
TUM School of Computation, Information and Technology
Technische Universität München

An Industrial Sensor Data Processing
and Query System

Roman Johannes Karlstetter

Vollständiger Abdruck der von der TUM School of Computation, Information and
Technology der Technischen Universität München zur Erlangung des akademischen
Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz:
Prof. Dr.-Ing. Jörg Ott

Prüfer der Dissertation:
1. Prof. Dr. rer. nat. Martin Schulz
2. apl. Prof. Dr.-Ing. Walter Stechele

Die Dissertation wurde am 26.06.2023 bei der Technischen Universität München
eingereicht und durch die TUM School of Computation, Information and Technology
am 07.11.2023 angenommen.

iii

Acknowledgments
I would like to use this space to express my heartfelt gratitude to all who have con-
tributed to the completion of this dissertation.

First, I would like to sincerely thank Prof. Dr. Martin Schulz for supervising me,
especially for helping me structure the various aspects of this work and our previous
publications. His expertise and insightful feedback have been invaluable throughout
this entire process. I want to thank Prof. Dr.Walter Stechele for agreeing to serve as the
second examiner of this work. I also especially want to thank Prof. Dr. Carsten Trinitis
for his continuous help. He has been active during the whole path (and actually even
before that as advisor of my master thesis), including project application, project team
recruiting, research discussions and reading the (almost) final version of this thesis. I
am also grateful to Amir Raoofy for the endless technical discussions, in particular at
the beginning of TurbO. I think our collaboration was very fruitful—this definitely can
not be taken for granted. I also want to thank all other members of the CAPS chair.
Even though I was at the chair only occasionally, I always felt very welcome.

I would like to expressmy deepest gratitude tomy employer IfTAGmbH, particularly
Dr. Jakob Hermann, for allowing me to research in such an exciting industrial environ-
ment. Without his entrepreneurial courage and the initial idea for this whole project,
HAQSE and this dissertation would not exist. Working at the intersection of indus-
trial application and academics has not always been straightforward, but I always had
the freedom to work on the aspects I deemed essential. I am incredibly grateful to Dr.
Robert Widhopf-Fenk for mentoring me during this journey. Our regular discussions
about technical details and other not-so-technical aspects contributed significantly to
keeping my motivation alive. A big thank you also goes to all my other colleagues at
IfTA. The list of names exceeds the space on this page, but be assured that I am very
grateful for all the discussions and delicious lunch breaks we had together.

I also want to thank SWM, particularly Julius Becker, for providing us access to all
this sensor data and for taking care of regularly exchanging HDDs.

I am indebted to everyone else proofreading and providing valuable feedback on
(parts of) earlier versions of this dissertation: Paul Rötzer, Fabian Legl, Alexander Au-
mann, Dr. Driek Rouwenhorst.

Finally, I’d like to thank my family and friends for their unwavering support.
I am grateful to the funding organization Bayerische Forschungsstiftung: they partly

sponsored this work under the research projects “Optimierung von Gasturbinenmit Hilfe
von Big Data” (AZ-1214-16) and “Von der Edge zur Cloud und zurück: Skalierbare und
Adaptive Sensordatenverarbeitung” (AZ-1468-20).

v

Abstract
Complex systems represent the backbone of our modern society. To manage this com-
plexity, operators of such systems are relying on monitoring their assets with sensors.
As the requirements for these complex systems increase, the amount and sophistica-
tion of the employed sensor technology also increase. Consequently, the amount of
generated sensor data is growing continuously, too. This creates several challenges for
downstream systems to handle and process these sensor data streams. First, the data
rate at which sensor data is generated keeps increasing for two main reasons: On the
one hand, sampling rates for individual sensors increase, exceeding 100 kHz in some
applications. On the other hand, the number of sensors per monitored machine is
growing. This makes it possible to improve, e.g., the spatial fidelity of the monitored
data. As a consequence of the increasing data rate, the amount of required storage
space increases accordingly. In addition, the requirements with regard to retrieving
such large amounts of sensor data keep growing. Users retrieve this data for a variety
of different applications. They require large time spans of sensor data to be ready to
use in interactive data exploration tasks like, e.g., interactive visualization. Moreover,
sensor data is used for other analytic tasks like training machine learning models or
other forms of algorithm development. Finally, users expect data from different, geo-
graphically distributed systems to be easy to integrate into their analyses. In essence,
users of industrial sensor data require retrieval with low latencies and high throughput.

However, existing systems do not fulfill all these requirements. In this dissertation,
we present HAQSE, a Hierarchical Aggregation and Query StorE. HAQSE is a sensor
data processing and storage system that solves three main challenges. First, HAQSE
is optimized for consuming high data rate sensor streams. We show that HAQSE can
consume sensor streams faster than any other system we include in our experiments.
Second, HAQSE efficiently uses the available storage space for long-term sensor data
storage. This is done by employing a lossless compression technique specifically tar-
geted at noisy floating-point data. Third, sensor data stored in HAQSE can be retrieved
with high throughput and low constant overhead. This is achieved by using an appro-
priate data storage layout and a binary protocol for query responses. For enabling
interactive queries of large time spans, HAQSE relies on precomputed hierarchical ag-
gregations. Lastly, HAQSE supports queries on data that is available on geo-distributed
instances.

All these results make it possible for contemporary and future sensor processing
applications to increase sensor stream rates further. Ultimately, all this contributes
significantly to the stable operation of modern and complex infrastructures.

vii

Zusammenfassung

Komplexe Systeme bilden das Rückgrat unserer modernen Gesellschaft. Um die Kom-
plexität dieser Systeme beherrschbar zu halten, überwachen Betreiber ihre Anlagen
mit einer Vielzahl an verschiedenen Sensoren. Mit den steigenden Anforderungen an
diese komplexen Systeme steigt auch die Anzahl und Qualität der eingesetzten Sen-
sorik. Folglich nimmt auch die Menge der generierten Sensordaten kontinuierlich zu.
Die Verarbeitung dieser Sensordaten in nachgelagerten Systemen ist mit einigen Her-
ausforderungen verbunden. Erstens steigt die Datenrate, mit der Sensordaten erzeugt
werden. Dies hat zwei Gründe: Einerseits steigen die verwendeten Abtastraten; diese
übersteigen schon heute in einigen Anwendungen die Marke von 100 kHz. Zum an-
deren steigt die Anzahl der Sensoren pro überwachter Anlage, um den Detailgrad im
generierten Datensatz zu erhöhen, also zum Beispiel um die räumliche Auflösung der
überwachten Anlage in den Sensordaten zu verbessern. Als Folge der immer größeren
Datenraten steigt auch der benötigte Speicherplatz, um die Sensordaten langfristig
abzuspeichern. Darüber hinaus steigen die Anforderungen an den Zugriff auf solch
große Sensordatenmengen ständig. Verschiedene Nutzer benötigen die gespeicherten
Sensordaten für unterschiedliche Anwendungen. Diese Nutzer benötigen oft große
Zeitspannen an Sensordaten, zum Beispiel für die interaktive Visualisierung. Außer-
dem werden Sensordaten für analytische Aufgaben wie das Training von Machine-
Learning-Modellen oder andere Formen der Algorithmenentwicklung verwendet. Des
Weiteren erwarten Nutzer, dass Sensordaten aus geografisch verteilten Systemen ein-
fach in Datenanalysen nutzbar sind. Im Wesentlichen fordern die Nutzer von industri-
ellen Sensordaten, dass Abfragen mit geringen Latenzen und hohem Durchsatz durch-
geführt werden können.

Bestehende Systeme erfüllen jedoch nicht alle diese Anforderungen. Diese Disser-
tation stellt HAQSE (Hierarchical Aggregation and Query StorE) vor, ein System zur
Verarbeitung und Speicherung von Sensordaten, das drei wesentliche Herausforderun-
gen löst. Erstens: HAQSE ist für die Verarbeitung von Sensordatenströmen mit hoher
Datenrate optimiert. Diese Arbeit zeigt, dass HAQSE Sensordatenströme schneller als
jedes andere von uns untersuchte System verarbeiten kann. Zweitens: HAQSE nutzt
den verfügbaren Speicherplatz für die langfristige Speicherung von Sensordaten ef-
fizient aus. Dies wird durch die Entwicklung einer verlustfreien Kompressionstech-
nik erreicht, welche auf verrauschte Gleitkommazahlen zugeschnitten ist. Drittens: in
HAQSE gespeicherte Sensordaten können mit hohem Durchsatz und geringem kon-
stanten Overhead abgerufen werden. Dies wird durch die Verwendung eines geeignet-
en Speicherlayouts und einem binären Protokoll für die Beantwortung von Abfragen

Zusammenfassung

viii

ermöglicht. HAQSE nutzt vorberechnete hierarchische Aggregationen um Abfragen
über große Zeitspannen von Sensordaten in interaktiver Geschwindigkeit ausführen
zu können. Schließlich unterstützt HAQSE auch Abfragen von Sensordaten, die auf
geografisch verteilten Instanzen vorliegen.

All diese Ergebnisse ermöglichen es, den aktuellen und zukünftigen Ansprüchen der
Sensordatenverarbeitung sowie steigenden Sensorabtastfrequenzen und damit Daten-
raten gerecht zu werden. Diese Arbeit zeigt, dass HAQSE die Analyse von Sensordaten
erheblich beschleunigen kann. Damit hilft HAQSE Anlagenbetreibern und Ingenieuren
bei der Entscheidungsfindung und der Entwicklung neuartiger Methoden zur Analyse
von Sensordaten. All dies trägt letztendlich auch maßgeblich zu einem stabilen Betrieb
unserer modernen Infrastruktur bei.

ix

Contents

Acknowledgments iii

Abstract v

Zusammenfassung vii

Contents ix

1 Introduction 1
1.1 Motivating Application Example: CombustionMonitoring in Gas-Fired

Power Plants . 2
1.2 Challenges . 4
1.3 Approach . 7
1.4 Contributions . 9
1.5 Thesis Organization . 11

2 Context, Requirements and Related Work 13
2.1 Definitions . 13
2.2 Example Application Domains & Scenarios 18

2.2.1 Application Domains . 18
2.2.2 Application Scenarios . 21
2.2.3 General Properties of Industrial Sensor Data 22

2.3 Requirements Analysis . 24
2.3.1 Long-Term Storage Requirements 24
2.3.2 Sensor Stream Consumption Requirements 25
2.3.3 Query Requirements . 26

2.4 Related Work . 27
2.4.1 Time Series Management Systems 27
2.4.2 Compression of Sensor Data 30
2.4.3 Other Related Aspects . 31

3 HAQSE: System Overview 33
3.1 Highlights of HAQSE . 33

3.1.1 Main Concepts and Ideas in HAQSE 33
3.1.2 Non-Goals of HAQSE . 35

Contents

x

3.2 Data Model and System Interfaces . 37
3.2.1 Sensor Data Stream Input . 37
3.2.2 Query Interface . 37
3.2.3 Hierarchical Data Model . 38

3.3 System Architecture Overview . 38
3.3.1 Stream Storage . 40
3.3.2 Stream Processing . 41
3.3.3 Query System . 41
3.3.4 Combining Components in a Holistic System 42

3.4 Implementation . 42
3.4.1 Input Interface Definition . 43
3.4.2 Query Interface Definition . 45

4 Efficient Storage of Industrial Sensor Data 47
4.1 Storage Model . 48

4.1.1 Adding and Deleting Data . 48
4.1.2 Data Layout . 49

4.2 Two-Step Floating-Point Compression 53
4.3 Implementation in Apache Parquet . 56

4.3.1 Apache Parquet: Format Details 56
4.3.2 Two-Step Compression . 57

4.4 Storage Efficiency and Throughput Evaluation 59
4.4.1 Evaluation Questions . 59
4.4.2 Experimental Setup . 60
4.4.3 CQS1: Performance of Byte Stream Split 61
4.4.4 CQS2: Influence of Dataset Properties on Byte Stream Split Ef-

fectiveness . 62
4.4.5 CQS3: Compression Ratio Performance 66
4.4.6 CQS4: Compression Performance on Sensor Data 67
4.4.7 CQS5: Storage Efficiency Analysis for Real-World Dataset . . . 70
4.4.8 Evaluation Summary . 72

5 Sensor Data Stream Transformation & Processing 73
5.1 Overview of Sensor Data Stream Processing 73
5.2 Three-Stage Stream Ingestion Pipeline 74

5.2.1 Layout Transformation to Sensor-Ordered Buffer 75
5.2.2 Intermediate Buffering In Temporary Columnar Files 76
5.2.3 Compaction: Combining and Compressing Sensor Data from

Intermediate Files . 78
5.2.4 Implementation inHAQSEusing gRPC, ApacheArrow&Apache

Parquet . 81

Contents

xi

5.3 Hierarchical Windowed Data Aggregation 82
5.3.1 Formalization of Batch Aggregation 83
5.3.2 Aggregation Process . 84

5.4 Experimental Setup . 86
5.4.1 Hardware and Software Environment 87
5.4.2 Data Generator . 88
5.4.3 Stream Adapters . 90
5.4.4 Validating the Experimental Setup: HDD Performance 91
5.4.5 Validating the Experimental Setup: Generator & Adapters . . . 93

5.5 Stream Consumption: HAQSE Parameter Evaluation 98
5.5.1 Parameter Classification and Methodology 99
5.5.2 Layout Transformation Evaluation: Batch Size 100
5.5.3 Layout Transformation Evaluation: Size of Temporary Buffers . 102
5.5.4 Persisting Data to Temporary Files 104
5.5.5 Batch Aggregation Isolated . 106
5.5.6 Compaction Isolated . 112
5.5.7 Full Pipeline Test . 118
5.5.8 Summary of HAQSE Parameter Evaluation 122

5.6 Stream Consumption: Comparison with State-Of-The-Art 124
5.6.1 RQ1: State-Of-The-Art System Ingest Rates 125
5.6.2 RQ2: Comparison of HAQSE With State-Of-The-Art Systems . 127
5.6.3 RQ3: Influence of Hardware on Ingestion Rate 128
5.6.4 Comparison Summary . 129

6 Querying Sensor Data 131
6.1 Efficient Query Processing . 131

6.1.1 Stream Segment Index . 131
6.1.2 Query Processing Logic . 133

6.2 Distributed Querying . 134
6.3 Evaluation of Single Node Querying . 137

6.3.1 Evaluation Environment . 137
6.3.2 In-Memory Segments . 139
6.3.3 Page Cache Effects . 139
6.3.4 Unfinished Apache Arrow Segment 141
6.3.5 Apache Arrow vs. Apache Parquet 142
6.3.6 Influence of Parquet Parameters 143
6.3.7 Scaling Stored Stream Schema 147
6.3.8 Scaling Result Set Size . 147
6.3.9 Concurrent Ingestion and Data Retrieval 150
6.3.10 Single Node Query Evaluation Summary 151

6.4 Evaluation of Distributed Querying . 152
6.4.1 Evaluation Environment . 152

Contents

xii

6.4.2 Multinode Baseline . 154
6.4.3 Two-Node Analysis . 156
6.4.4 Real-World Multi-Node Case 157

7 Integration into Industrial Infrastructure Monitoring Systems 163
7.1 General Integration Guideline . 163

7.1.1 Meeting HAQSE’s Requirements 164
7.1.2 Stream Ingestion . 165
7.1.3 Query Processing . 165
7.1.4 Application Specific Configuration 165

7.2 IfTA Infrastructure for Monitoring and Protecting Gas-Fired Power Plants 166
7.2.1 Application Context: IfTA GmbH 166
7.2.2 ExistingMonitoring, Protection andAnalysis Infrastructure: IfTA

ArgusOMDS . 166
7.2.3 IfTA Argus Data Format & Argus Online Protocol 168

7.3 Integrating HAQSE into IfTA Monitoring Infrastructure 170
7.3.1 Data Input: Connection to Argus Data Format & Argus Online

Protocol . 171
7.3.2 Fast Interactive Exploratory Data Analysis 173
7.3.3 Driving Machine-Learning-Based Anomaly Detection 177

7.4 Integrating HAQSE into the Sensor Processing Pipeline of a Gas-Fired
Power Plant . 178

8 Future Work and Conclusions 183
8.1 Future Work . 183
8.2 Conclusions . 184

A Implementation Details of HAQSE 189
A.1 HAQSE File System Layout . 189
A.2 gRPC Input Protocol Definition . 189
A.3 Example HAQSE Query Client . 192
A.4 Query Sequence . 193

Appendices 189

Acronyms 195

Glossary 197

Bibliography 199

1

1 Introduction

Various aspects of our daily lives are driven by complex systems. In many cases, much
of this complexity is completely hidden from general awareness. One such example is
the energy sector, more specifically, generation of electrical energy. Even an excerpt
from the list of challenges looks demanding: producers need to collaboratively fulfill
the varying demand over the course of the day, and energy needs to be distributed
from producers to consumers that may be geographically far apart, while keeping the
power grid stable at the nominal frequency. All of this is especially challenging in the
face of the inevitable transition to renewable but more volatile energy sources. One key
technology that can help in this transition process are gas-fired power plants, employ-
ing heavy-duty gas turbines at their core. These gas turbines can flexibly be turned on
and off to satisfy demand peaks or during times when energy generation from solar
and wind is low. Furthermore, gas turbines help to stabilize the grid, as they contribute
to the required rotational inertia [64, 106]. They also can be controlled precisely and
quickly, providing primary frequency control that is used to, e.g., compensate rapid
changes in demand [83]. Gas turbines can also be operated usingmore climate-friendly
fuel mixes, e.g., adding green hydrogen or other synthetic fuels as an energy source.

