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Abstract

This PhD thesis focuses on the feasibility of using different spatial and spectral resolutions
in optical remote sensing to identify distinct types of plastics on land surfaces at the best
possible rate and to associate them with their respective functions. The work consists
of three substantively interrelated studies that build on each other and investigate the
possibilities and limitations of super- to hyperspectral remote sensing techniques, methods
and machine learning algorithms to accurately classify various plastic materials.

The first study examines the use of WorldView-3 (WV-3) satellite data to detect plas-
tic materials on land surfaces. The study provides a detailed explanation of the spectral
features of plastics in the short-wave infrared (SWIR) range and groups plastic materials
into three clusters, one aliphatic and two aromatic, according to their molecular structure.
A knowledge-based decision-tree classifier has been developed built on diagnostic spectral
features of plastic materials in the SWIR range and applied to laboratory, aircraft and
WV-3 satellite data to identify the different groups of plastic materials. The study con-
cludes that the combination of WV-3 data and the newly designed classifier is an efficient
and reliable approach for global monitoring and identifying plastic materials on different
backgrounds.

The second study expands on the first by investigating the feasibility of identifying
distinct types of plastics using deep - and machine learning models based on hyperspectral
satellite data. The study creates a comprehensive database of mixed pixels of different
plastic and non-plastic materials using in-house and public spectral libraries. The algo-
rithms selected for classification are a Convolutional Neural Network (CNN), a Random
Forest (RF) approach, and a Support Vector Machine (SVM). The study validates its
models using a test group of the spectral database and controlled laboratory as well as
aircraft experiments. Ten different plastic materials can be identified this way whereby
the RF classifier is the most robust one, followed by the SVM and CNN models. The
RF further outperforms the other two models in the evaluation of the aircraft data from
controlled experiments. The RF is then applied to one GaoFen-5 and two PRISMA satel-
lite recordings of the coastal area in Weifang City, Shandong Province, China, producing
transferable results with a very high accuracy of about 96%.

The third study is a continuation of the second one and focuses on a machine-aided
association of the hyperspectrally detected plastic materials to their respective function-
ality using deep learning models trained with Sentinel-2 satellite imagery. The study
identifies five major functional types of plastics in the investigated area, namely plastic
cover sheetings for construction areas, greenhouse structures, photovoltaic panels (PVs),
roof materials, and sport field floorings. Among several models deployed, a VGGNet-13
achieved an overall accuracy of 78% on the test dataset. The model performs well in
identifying PVs, greenhouses, and covered construction sites, with F1 scores of 0.85, 0.77,
and 0.71, respectively. The results thus indicate that deep learning algorithms trained
by Sentinel-2 satellite imagery are suitable to associate the respective functions to plastic
materials on land surfaces.
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Abstract

Overall, this thesis provides a comprehensive research and contributes to the devel-
opment of efficient and reliable approaches for monitoring and identifying various types
of plastic materials on land surfaces using optical remote sensing combined with machine
learning, and deep learning algorithms. The findings of this thesis also serve for issues
such as environmental monitoring, waste management, and resource conservation efforts.
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Zusammenfassung

Die vorliegende Dissertation befasst sich mit der Machbarkeit, unterschiedliche räumliche
und spektrale Auflösungen in der optischen Fernerkundung zu nutzen, um verschiedenar-
tige Kunststoffmaterialien auf Landoberflächen bestmöglich zu identifizieren und sie mit
ihren jeweiligen Funktionen zu verknüpfen. Die Arbeit besteht aus drei inhaltlich zusam-
menhängenden, aufeinander aufbauenden Studien, in denen die Möglichkeiten und Gren-
zen von super- bis hyperspektralen Fernerkundungstechniken, Methoden und Algorithmen
des maschinellen Lernens zur genauen Klassifizierung verschiedener Kunststoffmaterialien
untersucht weden.

In der ersten Studie wird die Verwendung von WorldView-3 (WV-3) Satellitendaten
zur Erkennung von Kunststoffen auf Landoberflächen untersucht. Die Studie liefert
eine detaillierte Erläuterung der spektralen Merkmale von Kunststoffen im kurzwelli-
gen Infrarotbereich (SWIR) und sortiert diese auf der Grundlage ihrer Molekularstruk-
tur in drei Gruppen, eine aliphatische und zwei aromatische. Basierend auf diagnostis-
chen Spektralmerkmalen im SWIR-Bereich wird ein wissensbasierter Entscheidungsbaum-
Klassifikator entwickelt und auf Labordaten, Flugzeugaufzeichnungen und WV-3 Satelli-
tendaten angewendet. Die Studie kommt zu dem Schluss, dass die Kombination von WV-
3-Daten und dem neu entwickelten Klassifikator ein effizienter und zuverlässiger Ansatz
für ein globales Monitoring und die Identifizierung von Kunststoffmaterialien auf unter-
schiedlichen Landoberflächen ist.

Die zweite Studie baut auf der ersten auf, indem sie die Möglichkeiten zur Identifika-
tion von Kunststoffen mit Hilfe von Modellen des maschinellen Lernens auf der Grundlage
von hyperspektralen Satellitendaten untersucht. Dabei wird unter Verwendung eigener
und öffentlicher Spektralbibliotheken eine umfassende spektrale Datenbank aus Mischsig-
naturen, bestehend aus unterschiedlichsten Kunststoffen und Nicht-Kunststoffen erstellt.
Die für die Klassifizierung ausgewählten Algorithmen sind ein ’Convolutional Neural Net-
work’ (CNN), der ’Random Forest’ Ansatz (RF) und eine ’Support Vector Maschine’
(SVM). Die Studie validiert ihre Modelle anhand einer Testgruppe aus der Spektral-
datenbank und kontrollierten Labor- und Flugzeugexperimenten. Das Ergebnis ist die
Identifikation von 10 verschiedenartigen Plastikmaterialien, wobei der RF-Klassifikator
die besten Ergebnisse liefert, gefolgt von den Modellen SVM und CNN. Der RF-Ansatz
übertrifft die beiden anderen Modelle auch bei der Auswertung der Flugzeugdaten aus kon-
trollierten Experimenten. Zuletzt wird der RF-Algorithmus auf eine GaoFen-5 und zwei
PRISMA Satellitenaufnahmen des Küstengebiets von Weifang City, Provinz Shandong,
China, angewendet und liefert übertragbare Ergebnisse mit einer sehr hohen Genauigkeit
um die 96%.

Die dritte Studie ist eine Fortsetzung der zweiten und konzentriert sich auf eine rech-
nergestützte Zuordnung der hyperspektral detektierten Kunststoffe zu einer entsprechen-
den Funktionalität. Dabei kommen Deep-Learning-Modelle zum Einsatz, die mit Hilfe
von Sentinel-2-Satellitenbildern trainiert worden sind. Die Studie identifiziert dabei fünf
wichtige, häufig vorzufindende Funktionsarten von Kunststoffen im Untersuchungsge-
biet, nämlich als Kunststoffabdeckungen für Baugebiete, Gewächshausstrukturen, Pho-
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Zusammenfassung

tovoltaikmodule (PV), Dachmaterialien und Beläge von Sportplätzen. Dabei wird, unter
vielen getesteten Modellen, mit einem VGGNet-13 eine Gesamtgenauigkeit von 78% im
Testdatensatz erreicht. Das Modell schneidet bei der Identifizierung von Photovoltaikan-
lagen, Gewächshäusern und überdachten Baustellen gut ab, mit F1-Werten von 0,85,
0,77 bzw. 0,71. Damit zeigen diese Ergebnisse, dass Deep-Learning-Algorithmen, die über
Sentinel-2-Satellitenbildern trainiert wurden, zur Identifizierung von Kunststofffunktionen
auf Landoberflächen geeignet sind.

Insgesamt gesehen liefert diese Arbeit einen umfassenden Forschungsbeitrag zur En-
twicklung effizienter und zuverlässiger Ansätze für das Monitoring und die Identifizierung
von Kunststoffen auf Landoberflächen basierend auf Daten und Methoden der optis-
chen Fernerkundung in Kombination mit maschinellen Deep-Learning-Algorithmen. Die
Ergebnisse dienen des Weiteren der Umweltüberwachung, der Abfallwirtschaft und dem
Ressourcenschutz.
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Kästner, and Nicole Köllner for their kind help and guidance, especially during the initial
stage of my Ph.D. program. Their expertise and knowledge in various domains were
invaluable to me and helped me gain a deeper understanding of my research area. They
are generous scholars who are always ready to provide professional support and insightful
discussions.

Furthermore, I would like to express my deep gratitude to my office mate Zhuge Xia,
with whom I shared the struggles of pursuing a doctoral degree and offered each other
mutual support. I am truly thankful for all the friends and colleagues I met during my
Ph.D. life, including Dr. Mimi Peng, Dr. Deying Ma, Zhiyuan Wang, Carolina Cañizares,
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1 Introduction

1.1 Outline

This thesis contains an introduction (Chapter 1), a theoretical background (Chapter 2),
a description of the methodology used (Chapter 3), three main chapters representing
the three manuscripts published (Chapter 4-6), and an overall synthesis and discussion
(Chapter 7). Chapter 4 and 5 are original publications that have been published in the
journal Remote Sensing of Environment. Chapter 6) has been submitted to a further peer-
reviewed scientific journal and is currently awaiting review. All work represents stand-
alone independent research. There is some overlapping of general information between
publications, particularly in the description of the study areas, as all work was conducted
at the same test sites. Applied spectroscopic methods, e.g. field reflectance measurements
and laboratory analysis are valid throughout all studies.

1.2 Motivation and objectives

Plastic products are increasingly dominating the market since being widely introduced
in the 1930s due to their characteristics such as low weight, water resistance, and dura-
bility. Thereby the global manufacturing of plastics has quadrupled over the last four
decades (Geyer et al., 2017). Now, the inappropriate disposal of plastic waste, along with
its longevity and durability, has resulted in its extensive accumulation in terrestrial and
aquatic ecosystems (Derraik, 2002). The plastic waste enters the environment through
various pathways and has serious detrimental effects on our living environment. This has
caused substantial damage to both wildlife (Browne et al., 2008; Uhrin and Schellinger,
2011) and their habitats (Lebreton et al., 2017). Consequently, an increasing attention is
now being paid to the impact of plastics on ecosystems and human health (Lithner et al.,
2011; Rochman et al., 2013; Law and Thompson, 2014; Law, 2017). The growing interest
in this phenomenon has triggered the idea to investigate the possibility of using remote
sensing techniques and associated methods to monitor and identify plastic waste in the
terrestrial environment.

Optical remote sensing techniques have been developed over the years to investigate
the Earth’s surface and monitor changes in vegetation, aqueous bodies, and land use (Tong
et al., 2019; Karthikeyan et al., 2020; Toure et al., 2019; Chawla et al., 2020). Thereby,
several recent studies also demonstrated the potential of these techniques for the detection
and monitoring of plastics on land surfaces. Optical remote sensing technologies involve
employing field spectrometers, aircraft - and satellite sensors to collect electromagnetic
radiation reflected and emitted from the Earth’s surface. The collected data are then
utilized to perform a processes of detection and classification according to the spectral
characteristics of the different types of materials. Conventional approaches to examine
land surface materials such as visual inspections, tend to be time-consuming, expensive,
and prone to man-made errors (Smith et al., 2021). As far as plastic is concerned,
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1 Introduction

remote sensing techniques offer a reliable and efficient way to monitor plastics on the
land surface on a larger scale. Diverse types of plastics can have different characteristics
allowing them to persist for varying periods in the environment (Andrady, 2017). Many
of these plastics can be chemically hazardous in certain situations. More than 50% of
plastics are intrinsically toxic (Lithner et al., 2011). Even when not toxic, plastics can
absorb and bio-accumulate other contaminants (Teuten et al., 2009; Rochman et al.,
2013). When plastics are exposed to ambient solar radiation, they slowly decompose
into microplastics and release greenhouse gases, including methane and ethylene, which
contribute to climate change and global warming effects (Royer et al., 2018; Vishwakarma,
2020). Through the identification of distinct types of plastics on land surfaces, potential
environmental impacts can be assessed and adequate measures can be taken to alleviate
damages. The detection of various types of plastics further helps determining also their
routes and origins. Such information in turn serves for the establishment of strategies
to mitigate plastic waste at the source and prevent it from entering the environment.
Periodic monitoring and detection of plastic materials for better identification of the
sources and pathways of plastic litter and assessment of its accumulation over time is a
challenging future obligation. Despite the potential of optical remote sensing technology
for plastic litter monitoring, several challenges remain to be overcome to achieve accurate
and reliable results.

The main challenges and objectives of plastic detection using optical satellite data
are as follows:

• Devise and implement a remote sensing technique for plastic detection: This key aim
focuses on an approach that can accurately identify various distinct types of plastic
materials on land surfaces.

• Assess the effectiveness of diverse optical remote sensing techniques for plastic detec-
tion: Thereby, the efficiency of multispectral and hyperspectral imaging at different
spatial resolutions has to be investigated.

• Research the potential of presently operating air-, and spaceborne satellite sensors for
plastic detection: This targets potential instruments with different spatial, spectral
and temporal designs usable for detecting plastic materials.

• Find the optimum evaluation algorithms for plastic detection: Here diverse methods,
primarily machine learning models like decision-tree classifiers, CNN, RF, and SVM
need to be tested and examined.

• Test and validate the plastic detection on different background materials: To en-
sure the efficacy, reliability and transferability of the developed plastic detection
approach(es), the developed methods need to be tested and verified at different en-
vironmental conditions and land surfaces.

• Find and test possible solutions to automatically add functions to the detected plastic
materials: This aims at producing a new database of functionalities for plastic and
to test and validate its accuracy.

In summary, the overall objective of plastic detection based on satellite data requires
an approach that includes the investigation and assessment of diverse optical techniques,
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available instruments, suitable evaluation methods such as machine learning algorithms,
testing and validation of results at different environmental conditions and the assignments
of functions.

1.3 Research framework, sensor data used and test sites

This chapter serves as an introduction to the research framework and data collection
procedures adopted in the study. A multi-spatial and multi-spectral scale approach is
used to address the research tasks set. Thereby, unique multi-, and hyperspectral datasets
recorded in the laboratory, by air-, and spaceborne, sensors and created by simulation
approaches are combined with ground truth data acquired during three field campaigns.

The research framework encompasses a list of laboratory data (Section 1.3.1), the
configuration of optical sensors (Section 1.3.2), and an overview of the study area (Section
1.3.3) used throughout the various chapters.

1.3.1 Laboratory data and spectral simulations

1.3.1.1 US public spectral libraries

• USGS spectral library (Kokaly et al., 2017)

This is a library of spectra compiled using laboratory, field and airborne spectrom-
eters covering a wide range of wavelengths from the ultraviolet to the far infrared
(0.2 to 200 µm). It contains reflectance spectra from samples of specific minerals,
rocks, and soils as well as of vegetation, microorganisms, and man-made materials,
involving PE, PVC, PET, and PA. The category of organic chemical substances
is excluded in this study as their molecular structures are similar to plastics, but
rarely disperse in nature. In many cases purified samples are used to identify unique
spectral features and establish spectro-chemical relationships. These relationships
are critical to the interpretation of remote sensing data obtained from a variety of
platforms, such as aircraft or spacecraft. The library also contains a mixture of
physical constructions and mathematical calculations. Four types of spectrometers
were used, including the Beckman™ 5270 (0.2 to 3 µm), the Analytical Spectroscopy
Devices (ASD) field portable spectrometer standard, high resolution (hi-res) and
high resolution next generation (hi-resNG) models (0. 35 to 2.5 µm), the Nicolet™
Fourier Transform Infrared (FTIR) interferometer spectrometer ( 1.12 to 216 µm),
and the NASA Airborne Visible/Infrared Imaging Spectrometer AVIRIS (0.37 to
2.5 µm). Samples of rocks, soils, and natural mineral mixtures were measured in
laboratory and field environments, while different types and species of vegetation
plots and plant compositions were also included in the library. For forest vegetation
plots, where the field spectrometer cannot reach due to tall trees, measurements are
made with an airborne spectrometer.

• ECOSTRESS spectral library (Meerdink et al., 2019)

ECOSTRESS (Ecosystem Thermal Radiometer Experiment on Space Station) is a
NASA mission to study plant health by measuring surface temperature and evapo-
transpiration from the International Space Station (ISS). As part of this mission, a
spectral library has been established to support the interpretation of data collected
by the ECOSTRESS instrument. The ECOSTRESS spectral library provides a
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Table 1.1: Nominal parameters of optical air-, and spacecraft sensors whose data were used in
this thesis

Sensor IFOV FOV Swath
Spectral

range

Band

no.

Spectral

res.

HySpex-VNIR-1600 0.36 mrad 1600 px - 0.4-0.9 160 5

HySpex-SWIR-320m-e 1.5 mrad 320 px - 0.9-2.5 256 6

HySpex Mjolnir S-620 0.54 mrad 620 px - 1.0-2.5 300 5.1

HyMap 2 mrad 512 px - 0.4-2.5 128 13-17

WorldView-3 1.2/3.7m - 13.1 0.4-2.4 16 -

Sentinel-2 10/20/60m - 290 0.4-2.2 13 -

PRISMA 30 m - 30 0.4-2.5 237 12

GaoFen-5 30 m - 60 0.4-2.5 330 4.3-7.9

comprehensive collection of natural and artificial laboratory-measured spectra cov-
ering the wavelength range of 0.35-15.4 µm. It includes nearly 2,000 spectra of
soils, rocks, minerals, meteorites, vegetation, non-photosynthetic vegetation (NPV),
water/snow/ice, and man-made materials. There are two roofing rubbers in the
man-made category, which are plastic samples. Some samples were purified to bet-
ter understand the spectral characteristics associated with their chemical structure.
The library includes data from laboratory, field and airborne spectrometers. Labo-
ratory instruments used include a Nicolet Fourier Transform Infrared spectrometer
and a Thermo Fisher Scientific DXR Raman microscope. Field measurements were
collected using an Analytical Spectroscopy Device (ASD) field portable spectrome-
ter and a Gerber Spectral Imaging field spectrometer. Airborne measurements were
recorded using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and
the Hyperspectral Thermal Emission Spectrometer (HyTES).

1.3.1.2 PlaMAPP in-house spectral library

The PlaMAPP spectral library is an in-house (GFZ) created collection of high-resolution
spectra measured in the near infrared and shortwave infrared range (0.97-2.5 µm). It
includes five types of household plastics, which cover 95% of the global production namely
Comprising Polyethylene (PE), Polypropylene (PP), Polyvinylchloride (PVC), Polyethy-
lene Terephthalate (PET), and Polystyrene (PS), as well as nine types of industrial plastics:
ABS, EVAC, PA, PBAT, PC, PMMA, POM, PU, and SAN.

1.3.2 Optical remote sensing sensors

To test and validate the potential of the classifier being developed in this study to identify
different types of plastic materials in real-world environments, aircraft - and satellite data
from different regions with diverse surface characteristics were used (Fig. 1.1).

The specifications of the sensors are listed in Table 1.1.

4



1.3 Research framework, sensor data used and test sites

Spectral resolution

Lab
U

AV
Airborne

Hyspex

HyMap, Hyspex

PRISMA

GF-5

WV-3

Sentinel-2

Spaceborne

Sp
at

ia
l r

es
ol

ut
io

n

Figure 1.1: Diagram depicting the various scales of data utilized in the thesis and the remote
sensing equipment employed.
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1.3.2.1 Airborne hyperspectral HySpex/HyMap sensors

In this study, data from three push-broom sensors, namely the HySpex-VNIR-1600,
HySpex-SWIR-320m-e, and HySpex Mjolnir S-620 (NEO), and one whisk-broom scan-
ner, the HyMap sensor ((Cocks et al., 1998)) were utilized.

The HySpex airborne system, developed by Norsk Elektro Optikk (NEO), is a highly
advanced hyperspectral imaging system consisting of two imaging spectrometers or cam-
eras. These cameras record solar radiance reflected at the Earth’s surface in the wave-
length range of 400-2500 nm. The first camera, known as VNIR-1600, is designed to work
in the visible and near-infrared spectral domain and can record data with 160 channels
distributed between 420-990 nm. The second camera, referred to as SWIR-320m-e, can
acquire data with 256 channels in the short-wave infrared range of 970-2500 nm. Both
cameras employ the push-broom scanning technique or line imaging, which allows a simul-
taneous recording of the radiation spectrum of all cross-track pixels. Each frame of data
collected in this manner corresponds to a specified scan range or field of view, which can
be measured in meters or degrees. The instantaneous field of view (IFOV) is the field of
view of a single pixel. The final image is formed by merging consecutive frames combined
with the steady along-track motion of the camera during aircraft movement. HySpex cam-
eras are typically operated in small single- or twin-engine aircraft, facing the sky floor, at
altitudes between 1000 and 2000 meters above ground level. A field-of-view expander is
typically employed to double the field of view of each camera, achieving greater range and
pixel size at a given flying height. The spatial resolution of the HySpex sensor is 0.5-2 m,
depending on the respective flight altitude.

The HySpex Mjolnir S-620 was mounted on a UAV, covering the wavelengths range
between 1000 nm and 2500 nm with up to 300 bands at 5.1 nm intervals. It records lines
with 620 pixels with an across-track IFOV of 0.54 mrad. It is a hyperspectral imaging
system with high-performance for a broad range of applications, from environmental mon-
itoring to geological mapping, agriculture and forestry. The Mjolnir S-620 has a maximum
data rate of 100 fps, allowing for rapid and accurate acquisition of data, which makes it
ideal for time-sensitive applications, such as catastrophe response or surveillance of fast-
moving processes. In addition, the system is designed to be portable and user-friendly,
enabling its operation from a laptop or tablet using HySpex’s intuitive software. The soft-
ware provides the user with the ability to configure the camera, capture data and analyze
results in real time. The system is also multi-functional as it can be easily mounted on a
drone, aircraft or ground vehicle, allowing it to be adapted to different environments and
applications.

The HyMap imager is a highly capable hyperspectral sensor that is designed for
aircraft operation only. Its imaging system has an IFOV of 2.0 mrad providing 512 pixels
in the across-track direction. It captures 128 spectral bands ranging from 0.45-2.48 µm,
with intervals of 13-17 nm. The HyMap is typically operated by research institutions,
government agencies, and private companies that specialize in remote sensing and earth
observation.

The position and attitude of the sensor in 3D space is monitored by a Global Po-
sitioning System (GPS)-assisted Inertial Navigation System (INS). The INS is equipped
with a DGPS receiver and an inertial measurement unit (IMU), which records lateral ac-
celeration in all spatial dimensions and rotational acceleration around the relevant axis.
The synchronization of position and attitude measurements with the image is ensured
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by synchronization pulses from the sensor to the INS. The main geometric and spectral
characteristics of each sensor described above are summarized in the Table 1.1.

All these hyperspectral sensors provide a powerful tool for the accurate detection
and identification of plastic materials in a variety of environments. By utilizing multiple
types of sensors with different spectral ranges and spatial resolutions, researchers can
obtain comprehensive and detailed data that can help develop effective monitoring and
management strategies to mitigate the environmental impacts of plastic products.

1.3.2.2 Spaceborne multispectral Sentinel-2 sensor

Sentinel-2 is a satellite system developed and operated by the European Space Agency
(ESA) as part of the Copernicus program to deliver global, high-resolution multispectral
images of the Earth’s surface. The Sentinel-2 mission consists of two identical satellites,
Sentinel-2A and -2B, which were launched in 2015 and 2017. Its advanced sensors, known
as MultiSpectral Instruments (MSIs), are designed to capture images at a swath of 290 km
and a spatial resolution of 10, 20, or 60 meters, depending on the respective spectral band.
An MSI sensor is composed of two independent optical modules that operate together to
capture the imagery. One covers the Visible and Near-Infrared (VNIR) wavelengths,
encompassing the spectral range from 400 to 1000 nm, at a Ground Sampling Distance
(GSD) of 10 or 20 meters. The second module operates in the Shortwave Infrared (SWIR)
range that covers the wavelengths from 1000 to 2500 nm at a GSD of 20 or 60 meters.

There are 13 spectral bands provided by the MSI sensor, including four in the VNIR
range (blue, green, red, and near-infrared) and nine bands in the SWIR range (including
water vapor, cirrus clouds, and various other bands useful for land and vegetation moni-
toring). The two Sentinel-2 satellites circle the Earth in a sun-synchronous orbit phased at
180 degrees to each other, allowing for a repeat rate of 5 days. A high-speed data delivery
system is used on these satellites, offering a rapid transmission of data to ground stations
for processing and fast dissemination to the end users.

1.3.2.3 Spaceborne superspectral WorldView-3 sensor

The WorldView-3 (WV-3) satellite is a commercial system with a very high spatial reso-
lution, also operating in a sun-synchronous orbit. Its sensor records data with relatively
small and well placed spectral bands in the VNIR and SWIR range. In the VNIR range, it
provides four standard color bands along with four additional bands designed for specific
tasks - coastal, yellow, red edge, and near-IR2. A detailed configuration of the spec-
tral bands is given in Table 3. The major advance of the WV-3 system is the inclusion
of eight well placed SWIR bands in the 1195-2365 nm atmospheric window that allow
an improved detection and partly identification of minerals and man-made materials as
compared to the limitations of operating multispectral sensors in this wavelength region.
Additionally, twelve so-called CAVIS bands (Clouds, Aerosols, Vapors, Ice, and Snow)
ensure accurate estimates of aerosols and water vapor for atmospheric compensation of
the data. The satellite operates at an altitude of 617 km and provides a GSD of 0.31
m for the panchromatic band, 1.24 m for the VNIR bands, 3.7 m for the SWIR bands,
and 30 m for the CAVIS bands at nadir. The swath width of the instrument is 13.1 km,
and it has a descending node at 10:30 a.m. Thanks to the fast-reacting “Control Moment
Gyros” (CMGs) onboard, the revisit time for off-nadir images is less than a day. All data
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provided by this system are already geo-corrected, making it easy to use for a range of
applications.

1.3.2.4 Spaceborne hyperspectral GaoFen/Prisma sensors

• GaoFen-5

The Chinese meteorological satellite GaoFen-5 (GF-5) was launched in May 2018,
to a sun-synchronous orbit at an altitude of 705 km. Its main sensor, the Ad-
vanced Hyperspectral Imager (AHSI), is designed to capture hyperspectral data
with a very high spectral resolution at a GSD of 30 m. It operates in the VNIR-
SWIR spectral range, with a spectral configuration consisting of 256 bands in the
0.4-2.5 µm range and 128 bands in the 2.5-3.95 µm range. The spectral sampling
interval is approximately 5 nm in the VNIR-SWIR range, enabling detailed anal-
ysis of the spectral characteristics of various targets on the Earth’s surface. The
AHSI sensor has a swath width of 56 km, which allows for a moderate large-scale
data collection at a moderate repetition rate. The ground processor delivers level 1
(L1) radiance products that include radiometric corrections and system geocoding
(https://www.cheosgrid.org.cn/index.htm). The satellite stopped operating in 2020
but a second generation of the GF-5 was already launched in September 2021.

• PRISMA

PRISMA is a free flyer satellite launched by the Italian Space Agency (ASI) in 2019
(Cogliati et al., 2021). It also operates in a sun-synchronous low Earth orbit at
an altitude of 615 km. It is designed to capture high-resolution spectral data in
the VNIR-SWIR spectral range at a GSD of 30 m. The spectral configuration of
PRISMA provides 223 spectral bands ranging from 0.4-2.5 µm with a spectral sam-
pling interval of 5.8 nm. This high spectral resolution allows for detailed analysis of
the spectral characteristics of various targets on the Earth’s surface, foremost min-
erals, rocks and soils as well as man-made materials. The sensor has a swath width
of 30 km, which enables moderate small-scale data collection at a low repetition
rate. PRISMA’s ground processor produces a number of standard products, which
are made available to users. Details are available in the PRISMA Products Spec-
ification Document (ASI, 2020). With their advanced hyperspectral capabilities,
PRISMA, as well as GaoFen-5 represent systems that allow the diagnostic detection
and identification of numerous surface materials in a unique way.

1.3.3 Study areas

In order to assess the feasibility for identifying various plastic materials in real-world envi-
ronments under different conditions, multiple regions with diverse surface characteristics
were recorded using aircraft and satellite data (Table 1.2, Figure 1.2).

1.3.3.1 Sites recorded by airborne sensors incl. ground-truth data

To conduct the study, data were collected from the following regions. Three sites were
selected in Germany, one each in Spain, Ghana and Egypt and one in China, each char-
acterized by a different landscape. The study areas recorded by aircraft include an urban
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Figure 1.2: Sketch map and detailed coordinates of the study areas
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Table 1.2: Study areas and respective data recordings.

Location Sensor Date GSD

Thyrow, DE Mjolnir S-620 Jun, 13, 2019 3 cm

Lake Seddin, DE VNIR-1600/ SWIR-320m-e Feb. 16, 2015 40 cm

Dresden, DE HyMap Jul. 07, 2004 4 m

Almeria, ES HyMap Jun, 15, 2005 5 m

Almeria, ES WorldView-3 Jun. 26, 2018 3.7 m

Accra, AF WorldView-3 Mar. 03, 2018 3.7 m

Cairo, EG WorldView-3 Jan. 29, 2019 3.7 m

Weifang, CN Sentinel-2 Dec. 02, 2021 10 m

Weifang, CN PRISMA Dec. 21, 2019

Nov. 27, 2021

30 m

Weifang, CN GaoFen-5 Nov. 14, 2019 30 m

landscape in Dresden, Germany, a grassland-dominated area in Thyrow, Germany, a lo-
cation at Lake Seddin, Germany, and an area with bare soils and greenhouse agriculture
in Almeria, Spain. To ensure the validity of the data, plastic targets visible in the air-
borne datasets were not included in the spectral libraries used for the development of the
classifier.

