been reported so far.  

1.2.3. Second phase of HMP  

The second phase of HMP, the Integrative Human Microbiome Project 48 (HMP2 or iHMP) was 

developed to study mainly the interplay between the host and the microbiome in terms of 

metabolism and immunity over time. HMP2 encouraged disease-related sub-projects to explore 

different omics approaches which will help to accelerate future work to study the relationship 

between the host environment and the microbiome as well as to provide data, specimens and 

protocols for further research. There were three disease-related sub-projects such as IBD, 

stressors that affect individuals with prediabetes and pregnancy and preterm birth (PTB) to 

mainly focus on the role of microbiome interactions in human health and disease state 8,49,50. 

These studies elucidated the host response towards microbial activity and also covers intra-

relationships. So far, more than 50 articles were published highlighting the outcome of these 

studies and can be found at https://www.nature.com/collections/fiabfcjbfj and data sources can 

be found at http://www.ihmpdcc.org.  

1.2.4. Useful resources from the HMP 

Thanks to the next-generation sequencing technologies, the amount of microbial sequencing 

projects have hit the multitude. Hence, an appropriate and easily accessible storage facility was 

needed to organise these data. The Sequence Read Archive (SRA) 51, the Database of Genotypes 

and Phenotypes (dbGaP) 52, the Metabolomics Workbench 

(https://www.metabolomicsworkbench.org/), and other public and/or controlled-access 

repositories are among the places where multi-omic data produced by the HMP1 and HMP2 

phases have been archived 53. Once institutional review boards (IRBs) approve a research project, 

some of the associated metadata may be shared public. However, certain types of data, such as 

protected metadata and human genome sequences, are subject to controlled access restrictions 

via dbGaP. This means that researchers must meet specific eligibility requirements and agree to 

terms and conditions before being granted access. These measures are in place to ensure that the 

data are used ethically, and to safeguard the privacy and confidentiality of the research 

participants. All data on the DCC is freely usable (projects PRJNA430482, PRJNA398089, 

PRJNA326441, PRJNA430481, phs001626, phs001719, phs001523, phs000256, and others). 

All phases of the HMP created formal data models and related entity connection schemas, which 

are all freely accessible at https://github.com/ihmpdcc/osdf-schemas. Users can find, query, 

search, view, and download data from tens of thousands of samples with related metadata on the 

https://paperpile.com/c/G11r3b/E4eJ
https://paperpile.com/c/G11r3b/n4zx
https://paperpile.com/c/G11r3b/pd2H+2xJN+0bsK
https://www.nature.com/collections/fiabfcjbfj
http://www.ihmpdcc.org/
https://paperpile.com/c/G11r3b/79Tm
https://paperpile.com/c/G11r3b/9EVa
https://paperpile.com/c/G11r3b/DKA1
https://github.com/ihmpdcc/osdf-schemas
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DCC website. A user can add a set of conditions, phenotypes, files or subjects to a shopping cart 

for later use after deciding they are of interest.  

1.3. The 16S rRNA gene as a taxonomical marker 

A widely used and straightforward approach for studying the taxonomic makeup of microbiota 

involves amplifying and sequencing a particular marker gene and inferring the composition of 

the microbiome based on the similarities of the resulting sequences. The 16S rRNA gene is the 

most established genetic marker choice for microbial analyses 38,54,55. It is present in all bacteria 

and is also rarely affected by horizontal gene transfer 56. The 1542 bp of 16S rRNA gene consists 

of both highly conserved regions and nine hypervariable regions (V1-V9) (Fig. 2). The 

conserved regions are used as universal primer binding sites for amplification of the whole gene 

whereas nine hypervariable regions contain species-specific sequences which can be used to 

differentiate bacteria and archaea 57. 

 

Figure 2: Structural diagram of 16S rRNA. 

The 16S rRNA gene molecule is a component of the ribosome. The ribosome is composed 

of two subunits, the large subunit (50S) and the small subunit (30S) where the 16S rRNA 

gene molecule is located in the small subunit. The 16S rRNA gene comprises both conserved 

and variable regions. The conserved regions (represented by pink in 16S rRNA gene 

structure) of the 16S rRNA molecule are highly conserved across a wide range of bacterial 

species. 16S rRNA contains nine hypervariable regions (V1-V9) which are highly variable 

in terms of sequence length, composition, and mutation rate, which makes them useful for 

bacterial taxonomy and identification. (Source: own work)  
 

 

  

https://paperpile.com/c/G11r3b/iL89+VjvQ+olQ9
https://paperpile.com/c/G11r3b/KoV3
https://paperpile.com/c/G11r3b/FhsQ
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n the early days, sequencing entire 16S rRNA gene s was carried out using conventional Sanger 

sequencing which was laborious and expensive 58. However, in recent years, researchers started 

to follow short read sequencing using the Illumina MiSeq 2 × 300 bp platform as they are low 

cost with less effort. Hence, single variable regions such as V4 or V6 or two combined variable 

regions such as V1V2, V3V4, and V5V6 regions on the 16S rRNA gene were sequenced to study 

the microbiome 59–62.  

Targeting different sub-regions results in different taxonomic compositions. This may be caused 

by different biases such as primer bias, the sequence length of the differential hypervariable 

region, and the uniqueness of hypervariable sequences across different bacteria (Table 1). 

Analysis using sub-regions may also be limited to the genus level based on the commonly used 

microbial taxonomy database 63. Selecting one particular sub-hypervariable region may show 

bias in the identification of certain phyla. For example, according to Chakravorty et al. 64, V1 

showed the best ability in differentiating Staphylococcus species whereas V2 and V3 were best 

in distinguishing all bacterial species to the genus level except for the Enterobacteriaceae family. 

In terms of coming from multiple hypervariable regions, the V1–V2 region was unable to classify 

phyla belonging to Proteobacteria and V3-V5 towards Actinobacteria. Similarly, V6–V9 was 

shown best suited to classify the Clostridium and Staphylococcus genus 57.  

An alternative solution would be to sequence a full-length 16S rRNA gene . This can be achieved 

by utilising PacBio and Oxford Nanopore sequencing platforms capable of producing long-read 

sequencing 63. However, long-read sequencing platforms generate reads with lower accuracy 

than the Illumina platform due to random base-calling errors during repeating sequencing of the 

same region 65. Another potential alternative would be to sequence multiple regions of the 16S 

rRNA gene separately, and then to integrate information from different hypervariable regions as 

much as possible using bioinformatics approaches 66. 

In late 2020, Loop Genomics developed a new approach called synthetic long-read sequencing 

technology (sFL16S), which transforms short-read sequences into long-read single molecules 

using an existing Illumina short-read sequencer combined with a unique molecule barcoding 

technology. It can be adapted to combining various hypervariable regions of the 16S rRNA gene 

and can be used in further downstream analysis. Additionally, reconstructed synthetic long-read 

sequences are reported to have high base accuracy 67.  

Despite being by far the most often utilised gene for research on microbial community, the 16S 

rRNA gene has some drawbacks.  A significant criticism of the method is that numerous bacteria 

have multiple copies of the rrn operon, which includes the 16S rRNA gene 68. Using this 

approach could result in an overrepresentation of bacteria with multiple copies of the 16S rRNA 

gene, which poses a problem for abundance studies relying on 16S sequences. The many copies 

of the 16S rRNA gene present in the genome of some species of bacteria also exhibit high levels 

of sequence divergence, particularly in extremophiles. These overestimate diversity because their 

unique rRNA genes provide the impression that they are more than one bacterium. 

https://paperpile.com/c/G11r3b/pIce
https://paperpile.com/c/G11r3b/5mZJ+g9Sj+cERd+weT7
https://paperpile.com/c/G11r3b/pILP
https://paperpile.com/c/G11r3b/CNWg
https://paperpile.com/c/G11r3b/FhsQ
https://paperpile.com/c/G11r3b/pILP
https://paperpile.com/c/G11r3b/028x
https://paperpile.com/c/G11r3b/tCRp
https://paperpile.com/c/G11r3b/rWdq
https://paperpile.com/c/G11r3b/56r6
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Several public databases comprising sequences of 16S rRNA gene s are available such as RDP 
69, SILVA and Greengenes (GG) 70, and RiboGrove 71. All these databases retrieve full-length 

sequences from The International Nucleotide Sequence Database Collaboration (INSDC) which 

comprises DDBJ, EMBL-EBI and NCBI. These projects also include sequences from PCR 

amplification to include both culturable and unculturable species. This makes databases prone to 

include artefacts and also these databases may have incomplete sequences. The selection of a 

proper database is a crucial step while characterising the microbiome. Proper databases will help 

in reducing the uncertainty about variations within genes and also help to detect chimeric or 

artefact sequences. 

Table 1: Advantages and disadvantages of using the 16S rRNA gene as a marker gene in 

microbial analysis 

Advantages Disadvantages 

 All bacteria and archaea contain it. Present in numerous copies throughout the 

majority of species which could cause some 

organisms' abundance to be overestimated. 

It has highly conserved regions suitable to 

design universal primers.  

Sometimes, a few organisms do not have a 

highly conserved region which may result in 

primer bias.  

It consists of high-variability zones that make 

distinct identifiers 

Sometimes variable regions are not able to 

distinguish species-level resolution. 

Several well-maintained reference databases 

are available for taxonomic identification  

Many databases may contain errors and are 

not regularly updated.  

There are well-researched primer pairs 

available to amplify the majority of organisms 

with great specificity for bacteria. 

May not be specific for some bacterial groups, 

which could lead to incorrect community 

composition estimates. 

 

1.3.1. Other marker genes 

To overcome the limitations of 16S rRNA gene s as discussed in the previous section, alternative 

essential housekeeping marker genes, such as amoA, nirS, rpoB, nirK, pufM, pmoA and nosZ 

and, have been used in studies to decide taxonomic relationships for specific lineages of interest 

https://paperpile.com/c/G11r3b/Sx1H
https://paperpile.com/c/G11r3b/VB4I
https://paperpile.com/c/G11r3b/JwFs
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72–74. These genes provide a way to analyse and compare the genetic makeup of different 

organisms, allowing for more accurate identification and classification.  

While, the 16S rRNA gene is the most stable marker gene to identify bacterial species, 18S rRNA 

has also been a stable marker gene for characterising fungus populations The small subunit rRNA 

of eukaryotic ribosomes is encoded by the DNA sequence known as 18S rRNA. The 18S rRNA 

sequence has both conservative and variable sections, much like the 16S rRNA gene (V1-V9, 

absence of V6) (Fig. 4(A)). For 18S rRNA gene analysis, V4 and V9 have been recognized as 

the most popular and best option among variable regions, since they have the most 

comprehensive database information and the greatest classification effect 75–78 . The species 

distinctions among eukaryotic organisms in specific samples are reflected by 18S rRNA 

sequencing. 

The fungal rRNA gene's non-transcriptional region includes the ITS (Internal Transcribed 

Spacer). ITS1 and ITS2 have often used ITS sequences for identifying fungi. Because ITS may 

accept more changes during the evolutionary process as a result of less natural selection pressure 

and exhibits exceptionally wide sequence variation in most eukaryotes, 5.8S, 18S, and 28S rRNA 

genes are well conserved in fungi. The changes between species (or even strains) are also 

apparent, despite the conservative type of ITS being very stable within species. Fragments of the 

ITS sequence are short (350 and 400 bases, respectively) and simple to interpret. They are 

frequently employed in phylogenetic analyses of various fungi  

1.4. Workflow of 16S/18S/ITS amplicon sequencing 

Together with technological advancements in DNA sequencing that make it easier to conduct 

investigations without using culture or cloning, microbiome studies has significantly expanded. 

The Roche 454 pyrosequencer, the first next-generation sequencer, could only sequence about 

120 bases of the bacterial genome in a single run when it was originally introduced in 2005 79. 

Followed by pyrosequencing, Illumina Solexa was introduced in 2006 as a high-throughput DNA 

sequencing technology that revolutionized the field of genomics. It quickly became one of the 

most widely used sequencing platforms due to its high accuracy, throughput, and relatively low 

cost compared to previous technologies. In recent years, Illumina sequencing has been used 

extensively in microbiome research by covering numerous hypervariable areas of the 16S rRNA 

gene and span distances of up to 1000 bp 80. The most used method for microbial community 

analysis of the human intestine is 16S rRNA gene sequencing because of its high resolution and 

economical method. 

Illumina or PacBio sequencing is used in 16S/18S/ITS amplicon sequencing to read the PCR 

products that are produced using suitable universal primers of one or more 16S/18S/ITS regions. 

Taxonomic classification with their corresponding abundance within and between the 

community, phylogenetic evolution can be obtained by identifying the sequence variation and 

https://paperpile.com/c/G11r3b/t0HQ+ZnbF+KnaX
https://paperpile.com/c/G11r3b/TUq5+0NyB+cxMa+RsjJ
https://paperpile.com/c/G11r3b/m6yF
https://paperpile.com/c/G11r3b/yRQF
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abundance of the target area. The entire workflow of 16S rRNA gene sequencing is represented 

in Fig. 3  

 

Figure 3: Flowchart of the major steps involved in 16S rRNA gene analysis. 

The 16S rRNA gene analysis is a commonly used method in microbial ecology and 

taxonomy to study the diversity and composition of microbial communities. The major 

steps involved in a typical 16S rRNA gene analysis are as follows: Sample collection, DNA 

extraction PCR amplification, library preparation, high-throughput sequencing, Sequence 

quality control, Operational Taxonomic Unit (OTU) clustering/ denoising, taxonomic 

assignment and data analysis and interpretation and visualisation. (Source: own work)  

 

1.4.1. Study design 

In various microbiome-based investigations, erroneous and obscure trends are frequently seen. 

A strong study design helps to limit these trends. To prevent uncertainty in biological signals, 

trials, and failures, any hypothesis should generally be supported by rigorous literature-driven 

research and preliminary testing, employing pilot investigations. Eliminating confounding 

factors and improving data processing will both benefit from a rationalised study design 81.  

Sample size: Choosing a size that is statistically significant is still an important step, particularly 

when the final results are employed in clinical contexts and interpretations. The microbial burden 

differs amongst biological replicates that exist in identical environments 82. It is difficult to detect 

https://paperpile.com/c/G11r3b/XvFN
https://paperpile.com/c/G11r3b/7sJr
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weak biological signals because of this variation between similar samples, especially when the 

effect size is unknown or small. Results from studies with limited sample sizes typically do not 

accurately reflect findings from population-based studies. It is crucial that sample sizes remain 

constant and are not changed throughout the course of the investigation 83.  

Control: To determine whether a signal is genuine and not merely a stochastic or false result, 

controls are required. Two or more situations make up a suitably controlled experiment, with one 

producing observations free of distraction and the others remaining focused on changes 84,85. 

Sadly, obtaining appropriate controls is still frequently a challenge, particularly in clinical trials 

when the microbial composition is influenced by age, gender, ethnicity, food, genetics, and 

numerous other lifestyle factors. Additional elements, such as animal strains, facilities, housing 

circumstances, handling, and breeding, may potentially have an impact on the microbial profile 

in animal research 86.  

Metadata: Metadata is a set of information that includes important details about every sample 

used in an experiment. One of the most important tasks before any downstream analysis can be 

done is metadata generation. In addition to acting as a sample reference sheet, it aids in avoiding 

erroneous interpretation of results and emphasises the relative importance of each aspect 87. 

Several contemporary statistical comparison methods need the usage of metadata. 

1.4.2. Pre-processing of raw amplicon reads 

To extract taxonomic information from raw sequences, three key analytical post-processing 

procedures are essential: (i) concatenating read pairs to generate longer single reads, (ii) 

examining quality and trimming reads, and (iii) assigning taxonomic classifications. Each step 

can involve several different tools or methods, and each one might call for programming 

knowledge and/or extensive computational resources 88. Every sequencing technique is prone to 

errors. Amplicon sequencing methodology is especially susceptible to misleading results brought 

about by improperly sequenced reads as errors in the raw sequence reads might result in 

inaccurately high estimates of bacterial diversity 89. Some, but not all of these effects are 

countered by clustering reads based on sequence similarity 89. Low-quality reads are typically 

filtered away during pre-processing, which lowers the amount of erroneous reads 90. 

1.4.3. Sequencing and analysis 

Once the raw reads are pre-processed, the next step is to identify bacterial composition from 16S 

rRNA gene amplicon sequences with specialised technological and bioinformatic knowledge. 

Beginners may find it challenging to process this data due to the wide variety of tools available 

at each stage of the analytical process and the scripting knowledge they had to be familiar with.  

Recently, a number of workflows have been created to get around these restrictions by 

streamlining the analytical process and enabling unskilled individuals to get familiar with 

sophisticated programming or computational methods (Table 2). Widely used bioinformatic 

https://paperpile.com/c/G11r3b/GsWu
https://paperpile.com/c/G11r3b/KAXk+pwxa
https://paperpile.com/c/G11r3b/N3Br
https://paperpile.com/c/G11r3b/hVUy
https://paperpile.com/c/G11r3b/CdV0
https://paperpile.com/c/G11r3b/hhdm
https://paperpile.com/c/G11r3b/hhdm
https://paperpile.com/c/G11r3b/nena
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pipelines for analysing 16S rRNA gene sequencing data are QIIME2 91,92, Bioconductor 93, 

USEARCH 94, UPARSE and Mothur 95. These tools are based on the operational taxonomic unit 

(OTU) clustering methods. The reads are clustered into OTUs using a similarity cutoff of 97%. 

However, clustering sequences based on 97% failed to distinguish between actual clustering and 

sequencing errors. To overcome these, Amplicon sequence variance (ASV)-based denoising 

methods were introduced. Detailed explanations of clustering and denoising approaches are 

explained under the Clustering/denoising section in chapter 2. Researchers can infer ASVs either 

using DADA2 96 through the Bioconductor package repository or using several QIIME2 plugins, 

such as DADA2 96 and Deblur 97. Sequences for ASVs are differentiated at the single nucleotide 

changes across gene sequences, but sequences for OTUs are binned together if they generally by 

less than 3% of the total sequences98. 

Table 2: Software tools and packages used for 16S rRNA gene analysis 

Purpose Description Tools 

Quality check Software to check the quality of 

the reads and to trim the low-

quality reads 

FASTQC 99, Fastx-Toolkit 
100, Trimmomatic, 

PRINTSEQ, NGS QC 

Toolkit, multQC 

16S rRNA gene 

amplicon pipelines 

Tools for analyzing 16S marker 

gene data 

QIIME291, Mothur95, 

SILVA101, DADA2 96, 

MICCA210, FunFrame102, 

LOTUS2 103, IMNGS2 104, 

USEARCH105, UPARSE106, 

BIOCOM-PIPE 107, 

GenePiper 108, Animalcules 
109 

16S rRNA gene 

amplicon classifiers 

Tools for characterizing OTUs 

from 16S rRNA gene to different 

taxonomic levels such as phyla, 

genus and sometimes species 

 RDP/SILVAClassifier 110, 

Mothur 95, UTAX 111, 16S 

Classifier 112 

https://paperpile.com/c/G11r3b/5O5sq+jXY6
https://paperpile.com/c/G11r3b/I5fK
https://paperpile.com/c/G11r3b/QzvSh
https://paperpile.com/c/G11r3b/oxcXG
https://paperpile.com/c/G11r3b/WwuIi
https://paperpile.com/c/G11r3b/WwuIi
https://paperpile.com/c/G11r3b/Jp2F
https://paperpile.com/c/G11r3b/LYzCD
https://paperpile.com/c/G11r3b/IUgM
https://paperpile.com/c/G11r3b/wy4S
https://paperpile.com/c/G11r3b/5O5sq
https://paperpile.com/c/G11r3b/oxcXG
https://paperpile.com/c/G11r3b/PYawn
https://paperpile.com/c/G11r3b/WwuIi
https://paperpile.com/c/G11r3b/cYNt
https://paperpile.com/c/G11r3b/Eb9j
https://paperpile.com/c/G11r3b/UE1CG
https://paperpile.com/c/G11r3b/JQoD
https://paperpile.com/c/G11r3b/ht71
https://paperpile.com/c/G11r3b/HXvT
https://paperpile.com/c/G11r3b/lmHh
https://paperpile.com/c/G11r3b/u8c1
https://paperpile.com/c/G11r3b/I226
https://paperpile.com/c/G11r3b/oxcXG
https://paperpile.com/c/G11r3b/Gmaq
https://paperpile.com/c/G11r3b/1F9p
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16S rRNA gene 

statistical analysis 

tools 

 Tools and software packages for 

the analysis and statistical 

comparisons of 16S marker gene 

datasets 

 Mothur95, QIIME2 91, 

Phyloseq 113, LEfSe114, 

STAMP 115, 

MicrobiomeAnalyst116, Rhea 
117, IMNGS 104 

OTU picking methods Methods for obtaining a set of 

OTUs through read alignment to 

a database, read clustering 

against one another, or both 

 Closed Reference, Open 

Reference, De Novo, 

Mothur95, uclust94, 

UPARSE83, CD-HIT118, 

DADA2 96, TIC 119 

ASV generation 

methods 

Methods for obtaining a set of 

ASVs through denoising 

approach 

DADA296, Deblur97, 

UNOISE3120 

Chimaera removal Tools for removing chimeric 

sequences  

 UCHIME121, DADA296, 

QIIME291 

16S rRNA gene 

databases 

Databases with microbial 

sequences which is used for 

taxonomy assignment for OTUs  

 SILVA101, GG70, RDP69, 

rrnDB122, 16S-ITGDB 123 

 

1.5. Challenges in 16S rRNA gene amplicon data analysis 

The main objective of the microbial analysis is to gain knowledge about microbial populations 

and their respective abundance in an environment of interest. Characterising the microbial 

population is challenging due to many reasons. The main technical challenges include short read 

length, high throughput sequencing, primer selection and absence of proper reference databases. 

Also, while addressing the genomic diversity in a particular environment, one should be aware 

of biological challenges such as horizontal gene transfer and different evolution rates between 

genomes 124. 

1.5.1. Compositionality 

In general, compositional data can be naturally expressed as probabilities or proportions, or that 

have a fixed sum. Only information regarding the relationship between the species can be 

obtained from compositional data 125–128. Microbial data is often compositional, meaning that it 

represents the relative abundance of different taxa or species within a sample rather than their 
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https://paperpile.com/c/G11r3b/PYawn
https://paperpile.com/c/G11r3b/VB4I
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absolute numbers. This is a consequence of the limited library size of sequencing-based 

approaches such as 16S rRNA gene sequencing or shotgun metagenomics.  

Since sequencing machines can only sequence reads up to their capacity, the concept of absolute 

abundance cannot be applied to high-throughput sequencing (HTS) research. These methods 

provide relative abundance data rather than absolute counts, and this data needs to be normalised 

to take into account the total sequencing depth and the different sequencing biases. As shown in 

Fig. 4B, analysis of data on a microbiome gathered by HTS frequently assumes that sequencing 

is, in some manner, calculating the relative abundance of each bacteria with respect to other 

bacteria in the population. When microbiome datasets are transformed into relative abundance 

values, normalised counts, or rarefied, this is tacitly accepted 129. There are different methods for 

the normalisation of compositional data, such as the use of relative abundance or proportions, or 

the use of transformed data such as log or square-root transformed data 129,130,131.  

 

Figure 4:Overview of microbial data analysis pipeline and biases. 

(A) presents a diagrammatic representation of the taxonomic profiling of bacteria, fungi, 

and the virome, while (B) highlights three significant biases - compositionality, sparsity, 

and spurious correlations - in the analysis of microbial co-occurrence networks. This figure 

was originally published as Network analysis methods for studying microbial communities: 

A mini review132 in Computational and Structural Biotechnology Journal as an open access 

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) and modified 

as follows: In the right panel of the figure (Biases) spurious indirect edges part was 

removed and used for this thesis.  
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Researchers have developed/adopted methods from other domains, such as geology and 

chemistry, where compositional data is also common. For dealing with compositional 

analysis, log-ratio transformations are commonly used, because they allow for the comparison 

of relative abundances between different features in dataset 127. The use of log-ratios can 

detect the relationships between the characteristics in the dataset and make them symmetric 

and linearly connected. This enables the determination of feature abundances relative to each 

other. This information is highly relevant to the environment and can provide insights into the 

microbial community structure, diversity, and interactions. However, it is important to note 

that log-ratio transformations do not provide information on absolute abundances. This is 

because sequencing methods only provide relative abundance data and not absolute counts. 

Therefore, log-ratio transformations are useful for the comparative analysis of the dataset but 

not for estimating the absolute abundance of features in the environment. In addition to 

adopting methods from other domains, new tools have been developed specifically for the 

analysis of compositional datasets. For example, mixOmics 133 is a R package for the 

statistical analysis of multi-omics datasets that incorporates methods for the analysis of 

compositional data. This package has been used to analyze microbiome datasets and identify 

associations between microbiome composition and host phenotypes 134. 

One such approach is centered log-ratio (CLR) transformation developed by Aitchison (1986) 
125, which transforms the compositional data into a new coordinate system where the spurious 

correlations are eliminated. To obtain the CLR transformation of a sample, the following steps 

can be taken using an observation vector of D "counted" features such as genes, OTUs, or 

taxa, denoted by x = [x1, x2,..., xd] : 

𝑥𝑐𝑙𝑟 = [𝑙𝑜𝑔(𝑥1/𝐺(𝑥)), 𝑙𝑜𝑔(𝑥2/𝐺(𝑥)). . 𝑙𝑜𝑔(𝑥𝑑/𝐺(𝑥))] 

𝐺(𝑥) = √𝑥1. 𝑥2. . . 𝑥𝑑
𝐷

 

G(x) stands for x's geometric mean. According to Van den Boogaart and Tolosana-Delgado 

(2013) 134, the values after the CLR transformation can be utilised as inputs for model 

construction as well as multivariate hypothesis testing utilising programmes like MANOVA, 

regression, etc. The CLR-transformed data are scale-invariant, meaning that the ratio should 

be the same whether the sample has a few reads or many reads; the only thing that changes is 

the precision of the CLR estimate. The second method is an additive log-ratio transformation 

(ALR), which Aitchison first proposed, uses one component as the denominator, or reference, 

and all the other components as numerators 135,136. There are J 1 log-ratios in the ALR set 

concerning the chosen reference component, designated by ref, of the following form if there 

are J components, each having a value of X1, X2,.., XJ 135.  

Without removing, swapping out, or replacing the zero count values with pseudo values, it is 

impossible to calculate the G(x) given sparse data. There are few good alternatives for 

handling zero count values such as employing the zCompositionsR package and 137 the aldex2 
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131 tool accessible in Bioconductor. The aldex2 tool conducts statistical tests on CLR values 

from a modelled probability distribution in a dataset, yielding both parametric and non-

parametric test outcomes and an estimate of effect size. It is a highly effective technique for 

decreasing false-positive identification problems in both real and modelled microbiome 

datasets, while maintaining sensitivity and remaining relatively insensitive to changes in data 

subsets 138. 

While log ratio transformation, specifically the CLR transformation, is a commonly used 

method for analyzing compositional data, including microbial abundance data, there may be 

several reasons why some researchers do not apply it. One reason is that the interpretation of 

transformed data may be challenging. The transformed data may not have direct biological 

meaning, and the interpretation of statistical results may require additional effort and 

knowledge of the methods used. Another reason is that it assumes that the abundance of each 

microbe is independent of the abundance of other microbes in the sample. However, this 

assumption may not always hold true, and other methods that account for interactions between 

microbes, such as multivariate analyses, may be more appropriate. Finally, some researchers 

may not apply log transform simply because it is not the standard or default method in their 

field or research area. The choice of normalization method often depends on the research 

question, data structure, and personal preference. 

while log ratio transformation is a useful method for analyzing microbial abundance data, 

there may be other normalization methods such as total sum scaling 139, cumulative-sum 

scaling 140, that better suit the research question or data structure, or some researchers may 

prefer to use other methods due to interpretation challenges or other assumptions made by the 

log ratio transformation. 

1.5.2. The challenge of sparsity 

The microbiome data can be characterized by sparsity indicating that many taxa are rare, and 

most of the times, zeros predominate among all other values (Fig. 4B). The unique microbial 

composition of each sample typically results in only a small number of bacterial taxa being 

commonly observed in the majority of samples, with the remainder being relatively infrequent 

and found in only a few samples. Consequently, such data are prone to zero inflation 141. In 

addition, the sparsity is an indication of the uncertainty of the count of uncommon OTUs/ASVs 

because these OTUs/ASVs are below the sequencing detection limit, and there are few sequences 

in each sample. To summarize, some microorganisms and taxa are structurally absent from the 

majority of samples, while others may be undetectable due to insufficient sequence depth or 

limitations of the applied techniques 142. Both of these factors contribute to the inability to detect 

them. The high percentage of zeros can present challenges for certain statistical tools and 

modelling approaches that are now available, which may lead to estimations that are biased. 

According to Tsilimigras and Fodor's findings 143, the analysis of 16S rRNA gene sequencing 

data faces a significant obstacle in the form of sparsity.  
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To address sparsity in microbiome datasets, different methods have been developed such as 

normalization and transformation of the data 129, filtering and feature selection, applying pseudo 

counts 144, imputation of missing values 145, and modeling approaches to handle sparse data 146. 

Normalization and transformation methods can be used to adjust for variation in sequencing 

depth and abundance, and to standardize the data across samples. Filtering and feature selection 

methods can be used to remove low-abundance or irrelevant features from the dataset, which can 

improve the quality of downstream analyses. Imputation methods such as mbImpute 147 can be 

used to estimate missing values in the dataset, which can help to reduce sparsity and improve the 

accuracy of downstream analyses. However, it is important to use imputation methods with 

caution, as they can introduce biases and distortions in the data. Finally, modeling approaches 

such as sparse regression 148 and network-based methods 149–151 have been developed to handle 

sparse microbiome datasets. These methods are designed to identify associations between 

features and outcomes, while also accounting for the sparsity and high-dimensionality of the 

data. 

1.5.3. Functional prediction from 16S rRNA gene sequences 

The most important challenge of 16S rRNA gene sequencing analysis is that it can only provide 

an indirect estimate of microbial function. In other words, 16S rRNA gene sequencing helps in 

estimating taxonomic composition and their abundance but not the biological function of those 

taxa 152. In order to understand what kind of activities microorganisms are engaging in, it is useful 

to know their functional capabilities. 

Several 16S studies attempt to infer the functional contribution of particular community members 

by mapping 16S gene sequences to their nearest sequenced reference genome 153,154. Although 

the precision of such methods is unknown, the relationship between gene content and phylogeny 
155,156 raises the possibility that it may be possible to roughly anticipate the functional capacity 

of microbial communities from phylogeny.  

Tools like PICRUSt2 157, Tax4Fun2 158, PanFP 159, Piphilin 160, COWPI 161, and MetGEM 162 

make an effort to predict the abundances of functional genes based on genomic data recorded in 

the Kyoto Encyclopedia of Genes and Genomes (KEGG) database 163 or based on genomic 

models 164 To address the absence of functional information in 16S rRNA gene profiles. 

PICRUSt2 is the most commonly used prediction tool that uses a hidden state prediction method. 

Contrarily, Tax4Fun2 employs sequences that fall within a specified cutoff for similarity to 

reference sequences 158. PanFP 159 is based on a pan-genome reconstruction that has been 

functionally annotated and is then weighted with the microbial abundance seen in a particular 

sample. Each tool follows a different algorithmic approach and relies on different references, 

leading to a considerable discrepancy in their predictions. 

Hence, it remains an open question if metagenome prediction tools are also suited for more subtle 

contrasts related to human health. Previous benchmark studies 165 could not detect any 
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performance differences between the tested methods, suggesting that a more comprehensive 

benchmark is needed to recommend guidelines for tool selection and to establish the limits of 

metagenome prediction tools in human disease research. To study the limitation of 16S 

functional profiling, metagenomics serves as the most suitable ground truth. By comparing the 

results of the two approaches, researchers can better understand the strengths and weaknesses of 

each method and gain a more comprehensive view of microbial community structure and 

function. The third chapter of the thesis covers an extensive benchmark analysis using 

metagenome as the ground truth. Hence, I will briefly introduce the concept of metagenomics 

along with the standardized workflow and advantages over 16S rRNA gene sequencing.  