However, the combustion process in gas turbines is prone to thermoacoustic insta-
bilities, especially when changing the employed fuel mix [13, 67]. At the same time,
economic pressure is constantly staying on a high level, and ecological and political
regulations for operating such power plants are getting stricter [25]. Consequently,
operators of such infrastructure are required to build measures to better understand
and control the behavior of the various components of such power plants. One of the
strategies pursued is to continuously monitor the combustion process, using dynamic
pressure sensors. The number and quality of these sensors are growing steadily [107,
130], and so does the generated amount of sensor data.

The described trend towards increasing the amount of sensing technology installed
for monitoring complex systems is not unique to gas-fired power plants. As another
example from the energy generation sector, wind turbines require measures to prevent
ice building up on blades in cold temperature environments [133]. Similar develop-
ments can be observed in many other industrial applications. In data centers or high-
performance computing centers, operators face challenges regarding energy-efficient
and thus economically viable operation. It is thus indispensable to monitor the energy
consumption behavior of such computing centers [52, 78, 84]. Similarly, sensor data
also plays a vital role in experimental research facilities like CERN. These build and

1 Introduction

2

deploy sophisticated data acquisition systems to process and store data generated by
experiments [132].

In short, there is a general trend in many industry sectors towards equipping com-
plex systems with more sensor technology. In this dissertation, we address processing,
storage, and retrieval of the increasing volume of sensor data that industrial applica-
tions continuously generate. We introduce a sensor data processing and storage system
calledHAQSE that improves over the state of the art in multiple dimensions and is suit-
able for many real-world industrial applications. While this research was motivated by
the specific application of combustion monitoring in gas turbines, the developed ap-
proach and methods generally apply to a wide variety of scenarios. The presented ap-
proach is suitable for any application that produces large amounts of structured sensor
data.

In the remainder of this first chapter, we start with a more detailed explanation of
our motivating example of combustion monitoring (Section 1.1). After that, we gener-
alize this use case and discuss the motivation and challenges of this work (Section 1.2).
Based on this, we sketch our approach (Section 1.3). Lastly, we highlight our main
contributions (Section 1.4), and outline the further structure of this thesis (Section 1.5).

1.1 Motivating Application Example:
Combustion Monitoring in Gas-Fired Power Plants
As sketched at the beginning of this chapter, there are several applications that employ
sensors for continuous monitoring. In this section, we demonstrate the particular chal-
lenges and requirements for a sensor processing and storage system using the specific
example application of gas-fired power plants. Such gas-fired power plants primarily
generate electricity. Additionally, if the location is suitable and permits it, the remain-
ing heat is reused for district heating. At the core of such a power plant, a stationary,
heavy-duty gas turbine (see Figure 1.1) burns some kind of fuel, in most cases natural
gas. The energy when burning that fuel is released in form of compressed, hot gas.
This is converted to electricity by streaming the compressed, hot gas through multiple
stages of blades of a turbine. The turbine is connected to a generator that produces
electrical energy.

The individual components of the gas turbine are protected by several monitoring
systems. One of these systems monitors the combustion process. This is necessary
as the combustion is prone to so-called thermoacoustic instabilities that can quickly
damage the structure of the turbine. Monitoring uses up to dozens of high-temperature
pressure sensors that are sampled at rates of up to 50 kHz1. One of the primary uses

1The specific configurations vary depending on turbine type and application requirements of the op-
erators. Protection against thermoacoustic instabilities requires sampling rates of around 25 kHz.
Other applications, e.g., detecting foreign objects in the turbine, require sampling rates of 50 kHz or
sometimes even higher values.

1.1 Motivating Application Example: Combustion Monitoring in Gas-Fired Power Plants

3

Figure 1.1 GE 9E gas turbine [35].

of pressure sensor data is real-time protection of the gas turbine. This is achieved by
analyzing short tumbling or slightly overlapping time windows2 and communicating
the result to the gas turbine control system. This real-time analysis includes transfor-
mations to the frequency domain by calculating Fast Fourier Transforms (FFTs) on the
analyzed time windows and other, gas-turbine-type specific metrics like amplitudes in
certain frequency bands. To expand the context for the sensor data and analysis results,
other data sources provide streams of operating and condition data. This additional
data reflects the state of other components in the system and contains metrics such as
the input fuel rate, the electric power output, valve positions or ambient pressure and
temperature. Operating and condition data is sampled at frequencies of around 1Hz,
but there are possibly hundreds or even thousands of such signals. The raw sensor
samples, the analysis results as well as operating and condition data are all used for
further, historical data analysis. One particular example of such historical data analy-
sis is root cause analysis in case of, e.g., a damage event. For that reason, all this sensor
data needs to be stored permanently.

The collected data is used for several applications. It is visualized in interactive dash-
boards to provide operators with a quick overview of the current machine state. In
addition to that, it is used in algorithm development, helping engineers to design new
metrics that are used for real-time protection or long-term damage prevention. Fur-
thermore, this data is used as a basis for training machine learning models, e.g., algo-
rithms for detecting anomalies.

Since power plants are critical infrastructure, the monitoring and protection systems
are generally isolated from the outside, i.e., they have no connection to the Internet.
Consequently, processing and storage of the generated sensor data must happen on-

2Typical analysis window sizes range from 50ms to 800ms.

1 Introduction

4

sensors real-time
processing

monitored
system

on-site, near-real-time
processing & storage

Cloud
processing & storage

Sensor Processing Site

Figure 1.2 Simplified illustration of sensor data flow from sensor to cloud. Data is sampled
synchronously from multiple sensors using a real-time processing system. This yields a multi-
variate sensor data stream, which is further processed and initially stored on-site. Parts of the
sensor data are then sent to a processing and storage cloud system, where data from multiple,
geo-distributed sensor processing sites is available.

site, inside the local monitoring network (as sketched in Figure 1.2). The installed mon-
itoring systems are expected to work for more than 15 years with as little maintenance
as possible. For that reason, operators prefer systems without error-prone parts like
cooling fans. Consequently, these systems are cooled passively and thus, processing
and initial storage happens on systems with limited processing resources.

In addition to local protection and monitoring, gas turbine manufacturers have an
interest in comparing the behavior across a fleet of turbines. For that reason, some
parts of the collected sensor data are possibly transferred to some kind of central stor-
age system. Such a central storage system may be deployed in the cloud so that it can
be accessed from anywhere. The amount of data sent to this central system depends
on various aspects like the type of turbine, the available bandwidth as well as the policy
of the respective operator with regard to connecting their system to the Internet.

The whole flow of sensor data is sketched in Figure 1.2: from sensors monitoring the
machine, via local processing and storage, to cloud systems, where data from multiple
sites is accumulated.

1.2 Challenges
While the example of combustion monitoring in gas turbines originally motivated this
work, there are other applications that face similar challenges. Driven by the needs
of these applications, the amount and quality of sensing technology in industrial ap-
plications increase steadily. The volume of generated sensor data follows this upward
trend. This is caused by two main factors, both accelerated by trends such as increased
system complexity or decreasing prices for sensing technology. On the one hand, the
number of sensors used for monitoring a certain system is growing steadily, improv-
ing the general quality of monitoring. This leads to, e.g., a higher spatial fidelity or
information about an increasing amount of individual components of the monitored
system. On the other hand, higher sampling frequencies improve the temporal reso-
lution of the resulting raw sensor data and derived analysis values. This is especially

1.2 Challenges

5

important for monitoring and understanding fast oscillatory processes, often found in
industrial settings [67, 133]. Both aspects lead to a growing accumulated data rate
that needs to be processed. Since an increasing share of that sensor data is stored for
later analysis, the associated storage requirements grow accordingly. In many cases,
sensors measure real numeric values, commonly represented as floating-point values
in digital systems.

We identify two general processing and usage patterns for sensor data generated in
an industrial system.

On the one hand, sensor data is used for real-time monitoring, control and protection.
In this case, short tumbling or partly overlapping time windows of sensor data are
analyzed in real time, providing analysis results to control and protection systems that
react in a timely manner to the observed behavior. Additionally, recently measured
values are displayed in dashboards or other, more sophisticated types of visualization
that show the recent history of values.

On the other hand, the generated sensor data is stored for later use, creating a
database of historical sensor data. This historical sensor data is stored for several pur-
poses. First, it is used for interactive data exploration, often accomplished through
visualization of data for one or multiple sensors of a certain, interactively chosen time
span. Furthermore, historical data is used in after-the-fact analysis with the overar-
ching goal of improving current and future operation of the monitored system. Such
historical sensor data analysis often covers large time spans of up to several years.
Sensor data is used to derive and predict trends, analyze past behavior and avoid fu-
ture problems. In addition to that, historical data may serve as a database for training
machine learning models. Such models can be used to, e.g., detect anomalies during
operation. More generally, machine learning models can help to classify the operat-
ing mode of the monitored system. This, in turn, enables implementation of strategies
like predictive maintenance. It is essential to recognize that not all uses of historical
data require the full temporal resolution initially available. On the contrary, using full-
resolution data might be prohibitive in interactive settings when large time spans (with
respect to the original sampling frequency) are explored [52].

To summarize, there exist both a growing amount of sensor data that is available for
analysis and various applications that make use of this data. This has several implica-
tions:

Storage space First, the amount of storage space required to permanently store this
data is growing proportionally to the amount of generated sensor data. It is thus
necessary to use the available storage space efficiently. This essentially means
that the produced data must be compressed appropriately. There are two fun-
damentally different ways of compressing data: lossless compression and lossy
compression. On the one hand, for lossless compression, the full precision of the
acquired data is preserved, and no information is lost. This lossless compression
is particularly challenging for floating-point data, as different noise sources make

1 Introduction

6

it hard to compress such data without losing information. The storage space sav-
ings for lossless compression are limited by the data’s entropy. On the other
hand, lossy compression schemes achieve much higher compression ratios. This
is possible by reducing the precision of the stored data. How much information
loss is acceptable is heavily application-dependent and can be configured in most
lossy compression algorithms.

Data ingestion Second, caused by higher temporal resolution and number of sensors,
the data rate of the sensor stream to process increases. This necessitates that the
processing and storage system is able to cope with the growing data rates of the
sensor stream. Many existing systems cannot consume data at such high rates
because they only provide strong durability guarantees that are prohibitive with
respect to ingestion performance. Moreover, to support the high sampling rates,
timestamps must be represented with suitable precision.

Data retrieval Third, retrieving data for near real-time or historical data analysis
must be almost instantaneous (interactive usage), but also deliver high through-
put for larger amounts of queried data (e.g., when used for machine learning).
Queries to such time series data are expected to be mostly time-range-based, i.e.,
access a contiguous sequence of samples between two points in time. Further-
more, we assume that only a small subset of the available sensors is accessed in
each query. Hence, the following requirements for querying data can be derived:
the data latency (duration from the point in time data is sampled by the sensor
until it can be queried from the system) must be small, queries must be processed
with low constant overheads, and it must be possible to deliver query responses
with high throughput. Since it should also be possible to interactively explore
large time spans, there must be a way to quickly retrieve (approximate versions
of) sensor data for such large time spans.

Industrial applications are special regarding the deployment context of sensor pro-
cessing and storage systems. In particular, it is often desirable—and in some cases
necessary—for such a system to be deployed “on-site”, “close” to the monitored system.
More specifically, this means that measured sensor data is accessible via a local net-
work since the system is expected to work without a (potentially unreliable) connection
to the Internet. The reasons for this are manyfold. When monitoring and processing
sensor data for critical infrastructure, such as power plants, operators want data to
be physically present on-site as this enables self-sufficient operation. This is required
in case external infrastructure like data centers fail or the connection to such infras-
tructure is cut off. In addition to that, especially for critical infrastructure, some op-
erators completely isolate the internal network from the outside due to cyber-security
concerns. In other cases, operators do not want to entrust their sensor data to third
parties like cloud providers because of data privacy issues. This is particularly impor-
tant to operators in sectors with a high risk of industrial espionage. In addition to that,

1.3 Approach

7

some installations lack the required bandwidth to an external compute and storage in-
frastructure. In these cases, it is infeasible to transfer the continuously produced data
stream out of the local network. This is especially relevant for geographically remote
installations. Even if the necessary bandwidth is available, transferring data outside
the local network might not be desirable because of latency requirements of certain ap-
plications. Depending on the specific circumstances, having data in external systems
may increase the access latency by orders of magnitude.

While locally processing data avoids the problems just discussed, it implies several
challenges that need to be dealt with. Most importantly, processing and storage of the
generated sensor data happen on computer systems with limited processing resources
like central processing unit (CPU) and random-access memory (RAM). This is due to
several factors. First, in many cases, the physical size of the system may be limited,
as the available space in compute racks is shared with other systems. Furthermore, as
explained in the specific example before, systems may be required to be cooled pas-
sively, drastically restricting power consumption. There is also no easy way of scaling
compute and storage systems like it would be possible in a cloud-based scenario.

As just discussed, processing data locally is of great importance. However, there are
still cases where applications require data from multiple, geographically distributed
sites. As one example, operators sometimes wish to compare a fleet of machines of
identical type to identify differences in operation and further optimize design. For that
reason, some parts of the sensor data—e.g., overview data or certain interesting time
spans—may be sent to other processing facilities on-site or in the cloud. These systems
often have different properties in terms of storage capacity or processing resources. In
case of cloud systems, these aspects can more easily be scaled according to growing
application needs. This has implications for data queries: when querying this data, it
is important to consider the different parts of sensor data distributed along the edge-
to-cloud continuum. Data from the different sources should be seamlessly integrated
when queried.

Existing systems (discussed in more detail in Section 2.4) cannot fulfill all these re-
quirements and lack in at least one of the mentioned aspects.

1.3 Approach

In this section, we present our approach. We design a system for processing and per-
manently storing streams of industrial sensor data. The general idea is to create a time
series storage system, similar to the storage component of existing systems such as
InfluxDB [54], QuestDB [93] or TimescaleDB [126]. There are, however, several design
decisions that make our system different and that help to fulfill the requirements and
address the challenges listed above.

1 Introduction

8

Efficient Storage The first aspect we consider is storage efficiency. We aim to de-
velop a method to store large quantities of floating-point sensor data. Ideally,
that method can be integrated into an existing file format such that it can also
be used independently of the rest of the system. While an efficient compressed
representation is important, it is thus also crucial for our approach to be easy to
implement. This ensures that our approach can be quickly adopted in different
implementations. Furthermore, both compression and decompression should be
able to deliver high throughput. Since our system stores time series data, it is
also required to store series of timestamp values. Thus, in addition to floating-
point sensor data, our systemmust handle storing timestamp values in a storage-
efficient way. We rely on existing methods [69, 90] to achieve that.