In the grassland-dominated area in Thyrow, Germany, the HySpex Mjolnir S-620 im-
ager mounted on a UAV was used to record the data. The authors placed well-defined and
spectrally measured materials on the ground, including transparent PET plastic bottles of
different sizes and large foils made of PBAT, PET, and PE plastic. The geometric post-
processing was conducted using the PARGE software, and the atmospheric correction was
done in-house using the SICOR software. The data of the Lake Seddin, Germany were
recorded by combined HySpex VNIR-1600 and SWIR-320m-e sensors aboard an airplane.
Three arrays of white and opaque PS foam boards and one blue PE tarpaulin were set up
over the shallow lake water and on its sandy bank.

The urban landscape in Dresden, Germany, was recorded by the HyMap system
from an aircraft. Ground control of locations covered by distinct plastic materials was
maintained through fieldwork using portable spectrometers and GPS equipment. Among
a total of more than 40 different urban materials, four plastic materials (PE, PET, PP
and PVC) were identified and mapped based on hyperspectral ground measurements.

In the area with bare soils and greenhouse agriculture in Almeria, Spain, the HyMap
system onboard an airplane was used to record the data. The study area was dominated by
PE plastic sheds utilized as greenhouses for agricultural purposes. Similar to the Dresden
dataset, the ground control was conducted by field measurements with portable spectrom-
eters and GPS. However, due to the lack of diversity of plastics, only greenhouses made
from PE were collected for the ground truth map with more than 10,000 pixels. All the
datasets were available as level 2 products, passing radiometric corrections, atmospheric
corrections, and ortho-rectification.

1.3.3.2 Sites recorded by spaceborne sensors

Investigated targets recorded by satellite sensors lie in different regions of the world - in
Almeria, Spain; Accra, Ghana; Cairo, Egypt; and Weifang City, China.
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• Almeria, Spain

The city of Almeria, located in the southeastern part of Spain, is known for its vast
agricultural lands and greenhouses that produce tons of fruits and vegetables. The
plastic greenhouses, mostly made of polyethylene (PE), cover a significant portion
of the area’s cropland and are essential for the local economy. However, the high
usage of plastic in the region has also led to significant plastic waste generation,
with over 30,000 tons produced every year. The plastic waste problem in Almeria
is particularly severe, as the discarded plastic often ends up in the Mediterranean
Ocean, affecting marine life. The abandoned greenhouses, after shredding, are a
significant contributor to the plastic waste problem, as it is not adequately managed,
leading to its accumulation in the environment.

• The city of Accra, Ghana, West Africa, capital of Ghana, is home to one of the
largest electronic waste dump sites in the world - Agbogbloshie. The site is the
destination for more than 150,000 tons of electronic waste shipped from around the
world every year. Electronic waste is often dismantled in unsafe and unregulated
conditions, leading to environmental contamination and health risks for the workers
and the local population. Electronic waste contains significant amounts of plastic,
which accounts for up to 20% of the waste stream. However, only 15% of electronic
waste is recycled, leading to the accumulation of plastic waste in the environment.
Moreover, the urban areas of Accra generate around 760,000 tons of municipal solid
waste every year, leading to further plastic waste generation.

• The city of Cairo, Egypt, capital of Egypt, is home to one of the world’s most ex-
tensive informal waste management systems. The Zabbaleen community, which has
been living in Cairo since the 1940s, collects and sorts the city’s waste, recycling
around 80% of it. The Zabbaleen community lives in impoverished conditions, often
among the sorted waste and their livestock. The plastic waste generated in Cairo,
estimated at around 9,000 tons per day, is a significant contributor to the environ-
mental problems of the city. However, the Zabbaleen community’s waste manage-
ment system has been successful in recycling and reusing plastic waste, reducing its
amount that usually ends up in the environment.

• Weifang City, Shandong Province, China is known for its thriving agriculture, with
plastic greenhouses covering around 20% of the city’s cropland. The municipality
has invested in green energy, followed by an increased installation of photovoltaic
panels. These are made of different plastic materials such as PP, PE, and EVA.
Furthermore, huge sheets of plastic covers are used on any construction site in this
area to avoid the denudation of soils. The growing industrial activity in the region
leads to additional and higher consumption of plastic products. Coupled with an
inadequate waste management system, this fosters also the accumulation of plastic
waste in the environment.
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2 Theoretical background

Optical Remote Sensing involves the recording of radiation reflected and emitted by ob-
served surfaces within a specific range of wavelengths in the electromagnetic spectrum.
This range extends from the visible spectrum, that starts at 0.4 micrometers, reaching
to the near infrared (NIR) and ends at the thermal infrared (TIR) region, at about 15
micrometers.

2.1 Principles of spectroscopy

When radiation interacts with matter, several processes occur, including reflection, scat-
tering, absorption, fluorescence/phosphorescence (absorption and re-emission), and pho-
tochemical reactions (absorption and bond breaking). As light is a form of energy, the
absorption of light by matter causes an increase in the energy content of the molecules (or
atoms) within the material. The total potential energy of a molecule is represented by the
sum of its electronic energy, vibrational energy, and rotational energy:

Etotal = Eelectronic + Evibrational + Erotational (2.1)

The energy that a molecule possesses in each form is not a continuous range, but rather
a series of discrete levels or states. The differences in energy between different states are
arranged in the following order: electronic state >vibrational state >rotational state.

In some molecules and atoms, the photons of incoming UV and visible light have
enough energy to cause transitions between different electronic energy levels. The wave-
length of the absorbed light has the energy required to move electrons from lower energy
levels to higher energy levels. The energy associated with electromagnetic radiation is
defined as:

E = hν =
hc

λ
(2.2)

where:

E is the energy (in Joules),

h is Planck’s constant (6.62× 10−34 Js),

ν is the frequency of light (in s−1), c is the speed of light in (m/s),

and λ is the wavelength of the light in (m−1).

Spectroscopy studies how matter interacts with or emits electromagnetic radiation.
There are different types of spectroscopy, depending on the wavelength range being mea-
sured. Rotational spectroscopy is associated with the far infrared to microwave region,
vibrational spectroscopy with the near infrared and short wave infrared regions, while
electronic spectroscopy belongs to the ultraviolet, visible, and near infrared regions (Fig.
2.1). It should be noted that these divisions are not strictly defined.

The main components of plastics include polymerization units and additives such as
flame retardants and plasticizers, all primarily composed of carbon, hydrogen, oxygen and
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Figure 2.1: The electromagnetic spectrum, showing the regions of interest in the context of the
visible/infrared reflectance spectroscopy, namely the visible region (390 to 750 nm),
the near infrared (NIR; 750 to 1300 nm) and the short-wave infrared (SWIR, 1300
to 2500 nm).

nitrogen. They are petroleum derivatives with the backbone of C-H chains and distinc-
tive functional groups. Thus, the dominant diagnostic bands arise from the fundamental
vibrations of the corresponding sub-molecular groups, as well as their overtones and combi-
nation bands (Eisenreich and Rohe, 2006). There are further absorption features displayed
in the visible range (400-780 nm). However, most of these correspond to electronic transi-
tions between pigment molecules and are excluded from the identification process for this
reason. Therefore, most diagnostic spectroscopic features corresponds to molecular vibra-
tional transitions located in the NIR and SWIR wavelengths and are primarily explored
in this study.

The interpretation of vibrational features assumes the molecules to be oscillators, ex-
cited by the absorption of infrared radiation. These molecular vibrations can be described
by the classical physics model of a harmonic diatomic oscillator vibration system. Two
vibrating masses are joined by a spring with a given force constant, leading to a change
in the intra-nuclear distance. Combining Hooke’s law with Newton’s law of force, the
vibrational frequencies ν of an oscillator which consists of two atoms of masses m1 and
m2 are derived from a force constant k and the reduced mass µ:

ν =
1

2π

√
k

µ
, µ =

m1m2

m1 +m2
(2.3)

Following a quantum mechanical description, the harmonic oscillator’s vibrational energy
is not continuous, but rather exists as specific, discrete energy levels. The energy levels of
the oscillator are distinguished by the quantum number n:

Evib = hν

(
n+

1

2

)
= h

(
n+

1

2

)
1

2π

√
f

µ
, n = 0, 1, 2, ... (2.4)

The masses (m1) and (m2) correspond to the atoms involved in the molecular structure,
while the force constant (f) is dictated by the chemical bond between them. As presented
in Eq. 2.3 and 2.4, the relationships clarify how the unique combination of atoms lead to
distinguishable absorption spectra of different molecules.
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Figure 2.2: Major analytical bands and relative peak positions for prominent near-infrared ab-
sorptions. Source: Metrohm Monograph 8.108.5026EN - A guide to near-infrared
spectroscopic analysis of industrial manufacturing processes. Metrohm AG, CH-9101
Herisau, Switzerland.
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2 Theoretical background

The vibrational quantum number can only have integer values. Only transitions
between adjacent and equidistant energy levels are allowed in harmonic oscillators. The
Boltzmann distribution governs the distribution of molecules among allowed vibrational
levels. At room temperature, the majority of molecules occupy the ground vibrational level
(n=0), making the fundamental transition to the first allowed vibrational level (n=1) the
dominant spectral feature. The further allowed transitions are much weaker, deriving from
vibrationally excited levels and the associated bands. The absorption of photons depends
on whether the frequency of the photon is comparable to the energy gap between the two
vibrational states of the bond. But that’s not all that is required for energy absorption.
The absorption and emission of photons by real molecules is a more intricate process.
Complex molecules, particularly those containing long polymeric chains like the plastic
examined in this study, are recognized as having a system of coupled oscillators. The
precise calculation of absorption bands necessitates a complex mathematical approach,
taking into consideration various factors, including:

• Resonance theory posits that a means must be established for efficiently transferring
energy to molecules. In the case of molecular vibrations, this transfer occurs via
molecular polarity, wherein the interaction of infrared radiation with the vibrating
molecule only transpires when the vibration is accompanied by a change in the dipole
moment. The extent to which this dipole moment varies during the vibrational shift
largely determines the intensity of light absorption. Vibrational-spectral transitions
between photons of light and molecular vibrations are only observed in heteronuclear
diatomic molecules. As the lightest atom, hydrogen exhibits the largest vibrations
in bonds (C-H, N-H, O-H, and S-H), these overtones and combinations are assigned
bands as shown in Fig. 2.2. Most molecules possess more than two atoms, with each
bond being capable of undergoing more than one vibration (stretching, bending).
Additionally, not all bonds vibrate independently, and many true vibrations are
coupled.

• The vibrational mode of a real molecule is anharmonic and its energy levels structures
change with respect to Eq. 2.4 and allow switching between different vibrational
modes. When anharmonicity is taken into account, the vibrational energy levels are
no longer equally spaced and the energy difference becomes smaller with increasing
quantum number n, which can be expressed by Eq. 2.5:

E′
vib = hν

(
n+

1

2

)
− y

(
n+

1

2

)
(2.5)

where y is the anharmonicity constant.

Molecular oscillators exhibit inharmonic characteristics that give rise to the emer-
gence of overtones and combinatorial bands. These features arise when the energy of
an absorbed photon is utilized for two or more quanta of the same normal mode or
split into two or more distinct normal modes of excitation. However, the absorption
rates of overtones and combined vibrations are still substantially lower than those
of fundamental vibrations.

Infrared spectra contain overtone transitions, which are multiples of the fundamental vi-
brational frequency and correspond to quantum numbers greater than one. These transi-
tions can be observed between 780 and 2000 nm. However, overtone transitions are much
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2.2 Spectra of plastics in the NIR and SWIR wavelength range

less likely than the fundamental vibrational frequency, which results in weaker bands.
Polyatomic molecules can exhibit combination modes, where multiple vibrational modes
interact. These modes are the sum of multiples of each interacting frequency and can be
observed between 1900 and 2500 nm. Another factor that affects the infrared (IR) spectra
is the non equidistant energy states of a vibration. This means that allowed transitions
become smaller in energy, leading to weaker absorption bands.

2.2 Spectra of plastics in the NIR and SWIR wavelength
range

The constituents of plastic materials, including macromolecular polymers, fillers, plasticiz-
ers, and significant additives like flame retardants, have been mentioned earlier. Further-
more, engineering plastics comprise of fiber-reinforced composites and polymeric resins,
which are mainly composed of organic components containing C, H, O, and N.

The interpretation of complex molecules’ spectra is based on the concept of group
frequencies, which assumes that submolecular atom groups are weakly coupled to other
submolecular groups. The absorption bands of these groups are referred to as eigenbands
because they always occur at the same wavelength position and are slightly altered by
weak interactions with neighboring groups. The unique bands of a single molecule are
referred to as “fingerprint” bands. Plastics are composed of repeating units subjected
to polymerization. Owing to their relatively uncomplicated molecular structure, their
absorption properties in the IR range are easier to interpret than those of natural organic
materials. CH, CH2 and CH3 groups are the most important functional groups that
contribute to the vibrations which are induced by fundamental modes of motion between
C and H atoms, including stretching, in-plane deformation, out-of-plane deformation,
wagging, twisting and rocking (Eisenreich and Rohe, 2006).

In the Near-Infrared (NIR) and SWIR range, which are our main focus in this study,
the diagnostic absorption features (Fig. 2.2) displayed by plastics are mainly controlled by
the stretching vibration overtones and combination modes of C=O, C-C, and by hydrogen-
containing functional groups (X-H) (Schwanninger et al., 2011). This is evident from Eq.
2.3, which shows that bands involving low weight atoms appear at shorter wavelengths in
the IR spectrum. By summing up the wavenumbers of the fundamental modes involved, an
approximate determination of the wavenumbers of the combination bands and overtones
can be assigned. Fig. 2.3 and Fig. 2.5 show the chemical formula of the molecular structure
and qualitative reflectance spectra of the polymer unit of various plastic materials that are
studied in this thesis, respectively. The general absorption characteristics of C-H bonds
in plastics can be understood in terms of their mode assignments (Beć and Huck, 2019),
including the 1st and 2nd orders of the overtone stretching modes (2ν: 1600-1800 nm, 3ν:
1100-1250 nm) and the combination modes (1νComb: 2150-2500 nm, 2νComb: 1300-1450
nm). The 2nd order of the combination mode is not contemplated in this study as it is
masked by the overlay of the 1st overtone of water (O-H) emerging at 1400 nm 2.2. The
spectra of all plastic materials show a stepped shape with the inflection points in the
first overtone and combination bands. This is caused by a gradual decrease in absorption
toward higher order overtones and combination tones (Zhou et al., 2021).

In the polymer units of each plastic type (Fig. 2.3), C-H bonds are linked to other
functional groups that have different masses and bonding constants. As described in the
previous section, the vibrational frequencies activated by C-H bonds do not fall in the
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Figure 2.3: Skeletal formula of the unit structures of the investigated plastic materials
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2.2 Spectra of plastics in the NIR and SWIR wavelength range

same spectral band in all plastics due to the presence of inharmonic and Fermi resonances
(Eisenreich and Rohe, 2006). These spectral features offer the possibility to identify and
distinguish different types of plastics based on their well-defined spectral absorption char-
acteristics ((Czarnecki et al., 2015; Beć et al., 2018)).

Ma et al. (2019b) found that sp hybridization of the CC bonds affects the absorption
diversity of materials containing C-H bonds. This entanglement occurs between the s and
p orbitals of the outermost shell of the atom (Fig. 2.4).

e
ee

e

e

e

1s2

2s2

2p2

Figure 2.4: Microstructure of carbon atoms

Based on this property, plastic materials can be divided into two main groups based on
their molecular structure shown in Fig. 2.3: aromatic polymers containing benzene rings
(sp2 hybridization, plastic types marked in red) and aliphatic polymers without benzene
rings (sp3 hybridization, plastic types marked in black). Sp2 hybridization’s stronger
bonding constants lead to higher absorption frequencies than sp3 hybridization (Ma et al.,
2019b). As shown in the Fig. 2.5, plastics without benzene rings have a second overtone
absorption around 1210 nm and a first overtone absorption at 1730 nm. While plastics
with benzene rings exhibit higher absorption frequencies in the second overtone range
around 1140 nm, and their first overtone absorption shows a “blue shift” to around 1660
nm. Aliphatic plastics exhibit strong absorption properties in the combined mode range
around 2300 nm, due to the combined mode of C-H stretching and bending vibrations.
Aromatic plastics also exhibit a broad absorption region in the combined mode associated
with C-H and C-C stretching vibrations at about 2130 nm. In the near-infrared band,
apart from the C-H bond, another chemical bond that can elicit noticeable absorption is
the N-H bond. Its first overtone is located at about 1.5 µm which explains the absorption
feature of Polyurethane (PU) and Polyamide (PA) here.

Overall, the spectral range of the first overtone and combined bands exhibit signifi-
cant differences among various plastics. Accurately evaluating their relevant absorption
properties allows for effective differentiation. This provides a dependable foundation for
the classification of plastics based on optical remote sensing.
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2.3 Plastic detection using optical remote sensing

2.3 Plastic detection using optical remote sensing

As outlined in the previous chapter, the distinct optical properties of various plastic types
in the NIR to SWIR range enable automatic sorting by the recycling industry (Huth-Fehre
et al., 1995; Masoumi et al., 2012; Moroni et al., 2015). The advancement and refinement
of SWIR imaging methods, which offer moderate to high temporal, spectral, and spatial
resolution, make remotely sensed data a potential tool for mapping plastic presence in the
environment both qualitatively and quantitatively (Moller et al., 2016).

Remote sensing technology has become an important tool in mapping and quantifying
marine and coastal plastic litter, which poses a significant threat to the marine ecosys-
tem and coastal communities. Various remote sensing data, including NIR, SWIR, and
Thermal Infrared (TIR), have been utilized to identify and quantify plastic debris in the
marine environment. Recent studies have demonstrated the effectiveness of remote sens-
ing techniques in identifying and mapping plastic debris in coastal and offshore waters.
For instance, Moy et al. (2018) utilized aerial imagery to map marine macro-debris across
the main Hawaiian Islands, while Acuña-Ruz et al. (2018) introduces an innovative ap-
proach that combines laboratory characterization of AMD hyperspectral data with digital
supervised classification in high-resolution imagery, ultimately improving the accuracy of
macroplastic identification.

Garaba et al. (2018) demonstrated the potential of airborne SWIR imagery for identi-
fying and quantifying ocean plastics, revealing unique SWIR spectral features common to
plastics that can be used to detect them remotely, and Goddijn-Murphy and Williamson
(2019) proved that using thermal infrared sensing technology for monitoring marine plas-
tic litter is a promising approach based on radiative transfer theory, and is more effective
in areas with air-sea temperature differences, while Fallati et al. (2019) and Veettil et al.
(2022) used Unmanned Aerial Vehicle (UAV) to detect plastic debris along the beaches of
the Republic of Maldives. Themistocleous et al. (2020) utilized various indices and proved
the feasibility of detecting floating plastic using Sentinel-2 data. Recently, Kremezi et al.
(2022) investigates fusing WorldView-2/3 images using state-of-the-art methods to detect
small marine debris and finds VNIR and SWIR bands essential for detection. The use of
remote sensing technology has shown great potential in mapping and quantifying marine
and coastal plastic litter ((Mart́ınez-Vicente et al., 2019; Biermann et al., 2020; El Mahrad
et al., 2020; Topouzelis et al., 2020).

Although most plastic waste ends up in the ocean through various pathways, the
source of marine plastic waste was found to be about 80% on land and 20% directly in
the ocean (Li et al., 2016). Therefore, regular global monitoring of land-based plastic is
becoming increasingly important in order to prevent further pollution. However, most
studies focused on the differentiation of various plastic types by laboratory measurements
and near real-time algorithms that can classify plastic waste harvested on automated con-
veyors using infrared spectroscopy (Yan and Siesler, 2018; Rani et al., 2019; Cruz Sanchez
et al., 2020). Only a few studies have focused on detecting and identifying plastics on land,
mostly based on hyperspectral imagers on board aircraft (Hörig et al., 2001; Kühn et al.,
2004; Heiden et al., 2007). But airborne sensors are limited in terms of covering larger
areas. Some researchers have used statistical classification algorithms based on multispec-
tral data recorded by the Landsat-8 Operational Land Imager (OLI) sensor (Lanorte et
al., 2017; Aguilar et al., 2020) or Sentinel-2 MSI system (Sun et al., 2021) to investigate
the detection of plastic greenhouses. Others have used SUperspectral images recorded by
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the spatially high-resolution Worldview-3 satellite sensor (GSD of SWIR bands is 3.7 m)
and proposed a class index-based approach for plastic detection, where a “Superspectral”
instrument like the DigitalGlobe WorldView-3 system is a trade-off between spectral and
spatial resolution suitable solution. Asadzadeh and de Souza Filho (2016) have investi-
gated WV-3 data to delineate the potential for detecting hydrocarbon materials based on
simulated images. They further demonstrated that the data is capable of unambiguously
detecting HCs in different background soils. Several researchers have proposed knowledge-
based indices such as HI (Kühn et al., 2004), RBD (Asadzadeh and de Souza Filho, 2016)
and NDPI, which can be used as single-class classifiers by imposing a threshold on the in-
dex value, where NDPI has been shown to have superior performance (Guo and Li, 2020).
The index can innovatively highlight most plastics by amplifying the significant downward
trend of most plastics from 1570 to 1730 nm and 2165 to 2330 nm, however, it does not
cover all plastic types. However, these studies rarely provide a reliable identification of
different plastic materials, although this is a major challenge in this regard.

Multispectral and hyperspectral satellite sensors offer a limited number of bands
to distinguish each single plastic type. Recently, the development and application of
hyperspectral satellite sensors has taken another step forward in this regard. For example,
the Chinese meteorological satellite Gaofen-5 (GF-5) was launched in 2018 and provides
data in the same wavelength range and spectral resolution as Hyperion, but with a 60
km scan range (Liu et al., 2019). A second GF-5 system with the same specifications was
launched in September 2021. Another hyperspectral system, PRecursore IperSpettrale
della Missione Applicativa (PRISMA), (Cogliati et al., 2021) was launched by the Italian
Space Agency in 2019. It carries a hyperspectral imager covering the same wavelength
range with a spectral resolution similar to that of Gaofen-5, providing a swath width of 30
km, and an additional panchromatic camera providing a spatial resolution of 5 m x 5 m. A
further candidate to deliver hyperspectral data from space is the German Environmental
Mapping and Analysis Program (EnMAP), launched on April 1, 2022, with technical
specifications comparable to PRISMA (Guanter et al., 2015).

Future instruments providing hyperspectral data from space are the Surface Biol-
ogy and Geology (SBG) system in the United States (Cawse-Nicholson et al., 2021), the
European Space Agency (ESA) built Copernicus Hyperspectral Imaging Mission for the
Environment (CHIME) (Rast et al., 2019), and the Space Hyperspectral Applications Land
and Ocean Mission (SHALOM) proposed by Israel/Italy (Feingersh and Dor, 2015), with
varying technical specifications. The increasing availability of recent hyperspectral satel-
lite data offers the potential to discriminate plastic targets in multiple spatial and temporal
modes over a larger range and to identify more types of plastics due to their sensitivity
to subtle changes in plastic absorption characteristics, especially in the SWIR wavelength
range. The major drawback is that hyperspectral recordings from space presently suffer
from a low GSD ≥ 30 m due to the small band width and a limited quantum efficiency
of recent detectors. Therefore, especially for plastics, even larger plastic waste aggregates
may not be detectable from space, as they usually exhibit sparse and small-scale distribu-
tions. Therefore, the focus related to hyperspectral satellite data must be on synthetics
with a large spatial extent, such as greenhouses, photovoltaic components, roofing mate-
rials and materials commonly found at industrial sites. Another constraint and challenge
in identifying plastics from satellite data is that plastics of the same type have differ-
ent optical properties. In particular, most plastics remain transparent or translucent and
are thin to save cost, introducing a quadratic term in transmittance and reflectance of
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2.3 Plastic detection using optical remote sensing

the background directly below it. Thus, the background has a strong influence on the
apparent reflectance (Kuester and Bochow, 2019; Eisenreich and Rohe, 2006).

Further, even if plastic types are successfully classified by satellite spectral data, it
is still not possible to directly assign functions based on chemical bonds alone, but the
assignment of functions will help determine whether these plastic materials need to be
recycled. The previously mentioned pixel-level processing technique of assigning each
pixel to one of the categories based on its spectral information is not sufficient for the
function of a plastic material. The spectrally derived information for a unique plastic type
does not necessarily correspond to the function of the respective plastic material. Plastic
products with the same function can be made of different plastic types and vice versa, and
can even have different appearances. For example, photovoltaic panels are a mixture of
various plastic materials (Oreski et al., 2021) and plastic roofs can have different colors and
shapes. Therefore, contextual information (in the spatial domain) should be additionally
integrated to further distinguish the utility or function of plastic-covered areas.
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3.1 Challenges in identifying and monitoring plastic using
satellite remote sensing

Monitoring plastic using satellite remote sensing is a complex endeavor with a variety of
challenges. Most significant ones are:

• Spatial resolution: Plastic waste can vary in size and shape, from large floating
debris to small microplastics. The spatial resolution of satellite imagery is typically
not high enough to detect small plastic debris on land surfaces. This limits the
accuracy of plastic waste detection and classification.

• Spectral resolution: Plastic waste is composed of various materials, each with
distinct spectral properties. However, the spectral resolution of satellite imagery
may not be sufficient to distinguish between various sorts of plastic.

• Cloud cover: Cloud cover can obstruct the view of land surfaces, making it difficult
to obtain clear satellite images. This can limit the frequency of observations and
especially increase the likelihood of missing mobile plastic assemblies.

• Data availability: Access to satellite data can be limited due to factors such as
cost and availability which is especially true for high spatial commercial systems.
This can prevent the ability to perform long-term monitoring and the analysis of
plastic waste trends.

• Ground truthing: Validating plastic waste detection and classification using satel-
lite imagery requires accurate ground truth data. Obtaining ground truth data can
be challenging, time-consuming, and expensive.

• Surface reflectance variability: The reflectance of land surfaces can vary depend-
ing on factors such as land cover, moisture content, and atmospheric conditions. This
can affect the accuracy of plastic waste detection and classification using satellite
imagery, as plastic debris can be easily masked by surface features with similar
reflectance properties.

• Interference from other sources: Further sorts of man-made debris, such as e.g.
glass and metal, can spectrally interfere with the properties of plastic waste. This
can lead to confusion and misclassifications of debris, particularly in urban areas
where a high concentration of man-made materials is to be found.

Addressing all these challenges requires a multidisciplinary approach that involves
combining remote sensing techniques deployed on different platforms with field observa-
tions and laboratory experiments. Thus, the development of advanced and innovative
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remote sensing techniques is needed, as well as a better understanding of the physical
properties of plastic waste and their interactions with the environment to improve the
accuracy and reliability of its detection and classification.

3.2 Data analysis methods used

This chapter focuses on the investigation of software and suitable analysis methods used in
this thesis. By delving further into the methods applied for data analysis, one can better
understand how the insights and conclusions in this thesis were obtained.

3.2.1 Standard classification algorithms

• Spectral Angle Mapper (SAM) is a signal-based spectral classification method
used in remote sensing and image processing (Kruse et al., 1993; Hoffbeck and Land-
grebe, 1996). The method is widely used in the classification of satellite and air-
borne imagery, as well as in identifying materials and features on the Earth’s sur-
face. SAM matches pixels to reference spectra by calculating the n-D angle between
them, and determines the spectral similarity between the reference and unknown
vectorized spectra. The SAM algorithm generalizes this geometric interpretation
to n-dimensional space. SAM determines the similarity by applying the following
equation:

a = cos−1

 ∑n
i=1 tiri√∑n

i=1 t
2
i

√∑n
i=1 r

2
i

 (3.1)

One of the main advantages of SAM is its insensitivity to varying illumination condi-
tions. This means that the algorithm can be used to classify spectral data regardless
of changes in Suns’ position or strong relief differences on the target area. SAM
achieves this by calculating the angle between the reference and unknown spectra,
rather than comparing their absolute values. This makes SAM more robust than
other spectral classification methods that rely solely on the absolute values of the
spectra.

SAM is also flexible in terms of the reference spectra used for classification. The
reference spectra can be obtained from a spectral library or extracted directly from
the respective image. To use SAM, the user must specify a maximum angle threshold
in radians. Pixels with angles smaller than this threshold are classified as matching
the reference spectrum, while those with angles larger than the threshold are not
classified.

SAM is particularly useful in situations where the spectral signatures of the materials
being classified are well-defined. For example, it can be used to map land cover types,
identify geological features, and monitor changes in vegetation cover. However, it
may not be suitable for tasks where the spectral characteristics of the materials being
classified are similar, or where there is significant overlap in the spectral signatures
of different materials.

• Maximum Likelihood Estimation (MLE) The MLE method is a statistical ap-
proach for estimating the parameters of a probability distribution that best describe
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3.2 Data analysis methods used

the observed data. The method is widely applied in various fields, including remote
sensing, where it is used for image classification based on the spectral signatures of
pixels. The MLE approach assumes that the spectral signatures for each land cover
class are normally distributed, and calculates the probability of a pixel belonging to
a specific class based on its spectral signature. The method assigns each pixel to
the class with the highest probability, which is known as the maximum likelihood
class. The MLE method is unbiased and efficient, and provides a robust and accurate
approach for image classification.

The MLE method uses the following equation to calculate the probability of a pixel
belonging to a specific class:

P (c|x) = 1

(2π)d/2|Σc|1/2
e−

1
2
(x−µc)TΣ−1

c (x−µc) (3.2)

where c is the target class, x is the spectral signature of the pixel, d is the number
of spectral bands, µc is the mean vector for class c, and Σc is the covariance matrix
for class c. The notation |Σc| denotes the determinant of the covariance matrix, and
the superscript T denotes the transpose operation.

The MLE method assigns each pixel to the class with the highest probability, which
is computed using the above equation for each class. The maximum likelihood class
is given by:

cMLE(x) = argmax
c∈C

P (c|x) (3.3)

where C is the set of all classes. The above equation finds the class that maximizes
the probability of the spectral signature given the class, and assigns the pixel to
that class. If the highest probability is below a specified threshold, the pixel remains
unclassified.