1.6. Metagenomics 

As 16S rRNA gene sequencing fails to provide genetic contribution of organisms of the given 

community in terms of functional genes, shotgun metagenomic sequencing allows for a more 

comprehensive characterization of the functional genes and metabolic capabilities of a microbial 

community. In shotgun metagenomics, the entire chromosomes, such as long DNA are randomly 

cut into small fragments and then sequenced using any one the available sequencing platform 
166. Hence, this approach provides knowledge of the taxonomic composition of the environment 

under study as well as knowledge of the functional genes in the sample which cannot be provided 

by 16S rRNA gene sequencing 167,168.  

Metagenomics has made it possible to do extensive research on complex microbiomes in the 20 

years since it was first used 169–172. This approach has led to the finding of many crucial bacteria 

such as environment bacterial phyla with endosymbiotic behaviour 173 and species that can 

completely nitrify ammonia 174 among other discoveries. Other noteworthy discoveries include 

tracking of human outbreak pathogens, the strong correlation between the viral 175 and bacterial 

fractions 176 of the microbiome and inflammatory bowel diseases, and the prevalence of antibiotic 

genes in commensal gut bacteria 177, which helps in studying the microbial alterations COVID 

patients 178,179.  

After the study design is established, a typical shotgun metagenomics study involves five main 

steps: (i) collecting, processing, and sequencing the samples; (ii) preprocessing the reads; (iii) 

analyzing the sequences to profile the taxonomic, functional, and genomic characteristics of the 

microbiome; (iv) performing statistical and biological post-processing analyses; and (v) 

validating the results. Each of these stages can be carried out through various experimental and 

computational methods, presenting researchers with a range of options. Despite its seemingly 

straightforward nature, shotgun metagenomics has limitations due to potential experimental 

biases and the complexity of computer analysis and interpretation (Fig. 5).  

1.6.1. Metagenome assembly 

There are many reported methods for metagenomic assembly from sequence data. Selecting the 

best method is a difficult undertaking that is heavily influenced by the study's objectives. Whole-
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genome assembly and metagenome de novo assembly share conceptual similarities 180–182. The 

de Bruijn graph approach is a well-known algorithm employed in metagenome assembly step 
183. In order to create a de Bruijn graph for single draft genome assemblies, each sequencing read 

is divided into overlapping subsequences of length k. The edges and vertices of the de Bruijn 

graph are defined by this collection of overlapping k-mers. Finding a path across the graph that 

reconstructs the genome is the assembler's duty (s). However, sequencing errors and repetitive 

sequences can make this task challenging and can lead to misassemblies or assembly 

fragmentation. 

These difficulties are addressed by assemblers that are particular to the genome. Meta-IDBA 184 

employs a multiple k-mer strategy to overcome the difficulty of selecting an appropriate k-mer 

length that performs well for both high- and low-abundance species. While Meta-IDBA and 

MetaVelvet both provide modifications to partition the de Bruijn graph, the most recent version, 

IDBA-UD 185, optimises the reconstruction for asymmetric sequence-depth distributions. 

MetaSPAdes 186 is a modified version of the SPAdes 187 assembler that is designed to handle large 

metagenomics data sets. It employs several heuristics for graph simplification, filtering, and 

storage to enhance the assembly process.  

 

Figure 5: Summary of a metagenomics workflow. It provides a comprehensive overview of 

the diversity and functional potential of microbial communities. Similar to 16S rRNA gene 

sequencing, It also contains sample collection and DNA extraction steps. However, instead 

of amplifying only marker genes, entire genomic DNA is sequenced and the obtained 

sequencing reads are preprocessed to remove low-quality reads. Assembly-based profiling, 

read-based taxonomic profiling, and read-based metabolic profiling are three different 

approaches to analyse the composition and functionality of microbial communities in a 
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metagenome sample. Read-based taxonomic profiling, also known as taxonomic 

classification, uses machine learning algorithms to classify metagenomic reads directly to 

the taxonomic level of the microorganisms they come from. Read-based metabolic 

profiling, also known as functional classification, uses machine learning algorithms to 

predict the metabolic pathways and functions of the microorganisms present in a 

metagenome sample. (Source: own work)  

 

1.6.2. Assembly-free metagenomic profiling 

Metagenomes' taxonomic profiling reveals which microbial species are present and provides an 

estimation of how abundant they are. Through external sequencing data sources, such as publicly 

available reference genomes, this can be done without assembly. This method can reduce 

assembly issues, accelerate computing, and allow for the profiling of low-abundance organisms 

that cannot be created from scratch. Its key drawback is that it is challenging to profile previously 

uncharacterized microorganisms. With the advancement of sequencing technologies, more and 

more genomes are being sequenced each year, including those from previously unculturable 

species 188. This is made possible by new techniques such as single-cell sequencing, 

metagenomic assembly, and new cultivation methods. As a result, the number of reference 

genomes is rapidly increasing 189. Based on the sample type, such as the human gut 46, the 

diversity of reference genomes is now widespread enough to enable assembly-free taxonomic 

profiling, even for very low-abundance microorganisms that lack adequate sequencing coverage 

and depth for genome assembly. The absence of representative reference genomes makes it 

difficult to analyse increasingly varied habitats, such as soil and oceans. As a result, when 

examining metagenomes from these contexts, it is typically wise to employ de novo based 

assembly. 

Human-associated metagenomics studies 47,190–192 have utilized assembly-free taxonomic 

profilers that rely on reference genomes 193 and environment-specific assemblies to achieve 

species-level resolution192. Despite the potential for false positives in read mapping to genomes, 

these methods have been successful with post-processing techniques such as lowest common 

ancestor strategies 194 or compositional interpolated Markov models. 195. However, their 

computational run times are not faster than assembly-based methods. Kraken 196 is a taxonomic 

profiler that employs the lowest common ancestor approach but utilizes k-mer matching instead 

of sequence mapping to enhance speed of computation. 

Taxonomic profiling is a fast and precise method that does not require assembly and has been 

used in various applications. This method involves selecting representative or distinctive genes 

(markers) from the available reference sequences.  mOTU 197 concentrates on universally 

conserved yet phylogenetically informative markers, whereas MetaPhlAn 198 utilizes several 

thousand clade-specific markers with high discriminatory power and was successful to 

quantitatively profiling the microbiome from multiple body areas for the HMP..  
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1.6.3. Genes and metabolic pathways from metagenomes 

Utilising specialised single-genome characterisation technologies, it is possible to determine a 

microbial community's genetic composition from a fragmented but high-quality metagenome 

assembly. These start with a gene identification stage, typically with a setting for a metagenomic-

specific parameter 199, and are followed by pipelines that employ homology to annotate data, 

which are frequently used to characterise pure isolated genome assemblies. The microbial gene 

catalogue of the human 46 gut was assembled using metagenomic assemblies, even though this 

method is frequently constrained by the significant number of uncharacterized genes in reference 

database catalogues.  

By translating sequence searches against protein families 200, metagenomic data sets 201 were 

understood. Databases like KEGG 202 or UniProt 203, which combine manually annotated and 

computationally predicted protein families, can be employed to characterise the microbiome's 

functional potential. In the HUMAnN pipeline 200,  aggregates individual protein families into 

higher-level metabolic pathways and functional modules, which are then visualized through 

graphical reports using MEGAN4 194 or as comprehensive tables of metabolic presence, absence, 

and abundance. However, a significant hurdle in characterizing the metabolic potential of a 

community, regardless of whether assembly-free or assembly-based approaches are used, is the 

lack of annotations for accessory genes in most microbial species. 

A complementary approach to metagenome metabolic function profiling is to perform a detailed 

characterization of specific activities of interest. The spread of antibiotic resistance, for instance, 

can be determined by identifying the genes responsible for resistance to antibiotics in a microbial 

community 204. This strategy has relied heavily on ad hoc methods and manually curated 

databases of antibiotic-resistance genes (ARDB) 205 was the first extensively used resistance 

database and is now supplemented by new resources, like Resfams 206. Significant resources are 

often put into describing a metagenome's repositories, both through cultivation-based isolation 

investigations and through focused metagenomic analyses for specific gene families of interest. 

These methods can complement each other, as cultivation-based isolation can provide 

information about the growth conditions and behaviour of individual species, while metagenomic 

analyses can provide a more comprehensive view of the diversity and abundance of species in a 

sample. Additionally, metagenomic analysis can validate results from cultivation-based studies 

by identifying the presence of specific gene families in a sample. 

1.6.4. Post-processing analysis 

No matter what techniques are employed for initial metagenomic sequencing studies, the results 

will include data matrices of samples as opposed to microbial characteristics (i.e., species, taxa, 

genes and pathways). Statistical tools are used in post-processing analysis to analyse these 

matrices and determine how the results relate to the sample metadata. Many well-known R 

packages, like DESeq2 207, Vegan 208, and MetagenomeSeq 209, which were initially created for 
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amplicon sequencing or other purposes like transcriptome analysis, can be utilised for 

metagenomic analysis. 

1.6.5. Advantages and challenges in metagenomics 

Metagenomics offers several advantages, including (i) the ability to screen for target genes or 

active products without the need for culture conditions, (ii) the discovery of novel medications 

from marine and extreme environmental microbial resources, (iii) the identification of new 

members of existing enzyme families or enzymes that exhibit activity in specific 

physicochemical contexts, which can be beneficial for industrial applications, and (iv) the 

investigation of carbon, nitrogen, and sulfur cycle metabolism in environmental microbes 

through metagenomics and metabolomics. 

Similarly, metagenomics also has several challenges including (i) The complexity of the 

microbial community's living conditions can make it difficult to harvest genes from species with 

low abundance. (ii) The gene cloning process can result in the loss of DNA fragments, which 

can make it difficult to identify and study specific genes. (iii) Heterologous expression of foreign 

genes, which is the expression of a gene in an organism that is not its native host, occurs 

infrequently, making it difficult to study the function of specific genes. (iv) The currently 

available screening techniques for enzymes are limited and may not be able to satisfy all needs. 

(v) The low efficiency of screening techniques means that only a small number of positive clones 

can be selected from a large number of clones. (vi) Only a limited number of the enzymes that 

have been recently discovered may be suitable for industrial applications due to various 

restrictions, such as temperature, pH, and other related factors. To address these challenges, 

future research in functional metagenomics will need to focus on developing new screening 

techniques that are more efficient, sensitive, and easy to use, as well as improving methods for 

cloning and expressing foreign genes to study their function 

There are several computational challenges in metagenomics, including (1) data size and 

complexity: Metagenomic data can be very large and complex, making it difficult to analyze and 

interpret; (2) assembly and binning: assembling and binning metagenomic data can be 

challenging due to the high diversity and complexity of the data; (3) taxonomic and functional 

annotation: assigning taxonomic and functional information to metagenomic sequences can be 

difficult due to the lack of reference genomes and the high degree of novelty in the data; (4) 

comparative metagenomics: comparing metagenomic data across different samples and 

environments can be challenging due to the high degree of variation and complexity in the data; 

(5) data integration: integrating metagenomic data with other types of data, such as 

transcriptomic, proteomic, and metabolomic data, can be challenging and requires advanced 

computational methods.  

Main applications of metagenomics in microbiome research are identification and 

characterization of the microorganisms, investigation of functional capabilities of microbial 
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communities and study of the relationships between microbial communities and their host 

organisms. In conclusion, metagenomics has revolutionized the field of microbiome research by 

enhancing our understanding of the human microbiome and its impact on human health. Its 

applications in microbiome research have the potential to advance our understanding of human 

health, environmental biology, and biotechnology.  

1.7. Problem statement 

The gut microbiota plays an important role in maintaining human health by facilitating several 

important functions such as host defence and immune response stimulation. Research has shown 

that the gut microbiome can have an impact on several diseases such as obesity, diabetes, 

inflammatory bowel disease, and even mental health disorders. Moreover, the gut microbiome 

can be affected by several factors such as diet, antibiotics, and other medications which can be 

used to modulate the gut microbiome in order to improve health. Exploring the gut microbiome 

can offer a more profound insight into the intricate interplay between microorganisms and their 

host, presenting opportunities for novel therapeutic approaches to tackle a range of diseases.  

One of the most common approaches to study microbial population is shotgun metagenomic 

sequencing which allows for a more comprehensive characterization of the functional genes and 

metabolic capabilities of a microbial community than 16S rRNA gene sequencing. There are 

several computational challenges in metagenomics: Data size and complexity, assembly and 

binning due to the high diversity and complexity of the data, taxonomic and functional annotation 

due to the lack of reference genomes and comparative metagenomics due to the high degree of 

variation and complexity in the data.  

Due to these challenges in metagenomics, 16S rRNA gene sequencing is still a popular choice 

for many studies. The main advantages of 16S rRNA gene sequencing are that it is cost-effective, 

has high resolution at the genus level, availability of large reference databases for 16S rRNA 

gene sequences, can also be used in comparative studies and high reproducibility. That being 

said, many studies are now starting to combine both metagenomic and 16S rRNA gene 

sequencing for a more comprehensive understanding of the microbial community.  

The 16S rRNA gene is considered as a gold standard marker gene used for the identification and 

classification of bacteria and archaea. The conserved regions of the 16S rRNA gene are used to 

confirm the presence of bacterial or archaeal DNA, while the hypervariable regions are used to 

differentiate between different species and strains.  

The analysis of 16S rRNA gene amplicon data can be challenging due to a number of factors. 

One of the main challenges is the short read length, which can make it difficult to accurately 

assign reads to specific taxa, especially at lower taxonomic levels. This is because the short read 

length doesn't capture the whole gene sequences, and it could lead to different sequences being 

assigned to the same species.  
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The second challenge is the high-throughput sequencing, which can produce a large amount of 

data, making it difficult to manage and analyse which in turn results in the need for computational 

resources and bioinformatics expertise to process and analyse the data. The third challenge is 

primer selection, as the choice of primer can affect the diversity of the resulting amplicon library 

and bias the results. Different primer sets can target different regions of the 16S rRNA gene and 

may result in different species or genera being amplified. Therefore, it is important to choose the 

primer set that is most appropriate for the research question and the sample being studied.  

The fourth challenge is that 16S rRNA gene sequencing only provides an estimate of the 

microbial taxonomic composition, which can provide information about the types of 

microorganisms present in a sample. Nonetheless, it doesn't offer immediate insights into the 

functional potential of these microorganisms. Mapping 16S rRNA gene sequences to their 

nearest reference genome can provide some information about the functional capacity of 

microbial communities. This is because the presence of certain genes or pathways can be inferred 

based on the presence of homologous genes in the reference genome. However, it is important 

to note that this approach is only a rough estimate of functional capacity and can be affected by 

the quality and completeness of the reference genome. Another approach is to use functional 

gene markers such as genes involved in specific pathways or proteins that are known to perform 

specific functions. However, this approach also has limitations, as the presence of a gene or 

protein does not always indicate that it is actively being expressed or that it is functional in the 

microbe.  

There is a great demand for new tools to address this growing need. Even though R packages 

and command line tools are powerful for microbial data analysis they can be difficult to use for 

those who don't have the necessary bioinformatics and scripting skills. There is a demand for 

easy-to-use tools that will assist novices with end-to–end microbial analysis. Many of the web-

based tools do not cover downstream analysis, often omitting raw data processing, or only offer 

standard analysis that may not work for complicated data sets. They are often limited to 

functional profiling and use obsolete methods like Tax4Fun or PICRSUt1. These tools were 

outperformed PICRUSt2, which do not provide confounder analysis. 

This thesis has studied these challenges and provided a reliable solution/recommendation for the 

users. Fig. 1 gives an overall outline of the thesis explaining different computational challenges 

focused on each chapter.  
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1.8. Objectives 

This work aims to address computational challenges in microbial data analysis and recommend 

suitable solutions. Three main objectives of the studies are as follows: 

● Addressing issues in 16S rRNA gene sequencing in terms of microbiome characterization 

● Studying the limits of functional profiling with 16S rRNA gene sequencing data 

● Developing a user-friendly web interface for microbial data analysis 

The primary aim of this thesis was to investigate the impact of various factors such as primer 

sequence selection, reference databases, clustering techniques, and pipeline parameters on the 

outcomes of microbial data analysis. In order to achive this, To achieve this objective, a 

significant benchmark dataset consisting of 16S rRNA gene amplicon sequences targeting 

diverse V-regions was employed. Various software tools with distinct parameter sets were 

employed in the benchmark pipeline. In addition to mock communities, the evaluation was 

conducted using complex human fecal samples for comparison. 

The second objective elucidated the limitations of functional profiling derived from 16S rRNA 

gene amplicon sequences were addressed through benchmark analysis. Public datasets and 

simulation datasets were used to test the accuracy of the most widely used functional prediction 

tools such as PICRUSt2, and Tax4Fun2 against metagenomics as the ground truth.  

The third and final objective was to develop a user-friendly web interface called Namco with 

suitable recommendations obtained from the first two objectives. Namco, a multifunctional R 

shiny interface, acts as an all-in-one solution for microbiome analysis. It covers the entire 

spectrum of microbial analysis including upstream analyses such as raw data processing and 

taxonomic binning and downstream analyses such as basic statistics, machine learning and 

network analysis, among other features. Each objective is explained in detail in each chapter 

separately.  
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2. Chapter two: Primer, pipeline, parameters: Issues in 16S rRNA 

gene sequencing 

2.1. Declaration of contributions 

This chapter is the result of a comparative analysis of different pipelines and parameters in 16S 

rRNA gene sequencing data under the guidance of Dr. Markus List, Head of Big Data in 

Biomedicine Group and Prof. Klaus Neuhaus, Head of Core Facility Microbiome and Dr. Sandra 

Reitmeier, Core Facility Microbiome, Technical University of Munich. Later, it was published 

under the open access journal msphere in February 2021 55. The experiment design and 

performing of experiments were done by Dr. Isabel Abellan-Schneyder, who was a former PhD 

student at the Technical University of Munich. The bioinformatics/computational analysis 

described here were performed by Monica Matchado (myself). 

 

  

https://paperpile.com/c/G11r3b/olQ9
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2.2. Introduction 

For many years, the field of microbiology depended on traditional cultivation techniques to 

determine which bacteria are harmful or beneficial to human health. The fact that this technology 

can only identify a subset of the myriad of microbial communities is one of the most significant 

drawbacks associated with it. Game-changing molecular diagnostic tools such as PCR 210, DNA 

fingerprinting 211,212, and NGS 57,80 have become significantly faster, more sensitive, and cost-

effective in recent years.  

To perform Next-Generation Sequencing (NGS) on the 16S rRNA gene, the initial step involves 

extracting DNA from the sample. Following that, a specific region of the 16S rRNA gene is 

amplified and sequenced. Finally, the generated sequences are identified based on their similarity 

to reference 16S rRNA gene sequences that are present in public databases. The primary 

advantages of using the 16S rRNA gene as a marker gene include the independence of the method 

on the culturability of bacteria present in the sample, the ability to determine the relative 

abundance of all bacteria in the sample, the feasibility of parallel sequencing hundreds of samples 

simultaneously, and obtaining the results on the same day as sample collection. Moreover, the 

method allows the relative abundance of all bacteria present in the sample to be determined 213. 

However, there are various drawbacks to 16S rRNA gene sequencing. For example, The binding 

of primers to regions that are not fully conserved across all bacterial species during the 

amplification of target DNA often leads to bias 60, The high degree of similarity in the 16S rRNA 

gene among closely related bacterial species limits their identification to the genus level. 214; In 

addition, While 16S rRNA sequencing can indirectly detect changes in microbial community 

structure that may indicate the occurrence of horizontal gene transfer (HGT) events, it cannot 

confirm the presence of HGT or identify the specific genes that have been horizontally 

transferred. Therefore, while 16S rRNA sequencing can provide valuable insights into microbial 

community composition, it is not the most appropriate method for studying the details of HGT 

events.  

2.2.1. Issues in 16S rRNA gene sequencing 

2.2.1.1. The choice of 16S rRNA gene primers affects the microbiome analysis 

All prokaryotes have a copy of the 16S rRNA gene, which has both rapidly evolving areas that 

help us to categorise them into distinct taxonomic groups and slowly evolving regions that are 

highly conserved among different species. Species-specific fast-evolving regions can be isolated 

by using primers designed from the slowly-evolving regions to perform PCR amplification. The 

forward primer in a primer pair is designed to bind to the sense sequence of the bacterial 16S 

rRNA gene, and the reverse primer is optimised to bind to the antisense sequence 215. The 

selection of the primer pairs plays a significant role in determining how accurate the 16S rRNA 

gene sequencing will be. Despite the fact that environmental microbiologists estimate that less 

than 2% of bacteria can be cultured in the laboratory216, many of the bacterial 16S primers 

https://paperpile.com/c/G11r3b/3mv8
https://paperpile.com/c/G11r3b/RvSe+6HBv
https://paperpile.com/c/G11r3b/FhsQ+yRQF
https://paperpile.com/c/G11r3b/GG7w
https://paperpile.com/c/G11r3b/g9Sj
https://paperpile.com/c/G11r3b/s6fa
https://paperpile.com/c/G11r3b/qEKy
https://paperpile.com/c/G11r3b/NXBV
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currently in use were designed using sequence data obtained from species that were cultured in 

vitro. This was done in order to improve the accuracy of the primers. 

The selection of an appropriate primer and/or V-region is dependent on a number of factors 

including, but not limited to, technical properties such as the read-length that can be sequenced 

using a defined methodology, the environment that is being targeted, and whether or not it is 

desirable to compare the results of the current study to those of previous ones. The most targeted 

V-regions are typically V1-V2/V3, V3-V4/V5, or V4 55,217,218. Both the resulting taxonomic 

profiles and the resolution of the taxonomy are affected by the primer or V-region which is used 
219,220. In addition, the capacity of various V-regions to detect particular bacteria is inconsistent, 

and the affinities of various primer pairs for DNA binding are not identical; this results in the 

introduction of biases throughout the PCR process 221,222. During the amplification step, other 

sources of bias can come from the amount of genomic DNA that is given as input, the number 

of cycles that are employed in the PCR process, the procedure itself, or the type of DNA 

polymerase that is being used 223–225 . 

2.2.1.2. Clustering/denoising 

The first step in preprocessing is to identify and remove low quality reads. After being quality-

trimmed, raw sequences are assigned to corresponding taxonomic labels (for example, assigning 

a sequence with the genus Bacteroides) to provide more insights for subsequent studies. Direct 

assignment of sequences to phylotypes and OTU-based processing are the two basic methods to 

identify taxonomic nomenclature 226. When sequences are directly allocated to a taxonomy based 

on the similarity of the sequences with reference databases, the accuracy of the sequencing 

platform and reference databases heavily influence the assignment. When reference databases 

are lacking, assignment issues could occur because newly discovered sequences from an 

experiment might not fit into established taxonomic lineages 226. 

A popular alternative strategy is to organise sequences into OTUs based on sequence similarity 

and perform analyses on these groups. OTUs are clusters made by combining sequences that 

share a particular degree of similarity. Typically, sequences that are 97% identical are regarded 

as belonging to the same species. A representative or average sequence from each OTU is 

typically then compared with a reference database to get more useful information about that 

OTU's taxonomy. 

OTUs may not closely resemble true biological species, as they are created without the aid of 

reference data, and sequences within a particular group may be related to several taxa. OTU 

generation may affect sample diversity estimates, too 226,227. When using OTU-based approaches, 

abundance tables (also known as OTU tables) can be generated using both phylotype and OTU-

based methods. Numerous publicly accessible toolkits 91,95,228 have been developed to streamline 

sequence processing and analysis. These suites provide iterations of numerous standard 

algorithms for sequence processing, taxonomic characterisation and analysis.  

https://paperpile.com/c/G11r3b/SnN0+gYkK+olQ9
https://paperpile.com/c/G11r3b/sEyk+CocF
https://paperpile.com/c/G11r3b/A2ky2+Hn9L
https://paperpile.com/c/G11r3b/2cSq+aEDL+CziW
https://paperpile.com/c/G11r3b/I5Z0
https://paperpile.com/c/G11r3b/I5Z0
https://paperpile.com/c/G11r3b/G7WE+I5Z0
https://paperpile.com/c/G11r3b/oxcXG+5O5sq+W8ZB
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There have been numerous methods proposed for defining OTUs such as closed-reference based 

methods, open-reference based methods and de novo methods.  

Closed-reference based OTU clustering, on the other hand, uses a pre-existing reference database 

to compare and group sequences. In this method, sequences are compared to the reference 

database, and any sequences that match a reference sequence above a certain similarity threshold 

are grouped together as an OTU 229. Closed-reference is more accurate than open-reference but 

can be more computationally intensive. If sequencing reads are sufficiently identical to the 

related reference sequence, they are allocated to a closed-reference OTU. Consistent labelling is 

the ability to compare closed-reference OTU assignments between independently processed data 

sets when the same reference database is used. The use of a reference database in closed-

reference OTU picking allows for faster and more accurate classification of reads, as the 

reference sequences have already been annotated and validated. However, it can also lead to a 

loss of information, as reads that do not match the reference sequences are not considered in the 

analysis. 

The third method, de novo clustering is a method of grouping similar sequences together without 

using any pre-existing reference database. The sequences are compared to each other, and groups 

are formed based on a defined similarity threshold. The advantage of this method is that it can 

discover new OTUs that may not be present in a reference database, but it is less accurate than 

open and closed reference based. A variety of methods for creating these clusters have been 

devised. The definition of de novo OTU is reliant on the relative abundances of the community 

being sampled, even under ideal conditions of zero sequencing errors and unlimited sequencing 

depth. This data set dependence implies that it is not merely a practical concern. Consequently, 

de novo OTUs identified in different datasets cannot be compared. 

Open-reference OTU clustering 230 can be defined as a hybrid method combining both closed 

reference and denovo clustering. It starts with a reference database of known microbial 

sequences. The sequencing reads are first mapped to this reference database, and reads that do 

not match any known sequences are then clustered de novo, as described above. The result is a 

set of OTUs that includes both previously known and novel taxonomic groups. This method is 

generally more conservative than de novo clustering and is thought to be more accurate, 

especially when the reference database is of high quality. One advantage of open-reference OTU 

clustering is that it can detect rare or low-abundance taxa that may not be present in the de novo 

clustering results. However, the choice between de novo and open-reference clustering will 

depend on the research question, the quality of the reference database, and the desired level of 

taxonomic resolution. 

Unlike OTU clustering, the ASV or zOTU approach aims to identify specific sequences within 

a pool of reads, rather than grouping similar sequences together as in OTU clustering 98. This is 

achieved by determining which specific sequences were read and how frequently each sequence 

was read. Afterward, an error model for the sequencing run is integrated with this data, enabling 

https://paperpile.com/c/G11r3b/mXSP
https://paperpile.com/c/G11r3b/KW1C
https://paperpile.com/c/G11r3b/LYzCD
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the comparison of similar reads and the determination of the likelihood that a particular read with 

a given frequency is not due to a sequencing error. This creates a p-value for each specific 

sequence, where the null-hypothesis is equivalent to that specific sequence being a consequence 

of sequencing error. In other words, sequence-specific p-values can be used to evaluate the 

statistical significance of each identified ASV and can be used to filter out low-quality ASVs 

and to prioritise the analysis of ASVs that are statistically significant. This approach can improve 

the accuracy of downstream analyses and help to identify biologically meaningful differences 

between different groups of samples. Once the sequences have been denoised and corrected, the 

abundance of each unique sequence is calculated based on the number of times that sequence is 

observed in the data. This abundance is typically reported as a count or a relative abundance, 

which is the count of each unique sequence divided by the total number of high-quality reads in 

the sample. This approach allows for more accurate detection of true genetic variations within a 

sample (Fig. 6).  

 

Figure 6: Different types of clustering methods utilized in 16S rRNA gene analysis. 

Errors are induced during the amplicon sequencing step as shown at the top part of the 

figure. These errors can represent presence of chimera, misrepresentation by sequencing 

depth or primer bias. Traditional OTU clustering with 97 % sequence similarity considers 

them to be a microbial species and cluster together without separating between true species 
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and erroneous sequences. OTU clustering with 99% performs relatively better than the 97 

% clustering. However, ASV denoising algorithms are able to identify biases and help in 

obtaining much greater resolution of the original diversity. The source of sequencing error 

due to high-throughput sequencing and the various clustering methods such as OTU 

clustering with 95 and 97% sequence similarity and denoising algorithm (ASV or zOTUs) 

are depicted in the diagram. Size of the circles represent abundance and colour different 

sequence identities. (Source: own work) 

 

ASV techniques can provide more accurate microorganism identification and give a clearer 

understanding of the diversity present in a sample. In contrast, OTU clustering methods group 

similar sequences together into an abstracted consensus sequence, which can lead to the inclusion 

of sequencing errors and closely related species of microbes within a single OTU. This can result 

in an overestimation of the diversity present in a sample. ASV methods, on the other hand, 

identify exact sequences and only slight variations between them, providing a more accurate 

representation of the variety present in a given sample and allowing for a more fine-grained 

analysis of the data 98,231,96,232. The authors of the Prodan et al. 233 study evaluated and contrasted 

the six different bioinformatic pipelines for the processing of amplicon data. They examined six 

different pipelines and found that the sensitivity and specificity varied greatly between each of 

them. Therefore, the selection of pipelines should be done very carefully and only after testing. 

2.2.1.3. Selection of reference databases 

After the denoising step, a key aspect of microbiome investigation is taxonomic classification. 

For conducting sequence-to-taxon matching, bioinformatic pipelines like QIIME 2 91 and Mothur 
95 rely on 16S rRNA gene sequence databases. There are almost nine million rRNA sequences 

of bacteria, archaea, and some eukarya in SILVA 101, one of the most popular rRNA gene 

sequence databases. Sequence duplications and inconsistent coverage of clades in these data 

repositories had been suggested due to the complexity of the data sources 234. Additionally, 

updating the database requires a lot of work. Other popular databases with extensive taxonomic 

annotations are RDP 235 and GG 70, EzBioCloud 236, 16S-UDb234 and also tissue specific 

databases such as HOMD 237. 

Ribosomal Database Project (RDP) 

The phylogenetic categorization for the prokaryotic organisms in the INSDC sequencing 

databases is provided by the RDP 235. In 1989, the University of Illinois at Urbana-Champaign 

began working on the project. When the first release was made available in 1992, there were 

only 471 16S rRNA gene sequences. The project was transferred to Michigan State University 

in 1998 after a few releases. Sequences have been screened with Pintail 238 to find chimaeras and 

faults in assembly of sequences, comparing each sequence to a number of high-quality related 

sequences using  the 16S rRNA gene model intragene variability. If every comparison is 

https://paperpile.com/c/G11r3b/qPl7+LYzCD
https://paperpile.com/c/G11r3b/WwuIi+qREI3
https://paperpile.com/c/G11r3b/Wc9Dl
https://paperpile.com/c/G11r3b/5O5sq
https://paperpile.com/c/G11r3b/oxcXG
https://paperpile.com/c/G11r3b/PYawn
https://paperpile.com/c/G11r3b/lHex
https://paperpile.com/c/G11r3b/IrbY
https://paperpile.com/c/G11r3b/VB4I
https://paperpile.com/c/G11r3b/sE6J
https://paperpile.com/c/G11r3b/lHex
https://paperpile.com/c/G11r3b/FfQb
https://paperpile.com/c/G11r3b/IrbY
https://paperpile.com/c/G11r3b/BZoI
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unsuccessful, the sequence is tagged as questionable but is left in place. RDP now has 2 110 258 

sequences, 2 017 562 of which are classified as bacterial sequences (292 001 of which come 

from cultivated organisms), and 92 463 of which are classified as archaeal sequences (3442 of 

them coming from cultured organisms). The 9319 bacterial and 380 archaeal type strain 16S 

rRNA gene sequences, that form the core of the RDP taxonomy, serve as a link between 

taxonomy and phylogeny 239,240. You can browse and download the RDP taxonomy as well as 

all of its related services at http://rdp.cme.msu.edu. 

SILVA 

The small and large rRNA components for bacteria, archaea, and eukarya are phylogenetically 

categorised by SILVA 101 and stored in the European Nucleotide Archive. For the 16S rRNA 

gene, SILVA offers two alternative alignments: SSU Parc, which has 2 492 653 sequences, is 

designed for biodiversity assessments; it has rudimentary quality filtering and no guidance tree. 

SSU Ref, which has 618 442 sequences, is designed for phylogenetic analysis and probe design. 