Efficient Stream Ingestion Second, our envisioned applications require that our so-
lution is able to ingest data faster than state-of-the-art systems. We deliberately
relax durability guarantees to achieve that goal. Since our primary use case is
fast ingestion of streams of data, it is not necessary to acknowledge reception
and storage of every single sample. Instead, it is sufficient that data is persisted
on durable media eventually. Our targeted use cases also make it possible to limit
the number of input stream sources for a certain storage unit to a single source
at any given time. By employing a binary streaming protocol, we avoid decoding
and processing overheads when receiving data.

Efficient Queries Third, we specialize our system to range-based queries. These que-
ries are expected to retrieve data for only few sensors. There are several tech-
niques we use to realize this. First, also related to the storage aspect, we rely
on a sensor-ordered or columnar data format. This is preferable for the targeted
range-based access patterns. Furthermore, we design an index structure that ex-
ploits the contiguous, time-ordered nature of time series data. For delivering the
actual query results to the client, we use a batched, binary streaming format. This
enables high-throughput responses and delivers data in a format that is easy and
efficient to process for clients. For approximate query responses, we rely on hier-
archies of windowed aggregations that are efficiently calculated already during
data ingestion. Distributed querying logic is located on the client side, avoiding
shared state and the need to manage the potentially complex network topologies.

We implement our ideas in one integrated, holistic system. This makes it possible
to run our system on small-scale, low-power systems, which is a typical use case in an
industrial context. The individual parts—in particular, the storage format—are expected
to be usable independently of the rest of the system. Integrating everything in a single
application allows for reducing communication overheads between the components of
our system, enabling efficient sensor data processing.

1.4 Contributions

9

Multivariate Sensor
Stream Source

Multivariate Sensor
Stream Source

HAQSE

Hierarchical,
Pre-Calculated Windowed

Aggregations

Efficient Long-Term Storage
of

Floating-Point and
Timestamp Data

Multivariate Sensor
Stream Source

Interactive
Visualization

Training Machine
Learning Models

Visualization in
Dashboards

efficient
ingestion

efficient
retrieval

Figure 1.3 HAQSE is a sensor data processing and storage system. It can efficiently ingest and
process streams containing multivariate sensor data. It offers a range-based query interface
that can be used for retrieving data for a variety of use cases.

1.4 Contributions
In this dissertation, we present HAQSE, theHierarchicalAggregation andQuery StorE.
HAQSE is a sensor data processing and storage system that addresses all points dis-
cussed in Section 1.2 and implements the approach sketched in Section 1.3. This section
outlines the contributions of this thesis. As mentioned above, there is a great need for
efficient, large-scale sensor data processing systems in industrial environments. How-
ever, existing systems (discussed in more detail in Section 2.4) reach their limits and
cannot satisfy the data throughput and query needs of contemporary and future sen-
sor processing applications. In particular, all existing systems lack at least in one of the
following aspects:

• Stream rate: Coping with stream rates of hundreds of kHz for a multivariate
stream of dozens of sensors or ten thousands of sensors sampled at several Hz.

• Efficient storage: Storing noisy floating-point sensor data in a form that uses the
available physical storage space efficiently.

• Efficient retrieval : Quickly retrieving large time windows of sensor data for in-
teractive exploration (with low latency) as well as analysis and machine learning
tasks (with high throughput).

• Geo-distributed retrieval : Retrieving data from multiple, geo-distributed sites.

• Efficient use of hardware resources: Capable of being executed on low-power, pas-
sively cooled, small-scale systems.

With HAQSE, we holistically cover the complete pipeline (see Figure 1.3): receiving
a stream of sensor data, generating hierarchical aggregates for efficient queries, en-
coding and compressing it for efficient storage, and enabling low latency and high-
throughput data retrieval through language-independent Application Programming

1 Introduction

10

Interfaces (APIs). While the individual contributions are largely orthogonal to each
other and can be used independently, our implementation in one single system yields
synergies that would otherwise not have been easy to generate.

In particular, our contributions are the following:

• We improve the storage efficiency for floating-point sensor data by ex-
tending the Apache Parquet file format [116] with the Byte Stream Split en-
coding. When combined with an off-the-shelf compression scheme, Byte Stream
Split is suitable for compressing floating-point sensor data. We evaluate our two-
stage compression approach and compare it to several existing floating-point
compressionmethods for a collection of publicly available floating-point datasets.
This comparison shows that our approach works well across all tested datasets
and is the best method for most of them. We also compare our approach against
the alternatives available in Apache Parquet. We do this on a gas turbine mon-
itoring dataset (see Section 1.1). This shows that our approach outperforms all
existing methods in all three important metrics: compression ratio, compression
throughput and decompression throughput. Byte Stream Split is available as
part of the official, open source Apache Parquet specification and implementation
projects. The encoding can be efficiently mapped to Single Instruction, Multiple
Data (SIMD) vector instructions of modern CPU architectures.

• We design, implement and evaluate a scheme for ingesting high-rate sensor
streams, limited only by network or storage device throughput. It involves a
transformation from a time-ordered to a sensor-ordered layout. This enables fur-
ther improvements in all steps of the downstream sensor processing pipeline.
Based on the sensor-ordered layout, we design and implement a computation-
ally efficient way to compute hierarchies of windowed aggregations on sen-
sor data. The input interface to our system uses a language-independent, binary
protocol that also supports input in arbitrarily sized batches, enabling high in-
gestion throughput rates.

• We design our system to support efficient retrieval of historical as well as
live sensor data. We propose Stream Segment Index, a tree-based index data
structure that enables efficient range-based queries. We show that exploiting an
additional persisted index structure at the level below is important for scaling our
approach to larger sizes. Additionally, we design a novel approach for querying
sensor data residing on geo-distributed nodes that does not require shared state.

We thoroughly evaluate every component of HAQSE in isolated experiments, helping
us to gain detailed insights into the individual components. Additionally, we compare
HAQSE to state-of-the-art time series management systems, showing that it outper-
forms these state-of-the-art solutions in many aspects for our targeted use cases. Fur-
thermore, we deploy our system in a real-world environment, showing that it is capable

1.5 Thesis Organization

11

of coping with the workload generated by gas turbines used for municipal electricity
generation as one specific example.

This work was carried out in the context of a joint project of Technical University
of Munich and IfTA GmbH3. This connection made it possible to have access to expert
knowledge in real-time sensor data acquisition and analysis as well as detailed domain
knowledge about gas turbine operation. Furthermore, through the close contacts of
IfTAGmbH to industry, the developed system could be evaluated in a production-grade
industrial environment. While HAQSE is designedwith a specific industrial application
in mind, the focus of this dissertation, however, lies in showing the generality of the
approach and methods.

1.5 Thesis Organization
This thesis is organized as sketched in Figure 1.4. In Chapter 2, we define concepts
used in this thesis, explain use cases, analyze requirements for our system and give an
overview of the state of the art. Based on the derived requirements, in Chapter 3, we
present a high-level overview of our system. This comprises the interfaces of our sys-
tem, the individual components, and how they interact with each other. This chapter
strives to provide enough information to understand the general architecture of our
system, enabling implementors to develop data input and query clients. The details of
the individual components, in-depth evaluations, as well as comparison with state-of-
the-art systems follow in the next three chapters. In Chapter 4, we discuss all aspects
related to efficient long-term sensor data storage. In particular, we discuss data layout
alternatives as well as lossless and lossy compression techniques to make efficient use
of the available storage space. In Chapter 5, we explain all aspects of our system that
are required for efficient sensor data stream consumption, from the input interface
to internal processing. This also includes calculation of hierarchical windowed aggre-
gations. In Chapter 6, we describe our approach for ensuring efficient sensor data
retrieval and evaluate its performance. The research for this thesis was performed in
the context of a real industrial problem. In Chapter 7, we describe the integration of
our system into a real-world sensor monitoring installation for a gas-fired power plant,
operated by a customer of IfTA GmbH. For this, we describe the integration of HAQSE
into an existing sensor data generation and analysis infrastructure and show that our
system improves many application scenarios. In Chapter 8, we outline future work and
conclude this dissertation.

3Basic information about IfTA GmbH can be found in the glossary.

1 Introduction

12

Overview Level

Detailed Discussions & Evaluation

System Overview3

eries6Streaming5

is basis for

Real-World Integration &
Evaluation7

Background2

Storage4

In
tr

od
uc

ti
on

1

Fu
tu

re
 W

or
k

&
 C

on
cl

us
io

ns

8

Figure 1.4 Organization of this dissertation (boxes are linked to the respective chapters).

13

2 Context, Requirements and
Related Work

In this chapter, we discuss the background and context of this thesis. In Section 2.1, we
start with defining a set of core concepts used in our approach. These concepts help to
derive application requirements. They also show that our approach is not specific to
a certain application scenario, but is generally applicable to all cases that fit the pre-
sented abstractions. In Section 2.2, we list example applications from various industrial
fields that represent exemplary use cases and have a common set of challenges that
motivate our work. In Section 2.3, based on these use cases, we derive important pro-
cessing and storage system requirements that we will use as the foundation of the rest
of this dissertation. Finally, in Section 2.4, we discuss the state of the art and review
related work.

2.1 Definitions
In this section, we define concepts and abstractions that we use later on to specify the
interfaces of our system. This helps to understand the applicability of the system we
will describe in the following chapters. We start by describing common concepts and
build on and specialize from these.

Definition 1 (Sensor and SensorMeasurements). A sensor f is a source of quantifiable
information. At any instant (also called timestamp) CB , it can produce a scalar sensor
measurement value a . The process of producing such a sensor measurement value a

is called sampling. Values a for a certain sensor f are either real-valued or integral
numbers, i.e., a ∈ ℝ or a ∈ ℤ. To process this information in a digital system, the
measurement values a must be discretized and encoded in some binary format. We
expect this format to be of a fixed type using a defined number of bits per value and
adhering to a certain interpretation of these bits.

An actual sensor can be of different types. On the one hand, a sensor can be a phys-
ical device measuring an observed quantity in the real world. On the other hand, it
can be an abstract, virtual source that produces a from another source of information,
potentially deriving it from one or multiple physical sensors. However, for the system
discussed in this work, the exact sensor type producing measurement values is incon-
sequential. In practice, the digital format is something like a float32 or int64, em-

2 Context, Requirements and Related Work

14

ploying, e.g., a standardized floating-point number encoding like defined in the norm
IEEE 754 [50] or the two’s complement representation [85] for integers.

In real applications, a physical sensors measures continuous quantities like a pres-
sure or temperature. Such a physical sensor is sampled by a measurement system that
converts analog sensor readings to digital values. There is also a wide range of ex-
amples for virtual sensors. This can, e.g., be the load of a processor or the number of
occupied bytes of memory in a computer system. It can, however, also be an analysis
result on the measurements of another sensor, such as the result of a frequency trans-
formation (e.g., a FFT). In this case, the associated timestamp CB could be the timestamp
of the first sample of the analyzed time window. In every case, the value of a sensor is
represented by a scalar numeric type of fixed size. More complex analysis results like
spectral data or values ∈ ℂmust first be decomposed into their individual components
so that they can be represented by multiple, “virtual” sensors.

Definition 2 (Sensor Schema). A list of sensors S = (f1, f2, ..., f=) is called a sensor
schema or simply schema. Each sensor f in the schema S has a name that allows to
uniquely identify the sensor f in S. We refer to the number of sensors |S| in a schema
as the schema cardinality or schema size.

Sensors in a schema are not required to have identical types. Furthermore, while
having a unique name is technically not necessary (sensors could also be identified
by their position in the schema), it makes interaction with the system (especially for
humans) a lot easier.

Definition 3 (Sensor Sample). A sensor sample k8 is a list of sensor measurement
values af 9

8
generated by the sensors f 9 in a sensor schema S at a particular instant CB8 .

Since all af 9

8
are measured for the same instant CB8 , the sensors are said to be sampled

synchronously.

The sensor schema S from above also defines how sensor samples k can be stored
for later retrieval. When combined with a description for the timestamp, S can be used
to define, e.g., the schema of a table in a database management system where sensor
names represent column names and sensor types represent column types. The time-
stamp column requires a separate, reserved column name and a type that is suitable for
representing the respective timestamp values. A sensor samplek can then be thought
of as a row in such a database table (e.g., one row in Table 2.1). Or, when looking at
the plots in Figure 2.1, one sample is a vertical section across all three plots for one
particular timestamp.

Definition 4 (Sensor Source Stream). A Sensor source stream is a (possibly infinite)
sequence of sensor samples . . . ,k8−1,k8,k8+1, . . . , generated by the sensors f of a sensor
schema S. If |S| = 1, the sensor source stream is univariate, if |S| > 1 it is multivariate.

In this work, we focus on multivariate sensor streams. Multivariate sensor streams
are special since they exhibit properties that allow and require certain optimizations

2.1 Definitions

15

in order to make processing and storage more efficient or even viable at all. We exploit
some of these aspects in the design of our system. Our approach is also applicable to
univariate sensor streams as these are just a special case ofmultivariate sensor streams.

We assume that the timestamps CB8 for the sequence of sensor samples k8,k8+1, . . .
are strictly increasing for a certain sensor stream, i.e., CB8 < CB8+1∀8 . In Figure 2.1, we
show an excerpt of a sensor source stream for three sensors over a duration of a bit
more than two seconds.

0 1 2

Se
ns

or
 1

0 1 2

Se
ns

or
 2

t0 t0 + 1 t0 + 2
Time [s]

Se
ns

or
 3

Sensor value distribution

Figure 2.1 Example of raw sensor data streams for three different sensors, sampled syn-
chronously. These three plots show an excerpt of slightly more than two seconds, spanning
more than 50 000 raw sensor readings in each plot. The right part of the plot shows a his-
togram of the value distribution for each of the sensors.

Definition 5 (StreamResolution and Sampling Rate). The difference CB8+1−CB8 between
the timestamps of two consecutive samples k8 and k8+1 is called the stream resolution
ΔC . We expected the stream resolution ΔC of a certain sensor source stream to be more
or less constant. This means that CB8+1 = CB8 + ΔC + n, n � ΔC for almost all 8 . In other
words, over a long enough period of time, the error n is expected to cancel out such
that the average ΔC converges against the nominal value of ΔC . A sensor source stream
is expected to produce samplesk at a constant average sampling rate of 5B = 1

ΔC .

The example data from Figure 2.1 is an excerpt from a real system. The ΔC in that
application is 39.0625 µs, i.e., the sampling rate is 25.6 kHz. The samples k of a sensor
source stream usually appear ordered in time, i.e., sample after sample. We thus call
the samples on this stream to be time-ordered.

Definition 6 (Sample Batch). In addition to this sample-wise generation, systems gen-
erating a sensor source stream might buffer and collect multiple samples k8 ..k8+1B−1
and send these as one sample batch, containing a batch of contiguous samples (see
Table 2.1). The number of samples 1B in a sample batch is called sample batch size or
simply batch size.

When the sample batch is used as input to a system, we refer to it as input sample
batch.

2 Context, Requirements and Related Work

16

timestamp CB sens1 sens2

594796279880 4.246 8998.3
594796279882 4.312 8999.7
594796279884 4.356 8999.7
594796279886 4.416 9000.0
594796279888 4.426 9000.3
594796279890 4.411 9000.2
…

Table 2.1 Example sensor data based on a schema with two sensors. Highlighted in red: a
single sample (k8). Highlighted in blue: one sample batch with a batch size of four.

Definition 7 (Stored Sensor Stream). The sensor samples Ψ = (k0,k1, ...,k<) of a sen-
sor source stream can be stored in some kind of database so that data can be retrieved
later on from that database. When stored in such a database, we call the set of sensor
samples Ψ a stored sensor stream. Such a stored sensor stream Ψ requires a unique
stream name in the database to identify it when retrieving sensor samples from a col-
lection of multiple stored sensor streams Ψ0,Ψ1, . . . ,Ψ# .