3.2.2 Machine learning algorithms

• SVM support vector machines are machine learning algorithms commonly used
for classification tasks, particularly well-suited for high-dimensional feature spaces
where linear separation is not possible. In remote sensing, SVMs are used for land
cover classification using spectral information. The SVM algorithm finds the optimal
hyperplane that separates the data into two classes with the maximum margin.
Given a training dataset of n samples with d features, the hyperplane is defined by:

f(x) = wTx+ b = 0 (3.4)

where x is the feature vector, w is the weight vector, and b is the bias term.

The SVM algorithm aims to maximize the margin γ subject to the constraint that
all training samples are correctly classified. The margin is given by:

γ =
2

||w||
(3.5)

where ||w|| denotes the Euclidean norm of the weight vector.
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To overcome the non-convex optimization problem, the SVM algorithm uses a kernel
function to transform the data into a higher-dimensional feature space, where linear
separation is possible. The RBF kernel is particularly popular for remote sensing
applications, and is defined as:

k(xi,xj) = e−γ||xi−xj ||2 (3.6)

where γ is a parameter that controls the width of the kernel, and || · || denotes the
Euclidean distance between the feature vectors.

To avoid overfitting, the SVM-RBF algorithm introduces a regularization parameter
C that trades off the margin size and the training error. The SVM-RBF algorithm
tries to find the optimal hyperplane that maximizes the margin subject to the con-
straint that the sum of the slack variables is less than or equal to C. The slack
variables are introduced to allow for some misclassifications in the training data.
The optimization problem can be formulated as:

minimize
1

2
||w||2 + C

n∑
i=1

ξi

subject to yi(w
Tϕ(xi) + b) ≥ 1− ξi, i = 1, . . . , n

ξi ≥ 0, i = 1, . . . , n

(3.7)

where ϕ(xi) is the feature map of the input vector xi in the transformed feature
space, yi is the class label of sample i, and ξi are slack variables that allow for some
misclassifications in the training data.

The SVM-RBF algorithm finds the optimal hyperplane in the transformed feature
space that maximizes the margin between the positive and negative classes, which
corresponds to a nonlinear decision boundary in the original feature space.

• RF random forest is a popular ensemble machine learning algorithm that improves
prediction accuracy and robustness by combining multiple individual models. In-
troduced in 2001 by Leo Breiman and Adele Cutler as an extension of decision
trees, Random Forest is suitable for classification and regression tasks, including
large datasets, high-dimensional feature spaces, and non-linear input feature-target
variable relationships.

Random Forest creates T decision trees, where each tree is trained on a different
subset of the data and features to reduce overfitting and improve the generalization
ability of the model. The final prediction is the majority vote of all the trees in the
forest. The algorithm can be described mathematically as follows:

Given a training set (xi, yi)
N
i=1 where xi ∈ Rd and yi ∈ 1, 2, ...,K, the goal is to learn

a function f(x) that maps input features to output labels.

Random Forest constructs T decision trees T1, T2, ..., TT using a bootstrapped sample
of the training data, where each tree is trained on a random subset of the features.
The bootstrapped sample is created by randomly sampling N data points from the
training set with replacement. For each tree Ti, a random subset of m features is
selected from the d features in the training set. The value of m is typically set to√
d for classification problems and d/3 for regression problems.
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Each decision tree is trained using the standard algorithm for decision tree induction,
such as ID3, C4.5, or CART. The tree splits the data based on the best feature and
threshold according to an impurity measure, such as the Gini index or entropy. The
tree continues to split the data until the leaves contain only one class or a pre-defined
stopp criterion is met.

To make a prediction for a new input feature vector x, the algorithm takes the
majority vote of the predictions made by all the decision trees in the forest:

f(x) = argmaxk ∈ 1, 2, ...,K
∑

i = 1T I(Ti(x) = k)

where Ti(x) is the predicted class label of the i-th decision tree for input vector x,
and I(Ti(x) = k) is the indicator function that returns 1 if Ti(x) = k and 0 otherwise.

In summary, Random Forest combines multiple decision trees trained on boot-
strapped samples of the data and subsets of the features to create a powerful machine
learning algorithm.

3.2.3 Convolutional Neural Networks

CNN are highly effective for image classification tasks due to their hierarchical represen-
tation learning and spatial correlation handling capabilities. These networks consist of
multiple layers, including convolutional, pooling, and fully connected layers, that extract
features, reduce spatial dimensionality, and make predictions. The use of skip connections
promotes identical mappings and allows for deeper layers to extract discriminative se-
mantic features, which are crucial for understanding image content. In this section, some
popular CNN architectures that are commonly used as a baseline are introduced to gain
an understanding of CNNs.

GoogLeNet, also called Inception, was introduced as a deep convolutional neural
network architecture in 2015 with the aim to reduce the computational complexity of
deep neural networks (Szegedy et al., 2015). It achieves this by incorporating inception
modules, which include multiple convolutional filters of different sizes, to learn hierarchical
representations of the image by extracting information from multiple scales. The architec-
ture of the Inception module in GoogLeNet is illustrated in Figure 3.1, where 1 × 1, 3 ×
3, and 5 × 5 convolutions, and 3 × 3 max-pooling are applied to inputs. The parallel use
of filters reduces the number of parameters and computation time compared to traditional
CNN that use sequential layers.

VGGNet is a deep neural network architecture that was developed by the Visual
Geometry Group at the University of Oxford, specifically for image classification tasks
(Simonyan and Zisserman, 2014). VGGNet arranges convolutional layers in a block-wise
manner and consists of five convolutional blocks and three fully-connected layers, and after
each block, a max-pooling layer is added to downsample feature maps. All convolutional
filters have a size of 3 × 3, and each convolutional layer in a block has the same number
of filters. For example, in the VGGNet-13, each layer in the five blocks has 64, 128, 256,
512, and 512 convolutional filters, respectively (Figure 3.2). A feature of the VGGNet
is that reducing the size of the convolutional filter and increasing the number of layers
can achieve a similar deep perceptual field while using fewer parameters. This approach
can also enhance the nonlinearity of the model. After the success of the VGGNet, this
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Figure 3.1: Inception module in the GoogLeNet. Source: Szegedy et al. (2014)

strategy of designing convolutional neural networks in a block-like manner has become a
mainstream trend in deep learning research.

Input Block1
Block2

Block3
Block4

Block5
FC6 FC7 FC8

Conv + ReLU
Max-Pooling

FC + ReLU
FC + softmax

Figure 3.2: Architecture of the VGGNet-13. Conv: convolutional layer, FC: fully-connected layer.
Modified from: Simonyan and Zisserman (2014)

ResNet is a deep Convolutional Neural Network (CNN) created by Microsoft Re-
search (He et al., 2016) that addresses the degradation problem typically encountered in
deep networks. The unique feature of ResNet’s architecture is the incorporation of identity
shortcuts, which are also known as skip connections. These shortcuts enable information
to be directly transmitted from lower to higher layers of the network, preventing the issue
of vanishing gradients and allowing the network to learn even deeper architectures with up
to 152 weight layers (as shown in Figure 3.3). The use of identity shortcuts improves the
stability and convergence of training, as well as reducing the need for careful weight ini-
tialization. This innovative ResNet structure has been widely implemented in vision tasks
and continues to achieve state-of-the-art performance on various benchmark datasets.

Figure 3.3: Architecture of the ResNet-34. Source: He et al. (2016)
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This chapter was published as:
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knowledge-based, validated classifier for the identification of aliphatic and aromatic plas-
tics by WorldView-3 satellite data. Remote Sensing of Environment, 264, 112598.
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4.1 Abstract

Although the C-H chains of petroleum derivatives display unique absorption features in
the short-wave infrared (SWIR), it is a challenge to identify plastics on terrestrial surfaces.
The diverse reflectance spectra caused by chemically varying polymer types and their dif-
ferent kinds of brightness and transparencies, which are, moreover, influenced further by
the respective surface backgrounds. This paper investigates the capability of WorldView-
3 (WV-3) satellite data, characterized by a high spatial resolution and equipped with
eight distinct and relatively narrow SWIR bands suitable for global monitoring of differ-
ent types of plastic materials. To meet the objective, hyperspectral measurements and
simulations were conducted in the laboratory and by aircraft campaigns, based on the
JPL-ECOSTRESS, USGS, and inhouse hyperspectral libraries, all of which are convolved
to the spectral response functions of the WV-3 system. Experiments further supported
the analyses wherein different plastic materials were placed on different backgrounds, and
scaled percentages of plastics per pixel were modeled to determine the minimum detectable
fractions. To determine the detectability of plastics with various chemical and physical
properties and different fractions against diverse backgrounds, a knowledge-based classifier
was developed, the routines of which are based on diagnostic spectral features in the SWIR
range. The classifier shows outstanding results on various background scenarios for lab
experimental imagery as well as for airborne data and it is further able to mask non-plastic
materials. Three clusters of plastic materials can clearly be identified, based on spectra and
imagery: The first cluster identifies aliphatic compounds, comprising polyethylene (PE),
polyvinylchloride (PVC), ethylene vinyl acetate copolymer (EVAC), polypropylene (PP),
polyoxymethylene (POM), polymethyl methacrylate (PMMA), and polyamide (PA). The
second and third clusters are diagnostic for aromatic hydrocarbons, including polyethy-
lene terephthalate (PET), polystyrene (PS), polycarbonate (PC), and styrene-acrylonitrile
(SAN), respectively separated from polybutylene adipate terephthalate (PBAT), acryloni-
trile butadiene styrene (ABS), and polyurethane (PU). The robustness of the classifier is
examined on the basis of simulated spectra derived from our HySimCaR model, which
has been developed in-house. The model simulates radiation transfer by using virtual 3D
scenarios and ray tracing, hence, enables the analysis of the influence of various factors,
such as material brightness, transparency, and fractional coverage as well as different back-
ground materials. We validated our results by laboratory and simulated datasets and by
tests using airborne data recorded at four distinct sites with different surface character-
istics. The results of the classifier were further compared to results produced by another
signature-based method, the spectral angle mapper (SAM) and a commonly used tech-
nique, the maximum likelihood estimation (MLE). Finally, we applied and successfully
tested the classifier on WV-3 imagery of sites known for a high abundance of plastics in
Almeria (Spain), Cairo (Egypt), and Accra, (Ghana, West Africa). Both airborne and
WV-3 data were atmospherically corrected and transferred to “at-surface reflectances”.
The results prove the combination of WV-3 data and the newly designed classifier to be
an efficient and reliable approach to globally monitor and identify three clusters of plastic
materials at various fractions on different backgrounds.
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4.2 Introduction

Plastic litter enters the environment through manifold pathways and has a major deleteri-
ous impact on our living space. This phenomenon is of growing concern, and has kindled
the idea to investigate the possibilities of monitoring and identification of plastic litter in
the terrestrial environment using remote sensing techniques. Plastic products - with the
advantages of being lightweight, waterproof, and durable - have become increasingly dom-
inant in the marketplace since their widespread introduction in the 1930s (Feldman, 2008).
Global plastic production has quadrupled over the past four decades (Geyer et al., 2017).
Improper disposal of plastic waste, along with its longevity and durability, have caused
its extensive accumulation in terrestrial and aquatic ecosystems (Derraik, 2002). This has
led to a severe damage to wildlife (Browne et al., 2008; Uhrin and Schellinger, 2011) and
its habitats (Lebreton et al., 2017). Besides, many plastics can be chemically hazardous
in some contexts. More than 50% of plastics are inherently toxic (Lithner et al., 2011).
Even when not toxic, plastics can absorb and accumulate other pollutants (Teuten et al.,
2009; Rochman et al., 2013). When plastic is exposed to ambient solar radiation, it slowly
disintegrates into microplastics and releases greenhouse gases, methane and ethylene, con-
tributing to climate change and global warming effects (Royer et al., 2018; Vishwakarma,
2020). People are, therefore, now paying more and more attention to the impact of plas-
tics on the ecosystem and human health (Lithner et al., 2011; Rochman et al., 2013; Law
and Thompson, 2014; Law, 2017). Consequently, it is a challenging future obligation to
regularly monitor and detect plastic materials to better identify the sources and pathways
of plastic litter and to assess its accumulation over time.

The unique inherent optical characteristics of different types of plastics in the near
infrared (NIR) to shortwave infrared (SWIR) allow plastic litter to be sorted automat-
ically by the recycling industry (Huth-Fehre et al., 1995; Masoumi et al., 2012; Moroni
et al., 2015). With the development and improvement of the SWIR (1.3-2.5µm) imaging
technology, remote sensing data with moderate to high temporal, spectral, and spatial res-
olution bear the potential to be a powerful tool for qualitative and quantitative mapping
of plastic occurrences in the environment (Moller et al., 2016). Mapping and quantifica-
tion of marine and coastal plastic litter based on remote sensing data (NIR, SWIR, TIR)
have recently been investigated by a growing number of studies (Moy et al., 2018; Acuña-
Ruz et al., 2018; Garaba et al., 2018; Mart́ınez-Vicente et al., 2019; Goddijn-Murphy and
Williamson, 2019; Fallati et al., 2019; Themistocleous et al., 2020; Biermann et al., 2020;
El Mahrad et al., 2020; Topouzelis et al., 2020). Some authors investigated the detec-
tion of plastic greenhouses using statistical classification algorithms based on spectral and
textural characteristics (Novelli et al., 2016; Aguilar et al., 2016; Lanorte et al., 2017;
Aguilar et al., 2020). Others focused on the differentiation among various plastic types
by lab measurement and near-real-time algorithms, which allow the sorting of harvested
plastic waste on automated conveyor belts with infrared spectroscopy (Yan and Siesler,
2018; Rani et al., 2019; Cruz Sanchez et al., 2020). Most plastic litter ends up in the
oceans through miscellaneous routes and is crushed by mechanical wave, forcing it up to
nano-sized particles. Approximately 80 percent of ocean plastics originate from land-based
sources; the remaining 20 percent are from marine sources (Li et al., 2016).

To prevent further contamination, regular global monitoring of terrestrial plastic de-
bris is of increasing importance. So far, only a few studies have focused on the detection
and identification of terrestrial plastics, mostly based on hyperspectral imagers aboard air-
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planes (Hörig et al., 2001; Kühn et al., 2004; Heiden et al., 2007) and satellites (Wetherley
et al., 2017). But airborne sensors are limited in terms of covering larger areas. On the
contrary, hyperspectral recordings from space have the disadvantage of low Ground Sam-
pling Distances (GSDs) ≤ 30 m on account of the limited quantum efficiencies of recent
detectors. Therefore, a “super-spectral” instrument such as the DigitalGlobe WorldView-
3 system is a suitable solution as tradeoff between spectral and spatial resolution. It can
be advantageous to hyperspectral imagers as well as to very high spatial resolution satel-
lite sensors where the latter usually suffer from low repetition rates and missing spectral
capabilities. WV-3 data have already been investigated by Asadzadeh and de Souza Filho
(2016), delineating the potential to detect hydrocarbon (HC) materials based on simu-
lated imagery. They further proved the data to be capable to unambiguously detect HCs
in varying background soils. Some researchers have already proposed knowledge-based
indices, such as HI (Kühn et al., 2004), RBD (Asadzadeh and de Souza Filho, 2016), and
NDPI, which can be used as one-class classifiers by applying a threshold on the index
value, among which NDPI has been proven to have superior performance (Guo and Li,
2020). This index can highlight most of the plastics innovatively by amplifying the sig-
nificant downward tendency of most plastics along 1570 to 1730 nm and 2165 to 2330
nm, however, it doesn’t cover all the plastic types. Yet, these studies rarely provide a
reliable identification of different plastic materials, although this is a major challenge in
this context.

Concerning the evaluation of recorded air-, or spaceborne data, various supervised
classifiers based on signatures have been reported in the literature. Conventional ap-
proaches to chemical agents and soil detection using spectroscopic techniques are discussed
by Kruse et al. (1993) and Kwan et al. (2006). Moreover, popular deep learning algorithms
are used for land cover classification (Kwan et al., 2020). All of these methods can be used
to classify plastics. The most common household waste consists of five main polymers,
including PE, PP, PS, PET, and PVC (Eisenreich and Rohe, 2006; Feldman, 2008; Editor,
2018). For cost-saving reasons, most plastics remain transparent or translucent and thin,
introducing the quadratic term of transmittance and the reflectance of background directly
below it. Hence, the background has great impact on the apparent reflectance (Kuester
and Bochow, 2019). The varying fractions of plastics in relation to different backgrounds
further introduce uncertainty into any kind of detection and identification algorithms.
Hence, supervised classification methods would require a large number of training pixels,
covering all the above-mentioned combinations and circumstances. Unsupervised classifi-
cation algorithms like ISODATA (Tou and Gonzalez, 1974) and K-Means (Hartigan and
Wong, 1979), require knowledge about the number of classes in the image to obtain good
results; also, they cannot be used to automatically identify materials. Statistically ma-
chine learning methods became very popular but have a limited transfer-ability and often
require adaption to specific areas and tasks.

The work presented in this paper focuses on the development of a knowledge-based
algorithm, evaluating the spectral reflectance signal, which can identify different types or
clusters of plastics on various terrestrial backgrounds by the use of the globally operating
WV-3 satellite system. As mentioned before, WV-3 is characterized by eight well-placed
SWIR bands and a sufficient high spatial resolution for this purpose. To initiate the
classifier, we investigated three international spectral libraries, including around 3,600
samples, whereby all spectra were convolved to WV-3 band characteristics using its spec-
tral response function. We iteratively improved the algorithm with lab measurements and
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simulated spectra, covering a broad range of different, commonly used types of plastics,
various levels of brightness and transparency, detailed fractional coverages of plastic mate-
rial per pixel, and the interfering reflectance of 12 different background materials. Finally,
the developed, signature-based, decision tree type classifier was applied to simulated data,
four airborne images recorded in Germany and Spain, and three WV-3 scenes covering
known areas of high plastic abundance in Spain (Almeria), West Africa (Accra, Ghana),
and Egypt (Cairo) (Fig. 4.1).

4.3 Materials

4.3.1 Laboratory data

4.3.1.1 Existing spectral libraries

To investigate the potential for the detection and recognition of different plastic materials
as well as to mask and separate all other materials from plastics, spectral libraries from
JPL-ECOSTRESS (Baldridge et al., 2009; Meerdink et al., 2019), USGS (Kokaly et al.,
2017) and our inhouse spectral library (GFZ), were investigated. Only diagnostic spectral
signatures located in the NIR and SWIR ranges were selected to ensure credibility for
the subsequent spectral resampling. Table 4.1 lists the details of spectral libraries and
categories that were considered in this study. A synthetic scenery of 60-by-60 pixels was
generated covering 3,547 spectra of natural surfaces, including 156 samples of different
plastics materials. All reflectance data were rescaled into the range of 0 to 100% to
facilitate joint analysis.

Table 4.1: Summary of the spectral libraries used for this study.

Spectral

library

Number of

spectra

Category

ECOSTRESS 1947 Artificial, water, minerals, rocks, soils,

vegetation, non-photosynthetic vegetation

USGS 1436 Artificial, coatings, liquids,

minerals, soils, vegetables

GFZ 164 ABS, EVAC, PE, PBAT, PC, PET, POM, PP, PS, PU,

PVC, SAN, PMMA, PA and natural organic materials

Total 3547

The USGS library (Version 7) contains hyperspectral reflectance data of various ma-
terials that cover the wavelength range from the ultraviolet to the far infrared (0.2 to
200 µm). It includes spectra measured in the laboratory, field, and by airborne imag-
ing spectrometers. It contains reflectance spectra from samples of minerals, rocks, and
soils as well as of vegetation, microorganisms, and man-made materials, which involves
PE, PVC, PET, and PA. The category of organic chemical substances is excluded in this
study as their molecular structures are similar to plastics, but rarely disperse in nature.
The ECOSTRESS library provides a comprehensive collection of natural and man-made
laboratory-derived high-resolution spectra, covering the wavelength range of 0.35–15.4
µm. It includes nearly 2,000 spectra of soils, rocks, minerals, meteorites, vegetation, non-
photosynthetic vegetation (NPV), water/snow/ice, and man-made materials. There are
two roofing rubbers in the man-made category, which are plastic samples. The PlaMAPP
library is an in-house (GFZ) created collection of high-resolution spectra measured in the
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Table 4.2: Different plastics sorted by their molecular structure. Materials used for household
goods and packaging are marked in bold.

Type of Chemical Compound Plastic types

Aliphatic PE, PVC, EVAC, PP, POM, PMMA, PA

Aromatic ABS, PBAT, PU, PET, PS, PC, SAN

near infrared and shortwave infrared range (0.97-2.5 µm). It includes five types of house-
hold plastics, which cover 95% of the global production of PE, PP, PVC, PET, and PS,
as well as nine types of industrial plastics: ABS, EVAC, PA, PBAT, PC, PMMA, POM,
PU, and SAN. These plastics - in accordance with the type of functional groups present in
their molecular structure - can be divided into an aliphatic type (without a benzene ring)
and an aromatic type (containing a benzene ring), and are listed in Table 4.2. In total,
3,547 spectral signatures were used to develop and evaluate the classifier.

4.3.1.2 Additional lab measurements

Additional measurements were conducted to derive high-resolution spectra of various plas-
tic types placed on the surfaces of different backgrounds which is required for the develop-
ment of the classifier. Measurements are conducted under laboratory conditions with an
internal measurement protocol (Rogass et al., 2017) with a HySpex SWIR320m-e hyper-
spectral imager built by Norsk Elektro Optikk (NEO). A H25s light source by HEDLER
was used, which is equipped with two 650 Watts tungsten halogen bulbs radiating a near
solar-like spectrum. After calibrating the measured digital numbers to radiance using the
software HySpex RAD, the conversion to reflectance was accomplished using spectra from
a 3-color Zenith® reference panel (albedo: 90%, 50%, 20%), which was placed in every
imaged scene. Two scenes were set up, including samples of six plastic materials (HDPE,
PVC, PS, PP, PET, and PBAT), with different optical characteristics like transparent,
translucent, opaque-bright, and opaque-dark. Samples were placed on two different soil
types viz a bright sandy dry soil and a dark organic dry soil.

4.3.1.3 The HySimCaR model

To further consolidate the database, it was extended by simulated mixed spectra based on
HySpex measurements, using a radiative transfer model HySimCaR (hyperspectral simula-
tion of canopy reflectance (Kuester et al., 2014) that was developed in-house and modified.
The model enables the simulation of realistic bidirectional reflectance spectra on the basis
of virtual 3D scenarios with Monte Carlo ray-tracing (MCRT) techniques. The spectral
reflectances of the mixed samples were calculated by a spectral modeling approach that
couples virtual 3D plastic litter scenarios, the geometries of which are linked to the cor-
responding spectral information (reflectance spectra of background materials, reflectance,
and transmittance spectra of plastic materials). Apart from the complexity of varying
spectral backgrounds in the terrestrial environment, classification algorithms applied to
satellite imagery face the dominance of mixed pixels, causing greater uncertainties in the
results of classification approaches. Hence, the fractional cover of the plastic material for
the analysis of the mixed pixel problem was calculated directly from the 3D geometry of
the virtual littering scenarios. Subsequently, by using the Atmospheric and Topographic
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Correction (ATCOR) model (Richter and Schläpfer, 2019), all the lab reflectance spectra
derived are converted to surface reflectances, as seen by the WV-3 sensor, taking into
consideration random noise and atmospheric effects.

4.3.2 Sensor systems

4.3.2.1 Airborne instruments

Data recorded by four push-broom hyperspectral sensors, including the HySpex-VNIR-
1600, HySpex-SWIR-320m-e, HySpex Mjolnir S-620 (NEO), and the HyMap sensor (Cocks
et al., 1998) were used in this study. The HySpex-VNIR-1600 covers 160 bands in the
spectral range of 0.4-1.0 µm, with a spectral resolution of 3.6 nm, while the HySpex-
SWIR320m-e operates in the 1.0-2.5 µm range, producing 256 bands with a spectral
sampling of 6 nm. Both sensors were mounted on an aircraft with an across-track instan-
taneous field of view (IFOV) up to 0.185 mrad for the VNIR camera (1600 pixels) and
0.75 mrad for the SWIR camera (320 pixels). The HySpex Mjolnir S-620 is a UAV-based
sensor, with an across-track IFOV of 0.54 mrad. It records lines with 620 pixels, covering
a range of 1.0-2.5 µm in 300 bands, with a spectral resolution of 5.1 nm. The HyMap
imager has an IFOV of 2.0 mrad with 512 pixels in across track direction, covering the
range of 0.45-2.48 µm in 128 bands with intervals of 13-17 nm. This sensor can only be
used in connection with an aircraft.

4.3.2.2 WorldView-3 sensor

The WorldView-3 is a high spatial resolution commercial satellite operating in a sun-
synchronous orbit, carrying a sensor with moderately broad spectral bands in the VNIR-
SWIR (visible, near infrared - short wave infrared) range. In the VNIR, it provides
four standard color bands and four additional bands, named coastal, yellow, red edge,
and near-IR2. The details of the spectral band configuration are shown in Table 4.3.
The major advancement of the WV-3 system are eight SWIR bands in the 1195-2365
nm atmospheric window. Twelve additional CAVIS (Clouds, Aerosols, Vapors, Ice, and
Snow) bands guarantee proper estimates of aerosols and water vapor for atmospheric
compensation of the data. The platform operates at an altitude of 617 km. The GSDs
at nadir are 0.31 m for the panchromatic band, 1.24 m for the VNIR bands, 3.7 m for
the SWIR bands, and 30 m for the CAVIS bands. The swath width of the instrument is
13.1 km, with a descending node at 10:30. Owing to the onboard fast-reacting “Control
Moment Gyros” (CMGs), the off-nadir revisit time is <1 day. Data provided are already
geo-corrected.

4.4 Study areas

To ensure testing and validation of the classifier to be developed in this study for its
potential to identify different plastic materials in a real-world environment under various
conditions, several regions with miscellaneous surface characters were recorded by aircraft
and satellite data.
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Figure 4.1: Sketch map and detailed coordinates of test sites recorded by aircraft scanners and
the WV-3 satellite.
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Table 4.3: Spectral band configuration of VNIR and SWIR bands of the WorldView-3 sensor.

Band number Band name Wavelength/nm Band number Band name Wavelength/nm

1 coastal: 400-450 9 SWIR 1: 1195-1225

2 blue: 450-510 10 SWIR 2: 1550-1590

3 green: 510-580 11 SWIR 3: 1640-1680

4 yellow: 585-625 12 SWIR 4: 1710-1750

5 red: 630-690 13 SWIR 5: 2145-2185

6 red edge: 705-745 14 SWIR 6: 2185-2225

7 near IR 1: 770-895 15 SWIR 7: 2235-2285

8 near IR 2: 860-1040 16 SWIR 8: 2295-2365

GSD 1.2 m GSD 3.7 m

4.4.1 Sites recorded by airborne instruments

Four selected locations in Germany and Spain (Fig.4.1 a-d), each characterized by a dif-
ferent landscape, were recorded by the above mentioned airborne instruments. To ensure
validity, plastic targets in the airborne data sets were not included in the spectral libraries
used for the development of the classifier.

A location - dominated by grassland - was recorded by the HySpex Mjolnir S-620
imager mounted on an UAV on June 13, 2019, at Thyrow, Germany (52°15’04.6“N
13°13’55.7”E, Fig.4.1 a). The flight altitude was about 30 m, resulting in a GSD of
about 3 cm. We placed well defined and spectrally measured materials on the ground like
transparent PET plastic bottles of different size, and large foils made of PBAT, PET, and
PE plastic. The geometric processing was conducted with the PARGE software (Schläpfer
and Richter, 2002) and the atmospheric correction was done in-house using the SICOR
software (Bohn et al., 2020).

The data of the lake location were recorded by the combined HySpex VNIR-1600 and
SWIR-320m-e sensors aboard an airplane on February 16 in 2015 at Lake Seddin, Germany
(52°16’21.4“N 13°03’12.3”E, Fig.4.1b). Data were collected at an altitude of 600 m, with
a resultant GSD of about 40 cm. HySpex data preprocessing to orthorectified reflectance
including co-registration and adaptation of the SWIR sensor to the VNIR was performed
with the GFZ in-house processing chain HyPrepAir which is based on procedures described
by Brell et al. (2016). Three arrays of white and opaque PS foam boards (fractional covers
of 15%, 25%, and 40%) and one blue PE tarpaulin (100% fractional coverage) were set
up over the shallow lake water and on its sandy bank. The above described two scenes
represent fully controlled experiments and the ground truth map including all the samples
is generated accordingly.

A third study area - characterized by an urban landscape - was recorded by the
HyMap system from an aircraft. The urban scenery depicts the city of Dresden, Germany
(51°6’17.5“N 13°46’6.8”E, Fig.4.1c), and was collected on July 7, 2004, with a GSD of 4
m. Ground control for places covered by distinct plastic materials in the resp. regions are
maintained by field-works using portable spectrometers and GPS devices. Coverages by
the respective plastic materials at individual city blocks were digitized manually on-screen
using ortho-rectified aerial photographs of 0.25 m resolution. More than 40 different urban
materials including various plastics were identified and mapped based on hyperspectral
ground measurements (Behling et al., 2015). For this study, we merged all the found
classes into the respective three plastic and one non-plastic cluster, each of them finally
comprising more than 250 pixels.
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A further area characterized by bare soils and greenhouse agriculture in Almeria,
Spain (0°0’38.2“S 10°30’55.5”E, Fig.4.1d), was acquired in June 15 using the HyMap
system onboard an airplane in 2005, with a GSD of 5 m. This site is dominated by
PE plastic sheds utilized as greenhouses for agricultural purposes (Scarascia-Mugnozza
et al., 2011). Similar to the Dresden dataset, the ground control is conducted by field
measurements with portable spectrometers and GPS. However, due to the lack of diversity
of plastics, only greenhouses made from PE were collected for the ground truth map with
more than 10,000 pixels.

All these datasets are of L2 level, passing radiometric corrections, atmospheric cor-
rections, and ortho-registration.