It only contains high quality, virtually full-length sequences. SINA (SILVA Incremental 

Alignment) is used to compute these alignments incrementally, beginning with a carefully 

selected seed. The same method used in RDP, Pintail 238, is employed to screen out aberrant 

sequences. The ARB software package serves as the foundation for SILVA 241. The latest version 

of SILVA is 138.1 and can be accessed at https://www.arb-SILVA.de/. 

GreenGenes 

The 16S sequences in GenBank 242 are phylogenetically categorised by Greengenes (GG) 243. 

One of its objectives is to incorporate ideas and manual edits from its user base, from the 

replacement of some database fields to the suggestion of a new name for a taxonomic group. A 

donor taxonomy (RDP, GG, GG normalised, NCBI or SILVA) can be transferred from a donor 

taxonomy to a recipient tree using the tax2tree tool, which is included in the most recent version 

of the database. A database of known non-chimeric sequences can be used with both of the 

programmes now in use, UCHIME 121 and ChimeraSlayer [51], although UCHIME also operates 

in a de novo mode. The ARB software suite is compatible with GG 70, which offers an import 

filter to maintain a local ARB database's synchronisation with the GG database. There are 1 049 

116 aligned sequences with a length of more than 1250 nucleotides in the GG taxonomy. GG 

offers full-length and chimera-checked 16S rRNA gene sequences that were assembled from 

sequences contributed by various curators from a single study. However, there may be several 

discrepancies in taxonomic nomenclatures at the phylum level across many curators 244. You can 

browse and download it at http://greengenes.lbl.gov. 

The All-Species Living Tree Project 

The All-Species Living Tree Project (LTP) 245 is a global effort to build and maintain 

meticulously maintained databases of 16S rRNA gene and 23S rRNA gene sequences, 

alignments, and phylogenetic trees for each type strain of bacteria and archaea. The SSU and 

https://paperpile.com/c/G11r3b/QGON+n7Xd
http://rdp.cme.msu.edu/
https://paperpile.com/c/G11r3b/PYawn
https://paperpile.com/c/G11r3b/BZoI
https://paperpile.com/c/G11r3b/nJZV
https://www.arb-silva.de/
https://www.arb-silva.de/
https://www.arb-silva.de/
https://paperpile.com/c/G11r3b/ycVS
https://paperpile.com/c/G11r3b/ohEA
https://paperpile.com/c/G11r3b/kvHt
https://paperpile.com/c/G11r3b/VB4I
https://paperpile.com/c/G11r3b/mzf3
http://greengenes.lbl.gov/
https://paperpile.com/c/G11r3b/OIgO
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LSU databases, which are both tiny but taxonomically representative, can be utilised as a guide 

for categorization and identification in a variety of fields of application. The entire tool is 

available for free at www.arb-SILVA.de/projects/living-tree and is continually updated with 

newly identified species and their matching nucleotide sequence entries. It includes the full 

database, alignment, metadata, and tree. The additional value is used in two ways: first, LTP 

serves as a reference tool for microbial systematics, and second, it provides a source of curated 

data that other microbial information resources can easily use. 

EzBioCloud 

The EzBioCloud 236 16S database contains data on bacteria, archaea, and eukarya and is primarily 

intended for species-level identification. It encompasses validly published names from LPSN, 

Candidatus, prospective species, and uncultured microorganisms and includes the full taxonomic 

hierarchy from phylum to species. Aside from PCR amplicon sequencing, the database also 

includes 16S sequences obtained from genome assemblies, which are of higher quality 246. 

The findings of Sierra et al. (2020) 247 demonstrated that the utilisation of several reference 

databases could result in changes and disparities in the taxonomic makeup of given samples, 

particularly at the genus-level classification. Recently, a few studies have suggested that higher 

taxonomic resolution might be achievable through the utilisation of environment-specific 

database systems 237,244,248. For the samples that were evaluated, for instance, Meola et al. 249 

could demonstrate that the level of taxonomic accuracy could be significantly improved by 

making use of their database that was tailored to the environment. To summarise, a number of 

different factors can have an effect on the taxonomic classification of specific samples; as a 

result, documentation and consistency are required in order to reduce the impact of these factors 

when comparing different research. 

While many comparative studies have been published on issues such as the impact of different 

procedures, methods and bioinformatics pipelines on 16S rRNA gene sequencing, there are still 

areas where more research is needed. For example, It is always unclear which primer set is most 

appropriate for a particular research question or sample type (in our case human gut) and how 

choosing specific databases affect the taxonomic characterizations. Comparative studies can also 

help to identify potential sources of bias or variability introduced by different primer sets, which 

can be used to improve the accuracy and sensitivity of 16S rRNA gene sequencing. Such studies 

can help to identify the most appropriate primer sets, reference databases and pipelines for 

different research questions and sample types, and can help to optimize the design of future 

studies. Hence, in this chapter, we carried out a benchmark analysis to evaluate the influence of 

different primer regions, clustering methods (OTUs, zOTUs, and ASVs), databases (GG, the 

RDP, the genomic-based 16S rRNA Database, SILVA, and The All-Species Living Tree), and 

bioinformatic settings on microbial composition outcomes. Overall, this chapter is essential for 

advancing our understanding of the microbiome and for developing best practices for 16S rRNA 

gene sequencing. 

http://www.arb-silva.de/projects/living-tree
http://www.arb-silva.de/projects/living-tree
http://www.arb-silva.de/projects/living-tree
https://paperpile.com/c/G11r3b/sE6J
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https://paperpile.com/c/G11r3b/XljL
https://paperpile.com/c/G11r3b/mzf3+FfQb+StEv
https://paperpile.com/c/G11r3b/OWVC
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2.3. Material and methods 

2.3.1. Preparation of human gut samples and mock communities 

Stools samples were collected from a group of 33 healthy volunteers and were directly 

resuspended via shaking and vortexing. All samples were aliquoted (in 600-μl portions) and 

stored at −80°C until DNA extraction. A mock community is a specific mixture of microbial 

cells generated in vitro. Three mock communities with an increased number of known bacterial 

species were developed.Three communities are as follows: ZymoBIOMICS microbial 

community DNA standard (Zymo Research; catalogue no. D6306) with 8 bacterial species, (ii) 

a more complex in-house mock community (ZIEL-I) with 13 different bacterial species, and (iii) 

an even more complex in-house mock community (ZIEL-II) with 19 different bacterial species. 

The detailed explanation on extraction of gDNA, primer selection and in silico testing, library 

preparation of different variable regions of the 16S rRNA gene can be found in our published 

research 55.  

2.3.2. Primer-specific feature classifiers 

In general, customized feature classifiers that consider the distinct characteristics introduced by 

sample preparation, sequencing primer, and read length outperform naive classifiers trained on 

full-length sequences 250. The RDP 69, SILVA 101, GG 70, GRD, and LTP 245 databases were 

utilised to develop primer-specific feature classifiers to improve taxonomy classification. These 

classifiers were created for each V-region or primer pair utilizing the q2-feature-classifier 110, 

which is a naive Bayes taxonomic classifier implemented in QIIME2-2019.10 91. 

2.3.3. OTU clustering using QIIME1 

QIIME1 91 was used for the OTU-generating approach. The sequence readings are clustered by 

QIIME1 at a sequence identity of at least 97%. By using cutadapt 2.10, forward and reverse 

primer sequences as well as the low-quality reads were removed from the demultiplexed paired-

end reads 251. The trimmed reads were linked together by multiple join paired ends.py, and then 

multiple split libraries fastq.py was used to create a single fasta file containing all of the samples. 

OTU abundance tables were produced by employing the UCLUST clustering approach and the 

pick de novo otus.py script located under QIIME1. Throughout the de novo clustering stages, 

mapping files for OTUs were produced, along with representative sequences, sequence 

alignments, and taxonomic alignment files. The RDP database was utilized as a reference 

database to identify OTUs with a minimum sequence similarity of 97%. 

2.3.4. zOTU generation using UNOISE 

The objective of the USEARCH-UNOISE3 project is to reconstruct the exact biological 

sequences into zOTUs. The paired-end raw reads were combined using the fastq_mergepairs 

script from USEARCH version 11 94, and the primer sequences were removed by using the 

https://paperpile.com/c/G11r3b/olQ9
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fastx_truncate script. Merging and primer removal steps were carried out prior to quality filtering 

because primer removal helps to lower the number of errors that are expected, and merging prior 

to quality filtering improves the base call error estimates that are captured in the overlapping 

regions, as the author of USEARCH/UPARSE suggested 106. The processed readings were 

deduplicated before being grouped into zOTUs using de novo analysis. The RDP database 69, 

version 11 (project release), was consulted in order to assign taxonomies to the representative 

zOTU sequences. 

2.3.5. ASV generation using nf-core/ampliseq pipeline 

The nfcore/ampliseq nextflow pipeline was utilised in order to conduct the analyses on the human 

datasets as well as the three mock communities 252,253. Processing 16S rRNA gene amplicon 

sequencing data is made easier with nfcore/ampliseq, which is an end-to-end solution based on 

the QIIME2 library. FastQC was used to evaluate the sequence reads' quality in their raw form 
99. The cutadapt program was used to trim primer sequences as well as bases that had low quality 

scores 251. For the purposes of denoising and synthesising ASVs, The nf-core/ampliseq pipeline 

utilized the DADA2 96 package to denoise and generate ASVs. Truncated lengths for forward 

reads (250 to 280 bp) and reverse reads (180 to 260 bp) were determined based on the quality 

profile and amplicon length, and used during the DADA2 denoising process. The correlation 

between the truncated lengths and the number of ASVs generated was examined, and these 

specific lengths were applied to the forward and reverse reads. 

2.4. Results 

We used a systematic approach to evaluate the global influence of a number of characteristics in 

mock communities with known compositions as well as in human samples Fig. 7. First, an 

analysis was done to determine the best primers to use in order to target the many variable regions 

of the 16S rRNA gene. We show that the choice of primers has an effect on the taxonomic 

makeup, which can be seen in a multidimensional scaling (MDS) plot of samples that came from 

the same donor (Fig. 8). Second, we explored the ways in which the employment of various 

clustering algorithms and taxonomy assignment methods affects the outcomes of the 

categorization of bacterial taxonomies, as well as the extent to which these influences are present. 

The detailed explanation on primer choice influences the estimated microbial composition can 

be found elsewhere 55.  
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Figure 7:  Overview of the analysis strategies used in this study. 

A total of 33 stool samples from healthy volunteers and three mock communities with 

varying bacterial species were analyzed using Illumina MiSeq sequencing. Amplicons were 

generated using different primer pairs targeting different V-regions of the 16S rRNA gene. 

The resulting sequencing data were processed and analyzed to investigate the microbial 

composition of the samples. The study investigated the impacts of different primers, feature 

generation approaches such as OTU, ASV and zOTU approaches and reference databases 

on the microbial profiles. This figure was originally published in Primer, Pipelines, 

Parameters: Issues in 16S rRNA Gene Sequencing (open access) under Creative Commons 

Attribution 4.0 International license 
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Figure 8: MDS plots illustrating microbiome's distinct communities in human samples 

across different primer pairs. The top panels (A and C) show the clustering results when 

the V4-V5 region was included, while the bottom panels (B and D) show the results when 

this region was omitted. The blue squares in panels A and C represents the 515F-944R 

primer pair, which appear to be different from all other clusters. The samples in the bottom 

panels (B and D) are labeled based on donor number, indicating that the study may have 

investigated the microbial diversity in different individuals. This figure was originally 

published in Primer, Pipelines, Parameters: Issues in 16S rRNA Gene Sequencing (open 

access) under Creative Commons Attribution 4.0 International license. 
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2.4.1. Clustering strategies have minor effect on taxonomic profiles 

ASV clustering, as an alternative to the OTU technique based on 97% identity, has garnered a 

lot of attention in the most recent studies 98,247. In this study, we evaluated a number of alternative 

ways to clustering to see if any of them had an effect on the taxonomic profiles that were assigned 

to the ZIEL-I mock community. When compared to the influence of primer choice, the clustering 

process appeared to have only a marginal impact on the taxonomic assignment (Fig. 9(A)). The 

differences that were seen for each strategy were mostly visible by identification issues at the 

genus level. Bacillus could not be categorised down to the genus level when utilising the ASV 

technique for clustering the data. On the other hand, this was feasible when the zOTU and OTU 

techniques were utilised. In general, we discovered that ASVs performed the best for the majority 

of the other genera. Results obtained from the further study of a human sample subset were found 

to be equivalent to those obtained from the ZIEL-I mock community (example of one 

representative sample is shown in Fig. 9B). Nevertheless, in the mock communities, neither the 

clustering of OTUs nor zOTUs created a bigger bias; hence, the influence of clustering is 

restricted. However, it is important to consider the choice of different clustering approaches 

when analysing complex environmental samples based on the research question and the samples' 

characteristics 

2.4.2. Reference databases have an impact on the taxonomic assignment 

In an ideal scenario, 16S rRNA gene sequences should accurately represent their origin 

organism. Nevertheless, this relies not only on the primer pairs used or the method of sequence 

data extraction from raw data, but also on the quality of the reference database and, therefore, 

the accuracy of the taxonomic classification. To assess this, we thoroughly evaluated five 

commonly used databases: RDP, GG, GRD, SILVA and LTP. 

When evaluating the Zymo mock community with  only eight distinct bacteria, we detected only 

a few slight changes in the taxonomy attributed to the various V-regions employed. Moreover, 

differences were negligible when other reference databases were included in the investigation 

(Fig. 10 (A)). Bacillus could not be categorised at the genus level when using RDP for primer 

pair 515F-806R (V4), although it was allocated to the Bacillales family. Based on our analysis, 

the taxonomic classification of Escherichia/Shigella showed the highest accuracy when using 

SILVA or RDP as the reference database. This resulted in the smallest deviation from the 

expected composition of the mock community. The performance of GG database was found to 

be inadequate in identifying Escherichia/Shigella and Listeria at the genus level, leading to poor 

results. Although GG database showed substandard performance in identifying bacterial species 

in the Zymo mock community, other parameters did not seem to have a significant effect. To 

gain more insights, two additional mock communities with increased complexity were employed, 

https://paperpile.com/c/G11r3b/XljL+LYzCD
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as a mock community comprising only eight bacterial species provides limited information.

 

Figure 9: Comparison of the impact of the clustering method on taxonomic categorization 

for the ZIEL-I mock community. Section (A) represents the taxonomic categorization for 

the ZIEL-I mock community (A) and Section B represents a representative sample of 

human DNA (T1). This figure was originally published in Primer, Pipelines, Parameters: 

Issues in 16S rRNA Gene Sequencing (open access) 55 under Creative Commons 

Attribution 4.0 International license. 

https://paperpile.com/c/G11r3b/olQ9
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Figure 10: Genus level comparison of mock communities using different primer regions 

and different databases as references (GG, GreenGenes; RDP, Ribosomal Database 

Project; GRD, genomic-based 16S rRNA database; LTP, The All-Species Living Tree 

Project). This figure was originally published in Primer, Pipelines, Parameters: Issues in 

16S rRNA Gene Sequencing (open access) 55 under Creative Commons Attribution 4.0 

International license 

The ZIEL-I mock community contains bacteria that are typical of those found in the gut, and it 

has 13 species spread across 13 different genera (Fig. 10B). Taking this into consideration, GG 

once again had the worst performance. Utilising GG as a point of reference made it impossible 

to assign genus-level classifications to Acetatifactor, Bacillus, Clostridium, or Pseudomonas.  

The ZIEL-II mock community including 19 microorganisms in 18 taxa increased the complexity 

of the comparison. Furthermore, we deliberately included species that posed problems in 

https://paperpile.com/c/G11r3b/olQ9
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previous research (data not shown). Again, regardless of the database, the 515F-944R (V4-V5) 

primer pair exhibited poor performance. Nearly, 14 to 18 taxa were classified at the genus level 

for primer pair 341F-785R (V3-V4), however only 7 to 9 taxa were identified for primer pair 

515F-944R (V4-V5) with SILVA database classification. Using the 27F-338R (V1-V2) primers, 

Akkermansia could not be identified. The taxonomic classification of Microbacterium was found 

to be insufficient when using 341F-785R (V3-V4) primers. In terms of accuracy, Enterobacter 

and Ruminococcus were classified most precisely by SILVA. Overall, SILVA and RDP 

performed best as reference databases, providing the most precise taxonomic classifications. At 

the genus level, SILVA had the fewest number of uncertain classifications, followed by RDP, 

LTP, GRD, and GG. 

2.4.3. Specific pipeline settings have minor influences on taxonomic classification 

After studying the impact of clustering/denoising and selection of reference databases on 

taxonomic profiles using mock and human samples, we also investigated the potential 

significance of certain pipeline parameters on ASVs, as its performance was marginally better to 

that of zOTUs and OTUs. A number of pre-processing steps such as elimination of primers and 

adapters, the elimination of chimeras, the trimming of low-quality reads, and the merging of 

paired-end reads were performed as these help in avoiding false positive feature generation. In 

the step of merging and removing chimeras, losing sequences can occur if the removal steps are 

performed incorrectly. Deciding on truncated length should be made with caution as for merging 

demand a minimum overlap length of 20 bp as well as identical sequences in forward and reverse 

reads. Yet, we anticipated that the truncation phase would have the most significant influence on 

the outcomes. In general, truncation is essential because it helps to remove poor quality bases. It 

is possible to decide the truncated length based on the quality of the bases on both forward and 

reverse reads and also based on the length of the amplicon which was chosen for the study of 

interest. In the present investigation, Different truncation lengths were evaluated for forward and 

reverse reads of the V4 region (primer pair 515F-806R) using the ZIEL-I mock community in 

this study.  On the basis of the quality score (q) of less than twenty and the length of the amplicon, 

various ranges of forward read lengths (250 to 280 bp) and reverse read lengths (180 to 250 bp) 

were chosen. According to the results, variations in the lengths of the forward and reverse 

truncated sequences have a direct impact on the percentages of sequence counts that are retained 

after the filtering steps (Fig. 11 (A)). For example, retaining 90% of the input reads was possible 

when the forward read length was set to 250 base pairs and the reverse read length was set to 180 

base pairs. When the length of the reverse read was increased, the percentage of retained reads 

went from 90% to 68% during the course of the experiment. The similar pattern of behaviour 

was seen for forward truncated length combinations of 260 bp and reverse length combinations 

ranging from 180 to 250 bp. Nevertheless, retaining a lower percentage of reads was achieved 

when the forward read length was either 270 or 280 base pairs and the reverse read length was 

between 180 and 250 base pairs. This resulted in a range from 85% to 65% of reads being 

retained. The number of reads that made it through the filter has significantly decreased, which 
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is the primary cause of the overall drop in the percentage of retained readings. After that, during 

the processes of denoising and merging, this lower total number of reads was the only one that 

was processed. 

The findings indicate that the retained percentage of reads differed slightly among the various 

truncated length combinations, but these discrepancies did not have a significant impact on the 

number of ASVs generated. The total number of ASVs ranged from 10 to 20, depending on the 

truncated length combinations. The combination of truncated lengths of 250 bp for forward reads 

and 180 bp for reverse reads yielded the greatest number of ASVs (20), while other length 

combinations produced only 10 to 15 ASVs (Fig 11 (B)). 

We conducted a local BLAST search to investigate if the differences in the number of detected 

ASVs were due to contaminated reads that did not correspond to bacteria in the ZIEL-I mock 

community. The analysis compared the reads generated using different forward and reverse read 

combinations with a reference sequence using a ≥97% identity cutoff, ≥90% coverage, and an E 

value of ≤0.00001. The results showed that 91% to 100% of the ASVs were aligned to the 

reference sequence of the mock community for each forward and reverse read combination. Only 

one mismatch was found in the highest number of mismatches. Furthermore, a small number of 

non-hits were obtained that did not meet the BLAST cutoffs described above. (Fig. 11 (C)). 

We evaluated the effect of truncation on a diverse microbial community by examining 33 human 

stool samples. The variation in retained reads after truncation was lower in the stool samples 

compared to the mock community. The truncation combination of 250 bp for forward reads and 

180 bp for reverse reads retained the highest number of reads (Fig. 11 (D)). Interestingly, the 

percentage of retained reads decreased from 89% to 67% when increasing the reverse read length 

from 180 to 250 bp for 250 bp forward reads, suggesting inadequate removal of low-quality 

sections obstructs merging. The number of ASVs ranged from 1,219 to 2,363 for different 

truncated length combinations, leading to an investigation of the impact of the number of ASVs 

on taxonomic classification at the genus level (Fig. 11 (E)). We analyzed the number of 

generated ASVs using 280-bp forward reads in combination with various reverse read lengths. 

The number of ASVs ranged from 2,057 to 2,231, and the number of different genera (including 

unknown and unclassified entries) ranged from 131 to 143. 

Overall, the study suggests that the choice of truncated length combinations during data 

processing can influence the number of ASVs obtained, but the differences may not be drastic. 

However, it is important to note that this is a specific finding from the study on the ZIEL-I mock 

community, and the results may differ for other microbial communities or sequencing platforms. 

However, the study recommends that truncation for each amplicon length should still be tested 

because low-quality bases can impair read clustering. This means that the quality of the sequence 

data could affect the clustering of reads into ASVs, even if the reads do not match contaminants. 

Therefore, it is important to optimize the truncation parameters for the specific sequencing 

platform and dataset being analyzed to ensure accurate results. 
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Figure 11: Studying the impacts specific pipeline settings have on taxonomic classification.  

The impacts of varied lengths of forward and reverse reads after truncation are illustrated 

in figures (A and B) for the ZIEL-I mock community. The effects are shown on the number 

of features obtained (A) and the percentage of sequences maintained after denoising (B) 

for the ZIEL-I mock community. (C) During a local BLAST search against reference sets, 

the numbers of mismatches that were discovered are displayed; these mismatches served 

as a manner of measuring how accurate the ASV predictions. The human data set was 

analyzed with the primary emphasis being placed on retained reads after denoising and 

truncation (D) and the number of features obtained (E) for each read-length combination. 

This figure was originally published in Primer, Pipelines, Parameters: Issues in 16S rRNA 
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Gene Sequencing (open access) 55 under Creative Commons Attribution 4.0 International 

license 

 

2.5. Discussion 

When sequencing the short-amplicon 16S rRNA gene, it is usual practice to utilize primers that 

span more than one V-region. This allows for more precision in the identification of bacteria 

when compared to reading a single region. Primers with the sequences V1-V3, V3-V4, and V3-

V5 254,255 are some of the most popular, and have been used in large population-based cohorts 

like the HMP 48,49,255 and others. Nevertheless, there will be a distinct bias in the results if a 

different primer combination or V-region is utilised. In addition, DNA extraction and sample 

processing, sampling, storage, sequencing analysis, and data processing all contribute to the 

introduction of additional biases. In the past ten years, many of these factors have been 

investigated for a wide range of ecosystems, including the human gut 256–260, oral and skin 

microbiomes 261–263 and food-related ecosystems 264. Despite this, very little research has been 

done looking at how various factors that cause prejudice interact with one another. In this chapter, 

we investigated the impact of selecting a particular primer, reference databases, clustering 

algorithm, and certain pipeline parameters in conjunction on human stool samples and mock 

communities of varying degrees of complexity utilising contemporary research methods. We 

intended to provide the scientific community with up-to-date instructions for experimental 

design and data analysis, thus one of our goals was to highlight the contribution that each of these 

parameters makes to the precision with which taxonomic assignments are made. In order to draw 

conclusions beforehand, it is necessary to evaluate the optimal performance of each experimental 

setting by employing a variety of experimental procedures and settings. 

The impact of different primer pairings on the resulting microbial profiles was examined, 

revealing that the 341F-785R (V3-V4) primer pair exhibited slightly better performance than the 

other combinations, irrespective of the reference database used. Thus, it is a suitable option for 

analysing microbial communities in human gut samples. This is also consistent with Thijs et al. 
265, who suggested using the primer pair 341F-785R for soil and plant-associated bacterial 

microbiome research which was also consistent with Rausch et al. 266, who recommended using 

the V3-V4 region instead of the V1-V2 region. The primer combination 515F-944R (V4-V5) 

performed well when analysing the microbiota profile of the Zymo mock community, but did 

not perform well on more complex mock communities like ZIEL-I and ZIEL-II. This indicates 

that the primer combination may not be suitable for complex microbial ecosystems. Therefore, 

it is important to include mock communities in routine 16S rRNA gene analysis. The V4-V5 

region was considered to be a good match based on theoretical sequence analysis by Yang et al 

(2016)267. but real sample analysis showed poor performance. To overcome the hypervariable 

region specific issues, It is possible to sequence the entire 16S rRNA gene by utilizing third-

generation sequencing technologies 57,268 or  by generating short reads and assembling them into 

https://paperpile.com/c/G11r3b/olQ9
https://paperpile.com/c/G11r3b/qW0g+l2nt
https://paperpile.com/c/G11r3b/n4zx+pd2H+l2nt
https://paperpile.com/c/G11r3b/w4NP+7W7Y+LJIk+wtrA+OH56
https://paperpile.com/c/G11r3b/lLOR+pbGM+J7bu
https://paperpile.com/c/G11r3b/C37O
https://paperpile.com/c/G11r3b/dn9i
https://paperpile.com/c/G11r3b/bgVE
https://paperpile.com/c/G11r3b/qYHO
https://paperpile.com/c/G11r3b/RCMA+FhsQ
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a synthetic full-length sequence 269. These methods have shown potential for providing 

taxonomic identification at the species or strain level 57. However, they are not yet widely 

adopted for high-throughput sequencing due to their lack of cost-effectiveness, repeatability, and 

user-friendliness. More research is required to make these methods competitive. Furthermore, 

the error rates for long-read sequencing are still relatively high 270.  

Clearly, the limitations of using mock communities to represent the complexity of microbial 

ecosystems, such as those found in human feces samples, are acknowledged. Therefore, we 

included 33 human fecal samples in our analysis. Our results showed that the phylum-level 

classification for Bacteroidetes (excluding 515F-944R), Proteobacteria, and Firmicutes is 

consistent, regardless of the primer pair used to target the V-region of interest. However, the 

detection of Actinobacteria, Tenericutes, Lentisphaerae, and Verrucomicrobia varies with 

different primer pairings, highlighting the importance of selecting appropriate primers. The 

targeted locations also exhibited considerable variation within individuals of the same genus due 

to the large number of unknown or unclassified taxa at the genus level and the abundance of taxa 

in general. To address these issues, ecosystem-specific reference databases and novel 

bioinformatics methods that integrate data across V-regions while accounting for region-specific 

bias are necessary. Therefore, large-scale research encompassing various V-regions is essential 

to train taxonomic classifiers that dynamically account for any region-specific bias. Although 

sequencing the full-length 16S rRNA gene may render this unnecessary, the choice of primers, 

such as 27F and 1492R, for virtually full-length sequencing would still influence the results. 

It is a well-known fact that the utilization of various bioinformatic methods might affect the 

microbiota composition that is determined 247,271,272. To the best of our knowledge, there has been 

little investigation into the impact of reference databases on taxonomic prediction. To address 

this gap, we assessed the performance of five different databases using three mock communities. 

We evaluated each database's ability to accurately identify the correct taxonomy and capture the 

known diversity of the mock samples. Our results showed that the SILVA and RDP databases 

were the most reliable 16S rRNA gene databases in terms of true positives at the genus level, 

with similar performances consistently superior to those of GRD, LTP, and GG. However, our 

findings were consistent with those of Park and Won 246, who showed that GG was unable to 

classify certain bacteria, including Escherichia/Shigella, Listeria, Acetatifactor, Bacillus, 

Clostridium, and Pseudomonas. As GG was last updated in 2013, its continued use is 

questionable. 

In addition to the aforementioned, we discovered that each database's quality could only be 

evaluated utilising a range of V-regions and a sufficiently complicated mock community. Using 

common bacteria to simulate communities with a low level of complexity did not disclose 

database difficulties. Consequently, low-complexity mock communities may be used as positive 

controls in existing pipelines for general quality monitoring, but they are not advised for 

discovering fundamental flaws when establishing a new study, pipeline, or laboratory. In 

https://paperpile.com/c/G11r3b/lnAm
https://paperpile.com/c/G11r3b/FhsQ
https://paperpile.com/c/G11r3b/NjQ1
https://paperpile.com/c/G11r3b/irek+jSOS+XljL
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addition, for various body sites (or settings), unique, sufficiently complicated mock communities 

should be utilised. Adding ubiquitous bacteria, such as the human skin commensal Cutibacterium 

acnes and other similar bacteria, should be investigated. 

In microbial data analysis, taxonomic assignment can be impacted by the denoising and OTU 

clustering processes, which represent a third element. To investigate this aspect, we compared 

conventional OTUs, created using 97% clustering with QIIME1, with ASVs generated by 

DADA2 denoising 96 and zOTUs generated by the USEARCH denoising algorithm 120,273 All 

three clustering approaches yielded a similar number of identified traits for the simulated 

community. Interestingly, ASV clustering proved to be highly effective in the human datasets, 

despite their greater complexity. These results support previous studies 98,103, which have shown 

that ASVs are the most reliable option currently available. ASVs demonstrated the greatest 

degree of agreement with the expected composition of the mock community that was tested. 

Nevertheless, zOTUs demonstrated comparable performance and have the added benefits of 

being more durable and straightforward to use. 

As illustrated, specific variables, such as the truncation length, affect the number of reads 

preserved for subsequent analysis processes. It is essential to choose an appropriate truncation 

length, as too-short reads result in insufficient or nonexistent overlaps that cause issues when 

merging. In contrast, it can be challenging to integrate excessively long reads due to their lower 

sequence quality. There is a trade-off between integrating readings of lesser quality and the 

sensitivity for recognizing low-abundance genera, which influences the amount of discovered 

ASVs for various truncation lengths. By systematically shortening the length of reverse reads, 

the number of infrequently detected sequences increased while sequencing errors decreased. This 

demonstrates the significance of this parameter to the reliability of analytical results. To find 

appropriate truncation lengths in order to evaluate this potential bias, we propose utilizing 

sufficiently complex, compositionally-known dummy communities. In addition, it is crucial to 

report this parameter (and all others) in terms of the reproducibility of analysis results. 

2.6. Conclusion and outlook 

Overall, based on our analysis of 3 mock communities and 33 human samples, we recommend 

the use of primers targeting the V3-V4 region for human gut samples due to their strong overall 

performance. We suggest utilising either SILVA or RDP as a reference database. We presently 

advise adopting ASVs or zOTUs, since only slight changes were identified between clustering 

algorithms. Regarding pipeline configuration, we recommend testing shortened length 

combinations for each study's primer pairs. For instance, we would advise to check the quality 

of the raw reads and decide the truncated length mainly based on the quality score. Also, while 

deciding the truncated length for forward and reverse reads, we recommend to leave a minimum 

overlap length of 20 base pairs (bp) to properly merge the paired-end reads. The length of the 

overlap needed may vary depending on the length and specificity of the primers used in the PCR 

amplification, as well as the length and variability of the target region being sequenced. 

https://paperpile.com/c/G11r3b/H8Ct+1aCc
https://paperpile.com/c/G11r3b/LYzCD+Eb9j
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Therefore, it's important to calculate the expected length of the overlap based on the specific 

primers used in the experiment and to ensure that the length of the overlap is at least 20bp plus 

any natural variation in the target region. To establish reliable and comparable outcomes, we 

recommend tailoring the final parameters based on the V-region amplicon lengths. We propose 

developing a mock community that is specific and complex enough to reflect the targeted 

microbial environment. This approach can ensure that the study design and analysis pipelines are 

appropriate for the desired sample type or bacterial community of interest (Fig. 12). 

 

Figure 12: Recommendation for a validation process prior to initiating new microbiome 

investigations, particularly in rare habitats. Prior to beginning new microbiome 

investigations, the recommended validation procedure should be implemented, 

particularly for unusual situations. Even pre-existing parameter combinations that are 

frequently used might be subject to revaluation. As a result, complicated mock 

communities have to be utilized and sequenced, with a wide range of alternative primer 

pairs being put through their paces to determine which ones deliver the finest results within 

the environment of interest. This figure was originally published in Primer, Pipelines, 

Parameters: Issues in 16S rRNA Gene Sequencing (open access) 55 under Creative 

Commons Attribution 4.0 International license 
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3. Chapter three: On the limits of 16S-based metagenome prediction 

and functional profiling  

3.1. Declaration of contributions 

This chapter is the result of a benchmark analysis of different functional prediction pipelines 

from 16S rRNA gene sequencing data under the guidance of Dr. Markus List, Head of Big Data 

in Biomedicine Group, Technical University of Munich, Prof. Tim Kacprowski, Technische 

Universität Braunschweig, Dr. Malte Rühlemann, Institute of Clinical Molecular Biology, Kiel 

University, Dr. Fabian Frost, Department of Medicine, University Medicine Greifswald and Prof. 