There are a few conceptual differences between a sensor source stream and a stored
sensor stream. For one, a sample k in a sensor source stream needs to be processed
in-situ, i.e., when it is generated. In contrast to this, samples k ∈ Ψ that are available
in a stored sensor stream can be retrieved for later use. As a consequence, though, a
stored sensor stream is never infinite, as it is always limited by the amount of available
storage space.

An example of a stored sensor stream is sketched in Table 2.1. In this example, the
schema S would consist of two sensors producing real-valued measurement values,
with the sensor names sens1 and sens2. One sample k8 corresponds to one row (as
highlighted in red) in the table. A sample batch would correspond to a contiguous
range of rows in the table, as highlighted in blue in Table 2.1. As the dashed boxes
around the set of values of one column in that table indicate, we expect a sample batch
to be organized column-by-column, i.e., sensor-ordered.

Definition 8 (Range-Based Query). A contiguous excerpt of a stored sensor stream
Ψ can be retrieved using a range-based query. Such a query consists of the following
parts:

• The name of the stored sensor stream Ψ
• A query range consisting of start and end timestamps CBB and CB4
• A list of sensor names for which to retrieve measurement values a

2.1 Definitions

17

Only samplesk8 that have a timestamp CBB ≤ CB8 ≤ CB4 match the query. The result set
only contains data for the specified sensor names. This list of sensor names may only
contain names that are part of the schema S of Ψ.

The amount of data in the result of range-based queries scales linearly with the
size of the specified time range (assuming the complete time range contains samples).
Consequently, very large time ranges imply very large result sets, whichmakes retrieval
of such results very slow. This is unnecessary if only an overview of the time range is
required. Hence, it is useful to retrieve approximate versions of Ψ, as Ilsche et al. have
shown [52, 53]. We thus define a few additional constructs.

Definition 9 (Aggregated Stored Sensor Stream). It is possible to aggregate a set of
consecutive samplesk8 .. 9 of a stored sensor stream Ψ based on a time window of a spe-
cific length ΔCl . For this window, all sensor measurement values af

8.. 9
for a certain sen-

sor f are combined into a single value af
�
, based on an aggregation function 5�. There

might be multiple such aggregation functions; we call the set of aggregation functions
A. Aggregations are calculated for all sensors f in the schema S and all aggregation
functions 5� ∈ A. The resulting columns are identified by the tuple (f, 5�). Conse-
quently, the schema of the aggregated stream is the Cartesian product S × A of the
original sensor schema S and aggregation functions A. The resulting windowed ag-
gregation samplesk� use the start of the aggregation window as timestamp CB . These
samples can again be persisted, resulting in an aggregated stored sensor stream Ψ� that
is derived from and associated with Ψ. The stream resolution ΔCl of Ψ� is identical to
the window size ΔCl of the respective windowed aggregation calculation. This ΔCl is
larger than ΔC of the original source stream1.

Aggregations are used to create summaries of stored sensor streams. Typical aggre-
gation functions are max, min and mean. It is useful to define the window size ΔCl a
multiple of the stream resolution ΔC of the sensor source stream.

Definition 10 (Sensor Stream Hierarchy). For a certain Ψ, multiple aggregated stored
sensor streams Ψ� with different ΔCl may exist. The set of such Ψ�, ordered by ΔCl ,
together with the original stored sensor stream, which we call Ψ$ in that context, is
called a sensor stream hierarchy Ψ� .

Figure 2.2 shows an example of such a sensor stream hierarchy with min and max
aggregation functions. The aggregated versions provide approximations of the original
data.

Definition 11 (Hierarchical Range-Based Query). In contrast to above, a hierarchical
range-based query is specified against a sensor stream hierarchy Ψ� . Such a query is
similar to a range-based query, but it specifies the name of the sensor stream hierarchy
Ψ� instead of a specific Ψ. By specifying a maximum sample resolution ΔCmax, the

1Or, equivalent to that, the 5B of Ψ� is smaller than in the source stream Ψ.

2 Context, Requirements and Related Work

18

O
ri

gi
na

l
Le

ve
l 1

Time

Le
ve

l 2

Figure 2.2 A multi-resolution sensor stream hierarchy stores original values and windowed
aggregates. The top plot shows original sensor samples, the middle and bottom plots show ag-
gregated values (visualized using min and max windowed aggregation values in this example).

system answering the query can select a matching level in the sensor stream hierarchy.
This is done by selecting the Ψ� with the largest ΔC < ΔCmax. In addition to that, a list
of aggregation functions 5� ∈ A needs to be specified as part of the query. The result
set then contains the pre-computed aggregation samples k from the columns (f, 5�)
from the chosen Ψ� or the original samples if Ψ$ is selected as the level to query.

Selecting a matching level from the hierarchy is actually not restricted to the logic
just presented. This can be application specific: there are also cases in which it might
be better to select the level that is closest to (and not necessarily smaller than) the
requested resolution. Similarly, it does not really matter how the query specifies how
a level should be selected: specifying a maximum number of points is equivalent to
specifying a maximum resolution; together with the query range, both representations
contain identical information. Both level selection and how queries specify which level
to select can be easily adapted to specific use cases.

The system we present in this work uses a sensor source stream as input. Retrieving
data from it is done via hierarchical range-based queries. We introduce an overview of
the system in Chapter 3.

2.2 Example Application Domains & Scenarios
There are several application domains and scenarios that fit the abstractions presented
in the previous section. We first discuss various application domains and the specific
challenges in these fields. After that, we present usage scenarios, i.e., how sensor data
is valuable for its users.

2.2.1 Application Domains
Sensors play a crucial role in monitoring and controlling operations in countless ap-
plication domains. Exemplary application domains include—but are not limited to—

2.2 Example Application Domains & Scenarios

19

monitoring high-performance computing systems and power plants with rotating ma-
chinery such as gas or wind turbines. These example usage domains are all monitored
by sensor technology and generate sensor streams with a high data rate. Additionally,
in all these cases, users of sensor stream data analyze long time spans in different usage
scenarios (also see Section 2.2.2).

Monitoring in High-Performance Computing

Sensor data is collected in High Performance Computing (HPC) systems for a variety of
reasons. Two prominent examples are monitoring and operational data analytics [84].
Monitoring is challenging with respect to storage, scalability and performance: several
terabytes of data may accumulate per day, these large volumes require frameworks
that scale accordingly and the monitored system must not be affected by the monitor-
ing system [84]. Operational data analytics uses and analyzes the collected monitoring
data with the goal of improving the operation of an HPC system or data center [15].
Collecting sensor data is also essential for ensuring energy-efficient operation and im-
proving future procurement of HPC systems [52, 78]. Typical aspects monitored in
such HPC systems include the power consumption of the individual components of
the system as well as metrics such as CPU and memory load values. As systems con-
tain thousands of compute nodes, each one able to measure data from thousands of
sensors, it becomes clear that the main challenge in such systems is the number of
sensors that needs to be dealt with [84]. Sampling rates are typically in the order of
few Hertz [52, 84].

Monitoring Power Plants

As discussed in Chapter 1, reliable and efficient power generation is challenging for a
variety of reasons. The transition to renewable energy sources makes this even more
challenging for operators of all kinds of power plants. Consequently, they invest in
various monitoring solutions to control and protect the operation of their systems.
Furthermore, they also use the generated monitoring data for implementing predictive
maintenance and optimizing the future operation of these systems. In the following,
we discuss two specific examples and why monitoring data is important and highlight
particular challenges.

Gas-Fired Power Plants Gas-fired power plants employ gas turbines for electricity
generation. These are very flexible in their operation, which makes them perfect for
compensating peak demand scenarios or during times when renewable sources of en-
ergy cannot produce power. Under certain operating conditions, the combustion pro-
cess in these gas turbines is prone to thermoacoustic instabilities. These instabilities
can damage the turbine’s structure, so it is crucial to detect and prevent these insta-
bilities as early as possible. This is done by monitoring the combustion process using

2 Context, Requirements and Related Work

20

high-temperature pressure or acceleration sensors. These sensors monitor the oscillat-
ing pressure or vibrations in the combustion chamber of a gas turbine with sampling
rates of up to 50 kHz. In addition to that, high-frequency acceleration and distance
sensors measure rotor dynamics. Finally, there are thousands of other sensors measur-
ing operating conditions of the whole power plant such as power output or ambient
temperatures. These operating conditions are sampled at few Hertz.

In addition to the raw data of a sensor, especially for oscillation phenomena, it is
common to also calculate and store transformations into the frequency domain. This
is often done through short-time Fourier transforms (STFTs) that are applied to equally-
sized, moving or tumbling windows on the raw sensor stream2. These transformations
into the frequency domain could be calculated very quickly on raw data when needed.
However, storing the calculation result is still useful for several reasons. Sometimes,
specific parameters such as the window size, the applied window function or the exact
window alignment are not known in post-processing environments. Additionally, in
some cases, it is sufficient to store only certain parts of the spectral data, as this can
save a considerable amount of storage space. Finally, further aggregating spectral data
over time can help to quickly identify problematic ranges when analyzing large time
windows. This is done by calculating, e.g., the maximum value for each frequency over
a certain time window.

Wind Turbines Wind turbines play an important role in the generation of renew-
able power. In cold operating conditions, ice may build up on the turbine blades of
such wind turbines [133]. Operators need to detect this condition to counteract or
stop the turbine. One way to detect ice on blades is by using fiber-optic acceleration
transducers. Frequency analysis of the generated data helps to identify ice building up
on the turbine blades since the mass of the turbine blade increases because of the ice
attached to it. This change in mass can be observed in the frequency analysis of the
acceleration data.

The data is also stored and used for historical data analysis.

Deployment Context

Industrial sensor data processing systems are often deployed in remote, fully auto-
mated environments. This has several consequences.

In contrast to other, similar work [52, 84], we do not target our system only at high-
end server-grade systems. Instead, the operating environment on-site is restricted with
respect to several dimensions. First, systems deployed on the edge are restricted in
physical size since rack space is often very limited. Second, the processing hardware
may consume only a limited amount of power. This is partly due to the small form
factor since less heat can be dissipated on such small devices. Additionally, low power

2In most cases, these STFTs are implemented using the FFT.

2.2 Example Application Domains & Scenarios

21

consumption is also needed as fan-less systems are preferred in industrial settings and
since fans required for cooling are a common point of failure. Replacement may be
costly or not be possible at all in fully automated environments, strictly limiting the
thermal design power (TDP) of employed systems.

The monitored systems are often deployed in geographically remote areas. Thus,
there is an additional set of challenges related to network connectivity. First, band-
width to these systems is often limited and may not be sufficient to transmit the com-
plete sensor data stream to a cloud system on the Internet. Second, latency to other
systems may be relatively high, requiring that any real-time control logic needs to be
performed on-site. Third, connection reliability may be limited in certain scenarios. In
such cases, continuously sending a sensor data stream is also intractable.

In cases when the monitored system is considered critical infrastructure—as is the
case for power plants—the complete sensor processing, analysis and storage system
might even be installed in an air-gapped environment, i.e., it might not be reachable
via the Internet. As a consequence, the complete sensor processing and storage system
has to be self-sufficient, i.e., all required functionality needs to be present on-site.

2.2.2 Application Scenarios

Industrial sensor data is used in different ways. We classify the various application
scenarios along two dimensions. First, applications differ depending on the time since
data has been generated. Second, the interactivity requirements of the respective use
case vary to a large extent. This is visualized in Figure 2.3.

Realtime
Data

Historical
Data

Interactive usage,
e.g. visualization

Programmatic usage,
e.g. machine learning

Interactive visualization
of historical data

Training machine
learning models

Real-time control
and protection

Time since
 data generation

Interactivity

Near-real-
time Data

Visualization of online
data in dashboards

Inference on most
recent slice of data

Figure 2.3 Classification of different uses for sensor data, with a specific example for each
category.

2 Context, Requirements and Related Work

22

Regarding time since data generation, the time range of interest ranges from ten
to hundreds of milliseconds for real-time applications and goes up to several years of
sensor data. Real-time applications typically process the most recent time slices of a
sensor source stream, generating analysis results or visualizations for dashboard appli-
cations. After the data slice is processed and the respective result has been generated,
the processed samples are dropped and the next slice of recent sensor samples is an-
alyzed. For these (near) real-time applications, data storage and compression are not
very important, as the processing happens on data present in volatile memory and no
data accumulates over time. On the contrary, use cases that require historical data
rely on some kind of long-term storage that provides samples for data retrieval. In
these cases, efficient storage—including appropriate data compression—and retrieval
are crucial for a satisfactory user experience.

Regarding interactivity, the main difference often lies in the amount of data and the
required level of detail necessary for a particular application. As one example, in in-
teractive exploration setups, users expect short response delays. The amount of data
and level of detail is often more limited in such cases. On the contrary, for program-
matic usage, the amount of data and level of detail is higher. This requires high query
throughput so that the programs and algorithms using this data spend as little time as
possible waiting for their input.

Especially regarding the interactive use of sensor data, the boundaries between his-
torical and real-time data are blurry. Ideally, users monitoring most recent (real-time)
data can seamlessly interact with the data and change the visualization to larger, his-
torical time spans. In that sense, real-time data can also be considered historical since
it has already been generated.

2.2.3 General Properties of Industrial Sensor Data

In the context of this thesis, the term industrial sensor data includes all sensor data that
can be matched to the Definitions 4 and 7 (Sensor Source Stream and Stored Sensor
Stream) from Section 2.1. In particular, this includes data generated by the applications
presented in Section 2.2.1. As discussed in Section 2.1, we assume sensors are sampled
more or less regularly. Thus, our focus is not on single, independent sensor measure-
ments but on a stream of consecutive sensor samples. Alternatively, this stream can
be thought of as a multivariate time series of sensor measurements. Several aspects
make handling this data special compared to other types of data.

Time Series Data Sensor streams are generated by reading values from one (or mul-
tiple) sensors as they evolve over time. As a consequence, there is a natural, inherent
ordering in these sensor readings. Since we assume that timestamps are strictly in-

2.2 Example Application Domains & Scenarios

23

creasing3 (cf. Section 2.1), they are perfect for indexing the produced sensor data for
time-range-based retrieval.

Numeric Noisy Data Sensor data is often subject to different sources of noise. Thus,
the stored sensor streams contain noisy data. There are various sources of this noise.
The noise may come from the actual physical process noise (where the measured phys-
ical phenomenon is inherently noisy), noise generated by the measurement chain (the
physical sensor and all parts of the signal chain until the data is converted from an
analog to a digital signal) as well as quantization noise induced by the (necessary)
conversion to some kind of binary representation (floating-point, fixed-point or any
lossy conversions between representations) in a digital processing system. The noise
in the sensor data, especially in floating-points sensor data, makes it hard to compress
efficiently using standard compression methods. These methods often rely on tech-
niques like entropy encoding or dictionary encoding, which work better on data with
less entropy and repeating structures like, e.g., natural language texts.

In some situations, it can be beneficial to reduce the precision of the stored data and
store it using lossy compression. This is especially useful when the noise level of the
measurement chain exceeds that of the actual physical process the sensors monitor.
In such cases, when the signal entropy is increased by the measurement process, it is
not useful to store the full resolution a certain data type (e.g., single-precision floating-
point) is able to represent. In other cases, e.g., training a machine learning model, it
also may not be necessary to have data available in full resolution.

Access Patterns Regarding data ingestion, sensor source streams, as defined in Sec-
tion 2.1, represent an append-only workload. This means that existing data never needs
to be updated with new values. When data is deleted, this is typically done in large
contiguous chunks of the stored data. One common implementation of such a strat-
egy is to delete the oldest chunk of data, creating a ring-buffer-like data structure for
stored sensor streams.