4.4.2 Sites recorded by the WorldView-3 satellite

Three WV-3 datasets (Fig4.1e-g) were selected from regions known for their high abun-
dance of plastic material. One dataset was recorded over Europe (Almeria, Spain), one
over West Africa (Accra, Ghana), and one over North Africa (Cairo, Egypt). They were
collected in Ortho Ready Standard Level-2A (ORS2A) format, presenting both radiomet-
ric and geometric corrections. To retrieve the “at surface reflectance” characteristics of
targeted areas, atmospheric corrections were applied using the ATCOR 2 software (Richter
and Schläpfer, 2007).

4.4.2.1 Almeria, Spain

The imagery of Almeria, Spain (2°19’29.9“N 36°51’16.1”W, Fig.4.1e), depicts an agricul-
tural region and was recorded on June 26, 2018. The economy of Almeŕıa is mostly depen-
dent on agricultural products, cultivated mainly in the western part of the city. Numerous
greenhouses constructed from plastic sheeting produce tons of fruits and vegetables; more
than 70% of which are exported to other European countries. About 30,000 tons of plas-
tic waste are created here per year. In places where the soil has become infertile, the
greenhouses are abandoned after shredding; these are reported to enter the Mediterranean
Ocean (Tremlett, 2013). PE is the preferred plastic type for greenhouses because of its
affordability, flexibility, and ease of manufacturing (Scarascia-Mugnozza et al., 2011). In
this plasticulture area, most targets - such as soils, trees, and the greenhouses - depict a
homogeneous appearance. However, most of the plastics are transparent or translucent
with vegetation below.

4.4.2.2 City of Accra, Ghana, West Africa

The data of Accra (5°32’43.3“N 0°13’4”W, Fig.4.1f) were acquired on March 3, 2018. In
Accra, the area of interest is located at the electronic waste dump site in Agbogbloshie. E-
waste has become the fastest growing waste disposal in the world, with an annual growth
rate of 3–4%. More than 150,000 tons of electrical appliances consumed worldwide are
shipped to Ghana per year (Schluep et al., 2012) via the Port of Tema, located 20 miles
east of the Agbogbloshie dump. Furthermore, the urban areas of Accra release about
760,000 tons of municipal solid waste per year (US, 2002). About 80,000 people subsist
on the Agbogbloshie dump, living locally or nearby, and suffer from the contaminated
environment. Only 15% of e-waste is recycled, of which the most significant constituents
are plastics, accounting for up to 20% (Sahajwalla and Gaikwad, 2018).
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4.4.2.3 City of Cairo, Egypt

The imagery of Cairo (30°2’35.1“N 31°16’56.3”E, Fig.4.1g) was recorded on January 29,
2019. Cairo is a typical urban area, with a compact and heterogeneous distribution of land
cover types. The region is covered with garbage from the city center to the countryside,
and from the streets to the roofs of the houses. The largest settlement is Mokattam
village, with a population of around 30,000 humans, located at the foot of the Mokattam
Mountains, next to Manshiyat Naser. The people living here - the Zabbaleen - have served
as Cairo’s informal garbage collectors since the 1940s, and are a key element of Cairo’s
waste management system. Some 9,000 tons (Guénard, 2013) of waste are brought here
for disposal every day, 80% of which are recycled and turned into sellable raw materials
(Woods, 2011) (Woods, 2011). The Zabbaleen live in impoverished conditions, especially
as they live among the village’s sorted rubbish and with their livestock. However, they
have formed a strong and close-knit community.

4.5 Methodology

In this study, a classifier was developed based on the physical principles of spectroscopy
and tested to automatically identify and cluster different plastic materials in WV-3 data.
The general schematic of the overall flowchart for this study is illustrated in Fig. 4.2.

The strategy of spectral resampling to the spectral resolution of WV-3 band filter
paths, based on the spectral response functions of the sensor, is presented in Section 4.5.1.

The evaluation of different plastic materials in terms of their spectral characteristics
and their molecular structures is discussed in Section 4.5.2.

The rules and routines for the classifier were accordingly developed in Section 4.5.3,
based on the theoretical analyses of the available spectral libraries. Hence, the spectra
were sorted into four major clusters consisting of aliphatic plastics and two subgroups of
aromatic plastics and non-plastics.

Finally, the performance of the classifier to detect different kinds, types, and fractions
of plastics was examined by the calculation of confusion matrices on lab, and experimental
and airborne data convolved to the WV-3 spectral response in Section 4.5.4.

4.5.1 Spectral resampling

To obtain a theoretical insight into the capability of the WV-3 instrument for the detection
of different plastic materials, all library spectra, all experimentally derived spectra, and all
airborne hyperspectral datasets are convolved to the SWIR spectral filter characteristics of
the WV-3 sensor. Data with lower spectral resolution are simulated from higher spectral
resolution using Eq.4.1:

Ri =

∫ λ1

λ0
SRF i (λ)Rlab (λ) dλ∫ λ1

λ0
SRF i (λ) dλ

(4.1)

where

Ri is the ith band of the lower resolution data,

SRFi (λ) is the measured spectral response of band i,

Rlab (λ) is a measured radiance or reflectance of the higher spectral resolution data

(van der Meer and De Jong., 2011).
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Figure 4.2: Schematic representation of the study design, including the data used, the data eval-
uation, the design of the classifier, and the application, TOA: top of atmosphere,
BOA: bottom of atmosphere. See text for acronyms.
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Fig. 4.3 shows the original high-resolution spectra of all plastic types investigated in
this study combined with the resampled spectra.

4.5.2 Evaluation of the chemical bonds in plastics

Plastics are petroleum derivatives with the backbone of C-H chains and distinctive func-
tional groups. Consequently, they display diagnostic spectral features in the SWIR range.
There are further absorption features displayed in the VNIR range (400-1300 nm). How-
ever, most of these correspond to electronic transitions between pigment molecules and
are excluded from the identification process for this reason. Plastics are polymerized with
one-repeat units. Thus, due to their relatively simple molecular structure, their absorption
features in the SWIR range are easier to explain than those of natural organic materials.
Diagnostic absorption features displayed by plastics in the SWIR range are mainly con-
trolled by the stretching vibration overtones and combination modes of C=O, C-C, and
by hydrogen-containing functional groups (X-H), including O-H, N-H, C-H, and others
(Schwanninger et al., 2011).

The general absorption features of the C-H bond in plastics (Fig.4.3) can be under-
stood based on their mode assignments, including the 1st and 2nd orders of the overtone
stretching modes (2ν: 1600-1800 nm, 3ν: 1100-1250 nm) and the combination modes
(1νComb: 2150-2500 nm, 2νComb: 1300-1450 nm). The 2nd order of the combination mode
is not contemplated in this study as it is masked by the overlay of the 1st overtone of
water (O-H) emerging at 1400 nm. This O-H band causes a lack of transparency in the
atmosphere and generally prevents access by remote sensing techniques. All spectra of
plastics depict a stair-like shape, with inflection points at the 1st overtone and the com-
bination band respectively. This is caused by a gradually decreasing absorptivity toward
the higher order of overtones and combination tones.

The C-H bonds in plastics are not isolated but connected with distinct functional
groups which have various masses and bond force constants. Due to the anharmonicity
and Fermi resonance, vibration frequencies induced by C-H bonds do not fall within the
same spectral band in all plastics. These spectral characteristics offer the potential to
identify and distinguish between different types of plastic, based on their unambiguous
spectral absorption features (Czarnecki et al., 2015; Beć et al., 2018). The correspondence
of a spectrum and its vibration mode of C-H bonds is well investigated by both experiments
and Density Functional Theory (DFT) simulations (Beć and Huck, 2019; Ma et al., 2019b).

Ma et al. (2019b) pointed out that the sp hybridization of CC bonds affects the
diversity of absorptions for (C-H) substances. Sp hybridization can be described as an
entanglement between s and p orbits of the outermost shell of the atom. Consequently,
the plastic materials under investigation can be divided into two major clusters: aromatic
polymers with benzene rings (sp2 hybridization, Fig.4.3a) and aliphatic polymers without
benzene rings (sp3 hybridization, Fig.4.3b). The sp2 hybridization with a stronger bond
force constant can induce a higher absorption frequency than the sp3 hybridization. The
raw spectra of plastics without benzene rings produce second overtone absorptions at
around 1210 nm and first overtone absorptions at 1730 nm. As far as plastics with benzene
rings are concerned, absorptions emerge at higher frequencies in the second overtone range
around 1140 nm, while the first overtone absorptions show a “blue shift” to around 1660
nm. In the range of the combination mode, a strong absorption feature appears around
2300 nm among aliphatic plastics, resulting from the combination mode of a C-H stretching
and bending vibration. Plastics of the aromatic type have one more broad absorption
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region related to C-H and C-C stretching vibrations in the combination mode, at around
2130 nm.

There are further explainable diagnostic features displaying in the highly resolving lab
reflectance spectra sampled at 1 nm intervals like N-H (ν 2: 1517 nm) and C=O (νcomb:
2250 nm), but these are not unveiled in the simulated WorldView-3 spectra due to the
diminished spectral resolution.

Yet, the spectral resolution in the range of the 1st overtone and combination band
is quite sufficient to distinguish aromatic plastics from aliphatic plastics, by clearly eval-
uating relevant absorptions and peaks as described. Looking further into the details of
aromatic plastics, it is found that the position of the absorption peak of the 1st overtone
in PBAT, PU, and ABS shifts to longer wavelengths, along with a smoothing effect. The
latter is caused by the low spectral resolution of spectra convolved to the WV-3 band-
widths, resulting in the disappearance of the absorption at 1660 nm. Hence, based on the
variety of diagnostic absorption features studied, we are theoretically able to separate the
investigated plastic materials into at least three different categories namely two clusters
of aromatic and one cluster of aliphatic plastics.

4.5.3 Development of the classifier routines

A knowledge-based decision tree classification method, based on diagnostic absorption
features of plastic materials caused by their molecular structure, is developed and applied.
Although the basic features can accordingly be extracted, further constraints caused by
the limited spectral resolution had to be researched empirically, based on the spectral
libraries used.

The classifier works in several consecutive steps, which are presented in the follow-
ing. Therefore, a “Normalized Hydrocarbon Index” (NHI) was developed in this study
(Fig.4.4), based on the HI proposed by (Kühn et al., 2004), which gives the concavity or
convexity of a curve at the point λB. The formula is provided in Eq.4.2. For NHI >0,
the curve at λB is concave, the value indicating the relative absorption depth at the given
wavelength.

NHI = 1− RB

RA + (λB − λA)
RC−RA
λC−λA

(4.2)

Fig.4.5 illustrates the entire routine of the algorithm and highlights the core theory-based
steps in bold black fonts, while the additional empirical constraints are displayed in gray
font types. The classifier starts with the separation of the aliphatic from the aromatic hy-
drocarbons, based on their opposite concavity at 2165 nm. Different routes for aliphatic
and aromatic compounds are separated with dashed and solid frames. In the aliphatic
group, only a single cluster is extracted while two routes are applied because of the influ-
ence of other materials in mixed pixels. Among the two routes, one has stricter requirement
on the minimum at 1730 nm while the other gives tolerance to mixed pixels and applies
a threshold (d1) of NHI at 1730 nm. Two clusters can be isolated in the aromatic group,
based on their distinctive absorption features, such as the minimum at 1660 nm and the
maximum at 2165 nm or 2205 nm. For these two clusters, the respective thresholds are
introduced to give tolerance to mixed pixels.

To determine suitable threshold values, the evolution of balanced values for the “user’s
accuracy” (UAc) and “producer’s accuracy” (PAc), namely the F1-score, was calculated
along with the respective thresholds from 0 to 1 in steps of 0.01 (Fig.4.6).
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Figure 4.3: Stacked plot of reflectance spectra of various plastic materials investigated in this
study. Laboratory-derived spectra ( 1 nm res.) are combined with their respective
versions resampled to WV-3 band design. Upward pointing arrows mark bands with
diagnostic peaks and downward pointing arrows indicate diagnostic absorption bands.
Curves are offset and highlighted in three different colors for clarity.
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Figure 4.4: Schematic illustration of the Normalized Hydrocarbon Index (NHI) calculation by
computing the absorption depth using a convex hull.

The figure illustrates that the classifier shows sufficient robustness in clusters 1 and 2,
with F1-scores reaching the peak when the threshold is set to 0.02 and 0.05 respectively.
For cluster 1, all possible thresholds result in a balanced accuracy of more than 80%, while,
for cluster 2, a threshold lower than 0.5 is required to reach such a score. The robustness
of the classifier on cluster 3 is relatively less desirable than that of the other two, with
the F1-score peaking when the threshold of the classifier is set to 0.02. The F1-score
surpasses the 80% level only when the threshold is set to 0.02 and 0.03. A low threshold
value makes the classifier more sensitive for spectra, displaying only minor absorption
band depth; however, vice versa, it becomes less robust against noise.

In this study, the threshold values for clusters 1, 2, and 3 are chosen as tradeoffs be-
tween sensitivity and noise to 0.1, 0.05, and 0.02 respectively. Nevertheless, the threshold
values for clusters 1 and 2 can be adapted flexibly.

4.5.4 Evaluation of lab and airborne data

The sensitivity of the proposed classifier in respect of varying abundances/fractions of
plastics and the respective background materials is assessed on datasets produced by the
HySimCaR model (Kuester and Bochow, 2019). In total, the detectability of 39 samples
with the most-used plastic types (HDPE, PVC, PS, PP, PET, PBAT) in different physical
properties are examined on 12 backgrounds with fractional covers of 0 to 100% in 42 steps.
The background materials for the simulation were asphalt, concrete, bright sand, dry soil,
wet soil, peat soil, dry grasslands, vital grasslands, vegetated areas, Baltic Sea, River Po,
and River Elbe. Confusion matrices were calculated in accordance with ground truth maps
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Figure 4.5: Flowchart of the developed knowledge-based classifier routine. k: slope; d: input
thresholds.
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Figure 4.6: F1-score versus threshold curves for the three detectable clusters. Red = cluster 1,
green = cluster 2, and blue = cluster 3.

(see details in Section 4.4.1) to evaluate the potential of the classifier to detect plastics
in the lab and airborne datasets. The performance of the classifier is demonstrated using
producer’s accuracy (PAc, i.e. precision), user’s accuracy (UAc, i.e., recall) as well as the
overall accuracy (OAc). To assess the level of agreement and reliability of the classifier,
Cohen’s kappa coefficient was computed. In addition, the F1-score - which calculates the
harmonic balance of UAc and PAc - was used to avoid bias from imbalanced ground truth.
Due to the problematic of ground truthing concerned with the totally inhomogeneous
substance of the (plastic) garbage at the Accra and Cairo sites recorded by the WV-3, the
plausibility of results derived from WV-3 imagery is assessed via ground images instead
of mathematical accuracy.

4.6 Results and discussion

4.6.1 Classifier performance for spectral libraries and measured lab data

Table 4.4 shows the confusion matrix and accuracy metrics for the classification of the
spectral libraries (Section 4.3.1.1) In general, the PAc exceeds 80% for all classes, and the
UAc exceeds 85% for non-plastic and for clusters 1 and 2. The F1-score is above 85% for
all classes. More than 99% of the non-plastics can be excluded by the developed classifier,
which means on the basis of 3,391 non-plastic samples in total, only 14 samples are falsely
recognized as plastics. It is, therefore, noteworthy that the errors arise almost only as
false negatives, which are almost equally distributed among the three plastic clusters (10
to 15%). There are only minor misclassifications among the three plastic clusters, which
leads to the conclusion that the classifier can separate these three clusters based on lab
spectra very well.

Fig. 4.7 illustrates the setup of the lab experiments that were conducted. Several
plastic materials of different chemical and physical properties were placed on (a) bright
sand -, and (b) dark soil backgrounds and measured by the HySpex sensor. The top row
shows SWIR color composites (a, b) of the setup, while the bottom row depicts the results
derived by the developed classifier (c, d). Each column represents a series of samples of
one/two type(s) of plastic material with different physical properties. Those selected (PE,
PP, PS, PET, and PBAT) represent the three clusters discussed in Section 4.5.1, and
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Table 4.4: Confusion matrix based on all spectra in all libraries (see Table 4.1). The values of
the producer’s accuracy are highlighted in bold. N: non-plastic cluster; C1, C2, C3:
plastic clusters; UAc: user accuracy; F1: F1-score; OAc: overall accuracy; κ: Kappa
coefficient.

Spectral

library

Ground truth (% accuracy)
UAc F1 OAc κ

N C1 C2 C3

Classes

N 99.59 15.27 4.55 0 99.44 99.52

99.07% 0.89
C1 0.32 83.96 0 0 89 86.41

C2 0.03 0 95.45 0 97.67 96.54

C3 0.06 0 0 100 75 85.71

Total 3391 106 44 6 - -

are marked as C1, C2, and C3. The white dashed grid lines are introduced to separate
samples with individual parameters. Each row contains materials with the same physical
properties like transparency, translucency, and bright/median/dark opacities.

The results of the classification clearly show that the black-colored samples in this
experiment with average reflectances below 10% cannot be detected. This is on account
of the too low reflectivity of the target, leading to an insufficient signal to noise ratio
(SNR) and a severe quenching of the respective absorption features. All other plastic
materials are clearly identified at the bright sand background as well as on the dark soil,
regardless of their physical properties. There were only a few pixels found omitted within
the transparent PP, PET, and PBAT materials, or misclassified when placed on black
soil backgrounds. The calculated confusion matrices of the classification results on both
backgrounds are given in Table 4.5. The producer’s accuracy of all classes is over 99% on
both backgrounds, except for C3 on dark soils. C1 reached 100% on both backgrounds as
well as non-plastic on sand. As expected, all accuracy indicators (PAc, UAc, OAc, and
F1) yields better results on bright sand than on dark soil, especially C3 with some omitted
pixels. In general, both the Cohen’s kappa coefficients (κ) are greater than 90%, proving
that the classifier is very reliable.

The omission of transparent samples results from the low reflectance of the dark soil
with averages of around 25%. According to Miller et al., 1992, the apparent reflectances
of non-opaque materials over background substances can be derived from Eq. 4.3, where
A is the apparent reflectance, r and t are the real reflectance and transmittance of the
target, and rb is the reflectance of the background.

A = r + t2rb (4.3)

Only the light that is not absorbed by an object can be reflected or transmitted. Hence,
both transmittance and reflectance spectra of an object show the same absorption band
positions and can be used to identify and ideally quantify the respective material. For
highly transparent or translucent samples, the reflectance is very low; the identification
of an object is mainly dependent on its transmittance, given by the second term of Eq.
4.3. Since the transmittance is less than 1, its square will be much smaller, and the mag-
nitude of the background reflectance will determine whether the object will have enough
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Figure 4.7: Images of the laboratory experiment. Various plastic materials of different physical
properties were measured by the HySpex sensor placed on bright sand (a) and dark
soil (b) backgrounds. Results of the classification for (a) are shown in (c), and for
(b) depicted in (d). C1=PE/PP; C2=PS/PET; C3=PBAT. TP: transparent; TL:
translucent; O-B: opaque bright; O-M: opaque medium; O-D: opaque dark. Measured
SWIR-bands of the HySpex sensor were convolved to spectral characteristics of the
WV-3 spectral bands. Bands 1730 nm, 1570 nm, and 2205 nm coded RGB.

50



4.6 Results and discussion

Table 4.5: Confusion matrices of classified plastic materials measured during a lab experiment
on bright sand and dark soil backgrounds. The values of the producer’s accuracy are
highlighted in bold. N: non-plastic cluster; C1, C2, C3: plastic clusters; UAc: user
accuracy; F1: F1-score; OAc: overall accuracy; κ: Kappa coefficient.

a. Sand
Ground truth (% accuracy)

UAc F1 OAc κ
N C1 C2 C3

Classes

N 100 2.87 2.55 5.06 99.98 99.99

99.98% 0.99
C1 0 100 0 0 100 100

C2 0 0 99.9 0 100 99.94

C3 0 0 0 99.27 100 99.63

Total 62905 4844 3086 1653 - -

b. Soil
Ground truth (% accuracy)

UAc F1 OAc κ
N C1 C2 C3

Classes

N 99.21 2.87 2.55 5.06 99.88 99.54

99.20% 0.96
C1 0 100 0 0 93.24 96.5

C2 0 0 99.1 0 97.82 98.46

C3 0 0 0 94.85 89.03 91.84

Total 69146 4857 2994 1087 - -

apparent reflectance to be recognized. Besides, the shape of the background reflectance
also influences the apparent reflectance.

In summary, a material with a higher transparency will have a greater transmittance
in the wavelength range with low absorption, and its apparent reflectance is proportional to
the background reflectance. Hence, backgrounds have notable influences on the apparent
reflectance, especially for transparent and translucent plastics, which are the most common
plastics on the market. The analyses in relation to the lab experiments demonstrate that
all three clusters of plastics can be differentiated well and separated from non-plastic
materials, indicating that the classifier designed shows the expected performance. As for
the classification of the spectral libraries, the only errors represent false negatives, which
can be attributed to the low apparent albedo of the dark samples.

4.6.2 Classifier performance for simulated HySimCaR datasets

As a next step, the classifier was applied to simulated datasets, which include 39 samples
on 12 different backgrounds, with 42 steps of surface cover fractions in the range of 0-100%.
Based on the conclusions drawn in Section 4.6.1, no black opaque sample is considered
in this assessment. To better visualize the results, a heatmap was generated (Fig. 4.8).
The x and y axes represent different types of backgrounds and various samples of plastic
materials. The backgrounds include two artificial materials (asphalt and concrete), four
bare soils sorted from bright to dark and wet, three surfaces covered with vital and dry
vegetation, and three water bodies.

Plastic materials are grouped in accordance with their optical behavior, as transpar-
ent, translucent, and opaque. The translucent and opaque samples are further grouped
into bright, median, and dark species. The names of the samples are labeled in three col-
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ors, where red, green, and blue respectively represent clusters 1, 2, and 3. The heatmap
depicts the detectable fractional covers of the respective materials by the level of satura-
tion of the blue color and guided by a color bar. I.e., the value on row i and column j
indicates that from this fractional cover, the classifier is able to identify the ith sample
on the jth background. According to the color bar, the less saturated the blue color, the
lower the detectable fraction per pixel, and the higher the detectability of the particular
plastic material on the respective backgrounds. The cross x implies that the ith sample
on the jth background is not detectable.

On asphalt and concrete, almost all the translucent plastics can be identified at a
relatively low fractional coverage. Among the transparent and opaque plastics, the trans-
parent PBAT and PET samples and the two opaque dark PET samples could not be
detected. The classifier exhibits a similar performance for most plastics on dry bright
sands and dry soils. In contrast to other backgrounds, the detectability for all transparent
plastics decreases when placed on darker soils or wet and peat soils, while it does not vary
much for translucent and opaque plastic materials. On vegetated backgrounds, the clas-
sifier’s detection ability is generally lower for nearly all types of plastic materials, where
some remain completely unidentifiable.

For transparent plastics, there is a significant increase in the detectability at dry grass
as compared to vital grass and vegetated canopies. Translucent and opaque plastics are
also difficult to detect on areas covered by vital vegetation, which is especially obvious
for medium and dark samples as well as for the white opaque PVC. As for the three
bodies of water, most of the transparent plastics could not be identified because of the
strong absorption of water in the SWIR wavelength range. Surprisingly, most translucent
and opaque plastics can be identified, especially cluster 1 materials, even at very low
abundances.

It is also of interest to note that the brightness of the samples on the water surface
has a relatively large influence on the detectability, as the minimum abundance to identify
bright and medium samples is generally lower than that of dark ones. However, in this
simulation study, it was assumed that the plastic objects float on the water surface and
are not covered by water at all.

Overall, the classifier is able to detect plastics at relatively low abundances below 10%
when located on top of artificial materials, bright sand, and water, while a higher fractional
cover is required for successful identification over dark soil and vegetated surfaces. For
those samples with similar optical properties, more fractional coverage is usually expected
to recognize the second and third clusters of plastics as compared to the first cluster.
In summary, the classifier shows a robust performance for the recognition of a majority
of plastic materials at various fractional covers on most backgrounds, but also depicts
inadequacy in recognizing transparent plastics on top of water bodies.

4.6.3 Classifier performance for airborne and WorldView-3 imagery

A further test for the developed classifier to detect plastics is carried out on four airborne
hyperspectral datasets convolved to WV-3 spectral properties, acquired in Germany and
Spain. The ground truth map and the classification results are highlighted in Fig. 4.9.

The non-plastics, and the plastic clusters 1, 2, and 3, are represented as patches in
yellow, red, green, and blue. Table 4.6 presents the confusion matrices of the classifica-
tion results for an urban site (Dresden), a grassland area (Thyrow), a lake and its shore
(Seddin), and a greenhouse farming region (Almeria).
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Figure 4.8: Display of detectable fractional covers of 39 individual plastic materials with differ-
ent physical properties on 12 different backgrounds. The strength of saturation of
the respective blue color marks the percentage of plastic parts per pixel that is de-
tectable. The less saturated the blue color, the lower the detectable fraction per pixel
and the higher the detectability of the particular plastic material on the respective
backgrounds. X: Undetectable. Abbreviations of plastic materials belonging to clus-
ter 1=red, cluster 2=green, and cluster 3=blue.
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Table 4.6: a-d. Confusion matrices of four classified airborne data sets. The values of the pro-
ducer’s accuracy are highlighted in bold. N: non-plastic cluster; C1, C2, C3: plastic
clusters; UAc: user accuracy; F1: F1-score; OAc: overall accuracy; κ: Kappa coeffi-
cient.

a. City of Dresden, DE
Ground truth (% accuracy)

UAc F1 OAc κ
N C1 C2 C3

Classes

N 99.97 3.59 11.38 7.56 99.65 99.81

99.71% 0.96
C1 0.02 96.41 0 0 98.92 97.65

C2 0 0 88.62 1.26 97.32 92.77

C3 0.01 0 0 91.18 99.45 95.14

Total 29452 474 206 397 - -

b. Thyrow area, DE
Ground truth (% accuracy)

UAc F1 OAc κ
N C1 C2 C3

Classes

N 100 2.87 2.55 4.67 97.62 98.80

98.67% 0.98
C1 0 97.13 0 0 100 98.54

C2 0 0 97.45 0 100 98.71

C3 0 0 0 95.33 100 97.61

Total 1679 348 705 257 - -

c. Lake Seddin, DE
Ground truth (% accuracy)

UAc F1 OAc κ
N C1 C2 C3

Classes

N 99.98 0 6.71 - 99.84 99.91

99.83% 0.97
C1 0 100 0 - 100 100

C2 0 0 93.29 - 99.29 96.2

C3 - - - - - -

Total 6360 30 149 - - -

d. Almeria, ES
Ground truth (% accuracy)

UAc F1 OAc κ
N C1 C2 C3

Classes

N 100 10.24 - - 99.64 99.82

99.65% 0.94
C1 0 89.76 - - 100 94.6

C2 - - - - - -

C3 - - - - - -

Total 449989 15884 - - - -

54



4.6 Results and discussion

The urban and grassland sites contain all three clusters of plastics while in the remain-
ing two sites, only two clusters of plastics are present. The user accuracies of all classes
exceeded 97% in the urban and grassland areas, and the producer’s accuracy reaches more
than 95% for all classes except the second cluster of plastics in Dresden.

For the first cluster of plastics, present in all scenes, the classifier performs best in the
Thyrow area - with a F1-score over 98% - and worst for the Almeria site (with a F1-score
of 94.6%). This is in accordance with the conclusions obtained in the previous section,
based on the simulated data. The plastic covers of the greenhouses in Almeria are mostly
translucent and on top of vegetation, where the classifier performs in a less robust manner
at low fractional covers.

Another reason for the less good result in identifying the plastic sheds of the Almeria
site may be found in whitewashing procedures taking place in June where greenhouses
are not necessarily cultivated. This procedure, done to prepare for the next season by
reducing the radiation penetrating the plastic sheds, can mask the optical properties of
the plastic.

The producer’s accuracies of the classification results for the second cluster of plastics
are 97%, 93%, and 88% respectively for grassland, lake, and urban areas. It is further
noticeable that the kappa coefficients of all four scenes exceed 0.9, illustrating the per-
formance quality of the classifier. The results also depict that there is no omission for
the three plastic clusters, and the user’s accuracies of the backgrounds all reach more
than 95%, while the producer’s accuracies all achieve 99%. The accurate identification of
the second cluster of plastics over the lake surface suggests that the classifier also holds
great potential to be applied to monitor floating non-transparent litter in the ocean. In
summary, the classifier is well capable of identifying defined clusters of plastic in both
homogeneous and heterogeneous areas, even when the used hyperspectral airborne data
are resampled to the moderate spectral resolution of the WV-3 satellite.

Finally, the classifier was applied to three WV-3 datasets to examine its potential for
identification of the three plastic clusters and their separation from different background
materials. The three recorded WV-3 scenes are displayed as color composites and as
panchromatic bands both superimposed by the results of the classifier (Fig. 4.10). In
the first column the sites of Almeria (Fig. 4.10a), Accra (Fig. 4.10d), and Cairo (Fig.
4.10g) are displayed in overview mode based on SWIR bands, while the second column
(Fig. 4.10b, e, h) shows enlarged sections of the respective imagery merged with the
panchromatic band of WV-3 (0.31 m GSD) for a more detailed inspection. For plausibility
assessment, photographs of the sceneries are displayed in the third column.