Jan Baumbach, Institute for Computational Systems Biology, University of Hamburg.  
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3.2. Introduction 

3.2.1. The Human Gut Microbiome: Function Is Crucial 

The diverse communities of microbes that live in the human gastrointestinal system are important 

regulators of human health and diseases. The development of culture-independent sequencing 

continues to improve studies of microbial community biology. Shotgun metagenomic and 

metatranscriptomic (also known as "meta-omic") measurements can be used to answer a growing 

number of questions ranging from the epidemiology of the human microbiome with respect to 

biomarkers and therapy, to the transmission and evolution of strains in situ 274–277.  

The fact that the gut microbiota helps human in a number of crucial functions attests to its 

significance. These include the conversion of indigestible dietary components into absorbable 

metabolites 278, vital vitamins synthesis 279,280, the elimination of harmful substances, providing 

protection against infections and intestinal barrier 281, and the stimulation and control of the 

immune system 282. The majority of these functions are tied to one another and closely related to 

human physiology. Short-chain fatty acids, for instance, are byproducts of microbial 

fermentation and are crucial for intestinal cells. They also play a significant role in 

immunomodulatory processes like T cell development, which can have an impact on the gut 

microbiota. Overall, it is widely recognised that microbial function rather than its taxonomic 

composition is considerably more useful 283,284. 

The combination of high-resolution, high-fidelity, and high-throughput omics techniques, along 

with comparative analyses, hypothesis testing in appropriate experimental systems, and 

intervention studies in human subjects, constitutes a commonly employed strategy for unraveling 

the intricate web of microbial interactions and identifying potential avenues for enhancing human 

health. The first kind of research should ideally produce testable ideas on the nature of the roles 

unique microbiota confer on human physiology, how and why these functions differ between 

individuals, and their influence on human health. Through the use of 16S rRNA gene amplicon 

sequencing and metagenomics, the structural properties of the gut microbiota have been 

extensively discussed in this context 285. Nevertheless, in order to develop precise hypotheses for 

mechanistic investigations with the goal of understanding relationships between host and 

microorganisms, observational studies should link specific activities of the microbiome to 

specific microbial populations that bestow these functions. In addition, these investigations 

should uncover biologically relevant and meaningful health status indicators. Functional omics 

are crucial in this regard. 

3.2.2. Functional omics 

A comprehensive functional evaluation of the human gut microbiome is now possible with the 

help of functional omics read-outs generated and integrated from metagenomics, 

metatranscriptomic, metaproteomic, and metabolomic investigations. Functional omics are more 

sensitive than the metagenome, which contains a lot of information, according to previous studies 

https://paperpile.com/c/G11r3b/vR1U+4LHP+yIjG+dqNY
https://paperpile.com/c/G11r3b/QaRV
https://paperpile.com/c/G11r3b/6W9S+k8iA
https://paperpile.com/c/G11r3b/sUfN
https://paperpile.com/c/G11r3b/6nmn
https://paperpile.com/c/G11r3b/HrJt+Ipt2
https://paperpile.com/c/G11r3b/KYkx
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44,286. As a result, it is anticipated that functional omics will provide a more realistic depiction of 

microbes in host’s health and disease states 44,287. For instance, despite only minor changes in 

observable microbial community structure, changes in gene expression have been discovered in 

response to dietary treatments such as fermented milk products and the oral consumption of 

medication . These results appear to run counter to the generally accepted interpretation of 

metagenomic data, according to which metagenomic functional profiles are less varied than 

taxonomic profiles 288. The latter idea, however, may not accurately reflect reality for a number 

of reasons. In terms of methodology, it has been established that normalization procedures 

widely used in practice that ignore the taxonomic patterns significantly understate functional 

variability 289. Another factor is the clustering of genes into large functional categories, such as 

complete metabolic modules, based mostly on homology rather than the direction of metabolic 

flux. Finally, the possible variability of the vast majority of the functioning genes in a 

metagenome is not considered. Additionally, researchers 290,291 have found that functional 

profiles in metatranscriptomes are more varied than metagenomic profiles. One possible 

explanation for this observation is that metatranscriptomes capture the active microbial 

community at a specific point in time, whereas metagenomes capture the genetic potential of the 

community 292,293, which includes inactive and dormant organisms. Additionally, functional 

profiles in metatranscriptomes are often more specific and precise than metagenomic profiles, as 

they can provide information on the expression of specific genes and their metabolic pathways 
294. This level of resolution allows researchers to better understand the metabolic processes and 

interactions that are occurring within a microbial community 295,296. 

3.2.3. Metagenome approach for functional characterization 

To ascertain whether functional omics has the potential to unravel crucial functional aspects of 

the microbiome, there are fundamental queries that demand resolution such as (i) To ascertain 

whether functional omics has the potential to unravel crucial functional aspects of the 

microbiome, there are fundamental queries that demand resolution, and (ii) Can a microbial 

functional state measured at a single time point offer insights beyond a mere momentary 

representation? 297. At the metagenomic, metatranscriptomic, and metaproteomic levels, it is 

notable that inter-individual variation is observed to be greater than intra-individual variation for 

functional profiles. This is something that should be taken into consideration 290. The differences 

in functional profiles can serve as direct cues to the functions involved in the interactions between 

the microbiome and the host.  

The metagenome approach is a valuable tool for functional characterization of microbiomes and 

can provide important insights into the role of microbial communities in host health and disease 
298 . Metagenomic data can be analysed using tools such as functional annotation pipelines, which 

can identify the presence of specific genes and pathways involved in various functions. These 

pipelines typically involve several steps, including sequence quality control, assembly, gene 

prediction, and functional annotation. For example, after quality filtering, the high-quality reads 
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are assembled into contigs or scaffolds. This can be done using software such as SPAdes 186,187 , 

IDBA-UD 185, or MEGAHIT 299. The resulting contigs or scaffolds can then be used for gene 

prediction and functional annotation. Once the good quality assembly of reads are obtained, the 

next step is to predict genes from the assembled contigs or scaffolds using several methods such 

as MetaGeneMark 300, Prodigal 301, or FragGeneScan 302. The predicted genes can then be used 

for functional annotation using sequence homology searches, HMMs 303 and machine learning 

algorithms. Once the genes and pathways are annotated, the data can be analysed to identify 

functional pathways that are enriched in specific microbial communities or samples. This can 

provide insights into the functional potential of the microbiome and its role in various biological 

processes, such as nutrient cycling, host-microbe interactions, and disease states.  

There are several pipelines which automate these steps. One such bioinformatics tool is known 

as HUMAnN 3 304 (HUMAnN stands for HMP Unified Metabolic Analysis Network), is utilized 

for the purpose of analyzing metagenomic data, more specifically for the purpose of researching 

the functional potential of microbial communities found in various environments such as the 

human gut. Raw data from metagenomic sequencing is input into HUMAnN 3 where it is 

subjected to a number of processing steps before ultimately producing a comprehensive 

functional analysis of the microbial community. This analysis includes the identification and 

quantification of functional pathways and enzymes. In order to reliably identify functional gene 

families and assign them to the relevant organisms in the community, HUMAnN 3 consults a 

reference library consisting of the genomes and pathways of microorganisms. Moreover, it 

normalizes gene family abundances to account for changes in genome size and copy number, 

making it possible for samples to be compared more accurately. In general, HUMAnN 3 is a 

useful tool for studying the possible functional capabilities of microbial communities and the 

ways in which these communities interact with the surrounding environment. 

The metagenome sequencing offers a more comprehensive perspective of the genetic diversity 

and potential functional capacity of the microbial community; nevertheless, it is unable to detect 

the actual gene expression and metabolic activity of the community at a particular point in time 
291. Metatranscriptomics can provide a more dynamic and detailed view of the functional activity 

of the microbial community by revealing which genes are actively expressed and how their 

expression levels change in response to environmental conditions or other factors 169. This is 

because metatranscriptomics can reveal which genes are actively expressed and how their 

expression levels change. In light of the variations that can be found between metagenomic 

profiles and metatranscriptomic profiles, it is necessary to evaluate the discriminatory power of 

metatranscriptomics. Metatranscriptomic functional profiles are at least as efficient in addressing 

differences as metagenomic profiles, according to different studies 290. As a result, functional 

omics are able to shed light on microbial activity and highlight crucial microbiome-conferred 

characteristics. However, metatranscriptomics is still considered rare due to several factors such 

as technical challenges such as isolation and sequencing of RNA, which is a more technically 

challenging process than DNA-based sequencing methods as RNA is also more unstable and 
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prone to degradation. The second challenge is the presence of low abundance of RNA present in 

a microbial community. And finally , the analysis of metatranscriptomic data can be complex 

and requires sophisticated bioinformatics tools, which may be a barrier to entry for some 

researchers. Overall, functional omics are able to shed light on microbial activity and highlight 

crucial microbiome-conferred characteristics.  

3.2.4. Limitations of metagenome approach for functional characterization 

An alternative approach to metagenome sequencing is 16S rRNA gene sequencing. Despite the 

fact that 16S rRNA gene sequencing is less expensive than the metagenomics method, it is still 

considered inferior as it can only identify taxa that can be amplified by the chosen set of 

"universal" primers. There is a tendency towards preferentially detecting certain groups of 

bacteria and archaea while overlooking microbial eukaryotes and viruses, which results in a bias 

in the identification process. Furthermore, metagenomics offers the ability to study the functional 

potential of the microbiome by examining the prevalence of genes present within the microbial 

community, whereas the 16S approach is primarily restricted to observing alterations in the 

taxonomic structure of microorganisms. Even while functional omics approaches, such as 

metagenome, appear promising, researchers should be mindful of a few drawbacks. For instance, 

the increased cost of metagenome sequencing impedes its use in research involving a large 

number of samples, which are often required to establish sufficient statistical power for finding 

real differences. This is due to the fact that high sample sizes are required to ensure sufficient 

statistical power for detecting real differences. In addition, metagenome sequencing can be 

extraordinarily challenging when working with samples that have low biomass or are dominated 

by DNA from non-microbial organisms 305–307. In addition, because host contamination drowns 

out the bulk of the microbial signal generated by metagenomic approaches in many host-

associated microbiome situations, the only profiling method that is practically viable is the 16S 

method 308. As a result, 16S is expected to be a technology utilised frequently, even as costs 

associated with sequencing continue to fall. 

3.2.5. Functional profile prediction using 16S rRNA gene sequences 

The goal of functional analysis is to answer two important questions such as “What kinds of 

functions are the bacteria able to perform and which metabolic pathways are highly active in a 

given environment”. It is important to find out what the different metabolic functions of the 

organisms in the sample are, as well as how many of them have similar functions. The basic idea 

is to compare OTUs/ ASVs to a reference database that has the functional profiles of microbes 

and find the best match. For the OTUs/ASVs that are not paired with a known organism, 

algorithms can look for the organisms which are similar and use them as references to infer their 

functional profiles.  

There are several reference databases commonly used in microbial functional profiling, 

including: (1) The Kegg Orthology database (KEGG)database 163 which provides a hierarchical 
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classification of genes and proteins based on their orthologous relationship. It includes 

annotations for metabolic pathways, genetic information processing, environmental information 

processing, cellular processes, and human diseases across various organisms, including bacteria, 

archaea, and eukaryotes. (2) The SEED Subsystems database (http://pubseed.theseed.org/) 309 is 

another database that provides a functional annotation system based on a hierarchical 

classification of subsystems, which are groups of functionally related genes involved in specific 

cellular processes or metabolic pathways. (3) The UniProt database is a comprehensive resource 

for protein sequence and functional information, and includes annotations for biological 

processes, molecular functions, and cellular components. (4) the EggNOG database 310 provides 

orthologous groups of proteins, and includes annotations for functional categories based on the 

Gene Ontology (GO) and other classification systems and (5) the COG database 311,312provides 

clusters of orthologous genes across prokaryotes, and includes functional annotations based on 

a functional classification system. Different databases may be more suitable for different types 

of microbial communities or research questions, and it is important to carefully evaluate the 

quality and completeness of the annotation in each database. Additionally, some studies may use 

multiple databases or combine functional profiling with other types of omics data to gain a more 

comprehensive understanding of microbial communities. 

Among these databases, KEGG is the most widely used reference system for functional 

annotation. Each KO term is assigned a unique identifier and includes information on the 

corresponding genes and proteins, as well as links to related pathways and functional categories. 

To perform microbial functional profiling using KEGG, the metagenomic sequencing data is first 

analyzed to identify the genes and proteins present in the sample. These genes and proteins are 

then annotated with KO terms based on their functional annotation, and the abundance of each 

KO term is quantified. The resulting KO abundance profile can be used to identify the functional 

pathways and biological functions present in the microbial community. By comparing the KO 

profiles of different microbial communities, researchers can gain insights into the functional 

differences between these communities and how they may be influenced by various factors.  

While KEGG Orthology (KO) terms are a widely used reference system for microbial functional 

profiling, there are some limitations to their use. One of the limitations is that KO terms are 

organized into hierarchical categories, which may not always reflect the complexity and diversity 

of microbial metabolic pathways. Some pathways may be split into multiple categories, while 

others may be grouped together in a single category, leading to potential inaccuracies in 

functional profiling. Furthermore, KO terms are based on the reference database and annotation 

methods used, which may vary across studies and lead to inconsistencies in functional profiling 

results. Different databases may also use different terminology and organization, making it 

challenging to compare results across studies. Lastly, functional profiling using KO terms does 

not provide direct information on gene expression or protein activity, which may be important 

for understanding the functional dynamics of microbial communities. 

http://pubseed.theseed.org/
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Even though the KEGG database is continually updated and curated, it may not include all 

microbial genes and functions, and some annotations may be incomplete or inaccurate. This can 

lead to false positives, where genes are incorrectly annotated with specific functions, or false 

negatives, where genes with important functions are not annotated. Another limitation is the 

potential for redundancy and overlap between KO terms, which can complicate the interpretation 

of the results. Some KO terms may also be highly specific to certain organisms or metabolic 

pathways, which can limit their usefulness in broader comparisons between microbial 

communities. To address these limitations, researchers may need to carefully evaluate the quality 

and completeness of the functional annotation in the KEGG database, and consider using 

alternative databases or annotation methods to complement or validate their results. 

3.2.6. Functional analysis methods 

One common problem in predicting functional profiles from 16S rRNA gene analysis is the lack 

of direct functional information 157,213,313. The taxonomic assignment of 16S rRNA gene 

sequences can provide insight into the composition of a microbial community but it does not 

necessarily provide information about the functional capabilities of the community or functional 

genes or pathways present. For example, two microbial communities that are taxonomically 

similar may have vastly different functional capabilities due to differences in gene expression or 

environmental conditions 314,315. Therefore, prediction of functional profiles from 16S rRNA 

gene data relies on statistical inference and machine learning algorithms that use the taxonomic 

information as a proxy for functional potential. Two commonly used methods for predicting 

functional profiles from 16S rRNA gene sequences are distance-based methods and phylogenetic 

methods 157,316. While these approaches have shown promise, they are still subject to the same 

limitations as taxonomic assignment based on 16S rRNA gene sequences, and caution should be 

exercised when interpreting the results.  

 

3.2.6.1. Distance-based algorithms 

Distance-based algorithms rely on computing the similarity between OTUs based on their 

representative sequences and a precomputed distance matrix. The distance matrix stores the 

pairwise distances between all the OTUs under consideration, where a shorter distance indicates 

a greater degree of similarity. Following this, the most functionally similar reference OTUs are 

used to derive the resulting functional profile. The similarity is typically pre-computed and then 

stored in a distance matrix so that the search can be completed more quickly. The OTUs are 

represented in the rows and columns of the distance matrix, and the numbers within the matrix 

reflect the distance between OTUs in the rows and columns that correspond to those numbers. 

The shorter the distance, the greater the degree of similarity between the OTUs. There are a 

variety of approaches that can be taken in order to compute the degree of similarity between 

OTUs. Pairwise alignment is a traditional method which compares two sequences by aligning 

them and counting the number of matches, mismatches, gaps, and other variations between them. 

The second method is multiple sequence alignment which compares more than two sequences 
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and computes a consensus sequence that represents the similarities and differences between 

them. The third method is clustering which groups sequences based on their similaritie using 

different algorithms such as hierarchical clustering, k-means clustering, and fuzzy clustering. 

 

Phylogenetic analysis: This method involves constructing a tree-like representation of the 

evolutionary relationships between sequences. Phylogenetic analysis can provide insights into 

the evolutionary history and divergence of different sequences. 

 

Machine learning: This method involves using algorithms to learn patterns and relationships 

between sequences and their functional profiles. Machine learning can be used to classify 

sequences based on their functions or predict functional properties from sequence data. 

 

3.2.6.2. Phylogenetic tree-based algorithms  

A phylogenetic tree, also known as a graph in which nodes represent different species, depicts 

the evolutionary relationships between different organisms and serves as the foundation for this 

particular group of methods.  

These can be used to predict the functional profiling of microbiomes by inferring the functional 

capabilities of bacterial taxa based on their phylogenetic relationships with other taxa that have 

known functions. Phylogenetic trees are constructed based on the genetic relations between 

different bacterial taxa, and the topology of the tree reflects the evolutionary relationships 

between those taxa. By comparing the phylogenetic tree of a microbial community to a reference 

database of bacterial genomes with known functions, researchers can infer the functional 

capabilities of the bacterial taxa in the community. 

One common method for inferring functional capabilities from phylogenetic trees is the use of 

ancestral state reconstruction 317 algorithms, which use the topology of the phylogenetic tree and 

the known functions of closely related bacterial taxa to predict the most likely functions of the 

ancestral taxa at each node in the tree. The evolutionary ancestor that is most likely to have been 

shared by two nodes is their common parent 188,318. This allows researchers to infer the functional 

capabilities of bacterial taxa that may not have been directly observed in the microbial 

community. While phylogenetic tree-based algorithms can provide valuable insights into the 

functional capabilities of microbial communities, it's important to note that they are based on 

inference and may not accurately reflect the true functional capabilities of individual bacterial 

taxa. Additionally, other methods such as metagenomic sequencing and metaproteomic analysis 

can provide more direct information about the functional capabilities of microbial communities 

There are two categories of approaches to choose from when building a phylogenetic tree. 

Methods based on the distance matrix first precompute the distance matrix that exists between 

all sequences, and then cluster the sequences in order to compute the tree in such a way that the 

distance that exists between clustered nodes is as short as it can possibly be. 

https://paperpile.com/c/G11r3b/WnWT
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3.2.7. Introduction to metagenome prediction tools 

3.2.7.1. PICRUSt 

PICRUSt stands fro Phylogenetic examination of communities through the reconstruction of 

unobserved states and is a software package written in Python and R. It is freely available under 

the GNU General Public License. 

Fig. 13 illustrates the complete workflow of PICRUSt. The entire workflow can be divided into 

two main parts: Gene content inference and metagenome inference. The GG database is utilised 

by PICRUSt, more specifically versions 13.5. The use of GG is the tool's most significant 

drawback. GG is an outdated database that is no longer being maintained, which means that any 

results obtained through the use of PICRUSt will also be out of date. Despite this, PICRUSt 

continues to find widespread application across a variety of studies 319–322 . 

 

Figure 13: Workflow of two main methods in PICRUSt. The gene content inference 

workflow as well as the metagenome-inference workflow. The gene content inference 

workflow uses a reference OTU tree (operational taxonomic units) and a table of gene 

content. The gene content table lists the genes that are included in reference OTUs. It also 

includes information about known gene content. The gene content inference workflow uses 

this information to predict gene content for OTUs with unknown gene content. It also 

includes predictions of marker gene number. This workflow produces a table of the 

predicted gene content for all OTUs within the reference tree. The metagenome-inference 

workflow uses an OTU table. This contains the counts of OTUs per-sample, the copy 

number of each marker gene, and the gene contents of each OTU created by the gene 

https://paperpile.com/c/G11r3b/5yKZ+nrCw+2zwl+mHnG
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content analysis workflow. The metagenome inference workflow uses this information to 

generate a metagenome table, which includes counts of gene families per sample. This 

figure is originally from Predictive functional profiling of microbial communities using 16S 

rRNA marker gene sequences. License was requested and obtained under No: 

5517000514162 from Springer Nature.  

Gene content inference 

PICRUSt gets the entire reference tree from GG and precomputes the KO terms profiles in this 

stage. The outcome is a KO terms profile for each and every bacterium in GG. This step is 

independent of the sample size and only performed once. The designers of PICRUSt 

precalculated the data for GG versions 13.5 before publishing the results on the PICRUSt website 

for download. 

To forecast unknown functional profiles, the gene content table from IMG, which contains 

functional profiles for known genomes, is employed. The reference OTU tree is compared to the 

gene content table in order to identify sequences with an uncertain functional profile. Then, a 

technique for ancestral state reconstruction is employed to generate a phylogenetic tree 

containing all OTUs from the reference tree. For OTUs without a known functional profile, an 

estimated profile is derived using the provided OTU's position in the phylogenetic tree and the 

functional profiles of the OTUs nearest to it. 

Although the PICRUSt website provides instructions for gene content inference with data from 

any database of the user's choosing, in practice it is difficult and time-consuming to execute all 

of the processes. The designers of PICRUSt thus developed PICRUSt2 157, which differs from 

PICRUSt primarily in its support for multiple reference databases. 

Metagenome inference 

This phase takes an OTU table that was provided by the user and, with the help of the gene 

content table from the step before it, predicts the metagenomic content of the sample that was 

provided. The prediction is made by adding up all of the functional profiles that correspond to 

the OTUs that are found in the input table and taking into account how abundant those OTUs 

are. This was accomplished in the previous phase. Since PICRUSt cannot cope with OTUs on 

this level that have unknown functional profiles, the provided OTUs have to be closed-reference 

chosen against the desired version of GG. PICRUSt provides a script that, in the event that the 

input table was not close-reference chosen, will correct the input table by eliminating all OTUs 

that are not featured in the precomputed table. 

PICRUSt's strengths lie in its transparency and its well-documented design. Disadvantages 

include dependence on the GG database, challenges in switching to a new reference database, 

and the mandate that all input data be closed-reference chosen against GG. 

Developers of PICRUSt introduced index called nearest sequenced taxon index (NSTI) which is 

to evaluate the novelty of organisms within an OTU table with respect to previously sequenced 

https://paperpile.com/c/G11r3b/K6vxH
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genomes. The NSTI provides an estimate of how closely related the organisms in a microbial 

community are to those that have been sequenced and are therefore available in reference 

databases. A lower NSTI score indicates that the microbial community is closely related to the 

sequenced organisms, while a higher NSTI score indicates that the community is more distantly 

related. 

3.2.7.2. PICRUSt2 

PICRUSt2 is the most recent version of the PICRUSt program. It has the same fundamental 

capabilities as PICRUSt, but the user-provided reference data makes it much simpler to put those 

capabilities to use. 

 

 

Figure 14: Simplified workflow of PICRUSt2. The PICRUSt2 method involves several 

steps, starting with the phylogenetic placement of marker gene sequences onto a reference 

tree. This is followed by hidden-state prediction, which uses machine learning algorithms 

to infer the presence or absence of specific genes and pathways based on the observed 

marker gene abundances. Finally, sample-wise gene and pathway abundance tabulation is 

performed to generate a table of predicted gene and pathway abundances for each sample 

in the dataset. (Source: own work) 

When compared to PICRUSt1’s documentation, PICRUSt2’s documentation is significantly 

more comprehensive and informative. Fig. 14 provides a visual representation of the flow of 

data. The gene content inference of PICRUSt2 occurs in aligning sequence to EPA method while 

the inference of the metagenome occurs in the following steps. Users have the option of carrying 

out each stage separately or the pipeline in its entirety. PICRUSt2 gives users the option to either 
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offer their own reference data or select the computing method and specify its parameters through 

the use of command line arguments. 

PICRUSt2 requires more resources than PICRUSt did when it was first released. A minimum of 

16 GB of RAM is required to run the first phase of the PICRUSt2 pipeline, which is the alignment 

and tree building stage; however, depending on the input data, even that minimum may not be 

sufficient. 

3.2.7.3. Tax4Fun 

Tax4Fun 323 is an open source R tool that utilises the SILVA database as reference. It can estimate 

the functional capabilities and metabolic characteristics of a metagenome. 

Tax4Fun employs a different method than PICRUSt for OTUs with uncertain profiles. In contrast 

to PICRUSt, which constructs the ancestral tree using the nearest neighbour method, Tax4Fun 

includes a sequence similarity check. Since there is always a nearest neighbour in a tree, 

PICRUSt connects all OTUs, even if their distances are great. Tax4Fun joins the nearest 

neighbours and then applies a linear transformation if the sequences share a minimum degree of 

similarity. Tax4Fun should therefore be more effective for metagenomes including a high 

number of poorly described bacteria. 

The comparison between PICRUSt and Tax4Fun [30] demonstrates that Tax4Fun is more 

accurate. Since the two programs use different reference databases, this could be due to the 

superior quality of the SILVA database data compared to the GG database data. To conclusively 

demonstrate that the Tax4Fun method is more efficient, a comparison using the same database 

would be required.  

The implementation in R is an advantage of Tax4Fun over PICRUSt. Tax4Fun is a R package, 

thus it may be used on any operating system that has R installed. In contrast, PICRUSt must be 

installed and used on a Linux-based machine. RStudio, R's simple and intuitive user interface, is 

more popular among non-informatics users than Python. Tax4Fun's reference data come from 

the SILVA database, which is more current than GG in PICRUSt. 

3.2.7.4. Tax4Fun2 

Tax4Fun2 158 is a package for R that is used for predicting functional profiles and functional gene 

redundancies in prokaryotic communities using 16S rRNA gene sequences. The package has 

been shown to be highly accurate and robust, with higher accuracy compared to other tools such 

as PICRUSt and Tax4Fun. The functional predictions in Tax4Fun2 (Fig. 15) summarizes the 

user-supplied OTU table based on the results of the nearest neighbour search. A summary table 

is used to generate a specific association matrix that only contains the functional reference 

profiles of the nearest neighbors. By combining the abundance information from the OTU table 

and functional information from the association matrix, a sample-specific functional profile is 

created. The predicted profiles are then summarized based on KEGG pathways, with only OTUs 

https://paperpile.com/c/G11r3b/Fxg7U
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meeting a similarity threshold (usually 97%) included in the functional prediction. The unused 

taxonomic units, which are those OTUs with no close match in the reference data, are recorded 

as the fraction of taxonomic units unused (FTU), along with the number of sequences assigned 

to them (fraction of sequences unused = FSU). High values of FTU and FSU may indicate lower 

quality of predicted metagenomes, as they suggest that the predictions were only made for a 

small proportion of the total microbial community. 

 

Figure 15: Entire workflow of Tax4Fun2. The Tax4Fun2 workflow commences with 

aligning 16S rRNA gene sequences against a reference database, which includes the user's 

supplied reference data. Following this, nearest neighbours are identified and OTU 

abundances are summarized based on the search outcomes for each sample. An association 

matrix (AM) is produced, comprising functional profiles of the references identified in the 

16S rRNA search. The summarized abundances and functional profiles stored in the AM 

are merged to predict a metagenome for each sample. Tax4Fun2 offers FTU (Functional 

Taxonomic Units) and FSU (Functional Sequence Units) values in the log file to provide 

insights into the community's functional diversity. To generate a habitat-specific dataset, 

Tax4Fun2 provides functions to functionally annotate prokaryotic genomes and to extract 

16S rRNA gene sequences. User-defined reference data sets can be generated and 

incorporated into the prediction. If many genomes are given, extracted 16S rRNA gene 

sequences can be clustered using the uclust algorithm as an optional step. This figure was 

originally published as Tax4Fun2: prediction of habitat-specific functional profiles and 

functional redundancy based on 16S rRNA gene sequences under Creative Commons 

Attribution 4.0 International license. 
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3.2.7.5. PanFP 

PanFP 159 is a computational method that reconstructs a pangenome from the 16S rRNA gene 

OTU of known genes and genomes pooled from the OTU’s taxonomic lineage The tool employs 

prokaryotic complete genomes acquired from the National Center for Biotechnology Information 

(NCBI) and maps KEGG orthologs (KO) terms to proteins via cross-reference ID mapping. This 

is accomplished using the UniProt KnowledgeBase (UniProtKB) database, which provides 

cross-reference ID mapping between NCBI Refseq and UniProt. The taxonomic lineage of a 

taxon is the set of nodes that need to be traversed from the root to the taxon 324. The method 

constructs a pangenome for each OTU by generating a superset of all genes that are present in 

organisms taken from the dataset of prokaryote genomes at the taxonomic lineage corresponding 

to the OTU in question. As a consequence of this, the OTUs that belong to the same taxonomic 

lineage share the same pangenome. After that, it accumulates functional compositions in the 

superset in order to construct a functional profile of the pangenome. In the last step of the process, 

the OTU-sample table is transformed into a lineage-sample table by consolidating the 

frequencies of OTUs in a sample with the same lineage. This results in the creation of a function-

sample table, where the functional profiles of various lineages are combined using weights 

corresponding to the relative abundance of each lineage in the sample (Fig. 16). By accounting 

for the range of genomes present within a single taxonomic lineage, this approach enables a more 

accurate assessment of the functional capabilities of microbial communities. 

 

https://paperpile.com/c/G11r3b/D32P7
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Figure 16: Flow diagram of PanFP. PanFP is a computational tool used for predicting the 

functional potential of microbial communities using whole-genome shotgun sequencing 

data. It involves six steps as shown in the above workflow. In short, it starts with the input 

taxonomic table, trim the taxonomic lineage to a certain level and create a lineage-function 

table is created by mapping the predicted genes from the OTUs to functional categories 

using a reference database. This figure was originally published as PanFP: pangenome-

based functional profiles for microbial communities (open access) in BMC Research Notes 
159 under Creative Commons Attribution 4.0 International license. 

3.2.7.6. MetGEM 

The MetGEMs 162 toolbox utilizes genome-scale models to infer the metagenomic content from 

16S rRNA gene sequences, with a specific emphasis on annotating the metabolic functions of 

the human gut microbiome (Fig. 17). ASV abundance tables along with corresponding 

taxonomic groups were given as input. Default models such as k_core and e_core were chosen 

to predict KO terms and Enzyme Nomenclature (EC) abundances, respectively, which was 

previously shown to provide good estimation in typical situations 162. Since MetGEM does not 

provide pathway abundances, the output from MetGEM was subjected to the PICRUSt2 pathway 

prediction step.  
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Figure 17: A schematic workflow of a development MetGEMs toolbox. MetGEMs toolbox 

is divided into five distinct sections. Firstly, it involves the evaluation of the genome-scale 

models (GEMs) that are used in the framework. The second section pertains to the 

implementation of the MetGEMs network within the computational framework. The third 

section involves the validation capabilities of the MetGEMs toolbox using shotgun sequence 

data. The fourth section focuses on the MetGEMs toolbox's ability to assign enzyme 

function and related functional categories specifically in the context of the human gut 

microbiome. Finally, the fifth section concerns the annotation of putative enzyme functions 

in allergic disease, which is carried out using the MetGEMs toolbox. This figure is 

originally from MetGEMs Toolbox: Metagenome-scale models as integrative toolbox for 

uncovering metabolic functions and routes of human gut microbiome 162 (open access) in 

plos computational biology under Creative Commons Attribution 4.0 international license. 

3.2.8. Previous benchmarking studies in the literature  

To this day, there have only been a handful of studies that have been conducted to assess the 

accuracy of functional prediction tools based on 16S rRNA gene data 165,325–327. For instance, 

Djemiel et al. 326 conducted a study of one hundred previously published publications on 

functional predictions using a text mining approach. They then noted the drawbacks, one of 

which was the absence of reference genomes, particularly for soil ecosystems.  

https://paperpile.com/c/G11r3b/HjzDf+mvuBN+Dgj7+3Gd9d
https://paperpile.com/c/G11r3b/mvuBN
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There are also comparisons between tools and their predecessors. Although Aßhauer et al 323,328 

compared these tools against one another and to shotgun-sequenced data, they did so only using 

the four datasets listed in the PICRUSt1 release publication. Very few studies have employed 

both programs on their data, and the main aim was only to confirm the final results are agreed 

with each other. They failed to compare the accuracy of both the tools performed or even to note 

any underlying biases connected with either program 329,330. For instance, in their study, they 

obtained the same results using PICRUSt1 and Tax4Fun1, but PICRUSt1 also revealed a 

substantial difference in the abundance of genes encoding cellobiohydrolase between the 

treatment strategies 329.  