While sensor streams are generated in a time-ordered fashion, access patterns for
data retrieval differ for most analytic or visualization applications. Being time series
data, users are often interested in the behavior of one or few sensors over a certain
time range. This is the case when visualizing sensor data, which often happens for few
signals over a certain time-range (as shown for three sensors in Figure 2.1), or when
performing other analytic tasks.

3On a small scale, the timestamps should be evenly spaced, while on large scale, any time drift should
be avoided. In order to achieve that without high-precision clocks on the sampling hardware, the
sampling rate must be controlled and regulated by a reference clock source, e.g., an NTP-server or a
GPS-clock. This is a non-trivial, but solvable task, as demonstrated by other works [49, 60, 82].

2 Context, Requirements and Related Work

24

2.3 Requirements Analysis

Based on the definitions and application scenarios presented so far, we design a sensor
data processing and storage system. In this section, we derive important requirements
for this system. We partition these requirements into three different aspects: sensor
stream storage, sensor stream ingestion and range-based queries. This base structure
is also used to organize all other parts of this thesis.

2.3.1 Long-Term Storage Requirements

As discussed in the previous section, the amount of sensor data generated and required
to be stored for historical data analysis is huge. We thus derive the following require-
ments for a long-term sensor stream storage solution:

Requirement 1 (Storage Efficiency for Floating-Point Data). We want our system to
have the ability to store large volumes of sensor samples efficiently, i.e., consume as
little storage space as possible. Specifically, one of the main challenges is storing noisy
floating-point measurement values. Thus, our systemmust include a way to efficiently
represent floating-point as well as timestamp data for persistent, long-term storage.

Requirement 2 (Data Type Support). There are several requirements regarding sup-
ported data types in our system. First, since we want to support high sampling fre-
quencies up to at least 200 kHz, it is important that the data type used for storing
the timestamp provides enough temporal resolution. Thus, the system must support
timestamps with at least nanosecond precision. Furthermore, it must be possible to
store real-valued data in both single-precision and double-precision floating-point for-
mat. In addition to that, our system should support storing integral as well as boolean
values.

Requirement 3 (Optimized for Analytics of Time-Series). The target use cases are
mainly analytical, i.e., quickly reading a specified time-range for a small set of sensors.
It is important that such data retrieval workloads can be executed efficiently on the
chosen long-term storage format.

Requirement 4 (Interoperability). The stored data format should be independent of
a certain application software. Instead, the chosen data format should have proven
library support in a variety of programming languages. This ensures that stored data
is usable even without a certain application, which is often desirable in industrial con-
texts. This secures technology investments for users.

The listed storage requirements build the foundation of the system. Requirements 1
and 3 have a direct impact on the other aspects of our system like data ingestion or
retrieving sensor data for later use.

2.3 Requirements Analysis

25

2.3.2 Sensor Stream Consumption Requirements
Consuming sensor streams with high data rates is challenging. Many existing systems
do not come close to the rate what industrial applications require. We mainly aim to
support high sampling rates, but also scenarios with lower sampling rates and high
schema cardinalities. We thus derive the following requirements:

Requirement 5 (High-Bandwidth Stream Consumption). Our system should be able
to consume sensor streams with high stream rates. Stream rates are dependent on
two factors: the schema cardinality and the stream’s sampling frequency. We want
to support sampling frequencies of at least 200 kHz, but our system should work well
regardless of which of the two factors leads to a high stream rate. In contrast to ex-
isting systems, for our system, sensor source streams originate from a single stream
source. Existing systems are often built for consuming and integrating data from mul-
tiple sources into a single stream, which is not a main goal of our work.

Requirement 6 (Durability Guarantees). In order to provide high stream rates, we
relax durability guarantees. Sensor streams are eventually persisted to disk. However,
we do not require that durability is ensured and acknowledged after every received
sample.

Requirement 7 (Online Hierarchical Aggregation). Some application scenarios, e.g.,
interactive exploration settings, require responses to data queries to be answeredwithin
less than 100ms. At the same time, the results of such queries need not always be ex-
act: often, approximate results are sufficient. To be able to answer such approximate
queries in a timely manner, we require our system to pre-calculate aggregations on
data ingestion. This enables our system to serve these pre-calculated results for que-
ries where approximate results are sufficient.

Requirement 8 (Footprint & Isolated Operation). Since resources in industrial envi-
ronments are often limited, we require the system to be able to run on a single node and
perform all processing there. The system should use available system resources, espe-
cially the CPU, efficiently. Furthermore, since no constant connection to an Internet-
connected cloud service or similar can be expected, the system should be able to oper-
ate self-sufficiently.

Requirement 9 (Interoperability). It should be easy to create sensor stream sources
that can provide data to our system. In particular, this means that it should be possible
to develop sensor stream sources in a programming language or operating system-
independent way.

Our ingestion pipeline must be able to prepare data such that it can be stored using a
storage format that fulfills the requirements listed in Section 2.3.1. While we do not list
this as a separate requirement here, combining the two sets of requirements is one of
the primary challenges in designing and building a viable system. Some requirements
listed here, in particular Requirement 7, already prepare data retrieval aspects.

2 Context, Requirements and Related Work

26

2.3.3 Query Requirements
Retrieving data from a storage system is the main reason why it is created and used.
Ultimately, without reading data from a database, there would be no need to store any
of it in the first place. Based on the application scenarios mentioned previously, retriev-
ing data from the system to be developed should satisfy the following requirements:

Requirement 10 (Query Speed). Our systemmust be able to answer time-range-based
sensor data queries quickly and efficiently. This includes two aspects. First, we require
the constant query overhead to be small. This is most important for queries with a
small result set, such as simple data queries for interactive visualization. Second, we
also require throughput for larger result sets to be high, near what the hardware can
support. This has been shown to be a bottleneck in many existing systems due to
result set serialization [96]. High read throughput is important for applications such
as machine learning, where large quantities of sensor data are used to train machine
learning models. Our system should be especially efficient for queries that retrieve
data for few sensors and a contiguous time-range that contains few to billions of raw
data points.

Requirement 11 (Online/Offline Data Queries). As soon as sensor samples are re-
ceived by our system, it should be possible to query these samples. This is important
for online data queries that query the most recently received samples. There should be
no functional difference for users of our system whether they query most recent data
or data that was received months ago. Performance differences in that regard should
be minimal.

Requirement 12 (Querying Data in Different Time Resolutions). It should be pos-
sible to quickly retrieve time-windowed approximations/aggregations of data. This
can speed up retrieval of large time ranges considerably, when only an approximate
overview of the queried time range is required. This is especially important for interac-
tive scenarios like explorative data analysis. Asmentioned before, such time-windowed
aggregations may be computed already during ingestion (see Requirement 7).

Requirement 13 (Transparently Querying Multiple Sites). If data is present on mul-
tiple sites, there should be a way to retrieve data from multiple such sites. Different
sites cannot be expected to be interconnected at all times.

Requirement 14 (Footprint). The system should use available system resources, espe-
cially CPU and RAM, efficiently, as deployment may happen in resource-constrained
environments.

Requirement 15 (Interoperability). It should be easy and efficient for other software
systems to retrieve data from our system. This implies that the query interface should
implement open standards. Ideally, the query interface is independent of specific pro-
gramming languages, making adoption by existing tools easier.

2.4 Related Work

27

All these requirements motivate design decisions that are distributed across the vari-
ous components of our software architecture. We structure the remainder of this work
according to the structure of these three sets of requirements. While we present a
high-level overview of the whole design in Chapter 3, the details of the respective com-
ponents will be discussed in Chapters 4 to 6.

2.4 Related Work

There is a considerable amount of related work on the various topics for which this
work proposes improvements. Specifically, we review related work in the areas of time
series management systems (Section 2.4.1), compression approaches for sensor mea-
surements (Section 2.4.2), as well as methods for other related aspects (Section 2.4.3).

2.4.1 Time Series Management Systems

Previous research has shown that there is no data management system design that
fits all use cases [105]. In particular, time series data requires different access patterns
when compared to what general-purpose database management systems offer. For
that reason, there is a large category of systems specialized for processing and storing
time series: time seriesmanagement systems. There are several existing solutions, both
open source and commercial systems, that focus on storage of time series data [101].
The survey of Jensen et al. [61] gives a good picture of the state of the art.

InfluxDB

InfluxDB [54] is a widely used open-source time series database. In InfluxDB, data is
stored in a schemaless design, organized in buckets. Logically, these buckets contain
several measurements. Measurements, in turn, contain actually measured metrics in
so-called fields, organized as field keys and the associated field values. In addition,
such measurements may have tags to identify other measurement properties. Each
entry in a measurement is uniquely identified by its timestamp, which has nanosecond
precision. Physically, data on disk is stored in series, identified by a measurement, a
specific value for each tag (a tag set) and a single field key. The series then stores the
timestamps and values together as one Time-Structured Merge Tree [56] (TSM) file on
disk, encoding blocks of timestamps and values independently. The schemaless design
(and the implementationwith storage in individual TSM files) requires that timestamps
are stored redundantly for field values at equal timestamps. Floating-point data always
uses double precision in InfluxDB.

Data retention is managed per bucket. Shard groups, which contain the actual TSM
files, have a certain shard group duration associated with them. If all data of a certain

2 Context, Requirements and Related Work

28

shard group is older than the specified data retention period, the complete shard group
is deleted.

As tag sets and the number of measurements increase (its cardinality), the number
of series stored in files increases quickly. To tackle this, InfluxData works on a new
database core called IOx, which uses Apache Parquet for persisting data [88]. First
results on using Apache Parquet also show that it is well possible to query Apache
Parquet files with a latency of only several milliseconds [110].

Influx uses a text-based input protocol, the Influx Line Protocol (ILP). Data received
via this protocol is first collected in a write-ahead log (WAL), and cached for enabling
faster reads on the data. The contents of the WAL are regularly compacted in TSM files
mentioned above. Additionally, TSM files are regularly combined in larger TSM files.

TimescaleDB

TimescaleDB [126], being an extension on top of PostgreSQL, takes a different ap-
proach. It utilizes so-called Hypertables to manage one consistent view over multiple
child tables, so-called chunks, of data. This allows increasing throughput since costly
index operations are performed on smaller contiguous time segments. It is exploited for
appending data (requiring frequent reorganizations of the index) as well as for delet-
ing old data, which simply happens in full chunks. Data can be inserted using Struc-
tured Query Language (SQL) statements or the PostgreSQL specific stream-protocol.
TimescaleDB comes with all the features of PostgreSQL, making it a feature-rich and
proven alternative for storing time series data. However, as shown in previous re-
search [1], the performance of analytic workloads can be increased significantly by
using columnar data layouts. TimescaleDB also allows compressing older parts of the
data, which groups together values of individual columns of a contiguous set of rows.
This results in a ”hybrid row-columnar format” [125] that also includes data hints in
order to optimize querying data [80].

QuestDB

QuestDB [93] is a relatively new competitor in the field of time series databases. It is
developed by the equally named company and claims to be ”the fastest open source time
series database” [93]. It features different input protocols (SQL, ILP, comma separated
values (CSV)) and data retrieval options. QuestDB employs columnar storage [95],
where each column is stored in a separate file. Ingesting incoming samples is achieved
by writing to a memory-mapped data page for each such file. This data page is written
back to persistent storage once it is filled completely. However, it does not support
compression on the data model level. The only option is to use compression on the file
system level. Furthermore, it has no support for precomputingwindowed aggregations.
Additionally, there is a serialization/deserialization overhead for input/output into/out
of the system since all input/output is text-based.

2.4 Related Work

29

MetricQ

MetricQ [52] originates as an academic project for managing energy measurements in
an HPC environment. Its scalable design in based on a message broker (rabbitmq).
This message broker processes all data that is going in to and out of the system.
Ilsche [52] also presents the concept of Hierarchical Timeline Aggregation, enabling
efficient aggregate queries over large datasets. In contrast to other systems, it em-
ploys a binary encoding (protocol buffers [40]) for data input and output, avoiding
serialization/deserialization overheads to/from text. Furthermore, input can happen
in sample batches. It uses a storage layout similar to InfluxDB, where each metric is
stored together with its timestamp. There are a few limitations, however, that make
it impractical for general sensor monitoring applications. First, all samples are stored
as double-precision floating-point types. It is not possible to store single precision or
integer data types. Furthermore, compression for long-term storage is not considered.

Others

There is also a list of other time series management systems. Building on top of HBase,
OpenTSDB provides a solution targeting distributed setups [123]. BTrDB [6] intro-
duces a copy-on-write data structure for managing multi-resolution statistical aggre-
gates on time-series data. Data in BTrDB is stored in a Ceph [134] storage pool and
compressed in a block-wise fashion. RRDTool [127] is a high-performance logging and
graphing system for time series data. It only supports timestamps in a resolution of
seconds. Gorilla [90] is an in-memory time series management system development by
Facebook. It tries to reduce storage overhead by employing a lightweight floating-point
compression approach. However, timestamps in Gorilla are stored with a granularity
of only seconds.

Summary: Time Series Management Systems

Most of these solutions require some data serialization to text and parsing from text to
ingest data (the notable exception being MetricQ). These serialization and deserializa-
tion overheads are prohibitive for high data rates. The inefficient encoding alone limits
throughput, as we show in our evaluation in Chapter 5. Furthermore, none of the pre-
sented alternatives includes a flexible data compression scheme, where compression
can be configured per sensor. Another issue is that not all systems natively support
nanosecond timestamps. This is problematic for all use cases that require such high
temporal resolutions. Many solutions exploit the increasing nature of timestamps and
apply some kind of delta encoding.

2 Context, Requirements and Related Work

30

2.4.2 Compression of Sensor Data
As discussed earlier, it is crucial for many application scenarios that the available stor-
age space is used as efficiently as possible. Moreover, the throughput for both com-
pressing and decompressing data should be as high as possible. There is a vast body
of literature targeting compression of sensor values. We specifically investigate com-
pression of floating-point and timestamp data. For floating-point data, we further
distinguish between lossy and lossless compression methods.

Lossless Compression of Floating-Point Data

There are several lossless compression schemes for floating-points data. The different
algorithm make different assumptions about the structure of the data to compress.
Lindstrom et al. designed fpzip [74] for spatially correlated multidimensional data (in
most cases, points lie on an evenly spaced, multidimensional grid). Such data often re-
sults from scientific simulations or any other computations that are based on regularly
sampled continuous functions. The SPDP [23] compressor is developed by exhaustively
searching for the best-performing candidate for list of datasets in a set of over nine mil-
lion systematically generated compressors. Burtscher et al. propose FPC [17], which
tries to predict the next value based on one of two predictors [37, 98]. It then computes
the XOR of the predicted and the actual value and compresses leading zeros. Similarly,
as Pelkonen et al. describe for their Gorilla time series database [90], data can also be
compressed by simply calculating the XOR of consecutive values. The same compres-
sion approach is used for compressing floating-point values in InfluxDB. Based on the
compression approaches in FPC and Gorilla, Bruno et al. propose TSXor [16], improv-
ing both compression rate and throughput. Chimp [71] is another improvement over
the XOR approach used in Gorilla, optimizing the encoding based on empiric investiga-
tion on various real-world datasets. Cayoglu et al. [21] investigate a new data encoding
by proposing an improved shifted XOR for calculating the difference between floating-
point values. Instead of directly reducing data size, shuffle filters in HDF5 [121] and the
approach taken by the blosc library [119] precondition data to be easier to compress by
general-purpose compressors like zstd [24] or lz4 [77]. The work of Gómez-Brandón et
al. specializes in industrial time series data, but is designed for integer data (so floating-
point data first needs to be quantized to an appropriate integer format) [38].

Lossy Compression of Floating-Point Data

In addition to lossless compression, real-valued time series data can also often be com-
pressed in a lossy fashion. This is particularly interesting for multidimensional nu-
merical arrays representing continuous or smooth functions. Such data often results
from scientific simulation experiments. Lindstrom et al. developed zfp [73], which is a
lossy encoding for small blocks of multidimensional floating-point (single- or double-
precision) data that exhibits spatial correlation. The encoding can also be used in a

2.4 Related Work

31

lossless mode. Similarly, the lossless floating-point compressor fpzip [74] can be used
in a lossy mode, but zfp performs better in the lossy case. The SZ lossy compression
framework4 is optimized for scientific simulation data [30, 31, 72, 109, 138]. Its latest
version, SZx, improves performance by only relying on lightweight operations [136].
The framework also supports a variety of application-specific use cases.