As expected, plastic materials of cluster 1 are most widely distributed in the three
regions, especially in the area of Almeria, where PE or PVC plastics are generally used for
greenhouse sheds (Scarascia-Mugnozza et al., 2011). The classification layer reproduces
nearly exactly the shapes of the greenhouse sheds and depicts no to minor misclassifications
for soils and vegetated areas in the surrounding (Fig. 4.10a, b). The classification result
of the Accra site (Fig. 4.10d, e) shows mainly plastic materials of clusters 1 and 2. The
local waste mainly consists of worldwide discarded electronic devices, which contain a
wide variety of plastic materials (Guénard, 2013). The enlarged view focuses on the Korle
Lagoon fed by the Odaw river, where the dumped, floating trash is dammed by a levee,
located in the middle at the bottom of the image (Fig. 4.10e). Further visual verification
can be made comparing the situation depicted by the imagery with a corresponding local
photograph of the levee in a southerly direction (Fig. 4.10f, http://marikeenimages
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Figure 4.9: Color composites of convolved SWIR bands recorded by the airborne hyperspectral
instruments HySpex (a, b) and HyMap (c, d), displaying various plastic materials on
four different background surfaces. a: Grasslands (Thyrow, DE); b: Lake and shore
(Seddin, DE); c: Soils (Almeria, ES); d: Urban surfaces (Dresden, DE). Ground truth
targets marked with the resp. cluster materials and non-plastics are depicted in (a,
b, c, and d). Classified clusters are displayed in (e, f, g, and h) underlain by color
composites of SWIR bands convolved to WV-3 spectral response. Bands 1730 nm,
1570 nm, and 2205 nm coded RGB.
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.blogspot.com/2014/03/14_17.html). The photograph of the inhomogeneous waste
also illustrates the difficulty of collecting meaningful ground truth data for validating the
result of the classification. For further inspection, Google Maps (https://goo.gl/maps/
XiUWK7HiWyyf38yT7), and photos uploaded by people to the Web can be consulted.

The classification result of the vicinity of Mansheya Nasir in Cairo (Fig. 4.10h),
displays plastic materials belonging to all clusters with greater emphasis on cluster 1.
The area - known as “garbage city” - is home of the Zabbaleen people who recycle 80%
of the waste in Cairo. They sort the gathered plastic materials and usually store the
plastic garbage in residential areas on the roof of their houses as illustrated by the ground
photograph (Fig. 4.10i, https://www.flickr.com/photos/pegmcglinch/4260237601/).
Inspection of the panchromatic image superimposed with the classification result already
reveals this situation (Fig. 4.10h). The classification layer marks all three clusters of
plastic mainly on the top of the resolved houses, further marks the artificial lawn of two
larger soccer fields (https://goo.gl/maps/9nK4SkkcYBpMyXHK7) in the top-middle of
the image and shows no or only minor misclassifications in the areas of the vegetated park
in the image center nor on the shoulder of the rocks in the east. For further inspection
use Google Street View images (https://goo.gl/maps/gPCWNgsN76uRtGVz9) and media
reports (e.g., https://www.atlasobscura.com/places/garbage-city). The results
further indicate the potential of the developed classification routine for the detection of
different plastic materials at lower spatial resolutions, as provided by satellite recordings.

4.6.4 Comparison to commonly used algorithms

There is an increasing high number of various algorithms used for supervised or unsu-
pervised classification of remotely sensed data. Although all the different methods are
not comparable, we like to demonstrate how other commonly used algorithms perform in
comparison to our spectra-based approach. Therefore, we chose two supervised classifiers
embedded within the ENVI/IDL environment. One is the Spectral Angle Mapper (SAM)
developed by Kruse et al. (1993), another the Maximum Likelihood Estimation (MLE)
published by Richards (2021).

Three of our scenes were used for the testing, including the lab experiment on the
sandy background (Fig. 4.7a), and the airborne recordings of Thyrow and Dresden (Fig.
4.9a, d). In each of these scenarios all three clusters of plastics are present, and all sites
are fully controlled by ground truthing. The ground truth maps were divided into two
parts for training and testing respectively. Pixels of non-plastics are not included in the
training datasets due to the huge interclass variation. We did not apply the algorithms to
the real WorldView-3 datasets on account of already discussed ground truth issues.

SAM is a signal-based spectral classification method that matches pixels to reference
spectra using an n-D angle. The algorithm determines the spectral similarity between two
vectorized spectra (reference and unknown) by calculating the angle between them. Pixels
with smaller angles are more likely to match the reference spectrum while pixels further
away than the specified maximum angle threshold in radians are not classified. A primary
advantage of this method is the insensitivity to illumination conditions. It is further
notable that reference spectra used by SAM can come from spectral libraries or need to
be extracted directly from the respective image. Using spectra of libraries as training data
is more comparable to our classifier, but to understand the optimal performance of SAM,
we also used the training part of the images as reference data set.
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Figure 4.10: Classification of plastic materials in WorldView-3 data of (a-c) Almeria, Spain, (d-f)
Accra, Ghana, West Africa and (g-i) Cairo, Egypt. Left column (a, d, g): SWIR
color composites with superimposed classification result; SWIR-bands 1730 nm,
1570 nm, 2205 nm coded RGB. Middle column (b, e, h): Panchromatic images with
superimposed classification results. Right column (c): high-resolution real color
merge; (f, i): Local photographs. Classification result: Red = c1 - aliphatic group,
green = c2 - aromatic group (PET, PS, PC, SAN), blue = c3 - aromatic group
(PBAT, ABS, PU).
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The performance was evaluated by calculating the F1-score of the classification result
at a series of maximum angle thresholds in steps of 0.01 ranging from 0 to π/2 (≈1.5). Fig.
4.11a-c show the F1-scores of the three sites versus threshold curves obtained from the
classification results using the spectral library as training data. The three plastic classes
and the one non-plastic class are represented by graphs in different colors. It demonstrates
that the performance of SAM is highly influenced by the threshold value. When a proper
threshold is selected, the F1-score of non-plastics and cluster 1 plastics can be higher than
90%, whereas cluster 2 and cluster 3 plastics score lower than 80% in any case. Especially
in the Dresden scene, the cluster 3 plastic cannot be identified. Fig. 11d-f depict the results
using spectral samples generated from image data based on our ground truth maps. The
results are dissimilar to those in Fig. 11a-c, which illustrates that the choice of training
data also has a significant impact on the results. Both approaches of SAM calculations
indicate that the optimal threshold value varies with the respective scenarios and classes.

The MLE assumes that the statistics for each class in each band are normally dis-
tributed and calculates the probability of a given pixel belonging to a specific class. Each
pixel is assigned to the class that has the highest probability, namely, the maximum likeli-
hood. If the highest probability is smaller than the specified threshold, the pixel remains
unclassified. Due to the necessity of distributed information, only spectra derived from
the image data could be used as training data. Similarly, we examined the performance
of MLE by calculating the F1-score of the classification result at a series of probabilities
ranging from 0% to 100%. Fig. 4.11g-i display the result based on the same ground truth
maps used for the SAM calculations. It implies that the performance of the MLE does
not meet the demand at all three scenarios.

Comparing the results derived from these three scenes with our knowledge-based
classifier (Lab-sand: Table 4.5a; Thyrow: Table 4.6b; and Dresden: Table 4.6a), the F1-
scores for each class is above 0.9 when using the same ground truth maps, thus, indicating
a superior performance. The evaluation of our classifier also demonstrates its robustness,
i.e., the scenario and classes have little effect on the results and no training data is needed.
The SAM performs moderately by the use of spectral library data but unsatisfactory like
the MLE approach if image data is to be used as a reference. In the latter case, the accuracy
of the classification is highly dependent on ground truthing, but this was very carefully
accomplished for the selected scenes. The field check becomes all the more complicated
when the focus is on plastic waste where a meaningful mapping is almost unfeasible (see
photographs of Fig. 4.10). This is to some extent also true for popular algorithms like
machine learning and deep learning as they also rely on training datasets and require
parameter tuning.

Certainly, statistically based classifiers provide a convenient and general option for
nearly every material once reliable training data are available. As for the here developed
classifier, one has to carefully examine the spectral behavior of the targeted material with
its physical background, which may take some efforts. But once the classifier is designed,
it’s trustful and robust and no pre-knowledge of the areas under consideration is needed.

4.6.5 Final assessment of the developed classifier routine

The performance of the classifier in detecting different plastic materials was evaluated on
various backgrounds, including grasslands, water bodies, farming regions, and urban areas,
which are common scenarios in terrestrial remote sensing. The classifier obtained decent
results at relatively low fractions of plastics on all background materials and, so, provided
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4.7 Conclusion

an efficient and transferable concept for the global detection of plastics. Once set up by the
respective spectral properties of the targeted material, it operates in an autonomous mode,
and can be further combined with other exogenous data. All the requisite thresholds for
the classifier are applied to indices or ratios and never directly to the reflectance values.
This contributes to the transferability and robustness of the classifier and its results, and
makes it unsusceptible to Bidirectional reflectance distribution function (BRDF) effects
and artifacts introduced by atmospheric corrections.

However, with all advantages of the newly developed classifier, there are also a few
limitations to be mentioned. In the present form it is dedicated to detect different types
of plastic with a high accuracy and cannot detect any other materials. The principle
scheme can be adapted to nearly any other materials, but with a different setup based
on the respective spectral properties. Concerning the detectability of plastics, it is not
sensitive enough to reveal black plastics with an averaged reflectance below 10%. In this
case, hyperspectral thermal sensors are the first choice, since the fundamental vibrations of
C–H bonds are located in the thermal infrared range (TIR), providing better preconditions
for diagnosis as the emission of dark materials is generally high in this wavelength region.
Furthermore, organic polymers with chemical compositions similar to plastics may be
misclassified. For example, asphalt - as a type of methyl petroleum derivative - displays
very similar reflectance spectra to that of plastic cluster 1. Although asphalt can be
excluded by increasing the threshold value, pixels containing lower abundances of plastic
would then not be identified as such. Therefore, the choice of threshold values needs to
be balanced properly. Moreover, PBAT transparent samples of the simulated data could
not be identified on the surface of the bright sand, which seems to be not quite consistent
with the results obtained from our laboratory data. However, one possible influencing
factor that we have not yet considered is the thickness. For thin plastics, the light travels
a rather short distance inside the material, which reduces the spectral absorption depth
and, so, makes them unrecognizable for the classifier.

The spectral absorption depth is positively proportional to the thickness, and, thus,
it is important to consider the effect of thickness for quantitative studies of plastics with
transparent or even translucent materials. We have also not explicitly considered the
degradation of plastics, which is usually accompanied by the breakage of chemical bonds,
although a part of the samples used for the lab experiments and simulation study has
been collected in the environment. This may lead to classification failure, although the
developed classifier is constructed on the absorption features of the C–H bonds. For future
research, it is planned to explore the quantification ability as well as further improvements
of the classifier after considering the thickness and degradation phenomena of plastics, to
broaden its application to other targets, and utilize the classifier to fuse with multi-source
data to achieve additional intelligent recognition functions.

4.7 Conclusion

The results of this study clearly demonstrate that a worldwide identification and separa-
bility of terrestrial plastics with different chemical and physical properties is feasible by
the use of WorldView-3 satellite imagery. The core element of this study is the newlydevel-
oped, decision tree style, knowledge-based classifier which was exclusively built to detect
and identify most common plastics materials of the aliphatic and aromatic groups. The
detectability of three distinct plastic clusters is totally based on theoretical considerations
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concerning the detailed spectral characteristics of plastic materials in connection with
their molecular structure. No training data is needed and no statistical approaches have
to be accomplished. The algorithm can be adapted to further specific targets, but needs
a new setup according to the spectral characteristics of the respective materials. The first
cluster to be identified is the aliphatic group, comprising PE, PVC, EVAC, PP, POM,
PMMA, and PA. The second and third clusters are diagnostic for the aromatic group,
including PET, PS, PC, and SAN, separated from PBAT, ABS, and PU respectively. The
non-plastic cluster comprising nearly all other natural and man-made materials is defined
by the majority of spectra in the databases used. The hit ratio of the classifier is sig-
nificantly high, and its robustness is proven by comparative analyses to SAM and MLE
approaches and by our HySimCaR radiative transfer model which was used to calculate
the influence of different factors like material characteristics, backgrounds, and fractional
covers. The validation of the results based on spectra, the experiments conducted, and
the modeled data was accomplished by the calculation of various error measures using
confusion matrices. Concerning the airborne data, the validation is based on controlled
field experiments and intensive field checks. But ground truth for plastics, especially for
plastic waste cannot always be conducted in detail due to its nature and fast temporal
relocation. However, when finally applying our classification scheme to the WorldView-3
datasets, the results appear reasonable and of similar significance to those of laboratory
experiments and airborne investigations.
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This chapter was published as:
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ing distinct plastics in hyperspectral experimental lab-, aircraft-, and satellite data using
machine/deep learning methods trained with synthetically mixed spectral data. Remote
Sensing of Environment, 281, 113263.
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5.1 Abstract

The growing production and use of plastics are becoming a serious progressive issue and
people pay increasing attention to the effects of plastics on ecosystems and human health.
The availability of hyperspectral data from space sensors inspired us to study the feasibility
to detect and identify different types of plastics in aircraft -, Goafen-5 (GF-5) and PRISMA
satellite data by means of deep -, and machine learning models trained with spectral sig-
natures. In this context, various inhouse and public spectral libraries are used to create a
comprehensive database with mixed pixels of different plastic and non-plastic materials.
The endmembers of plastic types involved in this study are polyethylene (PE), polypropy-
lene (PP), polyvinyl chloride (PVC), polyethylene terephthalate (PET) and polystyrene
(PS), covering 95% of the global production. Additionally, some important varieties of in-
dustrial plastics types such as acrylonitrile butadiene styrene (ABS), ethylene vinyl acetate
(EVA), polyamide (PA), polycarbonate (PC), and polymethyl methacrylate (PMMA) were
included in the investigations. Different samples with varying optical properties (color,
brightness, transmissivity) have been selected for each plastic type. As non-plastic materi-
als we have chosen spectra of vegetation, rocks, soils and minerals contained in the public
US libraries (ECOSTRESS and USGS). The number of spectra for the training of the deep
learning and machine learning models was enlarged by a random linear mixing method
and the resulting database was separated into a training and a test group for subsequent
multi-label classification. Algorithms selected are a convolutional neural network (CNN),
random forest (RF) and support vector machine (SVM). To investigate the transferability
to any hyperspectral image data obtained by air-, and spacecraft sensors, we opted for a
unification of the spectral response functions (SRF) and the spectral sampling intervals
of all data. Validation is accomplished based on the test group of the spectral database,
and tested by controlled laboratory and aircraft experiments recorded over surfaces with
varying background materials. Results are further analyzed for the influence of different
noise quantities and abundance levels. The performance of the three models is roughly
balanced for the validation of the spectral data with an overall accuracy of 97%, 96%,
and 95% for the CNN, RF, and SVM, models respectively. In the controlled lab experi-
ments, various accuracy indicators, such as the recall rates and the comprehensive metrics
F1-score, OA, and Kappa suggest the RF classifier as the most robust one, followed by
the SVM and CNN models. As for the evaluation of the aircraft data from controlled
experiments, the RF further outperforms the other two models, behaving most robustly
and reliably against conditions with unknown plastics and unknown background surfaces.
Thus, the RF was used to classify the ten types of plastics mentioned above in one GF-5
and two PRISMA satellite recordings of the same area. In comparison of both sensor sys-
tems, the RF produced high quality and transferable results for detecting plastic mainly
related to greenhouses, sport fields, photovoltaic constructions and industrial sites that
are discussed in detail in this paper.

5.2 Introduction

Since their widespread introduction in the 1930s, plastic products are increasingly domi-
nating the market, due to their low weight, waterproofness, and durability characteristics
(?). Over the past four decades, global plastic production has quadrupled (Geyer et al.,
2017). However, its durability and longevity, as well as the improper disposal of plastics,
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contributed to a considerable amount of accumulation in terrestrial and aquatic ecosystems
(Derraik, 2002). This resulted in an extensive damage to wildlife (Uhrin and Schellinger,
2011) and its habitats (Madhvee et al., 2022). Further, more than 50% of plastics are
intrinsically toxic (Lithner et al., 2011). Even when not toxic, plastic can absorb and
accumulate other pollutants (Teuten et al., 2009; Rochman et al., 2013). The disintegra-
tion of plastic in the presence of ambient solar radiation releases the greenhouse gases
methane and ethylene, contributing to climate change and global warming (Royer et al.,
2018; Vishwakarma, 2020). Thus, the use of plastic and its pollution is becoming a more
prominent issue as people pay more attention to the effects of plastics on ecosystems and
human health (Rochman et al., 2013; Law, 2017).

Plastics, as petroleum derived products, are polymerized with single repeating units
and have a backbone of C-H chains and unique functional groups. Their diagnostic ab-
sorption features in the optical wavelengths range are primarily controlled by stretching
vibration overtones and combination modes of the C-H bond, which are mainly observed
in the short-wave infrared (SWIR) (Schwanninger et al., 2011). By advancing the technol-
ogy of hyperspectral imaging sensors in the SWIR range, recorded data with a variety of
temporal, spectral, and spatial resolutions can be used to map the distribution of plastics
in the environment in a qualitative and even quantitative manner (Moller et al., 2016).

Although the majority of plastic litter ends up in the oceans via miscellaneous routes,
the sources of the marine plastic waste are found to about 80% at land and 20% are di-
rectly introduced into the oceans (Li et al., 2016). Therefore, regular global monitoring
of terrestrial plastic debris is becoming increasingly important in order to prevent further
pollution. Yet most studies focused on the differentiation of a variety of plastic types
through infrared spectroscopy based on lab-measurements (Moroni et al., 2015; Knaeps
et al., 2021; Moshtaghi et al., 2021; Topouzelis et al., 2021). Only a few studies have been
conducted on the detection and identification of plastics on terrestrial surfaces by remote
sensed data, mainly using hyperspectral imagers aboard aircrafts at a limited scale (Kühn
et al., 2004; Heiden et al., 2007; Wetherley et al., 2017). Some researchers investigated the
detection of plastic greenhouses using statistical classification algorithms based on multi-
spectral data recorded by the Landsat-8 OLI sensor (Lanorte et al., 2017; Aguilar et al.,
2020) or by the Sentinel-2 MSI system (Sun et al., 2021). Others utilized super-spectral im-
ages recorded by the spatially high-resolution Worldview-3 satellite sensor (SWIR ground
sampling distance (GSD) 3.7 m) and proposed methods for one-class index-based plastic
detection, such as the relative absorption band depth (RBD) (Asadzadeh and de Souza
Filho, 2016) or for the identification of certain chemical groups of plastic (Zhou et al.,
2021). However, the limited number of wavebands offered by multi-, and super-spectral
satellite sensors can hardly distinguish between each single plastic type.

The recent development and employment of hyperspectral satellite sensors is a further
step ahead in this context. For example, the Chinese meteorological satellite GAOFEN-5
(GF-5) was launched in 2018 and provided data at the same wavelength range and spec-
tral resolution as Hyperion but at a swath of 60 km (Liu et al., 2019)(Liu et al., 2019).
A second GF-5 system with the same specifications was launched in September 2021.
A further hyperspectral system, the PRecursore IperSpettrale della Missione Applicativa
(PRISMA, Cogliati et al., 2021) was launched in 2019 by the Italian Space Agency. It
carries a hyperspectral imager covering the same wavelength range at a similar spectral
resolution as Gaofen-5, providing a swath width of 30 km and is additionally equipped
with a panchromatic camera offering a spatial resolution of 5m x 5m. Future upcom-
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ing instruments providing hyperspectral data from space are Germany’s Environmental
Mapping and Analysis Program (EnMAP) launched April 1, 2022 with comparable tech-
nical specifications to PRISMA (Guanter et al., 2015) followed by the Surface Biology and
Geology (SBG) system from the US (Cawse-Nicholson et al., 2021), the European (ESA)
built Copernicus Hyperspectral Imaging Mission for the Environment (CHIME, Rast et al.,
2019), and the Spaceborne Hyperspectral Applicative Land and Ocean Mission (SHALOM,
Israel/Italy, Feingersh and Dor, 2015) with some varying technical specifications.

This recent increasing availability of hyperspectral satellite data provides the poten-
tial to differentiate plastic targets on a larger scale in multitemporal mode, and allows
the identification of more types of plastics due to its sensitivity to the subtle variations in
their absorption features, especially in the SWIR wavelength range. However, the recently
operating hyperspectral space sensors can only provide data at a GSD of 30 m. There-
fore, especially in terms of plastics, even larger congregations of plastic waste might not
be detectable from space as they generally exhibit a sparse and small-scale distribution.
Plastic garbage has been detectable in detail by WorldView-3 data with a GSD of 3.7
m, but due to the limited number of bands and the broader band widths, only chemical
groups of aromatic and aliphatic plastics could be identified (Zhou et al., 2021). Therefore,
the focus concerned with hyperspectral satellite data has to be synthetics with a larger
spatial extent, such as greenhouses, photovoltaic modules, roof materials and materials
commonly to be found in industrial sites. A further constraint and challenge in identifying
plastics from satellite data is that there are diverse optical characteristics within the same
type. Especially, most plastics remain transparent or translucent and thin to save cost,
introducing the quadratic term of transmittance and the reflectance of the background
directly below it. Hence, the background has strong influence on the apparent reflectance
(Kuester and Bochow, 2019).

Varying abundances of plastic in different contexts further introduces uncertainties
in the development of detection algorithms. Supervised classification methods require nu-
merous training pixels covering all the above-mentioned conditions, optical properties and
combinations, which makes their generation very demanding for plastics. Thus, usually
deep learning or machine learning algorithms are used for such applications with larger
datasets. In particular, ’Support Vector Machines’ (SVM, (Melgani and Bruzzone, 2004;
Fauvel et al., 2008)), ’Random Forest’ (RF, (Ham et al., 2005; Belgiu and Drăgu, 2016)),
and ’Convolutional Neural Networks’ (CNN, (Yu et al., 2017; Zhu et al., 2017)) are the
most widely employed machine learning algorithms for hyperspectral imagers (HSI) that
classify pixels depending on the spectral similarity of the unknown and the training sam-
ples (Lu et al., 2017).

Our general focus in this study aims to assess the capability of hyperspectral data
measured in the laboratory, or acquired by aircraft and satellite sensors to classify and
identify plastics of different chemical compositions and varying optical properties based on
spectral libraries and machine learning methods. To meet the objective, a spectral library
is set up and a validated model is constructed, which is transferable within different
hyperspectral sensors and datasets and reliable under various ground conditions. We
collected the spectra from three spectral libraries and proposed a routine of mixing strategy
to randomly generate a training and a test dataset using the spectra of ten distinct plastic
types and numerous non-plastic materials of five different material groups. Three widely
used deep -, and machine learning algorithms, CNN, RF, and SVM are applied to build
different classifiers using a synthetic training dataset. The three trained models were
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validated and compared by assessing their performance on test datasets, lab measurements,
and three airborne images referring to various surface types recorded in Germany by
two different sensors. The most robust and reliable classifier is then applied to datasets
recorded by the GF-5 and the PRISMA satellites over Weifang (China) to evaluate the
respective performance and transferability among both sensors.

5.3 Materials

This section presents the baseline data deployed for training, validation and evaluation.
It describes the spectral libraries used, the spectral experiments in the laboratory and the
specifications of the air-, and spacecraft sensors involved for recording of the respective
data.

5.3.1 Spectral libraries for training and testing

In this study, we used plastic and non-plastic samples for the setup of our training and
test datasets. Spectra of non-plastic samples were obtained from two publicly available
spectral libraries, a USGS generated one (Kokaly et al., 2017) and the ECOSTRESS
library (Baldridge et al., 2009; Meerdink et al., 2019).

The USGS spectral library (version 7) encompasses spectra measured in the labora-
tory, field, and by airborne imaging spectrometers covering a wide wavelength range from
0.2 to 200 µm. It comprises spectra of a variety of ground material categories including
minerals, rocks and soils as well as vegetation, microorganisms and man-made materials
(including plastics).

The ECOSTRESS library also provides a comprehensive range of high-resolution
laboratory-derived spectra covering the wavelength range of 0.35–15.4 µm. It contains
nearly 2000 spectral curves, where the main types are soils, rocks, minerals, meteorites,
vegetation, water-snow-ice and manmade materials. After screening, these two spectral li-
braries were consolidated and regrouped into five non-plastic subgroups, as listed in Table
5.1.

Table 5.1: Spectral library. Italics: Plastics of the aromatic group; Regular: plastics of the
aliphatic group. Bold: most commonly used plastic.

Non-plastic Plastic

Subgroup Amount Subgroup Amount Subgroup Amount

Vegetation 687 ABS 4 PE 14

Soil 206 PC 4 PA 5

Rock 380 PET 12 PMMA 5

Mineral 1730 PS 6 PP 22

Artificial 263 EVA 4 PVC 9

Of these two US libraries, the plastic samples (mostly PE and PVC) were excluded
from the category of artificial materials to avoid accidently mixed plastic from different
databases. The plastic spectra taken and used as basis for the later mixing procedure to
produce the training dataset are from our home-made PlaMAPP library (Table 5.1). The
PlaMAPP library is an in-house (GFZ) developed set of high-resolution spectra contain-
ing predominantly plastics measured in the nearinfrared (NIR) and SWIR range (0.97–2.5
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µm) at a spectral resolution of 1 nm. A wide range of plastics, both commonly used
and uncommon, are included here. Five types of household plastics, namely polyethylene
(PE), polypropylene (PP), polyvinyl chloride (PVC), polyethylene terephthalate (PET)
and polystyrene (PS) covering 95% of the global production as well as a variety of indus-
trial plastics types such as acrylonitrile butadiene styrene (ABS), ethylene vinyl acetate
(EVA), polyamide (PA), polycarbonate (PC), and polymethyl methacrylate (PMMA) were
selected as basis to construct the training data. While there are more types of plastic in
the library, most are too rare with a sample size below four, and hence are not included.
Spectra of the respective plastic materials and non-plastic materials are depicted in Figure
5.1.

Plastics are petroleum derivatives with a backbone of C–H chains and distinctive
functional groups. Diagnostic absorptions features displayed by plastics in the SWIR
range are mainly controlled by the stretching vibration overtones and combination modes
of C=O, C–C, and by hydrogen-containing functional groups (X-H), including O–H, N–H,
C–H, and others (Schwanninger et al., 2011). The strength of the respective absorptions
in the SWIR wavelengths range and the impact of the different groups vary on account
of anharmonicity and Fermi resonance. These spectral characteristics offer the potential
to identify and distinguish between different types of plastic, based on their unambiguous
spectral absorption features (Czarnecki et al., 2015; Beć et al., 2018).

As already comprised in our previous study (Zhou et al., 2021), the general absorp-
tion features of the C–H bond in plastics (Fig. 5.1) can be understood based on their
mode assignments, including the 1st and 2nd orders of the overtone stretching modes (2ν:
1600–1800 nm, 3ν: 1100–1250 nm) and the combination modes (1νcomb: 2150–2500 nm,
2νcomb: 1300–1450 nm). The 2nd order of the combination mode is not included in this
study as it is superimposed by a water (O–H) absorption at 1400 nm. The C–H bonds
in plastics are linked to functional groups with different masses and bonding constants.
These functional groups cause a shift in the position of the C–H absorption peaks. One
of the functional groups that has the most influence on the spectrum is the benzene ring.
Compared to plastics without benzene rings (aliphatic group: EVA, PA, PE, PMMA,
PP, PVC), the absorption peaks of plastics with benzene rings (aromatic group: ABS,
PC, PET, PS) are shifted to shorter wavelengths in both 2ν and 3ν, and an additional
absorption occurs in 1νcomb around 2150 nm.

Apparently, the spectral features are similar in the same groups of plastic, with only
subtle variations in the position of absorption peaks, which poses a great challenge for
differentiating them. In comparison, the spectra of the five subgroups of non-plastics show
quite strong variations to each other and also differ to the spectra of plastics. We focused
on classifying the ten plastic types mentioned above, while all non-plastic materials are
clustered as one class. The sub-grouping of non-plastic materials is only useful to reduce
the covariance when performing the mixing of non-plastic spectra with plastic spectra.

The pre-processing strategies and the details of the mixing procedure of the reflectance
data are introduced below in section 5.5.1. All selected plastic samples used in the following
experimental setups were not included in the training dataset for effective validation.

5.3.2 Lab measurement setup

Samples of the five most common plastic materials (PE, PET, PP, PS, and PVC) with
different optical properties, such as transparent, translucent, opaque-bright and opaque-
dark, were selected for the laboratory measurements. Samples were placed on two different
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Figure 5.1: Stacked plot of lab-measured reflectance spectra resampled to the resolution of
PRISMA and GF-5 ( 10 nm). Spectra are offset for clarity.
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soil types, a dry bright sandy soil and a dry dark organic soil. The measurements were per-
formed with a HySpex SWIR320m-e hyperspectral imager built by Norsk Elektro Optikk
(NEO) using an in-house measurement protocol (Rogass et al., 2017) under laboratory
conditions. A HEDLER H25s light source, equipped with two 650 W tungsten-halogen
bulbs, was used to replicate the solar spectrum. Reflectance was calculated by the empir-
ical line correction method (Conel et al., 1987)(Conel et al., 1987), using the spectrum of
a three-color Zenith® reference plate (albedo: 90%, 50%, 20%) placed in each scene.

5.3.3 Sensors used for data recording

5.3.3.1 Airborne

Primarily, three hyperspectral imagers were used to record the airborne dataset, including
the HyMap whisk-broom sensor (Cocks et al., 1998), and two push-broom scanners, the
HySpex Mjolnir S-620 (NEO) and HySpex-SWIR-320m-e.

The HyMap imager with an instantaneous field of view (IFOV) of 2.0 mrad can only
be used in conjunction with an aircraft and acquires 512 pixels in across track direction
covering the wavelength range of 0.45-2.48 µm with 128 bands at 13-17 nm intervals.
The HySpex Mjolnir S-620 is mounted on a UAV, covering the 1.0-2.5 µm wavelength
range with up to 300 bands at 5.1 nm intervals. It records lines with 620 pixels with an
across-track IFOV of 0.54 mrad.

The HySpexSWIR320m-e used also for lab measurements was operated from an air-
craft platform with an across-track IFOV of 0.75 mrad, recording lines with 320 pixels. It
operates in the 1.0-2.5 µm range, producing 256 bands with a spectral interval of 6 nm.

HyMap data loaded were recorded and fully processed by the German Aerospace
Center (DLR). The atmospheric correction of the HySpex Mjolnir S-620 data was accom-
plished using the SICOR software (Bohn et al., 2020) and the geometric processing was
performed with the PARGE software (Schläpfer and Richter, 2002).