In addition to the authors of the Tax4Fun1 release publication, two other research groups also 

conducted benchmarking experiments to try to elucidate the differences between PICRUSt1 and 

Tax4Fun1. In one study contrasting PICRUSt1 and Tax4Fun1 on a single dataset, researchers 

discovered that while Tax4Fun1 made around 15% more functional assignments overall, 

PICRUSt1 performed better on assigning functions that Tax4Fun1 had overlooked 331. After 

considering the pros and cons of each method, they concluded that for the most accurate 

functional forecast, it was best to employ them both 331. In the other study, authors only compared 

their tool Piphillin with Tax4Fun1 and PICRUSt1 but not in comparison to one another 332.  

Sun et al. 165 examined the performance of three widely used metagenome prediction methods 

(PICRUSt, PICRUSt2, and Tax4Fun) across seven datasets containing paired 16S rRNA gene 

data and MGS data. Even though MGS data is not a genuine gold standard for functional activity 

in the microbiome as explained in earlier, it can be used as a ground truth to benchmark 16S 

rRNA gene functional prediction algorithms. The most common approach to compare the 

performance between functional prediction from 16S rRNA gene and MGS has been Spearman 

correlation. However, Sun et al. 165 discovered that inferred abundances exhibited a good 

Spearman correlation between 16S-predicted and MGS-derived gene abundances even when 

sample labels were shuffled. This demonstrated that functional profiles do not differ as much as 

changes in taxonomic composition would suggest and that correlation is not an appropriate 

performance metric for evaluating the effectiveness of functional prediction systems. In addition, 

the authors demonstrated that evaluating a specific contrast, i.e. the difference between two 

groups, with a Wilcoxon test resulted in p-values indicating a moderate Spearman correlation 

between 16S-predicted and MGS-derived genes and a very low correlation after sample 

permutation. In this study, the authors concluded that functional prediction methodologies were 

successful for humans but unsuccessful for other animals and environmental samples, and that 

core functions are more correctly represented than niche-specific activities. In this investigation, 

however, they found that differences in microbial composition and function are strongly linked 

to geographic location333.  

https://paperpile.com/c/G11r3b/dKbB+Fxg7U
https://paperpile.com/c/G11r3b/ReZy+dGP6
https://paperpile.com/c/G11r3b/ReZy
https://paperpile.com/c/G11r3b/75Xf
https://paperpile.com/c/G11r3b/75Xf
https://paperpile.com/c/G11r3b/vf8c
https://paperpile.com/c/G11r3b/Dgj7
https://paperpile.com/c/G11r3b/Dgj7
https://paperpile.com/c/G11r3b/tsMnl
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3.2.9. Importance of 16S copy number normalisation 

While using the 16S rRNA gene as a microbial community barcode gene comes with several 

benefits, it also has some limitations, such as the presence of biases during amplification and 

sequencing 334,335, the challenge of accurately identifying and categorizing short sequences 

taxonomically, and the lack of established benchmark studies to help with the quality control, 

filtering, and analysis of 16S sequence datasets obtained from new sequencing technologies 89,336. 

Another important bias in amplicon sequencing is the number of 16S rRNA gene copies which 

varies considerably, confounding the abundance prediction of abundance 337,338.  

There is a wide range of 16S copy numbers among bacteria with completely sequenced genomes 

(Fig. 18); for instance, Erythrobacter litoralis has only one copy, whereas Photobacterium 

profundum has fifteen 339,340. Because of this copy number variation, differences in the relative 

abundance of 16S gene sequences in an environmental sample depends on both differences in 

the abundance of various species as well as differences in genomic 16S copy number 341.  

 

Figure 18:  A breakdown of the various 16S rRNA gene copy levels found in bacterial 

population. Complete genome sequences were gathered from the NCBI and TIGR genome 

databases, the rrndb database, and the scientific literature (Source own work). 

This issue could be overcome by employing a single-copy protein-coding gene as a microbial 

barcode 342, such as rpoB, although such genes are not as extensively employed as the 16S rRNA 

gene , and all barcode genes and sequencing technologies are subject to bias. Despite its 

widespread use in environmental surveys, PCR amplification of 16S rRNA genes may not always 

be ideal. In these cases, metagenomic data can provide an alternative by allowing the use of 

genes with more stable copy numbers 343. Most evaluations of community diversity and 

https://paperpile.com/c/G11r3b/DdEu+f2tn
https://paperpile.com/c/G11r3b/crEI+hhdm
https://paperpile.com/c/G11r3b/Y6jVC+SwDUk
https://paperpile.com/c/G11r3b/OXsr+4zjZ
https://paperpile.com/c/G11r3b/Cl52
https://paperpile.com/c/G11r3b/6eql
https://paperpile.com/c/G11r3b/y5Xs
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composition rely on the assumption that the abundance of 16S rRNA gene sequences accurately 

reflects the abundance of the organisms possessing those sequences. The impact on estimates of 

microbial community structure of using 16S rRNA gene abundance as a proxy measure of 

organismal abundance, and the extent to which this assumption is justified, remain open 

questions. 

Several tools have recently been developed for predicting genomic copy numbers using 

phylogenetic methods 157 and based on sequenced genomes 344. rrnDB 122 provides precise and 

well-documented data on the copy numbers of rRNA operons across prokaryotes. Each entry for 

an organism in the rrnDB database contains comprehensive information that is directly linked to 

external databases such as the RDP 69, GenBank 242, PubMed and several culture collections. 

There are now 27,655 records for Bacteria (representing 7,203 species) and 448 records for 

Archaea (representing 348 species) in the most recent version (5.8) of rrnDB 122. 

3.3. Problem statement 

It thus remains an open question if metagenome prediction tools are also suited for more subtle 

contrasts related to human health. Moreover, Sun et al. 165 could not detect any performance 

differences between the tested methods, suggesting that a more comprehensive benchmark is 

needed to recommend guidelines for tool selection and to establish the limits of metagenome 

prediction tools in human disease research. Hence, we considered the most widely used 

metagenome prediction tools PICRUSt2 157, PanFP 159, Tax4Fun2 158 and MetGEM 162 in a 

systematic benchmark. We did not include Piphillin 160 as it is only available as a web server (the 

command line version is in the testing stage). We tested the reliability of the prediction tools 

using matched 16S rRNA gene and MGS human datasets obtained from different cohorts 

including KORA (type 2 diabetes) 345, FoCuS, PopGEN (obesity) 346, colorectal cancer (CRC) 
277 as well as simulation datasets for different functional categories. Our contribution is three-

fold: (i) considering human cohorts for type 2 diabetes, colorectal cancer and obesity, we tested 

if health-related differential abundance measures of functional categories are concordant 

between 16S-predicted and metagenome-derived profiles; (ii) using simulated data, we 

investigated if technical biases could explain the discordance between predicted and expected 

results; (iii) since 16S copy number is an important confounder in functional prediction, we 

investigated if a customised copy number normalisation with the rrnDB database could improve 

the results 122. According to our findings, the current metagenome prediction tools lack 

sensitivity to accurately identify health-related functional alterations in the microbiome, and 

therefore, their usage should be approached with caution. Additionally, we have observed 

notable variations in performance among the individual tools tested, and provide suggestions for 

selecting appropriate tools. 

https://paperpile.com/c/G11r3b/K6vxH
https://paperpile.com/c/G11r3b/DmJVp
https://paperpile.com/c/G11r3b/hpAe
https://paperpile.com/c/G11r3b/Sx1H
https://paperpile.com/c/G11r3b/ycVS
https://paperpile.com/c/G11r3b/hpAe
https://paperpile.com/c/G11r3b/Dgj7
https://paperpile.com/c/G11r3b/K6vxH
https://paperpile.com/c/G11r3b/D32P7
https://paperpile.com/c/G11r3b/OK2Mg
https://paperpile.com/c/G11r3b/D703
https://paperpile.com/c/G11r3b/VacRW
https://paperpile.com/c/G11r3b/5v0at
https://paperpile.com/c/G11r3b/JLg8G
https://paperpile.com/c/G11r3b/dqNY
https://paperpile.com/c/G11r3b/hpAe
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3.4. Materials and methods 

3.4.1. Population-based cohorts  

In total, we selected five cohorts with paired 16S rRNA gene and MGS data for functional 

prediction analysis. The CRC dataset was downloaded from SRA project number PRJEB6070. 

Datasets of FoCuS, KO termsRA345 and PopGen 346 are under controlled access due to the 

informed consent given by the cohort study participants. KORA data are available upon request 

from KORA (https://epi.helmholtz-muenchen.de/). Dataset for FoCus and PopGen are available 

upon request (https://portal.popgen.de). For the prospective KORA cohort (2018), sample 

preparation and sequencing of the V3V4 region in paired-end mode on an Illumina MiSeq was 

performed by the ZIEL – Core Facility Microbiome 347. For the FoCus cohort and PopGen cohort, 

a detailed overview of the cohorts is given in Table 3 and the workflow of the benchmark analysis 

is described in Fig. 19 

https://paperpile.com/c/G11r3b/5v0at
https://paperpile.com/c/G11r3b/JLg8G
https://epi.helmholtz-muenchen.de/
https://portal.popgen.de/
https://paperpile.com/c/G11r3b/ZL9Gm
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Figure 19: Overall benchmarking workflow to compare and evaluate the performance of 

functional inference tools from 16S rRNA gene sequences to metagenomics.. In this 

approach, both public and simulated paired MGS-16S rRNA gene datasets were chosen. 

For MGS, the HUMAnN 3 pipeline was used to retrieve the functional profiles and 

PICRUts2, Tax4Fun2, PanFP and MetGEM for 16S rRNA gene datasets. Wilcoxon rank-

sum test was performed evaluating the null hypothesis for each dataset and comparing the 

significant KO terms between the two techniques (Source own work). 
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3.4.2. Bioinformatics pipeline for processing of 16S-rRNA Data  

The raw sequencing reads were processed using QIIME2 91 First, the paired-end reads with 

sufficient quality scores were imported into QIIME2, and the primer sequences were removed 

by trimming the first 17 and 20 bases from the forward and reverse reads, respectively. Then, the 

denoising algorithm DADA2 96, was used to infer Amplicon Sequence Variants (ASVs) from the 

reads while filtering out potential chimeras. A sample metadata file was used to add information 

about the experimental conditions associated with each sample. Taxonomy was assigned to the 

resulting ASVs using the SILVA database 101 and the ASV was converted into a biom file format 

using the biom-convert command. 

Table 3:  Overview of disease cohorts 

Cohort 

name  

geographi

c location 

reference, 

sample size 

(paired 

WGS and 

16S) 

disease focus  References Public

ation 

KO RA Augsburg

, Bavaria, 

Germany 

60 Diabetes vs 

Healthy 

https://epi.helmholtz-

muenchen.de/ 

345 

FoCus Kiel, 

Schleswi

g-

Holstein, 

Germany 

101 Healthy vs 

Obese 

https://portal.popgen.

de 

348 

Popgen Kiel, 

Schleswi

g-

Holstein, 

Germany 

86 Healthy vs 

Obese 

https://portal.popgen.

de 

346 

CRC  G

ermany 

182  CRC and 

Healthy 

https://www.ncbi.nlm.

nih.gov/bioproject/?te

rm=PRJEB6070 

277 

 

https://paperpile.com/c/G11r3b/5O5sq
https://paperpile.com/c/G11r3b/WwuIi
https://paperpile.com/c/G11r3b/PYawn
https://epi.helmholtz-muenchen.de/
https://epi.helmholtz-muenchen.de/
https://paperpile.com/c/G11r3b/5v0at
https://portal.popgen.de/
https://portal.popgen.de/
https://paperpile.com/c/G11r3b/II31Q
https://portal.popgen.de/
https://portal.popgen.de/
https://paperpile.com/c/G11r3b/JLg8G
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJEB6070
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJEB6070
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJEB6070
https://paperpile.com/c/G11r3b/dqNY
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3.4.3. Generating functional prediction profiles  

The ASV tables along with corresponding fasta sequences obtained from the denoising step were 

given as input into PICRUSt2, Tax4Fun2 whereas only ASV tables along with taxonomic lineage 

were given to PanFP and MetGEM. PICRUSt2 was used with a default cutoff NSTI of 2.0 and 

converted the obtained prediction table functions to relative abundances. Each method has its 

own method to perform 16S copy number normalisation. The BLASTn command in Tax4Fun2 

was performed with the default setting of 97% similarity and the precalculated files with the 

default settings. After generating the prediction profile, the relative abundances were directly 

output by Tax4Fun2, so there was no need to perform any transformation. The output of the 

make FunctionalPredictions() function in the Tax4Fun2 script was modified so that it now 

provides the ratio of used sequences rather than the default ratio of unused sequences. PanFP 

and MetGEM were also followed as per the documentation.  

3.4.4. Functional profiling of metagenomics 

KneadData 0.7.4 was employed for sequence quality control and removal of human reads, while 

bacterial gene abundances were computed using HUMAnN 3 304 through nucleotide-based 

alignment against the Chocophlan database 349. Gene abundance tables were then grouped by the 

uniref90_ko command and relative abundance was calculated using humann_renorm_table 

command in the HUMAnN 3 pipeline, respectively.  

3.4.5. Customised normalisation using rrnDB 

To test the effect of copy number normalisation on the functional prediction, we repeated the 

entire workflow as mentioned above, replacing the gene copy number normalisation step by 

obtaining the copy numbers from rrnDB. We processed rrnDB with the PICRUSt2 place_seq.py 

command (see https://github.com/mruehlemann/16s_cnv_correction_databases for details) and 

used the resulting abundance tables as input for other tools by skipping their built-in copy number 

normalisation steps.  

3.4.6. Validating prediction tools with shotgun metagenomic sequencing data 

We used two methods to evaluate the consistency and accuracy of functional prediction tools. It 

is important to mention that a direct comparison of the functional profiles produced by all four 

tools is nearly impossible due to various modifications made to the KEGG Orthology subsequent 

to the development of PICRUSt, Tax4Fun2, PanFP and MetGEM. Also, converting raw counts 

to relative abundances is important in microbial functional profiling because microbial 

communities can vary widely in composition and sequencing depth. Without normalization, 

differences in sequencing depth can lead to misleading results, making it difficult to compare the 

functional potential or activity of different microbial communities. By converting counts to 

relative abundances, we can compare the proportional representation of different functional 

categories or taxa across different samples, tools, or datasets in a more meaningful way. This 

https://paperpile.com/c/G11r3b/GgJYE
https://paperpile.com/c/G11r3b/OdlSE
https://github.com/mruehlemann/16s_cnv_correction_databases
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allows us to identify patterns in the functional potential or activity of microbial communities and 

to make more accurate comparisons between different samples or datasets. As a result, both the 

functional profiles predicted by metagenome prediction tools and those obtained through 

metagenomic shotgun sequencing were transformed into relative abundances before being 

compared. For metagenomics, the counts were converted into relative abundance using the 

renorm table function. We evaluated the Spearman correlation between the gene composition 

predicted by the tools and that obtained from metagenome sequencing, taking into account only 

the functions that were present in both the metagenomic and predicted profiles for each 

comparison. 

3.4.7. Cohort-wise differential abundance analysis between cases  

As proposed by Sun et al. 165, differential analysis is better suited to assess whether metagenome 

prediction tools are able to detect biological variation between samples. We further analysed the 

consistency of metagenome prediction tools and metagenome sequencing in terms of p-values 

they generated for null hypotheses of no association with metadata. Following their approach, 

we thus tested for differential KO terms abundance between sample groups. In contrast to Sun 

et al. we focused here on the comparison of disease and health as group labels, which we expect 

to be a challenging scenario. We removed KO terms with low prevalence (< 5% of samples). 

After filtering, overlapping KO terms and pathway terms between prediction tool and MGS were 

retained for differential analysis. For this purpose, a Wilcoxon test of the two distinguishable 

groups (disease versus control) was conducted in each dataset for both default and custom 

normalisation. Using the CRC dataset, we compared the KO terms of abundance between cancer 

(n=41) and healthy tissues (n=50). Using the Popgen and FoCuS datasets, we compared the 

differentially abundant KO terms between obese and healthy samples. Patients with a body mass 

index (BMI) > 30 were considered as obese and as healthy otherwise. For the KORA dataset, 

differentially abundant KO terms were tested between type 2 diabetes and healthy controls. The 

Wilcoxon rank-sum test was applied to each cohort to test the difference between groups for 

MGS and prediction results and predicted KO terms abundance and significant KO terms with a 

p-value < 0.05 were extracted. Overlapping significant KO terms between MGS and predicted 

tools were extracted and compared to evaluate the performance of prediction tools. 

3.4.8. Simulation dataset and processing 

In addition to the methods recommended by Sun et al. 165, we evaluated the functional profiling 

performance using 40 synthetic samples from the 2nd CAMI Challenge 350,351. These represent 

typical microbiomes from four human body sites such as gut (n=10), skin (n=10), oral (n=10) 

and air (n=10). Metagenome functional profiling of simulated datasets were obtained as 

described under the shotgun processing steps. 16S rRNA gene sequences were reconstructed in 

two steps. First, 16S long reads were filtered with the help of filterReads (reference) using 

SILVA 101 as a reference database. Once the 16S rRNA gene sequences were obtained, functional 

profiling using all four tools were predicted as described above. We compared the functional 

https://paperpile.com/c/G11r3b/Dgj7
https://paperpile.com/c/G11r3b/Dgj7
https://paperpile.com/c/G11r3b/59t6Q+2wO2l
https://paperpile.com/c/G11r3b/PYawn
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prediction with the metagenome profiles and tested their agreement in principal component 

analysis (PCA). 

3.5. Result 

3.5.1. Correlation is not a suitable performance measure for metagenome prediction tools 

Sun et al. 165 previously investigated the performance of metagenome prediction tools and 

observed that the comparably high Spearman correlation values are not affected by label 

permutation. We could confirm these findings on five independent disease cohorts where 

PICRUSt2, Tax4Fun2 and PanFP achieved Spearman correlation values ranging from 0.65 to 

0.75 (Fig. 20) which did not drop drastically after sample label permutation. MetGEM performed 

slightly worse than its competitors. Using rrnDB copy number normalisation, PICRUSt2, 

Tax4Fun2 and MetGEM did not show much improvement, while the performance of PanFP was 

raised to the level of the top performing tool PICRUSt2. Since correlation analysis is not suited 

to robustly assess the performance of existing methods, alternative measures are needed. 

 

Figure 20: Spearman correlations plot between metagenome predictions and shotgun 

metagenome sequencing in unpermuted and permuted datasets. The analyses were 

conducted on both unpermuted and permuted datasets. To validate the functional 

prediction tools, the metagenome prediction performance was compared against the gold-

standard shotgun MGS. The gene composition was estimated from the metagenome 

sequencing and predicted using various tools such as PICRUSt2, Tax4Fun, PanFP, and 

MetGEM. The analyses were conducted with default and customized normalization 

methods on unpermuted (blue) and permuted (red) data in all datasets. In each of the 100 

permutations, the abundance of each gene was independently permuted across samples. 

(Source own work).  

https://paperpile.com/c/G11r3b/Dgj7
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3.5.2. Metagenome prediction tools except MetGEM show high specificity in predicting KO 

terms 

Alternatively, tool performance can also be assessed by considering which of the predicted KO 

terms is also identified in MGS. We would assume that KO terms that are uniquely identified by 

prediction tools represent false positives, whereas missing KO terms that are reported by MGS 

represent false negatives, allowing us to compute precision, F1, sensitivity and specificity. 

Overall, Tax4Fun2, PICRUSt2 and PanFP showed similar performance in terms of F1, accuracy 

and recall (sensitivity) in contrast to MetGEM which showed poor performance (Fig. 21). 

However, MetGEM showed high specificity compared to other tools at the cost of low recall.  

3.5.3. Metagenome prediction tools show low accuracy in predicting differentially abundant KO 

terms 

It is possible to compare the sets of significant KO words identified by different tools and assess 

the level of overlap and consistency of the results. Multiple tools may identify the same set KO 

terms. This indicates that the terms are likely to be associated with the biological processes of 

the samples. The predictions can therefore be more accurate. If there is a lack in overlap between 

significant KO terms identified using different tools, it could be an indication that the predictions 

are not consistent. Further investigation may be necessary to determine the biological processes 

and pathways involved. The overlap of significant KO terms among different functional 

inference tools or MGS results can serve as a valuable indicator of the accuracy and provide 

valuable insight into the underlying biology and processes of the samples. 

 

Analyzing several cohorts that used different tools to predict microbial communities 

functionally, it was discovered that PanFP, Tax4Fun2, PICRUSt2 and PanFP had different 

degrees of overlap with the MGS results. The CRC cohort shows the greatest overlap of 

significant KO terms with MGS results, followed closely by Tax4Fun2 (Fig. 22) and PanFP. 

Other cohorts, including KORA and FoCus, saw significant KO term overlaps drop significantly. 

The KORA cohort has Tax4Fun2 having the highest overlap of significant KO term (n=112) 

followed by PICRUSt2 and custom normalization (n=108), and PICRUSt2(n=66). PanFP with 

custom normalization (n=94) had a higher level of overlap than PanFP without default 

normalization. (n=13). The overlaps in the Popgen and FoCus cohorts decreased significantly as 

only a few overlapping terms of KO were found. The overlap of significant terms in KO terms 

was found to be high in Tax4Fun2 and PICRUSt2 using custom normalization. It was interesting 

to note that PanFP and MetGEM had poor overlaps of KO terms among all cohorts. It is worth 

noting the low overlap of KO terms between MetGEM results and MGS across all cohorts. This 

suggests that these tools may be less reliable in functional prediction of microbial communities. 

 

In the CRC cohort, PICRUSt2 shows the largest overlap of significant KO terms (n=40) with 

MGS results. In the FoCuS cohort, Tax4Fun2 has the largest overlap of significant KO terms 

(n=41) followed by Tax4Fun2 with custom normalization (n=27), PICRUSt2 with custom 

normalization (n=26) and PICRUSt2 (n=23). In the Popgen cohort, PICRUSt2 and PanFP with 
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customized normalization showed a comparatively large overlap of significant KO terms (n=21) 

followed by Tax4Fun2, PICRUSt2 and Tax4Fun2 with customized normalization (n=13, 12, 11). 

In the KO termsRA cohort, the largest overlap of significant KO terms is reported in Tax4Fun2 

followed by Tax4Fun2 with customized normalization, PICRUSt2, PICRUSt2 with customized 

normalization and PanFP with customized normalization. PanFP and MetGEM showed very 

poor overlap of KO terms across all cohorts.  

 

Figure 21: Comparison of detected KEGG orthologs between predicted metagenomes and 

MGS. Precision, F1, and Recall are reported for each category compared to the MGS data. 

PanFP, PICRUSt2 and Tax4Fun2 show comparable and relatively consistent performance 

across data sets while MetGEM shows poor recall. (Source: own work) 
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Figure 22: The overlap of significant KO terms between different functional inferred tools 

and MGS results in the CRC cohort. Overlapping significant KO terms can be used as an 

indicator of the accuracy of the predictions quantitatively (Source: own work). 

Next, we examined the ability of metagenomic data to detect differences in abundance between 

the predicted genomic content (Fig 23), and used evaluation metrics like F1 score, recall, and 

precision. We used the CRC dataset to compare the abundance of KO terms in cancer patients 

and healthy patients. This was done using both functional profiling from metagenome and 

inferred functions. All inferred tools had a low F1 score. While there were no significant 

differences in F1 scores between PICRUSt2, Tax4Fun, and PanFP for both normalization 

techniques, MetGEM had a slightly lower F1 score. We found that all cohorts except CRC had 

very few overlapping significant KO terms. This was also evident in F1 score and recall scores, 

as well as precision scores. All inferred tools had low precision, which suggests that they were 

making false positive predictions. This means that the methods were correctly predicting certain 

features that weren't actually present in the metagenome. This could be due either to limitations 

in the prediction tools or problems with the quality data used to train and test the models. 
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Figure 23: Comparison of significantly differentially abundant KO terms between 

predicted metagenomes and MGS. F1, recall and Precision scores are reported for each 

category compared to the MGS data. Precision corresponds to the proportion of significant 

KOs for that category also significant in the MGS data. Recall corresponds to the 

proportion of significant KO terms in the MGS data also significant for that category. The 

F1 score is the harmonic mean of these metrics. (Source: own work) 

3.5.4. Performance of functional inference tools at the level 1 KEGG functional categories 

We calculated the correlation between the Pearson correlations between the p values that were 

generated by testing null hypotheses for no association with the metadata for the WGS-16S 

paired datasets for each cohort using Wilcoxon rank Sum test to analyze their consistency. To 

do this, we first extracted p-values from each KO term. Next, we grouped KO terms into KEGG 

functional categories. Finally, we calculated Spearman correlations between the p-values derived 

from differential analysis in metagenome predictions and MGS results. Because level 3 and 4 

functional categories have different numbers of KO terms, we decided to only perform 

correlation analysis on level 2. This reduces potential biases due to variations in the number KO 

terms within different categories and allows for a more robust analysis. 

 

3.5.5. Metagenome prediction performance varies widely across functional categories 

Our results highlighted the poor performance of prediction tools when we looked into overall 

differentially abundant KO terms. We next investigated if prediction performance varies across 

functional categories, suspecting that some categories may be easier to predict than others. We 

collapsed KO terms into level one KEGG functional categories and calculated the Spearman 

correlation between p-values obtained from metagenome prediction and MGS results (Fig. 24). 

We decided to perform correlation analysis only on level one functional categories as level two 
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and level three functional categories vary considerably in the number of KO terms which may 

affect the correlations. We observed poor correlation between p-values of MGS and prediction 

tools, where PanFP and PICRUSt2 with customised normalisation showed improved results 

which indicates an advantage of 16S copy number normalisation using rrnDB in this scenario. 

As expected, MetGEM showed very few significant correlations for all types of KEGG functional 

categories. Most of the genes predicted by metagenome prediction tools but not detected by 

metagenome sequencing belong to the biosynthesis of secondary metabolism, metabolism of 

terpenoids and polyketides, and xenobiotics biodegradation and metabolism. 

We compared the correlation of the p-values derived from metagenome with those derived from 

inferred tool for different functional categories within the KEGG databank. This result showed 

poor correlation and no pattern in inferred tools' performance towards specific functional 

categories across all cohorts. It was found that PanFP, Tax4Fun2, PICRUSt2, and Tax4Fun2 

performed better than MetGEM in CRC and KORA cohorts.This is mainly due to the positive 

correlation between the p values obtained from metagenomes compared to those from inferred 

instruments. Notably, MetGEM had a negative correlation with human disease. This could 

indicate that the tool is not as efficient in identifying genes and functional pathways that are 

related to human illnesses. The overall performance of these tools dropped even further in the 

Popgen and FoCuS cohorts. Negative correlations were seen in PICRUSt2, Tax4Fun2 as well as 

PanFP for genetic information processing. 

MetGEM also revealed a high correlation in the processing and genetic information KEGG 

categories. The low number of predicted KO terms in MetGEM' might have influenced the 

overall correlation, compared to other tools that have high KO terms. 

All tools identified more KO terms within the Metbolism functional categorie followed by 

B09180 Brite hierarchies. These hierarchies are not included in pathway, brite, or 09130 

environmental Information Processing. 09120 Genetic Information Processing. 09140 Cellular 

processes. 09160 human diseases. 09150 organismal system. Metabolism functional categories 

contained more KO terms than MetGEM detection. This indicates that the tool is more effective 

at identifying genes and functional pathways associated with this category. Prediction of low KO 

terms within a particular KEGG group may indicate that the tool has less success in identifying 

genes and functional pathways. A low number of predicted KO terms could limit your ability to 

draw meaningful conclusions, identify potential targets, or identify biomarkers. 
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Figure 24: Spearman correlations between p-values obtained from prediction tools and 

metagenome sequencing for level 1 KEGG functional categories including cellular process, 

genetic information processing for CRC cohort. Negative correlations are not shown. 

(Source: own work) 

We decided to concentrate on disease-specific KO terms as they are better suited for evaluating 

the performance of inferred instruments, since level 1 KEGG functional categories could include 

terms that are too generalized. We focused on KO terms that are classified under pathways in 

cancer and biosynthesis and metabolism glycans, lipid metabolic, for the CRC cohort. (Fig 25 

(a)). These KO terms have been reported to be enhanced in CRC patients. In order to see if the 

same KO term can be predicted in an inferred tool, we selected significant KO terms (p value 

0.05). This was useful in comparing the performance of inferred tools when predicting disease-

specific terms for KO terms within the context of CRC. PanFP was the most significant overlap 

with MGS in the category of biosynthesis and metabolism. Tax4Fun2 and PICRUSt2 followed 

(default and customized normalization). There were only three significant KO terms that 

overlapped between MGS, MetGEM. The study also compared KO terms in lipid metabolic and 

found that PICRUSt2 was the most overlapped with MGS. Tax4Fun2 followed closely by PanFP 

(default/custom normalization). (Fig. 25(b)). 

We focused on KO terms that are classified under pathways of carbohydrate metabolism (Fig 26 

6 (a&b)). Similar to CRC we compared significant KO Terms (p-value 0.05), obtained from 

MGS results with the KO terms derived from inferred instruments. Only PICRUSt2 with default 

and custom normalization showed significant overlaps in KO terms for the pathway of 

carbohydrate metabolic. This suggests that other inferred tools might not be able to predict 

disease-specific KO terms in relation to carbohydrate metabolism within the context of the 

KORA cohort. In the pathway of amino acids metabolism, Tax4Fun2 with default and custom 

normalization showed very few significant KO terms that overlapped with MGS. This indicates 

that other inferred tools might not be able to predict disease-specific KO terms in relation to 

amino acid metabolism within the context of the KORA cohort. 
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The FoCus cohort studies on healthy vs obese have focused our attention on KEGG functional 

categories like carbohydrate metabolism and amino acid metabolic pathways. These categories 

have been found to be enriched in obesity (Fig 27, 28). The overall number of KO terms in both 

cohorts fell signifanylt between metagenomes and inferred instruments. Tax4Fun and PICRUSt2 

only shared a few significant terms with metagenome. Additional files provided overlap 

information for other KEGG types. The results indicate that inferred tools may not be able to 

predict disease-specific KO terms for certain metabolic pathways in the KORA cohort. The 

interpretation of the results could depend on the MGS data and the specific tools used. Additional 

validation or improvement may be required for these tools. The interpretation of the results can 

depend on the cohort, the MGS functional profiles and the nature of inferred tools used. 
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Figure 25: Comparison of relative abundance distributions among major KEGG gene 

categories such as (a) glycan biosynthesis metabolism and (b) lipid metabolism between 
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inferred tools and MGS functional profiles in CRC cohort. Relative abundance data for 

the two sets of profiles (inferred tools and MGS functional profiles) for the KEGG gene 

categories of interest and distributions of the relative abundance data for each set of 

profiles was plotted using a boxplot. Wilcoxon rank-sum test was performed to compare 

the healthy and diabetes. The null hypothesis was set that there was no significant 

difference in the relative abundance distributions between healthy and colorectal cancer 

patients.  P-value of the Wilcoxon rank-sum test is less than 0.05 indicated a significant 

difference in the relative abundance distributions between the two sets of profiles. The 

significance level was displayed with an asterisk (*). (Source: own work) 
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Figure 26: Comparison of relative abundance distributions among major KEGG gene 

categories such as (a) carbohydrate metabolism and (b) amino acid metabolism between 
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inferred tools and MGS functional profiles in the KORA cohort. Relative abundance data 

for the two sets of profiles (inferred tools and MGS functional profiles) for the KEGG gene 

categories of interest and distributions of the relative abundance data for each set of 

profiles was plotted using a boxplot. Wilcoxon rank-sum test was performed to compare 

the healthy and diabetes. The null hypothesis was set that there was no significant 

difference in the relative abundance distributions between healthy and diabetes. P-value of 

the Wilcoxon rank-sum test is less than 0.05 indicated a significant difference in the relative 

abundance distributions between the two sets of profiles. The significance level was 

displayed with an asterisk (*).(Source: own work) 

 Since the FoCus and Popgen cohort studies about healthy vs obesity, we focused on KEGG 

functional categories such as carbohydrate metabolism, amino acid metabolic pathways and 

sugar transport which have been reported as enriched in obesity 358,359 (Fig. 24 and 25). In both 

cohorts, the overall number of KO terms between metagenome and inferred tools dropped 

significanylt. PICRUSt2 and Tax4Fun only shared a couple of significant terms with 

metagenome. Overall, the results suggest that the inferred tools may have limited ability to 

predict disease-specific KO terms in certain metabolic pathways for the KORA cohort. It is 

important to note that the interpretation of the results may depend on the specific inferred tools 

and MGS data used in the analysis, and additional validation and improvement may be needed 

for the inferred tools. It is important to note that the interpretation of the results may depend on 

the specific cohort and the nature of the inferred tools and MGS functional profiles being 

compared. Altogether, prediction tools failed to detect health-related differential abundance 

measures of functional categories as compared to MGS-derived results across multiple cohorts. 