Compressing Timestamps

There are several techniques for efficiently compressing timestamps. Many of them
rely on the observation that differences (or deltas) between consecutive timestamps
are smaller in value than the actual timestamp values [29]. Encoding smaller values
makes it possible to use fewer bits, using one of many alternatives [131] like Variable
Byte [29] or Simple-8b [7]. Delta-encodings often operate on blocks of values to avoid
decoding too long sequences of values. Another optimization that is specifically useful
for timestamps is delta-of-delta encoding, where only the difference to the last delta
is stored. When the individual deltas are identical or at least very similar, this makes
it possible to use few bits for storing timestamps. Lemire et al. [69] present an effi-
cient method to pack the resulting bits of the delta-of-delta sequence. Since we expect
timestamps to be very regular in industrial settings, our approach leverages a delta-of-
delta method that has been shown to perform and compress well in many cases [69,
131].

2.4.3 Other Related Aspects
For some aspects that are not core to our work, there are also a variety of previous
publications.

Approximate Query Processing

Approximate query processing (AQP) is a technique to provide approximate results
to complex queries in a much faster way than obtaining exact results. AQP is useful
when exact results are not required or when the exact computation is too expensive or
time-consuming. For time series data, queries spanning large time ranges quickly get
expensive because of the underlying number of raw samples.

AQP techniques can be broadly categorized into two categories, online aggregation
and offline synopsis generation [3, 70]. Online aggregation techniques select sam-
ples online, at query time, and use these samples to answer queries. Offline synopsis
generation generates some kind of reduced representation of the data based on prior
knowledge (e.g., the expected types of the queries) and uses this synopsis to speed up
queries. For example, instead of scanning an entire table, an AQP system might use a
random sample of the data to provide a quick estimate of the result. This can reduce

4https://szcompressor.org/

https://szcompressor.org/

2 Context, Requirements and Related Work

32

the processing time for the query considerably, as well as the amount of data that needs
to be processed and transferred.

Previous work for time series data successfully used offline synopsis generation, i.e.,
pre-computing windowed sketches [26] that can be used to answer queries. In Met-
ricQ [52], a multi-resolution hierarchy of precomputed aggregations is used to speed
up aggregate or visualization queries. This is very similar to our approach, but uses
a different data storage model. According to the classification of Cormode et al. [26],
this is a sketch-based approach. Chaudhuri et al. argue that it is important to offer an
approximate query mode to users, in particular for interactive queries [22]. Another
approach relies on identifying similarities between time series. This helps to avoid re-
dundant storage of materialized, pre-computed views on data [91]. This focuses more
on scaling aggregate queries along the dimensions of the dataset instead of the length
of the time series.

Distributed and event stream storage systems

A lot of research effort has been spent on distributed streaming storage and processing
systems. Some use cases and problems discussed in such works [97, 137] are similar
or related to our use case. However, distributed stream processing systems—despite
the name—are a different category of systems. These systems consider event streams
and the challenges that come with it [14, 32, 47, 48, 68, 86]. This is fundamentally
different from our usage scenario in both data type and data rate or regularity. An
event is usually much more complex (it may arrive in the form of text or structured
text) than a single sensor reading (one 4-byte floating-point value) and arrives with a
much more irregular frequency.

33

3 HAQSE: System Overview
In this chapter, we provide a high-level overview of our sensor data processing and
storage system. We call our systemHAQSE1, an acronym forHierarchicalAggregation
and Query StorE. HAQSE fulfills the requirements and fills the gaps identified in the
previous two chapters. As an introduction, Section 3.1 provides an intuitive explanation
of the problems HAQSE solves and where it fits into the whole sensor data storage,
processing and analysis pipeline. Next, in Section 3.2, based on the definitions from
Section 2.1 we explain the interfaces for sensor stream ingestion and data queries and
how HAQSE organizes the stored sensor stream hierarchy. In Section 3.3, we present
the individual components that make up the system and explain how they interact
with each other. More detailed explanations of the inner workings of these components
follow in Chapters 4 to 6. In Section 3.4, we give an overview of our implementation
and the software stack used in HAQSE.

3.1 Highlights of HAQSE
HAQSE is designed to address the problem of preprocessing and permanently stor-
ing large quantities of structured sensor data. As sketched in Figure 3.1, it is meant
to be deployed as a storage component consuming multiple, independent, multivari-
ate sensor streams, precomputing aggregations on data ingestion, permanently stor-
ing these streams, and providing the stored data to visualization and analysis clients.
HAQSE specifically puts its focus on the three aspects stream ingestion input rate,
stream query performance and storage efficiency for noisy sensor data. It is targeted
at consuming continuous, long-running sensor streams that adhere to a fixed sensor
schema (see Definition 2) and originate from a single source. It can ingest data faster
than any existing time series management system we are aware of and incorporates
an efficient way for compressing noisy floating-point values.

3.1.1 Main Concepts and Ideas in HAQSE
In the following paragraphs, we summarize the key design goals of HAQSE.

Efficient Stream Input HAQSE is built to consumemultiple independent, multivari-
ate, high cardinality, high stream rate sensor streams that adhere to a defined sensor

1HAQSE is pronounced like the Bavarian word “Haxe” (/ˈhaksə/).

3 HAQSE: System Overview

34

efficient
queries

HAQSE
effient

stream input

Sensor Data
Stream Sources

Visualization
&

Analysis
efficient storage

Figure 3.1 Overview: HAQSE is designed to consume multiple sensor data input streams, per-
manently and efficiently storing this data and providing it to analysis and visualization users.

schema. It comprises an efficient binary input protocol that is based on gRPC client
streaming [42]. This is one of the key aspects for enabling high throughput on data
ingestion. The input may consist of individual samples k , but it also allows the input
stream to consist of sample batches k8 .. 9 (multiple timestamps and associated sensor
values). As we show in Section 5.6, HAQSE enables ingestion of sensor source streams
faster than any comparable system we are aware of. HAQSE efficiently computes win-
dowed aggregations on the input sensor source stream, leading to several derived, ag-
gregated sensor streams. Since these derived streams are all related, we can optimize
the calculation of aggregation values based on the greatest common window size. In
Section 7.4, we show that it is possible to deploy HAQSE in demanding real-world sen-
sor processing scenarios, where it can effortlessly keep up with the generated stream
rates.

Efficient Storage Storage efficiency is an important aspect for continuously gener-
ated sensor data. It is no question that (in most cases, old) parts of the data must be
deleted at some point. The question is only when, and how large the time span cov-
ered with available data can be, given a certain storage size. Moreover, different data
streams have different data properties, so there is no single compression approach that
works best for all kinds of data sources. Consequently, it is crucial to include a mod-
ular compression approach into the core design of the system. For HAQSE, we chose
an open-source storage format that comes with this property: Apache Parquet [116].
It supports different lightweight encoding schemes, but also supports various more so-
phisticated compression algorithms. There are encoding schemes for repetitive data
values as well as for evenly spaced timestamps that are ubiquitous in time series data.
We specifically design one combination of encoding and compression to target noisy
floating-point sensor data. As we show in Section 4.4, this compression technique can
reduce the compressed size of several publicly available data sets, all while increasing
compression and decompression throughput.

Efficient Querying We provide an interface for efficiently retrieving range-based
excerpts of the stored sensor streams. The query interface is based on Apache Ar-
row Flight [8]. This is again a gRPC service with existing implementations in several

3.1 Highlights of HAQSE

35

programming languages, enabling easy adoption by clients. Queries return Apache
Arrow record batches, which are easy and efficient to consume and process. Again,
these record batches are binary encoded, avoiding any deserialization overheads on
the client. To speed up querying large time windows, HAQSE supports retrieval of
precomputed windowed aggregations. These precomputed aggregations can provide
min, max, mean or other windowed summaries of the raw data2. One or multiple ap-
propriate aggregation levels are selected for answering queries. This is useful, e.g., for
visualizing months of sensor data sampled at dozens of kHz. In addition to that, ma-
chine learning models can be trained on precomputed mean values of sensor data3.
HAQSE can be queried as data is streaming in, allowing for concurrent seamless ag-
gregation and storage of data. We also propose a method for querying geographically
distributed sensor data.

3.1.2 Non-Goals of HAQSE
To better understand what HAQSE is good at, we also discuss what HAQSE is not de-
signed to be used for. These are deliberate design decisions that make it possible for
HAQSE to fill the gaps where other systems cannot satisfy application requirements.
We derived these system properties by analyzing the industrial application require-
ments from Section 2.3.

Multiple, concurrent sources for one stream Existing systems are able to receive
data from multiple sources into one storage unit4 concurrently (or are even optimized
for such a workload). This is necessary especially for Internet of Things (IoT) use cases
where hundreds or thousands of distributed sources write to the same database or table
with one ormultiple different identifying tags or labels. Many existing general-purpose
systems [54, 93, 126] handle this case very well. HAQSE, on the other hand, is built to
efficiently ingest from a single sensor source stream that produces a multivariate, high
data rate stream of sensor samples. This avoids dealing with unifying the individual,
concurrently arriving messages and many challenges that this implies, like ensuring
serialized access to the final data structure.

Reordering items in the input stream This is related to the previous non-goal,
but can still be considered a separate aspect. When data is received from multiple
sources (but also in other cases), unsynchronized or drifting clocks as well as delays
in stream transport make it necessary to reorder the arriving samples according to

2Aggregation functions need to be commutative and associative in order for HAQSE to be able to apply
them on the sensor stream. This is explained in more detail in Section 5.3.

3Such models can be used to, e.g., detect slowly developing changes in the sensor stream and thus do
not require the full stream resolution.

4One storage unit is, e.g., a table in a classical databasemanagement system. Depending on the specific
system, the concept of such a storage unit is named differently.

3 HAQSE: System Overview

36

their timestamp. Since HAQSE only has a single data source, we expect timestamps to
arrive in strictly increasing order without backward jumps. Actually ensuring strictly
increasing timestamps is a challenging task on the upstream sensor processing system,
but other work has shown that there are viable approaches to achieve this [49, 60, 82].

Irregular or unknown sampling frequencies Precomputing windowed aggrega-
tions is not very meaningful for irregular or unknown sampling frequencies. We built
HAQSE for input of sensor streams that are strictly increasing and evenly spaced at a
known ΔC . Streams in industrial settings satisfy these criteria since the sampling and
processing are often done by special real-time-capable hardware that ensures these
properties. These assumptions make data aggregation and retrieval more efficient. It
is also possible to put irregularly sampled data into HAQSE, but precomputing aggre-
gations for these cases is not as meaningful as for fully regular sampling (depending
on the chosen aggregation window lengths).

Storage of non-numeric values General-purpose database systems are able to also
store non-numeric data like variable length text or even more complex things like
“events”. HAQSE is not designed to do this. Instead, it focuses solely on storing in-
formation that can be represented by individual integer or floating-point numbers.
Structured, more complex data types like frequency spectra are supported by splitting
these types up into its individual components. Many components of HAQSE (e.g. the
storage layer) would already be capable of storing other types of data, and it would be
possible to support such use cases as well. However, this clearly is not the main focus
of HAQSE.

Ensuring durability after every sample Many existing systems ensure durabil-
ity after every sample—or, at least, every batch of samples contained in one “transac-
tion”—sent to the respective system. This property requires frequent synchronizations
to disk, essentially limiting the achievable data rate by the frequency these synchro-
nizations can be performed on a given system. Since HAQSE targets continuous data
stream applications, this explicit synchronization to disk is detrimental and excludes
some application scenarios, so we chose to employ a relaxed durability strategy.

Flexible schemata Some systems support flexible schemas [54]. This is not the in-
tended use case for HAQSE. The applications we envision all have a clearly defined
schema. This makes it possible to preallocate memory for ingesting data based on the
schema and thus optimize for receiving data that always follows this schema. We plan
to integrate enhancements like the addition of new schema fields in a future version
of HAQSE.

3.2 Data Model and System Interfaces

37

While these aspects seem to limit the utility of HAQSE, it helps to sharpen the focus
of its field of use. Furthermore, focusing the system on certain aspects—as indicated
above—helps create an efficient implementation.

3.2 Data Model and System Interfaces
Having established an understanding of the main parts and features of HAQSE, we
now define its interfaces and data model. As shown in Figure 3.2, HAQSE offers two
main interfaces: one for concurrently receiving multiple sensor data streams on the
input side and another one for making this data accessible for querying. This section
defines these two interfaces and the underlying data models.

HAQSE
Sensor Data Processing and Storage System

Sensor Data ery

ery Result

Sensor Input Stream

CLI Configuration
High Frequency,

Multivariate,
Sensor Data

Stream Source Stream
Configuration

Interface

Figure 3.2 Sensor Data Processing and Storage System Interfaces

3.2.1 Sensor Data Stream Input
HAQSE is designed to consume multiple sensor source streams, as defined in Defini-
tion 4. Such a sensor source stream must first specify its sensor schema S, i.e., types
and names of the sensors, as well as the stream resolution ΔC . Then, the actual stream
of sensor samplesk is received. The samples can either be sent individually or in sam-
ple batches. As we show in Section 5.5, using sample batches is necessary for most
efficient data input.

3.2.2 Query Interface
One of the main goals of our system is to enable efficient retrieval of large timespans
of sensor data for a variety of use cases like explorative data analysis or as input data
for other analytic scenarios. For that reason, HAQSE supports range-based querying
from a sensor stream hierarchy as defined in Definitions 10 and 11. In order to query
the system, a JavaScript Object Notation [59] (JSON) encoded query request must be
sent to HAQSE. As a response, the client receives a stream of sensor-ordered sample
batches that contain the requested data in a resolution that best matches the request.
Similar to the ingestion interface, the query interface yields binary encoded data. This
way, serialization and deserialization overheads can be avoided.

3 HAQSE: System Overview

38

3.2.3 Hierarchical Data Model

To have data ready for data queries, HAQSE uses different logical concepts for stor-
ing sensor streams. This is visualized in Figure 3.3. For each sensor source stream,
HAQSE allocates one stream bucket. This means that at the top level, HAQSE’s data
model consists of multiple independent stream buckets (see Figure 3.3), each with its
own schema. Each bucket, in turn, contains a stored sensor stream hierarchy Ψ�—as
defined formally in Section 2.1. First, every bucket contains a stored sensor stream that
holds samples k of the original sensor source stream and in the original stream reso-
lution ΔC . In addition to that, there optionally can be multiple, derived streams that
store aggregated versions of the original stream with a gradually increasing ΔC . These
aggregated streams also have a derived schema, where each field of the original stream
has multiple, derived fields that represent the various aggregation functions precalcu-
lated on ingestion. This derived schema is indicated on the right part of Figure 3.3 (box
titled Aggregated Stream 1). These aggregations are calculated on tumbling windows
on the sensor data of the source stream.

Stream Bucket
1

Stream Bucket 1

Stream Bucket 2

Stream Bucket 3

Stream Bucket N

Source
Stream

Aggregated
Stream 1

Aggregated
Stream 2

Aggregated
Stream X

Aggregated Stream 1

ts
s1 sn

ts1 𝜐1,1 𝜐1,1 𝜐n,1

ts4 𝜐1,2 𝜐1,2 𝜐n,2

ts8 𝜐1,3 𝜐1,3 𝜐n,3

tsi 𝜐1,i 𝜐1,i 𝜐n,i

Source Stream

ts s1 s2 sn

ts1 𝜐1,1 𝜐2,1 𝜐n,1

ts2 𝜐1,2 𝜐2,2 𝜐n,2

ts3 𝜐1,3 𝜐2,3 𝜐n,3

tsi 𝜐1,i 𝜐2,i 𝜐n,i

max min max min

𝜐n,1

𝜐n,2

𝜐n,3

𝜐n,i

Aggregate

Input Stream 1

Input Stream 2

Input Stream 3

Input Stream N

Aggregate

Sensor Source Stream

Sensor Stream
Hierarchy Stored Sensor Streams

Figure 3.3 Overview of hierarchical data model in HAQSE.