The data recorded by the HySpex SWIR-320m-e sensor were preprocessed including
co-registration and sensor adaptation using HyPrepAir, an internal GFZ processing pro-
cedures described by Brell et al. (2016). Thus, all airborne datasets have been processed
to level 2 including radiometric, atmospheric and orthometric corrections.

5.3.3.2 Satellite

To evaluate the capability for generalization of the models, we collected data recordings
from two different spaceborne hyperspectral push-broom scanners, including one set of the
GF-5 Advanced Hyperspectral Imager (AHSI) data, and two sets of PRISMA imagery.
The main specifications of both satellite sensors are listed in Table 5.2.

The Chinese meteorological satellite GF-5 was launched in May 2018, orbiting in a
sun-synchronous orbit at an altitude of 705 km. The ground processor produced level
1 (L1) radiance products, which include radiometric corrections and system geocoding
(https://www.cheosgrid.org.cn/index.htm). The GF-5 image was downloaded and
the transformation to radiance data was calculated according to the provided gain and
offset values. Subsequently, atmospheric correction was applied using the SICOR software
(Bohn et al., 2020) to retrieve ‘at surface reflectance’ of the targeted areas. The satellite
stopped operating in 2020 but a second generation of the GF-5 was launched in September
2021.
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Table 5.2: Nominal parameters of spaceborne hyperspectral sensors aboard the Gaofen-5 and
Prisma satelites. In brackets = in orbit measured values

Parameters GF-5 (AHSI) PRISMA

Light dispersion convex grating prism

GSD (m) 30 (29.7) 30 (∼38)

Swath (km) 60 30

Wavelength (µm) 0.4 – 2.5 0.4 – 2.5

Number of bands 330 237

Spectral Resolution (nm) VNIR: 5 (4.3)

SWIR: 10 (7.9)

VNIR: <12 (13)

SWIR: <12 (11)

Spectral Sampling Interval (nm) VNIR: –

SWIR: –

VNIR: 9.4

SWIR: 9.3

SNR (non-dimensional) VNIR: 300-700 : 1

SWIR: >200 : 1

VNIR: >200 : 1

SWIR: >100 : 1

Quantization (bit) 12 12

PRISMA is a satellite mission launched by the Italian Space Agency (ASI) in 2019
(Cogliati et al., 2021). It also operates in a sun-synchronous low Earth orbit at an altitude
of 615 km. PRISMA’s ground processor produces a number of standard products, which
are made available to users. Details are available in the PRISMA Products Specification
Document. We downloaded two sets of PRISMA data in L2D format (geolocated surface
reflectance), with radiometric, atmospheric and geometric corrections accomplished, and
ready for evaluation (Guarini et al., 2018).

5.3.4 Spectral comparison between various sensors

Fig. 5.2 shows our lab-derived spectra resampled to the spectral configurations of the
above-mentioned sensors, where PE/PP and PET/PS represent the aliphatic and aromatic
plastic group, respectively. The spectral resolution (FWHM) and the respective band
centering were used to implement the resampling. The HyMap sensor with a spectral
resolution of 15 nm shows the coarsest distribution of bands (points) and some spectral
information is lost, especially for the serrated feature of PET at around 2200 nm. The
HySpex sensor with a spectral resolution of 6 nm in the SWIR shows most details among
all the sensors, although, there is not much loss on information for both satellite sensors
that sample data at 10–11 nm FWHM.

5.4 Study area

5.4.1 Airborne sites and experimental setups

The airborne instruments described above recorded three selected sites in Germany (Fig.
5.3A-C), each characterized by different landscape features. To ensure validity, the plastic
panels placed for the analysis within the airborne target sites were not included in the
spectral libraries used to develop the classifier.

One study area, located in the city of Dresden, Germany (N 51◦5′17.5′′ E 13◦45′6.8′′),
has been recorded by the HyMap system from an aircraft. The image was acquired on July
7, 2004 with a GSD of 4 m (Fig. 5.3A). The area is characterized by an urban landscape.
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Figure 5.2: Stacked plot of selected plastic spectra resampled to the spectral resolution of (a)
HyMap (FWHM: 15 nm), (b) HySpex: 6 nm (FWHM-SWIR), (c) GF-5 (FWHM:
10 nm) and (d) PRISMA (FMHM: 11 nm). Atmospheric water absorption bands at
1320-1500 nm and 1770-2050 nm are masked out.

72



5.4 Study area

b1 b2 b3 b4

c1 c2 c3 c4

b1
b2

b3 b4

a1

c1
c2

c3
c4

a2
a3

a4

a1 a2 a3 a4

PET 

PE PE PBAT* 

b

a1

a2

a3

a3

a2 a1 b

B. Thyrow

C. Lake Seddin

13°45'30"E13°45'0"E

51
°5

'3
0"

N
51

°5
'0

"N

A. Dresden

b

a

c

d

d

ba

c

PE 
PET

PS 
PP
PVC
PBAT* 

13°13'55"E13°13'55"E

52
°1

5'
4"

N

13°3'14"E13°3'13"E

52
°1

6'
19

"N

Germany

A 
C B 

Figure 5.3: Sketch map and detailed coordinates of the test sites in Germany recorded by aircraft
scanners and the respective experimental ground configurations with selected plastic
materials placed in (A) Dresden, (B) Thyrow and (C) Lake Seddin, *PBAT material
is not included in the training data.
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Ground control of locations covered by distinct plastic materials was maintained through
field work using portable spectrometers and GPS equipment. Among a total of more than
40 different urban materials, four plastic materials (PE, PET, PP and PVC) were identified
and mapped based on hyperspectral ground measurements (Heiden et al., 2007; Behling
et al., 2015). The ground truth map of the respective plastic materials at individual city
blocks were digitized manually on-screen using orthorectified aerial photographs of 0.25 m
resolution.

A grassland-dominated study area with a GSD of 3 cm was recorded by the
HySpex Mjolnir S-620 imager mounted on an UAV at Thyrow, Germany (N 52◦15′4.6′′

E 13◦13′55.7′′) on June 13, 2019. Transparent PET bottles of different sizes as well as
large foils made of PET, PE and PBAT plastics were placed on the ground (Fig. 5.3B). As
PBAT was not included in the training sample, it allowed us to measure the generalization
capability of the classifier by observing how the model handled this unknown plastic.

The third study area included a large water body and was recorded by the HySpex
SWIR-320 m-e sensor aboard an airplane with a GSD of 40 cm at Lake Seddin, Germany (N
52◦16′21.4′′ E 13◦3′12.3′′) on February 16 in 2015. Lake Seddin is a lime-rich, unstratified
lake with a relatively large catchment area (https://www.berlin.de/tourismus/
brandenburg/1169413-1098592-seddinersee.html). The average of the depth at
shoreline is around 20 60 cm. Three arrays of white and opaque PS foam sheets (15%,
25%, and 40% partial coverage) and a blue PE tarpaulin (100% partial coverage) were
placed on the shallow lake and its sandy shore (Fig. 5.3C). The grassland and lake
scenarios described above were fully controlled experimental sites, with ground truthing
maps generated accordingly, including all samples.

5.4.2 Satellite site

The study area selected for analysis of the hyperspectral satellite data is located in the
north of Weifang City (N 37◦5′20.4′′ E 119◦7′30′′), Shandong Province, China (Fig. 5.4).
In this context, one dataset of GF-5 and two datasets of PRISMA could be acquired on
demand. The scene of GF-5 was recorded in November 14 in 2019. To record the same
area with PRISMA, several demands for recordings were submitted to ASI and successfully
completed for December 21, 2019 and November 27, 2021.

The chosen area in China depicts agricultural, residential and industrial regions.
Greenhouses have grown very prevalent over the last few decades, covering about 20%
of the gross cropland area marked by plastics of the PE, PP and PC class (?). While the
investment in green energy increased, especially the number of photovoltaic panels (PVs)
emerged. These are merged and covered by different plastic materials such as PP, EVA,
PE and others (Oreski et al., 2021). The high coverage and diversity of plastics and PVs
in the landscape, on roofs and industrial buildings make Weifang an interesting research
area to assess the respective classification algorithms.

5.5 Methodology

This section focuses on a linear mixed model for the building of a suitable spectral database
for the training of different classifiers namely CNN, RF and SVM and their validation based
on unified test data considering different noise and abundance levels.
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Figure 5.4: Sketch map and detailed coordinates of the test site Weifang City recorded by two
satellite sensors (GF-5 and PRIMA). The yellow translucent polygon is the footprint
area of the PRISMA 2019 recording.

5.5.1 Generation of training and test dataset by random creation of
linear mixed spectra

The major task for any classification procedure is the building of relevant sets of training
and test data. The inhomogeneous, sparse, and random distribution of plastic on land
surfaces poses difficulties in collecting suitable training and test data by ROIs (regions of
interest) in recorded air -, and spaceborne imagery. This applies in particular to datasets
from unknown study areas or regions where ground truth is problematic to execute. To
overcome this constraint, a feasible approach for classification of hyperspectral data is to
rely on spectra of various plastics measured accurately in the laboratory. For this purpose,
published and in-house measured spectral libraries (Table 5.1), including thousands of
spectra from different materials, were utilized in this study to build an adequate amount
of training data. To describe the majority of real-world surface conditions, additional
spectra have to be generated. In view of the relatively low spatial resolution provided by
the existing hyperspectral satellite sensors, the detection of plastics inevitably requires the
consideration of mixed spectra.

5.5.1.1 Linear mixed model (LMM)

The concept of mixed modeling is that each surface can be dominated by a certain number
of substances with varying spectral properties. Pure substances are called endmembers
and are referred to as fractional abundances. Consequently, the combinations of their
spectral properties can be used to simulate the spectral variability observed by remote
sensing systems. The linear mixed model (LMM) has been widely used because of its
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Figure 5.5: Sketch map of the evaluation concept and the respective work flow. See text for
acronym definitions.
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clear physical relevance and simplicity (Keshava and Mustard, 2002). Besides, it is not
necessary to consider all secondary scattering interactions between endmembers. Since
the focus is not on an accurate spectral unmixing but on the classification, a simple and
practical linear mixed model is applied to generate virtual datasets. An LMM including
n endmembers is expressed as follows (Eq. 5.1-5.3):

M =

n∑
i=1

aiRi + ε (5.1)

s.t.

n∑
i=1

ai = 1 (5.2)

0 ≤ ai ≤ 1 (5.3)

where:

M is the received mixed reflectance spectra,

ai is the abundance of the ith endmember,

Ri is the reflectance spectral of the ith endmember,

ϵ is the error term. To simplify, ϵ = 0 in this study
To be physically meaningful, the LMM is subject to two constraints (Shimabukuro and
Smith, 1991) on the entries of ai : Abundance Sum-to-one Constraint (ASC, Eq. 5.2) and
Abundance Non-negativity Constraint (ANC, Eq. 5.3).

5.5.1.2 Random creation of mixed spectra

In nature, plastics are not as widespread or concentrated as other surface materials. They
appear in a wide variety of shapes and are generally dispersed in small and fragmented
areas. The plastic abundance per pixel is usually low, especially for the current hyper-
spectral satellites with their relatively low spatial resolution of 30m x 30m. For feasibility
reasons, the simulation of mixed spectra was limited to the inclusion of only one plastic
type per pixel.

Separating plastics from non-plastics is a critical consideration for practical applica-
tions, so we have included a broad category of non-plastics materials in addition to the ten
plastic types mentioned previously (Table 5.1). Over 3000 samples were collected within
the three former mentioned spectral libraries. If all possible combinations of mixtures were
put together using all spectral samples, the size of the generated dataset would exceed our
computing capacity, so we performed a random sample process (Fig. 5.5a). According
to Table 5.1, the spectral library samples are first divided into non-plastics and plastics,
which are further subdivided into five and ten classes, respectively.

In the linear mixing procedure, only two components are considered, i. e., pure target
spectra, and background spectra, which can be a single sample or a mixture of different
samples. Thus, we constructed the two pools of spectral candidates for our training
dataset according to the following routines:

• R1. In total, 56 plastic training samples were entered into the target pool, which
are randomly selected from individual types of plastics at a sampling rate of 0.6. At
least 2 samples per plastic types were selected
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5 Plastic detection using GaoFen-5 and PRISMA hyperspectral satellite data

• R2. A total of 50 non-plastic training samples were added to expand the target
pool by randomly selecting 10 samples from each subgroup of the entire non-plastic
collection.

• R3. Finally, further 50 samples are selected to construct the background pool by
randomly taken ten samples of every type from the remaining non-plastic samples
after step 2.

After the spectral pool for linear mixing is completed, the corresponding abundances
need to be set. Each of the target samples mT i in the target pool will enter the linear
mixing procedure sequentially at different abundances. To cover as many combinations
as possible, the abundance of the target spectra aTi was set to increments from 0.1 to
1 in steps of 0.1. For each abundance step of every target spectrum, the background
spectra are carefully calculated. The backgrounds comprise up to five different subgroups,
ensuring a diverse mixing of backgrounds. The number of subgroups that entered the
calculation of background x is set from 0 to 5 in steps of 1. Note that x is 0 only when aT i

equals 1, implying that only pure target spectra exist. The total number of combinations
of subgroups is determined by the value of x, which equals Cx

5 . For instance, when x
equals 3, the possible combinations of choosing 3 subgroups out of all 5 subgroups will
be 10 (C3

5 ). Since there are 10 samples per subgroup, the possible combinations cx equals
10x × Cx

5 , x ∈ [0, 5].

As traversing all possibilities would produce too much data, a random subset with a
maximum of 100 different combinations for each value of x is applied. After the random
screening procedure, the total amount of combinations of various background samples

generated for one target sample at each abundance step is calculated by
∑5

x=0C
min(100,cx)
cx ,

and equals 450. The abundance vector ax is randomly generated under the two basic
constraints of the ‘non-negative’ and the ‘sum-to-(1-aT i)’ rule. Ultimately, 4,050 simulated
mixed spectra were generated based on ith target samples calculated by the following
equation after iterating all abundance steps aT i. The LMM is shown in Eq. 5.4:

MSi = aT iRT i +

max(x)∑
min(x),x∈[0,5]

axRx (5.4)

After finishing the above routine, the original training dataset containing 56 plastic sam-
ples and 50 non-plastics samples is enlarged more than four thousand times. Once the
plastic spectra entered the mixing procedure, the output mixed spectra are labeled as the
type of plastic, otherwise, it is labeled as non-plastic.

The generation of the test dataset follows the same mixing routine but with the
remaining 29 plastic samples that are excluded from the above mixing procedure, as well
as the different background pools which are newly randomized. With this strategy, the
generated training and test datasets are independent of each other, ensuring a valid and
reasonable measure of each model’s performance. At this point, we have obtained a
sufficient training and test dataset, totaling 429,300 and 319,950 spectra, respectively.

5.5.1.3 Unification of the band configuration

To obtain the optimum classification results per sensor, the methods described need to
be adapted to each individual sensor, which is extremely time-consuming. In this study,
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5.5 Methodology

we opted for a unification of the band configuration to investigate the transferability of
the methods to any image data obtained by hyperspectral air-, and spacecraft sensors
with different spectral alignments. Thus, a virtual sensor with a distinct spectral response
function (SRF) was defined. The SRF describes the sensor’s relative sensitivity to energy
of different wavelengths and is determined by the center wavelength λc and the bandwidth
∆λ (also referred to as band pass or spectral resolution) (Strobl, 2000). The bandwidth
corresponds to the full width half maximum (FWHM) of each function. For hyperspectral
sensors, the SRF can be approximated by a Gaussian function (Eq. 5.53, (Küster, 2011))
for each wavelength.

SRF (λ) = e−2
√
ln4(λ−λc)

∆λ

2

(5.5)

In this study, the FWHM (∆λ) was set to 5 nm with wavelengths ranging from 1,000
to 2,435 nm. A spectral sampling interval of 5 nm has been chosen that equals the
FWHM. This selection fits with the spectral resolution of the GF-5 and PRISMA sensors
without creating too much redundant data and further issues with computing capacities.
A similar band pass and FWHM is an optimum configuration in spectroscopy and used
in GF-5, PRISMA and other spectrometers, e.g., the airborne AVIRIS (Swayze et al.,
2003). As shown in Fig. 5.22, the water absorption bands ranging from 1320-1500 and
1770-2050 were removed. Finally, an SRF with 198 bands was generated. Next, all hybrid
spectra (training and test dataset), all experimentally derived datasets, and all airborne
hyperspectral datasets as well as the satellite dataset were convolved to the SWIR spectral
configuration of the virtual sensor using Eq. 5.6:

Ri =

∫ λ1

λ0
SRF i (λ)Rorigin (λ) dλ∫ λ1

λ0
SRF i (λ) dλ

(5.6)

where Ri is the reflectance value of the ith band of the target spectra, SRFi (λ) is the
simulated spectral response in band i, and Rorigin (λ) is the reflectance of the original
spectra (Van der Meer and de Jong, 2011). After the resampling, the reflectance data
were further normalized within the range of 0-100%.

5.5.2 Machine learning algorithms

Three widely used deep learning and machine learning algorithms CNN, RF, and SVM
are used for classification and compared to each other in the frame of this study (Fig.
5.5b). Using the Python package, the CNN was implemented with TensorFlow version
2.5.0 (Abadi et al., 2016). The SVM and RF models were implemented with the scikit-
learn version 0.22.1 (Pedregosa et al., 2011), and with the GridSearch function to find
the best hyperparameters. To train and validate the selected three models, the spectral
datasets generated and unified in Section 5.5.1 were applied and used for tuning the
hyperparameters.

5.5.2.1 Convolutional Neural Network (CNN)

The CNN model described here (Fig. 5.5b.1) is fairly simple, consisting of three convolu-
tional layers (1D), a dropout layer, one max pooling layer and one flatten layer, followed
by two fully connected dense layers. Convolutional layers were used for extracting spectral
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5 Plastic detection using GaoFen-5 and PRISMA hyperspectral satellite data

features from the input data with kernel sizes set to 3. We used the rectified linear unit
(ReLU,ReLU (x) = max (0, x)) as the activation function in all convolutional layers, flat-
ten layer, and the first dense layer. In the last fully connected classification layer, we used
a softmax activation function which models the input data to the probability of belonging
to each considered class. The categorical cross-entropy is used as loss function. The CNN
model was trained with the AdamW optimizer (Loshchilov and Hutter, 2019). During the
training of the model, the weights and biases of each neuron are adjusted using a back-
propagation criterion, while the error is minimized by a gradient descent (Schmidhuber,
2015).

5.5.2.2 Random Forest (RF)

The Random Forest (RF) is a machine learning method built on Classification and Re-
gression Trees (CART), shown in Fig. 5.5b.2. A random sample of the predictor space
is used to avoid overfitting. At each node of the decision tree that needs to be split, x
features are randomly selected from the entire feature collection of the sample. Here, the
Gini index is used to calculate the criterion (Breiman, 2001) and determine the optimal
split feature.

5.5.2.3 Support Vector Machine (SVM)

The Support Vector Machine (SVM) is also widely used for the classification of hyper-
spectral images (Fig. 5.5b.3). This study utilizes a Gaussian radial basis function (RBF)
kernel. The two important parameters, including C (the parameter that controls the
amount of penalty during SVM optimization) and γ (the spread of the RBF kernel), are
tuned by the GridSearch function in scikit-learn (Chapelle et al., 2002).

5.5.3 Validation

5.5.3.1 Indicators (F1, recall, precision, kappa)

For evaluation and comparison of the performance of each model, confusion matrices based
on ground truth maps (see Section 5.4.1 for details) were derived. Statistical indices were
employed to determine the reliability and generalizability of the classifier in identifying
plastics when applied to both laboratory and airborne datasets. The basic criteria include
recall, precision, and overall accuracy (OA). The F1-scores were obtained by calculating
the harmonic mean of recall and precision to avoid bias from unbalanced ground truth. The
higher the F1 value the better the performance. Additionally, Cohen’s kappa coefficient
was considered to estimate the consistency and robustness of the classifier.

5.5.3.2 Introduction of noise

In practice, satellite hyperspectral images contain inevitable noise, so validation is further
conducted by introducing different noise levels in the test data to compare the perfor-
mances of the three models used. The Gaussian additive noise is chosen for the inclusion
of noise to simulate real-world hyperspectral images, where the signal-to-noise ratio (SNR)
in dB is defined as Eq. 5.7:

SNR = 10log10
E
[
STS

]
E [NTN ]

(5.7)
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where S and N denote the signal and noise, respectively, and the symbol E[•] represents
the expected value. We analyzed a wide range of SNR ranging from 10 to 106, which
covers the common SNR range (100 1000) of existing satellite sensors (Table 5.2).

5.6 Results and discussion

5.6.1 Performance comparison on a randomly generated test dataset

Fig. 5.6 depicts a heatmap of three confusion matrices and the precision and F1-scores,
indicating the classification performance of (a) CNN, (b) RF, and (c) SVM on the entire
test dataset of plastic and mixed spectra. The overall accuracy is 97%, 96%, and 95% for
CNN, RF, and SVM, respectively.

In terms of precision, the non-plastic classes were identified by more than 95% accu-
racy, regardless of the method used, where the CNN provided the best results (>99%).
For plastics, the precision resulting from the CNN is over 95% for most classes except the
ABS, PC, and PA. When using the RF, the precision is not as significant but is more
stable among different plastics, fluctuating at around 95%. Similar to the results of the
CNN, the use of the SVM provides high precision on most of the plastic types (>95%)
but varies considerably, for example below 70% for PA and PVC. Considering the above
two indicators together, the F1 score values indicate that the CNN delivers the best per-
formance on the test dataset, with most classes reaching 95%. In contrast, both the RF
and the SVM are flawed, where the RF, shows values below 95% in most classes, despite
stable F1-score on all classes with little variations. The SVM gives F1-scores above 95%
for some classes, but is very unstable, with PA and PVC only reaching around 80%.

The diagonal matrix values in the three confusion matrices reveal the recall rate.
Collectively, recall rates exceeded 95% and 90% for all plastic classes when the CNN and
SVM were used, and 85% for most plastics (apart from ABS, EVA, and PC) when the RF
was used. Among the cases of misclassification in the three models, most of those spectra
containing plastics are classified as non-plastics, especially for the RF model. Notably,
more than 10% of the spectra containing ABS were mislabeled as PS, while >15% of
spectra containing EVA were mislabeled as PE or PP. This follows a certain logic, since
ABS/PS are both aromatic plastics and EVA/PE/PP are aliphatic plastics with rather
similar spectra. For non-plastics, the RF gives the best recall rates of up to 99%.

In addition, we also examined the performance of the three models in identifying
spectra at different abundances. Fig. 5.7 illustrates the variation of F1-scores using the
three classifiers in relation to the increasing plastic abundances from 0.1 to 0.9 in steps
of 0.1. The statistics show that the RF performs less good with respect to the F1-scores,
especially when the abundance is lower than 0.3, and it is worst for the spectra containing
ABS, PC, and EVA plastics. This is consistent with the confusion matrix, as most of these
spectra were classified as non-plastics, which is plausible at low abundances. In contrast,
the CNN and SVM have stable and high F1-scores, reaching 80%, starting from an abun-
dance of 0.2 in all plastic classes. However, from another perspective, having such high
F1 scores given by CNN and SVM implies a possible over fitting problem. Considering a
real-world situation, the robustness of the three classifiers was further compared by intro-
ducing varying noise components to the test spectra. The respective SNRs are simulated
using Eq. 5.7. The F1-scores estimated by the three algorithms at a noise level increasing
from 5dB up to 60dB with steps of 5dB are demonstrated in Fig. 5.8. When the SNR is
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Figure 5.6: Heat map of precision (P), F1-scores (F1) and confusion matrices based on all spectra
in the test dataset using the classifiers of (a) CNN, (b) RF and (c) SVM.
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classifiers.
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relatively high, e.g., SNR = 40dB, the F1 values for each algorithm are relatively good
(>90%). The disparities between the different algorithms become apparent as the noise
interference increases. The trends of the SVM and RF graphs are almost identical, with
F1 values reaching 80% from a SNR of 15dB. In contrast, the CNN reaches the 80% level
from 25dB onwards. The F1 values obtained for both, the SVM and the RF at high
noise levels are higher than those obtained for the CNN, but the CNN slightly outperforms
the other two at low noise levels when the SNR equals 40dB. These results demonstrate
that despite the better statistical performance obtained in the validation dataset using a
CNN, the SVM and RF approaches are more robust and stable in the presence of noise
interference.

5.6.2 Evaluation of laboratory experiments

Fig. 5.9 displays the laboratory setup comprising 5 most common types of plastics in 5
varying optical properties placed on a bright sand (a) and a dark soil (b) background. The
assemblies were measured by our HySpex sensor and also classified by the three formerly
used machine and deep learning algorithms. The top row shows SWIR color composites
of the configuration, while the following rows depict the results derived by the CNN (a-1,
b-1), RF (a-2, b-2), and SVM (a-3, b-3) classifiers. Each column in the individual scenes
represents a collection of samples of the five most common plastic materials (PE, PET,
PP, PS, and PVC) with different physical properties. Each row signifies materials with the
same optical properties, such as transparency, translucency, bright/medium/dark opacity.

The results show that most materials are well classified in this experiment, apart from
the black samples with an average reflectance of less than 10%. This can be explained by
the low apparent albedo of the targets, resulting in an inadequate SNR and a severe ex-
tinction of the significant absorption features. The black samples were classified as ‘other’
not existing plastic types in the scene by the CNN and SVM, while the RF treated them
as non-plastics. All other plastic materials were recognized correctly on both backgrounds
by all three classifiers, independently of the optical properties.

The classification accuracy of plastics on the bright sandy background is very high,
reaching >98% for each category. Therefore, the confusion matrix for the computed
classification results is only provided for the dark soil background in Table 5.3. As the
classifier, trained with 10 types of plastic in total, could incorrectly detect plastics that
were not present in the scene, a nonexistent class (NE) has to be added to the matrices.
All models performed well (recall >90%) when focusing only on the classification among
different plastics, in which the recall rate reaches 99% using the CNN and SVM while only
6% of PVC is classified as non-plastics when using RF.

In contrast, the classification results of these methods for background (non-plastic)
varied considerably. By using the CNN, only 58.88% of the backgrounds were recog-
nized correctly, while over 40% were misclassified as plastic not even present in the scene.
The SVM has a better recall rate than the CNN, but it still misclassified 10.89% of the
background, of which 8.79% referred to non-existing plastics. The recall rate was 99%
when using the RF, which is quite robust and consistent with the results of the previous
section. The high precision rate (>90%) for all categories using both the CNN and RF
suggest their capacity for accurate prediction over all positive observations while the SVM
is less competent. However, the separation of plastics from other non-plastic materials is
very critical. Yet the CNN gives higher precision, it didn’t meet the basic expected per-
formance. The comprehensive metrices (F1-score, OA, and Kappa) indicate the highest
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spectra in the validation dataset using the classifiers of CNN (red), RF (blue), and
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Figure 5.9: Classification results based on laboratory data measured by the HySpex sensor. Five
different plastic materials of various optical properties are placed on (a) bright sand
and (b) dark soil backgrounds. The two top panels (0) depict color composites using
wavebands 1730 nm, 1570 nm and 2200 nm coded RGB. Results of the classification
using (1) CNN, (2) RF, and (3) SVM are shown from the second row to the bottom.
TP: transparent; TL: translucent; O-B: opaque bright; O-M: opaque medium; O-D:
opaque dark. NE: plastic types not existing in the scene. *The non-plastic class in
the results is displayed as transparent to show the background image.
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general accuracy for the RF, followed by the SVM, and the lowest value for the CNN due
to its low recognition of backgrounds.

5.6.3 Evaluation of hyperspectral airborne datasets

To estimate the performance of the three classifiers to identify plastic in a real-world
scenario, we validated them further on three airborne datasets with different surface prop-
erties. Fig. 10 displays the results from the airborne data with various plastic materials
on three background surfaces recorded by two airborne hyperspectral instruments. The
results derived by the CNN, RF, and SVM classifiers are displayed from the second row to
the bottom. Table 4-6 presents the confusion matrices of the classification results for each
site. Similar to the strategy in the previous section, an NE class is introduced to signify
those plastics that are either not present or not included in the ground truth map.

For the urban scene (Fig. 5.10a-0,1,2,3), four types of plastic are selected and identi-
fied for the ground truth map for validation. According to Table 5.4, all classifiers showed
a good performance in detecting PP, with both recall and precision exceeding 95% when
using the CNN and SVM, and 90% when using the RF. Concerning the identification
of PE and PVC, the CNN indicated a poor performance with recall rates below 80%,
while the values were above 90% when applying the other two models. Still, the accuracy
obtained with the CNN is over 95%, which is the same as achieved by the SVM, whilst
RF gives a precision ranging from 90% to 95%. All classifiers had the poorest results in
correctly identifying PETs, with recalls below 60%. It can be seen that more than 70%
of false negatives went to the NE category, which are the types of plastics not included in
the validation map, of which, the majority were classified as PS. Based on our study in
2021 (Zhou et al., 2021), both PET and PS contain aromatic rings, belonging to the same
cluster with similar absorption characteristics.

In addition, it can be assumed that the presence of remaining atmospheric influences
or the unification process further contributed to the non-discriminability between the
spectra of the two types of plastics in this image. The accuracy obtained when using the
RF is surprisingly high, indicating that even when it fails to thoroughly discover PET, the
determination is deemed to be highly plausible when it detects the class. By contrast, the
precision values given by the CNN and SVM were below 60%, suggesting a low confidence
level in their detection results for this class. As for the non-plastic category, the use of the
RF gave a promising result with recall and precision values over 95%. Yet, when using the
CNN and SVM, more than 15% of the non-plastics were misclassified as plastics, implying
that more plastics would be detected than effectively present, which is not conducive to
practical applications. The general indicators F1-score, OA and kappa coefficient also
proved that the RF produced superior results in the urban scene.