 

https://paperpile.com/c/G11r3b/N06AW+cIKWY
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Figure 27: Comparison of relative abundance distributions among major KEGG gene 

categories such as (a) carbohydrate metabolism and (b) amino acid metabolism between 
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inferred tools and MGS functional profiles in the Popgen cohort. Relative abundance data 

for the two sets of profiles (inferred tools and MGS functional profiles) for the KEGG gene 

categories of interest (e.g., Carbohydrate metabolism and Amino acid metabolism) and 

distributions of the relative abundance data for each set of profiles was plotted using a 

boxplot. Wilcoxon rank-sum test was performed to compare the healthy and obese. The 

null hypothesis was set that there was no significant difference in the relative abundance 

distributions between health and obese.  p-value of the Wilcoxon rank-sum test is less than 

0.05 indicated a significant difference in the relative abundance distributions between the 

two sets of profiles. The significance level was displayed with an asterisk (*). (Source: own 

work) 
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Figure 28: Comparison of relative abundance distributions among major KEGG gene 

categories such as (a) carbohydrate metabolism and (b) amino acid metabolism between 

inferred tools and MGS functional profiles in the FoCus cohort. Relative abundance data 

for the two sets of profiles (inferred tools and MGS functional profiles) for the KEGG gene 

categories of interest (e.g., Carbohydrate metabolism and Amino acid metabolism) and 
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distributions of the relative abundance data for each set of profiles was plotted using a 

boxplot. Wilcoxon rank-sum test was performed to compare the healthy and obese. The 

null hypothesis was set that there was no significant difference in the relative abundance 

distributions between health and obese.  p-value of the Wilcoxon rank-sum test is less than 

0.05 indicated a significant difference in the relative abundance distributions between the 

two sets of profiles. The significance level was displayed with an asterisk (*). (Source: own 

work) 

3.5.6. Functional Profiling on simulation datasets  

A possible explanation for the variation between predicted and MGS-derived functional profiles 

are technical issues. For example, due to the amplification bias induced in 16S rRNA gene 

polymerase chain reaction (PCR) 55,327,360 and functional profile variation among 

phylogenetically related genomes, microbiome functional profiles predicted from 16S amplicons 

can deviate greatly from MGS-derived ones. We decided to test the influence of technical 

variabilities using simulated MGS from the 2nd CAMI Challenge 351 which represents typical 

microbiomes from four human body sites. We obtained matching 16S rRNA gene profiles by 

filtering for 16S rRNA gene reads matching to the SILVA 101 database. Since no difference in 

sample processing is involved here, we expect this setup to show how close metagenome 

prediction tools can be expected to approximate MGS-derived functional profiles under optimal 

conditions. PCA plot (Fig. 29) revealed that PICRUSt2 and PanFP using default and customized 

normalization clustered most closely to the MGS profiles. In contrast, Tax4Fun2 and MetGEM 

showed a high discrepancy from their corresponding metagenome. 

 

 

 

 

 

 

Figure 29:(a) Functional beta diversity of the simulated metagenome-amplicon sample 

pairs between PC1 and PC2. (b) Functional beta diversity of the simulated metagenome-

amplicon sample pairs between PC2 and PC3.. (Source: own work) 

We also conducted differential abundance tests to compare how results differ between predicted 

metagenomes and actual MGS simulation dataset. This analysis was done between GI and skin 

as they are clustered separately in the diversity plot such that we expected to find considerable 

variation in the functional profiles. The overlap between the significant KO terms of PICRUSt2 

47% (default and custom-normalization) and MGS. Similarly, the overall percentage was also 

increased for other tools such as PanFP: 35%, PanFP with custom normalization: 45%, 

https://paperpile.com/c/G11r3b/3Xln7+olQ9+3Gd9d
https://paperpile.com/c/G11r3b/2wO2l
https://paperpile.com/c/G11r3b/PYawn
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Tax4Fun2: 35%, Tax4Fun2 with custom normalization 39%, MetGEM: 30%, MetGEM with with 

custom normalization 28%. Performance metrics such as F1, recall and precision were also 

compared to public datasets. Overall, the performance of simulation datasets were improved 

compared to the real datasets as shown previously (Fig. 30) 

 

 

Figure 30: Pairwise differential analysis was performed between simulated GI vs Oral and 

Skin vs airway.  Significant KO terms were identified using Wilcoxon rank-sum test with 

p-value < 0.05. Accuracy measurement terms among MGS, PICRUSt2 with default and 

custom-normalization. (Source: own work) 

3.6. Discussion 

In the subject of microbial ecology, knowing the roles of a microbiome allows a more 

comprehensive understanding of the biological processes in which it may be involved. Apart 

from metabolomics experiments, metagenome approaches coupled with functional enrichment 

analysis is the method of choice for inferring functional relationships within the microbiome and 

between microbiomes and their ecosystem 284,288. However, due to the significantly lower costs, 

16S rRNA gene profiling is still the choice of many researchers for studying microbial 

abundances 221,361,362. Popular tools such as PICRUSt2 or Tax4Fun2 were developed to predict 

microbial functions from 16S rRNA gene amplicon sequencing datasets. They achieve this by 

utilizing the knowledge from large reference genome databases such as KEGG functional 

profiles together with ancestral state reconstruction methods 157–159. For example, PICRUSt2 uses 

an HSP approach to incorporate as many sequences as is practically possible into its prediction, 

whereas Tax4Fun2 chooses to only use sequences that fall within a similarity cutoff of reference 

sequences. Importantly, the predictions that are produced by either tool need to be evaluated with 

extreme caution because taxonomic and phylogenetic certainty can only be as reliable as the 

https://paperpile.com/c/G11r3b/28mmH+Ipt2
https://paperpile.com/c/G11r3b/A2ky2+K82S2+sTGWw
https://paperpile.com/c/G11r3b/K6vxH+OK2Mg+D32P7


102 

curation of the databases that are employed 363,364. Each tool follows a different algorithmic 

approach and relies on different references, leading to a considerable discrepancy in their 

predictions. As these tools can only provide functional predictions, they are not a suitable 

replacement for shotgun metagenomic research and should not be used as such. 

Using matched MGS and 16S rRNA gene data sets, we were able to assess the prediction 

accuracy of PICRUSt2, Tax4Fun2, PanFP and MetGEM in a human disease setting. All 

metagenome prediction tools except MetGEM showed overall good accuracy in predicting KO 

terms that were also found in MGS. PICRUSt2 was slightly better at representing gene 

distribution profiles than the other tools, possibly because a larger number of sequences are 

included in the hidden state prediction, which in turn increases the sensitivity to detect ubiquitous 

functions 327 that are common for the majority of microorganisms in a sample. On the other hand, 

MetGEM showed the lowest precision. One reason might be that the reference AGORA 

collections contain 818 GEMs from human gut microbiome which covered only 1,470 KO terms 

identifiers, 983 EC numbers across 226 genera and 690 species in total 162,365.  

We hypothesise that the good performance is mostly driven by predicting KO terms that are 

typically present in a sample. This hypothesis is confirmed by the high Spearman correlation 

between predicted functional profiles and metagenome sequencing even after label 

randomization as originally shown by Sun et al. 165. In this study, we focused on differential 

abundance of functional terms as a more challenging scenario meant to reveal if functional 

prediction methods can pick up biologically meaningful differences. Differential abundance 

testing of KO terms was performed using the Wilcoxon rank sum test at different KEGG levels. 

First, we performed correlation of p values from MGS-derived level 1 KEGG functional category 

and predicted p-values. Functional inferred tools can be affected by the unique features and 

complexity of biological pathways and processes. Metabolic pathways, for example, involve 

complex networks of reactions and regulatory mechanisms. These may differ from the signal 

transduction pathways. Functional inferred tools that are good at predicting functions within one 

category might not be as effective in another. Researchers can evaluate the performance of 

functionally inferred tools in different KEGG hierarchical groups to identify strengths and 

weaknesses. This information can be used to guide the selection and interpretation of functional 

genomics data. The KEGG hierarchical classifications provide a standardized classification 

system of gene functions that allows researchers to compare the results of different functional 

inferred instruments in a consistent way. This will facilitate the improvement and development 

of functional inferred instruments and aid in the advancement of functional genomics research. 

In this situation, metagenome inferred tool missed many genes that were predicted by 

metagenome. It also predicted many genes that are not differentially abundant in MGS data. We 

performed differential abundance testing of KO terms using the Wilcoxon test at different stages. 

As a first step, correlation of p-values from predicted and MGS-derived were level 1 KEGG 

functional categories was performed. In this setting, metagenome prediction tools missed a large 

set of genes that are predicted by metagenome and likewise predicted many genes that are 

https://paperpile.com/c/G11r3b/Qwhzg+SK7gr
https://paperpile.com/c/G11r3b/3Gd9d
https://paperpile.com/c/G11r3b/D703+D0j4N
https://paperpile.com/c/G11r3b/Dgj7
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actually not found to be differentially abundant in MGS data. Despite these poor results, we 

could show that PanFP and PICRUSt2 with customized normalization showed improved results, 

indicating an advantage of 16S copy number normalization using rrnDB in this scenario. As 

expected, MetGEM showed very few significant correlations for all types of KEGG functional 

categories.  

We hypothesize that the possible reasons for the huge variation between predicted and MGS-

derived functional profiles are technical issues and platform-related differences introduced e.g. 

by PCR bias. To study this, we used a simulated dataset to compare the performance between 

prediction tools and MGS in the absence of technical confounders. As expected, this analysis 

resulted in improved performance. Since we considered the full length 16S rRNA gene in the 

simulation study, one can suspect that higher coverage of multiple variable regions can further 

improve the quality of predictions. Another reason for the good performance in the simulation 

experiment is that samples were obtained from two different environments, where the differences 

are easier to detect compared to a health vs. disease scenario. 

3.7. Conclusion and outlook 

The functional potential of microbial communities can be inferred from 16S rRNA gene 

sequencing. This method is based on the taxonomic composition of the communities. This 

approach is commonly used when whole-genome shotgun sequencing is not feasible, as 16S 

rRNA gene sequencing is less expensive and less computationally demanding. Functional 

profiling from 16S rRNA gene sequencing is based on the concept of phylogenetic conservation, 

which suggests that closely related microorganisms have similar metabolic capabilities. This 

approach typically involves mapping the taxonomic information obtained from 16S rRNA gene 

sequencing to a reference database of microbial genomes or metagenomes with known functional 

annotations. Different bioinformatic tools and databases are available for functional profiling, 

such as PICRUSt2, Tax4Fun2, PanFP and MetGEM. These tools use different algorithms to 

predict the functional capabilities of the microbial community based on the taxonomic 

composition.  

A clear finding of this study is that functional predictions from 16S data are generally not 

sensitive enough to pick up differences related to changes in human health in typical settings 

such as CRC, obesity or type-2 diabetes. Limitations in the performance of functional prediction 

tools can be explained by an incomplete reference genome 363,364,366. While functional prediction 

tools pick up major differences, e.g., between ecological niches, they should not be used as a 

replacement for MGS in the study of human health. If researchers intend to produce functional 

predictions from 16S rRNA gene data for hypothesis generation they should be aware of these 

limitations and implement control strategies such as sample label randomization. Among the 

available tools, we recommend using PICRUSt2 and Tax4Fun2 which appeared to be most 

robust, followed by PanFP which could be improved by introducing a customised copy number 

database.  

https://paperpile.com/c/G11r3b/wdf1M+Qwhzg+SK7gr
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4. Chapter four: Namco, a Free microbiome explorer 

4.1. Declaration of contribution 

This chapter is the result of a project started in the Collaborative Research Centre (CRC) 1371 

microbiome signature as an internal pipeline to analyse 16S rRNA gene sequencing data under 

the guidance of Dr. Markus List, Big Data in Biomedicine Group, Technical University of 

Munich (TUM). Later, it was published in the open access journal, Microbial Genomics in 

August 2022 367. The work described here has been driven by Alexander Dietrich (as a student 

assistant of the group, now a doctoral student) and myself in the Big Data in Biomedicine Group 

with equal contribution.  

  

https://paperpile.com/c/G11r3b/HmbQ
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4.2. Introduction 

Over the past decade, microbiome research has gained significant attention due to the growing 

understanding of the impact of the microbiome on human health. 368,369. Several studies revealed 

that biochemical activities of the gut microbiome are one of the main factors for causing human 

diseases such as diabetes370, cancer371, inflammatory bowel disease (IBD)19, breast cancer 372 and 

brain disorders373. For example, Thomas et al. 374 illustrated that the gut microbiome 

compromises the integrity of the gastrointestinal barrier in IBD. Thanks to the recent 

advancement in sequencing techniques and the development of powerful computational tools, 

researchers are able to conduct studies to unravel the mystery of microbial communities.  

As mentioned in previous chapters, microbiome datasets are generated using two common 

methods: 16S rRNA gene sequencing and shotgun metagenomics sequencing. The former targets 

the 16S rRNA gene for charactering bacteria and many studies showed that that smallest number 

of raw reads as low as 18,000 to 20,000 reads per sample is sufficient to provide bacterial 

taxonomic classification 375. On the other hand, shotgun metagenomic sequencing focuses on the 

whole microbial genome and delivers knowledge not only on the taxonomic composition but 

also on functional profiles which are not retrievable with 16S rRNA gene sequencing 166,167,376,377. 

However, 16S rRNA gene amplicon sequencing is still the most widely used method due to the 

low costs 298,378,379. 

The entire workflow of 16S rRNA gene data analysis falls into four important categories. The 

first and foremost step is to identify taxonomic composition either by OTU94 clustering 

approaches or by denoising approaches 96. Several benchmark studies proved that denoising 

approaches provide higher resolution and accuracy compared to traditional OTU clustering 

methods 380,98. Along with taxonomic composition, microbial diversity analysis including alpha 

and beta diversity help in studying the species richness and evenness within a sample and 

between groups, respectively. The second step is to predict metagenomes and assign different 

functional groups to those using computational methods such as PICRUSt2 157, Tax4Fun2 158, 

Piphillin 160 and PanFP 159. The third step is to identify significant differential features/functions 

between the conditions. And the final step is to study the microbial association through microbial 

co-occurrence network analyses.  

Also, when analysing microbiome data, a flexible pipeline is essential in order to effectively 

uncover insights and discover patterns. Different types of comparisons may be necessary 

depending on the research question or hypothesis being tested. For example, comparing the 

microbiome of healthy individuals to those with a specific disease may require different types of 

comparisons than comparing the microbiome of different geographical regions or dietary groups. 

Additionally, the pipeline should be flexible in terms of different types of data and different types 

of analysis, such as alpha diversity, beta diversity, and taxonomic or functional profiling. The 

https://paperpile.com/c/G11r3b/PPpK+d5Rf
https://paperpile.com/c/G11r3b/VUTnh
https://paperpile.com/c/G11r3b/jRWIv
https://paperpile.com/c/G11r3b/GXH74
https://paperpile.com/c/G11r3b/G9zx
https://paperpile.com/c/G11r3b/3NH0k
https://paperpile.com/c/G11r3b/AY2q
https://paperpile.com/c/G11r3b/UTy7
https://paperpile.com/c/G11r3b/ALUh+2WBd+lt8S+ItFJ
https://paperpile.com/c/G11r3b/NEdx+RG5o+t7D0
https://paperpile.com/c/G11r3b/QzvSh
https://paperpile.com/c/G11r3b/WwuIi
https://paperpile.com/c/G11r3b/5ogVD
https://paperpile.com/c/G11r3b/LYzCD
https://paperpile.com/c/G11r3b/K6vxH
https://paperpile.com/c/G11r3b/OK2Mg
https://paperpile.com/c/G11r3b/VacRW
https://paperpile.com/c/G11r3b/D32P7
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ability to easily adapt the pipeline to different types of data and comparisons is important in order 

to effectively answer the research question and draw meaningful conclusions.  

4.2.1. Bioinformatics pipelines for 16S rRNA gene analysis  

A plethora of computational and statistical tools are being developed to analyse the large 

microbial data for each part of the analysis (Fig. 31). These tools are mostly command-based 

without any graphical interface. For example, Mothur 95 QIIME2 91 and DADA2 96 offer 

processing of raw sequencing files through clustering and annotation of 16S rRNA gene and 

provide OTU or ASV tables in text or biom format. These formats are used as inputs for 

downstream analysis. The QIIME2 91 pipeline consists of more than 20 different plugins for 

compositional data analysis 144, q2-longitudinal for time-series analysis, 382 and q2-sample-

classifier for supervised classification and regression analysis 381. 

4.2.2. Statistical analysis of microbiome data with R 

Apart from the above-mentioned pipelines, several R packages have been developed, dedicated 

to microbiome analysis. For example, three main R packages such as Vegan 383, Phyloseq 113, 

and Microbiome 384 make up the bioinformatics pipeline used to evaluate how the gut 

microbiome composition is associated with various forms of gastric cancer. The Vegan package 

is developed using R programs and needs to be used in an R statistical context. Additionally, 

Vegan provides resources for multivariate and diversity analyses, among other possibly helpful 

features. As a result, it is well suited for the analysis of microbiome data and is frequently used 

to study ecological communities 385. 

Microbiome and Phyloseq R packages also contain numerous tools and functions for evaluating 

microbiome profiling data. They can be combined with other statistical software and offer 

capabilities for analysing microbiome data sets. Additionally to fitting linear models, the 

Microbiome package offers capabilities to investigate microbiota composition and other diversity 

indices on microbiome data sets. In addition to statistical analysis, these packages include 

utilities for visualising data as graphs, plots on ordination axes, heatmaps, and other formats 386. 

4.2.2.1. Phyloseq  

Phyloseq is an R package to import, store, analyse, and graphically display complex phylogenetic 

sequencing data that has already been clustered into OTUs/ASVs, together with other processed 

files such as metadata, phylogenetic trees, and/or taxonomic assignments. This package utilizes 

existing R packages such as Vegan, ade4, ape, picante for phylogenetic and ecology analysis. 

For the publication-quality graphics, It uses as ggplot2 R package. Phyloseq utilizes a S4 class 

system to store different data types related to microbial community analysis as a single 

experiment level object. This makes it easier to manage and manipulate large datasets and 

facilitates reproducibility by enabling users to easily store and share their analysis pipelines with 

https://paperpile.com/c/G11r3b/oxcXG
https://paperpile.com/c/G11r3b/5O5sq
https://paperpile.com/c/G11r3b/WwuIi
https://paperpile.com/c/G11r3b/5O5sq
https://paperpile.com/c/G11r3b/Cv5Tc
https://paperpile.com/c/G11r3b/tUIpB
https://paperpile.com/c/G11r3b/D9sne
https://paperpile.com/c/G11r3b/ohCET
https://paperpile.com/c/G11r3b/uq2UV
https://paperpile.com/c/G11r3b/8dRI
https://paperpile.com/c/G11r3b/fRyh
https://paperpile.com/c/G11r3b/Ud8N
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others. Overall, Phyloseq is an efficient R package, which provides reproducible analysis of 

microbial data.  

4.2.2.2. Rhea 

Rhea is a R script-based downstream analysis pipeline and scripts for individual analysis are 

independent of each other which makes user to run a specific analysis at any time. The pipeline 

covers a wide range of basic analyses such as diversity analyses, differential abundance analysis 

and correlation. It is available on the GitHub repository 

(https://github.com/Lagkouvardos/Rhea117).  

4.2.2.3. VAMP 

Visualisation and Analysis of Microbial Population Structures (VAMPS 387; 

http://vamps.mbl.edu) is a free web-based application to facilitate research on large-scale 

microbial sequencing data. VAMP was developed by the Microbial Biodiversity Laboratory 

(MBL). In VAMP, users have the ability to upload marker gene sequences along with 

accompanying metadata. Reads are then subjected to quality filtering before being assigned to 

taxonomic structures as well as taxonomy-independent clusters. Users are able to select analysis 

of any combination of their own private data or the private data of their collaborators as well as 

data from public projects. They can then filter these by their choice of taxonomic and/or 

abundance criteria, and finally, explore these data using a wide range of analytical methods and 

visualisations. All of this is done through a user-friendly interface without any programming. 

Each result feature is connected with extensive hyperlinking to a different analyses and 

visualisation choices, which encourages data exploration, and ultimately, leads to a deeper 

comprehension of the ways in which data are related to one another. 

4.2.3. Microbiome Analyst 

MicrobiomeAnalyst116 is a web-based platform for comprehensive analysis specifically 

developed for microbial data analysis. It allows researchers especially clinicians with limited 

bioinformatics experience to get hands-on experience of methods for processing and analyzing 

microbiome data, performing functional profiling using 16S rRNA and performing statistical 

analysis. In addition, MicrobiomeAnalyst also allows users to compare their data with public 

datasets or known microbial signatures. It mainly has four distinct modules: The Marker-gene 

Data Profiling (MDP) module analyses 16S rRNA gene amplicon sequencing data, whereas the 

Shotgun Data Profiling (SDP) module analyses metagenomics sequencing data. Users can 

compare their data with publicly available datasets using the Projection with Public Data (PPD) 

module, while the Taxon Set Enrichment Analysis (TSEA) module provides tools for detecting 

enriched taxa in a specific sample group or condition.  Overall, MicrobiomeAnalyst is a user-

friendly web interface that enables researchers to thoroughly explore their preprocessed 

microbiome data.  

https://github.com/Lagkouvardos/Rhea
https://paperpile.com/c/G11r3b/kcvBN
https://paperpile.com/c/G11r3b/v3txM
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4.2.4. Limitation of existing tools 

While, several R packages offer a powerful approach to perform microbial data analysis, 

executing R scripts can be challenging to use without basic bioinformatics training or scripting 

knowledge. As a result, there is a demand for more accessible tools that can assist beginners to 

conduct complete microbial analysis. To fulfil this requirement, the aforementioned web-based 

tools  such as (Microbiomanalyst 116, IMNGS 104, iMAP388, MGRAST389, wiSDOM 390, VAMPS 
387, Shiny-phyloseq 391) are developed but they lack in the following aspects. (i) focusing only 

the downstream analysis while neglecting raw data processing, (ii) offering only basic analysis 

which insufficient for complex data sets, (iii) neglecting functional profiling or adapt only 

outdated methods such as Tax4Fun 323 and PICRSUt1 316 (iv) lacking confounder analysis 

capabilities  (v) missing of time-series (vi) lacking machine learning and (vii) microbial 

association networks analysis.  

To address these limitations, we developed a free, beginner-friendly, web-based tool called 

Namco which provides end-to-end analysis for microbial data. Namco offers a wide variety of 

features, ranging from the processing of raw data and basic statistics to machine learning and 

network analysis. As a result, it is able to cover complex data analysis tasks in a comprehensive 

way compared to other tools Fig 31.  

The following is a list of the key characteristics of Namco: (i) it provides a point-and-click user 

interface to process raw sequencing data using DADA2 and LotuS2, thereby relieving the user of 

a load of command-line and step-by-step data processing; (ii) it can be used to analyse large 

amounts of raw sequencing data (up to 2 gigabytes); and (iii) to the best of our knowledge, 

Namco is the only tool that enables users to carry out functional prediction with PICRUSt2 in 

the context of a workflow including 16S rRNA gene s. Other techniques, such as microbioanalyst 
116 and wiSDOM390, also provide functional prediction; however, they do so only through the use 

of Tax4Fun2 158 and PICRSUt1 316, both of which were outperformed by PICRUSt2 157. (iii) In 

addition to this, Namco offers a topic modelling technique 392, which allows users to investigate 

co-occurring taxa/OTU/ASVs as topics and identify topics related to known sample features. (iv) 

Perhaps most significantly, it gives users the ability to do differential network analysis between 

two separate groups. (v) Finally, Namco enables users to store sessions in the form of R objects 

at each step of the analysis process. This feature is helpful for users who want to resume the 

analysis without having to repeat computationally costly operations again. 

 

https://paperpile.com/c/G11r3b/6VSrG
https://paperpile.com/c/G11r3b/UE1CG
https://paperpile.com/c/G11r3b/j9mTD
https://paperpile.com/c/G11r3b/tm8iJ
https://paperpile.com/c/G11r3b/a2QEZ
https://paperpile.com/c/G11r3b/v3txM
https://paperpile.com/c/G11r3b/olIbK
https://paperpile.com/c/G11r3b/Fxg7U
https://paperpile.com/c/G11r3b/nwJ6F
https://paperpile.com/c/G11r3b/6VSrG
https://paperpile.com/c/G11r3b/a2QEZ
https://paperpile.com/c/G11r3b/OK2Mg
https://paperpile.com/c/G11r3b/nwJ6F
https://paperpile.com/c/G11r3b/K6vxH
https://paperpile.com/c/G11r3b/kw7vu
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Figure 31: Namco's comparison with other web-based tools for the analysis of 16S rRNA 

gene data. This figure was originally published in Namco: a free microbiome explorer 367 

in microbial genomics journal as an open-access article distributed under the terms of the 

Creative Commons Attribution License. 

4.3. Materials and methods 

4.3.1. Namco: framework 

4.3.1.1. Development 

The Namco web tool is implemented using R (https://www.r-project.org) and Rstudio 

(https://www.rstudio.com) and  can be accessed via https://exbio.wzw.tum.de/namco/. It can also 

accessible as a Docker image, which provides easy installation locally or on a clinical server. 

This will facilitate the GDPR-compliant analysis of sensitive data without the need for uploading 

to external servers. Users can stay informed about updates and new releases on GitHub using 

https://github.com/biomedbigdata/namco/. The homepage of Namco is shown in Fig .32 

https://paperpile.com/c/G11r3b/HmbQ
https://www.rstudio.com/
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Figure 32: Welcome page of Namco 

The GitHub page of Namco is also the preferred way to communicate issues and request features 

(https://github.com/biomedbigdata/namco/issues). On the other hand, the users can contact the 

developers by email as displayed on the welcome page of Namco.  

4.3.1.2. Pipeline 

 

Figure 33: Overview of Namco features. The Namco workflow encompasses the entire 

process of microbiome data analysis, from raw FASTQ processing and filtering to 
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statistical, functional, and network analysis, offering a range of visualization options and 

tables. It allows users to seamlessly navigate through various data analysis tasks. 

4.3.2. Upstream analysis 

4.3.2.1. Input file formats 

Main input files for Namco are paired-end fastq files for DADA2/ LOTUS2 processing and three 

tab-delimited files such as a feature abundance table with the taxonomic information (separate 

tabular file with a taxonomic classification if taxonomy information is not provided with a feature 

abundance table) and metadata file with meta information for each sample to start the analysis at 

the downstream steps. In addition, users can also provide phylogenetic tree files generated from 

any 16S rRNA gene analysis pipeline to perform phylogenetic tree analysis or ecologically 

organized heatmaps. Namco workflow is represented in Fig 33.  

4.3.2.2. Clustering/denoising 

4.3.2.2.1. DADA2 

Namco supports upstream analysis of 16S rRNA gene-based analyses. Only illumina paired-end 

fastq reads are supported as input files, and ASV/OTU tables with taxonomy tables are produced 

as output. One of the pipelines implemented is based on the DADA2 96 R package, the most 

widely used denoising algorithm. DADA2 is an open-source denoising R package. It is a model-

based method for correcting mistakes in amplicon sequencing data, such as 454 amplicon 

sequencing data, while recognizing fine-scale variation. DADA2 does not require a reference and 

can be utilised on any genomic locus. It can filter, dereplicate, identify chimaeras, merge paired-

end reads and contains a novel quality-aware error model for Illumina amplicon data. Users can 

alter the default parameters such as trimming length, and select their own choice of settings. It 

uses updated versions of the SILVA (v 138) 101 as default reference database for taxonomic 

classification. Namco stores DADA2 output as a phyloseq 113 object for further downstream 

analysis.  

4.3.2.2.2.LotuS2 

LotuS2 103 is an open-source bioinformatics software that allows for flexible data analysis of 

amplicon sequencing data. It includes six sequence-clustering algorithms such as UPARSE 106, 

UNOISE3232, CD-HIT 118, SWARM 393, DADA2 96 and VSEARCH 105. In addition, in-depth pre- 

and post-processing options that can be adjusted by experts or used with default settings for 

beginners. LotuS2 follows a strict read filtering approach during the clustering step, which 

includes 21 different quality filtering metrics, probabilistic and Poisson binomial read filtering 
106,394 and removal of reads that cannot be dereplicated. These filtered and cleared reads are then 

clustered into OTUs/ASVs using one of six available sequence-clustering methods. 

https://paperpile.com/c/G11r3b/PYawn
https://paperpile.com/c/G11r3b/uq2UV
https://paperpile.com/c/G11r3b/Eb9j
https://paperpile.com/c/G11r3b/ht71
https://paperpile.com/c/G11r3b/qREI3
https://paperpile.com/c/G11r3b/fmTi
https://paperpile.com/c/G11r3b/U1kR
https://paperpile.com/c/G11r3b/WwuIi
https://paperpile.com/c/G11r3b/JQoD
https://paperpile.com/c/G11r3b/ht71+LBtw
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4.3.2.3. Preprocessing 

Namco employs Rhea117 R scripts to perform basic analysis such as taxonomic profiling and 

diversity analysis. Once the denoising step is completed, users can view the data overview 

section in Namco, which summarises sample details including the total number of samples, the 

total number of ASVs present in all samples and the number of metadata groups available (Fig 

34). This will give an overview of the input data and help in proceeding further with downstream 

analysis.  

It is well aware that microbiome data is very sparse due to the presence of numerous rare taxa 

and frequently have zero counts in many samples. Sometimes, rare taxa may also be caused by 

contamination and/or by sequencing errors. Hence, filtering is an important preprocessing step 

to remove low-quality features to improve the  accuracy of downstream statistical analysis. 

Namco offers various filtering options including filtering samples from the feature table based 

on metadata and filtering taxa based on absolute and relative abundance. The next important 

preprocessing step is the choice of normalisation methods. Namco provides three different 

normalisation methods such as centred log-ratio128, sampling depth and rarefaction. Users can 

select one among three methods and compare the downstream results between them.  

 

 

Figure 34: Workflow of upstream analysis and data overview page of Namco. User can 

start 16S rRNA gene data analysis either by uploading fastq (raw) files (upper limit 2GB) 

or with pre-processed feature tables with taxonomic information. For upstream analysis, 

Namco offers two amplicon sequencing analysis pipelines, DADA2 (left) and LotuS2. For 

DADA2, user can insert the lengths of the forward and reverse primers to trim from the 

reads. After denoising steps, feature table automatically loaded into the Namco 

environment and data overview page provides overview of the samples in the dataset 

including total number of ASVs/OTUs, number of samples and number of sample groups. 

Namco also offers different normalization methods such as CLR and normalize to  10.000 

reads etc.  

 

https://paperpile.com/c/G11r3b/kcvBN
https://paperpile.com/c/G11r3b/9bGbq
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Overview: 

If users want to apply one of the advanced filtering methods, they first have to click the checkbox 

next to it and then select the appropriate value. Users can apply multiple methods at once, by 

simply clicking multiple checkboxes. They will be applied from top to bottom to the dataset. 

The methods are: 

- Filtering by minimum abundance (A): Removes all OTUs/ASVs, which have an abundance 

value - over all samples - below the selected cutoff 

- Filtering by relative abundance (B): Removes all OTUs/ASVs, which have a relative 

abundance value - in each sample - below the selected cutoff (cutoff has to be given in %; 0.25% 

which means all OTUs which do not make up more than 0.25% of a sample will be removed. 