The streamswith different resolutions in one bucketmake querying large time spans,
e.g., for visualization, much faster. In HAQSE, all stored sensor streams of one sensor
stream hierarchy are stored independently. This makes it possible to have different
retention policies for each of the streams of the stream hierarchy with different reso-
lutions.

3.3 System Architecture Overview

In this section, we explain the high-level software architecture of our system. We intro-
duce the individual components and explain how they interact with each other. The
requirements from Section 2.3 motivate design decisions that are distributed across

3.3 System Architecture Overview

39

the various components of our software architecture. We will refer to these require-
ments when describing the details in the respective subsections. But first, we explain
the main components on the basis of Figure 3.4. Having defined the data stream input
and query interfaces (left and right in Figure 3.4) in Section 3.2, we now focus on the
internals of our system:

Sensor Data Processing and Storage System

Stream StorageStream Storage

Distributed
ery Logic

Sensor
Data
ery

ery
Result

Sensor
Input
Stream

High Frequency,
Multivariate Sensor

Data Streams

Stream Storage (per Aggregation Level)

eryable Data Layer

Efficient Long
Term Storage

(compressed)

Temporary
Storage

(uncompressed)

In-Memory
Buffers

Stream Segment Index

Stream Processing ery Processing

Online Data Layout
Transformation

Hierarchical Sensor
Data Aggregation

Async Result
Stream Generator

ery Parsing

Level Selection

Figure 3.4 Sensor Data Processing and Storage System Components.

• Independent of any sensor stream interfaces, HAQSE is designed to efficiently
store and manage hierarchical stored sensor streams Ψ� . This is the respon-
sibility of the stream storage component (bottom), which we further explain in
Section 3.3.1.

• Before any data can be stored, however, we need to receive it on the input inter-
face and transform and process it. This logic is contained in the stream processing
component (top-left), which we explain in Section 3.3.2. This component pro-
duces a layout-transformed original data stream and several derived, aggregated
sensor streams.

• Finally, client applications retrieve sensor data from our system by sending que-
ries to the query processing component. Logic for retrieving sensor data from
multiple, distributed instances of our system is located on the client. We give an
overview of all query processing-related aspects in Section 3.3.3.

3 HAQSE: System Overview

40

Both the stream and query processing components rely on and interact with features
integrated in the stream storage component. For this reason, we start with an overview
of this component first.

3.3.1 Stream Storage

The stream storage component represents a central part of our system, as all other com-
ponents communicate with this component in some way, either directly or indirectly.
It consists of the Stream Segment Index and the different data layer implementations
that provide access to the actual stored sensor streams Ψ. The Stream Segment In-
dex is an internal, tree-based, in-memory data structure that enables fast lookups for
range-based queries. When dealing with large databases, it is a key component for ad-
dressing Requirement 10 (Query Speed). It manages stream segments, which represent
contiguous, disjunct and ordered segments of stored sensor streams. Each segment is
physically stored in one of the available data layer implementations, depending on the
lifecycle of the segment (see Figure 3.5).

Efficient Long
Term Storage

(compressed)

Temporary
Storage

(uncompressed)

In-Memory
Buffers Persistence CompactionIngestion Deletion

Figure 3.5 Lifecycle of segments of the stored sensor stream.

After sensor samples are received via the input interface, they are first put into an
in-memory buffer. This optionally uses a double-buffering approach and helps to fulfill
Requirement 5 (High-Bandwidth Stream Consumption). This buffer is required for two
processing tasks: the layout transformation processing logic and the hierarchical batch
aggregation functionality. Both of these are explained in more detail in Section 3.3.2.
The size of the in-memory buffers are limited by the usable RAM. This is often a scarce
resource that is shared with other processes that run on the same hardware. To reduce
the required amount of RAM, our design includes a temporary storage area. This stores
data in a format similar to the in-memory buffers, in uncompressed form. This tempo-
rary storage is needed for addressing Requirement 11 (Online/Offline Data Queries).
The underlying files satisfy two important characteristics: First, they are readable in
other contexts before being completed and closed by the writing process. This is im-
portant for handling queries requesting the data from recent time ranges that is stored
in these files. Second, once terminated, these files contain a file footer that provides
an index into the stored sensor stream contents of the file. In the next storage area,
we add data compression to enable a compact representation on permanent storage,
addressing Requirement 1 (Storage Efficiency for Floating-Point Data). We view com-
pression as an integral part of our system, taking into account the special properties
of sensor data.

3.3 System Architecture Overview

41

In all of our design decisions, we had Requirement 10 (Query Speed) in mind, so this
is reflected in several parts. First, the Stream Segment Index ensures fast access to the
respective stream segments. Second, by exploiting the internal structure of the various
storage formats, we limit the amount of data that needs to be read for range-based
access. Third, we decide to use a binary data interface, avoiding costly serialization
and deserialization. Lastly, we design a compression scheme that is fast to decompress,
while still being able to achieve high compression ratios.

The details of all storage-related parts of our system, as well as our approach for
compressing floating-point data, are presented in depth in Chapter 4. Aspects related
to writing data to the respective storage areas, as well as updating the Stream Segment
Index, are discussed in Chapter 5. Everything related to data queries, in particular
reading the Stream Segment Index and reading from the various storage areas, are
discussed in Chapter 6.

3.3.2 Stream Processing
As discussed in Section 3.2.1, sensor data is received in a time-ordered layout on the
input interface. In contrast to this, as we explain in more detail in Chapter 4, data
is stored in a sensor-ordered or columnar layout for further processing and long-term
storage. Consequently, we need to transform the input data stream into a columnar
layout. For this, we use the in-memory (optionally double-buffered) storage area men-
tioned in the previous subsection. Once the in-memory buffer is filled, its contents are
written to the temporary storage area as one contiguous stream segment. Multiple
such in-memory buffers are put into one such temporary file. Then, multiple tempo-
rary files are combined into a compacted file. We eventually end up with several such
compacted files as the final destination of stored sensor streams. These compacted files
employ data compression, ensuring an efficient representation on disk. Compaction is
executed asynchronously in a background thread. Once a compacted file is completely
written, the respective temporary files are deleted and the Stream Segment Index is
updated accordingly.

Additionally, as discussed in Section 2.1, it is useful to calculate windowed aggre-
gations for multiple different window sizes to speed up retrieval of large time spans.
This results in a multi-resolution hierarchical data model, as sketched in Figures 2.2
and 3.3. In our system, we perform data aggregation on the in-memory, sensor-ordered
batches of sensor data, achieving high computational efficiency. The resulting derived
data streams are managed as independent sensor streams. Each such sensor stream
(original and derived) is processed identically by the stream storage logic.

3.3.3 Query System
The query processing component implements retrieving data from HAQSE. As men-
tioned before, the query system accesses the Stream Segment Index, ensuring that

3 HAQSE: System Overview

42

range-based queries can locate the requested parts of the data rapidly. The index ac-
cesses data from all the different storage areas, making it possible to also retrieve most
recent sensor data.

For supporting distributed queries, the query system also provides information about
upstream or downstream systems that can be queried from the query client (Require-
ment 13, Transparently Querying Multiple Sites). To exploit this information, clients
run logic for dealing with distributed queries. In case a query cannot be fully satisfied5,
the distributed query logic forwards queries to other nodes potentially containing the
data. We discuss the details of our query system in Chapter 6.

3.3.4 Combining Components in a Holistic System

The various methods used in our system are partly orthogonal and can be employed
independently. As one example, the proposed efficient compression for floating-point
sensor data is useful without the rest of the system. Yet, combining them in a holistic,
integrated system creates synergies, ensuring that all discussed aspects work together
in a seamless and efficient way. In Chapter 7, we show how HAQSE—as a complete
system—can be integrated into and used as storage component in an existing indus-
trial sensor processing system. Using the example of a production-grade combustion
monitoring system, we also demonstrate that HAQSE is ready to be deployed in a pro-
duction environment.

3.4 Implementation

This section describes the main technologies we use for implementing and evaluating
our ideas in HAQSE.

• As programming language, we choose C++20 [58]. This provides a good trade-
off between language features, control of runtime behavior (especially memory
management) and there exists an extensive set of high-quality external libraries.
We build HAQSE with g++ version 11.3.0 [111]6.

• As long-term storage file format, we rely on the Apache Parquet format. We also
contributed to the specification during the course of our work and added new
functionality to the Java and C++ reference implementations. At the time when
we started implementing HAQSE, the best (feature-, stability- and performance-
wise) implementation for writing and reading Apache Parquet files was available

5This is the case, e.g., if the requested time range for sensor data is not fully available anymore on a
node or a query resolution is not available on a certain node.

6Wedo not expect significant performance variationswhen compilingHAQSEwith a different compiler,
e.g., Clang [92] or the Intel C++ Compiler [27].

3.4 Implementation

43

in the Apache Arrow C++ implementation of Apache Parquet7. Timestamps are
stored using the timestamp type of the respective format (Apache Arrow8 and
Apache Parquet9). In both cases, this means that timestamps are stored as the
number of nanoseconds since UTC, encoded as 64 bit integer.

• Both our data input interface (see Section 3.4.1) and query interface (see Sec-
tion 3.4.2) are based on gRPC. gRPC works on top of HTTP/2. It supports several
ways of authentication and can encrypt traffic between client and server, fulfill-
ing important security requirements. More specifically, HAQSE’s query interface
is based on Apache Arrow Flight, which basically is a wrapper around a gRPC
service to send Apache Arrow columnar format data.

• We use the Apache Arrow columnar format internally for representing and pro-
cessing sensor samples. The Apache Arrow columnar format is a perfect fit for
representing columnar data that is loaded from Apache Parquet files. We also
use components of the Apache Arrow ecosystem, e.g., the Apache Arrow Flight
framework, for our query interface. This ensures that data is efficiently queryable
since there is almost no serialization overhead. Awide range of other libraries and
frameworks also adopt parts of the Apache Arrow framework. This also makes
integrating further functionality based on the Apache Arrow ecosystem easy.

• We use different ways of concurrently executing various processing tasks in par-
allel. All external triggering happens via gRPC: receiving data is done directly
through a gRPC service (see below), querying data from HAQSE is done through
Apache Arrow Flight, which is just a wrapper around a gRPC service. In both
cases, we rely on gRPC’s synchronous request processing. This internally uses a
thread pool to handle requests, creating new threads if required. Internal asyn-
chronous processing tasks like compaction or asynchronous reading data for que-
ries are also performed in thread pools. We use one thread pool for compaction
and one for asynchronous reading data for queries.

We package HAQSE in a Docker image that is based on Ubuntu 22.04.

3.4.1 Input Interface Definition
From a client’s perspective, one of the most interesting aspects is how to get sensor
samples into HAQSE. As mentioned before, the ingestion interface is realized via a
gRPC protocol. The gRPC service definition is shown in the following Protocol Buffers
listing:

7The C++ implementation of Apache Parquet is located in the Apache Arrow project repository at the
time of writing.

8https://github.com/apache/arrow/blob/apache-arrow-11.0.0/format/Schema.fbs#L242
9https://github.com/apache/parquet-format/blob/apache-parquet-format-2.9.0/LogicalTypes.md#timestamp

https://github.com/apache/arrow/blob/apache-arrow-11.0.0/format/Schema.fbs#L242
https://github.com/apache/parquet-format/blob/apache-parquet-format-2.9.0/LogicalTypes.md#timestamp

3 HAQSE: System Overview

44

service ServerInput {
rpc StreamSensorData(stream SensorStreamElement) returns (StreamStatus) {}

}

It shows that the client is required to send a stream of SensorStreamElement messages.
As response, after the client has stopped streaming messages to HAQSE, it receives a
StreamStatus message, indicating whether the call was successful. Messages of type
SensorStreamElement are defined as follows:

message SensorStreamElement {
oneof StreamDefOrContent {

// impl needs to enforce that first message is always the StreamDefinition
StreamDefinition stream_definition = 1;
// all messages after the first one need to be SensorData messages
SingleSampleData single_sample = 2;
SampleBatchData batch_samples = 3;

}
}

This shows that a SensorStreamElement must contain one of three message types: a
StreamDefinition, a SingleSampleData or a SampleBatchData. When starting a stream, the
client first needs to send a StreamDefinitionmessage, containing a definition of the sen-
sor stream that follows. The details of this StreamDefinition message are presented in
the next listing, showing the excerpt from the interface protocol definition:

enum FieldType {
Bool = 0;
Int8 = 1;
Int16 = 2;
Int32 = 3;
Int64 = 4;
UInt8 = 5;
UInt16 = 6;
UInt32 = 7;
UInt64 = 8;
Float32 = 9;
Float64 = 10;
TimeStampNanos = 11; // nanoseconds since UTC 1970-01-01 00:00, encoded as int64

}
message SchemaField {
string name = 1;
FieldType type = 2;

}
message StreamSchema {
repeated SchemaField fields = 1;

}
message StreamDefinition {
string stream_id = 1;
StreamSchema schema = 2;

3.4 Implementation

45

uint64 time_resolution = 3;
// ...

}

When starting the stream with the StreamDefinition message, clients can also specify
stream configuration parameters. To keep this section concise, we exclude these pa-
rameters from the listing and do not elaborate on them here. Details of these stream
configuration parameters can be found in Appendix A.2.

The actual sensor data that should be sent to HAQSE then needs to adhere to the
following protocol definition:
message SingleSampleData {
int64 timestamp = 1; // nanoseconds since UTC 1970-01-01 00:00, encoded as int64
bytes stream_content = 2; // encoded measurement values, same order as in schema

}
message SampleBatchData {
uint64 sample_count = 1;
bytes timestamps = 2; // nanoseconds since UTC, encoded as a sequence of int64
bytes values = 3;

}

The actual sensor samplesk are sent via either a SingleSampleData or a SampleBatchData

message. For a SingleSampleData message, the timestamp is encoded as a single int64.
The actual sensor measurement values a are encoded using bytes that conform to a
little-endian C-compatible binary representation. For this, all these binary representa-
tions are simply concatenated in the stream_content attribute in the order as the sensors
f appear in the schema.

For SampleBatchDatamessages, the number of samples are explicitly encoded as uint64
sample_count. This message type provides flexibility regarding the encoding of times-
tamps and values. For that reason, we simply use bytes as type for both. Currently,
the only supported encoding for timestamps is a series of sample_count int64 values.
The actual values a are encoded in a column-oriented, i.e., sensor-ordered, fashion,
again conforming to a little-endian C-compatible binary representation. This means
that the values attribute contains, in order, all values a that belong to the first sensor,
then all a of the second sensor, etc. Explicitly encoding the number of samples in the
SampleBatchData message enables future improvements to the encoding of the values

or timstamps attributes of the message. As one example, the timestamps may be delta
encoded, reducing the message size and saving bandwidth.

When all sensor data is sent, the gRPC connection can be closed and the success
status is returned to the client.

3.4.2 Query Interface Definition
HAQSE requires clients to use a simple custom query definition for retrieving data from
the system. These queries need to be specified using a JSON object that follows the
structure of the example shown in the following listing:

3 HAQSE: System Overview

46

{
"signals": ["sensor0", "sensor4"],
"stream-id": "my-stream-name",
"start": 1509969600000000000,
"end": 1687950671000000000,
"max-points": 1000,

}

This example query requests data for the two sensors named sensor0 and sensor4
of the stream named my-stream-name. Only data matching the queried time range
between start and endwill be returned to the client. Additionally, the client requested
a maximum number of 1000 points. This means that in this particular case, the client
does not require more than 1000 samples for its processing task, e.g., visualization. On
the server side in HAQSE, this max-points attribute is used for selecting an appropriate
aggregation level from the hierarchy, if available. Otherwise, a coarser aggregation
level is returned, or the query returns an empty result set. In both cases, the metadata
part of the response indicates that the query could not be fully satisfied.