The middle column in Fig. 5.10 shows an artificially arranged experimental grassland
on which three types of plastics were placed, including PE, PET, and PBAT. Unlike the
results for the urban area, all classifiers gave very high recall and precision rates beyond
99% in detecting PET as shown in Table 5.5. Both the RF and SVM also performed
well in classifying PE but the CNN failed to distinguish it from the background in this
scene. With regards to the classification results for the background, it is expectable that
the SVM mislabeled the background as plastic. PBAT was not involved in the training
dataset. With the advent of an increasing number of new types of plastic, it is necessary
to examine the responses of these classifiers when encountering new types of plastics.
Therefore, this scenario can be used to estimate the generalization ability of the respective
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Figure 5.10: Classification results of various plastic materials on three background surfaces based
on airborne data recorded by the hyperspectral instruments (a) HyMap and (b,
c) HySpex. From left to right, a: urban surfaces (Dresden, DE); b: grasslands
(Thyrow, DE); c: lake and shore (Seddin, DE). The top row (0) depicts the ground
truth targets of various plastics and non-plastics superimposed on color composites
using wavebands 1730 nm, 1570 nm and 2200 nm coded RGB. Non.P: Non-plastic
materials, Other: other plastics, not validated in the ground truth map. *The
non-plastic class in the results is displayed as transparent to avoid masking of the
background image.
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5 Plastic detection using GaoFen-5 and PRISMA hyperspectral satellite data

model. The sites where PBAT is placed are flagged with black frames in Fig. 5.10b. All the
classifiers managed to categorize PBAT into plastics instead of background. One reason
is that plastics are synthetic materials polymerized with one-repeat unit, which gives a
relatively simple molecular structure. Thus, their absorption features in the SWIR range
are easier to explain than those of natural organic materials. This fact reveals that all
the models successfully learned this fundamental feature of plastics from the generated
training dataset.

The third airborne scenario also represents a controlled experimental site with PS and
PE types of plastic included, in which the PS targets were placed over water. Noteworthy,
plastics over water are also not included in the training dataset. Thus, this scene is used to
estimate the robustness of the classifier over unforeseeable noise. In this context, the RF
again showed the best performance according to Table 5.6, while the SVM totally failed
and the CNN failed to identify the right class. These results clearly indicate that the RF
is the most stable and transferable classifier and will be finally applied to the satellite
datasets.

5.6.4 Evaluation of hyperspectral satellite data

The trained RF classifier was applied to three sets of satellite data recorded from Weifang
City by GF-5 (Nov. 2019) and PRISMA (Dec. 2019 and Nov. 2021). This allows to
examine the classification results in the context of time as well as in relation to the technical
differences between the two sensors. Fig. 5.11 shows the classification results of the three
scenes, superimposed on a single band of the SWIR range. The top row depicts the same
target segment covered by the three recordings with five marked representative sub-scenes
a) to e) for more detailed inspection. To support the validation, color composites of the
multispectral MSI imager of ESA’s Sentinel-2 satellite with a higher spatial resolution
and nearly fitting acquisition times were selected and complement the evaluation. Among
these five sites, three sites are comparable in all three scenes while two target areas are
only covered by two recordings.

In image section a, locations 1 to 4 are classified as PE plastics. This is plausible as
these can be recognized as soccer fields (Sentinel-2) that are usually covered with artificial
grass made of PE fibers (Sassi et al., 2011). Site 5 was newly constructed after 2019, and
thus, is only detected in the PRISMA ’21 data. Another discrepancy is to be found in
site 6, where the classifier labels a larger area in the GF-5 imagery than in the PRISMA
recordings of the same year. According to the Sentinel-2 images of this area, two soccer
fields on top are unchanged over the observed time period while the fields to the bottom
are under construction in the later stage and the soils are temporarily covered by plastic
tarpaulins (a common practice in China), which are also mostly made of PE (Han et al.,
2012). The nonconformity concerned with the reduced PE area detected in the PRISMA
’19 imagery at site a-2, 5 can only be explained as misclassification due to haze in the
PRISMA scene. When examining the VNIR range of PRISMA ’19 data, the presence of
the tarpaulins can be identified visually but under hazy conditions. A final appearance
of PE in this area can be recognized by two indicating pixels at the top left of all three
records that is a floating landing bridge reaching into the water.

Image section b covers a residential area surrounded by fish farms and agricultural
fields. Three interesting regions are marked in this figure. Area 1 shows a mixture of PE
and PP, where most of them are classified as PE in GF-5 ’19 data but the percentage of PP
increases in PRISMA ’21 data. Similar targets with this characteristic PE-PP mixture are
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5 Plastic detection using GaoFen-5 and PRISMA hyperspectral satellite data

Table 5.5: Confusion matrices of the airborne dataset of Thyrow (HySpex) using (a) CNN, (b)
RF, and (c) SVM classifiers. The recall values are highlighted in bold. Non.P: non-
plastics, Other: other plastics, not existing in the scene, P: precision, F1: F1-score,
OA: overall accuracy, κ: Kappa coefficient

a. CNN
Predicted labels (%Recall)

P F1 OA κ
Non.P PET PE Other

True label

Non.P 99.53 0.01 0 0.46 95.73 97.59 0.96 0.76

PET 0.13 99.87 0 0 99.87 99.87

PE 57.06 0 42.09 0.85 100 59.24

b. RF Non.P PET PE Other P F1 OA κ

True label

Non.P 99.99 0.01 0 0 99.99 99.99 1 1

PET 0.13 99.2 0 0.67 99.87 99.53

PE 0 0 100 0 100 100

c. SVM Non.P PET PE Other P F1 OA κ

True label

Non.P 94.2 0.01 0.03 5.76 100 97.01 0.95 0.8

PET 0 100 0 0 99.87 99.93

PE 0 0 100 0 99.62 99.81

Total 13,662 748 1,062 -

Table 5.6: Confusion matrices of the airborne dataset of Seddin lake (HySpex) using (a) CNN,
(b) RF, and (c) SVM classifiers. The recall values are highlighted in bold. Non.P: non-
plastics, Other: other plastics, not existing in the scene, P: precision, F1: F1-score,
OA: overall accuracy, κ: Kappa coefficient

a. CNN
Predicted labels (%Recall)

P F1 OA κ
Non.P PS PE Other

True label

Non.P 99 0 0.11 0.89 95.18 97.05 0.93 0.5

PS 51.43 21.43 0 27.14 100 35.29

PE 37.5 0 62.5 0 93.75 75

b. RF Non.P PS PE Other P F1 OA κ

True label

Non.P 100 0 0 0 98.25 99.12 0.98 0.9

PS 22.86 77.14 0 0 100 87.1

PE 0 0 100 0 100 100

c. SVM Non.P PS PE Other P F1 OA κ

True label

Non.P 84.08 1.34 0.56 14.03 91.74 87.74 0.79 0.14

PS 88.57 11.43 0 0 40 17.78

PE 25 0 75 0 78.26 76.6

Total 898 70 24 -

92



5.6 Results and discussion

GF-5
2019 Nov. 14

PRISMA
2019 Dec. 21

PRISMA
2021 Nov. 27

None plastics (Transparent)
ABS
EVA
PA
PC
PE
PET
PMMA
PP
PS
PVC

a-1 a-2 a-3

b-1 b-2 b-3

c-1 c-2 c-3

d-1 d-3

e-1 e-3

2

1

1

1 1

2

1

2
3

1

2
3

1

2
3

1

2

3

1

6 6 6
5552

3
4

1
2

3
4

1
2

3
4

1

2

2021.11.27
Sentinel-2

2019.11.13 2019.12.28

2019.11.13 2021.11.27

1

2

3

2

1

3

5

6

1

e

d

c

b

a

Figure 5.11: Results of the RF classifier applied to one GF-5 image recorded in 2019 and two
PRISMA datasets recorded 2019 and 2021 from Weifang City, Shandong, China.
Top row: Subscenes of the recorded data with comparable boundaries. Consecutive
rows depict enlargements of subscenes marked in the top row mainly characterized by
(a) sport fields, (b) photovoltaics (PV), (c) industrial site 1, (d) industrial site 2, (e)
greenhouses. Clusters of identified plastics are superimposed to a single waveband
at 1570 nm. Sentinel-2 data of nearly the same recording date as GF-5 and PRISMA
are added to support the visual recognition of targets and possible changes within
the two years by its higher spatial resolution of 10 m GSD. Numbers are referred
to in the text. *The non-plastic class in the results is displayed as transparent to
avoid masking of the background image.
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also found at further locations in the satellite scene, where the respective mixed signals are
obviously reflected from solar cells also called photovoltaic panels (PVs). The reason of the
mixed signatures can be explained by the diversity of components embedded in PVs and
used for their shielding, as well as by the diversity of materials used by the manufacturers.
There are crystalline silicon cells, thin film panels, and organic cells constructed with
several layers (Oreski et al., 2021), where a variety of plastic materials is used as cover
(PP, PC, PMMA), for encapsulation (EVA, PO (polyolefine)), and as back sheet (PET, PP,
PC, PE, PVF (Polyvinyl fluoride)). POs are polymers with the main representatives PE
and PP. Both plastics are chemically quite similar and depict a rather uniform spectral
behavior when scanned at 10 nm spectral resolution and sampling interval. It can be
assumed that the PVs in the entire recorded region around Weifang City are very similar
in construction and may also come from the same manufacturer, which explains the distinct
detection of all solar panels with a mixed signature of PE and PP. Examining this slightly
varying mixed signatures in the context of the minor differentiating acquisition dates with
the respective sun angles as well as tilted PVs and flat on the roof mounted PVs, we
cannot discern a significant correlation.

Area 2 also clearly marks the presence of PVs with some areal reduction at the
north and south of the PV area in the PRISMA ’21 data and easy to validate by the
Sentinel-2 data. Area 3 is of specific interest, as it shows a fish farming area that, from
its structure at the low resolution of 30 m GSD, looks similar to PVs. Moreover, only the
PRISMA ’21 data exhibit an extensive areal sprawl of PEs. Studying the project schedule
of the local government reveals the construction of PVs over the water surfaces of the
fish farm started in March 2021. The water below is used for fish and shrimp farming,
while the PV panels provide a good shielding and are utilized for energy production
(https://taiyangnews.info/markets/china-pv-news-snippets-4/). The Sentinel-2
data provide a more detailed view in terms of identifying the changing patterns. The
project was completed mid of November 2021, which explains the missing signal for PE
in the GF-5 ’19 data.

Image sections c and d are recordings of industrial areas. The geometric patterns of
the identified plastics in the GF-5 and the two PRISMA datasets show a significant con-
sistency. The marked areas 1-3 in c1-3 indicate clear patterns of different plastics of the
ABS, PE, PET, PMMA, PP, PS, and PVC type with only minor discrepancies for ABS
to PMMA and PP to PVC. These slight differences in classification, mainly obvious in the
PRISMA ’19 data can be attributed to the classifier or are triggered by the already men-
tioned haze in the respective recording. According to the Sentinel-2 data, the signals are
coming from targets like roofs of factory buildings and storage, encapsulated large boilers
and pipelines and further not identifiable materials found in industrial plants. Changes
in appearance of the one or other target in the different recordings can be explained by
respective renovations on the ground indicated by the Sentinel-2 data. A similar situation
is found in area 1 of image section d, where only very minor discrepancies occur in con-
nection to ABS and PET. The reciprocal appearance in the d-1 and d-3 recordings may
be explained by changes on the ground indicated by Sentinel-2 data. Area 2 in this image
section d shows widespread PVs on the roof of large workshops of a tire factory, that are
mapped clearly in great detail by mixed signals of PE and PP for both satellites, where
in this case GF-5 tends more to PE and PRISMA more to PP. PA, commonly named
Nylon, is only present in a few pixels within the industrial sites. Although it is found in
households and the industry it is mostly used in small scale applications.
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5.6 Results and discussion

Image section e, located south-west of Weifang City is an agricultural area charac-
terized by numerous wide spread greenhouses. These are mainly built of PE films at the
roof and partly of plates of PE and/or PC at the upright sidewalls and of PP pipes as
supporting structures. In our case, the RF classifier detected PE without exception, indi-
cated by the cyan color assignment in the imagery. There are obvious differences in the
patterns of GF-5 ’19 and PRISMA ’21 data, but those can be explained and validated on
the basis of the Sentinel-2 recordings. The greenhouses are partly not immobile over a
longer period of time and are moved occasionally for whatever reason. Area 1, a larger
storage building located in the middle to the right of the image section e-1/3, changed the
material from PE to PP between the years ’19 and ’21 according to the respective GF-5
and PRISMA recordings. But there are no significant misclassifications, as the roof was
refurbished, which is visualized by the Sentinel-2 data.

In principle, it can be stated that the RF classifier produced very good and reliable re-
sults for the data of both sensors. The results do not reveal any significant clues about the
differences in the spectral resolution, the effective spatial resolution, the SNR estimations
(see Table 5.2) and probable preprocessing and resampling procedures. Main common
plastics targets identified are associated with greenhouses, artificial sport grounds, in-
dustrial constructions and PV panels on soils, roofs, and water. To further improve the
quality of the results, more endmember measurements and related training data, as well
as a higher spectral resolution and sampling rate of future sensors is needed to more ac-
curately separate the distinct absorption features of plastics. To detect garbage on land
surfaces, the spatial resolution of the analyzed hyperspectral space sensors is by far not
adequate and a challenge for future technical sensor developments.

5.6.5 Assessment

This study proves the feasibility of identifying different plastics on terrestrial surfaces
recorded by hyperspectral sensors using machine/deep-learning models trained with lab-
derived spectra. The analyses concerning the detection of various types of plastic on
different backgrounds, including urban areas, grasslands and water bodies, identify the
Random Forest model as the one with the most convincible performance. It achieves
plausible classification results, whether applied to different aircraft or satellite systems.

The spectral reflectance characteristic of selected dominant plastic targets recorded by
the four sensors investigated, is displayed together with the model’s calculated importance
of each wavelength in Fig. 5.12a-e. Considering the spectral curves recorded by the HyMap
sensor (Fig. 5.12a), and despite the fact that PVC/PE/PP depict rather comparable
features here with only subtle differences, the trained Random Forest model succeeded
with high accuracies (Table 5.4b). In contrast, more than 30% of PET in the ground
truth map are classified as other plastic types, which may result from the smoothing of
the serrated feature at 2200 nm due to the coarse spectral resolution of only 15 nm. The
results concerned with the HySpex recordings are in contrast quite well and balanced
(Table 5.5 and 5.6; Fig 5.12b). The two spectra (PE and PP) extracted from the GF-5
and PRISMA satellite recordings (Fig. 5.12c, d) are taken from the imagery displayed by
Fig. 5.11a, site 3. Very consistent classification results are derived in all three recordings,
regardless of the sensor type or recording time.

When comparing these satellites derived spectral curves of PE and PP with the curves
in the spectral library (Fig. 5.11), the classification results are still consistent considering
the double absorption peaks of PE at around 1700 nm clearly reproduced in the 10-11 nm
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5.7 Conclusion

spectral resolution of both satellite sensors. However, the PE and PP spectra derived by
the data of the two satellite systems show somewhat different shapes within the 1100-1300
nm range. This may be partly attributable to the atmospheric correction procedures that
are accomplished once by the provider (PRISMA) or inhouse (GF-5). Nevertheless, the
RF model classified them ’correctly’, as the relevant absorption features are still more or
less strongly depicted. This could be the benefit of the voting system of the Random
Forest model.

When focusing at the wavelength importance of the trained Random Forest model,
we note that the higher importance wavelength ranges are in accordance with our in-
depth investigation of the plastic molecular structure in Section 5.3.1. This indicates that
the model has learned some fundamental features, which leads to a higher transferability
concerning different sensors and various scenarios.

With all advantages of the trained classifier, there are also limitations to be mentioned.
According to Fig. 5.7, only when the abundance exceeds 20%, the trained Random Forest
model can reach the F1 score of 0.8. This may not be enough to detect real plastic litter
since this is generally sparsely distributed and rarely accumulated on larger areas. With
the coarse spatial resolution of 30 m x 30 m of today’s hyperspectral satellite systems,
plastic waste can hardly be detected. Furthermore, spectral features of weathering or
degradation processes of plastics need to be more involved in the model, as these are
usually associated with broken chemical bonds. Neglecting them may lead to failures in
classification.

For the future it is planned to investigate those weathering issues, to research the
quantification capability using hyperspectral satellite sensors and to fuse them with multi-
source data for intelligent object-based identification. Besides, we tend to focus on a
diversification of our present workflow to other targets. The model trained in this study
is dedicated to identify different plastics types with high precision and is incapable of
detecting other materials. However, the workflow to build training datasets, as described
in section 5.5.1 could be generalized in classifying any materials with inter-class similarities.
E.g., by switching the spectral collection of minerals into the target pool and treat plastic
as background materials, one can train a new model focusing on the differentiation of
various minerals as well as mask out non-minerals.

5.7 Conclusion

This study demonstrates the feasibility of using machine/deep-learning models trained
with laboratory derived spectra to identify several distinct types of plastics on terrestrial
surfaces in controlled laboratory experiments and in hyperspectral recordings of different
aircraft –, and satellite sensors. We proposed a conventional random mixing strategy to
synthetically generate training and test datasets from endmember spectra using spectra of
10 different plastic types and numerous non-plastic materials (background) obtained from
an inhouse and three public spectral libraries. Three widely used deep -, and machine
learning algorithms comprising CNN, RF, and SVM were trained and compared in their
performance using the synthesized spectra. The evaluation of the performance of the three
models is based on the test dataset, the laboratory experiments, and three aircraft images
recorded by different hyperspectral sensors in Germany. Thereby, the trained RF classifier
behaves most robustly and reliably, also against noise and conditions concerned with
unknown plastics and unknown background surfaces. Though the RF model is only one of
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a variety of classifiers in our study, it outperforms the CNN and SVM models specifically
designed for this task and trained on the same dataset. Finally, the RF classifier was
applied to three satellite recordings of Weifang City in China taken at different times and
dates by two different hyperspectral systems, the GF-5 and the PRISMA. The classification
results derived from data of both types of sensors with comparable nominal specifications
are excellent for plastic materials which form larger, homogeneous surfaces on the ground
when considering the relatively low spatial resolution of 30 m GSD. The evaluation of the
results also indicates that the chosen concept to diagnostically detect plastic enables the
transferability between different sensors despite of inevitable preprocessing procedures,
and is an essential approach when ground truth data are difficult to collect.
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Zhou, S., Mou, L., Hua, Y., Zhang, L., Kaufmann, H., & Zhu, X.X. . Can we use deep
learning models to identify the functionality of plastics from space?
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6.1 Abstract

Pollution from plastics is becoming an increasingly important issue, and the function of
plas-tics in particular determines whether they need to be recycled. This study proposes a
two-stage workflow to explore the feasibility to identify the functionality of plastic mate-
rials on land surfaces using deep learning models trained with Sentinel-2 satellite imagery.
First, a pre-existing classification map including 10 distinct types of aromatic and aliphatic
plastic materials was obtained by evaluating hyperspectral PRISMA data. Then, based
on the RGB information extracted from Sentinel-2 images, different deep learning algo-
rithms are used to assign functions to the initially classified plastic targets. Therefore,
the functions of a total of 1,645 plastic polygons were carefully evaluated and manually
labeled on Sentinel-2 RGB imagery in collaboration with existing high-resolution imagery
and on-line information. To have a sufficient variety and number of different plastic ma-
terials available, we chose a coastal area in Weifang City, Shandong Province, China as
study area. Here we found 5 major distinct functionalities, namely plastic cover sheeting
for construction areas, greenhouse structures, photovoltaic panels (PVs), roof materials,
and sport field floorings. By comparing three state-of-art deep learning models including
GoogLeNet, VGGNet, and ResNet as well as different depth among each type of networks,
an overall accuracy of 78% was achieved on the test dataset using a VGG-13 net. To eval-
uate the model’s performance, several metrics were used, including accuracy, F1 score,
precision, and recall. The results indicate that the model performs well in identifying
PVs, greenhouses and covered construction sites, with F1 scores of 0.85, 0.77, and 0.71,
respectively. This is beneficial for practical applications, where the identification of PVs
can provide information about the development and utiliza-tion of clean energy, while the
detection of greenhouses and construction sites is just as im-portant, as these are the most
likely sources of plastic waste among the five functional types. The model’s performance
in identifying roofs and sport field floorings was lower, with F1 scores of 0.57 and 0.59,
respectively. This is probably due to a high mutual visual similarity of these plastic func-
tional areas, their fundamentally small size as compared to the used sat-ellite imagery,
and the relatively low sample number of these categories. Overall, the results suggest that
the proposed workflow is effective in identifying the functions of plastic mate-rials on land
surfaces using deep learning algorithms trained on Sentinel-2 satellite imagery. This study
contributes to the advanced use of satellite imagery in addressing global plastic (waste)
management issues.

6.2 Introduction

Since their widespread introduction in the 1930s, plastic products are increasingly domi-
nating the market, thanks to their low weight, waterproofness, and durability characteris-
tics (Feldman, 2008). The production of plastic has quadrupled over the past four decades
(Geyer et al., 2017). Improper disposal of plastic waste, along with its longevity and
durability, have caused its extensive accumulation in terrestrial and aquatic ecosystems
(Derraik, 2002). This leads to an extensive environmental damage to wildlife (Browne
et al., 2008; Uhrin and Schellinger, 2011) and its habitats (Lebreton et al., 2017). The
disintegration of plastic in the presence of ambient solar radiation releases the greenhouse
gases methane and ethylene, contributing to climate change and global warming (Royer
et al., 2018; Vishwakarma, 2020). With the growing awareness of the effects of plastics on
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ecosystems and human health, plastic pollution is becoming a more prominent issue (Law,
2017). Plastic detection and monitoring will be a commitment for the future to identify
the sources, traces, functions, and the evolution of plastics waste.

In this context, remote sensing offers itself as a very promising technique for the moni-
toring of plastic materials. Mapping and quantification of marine and coastal plastic based
on remote sensing data (NIR, SWIR, TIR) has been well researched (Goddijn-Murphy and
Williamson, 2019; Moy et al., 2018; Topouzelis et al., 2020). However, 80% of the marine
plastic waste originates on land and only about 20% is directly introduced into the ocean
(Li et al., 2016). Thus, it becomes increasingly important to monitor terrestrial plastic
regularly to prevent further pollution. Yet most studies have focused on the differentiation
of various plastic types by infrared spectra based on laboratory measurements (Moroni
et al., 2015; Moshtaghi et al., 2021; Topouzelis et al., 2021). Only a few studies have
used remote sensing data for single-class detection of plastics (Heiden et al., 2007; Kühn
et al., 2004; Wetherley et al., 2017) and multi-class classifications on land surfaces (Zhou
et al., 2021, 2022). Although plastic types are categorized, their functions cannot be di-
rectly assigned based on the chemical bond alone, but the designation of functions will
help determine whether these plastic materials need to be recycled. The aforementioned
pixel-level processing techniques that assign each pixel to one of the categories based on
its spectral information are not sufficient to the functionality of e.g., plastic materials.
The spectrally derivable information of a distinct plastic type does not necessarily corre-
spond to the function of the respective plastic material. Plastic products with the same
function can be made of different plastic types and vice versa, or even have different ap-
pearances. For instance, the photovoltaic panels (PVs) are mixtures of various plastic
materials (Oreski et al., 2021) and roofs can have different colors and shapes. Thus, con-
textual information (in spatial domain) ought to be integrated additionally into classifiers
to further differentiate the utility or function of a plastic-covered areas.

Deep learning (DL) has recently emerged as a discipline used in remote sensing and
Earth sciences and is increasingly used for satellite image classification including scene
identification, land use and land cover (LULC) classification, and object detection (Ma
et al., 2019a; Zhu et al., 2017). For spectral-spatial classification, deep learning models is
one of the most preferred option, as it allows simultaneous input of spectral and spatial
information. However, the spatial resolution of data provided by currently operating
hyperspectral satellites is generally low (about 30 m GSD), which leads to difficulties in
extracting contextual features. Another possibility is to use the classification results of the
hyperspectral dataset to locate the plastic coverage area. With a known distribution of
plastic in an area, an alternative satellite image with higher resolution is used to determine
its respective function. Open-access Sentinel-2 satellite images with 10 m GSD have a great
potential in this case.

A Convolutional Neural Network (CNN) is such a type of deep learning algorithms
that is designed to work with image data (LeCun et al., 2015). It has proven to be very
effective in image classification and object detection tasks, as it is able to capture both
local and global features in an image. CNNs are widely used in remote sensing applications
(Ghanbari et al., 2021), mainly for land cover classification and object detection from
satellite imagery. They are robust concerning their architecture, which includes local
receptive fields, shared weights, and subsampling (Kattenborn et al., 2021). The local
receptive fields allow CNNs to focus on small, localized regions of an image and extract
features from them, while shared weights allow networks to learn features that are useful
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across multiple regions of the image. Subsampling is a process of down-sampling the
feature maps, what helps to reduce computational complexity and improve the stability
of networks. Together, these architectural elements help to make CNNs robust to changes
in the input data and to variations in imaging conditions, such as changes in illumination
or viewpoint. This allows CNNs to generalize well to new data and produce consistent
results, demonstrating their effectiveness and robustness for image analysis tasks in remote
sensing applications.

This study is the first to investigate the potential of satellite imagery to differentiate
the utility functions of land-based plastic products. To meet the objective, a two-stage
workflow was applied.

1) The generation of a plastic type classification map based on hyperspectral satellite
data (PRISMA) provides the type and location of the plastic materials, which is achieved
based on the methodology proposed in our previous study (Zhou et al., 2022).

2) The assignment of respective functions of these classified plastic materials is based
on Sentinel-2 images using three state-of-the-art deep learning models of varying depth.

6.3 Materials

6.3.1 Study area

The study area depicted in Fig. 6.1 is located in the north of Weifang City, Shandong
Province, China (N 37◦5′20.4′′, E 119◦7′30′′). It encompasses agricultural, residential,
and industrial regions, with agricultural fields primarily located in the southwest of the
selected area. The region is known for its thriving agriculture, with plastic greenhouses,
mostly made of polyethylene (PE), polypropylene (PP), and polycarbonate (PC), covering
around 20% of its total cropland (Rasheed et al., 2020). The rapid pace of urbanization
in the region, driven by the local government, is especially accentuated by an increased
investment in green energy, specifically in PVs built by layers of different plastic materials
such as PP, PE, and ethylene vinyl acetate (EVA) (Rasheed et al., 2020). The high
coverage and diversity of plastic products in Weifang City, including the greenhouses and
photovoltaics, and further objects such as roofs, sport field floorings, and sheeting materials
connected to construction zones, make it an attractive research area for evaluating the
feasibility of predicting functions to different plastic materials based on satellite images.

6.3.2 Plastic type map

The feasibility of using hyperspectral satellite data and machine learning models to distin-
guish various types of plastic materials present on terrestrial surfaces has been explored.
We trained the models using lab-derived spectra and evaluated their performance on a
test dataset recorded by aircraft and two different hyperspectral sensors (PRISMA and
GaoFen). The results showed that the random forest (RF) algorithm was the most reliable
model for clearly separating 10 types of aromatic and aliphatic plastics on various back-
grounds, including urban areas, grasslands, and water bodies, with an overall accuracy
of approximately 96% (Zhou et al., 2022). The plastic classification chart used for this
study was generated from four PRISMA L2D images of 30 m GSD, two each recorded
on November 27 and December 3, 2021, covering the study area depicted by Sentinel-2
imagery in Fig. 6.1. The trained RF classifier from our previous research produces an
exhaustive partitioning of the set of image pixels into 11 classes, including 10 different
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Figure 6.1: RGB image sketch of the test site Weifang City as recorded by the Sentinel-2 MSI
sensor

plastic types and one non-plastic type. Based on the classification result, which achieved
a high satisfactory level of accuracy, we assigned functions to each plastic pixel in the
image (see details in Chapter 6.4).

6.3.3 Sentinel-2 images

The Copernicus Sentinel-2 mission comprises a constellation of two polar-orbiting satellites
(Sentinel-2A/B) placed in the same sun-synchronous orbit, phased at 180° to each other.
For this study, an image taken by the multispectral instrument (MSI) mounted on the
Sentinel-2B was used. The image was obtained on December 2, 2021, close to the time
of acquisition of the hyperspectral data from which the plastic classification map was
generated. The Sentinel-2B MSI provides multispectral images with varying spatial and
spectral resolutions. Detailed information about the Sentinel-2B is given in Table 6.1. To
meet the requirement of a higher spatial resolution, only 10 m Level-2A surface reflectance
data were considered, of which R/G/B bands were used to generate the dataset (see details
in Chapter 6.4).

6.4 Methodology

We trained and compared commonly used deep learning-based classification models and
tested them to automatically classify the functions of different plastic materials. An
overview of the data preparation, model training and assessment in this study is depicted
in a flowchart (Fig. 6.2).
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Figure 6.2: Flow chart of the evaluation concept. See text for acronyms.
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Table 6.1: Main parameters of Sentinel-2B

Parameters Value

Repeat cycle 12 days

Spectral range 443 nm to 2190 nm

Swath width 290 km

Spectral bands 13

Spatial resolutions 10 m, 20 m, and 60 m

6.4.1 Data preparation

6.4.1.1 Image registration

The classification map of plastic types is generated from four PRISMA L2D images, so both
sharing the same geo-coding information. To accurately project this classification map
onto the Sentinel-2 recorded data, image registration is performed to align the different
datasets. Ground control points (GCPs) collected from the Sentinel-2 images are used
as reference points to perform the image registration of the PRISMA L2D imagery using
ArcGIS 10.8 Software. Around 30 pairs of GCPs per PRISMA L2D scene are utilized in
the registration process to ensure a high degree of accuracy. Affine transform is applied.
The final root mean square error (RMSE) is controlled to be less than 1, which is a
measure of the overall accuracy of the image registration process. Upon the completion of
the image registration, the transforms are applied to the classification map.

6.4.1.2 Up-sampling and annotation

The spatial resolution of the original classification map is 30 m, which differs from the 10-
meter resolution of the Sentinel-2 image. To reconcile this discrepancy, the most straight-
forward approach is to vectorize the classification map from its original raster format into
a shapefile format, which is comprised of polygons. This conversion process was carried
out using ENVI 5.4. The resulting shapefile was up-sampled from 30 meters to 10 meters
by loading it onto the Sentinel-2 dataset, which enabled its effective integration with the
Sentinel-2 dataset.