- Filtering by occurrence in samples (C): Removes all OTUs/ASVs, which appear at most 

the number of times as the selected cutoff. An OTU/ASV does not “appear” in a sample, if its 

abundance is 0. 

- Filtering by highest variance (D): Keeps only the number of OTUs/ASVs you selected with 

the highest variance over all samples. 

- Filtering by prevalence (E): Keeps only the OTUs/ASVs with a prevalence value over the 

selected cutoff (given in %). 

4.3.3. Downstream analysis 

4.3.3.1. Diversity analysis 

Once the preprocessing is done, users can move to basic analyses such as alpha and beta 

diversity. Alpha diversity, which estimates the variation within one sample, can be calculated by 

various measures such as richness, the Simpson 395 and the Shannon effective indices 396. The 

alpha-diversity feature in Namco, currently supports Shannon index, Simpson index and 

richness. The results are plotted and summarised as box plots for each group. Users can select 

different categorical meta-groups to visualise alpha diversity and their significance. The beta-

diversity estimates the variation between the groups. Namco requires a phylogenetic tree to 

calculate dissimilarity using one of the most common distance matrices such as weighted and 

unweighted Unifrac distances, generalised Unifrac, Bray Curtis dissimilarity and Variance 

adjusted Unifrac Distance 397. The results are presented in 2D ordination plots based on Multi-

dimensional scaling (MDS) and non-metric multidimensional scaling (NMDS). In addition, 

Namco also displays the hierarchical clustering of the samples using the chosen distance method 

as branches in a dendrogram, which helps to identify closely related samples. The significant 

difference between groups is calculated by a permutational multivariate analysis of variances 

https://paperpile.com/c/G11r3b/x7iO
https://paperpile.com/c/G11r3b/73mC
https://paperpile.com/c/G11r3b/TfKR
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using adonis function from Vegan R-package). To account for multiple comparisons, p-values 

are adjusted using  Benjamini-Hochberg correction method 398. 

4.3.3.2. Groupwise differential abundance analysis  

This analysis allows users to identify statistically-significant ASV/OTUs between the groups 

using SIAMCAT r package 399 via non-parametric Wilcoxon test. Users can choose metadata 

groups to compare against one with another and adjust the significance level. Users can calculate 

differential abundance at different taxonomic levels such as the phyla, genus onto which the 

feature table can be collapsed. The association plot exhibits the distribution of microbial relative 

abundance and also indicates significance of the relationship and a generalised fold change which 

serves as a non-parametric measure of effect size. Users can modify the number of significant 

ASVs to be displayed in the association plots and also sort the features based on fold change, p-

value or prevalence shift.  

4.3.3.3. Correlation analysis 

Namco performs correlation to identify the significant positive and/or negative relationships 

within taxa or between taxa and metadata such as continuous experimental variables. 

Additionally, Namco takes into account the relative abundances of features at various levels 

(phylum, class, order, family, genus etc). 

4.3.3.4. Confounding analysis 

Confounding variables are extraneous or hidden causative variables that influence both the 

dependent and independent variables. The presence of confounders may hide the actual 

relationship between the variables in study 400. For example, microbiomes are strongly related 

with several host variables including sex, body mass index (BMI), age and geographical location, 

and they act as the strongest potential confounders 401. In this section, Namco utilises the 

permutational multivariate analysis of variances (adonis function of the Vegan R-package)383 to 

elucidate many co-variables or confounding factors. The proportion of variance explained by co-

variables is assessed by computing R2 values and evaluating their significance, with a p-value 

threshold of ≤ 0.05.  

4.3.3.5. Machine learning 

This section of Namco allows users to predict important features using a non-parametric machine 

learning algorithm called Random Forest (RF). RF has been utilized in microbial data analysis 
402,403 to identify the important featuers by measuring the increase in classification errors that 

results from permuting the data. Namco integrates the ranger 404 R package, which provides 

faster implementation especially for high dimensional data. Users can select metadata for which 

a prediction model should be built. Namco also provides a flexible environment to modify the 

advanced parameters including resampling method, number of decision trees, the number of 

cross-validation, and the ratio of training and testing sets. Graphical output is created to 

https://paperpile.com/c/G11r3b/enjy
https://paperpile.com/c/G11r3b/MYptp
https://paperpile.com/c/G11r3b/ROv9d
https://paperpile.com/c/G11r3b/FPug8
https://paperpile.com/c/G11r3b/ohCET
https://paperpile.com/c/G11r3b/ZvCeY+Lbk6P
https://paperpile.com/c/G11r3b/OQWWE
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summarise model’s performance using the confusion matrix and receiver operating characteristic 

curve (ROC)-Plot. Users can also view the top most important features used for building the 

model.  

4.3.3.6. Time series clustering 

Namco offers time series clustering analysis to investigate how microbial communities either at 

different taxa, or at ASV/OTUs, or other features like richness change over time. This analysis 

can be utilized to study alterations in microbial populations over time in response to a specific 

treatment or during different stages of host development. This type of analysis can provide 

insight into the mechanisms underlying microbial changes, such as how a treatment affects the 

growth or survival of different microbial species, or how the host's development affects the 

microbial community. Namco provides various options to customize the inputs for time series 

line charts such as exhibiting changes in relative or absolute abundance or in terms of richness.  

4.3.3.7. Functional prediction 

Namco includes PICRUSt2 157 to infer functional profiles using 16from microbial communities. 

PICRUSt2157 provides improved accuracy and flexibility for marker gene metagenomic inference 

compared to other tools including Tax4Fun2, Piphillin, PanFP and PICRUSt1. Since Namco 

runs in a Docker container, PICRUSt2 is installed via the conda packaging manager, and the 

necessary scripts are later called using command line arguments inside the R shiny app. Namco 

retrieves representative sequences of ASV and feature tables as inputs to perform functional 

predictions. In addition to functional inference, Namco also allows users to conduct differential 

abundant analysis on the inferred metagenome, pathways and  Enzyme Classification (EC) using 

Aldex2 131. In a comparative study of differential abundance tests, Aldex2 emerged as the most 

reliable and consistent method across multiple studies. It also showed the highest degree of 

agreement with the intersection of results obtained from various other approaches. 405. In the bar 

charts between the groups, the number of significant functions with a BH-adjusted p-value of 

less than 0.05 is shown. 

4.3.3.8. Network analysis 

Microbial interactions are not only essential in maintaining the stability of their community, but 

also in maintaining the homeostasis of the host environment. Several studies highlighted the key 

role of these interactions in development, host immunity and metabolism 406. Hence, exploring 

microbial networks became an integral part of microbial analysis. In this section, Namco 

provides two different options to build microbial co-occurrence networks. The first approach is 

a simple one where the OTU abundance matrix is then transformed into a binary matrix after 

filtering OTUs with an abundance cutoff and in this step, the number of pairs of present OTUs 

are counted (co-occurring OTUs). This is done separately for two groups of samples (eg. case 

and control), which can be chosen manually. Then, for each pair of OTUs, the log2 fold-change 

between two groups or difference is computed and visualized as a network. The second advanced 

https://paperpile.com/c/G11r3b/K6vxH
https://paperpile.com/c/G11r3b/K6vxH
https://paperpile.com/c/G11r3b/h0Jrh
https://paperpile.com/c/G11r3b/WKiHZ
https://paperpile.com/c/G11r3b/L4I1D
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approach is using the NetComi 407 R package. Users can generate single network at different 

taxonomy levels using different algorithms offered by NetComi to understand the association 

within microbial community. In addition, Namco can also perform differential network analysis 

to identify differentially associated single pairs of taxa between two groups.  

SparCC 

Sparse Correlations for Compositional data (SparCC) 149 is frequently used to study the microbial 

network, especially in human gut microbiome studies 408, as well as environmental studies 409. 

SparCC is an algorithm that iteratively estimates the linear Pearson correlations between the log-

transformed relative abundances of the different OTUs in a sample. The log-ratio transformation 

is used to reflect the true ratios of abundances present in the environment, by introducing a virtual 

reference point. This makes the log-ratio of two OTUs independent of the other OTUs in the 

sample, which helps to avoid spurious correlations. Compared to direct Pearson correlations, 

SparCC is better suited to avoid spurious correlations 410 at the cost of higher computational 

complexity 411. 

CCLasso: correlation inference for compositional data through Lasso 

CCLasso 412 is a latent variable model used to build a regularised correlation network of 

microbiome data. It addresses the issue of compositionality using CLR method and utilises the 

least squares method with anℓ1-penalty. The performance of CCLasso is similar to SparCC in 

terms of consistency and reproducibility, but it is better in dealing with spurious relationships 
412. However, one of the major drawbacks of these correlation methods is that they fail to 

differentiate between direct and indirect edges. Indirect edges are edges between two species that 

are caused by third variables, which can be other taxa or environmental factors. Indirect edges 

are described as edges that occur due to third causes. In order to address both direct and indirect 

impacts, two distinct approaches for dealing with correlation-based methodologies were 

developed by Feizi et al. 413 and Barabási 414. On the other hand, these strategies have not yet 

been validated utilising a microbial co-occurrence network analysis. 

SPIEC-EASI 

One of the main advantages of SPIEC-EASI (SParse InversE Covariance Estimation for 

Ecological Association Inference) 415 is being able to differentiate between direct and indirect 

relationships in microbial network inference. It achieves this using the concept of conditional 

independence. SPIEC-EASI employs the CLR transformation to overcome compositionality and 

generates a co-occurrence network using one of two methods. The first method uses sparse 

graphical model inference (Glasso) to calculate sparse inverse covariance matrix based 416. The 

second approach, which is called the Meinshausen Bühlman method, is a node-wise regression 

model where the expression of each taxon is described by the remaining taxa 417,418. The local 

neighbourhood of a node or taxa is then described by the taxa used to predict its expression. 

Finally, the appropriate amount of sparsity of a network is inferred by using the stability approach 

https://paperpile.com/c/G11r3b/z6WFi
https://paperpile.com/c/G11r3b/806R
https://paperpile.com/c/G11r3b/QFYZ
https://paperpile.com/c/G11r3b/txAU
https://paperpile.com/c/G11r3b/NfGn
https://paperpile.com/c/G11r3b/75kM
https://paperpile.com/c/G11r3b/IFZA
https://paperpile.com/c/G11r3b/IFZA
https://paperpile.com/c/G11r3b/bFck
https://paperpile.com/c/G11r3b/F9Cw
https://paperpile.com/c/G11r3b/Eyt4
https://paperpile.com/c/G11r3b/wkgk
https://paperpile.com/c/G11r3b/P22a+LlhP
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to regularization selection 419. The final result is an undirected weighted graph where the edges 

imply the conditional dependency between two taxa. 

NetCoMi 

Network Construction and comparison for Microbiome data (NetCoMi) 407 integrates existing 

methods for generating single and differential microbial association networks. It implements 

frequently used normalisation methods such as total sum scaling, cumulative sum scaling, 

rarefication, CLR transformation and variance stabilising transformation for data normalization 

and to handle zero inflation. Various methods including SparCC149, proportionality 420, SPIEC-

EASI 421 and SPRING (the Semi-Parametric Rank-based approach for INference in Graphical 

model) 422 are implemented to overcome compositionality bias. In addition, NetCoMi features 

differential network analysis and differential association analysis. Differential network analysis 

utilizes permutation tests to evaluate the significantly different taxa between the groups. 

Differential association analysis uses Fisher’s z-test 423, a non-parametric resampling procedure 
424 and the discordant method 425 to build differential networks that are limited to differentially 

associated taxa. Overall, NetCoMi gives its users considerable flexibility to select the most 

suitable tools or methods for a particular dataset. 

There are a variety of methods available for studying microbial interactions from a network-level 

perspective, and the choice of method can be challenging for researchers. These methods vary in 

terms of complexity and computational requirements, and the trade-offs between these factors 

must be carefully considered when choosing a method for a specific study. Additionally, the lack 

of a comprehensive benchmark dataset or commonly accepted simulated dataset makes it 

difficult for researchers to evaluate the performance of different methods and to choose the most 

appropriate for their analysis. This highlights the need for the development of standardised 

benchmark datasets and guidelines for evaluating the performance of different network models 

in order to facilitate the selection of the most suitable method for a given study (Fig 35). 

https://paperpile.com/c/G11r3b/l7OO
https://paperpile.com/c/G11r3b/z6WFi
https://paperpile.com/c/G11r3b/806R
https://paperpile.com/c/G11r3b/sL4X
https://paperpile.com/c/G11r3b/vvmn
https://paperpile.com/c/G11r3b/D6QIs
https://paperpile.com/c/G11r3b/Ntdj
https://paperpile.com/c/G11r3b/XOBc
https://paperpile.com/c/G11r3b/95lT
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Figure 35: Workflow indicating the suitable network approaches depending on different 

challenges. This figure was originally published as Network analysis methods for studying 

microbial communities: A mini review 132 in Computational and Structural Biotechnology 

Journal as an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/). 

4.3.3.9. Differential network analysis 

Namco utilises the NetComi package for differential network analysis. The NetComi package 

uses correlation measures to compare the group differences. It uses its own R implementation 

for testing whether the correlation coefficients are significantly different between the groups. For 

multiple testing adjustment, all methods provided by p.adjust () (stats package) as well as a 

method for controlling the local false discovery rate provided by the fdrtool package 426(Klaus 

and Strimmer., 2015) are available in NetCoMi 407. 

4.3.3.10. Topic modeling  

Topic modelling is a computational framework which was originally designed to uncover the 

hidden thematic structure in document collections 427. It is a soft clustering technique where each 

instance belongs to each cluster to a certain degree (Fig 36). It uses Latent Dirichlet allocation 

(LDA) 428, which is a popular algorithm in the area of natural language processing (NLP). This 

concept was adapted to metagenomic analysis to explore co-occurring taxa as topics and to find 

https://paperpile.com/c/G11r3b/OT9v
https://paperpile.com/c/G11r3b/Zsuy
https://paperpile.com/c/G11r3b/z6WFi
https://paperpile.com/c/G11r3b/VMtYt
https://paperpile.com/c/G11r3b/ydD2
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the association with the metadata with impressive insights. In other words, it considers a single 

microbiome sample as a document, every OTU/ASV as terms and community type as topics. 

Namco employs a Structural Topic Model wrapper, find_topics from themetagenomics R 429 

package to predict topics and study their effects with metadata. Namco requires the number of 

topics and reference level variables as inputs from users and generates three different ordination 

plots representing the association of each topic with sample conditions.  

 

Figure 36: The basic concept of the topic modelling algorithm.Topic Modeling uses the 

LDA algorithm to cluster similar terms into topics. Similar topics can be categorised into 

relevant documents. Similarly, in microbiome data analysis, similar features or OTUs can 

be grouped into different topics and topics can be related to the reference metadata.  

4.3.4. Use case 

To demonstrate the functions of Namco, we analysed human faeces samples from a cross-over 

interventional research. The goal of the study is to understand how changes in diet can impact 

the diversity and composition of the microorganisms in the gut and to inform the development 

of healthier convenience food products with increased fibre content. The study also aims to assess 

customer acceptance of such products. 

4.3.4.1. Ethics statement 

The ethical committee of the Faculty of Medicine at the Technical University of Munich in 

Germany accepted the study protocol (approval number: 529/16S). Consideration was given to 

the guidelines of the International Conference on Harmonization of Good Clinical Practice and 

https://paperpile.com/c/G11r3b/54XJ0
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the Declaration of Helsinki of the World Medical Association (as updated in Fortaleza, Brazil, 

2013). All study participants have provided informed consent in writing. The investigation was 

recorded in the German Clinical Trial Register (DRKS00011526). 

4.3.4.2. Study design 

This study was a single-blinded, controlled cross-over study that recruited middle-aged 

volunteers with elevated waist circumference and aged between 40-65 years. The study 

population was half male and half female. The study aims to investigate the effects of a specific 

diet intervention, which includes meatloaf in a bun and pizza, on the gut microbiome (Fig 37). 

The study participants visited the study centre four times, during the first visit baseline 

characteristics were collected. The inclusion and exclusion criteria for the study population can 

be found in a publication by Brandl et al 430. The intervention was described in more detail in a 

publication by Rennekamp et al 431. 

 

Figure 37: Design of meals for fibre-enriched Intervention (enriched) and the placebo 

(standard) meatloaf and salami pizza meal. Two different types of intervention meals such 

as (meatloaf in a bun and a pizza) both, either enriched with fibre (intervention) (IM) or 

not (placebo) (M), were used in this study. The first interventional meal (meatloaf in a bun, 

IM1) the white bread roll in the fibre-enriched meal contained an additional 5.7% wheat 

fibre (VITACEL® WF600) and the meatloaf (Leberkas) a mixture of 3.1% wheat fibre and 

4.5% resistant dextrin. 

4.3.5. Phenotypic characteristics of the study group 

The study group (N = 11 females and 10 men of the same age and gender) received the same 

intervention and placebo (Table 5). Baseline measurements were taken in the morning, after an 

overnight fast, body weight and composition were measured using a Seca Medical Body 

Composition Analyzer, mBCA 515 (Seca GmbH & Co. KG, Hamburg, Germany). A stadiometer 

was used to measure body height in a standing stance without footwear (Seca GmbH & Co. KG, 

Hamburg, Germany). The BMI formula was weight (kg)/height (m2). The waist circumference 

was measured using a measuring tape halfway between the lowest rib and the iliac crest (Seca 

GmbH & Co. KG, Hamburg, Germany). 

Table 5. Overview of the study group characteristics. Indication of the mean values and the 

standard deviation for the participants is given, besides the significant differences in traits 

between the sexes. 

https://paperpile.com/c/G11r3b/cAomr
https://paperpile.com/c/G11r3b/PVyov
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 Mean S ID Differences between sexes 

Weight [kg] 90.14 11.42 0.0080 (**) 

Height [m] 1.73 0.08 1.35e-05 (***) 

BMI [kg/m2] 30.12 2.41 0.8490 (ns) 

Fat-free mass [%] 62.98 6.74 2.40e-08 (***) 

Fat mass [%] 37.02 6.74 2.40e-08 (***) 

Skeletal muscle mass [kg] 27.55 6.28 9.34e-07 (***) 

Visceral fat [kg] 3.24 1.32 4.55e-05 (***) 

Waist circumference [cm] 101.3 7.26 0.0058 (**) 

  

4.3.6.Sample preparation 

The participants were instructed to arrive at the study centre sober (10 hours prior to the 

appointment) and received either the intervention or the placebo lunch. Moreover, a pill 

containing food colouring was provided. The consumption of the dye stains faeces green, which 

helps to correlate collected samples with food consumption. 

The time of the meal and the time of excretion were recorded, and a mean transit time of 34.74 

± 24.69 h hours was determined. Since a coloured capsule was supplied with each meal, the 

faeces sample may be attributed to the corresponding meal. The dye causes green to the sample, 

and recognizable colouration was detected in the data. 

Participants were given two different types of food (meatloaf in a bun and a pizza) both, either 

enriched with fibre content (intervention) (IM) or not (placebo) (M). The first interventional meal 
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being meatloaf in a bun, (IM1) contained an additional 5.7% wheat fibre (VITACEL® WF600) 

and the meatloaf (Leberkas) a mixture of 3.1% wheat fibre and 4.5% resistant dextrin. 

The second intervention (pizza, IM2) was also fibre-enriched containing up to 20 g of fibre with 

3.0 % wheat fibre, 2.4% powdered cellulose and 2.1% inulin (Table 6). The intervention meals 

thus constituted a major part of the recommended daily fibre intake. As the fibre content is above 

6 g per 100 g, the food products are considered as high-fibre products.  

Table 6. Nutritional values per serving for the intervention (enriched) and the placebo 

(standard) meatloaf and salami pizza meal as well as the differences between the 

intervention and placebo meals. 

 Portion meatloaf with bun 240 g Portion salami pizza 320 g 

 Enriched Standard Enriched Standard 

Energy [kcal] 413 587 829 876 

Fat [g] 13 35 41 45 

Carbohydrate 

[g] 

47 47 75 83 

Total fibre [g] 19 2.9 20 6 

 

4.3.7. Sample sequencing 

In this study, gut microbiota was analyzed by sequencing the 16S rRNA gene . The sequencing 

was performed at the ZIEL Core Facility Microbiome, Technical University Munich, Germany. 

The sample preparation and sequencing method are described in detail in another publication 347. 

Briefly, the DNA from the samples was isolated using an in-house developed protocol. The 

V3V4 region of the 16S rRNA gene was amplified and purified, and the resulting amplicons 

were paired-end sequenced on an Illumina MiSeq. The sequencing data is available under 

BioProject ID PRJNA774891. 

4.4. Research question 

The main aim is to investigate the effects of a high-fibre diet on the gut microbiome. It has been 

previously shown that increased fibre intake can be protective against the development of 

cardiovascular disease 432,433 and malignant diseases 434,435. Additionally, specific health claims 

https://paperpile.com/c/G11r3b/ZL9Gm
https://paperpile.com/c/G11r3b/py1RJ+sd8Jg
https://paperpile.com/c/G11r3b/hDN51+mjRlR
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are associated with specific types of fibres. In this study, the researchers specifically examined 

the presence of butyrate-producing bacteria in the gut, which can be promoted by the fibre-

enriched intervention. The goal of this analysis is to determine whether changes in diet can have 

a permanent effect on the composition of the gut microbiome. 

4.5. Results 

4.5.1. Diversity analysis 

Namco was used to analyse the gut microbial changes following a dietary intervention. Paired-

end FASTQ files were processed using the DADA2 denoising step embedded in Namco, using 

default parameters. During the DADA2 processing, an abundance-based filter of 0.25% was 

applied to reduce sparsity in the data. This step is used to remove low abundance reads and help 

in increasing the accuracy of the analysis 436.  

ASVs were normalised to 10,000 reads before downstream analysis and outliers were removed. 

Additionally, a prevalence filter cutoff of 10% was introduced to further filter out rare ASVs. 

The alpha-diversity measures including Shannon, richness, Simpson Index, effective Shannon 

entropy and effective Simpson entropy were calculated and compared between the intervention 

group (IM) and the control group (M). However, no significant differences were observed in 

these measures between the groups. Similarly, no significantly different clusters were found in 

beta-diversity measures, including unweighted and weighted Unifrac between the IM and M 

groups. (Fig. 38).  

https://paperpile.com/c/G11r3b/lnBY1
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Figure 38: Microbial Diversity between intervention groups. (a): Alpha diversity measures 

associated with intervention (IM) and non-intervention meals (M). There was no significant 

difference identified between the groups. (b) nMDS visualizations of beta diversity analysis 

using the unweighted or weighted (c) Unifrac distance. (d) nMDS visualizations of beta 

diversity for intra-individual patients across two intervention meals and their respective 

control using weighted Unifrac distance. This figure was originally published as Namco: a 

microbiome explorer 367 in microbial genomics journal as an open-access article distributed 

under the terms of the Creative Commons Attribution License. 

4.5.2. Taxonomic distribution  

In the results, we mainly focused on the bacterial composition of different groups, including 

intervention groups (IM1 and IM2) and non-intervention groups (M1 and M2). The study found 

that the dominant phyla in all groups were Firmicutes and Bacteroidota, which together made 

up 90% of the total bacterial composition. The relative abundance of Firmicutes was slightly 

higher in the intervention groups, while Bacteroidota were slightly more abundant in the non-

intervention groups (Fig. 39 (a)). Other phyla, such as Actinobacteria, Verrucomicrobia, and 

Proteobacteria, were found to have a relatively low mean relative abundance between the 

intervention and non-intervention groups. At the genus level, most individuals had a uniform 

distribution, but one individual had a high level of the genus Prevotella (54% of relative 

abundance) (Fig. 39 (b)). Overall, the study found that there were very few differences in 

bacterial composition between the intervention and non-intervention groups, but there was also 

a lot of intra-individual heterogeneity. 

https://paperpile.com/c/G11r3b/HmbQ
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Figure 39 (c) depicts the top 20 genera, while Fig 39 (d) depicts the intra-individual variation. 

In both the M and IM groups, Bacteroides was the most prevalent genus, followed by 

Faecalibacterium, Prevotella, and Agaebacter. As a next step, we performed a non-parametric 

paired Wilcoxon test to identify microbial changes between the IM and M meals. The test found 

that five genera, Ruminococcaceae Incertae Sedis, Butyricicoccus, Anaerostipes, 

Fusicatenibacter, and Parabacteroides were found to significantly different between M and IM 

groups without multiple corrections (Fig 40). However, only Ruminococcaceae Incertae Sedis 

remained significant after multiple testing correction using BH. The study showed that the 

Anaerostipes, gram-positive, a butyrate-producing bacterium, was found to be in higher abundant 

in IM2 than to M2. Anaerostipes is an anaerobic bacterium from the family of Lachnospiraceae 

and was reported as the one of the highly abundant bacteria in the normal healthy gut 437.  Earlier 

findings, proved that the presence of Anaerostipes is positively correlates with the high-fibre 

diets and negatively correlate with BMI 438,439.   

In our study, we observed a significant difference between IM1 and M1 for two bacteria such as 

Ruminococcaceae Incertae Sedis and Parabacteroides. Ruminococcaceae has been reported as 

one of the main bacteria for producing short-chain fatty acids (SCFA), such as butyrate, which 

is an essential SCFA in maintaining the healthy gastrointestinal tract440 and helps in preventing 

possible weight gain 441. Additionally, Ruminococcus bromii is recognized as the primary species 

responsible for fermenting resistant starch, which has been linked to health benefits like weight 

regulation and diabetes prevention 442. Parabacteroides have also been shown to have metabolic 

benefits and a negative correlation with BMI 443,444. One specific Parabacteroides species, P. 

distasonis, is known to be part of the core gut microbiome 445–447 and can produce succinic acid, 

as well as promote the production of bile acid to regulate host metabolism444,448. Ezeji et al. also 

discovered that fibre-rich dietary intervention groups were enriched with Parabacteroides449. 

Dietary fibre intervention greatly enhanced the proliferation of the beneficial genera 

Ruminococcaceae Incertae Sedis, Parabacteroides and Anaerostipes at the genus level. We also 

observed that Fusicatenibacter was more prevalent in IM1 compared to M2, while 

Butyricicoccus was more abundant in M1 than in IM2. 

 

https://paperpile.com/c/G11r3b/sj6Me
https://paperpile.com/c/G11r3b/0DqsA+ebrKD
https://paperpile.com/c/G11r3b/lMeYL
https://paperpile.com/c/G11r3b/u1NB4
https://paperpile.com/c/G11r3b/wpT94
https://paperpile.com/c/G11r3b/UL4Ch+NsJOl
https://paperpile.com/c/G11r3b/cRSm4+UC25v+emzsE
https://paperpile.com/c/G11r3b/NsJOl+6T8uP
https://paperpile.com/c/G11r3b/AnMJX


127 

 

Figure 39:Taxonomic composition across intervention groups. (a, c) represents the relative 

frequency of  phyla and genus, respectively  between intervention and non-intervention 

groups. (b, d) Bar plots represent the inter-individual variation of gut microbiome between 

intervention and non-intervention groups. This figure was originally published as Namco: 

a microbiome explorer 367 in microbial genomics journal as an open-access article 

distributed under the terms of the Creative Commons Attribution License. 

 

 

Figure 40: Differential abundance of species between intervention groups. The boxplots 

depict the differences in mean proportions of genera across four meal groups, as 

determined by the non-parametric Wilcoxon Rank test. The four groups are labeled as 

https://paperpile.com/c/G11r3b/HmbQ
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IM1, IM2, M1, and M2, representing the first and second interventional meals and the first 

and second non-interventional meals, respectively. Significant differences between the 

groups are indicated by asterisks above the corresponding boxplots, with p-values less than 

0.05 considered significant. This figure was originally published as Namco: a microbiome 

explorer 367 in microbial genomics journal as an open-access article distributed under the 

terms of the Creative Commons Attribution License. 

4.5.3. Correlation of gut microbial composition and clinical metadata 

To study the meaningful association between taxa and continuous variables of interest such as 

fat mass [%], skeletal muscle mass [kg], BMI, fat-free mass [%] and age, we performed 

Spearman correlation at phyla level (Fig 41 (a)). On the phyla level, our results showed that 

Deltaproteobacteria Verrucomicrobiota, Firmuicutes, and Actinobacteriota are negatively 

correlate with BMI. Whereas on the genus level, Lachnospira, the Lachnospiraceae FCS020 

group, Phascolarctobacterium, Alistipes, Oscillospiraceae UCG-005 and Prevotella, were 

positively correlated with BMI (Fig 41 (b)). On the other hand, Ruminococcus,  

Lachnoclostridium and Bacteroides  were significantly negatively correlated with BMI. When 

compared to the M groups, the IM group had a slightly lower abundance of Prevotella, 

Lachnospiraceae FCS020 group, and Phascolarctobacterium, all of which had a positive 

correlation with BMI. Additionally, Anaerostipes, Lachnospira and Eubacterium ruminantium 

group were found to have a favourable association with the percentage of fat mass. On the other 

hand, the Clostridia UCG-014 and Rikenellaceae RC9 gut group were found to have a negative 

association with the proportion of fat mass  

  

https://paperpile.com/c/G11r3b/HmbQ
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Figure 41: Corrplot explains the positive and negative correlation between gut microbes 

and selected clinical variables at the phyla (a) and (b) genus level. This figure was originally 

published as Namco: a microbiome explorer 367 in microbial genomics journal as an open-

access article distributed under the terms of the Creative Commons Attribution License. 

 

  

https://paperpile.com/c/G11r3b/HmbQ
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4.5.4. Functional analysis 

To infer how the M and IM  groups' microbial populations differ in terms of function, we referred 

to Namco's built-in PICRUSt2 feature. A paired Wilcoxon rank test was utilized to determine 

statistically significant differences between the M and IM and groups, similar to differential 

abundance analysis at the taxonomic level. In total, after adjusting for the multiple test, we 

identified 82 KO terms that showed statistically significant differences across the groups. Most 

of the 76 KO terms were classified as metabolic (level 1) terms, and these were further distributed 

into 11 sub-categories, including amino acid metabolism, carbohydrate metabolism, lipid 

metabolism, energy metabolism (Oxidative phosphorylation), glycan biosynthesis and 

metabolism  and cofactor and vitamin metabolism, and (Fig 42). Notably, the IM groups had a 

higher abundance of the KO term K00845 (glucokinase), which is involved in the metabolism of 

amino sugars and nucleotide sugars, than the M groups did. It has been hypothesized in prior 

research that a high-fiber diet has a beneficial effect on glucose and fat metabolism in humans 
450. Also, the expression of ATP-binding cassette (ABC) transporters K10823, K02018, K15583 

and K15580 and was increased in IM, lending credence to the aforementioned findings.  

Evidence from the previous study suggests that the Firmicutes phyla which was identified as the 

highest abundant phyla in the IM group encode ABC transporters which is located in the transport 

on the bacterial plasma membrane. These glucose transporters are essential for facilitating the 

transfer of glucose across the plasma membrane 451. Abundance differences of ABC transporters 

and glucokinase between the groups are shown in Fig 43. Namco helped to identify a potential 

mechanism linking fibre intake to improved liver health by showing that Aspartate 

aminotransferase (AST), a biomarker for liver damage, was found less in the IM group compared 

to the M group. Previous researches have shown that high fibre diets decrease AST level. Namco 

also helped to discover twelve other significant pathways between IM and M groups, including 

those involved in fatty acid elongation, N-acetylglucosamine and N-acetylmannosamine 

degradation, lipid IVA biosynthesis, O-antigen building blocks biosynthesis, acetylene 

degradation, polyisoprenoid biosynthesis, urate biosynthesis, Kdo transfer to lipid IVA III, 

guanosine ribonucleotides de novo biosynthesis, GDP-mannose-derived O-antigen building 

blocks biosynthesis, UDP-N-acetylglucosamine-derived O-antigen building blocks biosynthesis 

and thiamin diphosphate biosynthesis I. We also repeated the differential analysis using the 

Aldex2 method provided in Namco to find out the significance of applying CLR transformation 

on the microbial functional profiles and no significant KO terms were detected. This indicates 

that CLR transformation could potentially enhance the specificity in functional analysis, but it 

could come with the expense of sensitivity. Hence users should carefully consider and evaluate 

their method of choice while interpreting their results. 

https://paperpile.com/c/G11r3b/hTii7
https://paperpile.com/c/G11r3b/n0lUG
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Figure 42: Bar plot represents the abundance difference in the KEGG pathways between 

intervention and non-intervention groups. The Wilcoxon test was performed to analyze 

relative abundance, and extended error bar plots were employed to compare the IM and 

M groups. The rightside of the barplot shows the significant p-value in –log10 scale for each 

pathways. This figure was originally published as Namco: a microbiome explorer 367 in 

microbial genomics journal as an open-access article distributed under the terms of the 

Creative Commons Attribution License. 

 

 

 

https://paperpile.com/c/G11r3b/HmbQ
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Figure 43: Bar plot depicts a bar plot exhibiting the variation in relative abundance of ABC 

transporters and glucokinase between the IM and M groups.The p-values were computed 

using the Wilcoxon Rank test on the abundance values. This figure was originally published 

as Namco: a microbiome explorer 367 in microbial genomics journal as an open-access 

article distributed under the terms of the Creative Commons Attribution License. 

4.5.5. Network analysis 

In order to characterise microbial interactions that take place between the IM and M groups, the 

interaction networks were generated and analyzed using Namco with the SPRING 422 mehod for 

network creation serving as the default option. A criterion of 0.25% for abundance and a cutoff 

of 10% for prevalence were applied to focus on the most prevalent ASVs. Fig 44 illustrates the 

complete microbial genus-level association network between IM and M. The SPRING 422 

technique was used as the association measure in the generation of a network at the genus level 

(replication numbers were set to 100 and nlambda as 50). All four measures of centrality did not 

show any statistically significant differences. Both of the interaction networks had the same 

characteristics, and there were no hubs or nodes to be found in either of the groupings. The genera 

Eubacterium Coprostanoligenes, Lachnospira Lachnospiraceae UCG-004, CAG-56 and 

Ruminococcaceae Incertae Sedis were responsible for the greatest variances in closeness 

centrality between the IM and M groups. Only the Ruminococcaceae Incertae Sedis family was 

discovered to be abundant in the IM group. In conclusion, there is not a substantial difference 

seen between the IM and the M group when comparing the network at the genus level. 

https://paperpile.com/c/G11r3b/HmbQ
https://paperpile.com/c/G11r3b/D6QIs
https://paperpile.com/c/G11r3b/D6QIs
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Figure 44: Differential network of genus between intervention groups. It  shows the 

bacterial associations on the genus level for the intervention (IM) and non-intervention (M) 

groups using the SPRING method. The green edges represent positive associations, while 

the red edges represent negative associations. The node colours represent clusters 

determined by using greedy modularity optimization. The networks are shown with only 

the 50 nodes with the highest degree and 50 edges with the highest weight. This figure was 

originally published as Namco: a microbiome explorer 367 in microbial genomics journal as 

an open-access article distributed under the terms of the Creative Commons Attribution 

License. 

4.6. Discussion 

There have been numerous algorithms, statistical methods, and software programs to reveal or 

extract valuable and relevant biological and clinical insights from the from the vast amount of 

available microbiome sequencing data. To address this, Namco was developed as a one-stop data 

analysis platform for microbial datasets, capable of performing both raw data processing as well 

as basic and advanced downstream analyses. By integrating existing tools into a cohesive 

computational workflow, Namco enables users to efficiently construct, analyze, and interpret 

microbial composition without the need for command-line arguments. Namco is accessed 

through a web browser and does not require the installation of any software packages. 

Additionally, the platform allows users to save the results of each analysis as an R session that 

https://paperpile.com/c/G11r3b/HmbQ
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can be resumed at any time, facilitating the sharing of research findings. Namco is available as a 

Docker image, making it possible to install it locally or on a clinical server behind a firewall for 

GDPR-compliant sensitive data analysis without uploading to the public Namco instance. 

Detailed comparisons with other web-based tools have shown that Namco offers unique 

functions, including time series clustering, function profiling with PICRUSt2, confounder 

analysis, and topic modeling. 

We utilised the dietary intervention study as a case study to elucidate Namco's features. We 

studied the relationship between a high-fibre diet and gut microbes using both fundamental and 

advanced analyses in Namco. We evaluated the changes in the relative abundance of microbes 

between the IM and M groups, comparing the most abundant species and also examining intra-

individual variation with response to fibre-rich diets.  

Following the analysis of the intervention study with respect to microbial abundance and 

diversity, we discovered that genera which are significantly abundant between IM and M groups, 

were mostly associated with butyrate synthesis, a SCFA plays a major a role in maintaining the 

healthy gut through antimicrobial and anti-inflammatory actions 452–454. Namco  helped in finding 

the vastly varied KO terms and pathways but also offered details about the composition of a wide 

variety of microbes. Namco revealed that the presence of the enzyme glucokinase, which 

catalyses the conversion of amino sugars and nucleotide sugars into energy, was positively 

correlated with the IM group's performance. Enhanced glucose metabolism is observed in people 

who consume a high-fibre diet. Several studies also showed that constant fibre intake has been 

shown to enhance glucose homeostasis 455. In addition to that, Namco found a substantial 

correlation between the IM subgroup and ABC transporters, which are involved in the 

translocation of glucose across plasma membranes 451. Furthermore, Namco allowed for the 

generation of genus-level differential microbial co-occurrence networks, which may be used in 

studies of microbial interactions. In the end, the inferred associations showed just a little 

difference in topological properties between the IM and M groups' differential network. In 

essence, Namco supplied a much-required interface for a more natural analysis of data about the 

microbial community. 

4.7. Conclusion and outlook 

As the amount of genomic data generated from microbial studies continues to grow, it becomes 

increasingly important to have software tools that can process and analyze this data efficiently 

and accurately. There are several challenges associated with analyzing microbial data, such as 

dealing with high levels of genetic diversity, identifying novel genetic elements, and 

characterizing the functional roles of genes within microbial communities. To address these 

challenges, a range of bioinformatics tools have been developed, including sequence alignment 

software, gene prediction tools, functional annotation software, and metagenomic analysis 

pipelines. However, many of these tools require significant computational expertise to use 

effectively, which can be a barrier to entry for researchers who are not trained in bioinformatics. 

https://paperpile.com/c/G11r3b/etpp9+B7GcH+DFxaZ
https://paperpile.com/c/G11r3b/HQx3e
https://paperpile.com/c/G11r3b/n0lUG
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Therefore, it is essential to develop user-friendly interfaces and workflows that make it easier for 

researchers to access and utilize these tools. One way to achieve this is by creating web-based 

interfaces that allow users to upload their data and run pre-configured analysis pipelines without 

needing to install any software or configure complex computing environments. Many 

bioinformatics tools are available as web services, making it easy for researchers to access them 

from anywhere with an internet connection. Another approach is to develop software with 

intuitive graphical interfaces that allow users to interact with their data in a more visual and 

intuitive way. This can be particularly helpful for researchers who are new to bioinformatics or 

who do not have a strong computational background. In summary, extensive and user-friendly 

bioinformatics tools are critical in microbial data analysis. By developing software that is easy 

to use and accessible to a broad range of researchers, we can help to accelerate progress in this 

field and enable more comprehensive and insightful studies of microbial communities. 

 

We present Namco, a shiny-based R application made specifically to perform a comprehensive 

microbiome study by investigating the 16S rRNA gene . To support researchers in efficiently 

characterising and understanding the structure of the microbial communities included in their 

data, we have integrated state-of-the-art R packages for both upstream and downstream analysis 

into a streamlined framework. Namco will be further developed to incorporate additional analysis 

methods and to enable the connection of microbial abundances with other data sources, such as 

metabolomics and transcriptomics. This indicates that the application will be continuously 

updated to keep up with the latest developments in microbiome research and to provide 

researchers with a comprehensive tool for analyzing their data.  

5. General discussion 

In this thesis, we mainly focused on computational challenges that can be encountered during 

different stages in the 16S rRNA gene analysis workflow and aimed to provide reliable solutions.  

Currently, the predominant method for investigating the microbial communities in various 

environments ranging from the open ocean to soil to human gut involves utilizing a single gene: 

16S rRNA gene 456,457. However, 16S rRNA gene-based techniques has inherent limitations such 

as sequencing errors, short read lengths, 458, variability introduced by selecting different variable 

regions 55,220, and challenges associated with clustering sequences into OTUs 459. Furthermore, 

using a single marker gene to evaluate species diversity is challenging due to the prevalence of 

horizontal gene transfer, the difficulty classifying bacterial species 460, and limited resolution 

between closely related species when looking at 16S rRNA gene sequences. These factors 

combine to make the use of a single marker gene for species diversity assessment challenging. 

One major challenge of most marker gene studies is that they typically focus on only one or a 

few universal genes, leaving metabolic or other functional capacities of microorganisms 

underestimated 316. Overall, the analysis of 16S rRNA gene data requires careful consideration 

of experimental design, data processing and downstream analysis methods in order to guarantee 

accurate and dependable results. To our knowledge, there has not been a systematic evaluation 

https://paperpile.com/c/G11r3b/qlggU+Tj4wI
https://paperpile.com/c/G11r3b/Q3GVV
https://paperpile.com/c/G11r3b/olQ9+CocF
https://paperpile.com/c/G11r3b/FLuE4
https://paperpile.com/c/G11r3b/Nifuk
https://paperpile.com/c/G11r3b/nwJ6F
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of these challenges in high-throughput 16S rRNA gene sequencing nor guidelines on how to 

address them effectively  

In chapter two, we intended to provide the scientific community with up-to-date 

recommendations for experimental design and data analysis, thus one of our goals was to 

highlight the contribution that different parameters make to the precision with which taxonomic 

assignments can be made. In order to draw conclusions beforehand, it is necessary to evaluate 

the optimal performance of each experimental setting by employing a variety of experimental 

procedures and settings. Hence, we analysed the impact of choosing different primers, reference 

databases, clustering methods, and specific pipeline settings using combinations of human stool 

samples and mock communities with increasing levels of complexity. 

We derived the following recommendations from our results. Primers for frequently used V-

regions were selected following an analysis of the relevant literature. From our results, we found 

that the classification of Bacteroidetes, Proteobacteria, and Firmicutes at the phylum level was 

robust when using different primer combinations except for the V4 region (515F-944R). In 

contrast, the detection of Actinobacteria, Tenericutes, Lentisphaerae, and Verrucomicrobia 

changed with the use of different primer pairings, emphasising the importance of selecting the 

appropriate primer.  

As we moved forward, we examined the influence of different bioinformatics pipelines on 

microbiota composition. After preprocessing raw reads, we generated features 233 by clustering 

or denoising approaches 94,96. In this study, results from mock communities revealed that the 

number of features identified by each method was nearly identical. However, denoising 

approaches performed better on human data compared to traditional OTU clustering methods. 

Recent studies often recommend ASV or zOTU approaches, which can detect sequencing errors 

and provide single nucleotide resolution 231. We also compared the effect of using reference 

databases when making taxonomic assignments. SILVA and RDP databases proved the most 

accurate 16S rRNA gene databases, offering similar consistently good performances compared 

to GRD, LTP, and GG databases. We no longer recommend using GG since its last update was 

in 2013; using it may result in false positives 55,70. As for pipeline parameters, we suggest testing 

truncated length combinations for both forward and reverse reads for each primer pair used in 

each study. Finally, we observed that using different mock communities can help detect potential 

biases in the methods employed to analyse samples in a preferred environment. For instance, if 

a method fails to accurately detect or quantify one or more organisms present in a mock 

community, this could indicate that it is unsuitable for the sample being studied. Furthermore, 

comparing results from the mock community with those from actual samples provides insight 

into their accuracy and helps identify any potential sources of error. 

Chapter three addressed a highly debated topic: how reliable functional profiling from 16S rRNA 

gene sequences is. Metagenome sequencing can provide valuable information about microbial 

communities in a sample, including strain-level classification and functional details; however, it 

https://paperpile.com/c/G11r3b/Wc9Dl
https://paperpile.com/c/G11r3b/WwuIi+QzvSh
https://paperpile.com/c/G11r3b/qPl7
https://paperpile.com/c/G11r3b/VB4I+olQ9
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is more expensive and technically demanding than other methods for analysing microbial 

communities - making it less suitable for large-scale research such as population-based studies. 

Due to the lower costs, 16S rRNA gene profiling remains popular among researchers studying 

microbial functional profiling due to its much lower costs. This study concluded that 16S data-

based functional predictions are often not sensitive enough to detect changes in human health. 

This was one the most important findings from this study. These functional prediction methods 

are capable of detecting significant variations between ecological niches. However, they are not 

an alternative option for Metagenomic approaches and researchers should not be relied on this 

alone. Researchers who want to develop hypotheses using functional predictions derived from 

16S rRNA gene information should be aware that they have limitations and use control measures 

such as sample label randomization. We recommended Tax4Fun and PICRUSt2 as the best tools. 

PanFP may benefit from a custom copy number database. 

Functional prediction tools often perform poorly due to technical and computational biases. One 

of the primary causes is the absence of sufficient reference genomes 363,364,366 accuracy in 

functional predictions depends on both number and quality 316. Functional prediction is the 

process of inferring the functional capabilities of a microbiome based on the presence or absence 

of specific genes within their genomes. The more reference genomes that exist for a particular 

clade of microorganisms, the more confidently one can infer their functional capabilities. 

However, most microorganisms in nature have yet to be cultivated and thus lack a complete 

genome. At present, only around 20,000 entire microbial genomes exist that can be used for 16S-

based functional profile prediction 461. Although the number of known 16S rRNA genes 101 is 

significantly smaller than that, with reference full-length 16S rRNA gene already exceeding 2 

million, calibrating functional profiles based on 16S data for environmental microbiomes where 

reference genomes are less plentiful can prove challenging.  

The second important technical bias that could affect the performance of prediction tools is PCR 

bias. As we have already shown the impact of primer choice in taxonomic classification in the 

second chapter 55, in return also affects the functional prediction. In order to investigate this, we 

utilised the simulated datasets from CAMI 350 to evaluate how well various prediction tools and 

MGS performed in the absence of any technical biases. As was to be expected, the outcome of 

this analysis was a performance improvement.  

Apart from these technical biases, the major concern is that the majority of microbial genes still 

remain uncharacterized and their functions are unknown. This represents an important challenge 

in the field of microbial genomics. These uncharacterized genes have the potential to hold 

immense value for biotechnology and medicine, as they may be used as genome manipulation 

tools, antimicrobials, delivery systems, and more. Deciphering the function of uncharacterized 

genes remains a complex and ongoing challenge in microbial genomics. Hence there is a great 

demand to perform experimental studies to characterise uncharacterized genes or to develop 

computational predictive models to decipher microbial gene functions.  
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5.1. Are short-read amplicons suitable for the prediction of microbiome 

functional potential? 

While short reads generated by next-generation sequencing (NGS) platforms are known to be 

more precise, recent research comparing the output of short-read and long-read sequencing 

technologies has indicated that the latter offers superior taxonomic classification accuracy at both 

the genus and species levels 462,463. Studies including ours have demonstrated that short read 

amplicon sequencing often fails to differentiate closely related strains and sometimes species. 

Studies conducted by Ash et al 464 and Sergei G et al 465 failed to distinguish between clinically 

important species such as Bacillus anthracis and the Bacillus cereus group. Sequencing full 16S 

rRNA gene sequences on B. anthracis and B. cereus isolates revealed that only a few had 

distinguishable 16S rRNA gene sequences, demonstrating that taxonomic resolution of this 

marker gene may not be accurate for closely related strains 466.  

5.2. Full-length 16S rRNA gene sequencing 

Results from the first chapter stressed the importance of working with full-length 16S rRNA 

gene to eliminate region-specific bias. This can be accomplished either through full-length 

sequencing using third-generation sequencing technologies like Oxford Nanopore or PacBio; 

additionally, sequencing this commonly used marker for microbial identification 269. 

PacBio's Single Molecule Real-Time (SMRT) technology 65 permits full 16S rRNA gene 

sequencing, providing access to all nine variable regions of the gene. This provides a deeper 

comprehension of the microbial community being studied and can provide more insights into the 

connections between different microorganisms and their functional capacities. Furthermore, 

SMRT can be utilised for full genome sequencing of microbial isolates to provide insight into 

their genetic diversity, antibiotic resistance genes, virulence factors and other functional 

genes467,468. In conclusion, long-read sequencing technologies such as SMRT and Oxford 

Nanopore provide a more precise and detailed understanding of microbial communities by 

enabling the reconstruction of ASVs and full-length sequencing of 16S rRNA gene. 

5.3. Shallow metagenomics: Maybe a better alternative to 16S rRNA gene 

sequencing 

Shallow metagenomics 469,470, on the other hand, involves sequencing a small portion of each 

organism's genome from an entire sample. This provides more in-depth knowledge about 

microbial communities than 16S rRNA gene sequencing alone can provide, such as functional 

genes or metabolic pathways. However, it remains more expensive than 16S rRNA gene 

sequencing and may not offer as comprehensive an overview of the community as deeper 

sequencing would. The advantages of shallow metagenomics include targeted analysis: By 

focusing on specific genes or pathways, shallow metagenomics allows for faster and cost-

effective identification of microorganisms or genetic markers associated with disease or health. 
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(2) greater sensitivity: Because shallow metagenomics focuses on specific regions, it can be more 

sensitive in detecting low-abundance microorganisms or genetic markers. (3) easy comparison: 

Shallow metagenomics allows for easy comparison of genetic sequences across different 

samples, which can be useful when identifying similarities or differences between healthy and 

diseased populations. (4) cost-effectiveness: Shallow metagenomics is typically less costly than 

shotgun metagenomics as it requires less sequencing. Furthermore, shallow metagenomics 

allows for the identification of specific species as well as any variations from the reference 

genome. Shallow metagenomics can also be performed using deeper sequencing mode, known 

as deep metagenomics. While this provides even more detailed information on the microbiome, 

the cost and computational demand will be higher. Furthermore, shallow metagenomics also has 

limitations such as missing or underrepresenting certain microorganisms or genetic markers that 

may be essential for understanding the sample. 

5.4. Employing multi-omics approaches toward microbiome research 

Measurement of microbial function requires microbes that are functionally active during 

sampling with an adequate population size and sampling method, or can be accessible for 

functional measurements. As not all microbes meet these criteria, real-time PCR may help 

quantify their genes regarding their functions; however, it must be remembered that genetic 

potentials do not always accurately reflect actual microbial activities 283,471. In this context, multi-

omics approaches such as transcriptomics, proteomics and metabolomics offer a powerful way 

to explore microbial functions. 

One major limitation of shotgun metagenomics is its inability to differentiate between active and 

inactive microbiomes. Unfortunately, it can be difficult to differentiate between microbiome 

members that are contributing to ecosystem behaviour and those simply present, waiting for more 

favourable conditions. Even if a gene is present, that does not guarantee its expression. 

Consequently, direct measurement of proteins and/or transcripts through metaproteomics  or 

etatranscriptomics has become an increasingly useful addition for metagenomics 472. 

Metatranscriptomics utilises similar strategies as metagenomics, so these same tools can be 

utilised for the analysis pipeline as well 473. This straightforward technique assists in combining 

metagenomics and metatranscriptomics to explore microbial functional potentials 290,291. Their 

combination not only facilitates the assembly of microbial genomes and the prediction of gene 

functions 474–476, but it also has the potential to identify which genes are up/down regulated under 

particular circumstances. Furthermore, identifying active transcripts within a genome can 

differentiate metabolically active bacteria from inactive strain 477. 

Metaproteomics is another useful omics approach for studying microbial functions. Unlike 

metagenomics and metatranscriptomics, this omics utilizes high-resolution mass spectrometry 

(MS) to quantify expressed proteins. Metaproteomics tools such as Galaxy-P 478, 

MetaProteomeAnalyzer 479 and MetaLab 480 enabled the rapid identification of over 50,000 

unique microbiome protein compositions from a single study 481–483. Metaproteomics offers one 
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major advantage, enabling it to identify and quantify proteins from all organisms present in a 

microbiome sample - irrespective of their phylogenetic relationship. This includes both microbial 

and host proteins, which can provide important insights into the interactions between host and 

microbiome. Metaproteomics can also be employed to investigate the functional activity of the 

microbiome, by identifying and quantifying enzymes, transporters, and other proteins involved 

in key metabolic processes. Furthermore, it has applications in host-microbe interactions as well, 

measuring host proteins involved in immune response, communication between them, and 

nutrient uptake 484.  

Combining the results from these various omic techniques with metagenomics can provide a 

deeper insight into microbial functioning. For instance, metagenomics can discover genes 

participated in specific metabolic pathways while transcriptomics reveals which are currently 

being expressed, proteomics shows which of those genes have been translated to proteins and 

metabolomics shows which proteins are active and producing metabolic products. This 

multidimensional data helps us better comprehend how microbes adapt to various environmental 

conditions, interact with their hosts, and perform specific tasks. 

Bioinformatics researchers are actively engaged in developing tools for integrative analysis and 

visualisation of multi-omics datasets. Some examples include MiBiOmics 485, MOFA+ 486,487, 

DIABLO 488 and gNOMO 489. These tools usually employ machine learning and statistical 

techniques to detect patterns and relationships among various types of omics data, then provide 

visualisation tools to assist users in understanding the results. Studies using an integrated 

approach have sought to uncover a potential connection between microbiome and metabolites in 

diseases. For instance, Ali, R et al (2022) 490 demonstrated that regulation of fatty acid 

metabolism is disrupted in patients with hepatitis C when their gut-liver axis is disrupted. The 

authors speculate that this discovery could offer new insight into the causes of hepatitis C 

infection and may pave the way to the identification of new therapeutic targets. Yu, Zheng, et al 

(2022) 491 combined metabolomics data and 16S rRNA gene sequencing to examine the role of 

the gut microbiome and serum metabolome in polycystic ovary syndrome pathophysiology. 

5.5. Adaptation of machine learning models coupled with other models in 

microbiome studies 

Our understanding of how the microbiome functions in health and disease has the potential to be 

greatly improved by machine learning and text mining techniques like natural language 

processing (NLP). This could lead to more precise diagnostic and treatment strategies, propelling 

microbiome research forward. 

For instance, deciphering the function of microbial genes necessitates extensive experimental 

and computational analysis, including an exploration of their genomic context, protein structure, 

and interactions with other genes and proteins. Machine learning and deep learning methods, 

combined with text mining, have the potential to drastically improve our ability to predict gene 
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function and identify new targets for study and intervention. These results indicate that 

combining language models with microbial genomics is a promising approach for uncovering 

gene functions in microbes. This study emphasises the potential of NLP techniques in 

microbiome research, suggesting they could facilitate our comprehension of the intricate 

interactions between microbes and their hosts. Miller, D et al 492 used Natural Language 

Processing and a neural network model to predict microbial gene functions. They were successful 

in classifying 56,617 genes among 444,521 uncategorized ones. This study demonstrated the 

power of combining microbial genomics with language models to uncover gene functions in 

microbes. The authors believe this approach offers a promising avenue for discovering new 

targets and functions within microbiome research. Furthermore, this work emphasises the 

significance of applying machine learning and NLPs techniques when analysing microbial 

genomic data. 

Another text mining approach which is being used in microbiome research is topic modelling 
392,493,494. They are used to identify underlying topics in a corpus of documents by grouping words 

into topics based on their co-occurrence patterns. These topics can then be utilized to summarize 

and comprehend the contents of the corpus. This same model can also be applied to microbiome 

data, where "documents" refer to samples while "words" correspond to taxa or OTUs. Our tool 

Namco makes this model available so researchers can quickly identify dominant microbial 

communities within samples and understand their relationship to various biological and 

environmental variables. Studies such as Movassagh, M.et al (2021) 495, Tataru, C. et al (2022) 
493 and Xiong, X et al (2022) 496 have already shown the potential application of topic modeling 

in microbiome research. Hence this is also integrated in our tool Namco, as a part of advanced 

analysis.  

5.6. Extensive bioinformatics tools are needed 

Microbiomes are highly interdisciplinary fields requiring expertise across several disciplines, 

such as microbiology and bioinformatics, genetics, immunology, computer science and statistics. 

Studying the complex interactions between microbiomes, their hosts, and environments 

necessitates a sophisticated bioinformatics toolbox. Unfortunately, the tools available for 

studying various microbes such as fungi, protists and viruses are still relatively limited 497,498, 

hindering our comprehension of their roles within microbiomes. Additionally, more 

sophisticated tools are necessary for studying how the components of a microbiome interact with 

each other, how they evolve over time, and how environmental changes influence them. For 

microbiome research to reach its full potential, longitudinal study of host-microbiome 

interactions and integration of environmental elements are necessary. To meet these challenges, 

collaborations between various fields of expertise are essential as well as interdisciplinary 

research initiatives. 

In the final chapter, we introduced our tool called Namco, a user-friendly, shiny R-based web 

interface with a aim to provide all-in-one solution for 16S rRNA gene analysis. The outcome 
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from the first two chapters also reminded us that there are no guided tools for the users which 

can give suggestions to the users when and how to use particular analysis. We aimed to develop 

a user-friendly tool with end-to-end analysis. A plethora of open-source tools are available and 

each tool has its strengths and weaknesses. One of the main advantages of Namco is that it is 

completely coding-free. Even though many R statistical packages are available to carry out 

statistical analysis, implementation of R scripts might be challenging for individuals without 

scripting expertise and bioinformatics experience. Most web-based tools also do not provide end-

to-end analysis. The primary drawbacks associated with these tools include: (i) Their exclusive 

focus on downstream analysis, with little to no attention given to raw data processing; (ii) their 

reliance on standard statistical methods, which may not be adequate for analyzing more intricate 

data sets; (iii) a lack of support for functional profiling or utilization of outdated approaches; (iv) 

inadequate attention paid to confounder analysis and the unique requirements of time-series or 

longitudinal studies; and (v) limited support for advanced machine learning techniques, as well 

as the creation of microbial association and differential networks across various taxonomic ranks. 

A dietary intervention study was used to help us understand the features of Namco. We 

performed both fundamental and advanced analyses in Namco in order to examine the 

relationship between consuming high fibre diets and gut microbiome composition. We compared 

the abundances of taxa in the IM group and examined intra-individual variation in gut 

microbiome in relation to fibre-rich diets. Our findings showed that the IM and the M groups 

had significant differences in genus that were involved in the production and use of butyrate. 

Butyrate is a SCFA, which helps in maintaining the gut's homeostasis through anti-inflammatory 

and antimicrobial actions 454. Namco provided information on the difference in microbial 

composition and also helped in identifying the most significantly different metagenome and 

pathways. Overall, Namco fills a gap in the market by offering an interface that makes it easier 

to analyse data about microbial communities.   

https://paperpile.com/c/G11r3b/DFxaZ
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6. Future perspective of the thesis 

My thesis focused primarily on solving computational problems that 16S rRNA gene analyses 

face and provided guidelines for selecting primers and pipelines. The second part of my thesis, 

which was also based on the 16S-rRNA gene sequences, did a benchmark analysis and found 

that Tax4Fun2 as well as PICRUSt2 performed better even though they were not true to 

metagenomics' microbial functions. The outcome could be improved by integrating functional 

profiles from both these tools. Hence, the future perspective of my thesis would be integrating 

Tax4Fun2 and PICRUSt2 into Namco to create a pipeline that facilitates seamless data transition 

between the two tools. This would enable users to easily compare results obtained from both 

applications, taking advantage of each one's distinct features. The pipeline should also include 

data preprocessing and postprocessing steps to guarantee that data is in the appropriate format 

for each tool, and that results are easily interpretable. Additionally, statistical analysis should be 

performed on the results to assess the efficiency of both the pipeline and tools. The KEGG 

Orthology database, which is widely used as a reference source for functional annotation, has 

undergone multiple updates and revisions since the development of tools. These updates may 

cause discrepancies in the functional annotations assigned to different genes and organisms, 

which in turn impacts the accuracy and comparability of functional profiles predicted by these 

tools. Therefore, when comparing functional profiles across different tools, it is essential to take 

into account the reference databases and annotation methods each tool utilises. We could only 

conclude that 16S functional prediction tools are insensitive to detecting functional differences 

in microbial genes associated with human disease conditions. This leaves open the opportunity 

to further assess their accuracy in other areas. 

Constructing a machine learning model that can accurately calibrate functional profiles for 

numerous 16S-amplicon samples with only a limited number of WGS-16S amplicon paired 

samples as training data is an invaluable asset for large-scale, function-focused microbiome 

sequencing initiatives. This strategy would enable the cost-effective sequencing of 16S 

amplicons while still ensuring the higher precision offered by WGS sequencing for functional 

reconstruction. A machine learning model can be trained using a supervised learning approach, 

using pairs of WGS-16S amplicon samples as training data. With this information, the model 

could be programmed to predict microbiome functional profiles based on 16S-amplicon 

sequencing data. Once trained, the model can be applied to a large number of 16S-amplicon 

samples in order to anticipate their functional profiles. It is essential to remember that the 

performance of the model relies on the quality of training data and similarity between training 

samples and those to be analysed. Therefore, it is imperative to carefully select training samples 

which are representative of the population being analysed. 

Machine learning models can also be designed to address PCR bias by targeting blind spots of 

different primer pairs or correcting for systematic differences caused by differences in DNA 

extraction protocols. For instance, if a certain primer pair fails to amplify DNA from certain 
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samples, machine learning algorithms could detect the sequence or other characteristics 

preventing the primer from binding effectively. Machine learning approaches typically utilize 

large datasets with both positive and negative controls, as well as samples with known biases or 

other confounding factors. To accomplish this goal, machine learning approaches typically rely 

on large datasets. By analyzing these datasets, the algorithm can learn to recognize underlying 

patterns and relationships that could be used to correct biases in future experiments. Machine 

learning algorithms can also be employed to detect and correct for biases caused by differences 

in DNA extraction protocols or other experimental variables. Kayama, K et al (2021 499 recently 

used recurrent neural network (RNN) prediction to replace preliminary PCR experimentation. 

Namco can be further developed to enable novel analysis techniques and the correlation of 

microbial abundances with other data sources like metabolomics or transcriptomics. One way to 

integrate metabolomics and metatranscriptomics data with Namco would be by providing the 

ability to import and visualise these data alongside microbial abundance data. To achieve this, 

data import and visualisation modules tailored specifically for metabolomics and 

metatranscriptomics data could be added. Additionally, incorporating existing multi-omics 

statistical frameworks like MOFA+, DIABLO and gNOMO into the Namco framework or 

developing new statistical methods to correlate microbial abundances with metabolomics and 

metatranscriptomics data could offer a deeper insight into the microbiome community and its 

interactions with the host. Another way to enhance Namco is to incorporate other analysis 

techniques such as machine learning and graph-based methods to detect key features and 

correlations in the data. Doing so could provide new insights into the microbial community and 

its interactions with the host. Namco should strive to make itself user-friendly, offering 

appropriate documentation and tutorials so users can understand the new features and how to 

utilise them efficiently. Furthermore, providing support and regular updates to the software will 

guarantee it remains a valuable tool for microbial community analysis. 

Overall, while 16S rRNA gene sequencing will likely remain a useful method for microbial 

community analysis, other methods such as metagenomics and metatranscriptomics that provide 

higher resolution have become increasingly well received. In five or ten years, it appears likely 

that 16S rRNA gene sequencing will remain an effective tool for microbial community analysis, 

however, it may not be the only approach available. 

Even though there is extensive ongoing research being carried out in the microbiome field, there 

are numerous challenges and unanswered questions, leaving plenty of research opportunities 

open for exploration. Some of the challenges, which I have outlined in each chapter, may be 

completely overcome with advanced sequencing/ machine learning methods, while others may 

persist. As stated in the previous section, machine learning/ AI based approaches can be 

developed to improve the accuracy of PCR amplification. Example for the latter, reference 

databases will always present challenges related to completeness, accuracy and consistency; 

hence it is necessary for periodic benchmark studies like mine to identify high quality databases. 

https://paperpile.com/c/G11r3b/6iRl
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Also, it is possible that the compositional nature microbiome data will never be completely 

resolved. There are still efforts to improve microbiome studies' reliability and reproducibility by 

developing new analytical methods. Single-cell sequencing technology may be a viable option. 

This allows for the determination of absolute abundances within samples. However, there is a 

constant need for a comprehensive benchmark of 16S rRNA gene analysis tools or metagenomics 

tools to assess their performance and benchmark them against other tools. Hence I strongly 

believe my work will act as a baseline to carry out the similar benchmark analysis to weigh the 

advantages and drawbacks of different approaches before selecting which one best suits their 

research question and objectives. 
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