The classification map categorizes pixels into 11 classes, including 10 distinct types of
plastic and one non-plastic type. In this study, only plastic pixels were used. Thus, each
pixel is endowed by a numerical label of the plastic type to which it belongs. However, this
process does not utilize spatial information, leading to the possibility that pixels with the
same label may either be connected in the image plane and form a polygon region or be
disjoint from one another. During the up-sampling process, the original classification map
is converted into a vector shapefile that includes multiple polygons with unique IDs. This
conversion also allows for the extraction of individual plastic material regions, enabling
each connected region to be assigned a label that indicates its functionality.

It is assumed that each of the polygons extracted represents a single functional unit
of plastic products. A total of 1,645 polygons were extracted and manually labeled with
functional information. Ground truthing for the functional information was realized by
an assessment process that utilized high-resolution airborne images from Google Earth
Pro, as well as local photographs (Fig. 6.2a.3). Following a careful labeling procedure,
the extracted polygons were categorized into 5 major functions namely: plastic cover
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sheeting for construction areas, greenhouses, PVs, roofs, and sport field floorings. The
correspondence is shown in Fig. 6.3.
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Figure 6.3: Sentinel-2 imagery superimposed with a0: a plastic type map (Zhou et al., 2022)
with enlarged subscenes (a1-a5), and b0: a labeled classification map of the respective
functions of plastic materials with enlarged subscenes (b1-b5). ABS=acrylonitrile bu-
tadiene styrene; EVAC=ethylene vinyl acetate; PA=polyamide; PC=polycarbonate;
PE= polyethylene; PET=polyethylene terephthalate; PMMA=polymethyl methacry-
late; PP=polypropylene; PS=polystyrene; PVC=polyvinyl chloride.

6.4.1.3 Patches and data split

Deep learning classification algorithms require a fixed input image size (rectangle) as they
rely on CNNs, which use convolutional layers to extract features from the input data. The
consistency in size allows for convolutional filters to have a standard size and shape for
processing information. Furthermore, having a consistent input size helps standardize the
data, reducing the need for pre-processing and simplifying the model’s learning process.
By using a fixed input image size, the deep learning classification algorithms can perform
more efficiently and effectively, leading to an improved accuracy and performance.

As the resulting shapefile from the up-sampling and annotation process involves ir-
regular polygons, we calculated the outer rectangle of a polygon. After evaluating the
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Figure 6.4: Schematic diagram of sampling for a plastic polygon when its size (a) smaller than
5×5 pixels and (b) bigger than 5×5 pixels.

Table 6.2: Number of annotated plastic sites after the cropping procedure

Function Amount

Construction sheeting 560

Greenhouses 2190

PVs 7770

Roofs 1445

Sport field flooring 266

distribution of sizes of the outer rectangles, it was found that the size distribution of
plastic products in the study area was wide-ranging, from several dozen pixels to several
thousand pixels. To cater the suggestion of fixed input image size in deep learning clas-
sification algorithms, the following strategy was employed in this study (Fig. 6.4). First,
a moving window of 5 x 5 pixels was used to determine the smallest polygon unit. This
window was then used to crop larger polygons into smaller patches. The centroid of each
cropped polygon subset was collected and used to create a bounding box with a size of 64
x 64 pixels, which served as the final input image size. By using the generated bounding
boxes to crop the Sentinel-2 dataset, examples of the final samples are depicted in Fig.
6.5.

Figure 6.5: Examples of Sentinel-2 image sections of (a) construction site cover, (b) greenhouses,
(c) voltaic panels, (d) pure roofs, (e) sport field

After cropping, the dataset contained 12,468 finely annotated plastic sites with 5
functional classes (Table 6.2). Each image contains information of the three MSI-channels
red (R), green (G), and blue (B).

Data were partitioned into training, validation, and test sets, which is an important
step in machine learning to prevent overfitting and to estimate the generalization perfor-

107



6 Identification of plastic functions using hyperspectral PRISMA and Sentinel-2 satellite data

mance of the models. The test set comprised 30% of the dataset, while the remaining
70% was divided into training and validation sets using a 7:3 ratio. The three sets were
spatially independent of each other. The final ratio of training, validation, and test dataset
was approximately 5:2:3.

6.4.2 Deep learning algorithms

CNNs are a highly effective choice for image classification tasks, as they have demon-
strated state-of-the-art performance on many benchmark datasets. The hierarchical rep-
resentation learning ability and spatial correlation handling capability of CNNs make them
particularly well-suited for image classification. These networks consist of multiple lay-
ers, including convolutional, pooling, and fully connected layers, which are responsible for
extracting features, reducing spatial dimensionality, and making predictions, respectively.
Models like the GoogLeNet (Szegedy et al., 2015), VGGNet (Simonyan and Zisserman,
2014), and ResNet(He et al., 2016) have proven their efficacy in various computer vision
tasks and have been widely adopted in various applications. In this study, these models
served as base models and were fine-tuned and compared to meet specific requirements of
identifying plastic functionality from satellite images.

6.4.2.1 GoogLeNet

GoogLeNet, also known as Inception, was introduced by Szegedy et al. (2014). It is de-
signed to reduce the computational complexity of deep neural networks through the use
of inception modules. The inception modules consist of multiple parallel convolutional
filters of varying sizes, which enable the network to learn multiple scales of features simul-
taneously. GoogLeNet introduced the concept of “Inception modules,” which are blocks
of network architecture that apply multiple filters of different sizes in parallel to extract
information at multiple scales (Fig. 6.2b.1). This allows the network to learn hierarchical
representations of the input image and reduces the number of parameters compared to
traditional ConvNets with sequential layers. GoogLeNet also employs global average pool-
ing and softmax activation functions, and uses auxiliary classifiers to improve the overall
accuracy of the network. These innovations help to set the stage for further advancements
in deep learning models for computer vision and have inspired many other models that
have been developed since.

6.4.2.2 VGGNet

VGGNet is a deep neural network architecture designed for image classification tasks,
developed by the Visual Geometry Group at the University of Oxford (Simonyan and
Zisserman, 2014). VGGNet has obtained state-of-the-art results on several benchmark
datasets and consists of multiple convolutional and fully connected layers (Fig. 6.2b.2).
The architecture emphasizes the use of small (3x3) convolutional filters and a deep network
structure with up to 16 weight layers. The Max pooling and ReLU activation functions
are used in VGGNet architecture. It is a widely cited model in computer vision and often
used as a benchmark for evaluating other deep learning models. In this study, VGG-11,
VGG-13, VGG-16, and VGG-19 models were utilized. These models differ in the depth
of the network, whereby VGG-19 has more weight layers compared to VGG-11, allowing
it to learn more complex representations of the input data.
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6.4.2.3 ResNet

ResNet is a deep CNNs developed by Microsoft Research (He et al., 2016) that addresses
the degradation problem in deep networks. The key innovation of ResNet’s structure is
the use of identity shortcuts, also known as skip connections. These shortcuts allow the
information to propagate directly from lower to higher layers of the network, alleviating
the problem of vanishing gradients and enabling the network to learn deeper architectures
with up to 152 weight layers (Fig. 6.2b.3). The use of identity shortcuts helps to improve
the stability and convergence during training, as well as reducing the reliance on a careful
weight initialization. This innovative structure of ResNet has been widely adopted in vision
tasks and continues to deliver a leading performance on various benchmark datasets.

6.4.3 Training

6.4.3.1 Data augmentation

The purpose of data augmentation is to make a model more robust to unseen data by
forcing it to learn from multiple variations of the same images. By using augmented data
in the training procedure, the model is better generalized and over-fitting to the original
training data is avoided. In this study, random transformations including flipping, scaling
and cropping are applied to training data. It is also common to perform the normalization
on data before the augmentation step. The normalization helps center the data and can
make it easier for the model to learn from the augmented data. In this study, normalization
is applied to each channel of images independently, using the mean and standard deviation
calculated from the entire dataset, including training, validation, and test sets.

6.4.3.2 Model tuning

Choosing right loss function is of major importance for model training. The negative log
likelihood loss (NLL Loss) was utilized for all models applied. This loss function is widely
used in supervised learning and is especially suitable for multi-class classification problems
(MIRANDA, 2017). As shown in Table 6.2, our dataset exhibits a class-imbalanced distri-
bution. Therefore, the weight of each class in the loss function was adjusted. To further
enhance the performance, the log-softmax function was employed in conjunction with the
NLL Loss. This activation function encourages the model to predict high probabilities for
the correct class, providing a well-behaved optimization objective (Vincent et al., 2015).

The log-softmax activation was applied in the last fully connected classification layer of
all models. The Adam optimizer was used for training, which is known for its efficiency and
effectiveness. The hyperparameters, including learning rate, batch size, training epochs
and drop-out rate were adjusted in this study. This involved a process of fine-tuning
the pre-trained ResNet, VGGNet, and GoogLeNet models, which were trained on the
ImageNet dataset, to achieve the best performance. The optimal settings were determined
independently for each model, through experimentation with different combinations. All
models were implemented in PyTorch 1.12.1 using Python 3.8. All neural networks was
trained with three NVIDIA Quadro P4000 GPUs, each with 8GB of memory.
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Table 6.3: Overall accuracy and Kappa coefficient of all models calculated on the test dataset.
OA: overall ac-curacy, κ: Kappa coefficient.

Models OA (%) κ

GoogLeNet 68.63 0.50

VGG-11 73.74 0.62

VGG-13 78.13 0.66

VGG-16 76.56 0.63

VGG-19 74.54 0.59

ResNet-18 72.32 0.56

ResNet-50 73.02 0.57

ResNet-101 76.36 0.63

ResNet-152 77.32 0.64

6.4.4 Evaluation

For the evaluation of the models, confusion matrices based on true labels were derived.
Statistical indices like recall, precision and overall accuracy (OA) were employed to deter-
mine the reliability and generalizability of classifier in categorizing the function of plastic
materials when applied to both validation and test sets. The F1-score were obtained
by calculating the harmonic mean of recall and precision to avoid bias from imbalanced
ground truth. The higher the F1 value the better the performance. Additionally, Cohen’s
kappa coefficient was considered to estimate the consistency and robustness of classifier.

6.5 Results

Each model was fine-tuned individually by learning rate, batch size, training epochs and
drop-out rate. For all selected depths of the three deep learning models, those parameters
that showed the highest accuracy for each model in the validation dataset were used to
evaluate the test set (Fig. 6.2c).

6.5.1 Model comparison

The classification performance of all models is evaluated by the overall accuracy (OA)
and the kappa coefficient on the test set (Table 6.3). All these standard models provide
an OA over 68%, giving a positive answer to the question of whether it is feasible to
use satellite images of 10 m GSD to predict the respective functions to hyperspectrally
identified plastic materials.

The GoogLeNet achieves the lowest OA value of all models at 68.93%. For ResNets,
it shows that the accuracy increases with the depth of the model, and the OA is highest
when using ResNet-152, reaching about 77%. For the VGGNets, the accuracy increases
with the greater depth first, followed by a consecutive decrease. The best OA value of
all models was reached by VGG-13 at 78%. In contrast, the lowest overall accuracy on
the test dataset was reached by the GoogLeNet model (¡70%) indicating that this model
may not be as effective as the other models in predicting the function of plastic materials
in the study region. Furthermore, these results highlight the importance of selecting the
appropriate machine learning algorithm for multi-class classification tasks.

The Kappa coefficient provides a measure of the agreement between the predictions
made by the models and the ground truth labels, adjusted for chance agreement. A kappa
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Table 6.4: Confusion matrix of the 5 function types of plastic materials calculated on the test
dataset using the trained VGG-13 model. Constr.: construction sheeting, G.houses:
greenhouses, Sport: sport field flooring. Recall values are highlighted in bold. P:
precision, F1: F1-score

Predict label (% Recall)
P F1

Constr. G.houses PVs Roofs Sport

True

label

Constr. 62.88 7.20 25.38 3.79 0.76 81.77 71.09

G.houses 0.88 74.01 18.83 5.26 1.02 79.47 76.64

PVs 0.60 6.44 88.32 4.64 0.00 82.57 85.35

Roofs 6.94 4.10 18.30 55.84 14.83 58.80 57.28

Sport 0.00 1.94 26.21 7.77 64.08 54.10 58.67

coefficient higher than 0.60 is generally considered to indicate a substantial agreement
between the predicted and actual classifications, indicating that the model is effectively
distinguishing between the different classes. Among all models, the VGG-13, VGG-16,
ResNet-101, and ResNet-152 exceeded 0.6. among them, the highest Kappa coefficient
reached 0.66 when using VGG-13. In summary, the VGG-13 model showed the best
performance in both the OA and Kappa coefficient.

6.5.2 Confusion matrix calculated on the test dataset

To gain a more detailed understanding of the best model’s performance, a confusion matrix
of the trained VGG-13 model was calculated, shown in Table 6.4. This reveals, that
the number of samples in each class varied significantly (Table 6.2). The imbalance of
categories may in-fluence the performance of the classifier as it might have learned to
prioritize those catego-ries with a high number of samples at the expense of categories
based on a lower number of samples. To address this issue, we used class weighting in
the loss function during model training, with weights of 2, 2, 1, 3, and 9 for the plastic
sheeting for construction site covers, greenhouses, PVs, roofs, and sport field floorings,
respectively. The weighting helped to bal-ance the importance of each class in the training
process, potentially improving the classifi-er’s performance on classes provided with a lower
number of samples.

The diagonal values in the confusion matrix reveal the recall rate. Examining the
values in the confusion matrix, it can be seen that the model had varying levels of per-
formance for the different classes. Of the models tested, PVs had the highest recall rate
at approximately 88%, greenhouses reach 74%, while roofs had the lowest recall rate at
around 56%. What the remaining classes is concerned, more than 18% of samples were
falsely classified as PVs. As for the roof materials, about 14% were misclassified as sport
field flooring. In terms of precision and F1 score, these scores provide insight into the
classifier’s ability to identify instances for each class and balance.

Starting with the plastic sheeting for construction areas, we observe a high precision
score of 0.82 and an F1 score of 0.71, indicating that the model is able to correctly identify
instances for this class with high accuracy while maintaining a reasonable balance between
precision and recall. This suggests that the classifier is effective in distinguishing the plastic
sheeting for construction area from other functions, which is an encouraging result. The
precision score for greenhouses is 0.79, and the F1 score is 0.77, which are slightly lower
than those of the first function type but still in the range of high precision and a good
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balance between precision and recall. This suggests that the classifier still works well in
identifying greenhouses.

For PVs, we observe a high precision score of 0.83 and an F1 score of 0.85, which
is similar to that of the construction area sheeting. This indicates that the classifier
is similarly effective in distinguishing PVs from other classes while maintaining a high
balance between precision and recall. All in all, these results make it clear that the classifier
is performing well in identifying instances for the plastic sheeting for construction sites,
greenhouses and PVs.

The precision and F1 scores for roof materials and sport field floorings are somewhat
lower than those of the other classes. The precision score for roofs is 0.59, with an F1 score
of 0.57, and the values of sport fields are 0.54 and 0.59, respectively. These results indicate
that the classifier is not as effective in recognizing these two categories, also showing a
significant imbalance between precision and recall. This further implies the need for a
potential improvement in the classifier’s performance concerning these categories. Thus,
further research is necessary to identify the reasons for the varying levels of performance
and to develop strategies for an improvement.

6.6 Discussion

6.6.1 Assessment

The results of our study demonstrate the feasibility of using deep learning frameworks
based on Sentinel-2 satellite images for a viable functional classification of plastic ob-
jects. The VGG-13 model achieved the highest overall accuracy, with the PVs category
exhibiting the best precision and F1 scores, suggesting that the model is very effective in
distinguishing this functional category from others. The accurate identification of solar
panels (PVs), by our model approach can provide precise information for the development
and utilization of clean energy, thus contributing to environmental protection and a sus-
tainable development. The high-grade identification of greenhouses and construction site
covers is also essential, as these are the most likely sources of plastic waste among the five
elaborated functional classes. The model achieved the second and third highest precision
and F1 scores for these categories, and thus, can help guiding environmental management
and policy-making. The precision and F1 scores for roofs and sports fields are of viable
quality, whereby the lower results may be attributable to the high visual similarity of
the plastic functional areas and/or the relatively few amount of samples of these cate-
gories. Future research could focus on increasing the sample number of these classes and
investigate the performance of the model under different hyperparameters. Our findings
also underscore the importance of using appropriate weights in the loss function, with the
highest weight given to the sport fields category due to the limited number of samples.

Overall, the results of the analysis of the indicator matrices provide valuable insights
into the performance of the classifier on the test dataset. The findings suggest that the
classifier is effective in identifying specific functions, while there is potential for improve-
ment in identifying other classes.

6.6.2 Visualization

As mentioned in Section 6.4.1.3, the original plastic objects were cropped by a 5x5 pixel
window, thus, there can be several predictions for one larger plastic object. To solve this

112



6.6 Discussion

issue, we determined the final assignment of the function of each entire plastic object by
means of a voting procedure. Thereby, the plurality of the model’s predicted values for
all subsamples will be the predicted value of the plastic object.

Fig. 6.6 shows representative subscenes of the ground truth map (left) and the fi-
nal function map (right) generated based on the VGG-13 and voting procedure. In the
subscenes a/b1 most of the polygons of construction sheeting are assigned the right func-
tionality. The few misassignments as greenhouses or roofs are due to smallest polygons.
For subscenes a/b2 greenhouses and a/b3 sport field floorings also large area polygons
are misjudged while the respective ground truth map does not show any significant differ-
ence to the remaining ones. Photovoltaic panels a/b4 are classified very accurately, only
again one small area polygon is misassigned as construction sheeting. Roofs are depicted
together with minor PVs in subscene a/b5. Roofs are generally of smaller size and es-
pecially those with the smallest extension are again misassigned here. The results of all
functionalities in the subscenes are representative for the entire classified Sentinel-2 scene,
what can be inspected by zooming into it.

There is a clear trend to misassignments of functions when training targets are to
small, mostly because of their natural structure such as roofs or sport fields. A suitable
solution may be found in (future) higher resolving remotely sensed data. What the larger
misclassified training targets is concerned, there is no obvious difference to those correctly
assigned. Here an improvement can be achieved by additional training data.

6.6.3 Challenges and limitations

Although this study has demonstrated the feasibility of using deep learning models for
plastic functional recognition, there are also challenges and limitations that need to be
addressed. The main challenge is the limited availability of labeled data. To train deep
learning models more effectively, a large amount of labeled data is required, especially
for collecting samples from roofs, sport fields and eventually additional categories. This
could be a major challenge for a global monitoring approach, as plastic materials with the
same function in different regions may have different forms or surrounding environments.
Therefore, a large number of diverse samples is needed to represent this inter-class diver-
sity, although accurate labeling of samples requires a considerable amount of time and
effort.

Besides, we used pre-trained weights for all model initializations. While this con-
tributes significantly to the accuracy improvement of the model, one is limited to using
only RGB images (real color composites) as input, although other spectral bands might
be more suitable. When not initialized with pre-trained weights, the best overall accuracy
of the model is only about 46% based on the dataset used in this study. A large amount
of training data is further needed in order to get rid of the pre-trained weights. This
way, the input can also be extended to more bands present in the Sentinel-2 data and the
plastic type information obtained from the hyperspectral analysis can also be used as an
additional band.

Another limitation of this study is that, although the training, validation and test
datasets were spatially independent of each other, they are for feasibility reason all located
in one study region in the Shandong Province. This may limit the generalizability of the
models, as their ability to generalize to unseen areas cannot be fully assessed. Thus,
future works could explore the model’s performance on datasets with more diverse spatial
distributions.
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Figure 6.6: Enlarged subscenes of Sentinel-2 imagery, (a1-a5) superimposed with the ground
truth map of the respective functions (colors) of plastic materials in polygons, and
(b1-b5) with filled polygons as a result of the function assignment using the VGG-13
model. Misclassifications are depicted when the colors of polygons and fillings are
differing (e.g. top b2; bottom right b5). Only polygons included in the test dataset
are displayed.
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6.7 Conclusion

The requirement for prior knowledge of plastic distribution through hyperspectral
imaging introduces additional challenges to the automation of plastic functional recogni-
tion. This is because the collection and analysis of hyperspectral data is time-consuming
and requires specialized expertise to ensure accurate identification and classification of
plastic materials. Furthermore, the need to register the basic plastic classification map
with the Sentinel-2 image each time the model is applied can be a time-intensive process,
further limiting the efficiency and scalability of the plastic recognition system.

To overcome the challenges and limitations mentioned above, further investigations
could be conducted to either develop end-to-end models that do not require prior knowl-
edge of the plastic distribution or to simplify the registration process of classification maps
with Sentinel-2 images. These advances can contribute to the overall goal of reducing plas-
tic waste and promoting sustainability through improved plastic functional recognition and
management.

6.6.4 Outlook

For our ultimate goal of identifying plastic functionality, the aim is actually to use satel-
lite imagery to identify non-functional plastic waste that needs to be cleared. We think
our approach has the potential to be a valuable tool in addressing this goal, but what
plastic waste is concerned, there is a dependency on a number of future technological and
methodological developments.

First of all, plastic waste is usually distributed in small quantities, so, to be able to
detect them, there is a need of hyperspectral systems with better spatial resolutions than
those presently available at 30m GSD. Moreover, future research in artificial intelligence
should focus on developing deep learning models specifically made for the recognition of
plastic functionality, and the availability of more labeled data with higher spatial resolu-
tions for training of these models. Data of high-resolution commercial satellites can be a
solution, and may improve the level of details captured and thus, enhance the classification
accuracy, but the data of those presently operating are rather expensive with a limited
availability.

In our future research, we aim to develop an end-to-end deep learning model for
functional classification of plastics. We plan to collect and label more samples recorded
by different sensors and we intend to integrate this classifier with multiple sources of
data to achieve more intelligent recognition capabilities. Our ultimate goal is to improve
the overall performance and applicability of the classifier, and to make further significant
contributions to the field of plastic (waste) management.

6.7 Conclusion

As a follow-up task to our two previous works, this study demonstrates the feasibility of
using deep learning models trained on satellite imagery to identify the functionality of
plastics on land surfaces. Thereby, it proposes a two-stage workflow. First, we obtained
a classification map identifying 10 distinct plastic types based on the analysis of hyper-
spectral PRISMA satellite data with 30m GSD. Based on color composites of Sentinel’s-2
red, green, and blue bands with 10m GSD a deep learning algorithm was used to assign
functions to the initially classified plastic polygon objects. Five clearly salient functionali-
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ties were found to be existing in the study area including plastic sheeting for construction
sites, greenhouses, PVs, roofs, and sport fields.

The study demonstrates the feasibility of using a deep learning framework based on
Sentinel-2 satellite imagery for the accurate classification of the functions of plastic objects,
where the scores for the category roofs and sports fields show viable findings and solar
panels, greenhouses, and construction site covers show best results. Near future research
will focus on increasing the sample number and investigating the performance of the model
under different hyperparameters. This study further highlights the importance of using
appropriate weights in the loss function, especially for categories with limited amounts of
samples.

The use of satellite imagery and deep learning to functionally classify plastics can aid
in monitoring and evaluating their distribution and impact on the environment, providing
guidance for environmental management while also providing valuable data for plastic
pollution control. An accurate classification of functional plastics, such as solar panels, can
enhance the monitoring and evaluation of clean energy potential and efficiency. Although,
there are challenges such as inadequate spatial resolutions, the need for more tagging data
and alignment of different data sources, is an important step towards addressing global
plastic waste management.
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7.1 Synthesis

Due to the increasing attention being paid to the impact of plastics on ecosystems and
human health, there is a growing interest in using remote sensing techniques to monitor
and identify plastic materials and associated wastes in the terrestrial environment. For
this reason, the presented thesis examined the capability of existing optical remote sens-
ing technologies to detect and identify various sorts of plastics. Recent developments in
sensor technology, data accessibility and evaluation methods now allow the utilization of
increasing amounts of data analyzable by new advanced algorithms and models. In this
context, the present thesis takes an in-depth look at the potential of optical remote sens-
ing technology to identify different types of plastics that are to be found on land surfaces.
By conducting several sequential feasibility studies, the thesis aims to shed light on the
effectiveness of this technology in addressing the growing concern of plastic pollution. The
three consecutive studies presented in this thesis explore different aspects of the feasibility
of using optical remote sensing for this purpose, providing a comprehensive understanding
of the topic.

It demonstrates the feasibility and potential of using machine/deep learning models
trained on multi-, super-, and hyperspectral satellite imagery to detect various types of
plastics, and even determine their functionality on terrestrial surfaces. The first study
showed that a knowledge-based classifier can be used to identify most common plastic
materials of the aliphatic and aromatic groups with high hit ratios and robustness, without
requiring any training data or statistical approaches. The second study demonstrated
that a conventional random mixing strategy can be used to synthetically generate spectral
training and test datasets from so-called endmember spectra taken from available inhouse
and international accessible databases. Of several applied classifiers the RF model was
shown to be the most robust and reliable and produced the best results for plastic detection
at different background scenarios. Finally, the third study proposed a two-stage workflow
to now assign functionality to the hyperspectral classified plastics. The results were found
to be accurate for different categories, including solar panels, greenhouses, and covers of
construction sites.

The combination of these three studies offers a promising approach to addressing the
global plastic waste crisis, providing valuable data for pollution control and environmental
management. The use of satellite imagery and deep learning models can aid in monitoring
and evaluating the distribution and impact of plastic waste, helping to identify areas in
need of intervention and providing guiding efforts towards a cleaner environment.

In conclusion, the results of these studies should encourage and highlight the potential
of using satellite imagery and machine/deep learning models to address the plastic waste
issue. The continued development of these techniques and their widespread adoption could
be a significant step towards a more sustainable and environmentally conscious future.
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7.2 Outlook

The trend of increased data availability is set to continue with the launch of several new
hyperspectral satellite systems providing data in the VNIR-SWIR spectral range for the
next few years. The development of sensor technology is anticipated to enhance spectral
sampling and radiometric performance, leading to better signal-to-noise ratios at higher
spatial resolutions (Rast and Painter, 2019). The German ENMAP launched on April 1,
2022 is one of a new generation of instruments (Guanter et al., 2015) that just started
to provide additional hyperspectral data from space. It has similar technical specifica-
tions to PRISMA, for which applications for data acquisition were opened in late 2022.
PRISMA and EnMAP will coexist with other similar and complementary missions such as
the Italian-Israeli Space Hyperspectral Applications Land and Ocean Mission SHALOM
(Feingersh and Dor, 2015), which supposes to obtain an increased spatial resolution of
10 m. The mission will mainly focus on commercial uses and applications in coastal zone
ecosystems. Next-generation hyperspectral satellite missions launched from the mid-2020s,
such as ESA’s new Sentinel Candidate CHIME (Nieke and Rast, 2018), and NASA’s SBG
satellite (Cawse-Nicholson et al., 2021), are designed with wider swath widths providing
larger scenes and an improved repetition rate allowing a higher rate of up-to-dateness.
Due to an expected steady improvement of the detector technology, future hyperspectral
instruments might also provide higher spatial resolutions at adequate signal to noise ra-
tios. That would offer the possibility to detect even smaller congregations of plastic and
as such more waste and garbage. Here, an ultimate objective is to utilize satellite imagery
for the identification of non-functional plastic waste, and we believe that our approach can
be a valuable tool for achieving this goal. Technical improvements may further help to
address the presently hardly avoidable misclassification of polymers with chemical com-
positions similar to plastic such as asphalt, whose spectral signatures a very similar to
those of plastic of the aliphatic group. Also, the effect of plastic thickness needs more
accurate attention and to be considered for future quantitative studies of transparent or
translucent plastic materials, as thin plastics may not be recognizable to the classifier.
Further, the degradation of plastics, which often involves the breaking of chemical bonds,
has not been explicitly considered, although some of the lab experiments and simulation
studies conducted involved samples collected from the open environment. Future research
should also explore the quantification ability of classifiers considering the thickness and
degradation of plastics, as well as broadening its application to other targets. Moreover,
the fusion with multi-source data to achieve additional intelligent recognition functions
can be a goal for the future.

As well our study has confirmed that optical remote sensing is not sensitive enough to
detect dark to black plastics with an average reflectance of less than 10%. In such cases,
hyperspectral thermal sensors, which can detect the fundamental vibrations of C-H bonds
in the TIR, are a more promising option. But until today only a very limited number
of studies explored the feasibility of using thermal infrared wavelengths to identify plas-
tics (Goddijn-Murphy et al., 2022; Nogo et al., 2021; Goddijn-Murphy and Williamson,
2019), and the synergistic potential of solar reflectance spectroscopy and thermal emis-
sion spectroscopy is unexplored so far. For example the ECOSystem Spaceborne Thermal
Radiometer Experiment (ECOSTRESS) is equipped with a 6-band multispectral thermal
camera that has been installed on the International Space Station since mid-2018 (Hook,
2019). Due to its design features, it can be considered a further promising tool for moni-
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toring large-scale plastics and its effectiveness should be evaluated through testing. In this
context, also very high-resolution commercial satellite data can improve the classification
accuracy, but these are currently prohibitively expensive and moreover difficult to obtain.

What artificial intelligence is concerned, we will concentrate on creating deep learning
models tailored specifically for the identification of spectral plastic signatures and provid-
ing more tagged data with higher spatial resolution to train these models. Thus, we intend
to further develop an end-to-end deep learning model for the functional classification of
plastics. Thereby, we plan to gather and tag more samples captured by different sensors
and integrate this classifier with various data sources to improve its intelligent recognition
capabilities. Our ultimate aim is to enhance the overall performance and usefulness of
our classification scheme and make further substantial contributions to the field of plastics
(waste) detection and management.
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Beć K, Grabska J, Czarnecki M (2018) Spectra-structure correlations in nir region: Spectroscopic
and anharmonic dft study of n-hexanol, cyclohexanol and phenol. Spectrochimica Acta - Part
A: Molecular and Biomolecular Spectroscopy 197:176–184, DOI 10.1016/j.saa.2018.01.041
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