This JSON object needs to be put into an Apache Arrow Flight Ticket as a UTF-8-
encoded byte sequence. The created ticket can be used to call the DoGetmethod of the
Apache Arrow Flight service:

rpc DoGet(Ticket) returns (stream FlightData) {}

As a result, HAQSE will return a stream of FlightData messages. Each such mes-
sage contains an Apache Arrow record batch with data matching the query definition.
This record batch consists of one or multiple columns per requested sensor, depending
on whether the result uses aggregated data (multiple columns, one for each queried
aggregation) or not (one column containing the original stream values). Additionally,
it contains one timestamp column, encoded as a nanosecond arrow::Type::TIMESTAMP10.
Details of the Apache Arrow Flight protocol are defined in the respective protocol spec-
ification [8]. In addition to that, the response contains metadata information about the
query result. Appendix A.3 shows a code snippet for a basic query client in Python.

10An Apache Arrow TIMESTAMP is internally represented by a 64 bit integer, see
https://github.com/apache/arrow/blob/apache-arrow-11.0.0/format/Schema.fbs#L242

https://github.com/apache/arrow/blob/apache-arrow-11.0.0/format/Schema.fbs#L242

47

4 Efficient Storage of Industrial
Sensor Data

Industrial installations continuously generate sensor data and analysis results at very
high rates. As described in Section 2.2, the generated data is used in a wide range of
different application scenarios. One large category of use cases is the analysis of large
amounts of historical sensor data. Analysts and engineers require efficient access to
measurement values of huge time spans of historical sensor data. In this chapter, we
focus on two main aspects related to this: storage model and compression.

On the one hand, deciding on a storage model is a crucial point in our design of
HAQSE. It has functional and performance implications on all other parts of the system.
On the other hand, an efficient compression approach is fundamental for achieving
good storage efficiency. While saving storage space and transmission bandwidth is
important, that is not the only aspect to consider. Compressing data must also be fast
enough for the desired data rates, and decompressing data should not slow down (or
even speed up, if possible) analysis tasks.

In Section 4.1, we first discuss the storage model. For this, we discuss how HAQSE
is designed to consume sensor data streams and how data is supposed to be deleted
again (Section 4.1.1). Then, in Section 4.1.2, we show possible approaches of how to
map the sensor data stream concept from Section 3.2 to actual physical data layouts.
In Section 4.2, we present a compression scheme for floating-point encoded sensor
data. After that, in Section 4.3, we explain how our approach maps to the Apache
Parquet file format. Finally, in Section 4.4, we evaluate our solution, showing that
our system not only improves compression efficiency for a typical dataset, but also
increases compression and decompression throughput compared to prior art.

Publication Information
The approach described in this chapter, in particular compressing floating-
point data, has previously been published in [66]. The author is the prin-
cipal author, with conceptual contributions by all other authors. The third
author (Martin Radev) significantly contributed to the design, analysis and es-
pecially implementation in Apache Parquet of the developed Byte Stream Split
approach.

4 Efficient Storage of Industrial Sensor Data

48

4.1 Storage Model
In this section, we discuss the storage model of HAQSE. This comprises the data write
and read pattern our system is built for as well as the physical organization of data on
disk. For this, we have to take into consideration Requirements 1, 10 and 5, i.e., how
data is typically written, how it is accessed, and that we require a compact representa-
tion on disk. So first, we quickly discuss what types of operations we want to support
for adding content to and removing it from the database. After that, we describe the
design of the physical data organization in HAQSE.

4.1.1 Adding and Deleting Data
HAQSE is designed to consume continuous streams of sensor data with increasing
timestamps, each coming from a single source. Thus, we design and optimize HAQSE
for an append-only workload, similar to other time series management systems [54,
93, 126]. This means that data can only be appended to an existing database. All
data that has been written to the database will never be updated or changed again.
Once measured and persisted in the database, there is no reason why existing sensor
measurements should ever be altered, especially in an industrial context. As data is
flowing in, all these data stream values are written to independent, time-partitioned
segments (represented by, e.g., one file per segment). By using this strategy, a single
segment represents a certain time span of the sensor stream (see Figure 4.1).

Time

Segment currently
wrien to

Segment to be
deleted next

Time span
without data

Segment
already
deleted

Time span with available data

Segment
wrien next

Most recent
sensor samples

Now

Figure 4.1 Sensor data lifecycle. Sensor data is continuously flowing in, written to time-
partitioned files in an append-onlymanner. By using this strategy, each segment can be deleted
in one block, removing all sensor data contained in the respective segments.

Since sensor data streams for monitoring industrial assets create vast amounts of
data continuously, at some point, data will need to be deleted according to a certain
retention policy. For HAQSE, we use a strategy similar to existing time series databases,
where whole segments or partitions of the existing sensor data stream are deleted in
one operation. For example, QuestDB uses data partitions1, InflxuDB uses shards2 and

1https://questdb.io/docs/operations/data-retention/
2https://docs.influxdata.com/influxdb/v2.5/reference/internals/shards/

https://questdb.io/docs/operations/data-retention/
https://docs.influxdata.com/influxdb/v2.5/reference/internals/shards/

4.1 Storage Model

49

TimescaleDB uses the concept of hypertables that consists of multiple child tables, so-
called chunks3. Dropping data is achieved by simply dropping complete segments,
removing the respective time span as contained by the segment from the database. In
practice, for automated operation, this will often be the oldest time span, such that a
contiguous part of the most recent data is available. This is, however, not a necessity;
it would also be quite conceivable to design more complex retention strategies where
time segments to keep longer are marked in some way.

While this model seems relatively restrictive, it is sufficient for many real-world in-
dustrial applications; one such example is presented in Section 7.4. Specializing for the
introduced workload makes certain optimizations possible. It would be feasible to al-
low other data interactions, e.g., updating or deleting individual sensor measurements.
However, these would be very costly operations. In the scope of this thesis, we do not
address any other potential data interactions than the ones described above. HAQSE
also does not currently allow other interactions.

4.1.2 Data Layout

As explained in Section 3.2, the input to our system is a multivariate, time-ordered (and
potentially batched) stream of sensor data. For permanent storage, there are different
ways to persist such a sensor data stream. In Figure 4.2, we sketch four possible layout
alternatives. Listed with their advantages and disadvantages, they are:

(a) Writing the data stream in the same order as it arrives at the interface, sample
by sample: time-ordered or row-oriented. This has the advantage that the stream
can be processed and written to permanent storage as is, on a per-sample basis
(or per batch). This means no in-memory buffering is necessary, so this approach
has a small memory footprint. The processing overhead is also minimal.

The major disadvantage is that this layout is suboptimal for many analytics use
cases. First, since access happens at the granularity of operating system pages
(at least), more data is read than what is actually needed. Consequently, a lot of
unused parts of the data stream must be read from persistent storage, especially
when only a small subset of sensors is required. Related to this: when the sensor
data stream is stored in a compressed fashion, the complete stream must be de-
compressed to read data, even if data for only a single sensor is requested. This is
how the state-of-the-art system we integrate HAQSE into currently stores data
(cf. Section 7.2.2).

(b) Splitting up the sensor stream into completely separate streams: one stream of
timestamp information and one stream per sensor in the source stream. This
has the main property that the individual streams are fully decoupled. Thus, for

3https://docs.timescale.com/timescaledb/latest/how-to-guides/hypertables/

https://docs.timescale.com/timescaledb/latest/how-to-guides/hypertables/

4 Efficient Storage of Industrial Sensor Data

50

(d)(c)(b)

titi+1ti+2

…

…ti
…ti+1

ti+2

(a)

…ti
…

ti+2 …

ti+3 …

ti+4 …

ti+5 …

ti+6 …

ti
ti+1
ti+2
ti+3
ti+4
ti+5
ti+6
ti+7

… … … …

Input Sensor
Data Stream

ti+1

R
ow

 G
ro

up

Approach chosen
in HAQSE

ti
ti+1

ti+n-1

ti
ti+1
ti+2
ti+3
ti+4
ti+5
ti+6
ti+7

…

ti
ti+1
ti+2
ti+3
ti+4
ti+5
ti+6
ti+7

…

ti
ti+1
ti+2
ti+3
ti+4
ti+5
ti+6
ti+7

…

R
ow

 G
ro

upti
ti+1

ti+n-1

Figure 4.2 Illustration of the different possibilities for physical organization of sensor data on
a storage medium. The black arrows in boxes (a) and (d) indicate how data is organized linearly
in memory.

retrieving data, only the streams of interest must be read and possibly decom-
pressed. However, this also means that there must be an additional mechanism
to associate the correct timestamp information with the actual measurement val-
ues. Furthermore, when writing data for large schemas, there is a large number
of open (file) streams to manage. This can quickly become a burden for the op-
erating system, especially on resource-constrained systems. QuestDB [95] uses
this layout, but does not compress data in the individual files.

(c) Splitting up the sensor stream into separate timestamp-measurement pairs and
persisting each such stream independently, duplicating the timestamp informa-
tion. This is similar to the previous alternative but duplicates the timestamp infor-
mation for each sensor. This has the advantage that individual streams are fully
self-contained and can be deleted (also partly) completely independently. Du-
plicating the timestamp column, however, increases the required storage space
(even though this can be compensated partly by using an efficient encoding for
timestamps). Additionally, this approach also requires a large number of open

4.1 Storage Model

51

streams during writing. MetricQ [52] and InfluxDB [54] employ this storage lay-
out.

(d) Writing the data stream as sequence of sensor-ordered batches, also called colum-
nar row groups. A row group4 is a set of rows that forms one contiguous storage
unit, as illustrated by Figure 4.2 (d). For in-memory structures, we also use the
term record batch as defined by the Apache Arrow project. This approach requires
a layout transformation step when ingesting time-ordered data streams, buffer-
ing data before one row group can be fully populated. It has several advantages
regarding storage efficiency since (possibly similar) measurements from a single
sensor are compressed and stored consecutively. The advantage in comparison
with the previous two approaches is that there is only one file stream that needs
to be managed on the operating system level. This is beneficial for both writing
and reading, especially for high schema cardinalities. Additionally, timestamp
information is only stored once, and the association between timestamps and
measurement values is established via the file structure internally.

Columnar systems have been shown to perform better for analytic use cases in gen-
eral [1]. For long-term persistent storage in our system, we decide to use alterna-
tive (d), a layout consisting of sensor-ordered, columnar record batches or row groups.
This layout allows us to fulfill a number of requirements. First, it enables columnar
compression, compressing timestamp and measurement data for each sensor individ-
ually. Compression happens on a column-by-column basis inside one row group. This
makes it possible to achieve very good compression rates since measurement values
originating from the same sensor are compressed as one unit. Second, it allows se-
lectively decompressing only the sensor columns that are to be retrieved for a certain
use. Third, we avoid duplicating timestamp information, saving storage space. This
layout also maintains the structure of the input data stream, making time series joins
of sensors in one particular schema, e.g., for sensor correlation, a trivial operation. Fi-
nally, when only a certain subset of row groups contains relevant information (e.g.,
because the query limits the time range accordingly), only the data in the respective
row groups need to be decompressed. Details of how this can be achieved are discussed
in Section 4.3.1.

In addition to the actual data storage layout, another crucial aspect is storage of
meta information. This includes essential information like the stream schema, i.e.,
which sensors are contained in the stream, how they are named or which data type
is used to represent values of each sensor. In addition to that, there might be index
structures containing information on how to quickly access certain parts of the data
or statistical information, useful for pruning candidates in range-based queries. For
time series data, this might be information about the timespans contained in a certain

4We borrow the term row group from the Apache Parquet terminology. An Apache Parquet file is
organized in a sequence of row groups. More details are discussed in Section 4.3.1.

4 Efficient Storage of Industrial Sensor Data

52

segment, pointers to the respective parts in the storage files or statistical information
about which range of values is contained in each segment. Furthermore, meta infor-
mation includes properties of the storage format itself, i.e., what type of compression
is used, the number of contained values, block sizes, etc. This information alone is not
enough in many cases. Thus, it is augmented with application-dependent metadata
like measurement units, or more detailed descriptions of the sensors. Assuming some
type of file-based storage for the actual sensor streams data, there are several—not
mutually exclusive—possibilities to store this kind of metadata:

(a) Separately. Metadata is stored separately from the actual data files, e.g., in ad-
ditional files or an external database. The main advantage of this alternative is
that data only needs to be stored once for a particular stream. If these separately
stored files contain information essential for reading data, this approach requires
some kind of management to keep actual data files and the meta information
synchronized. Additionally, all data must adhere to the shared information; this
makes unforeseen changes to metadata more challenging engineering-wise.

(b) Header. Meta information is stored at the top of the file, before all actual mea-
surement values. Since the schema is known before the actual stream contents
need to be stored, storing meta information at the top in a header is easy to im-
plement. It just requires this information to be prepended to every file. Headers
cannot contain structural information when the file is being streamed to since
not all content—and thus, not all structure—is known at the beginning of a file.

(c) Interleaved (repeated headers). Similar to the above, but having repeated headers
or meta information interleaved with actual data values increases flexibility. It
allows putting different parts in a file streamwith unpredictable order. This allows
streaming data to files and also allows reading from these files before they are
fully written (by iterating over the contents).

(d) Footer. Meta information is written at the end of the file. This is mainly useful
for writing structural information when all content and structure is known; all
this data can be collected while writing the file. This structural information can
contain statistics or indices, potentially speeding up data retrieval. A main disad-
vantage of having essential information in a file footer is that it needs to be fully
written before the file can be read again by independent processes.

As we show in Section 6.3, structural and statistical information in files is crucial for
fast queries on large datasets. We thus employ a storage format that provides such
information in its footer. Since we also want to be able to read data from unfinished
files, we also use a temporary format that uses header information and interleaved
information. In its current version, HAQSE only stores very basic stream information
separately: stream names and resolutions are stored in the file system as folder names.
All other information, in particular schema information, is stored redundantly in each

4.2 Two-Step Floating-Point Compression

53

file containing data. Thismakes it possible to take care of aspects like schema evolution
by creating a new file once a new schema is required.

We postpone the discussion of how to transform the incoming sensor stream data
to a columnar layout until Section 5.2. So, for the remainder of this section, we assume
data layout to be batches of sensor-ordered row groups.

4.2 Two-Step Floating-Point Compression

As explained previously, in many use cases, it is desirable to have a database spanning
large time spans to retrieve data from. However, in industrial contexts where data is
generated continuously and autonomously, the covered time range will almost always
be limited by the available amount of physical storage space5. In addition to that,
some parts of the data are transferred to other systems either on a regular basis or as
reaction to special events. In any case, it is of paramount importance to use the avail-
able storage space and network bandwidth efficiently. One way to achieve this is to
compress data on permanent storage or before transmission by using lossless or lossy
compression schemes. This directly impacts the required storage space and network
bandwidth for data transmission. However, it generally also increases the computa-
tional cost incurred by the compression when writing data. Likewise, the same holds
true for reading when data needs to be decompressed first. Moreover, compression is
a highly data-dependent step in the processing pipeline. For these reasons, it is essen-
tial to consider data compression from the beginning and integrate it tightly into the
sensor data processing system.

mantissa
23 bits

exponent
 8 bits

sign
1 bit

Byte 1 Byte 2 Byte 3 Byte 4

Figure 4.3 Layout of an IEEE 754 single-precision floating-point number in memory.

As analyzed in Section 2.2.3, most sensor data is generated by sensors measuring
continuous physical phenomena. We design our approach to work with the ubiquitous
IEEE Standard for Binary Floating-Point Arithmetic [50] representation for real numbers
since this is the standard representation used in almost all production analytics code.

5While the amount of data storage space in cloud systems is virtually unlimited, all long-term storage
comes at a certain cost. Since operation must also be tractable economically, the storage space in the
cloud is limited by financial considerations rather than by technical limitations. However, eventually,
storage space is always limited by one or the other factor.

4 Efficient Storage of Industrial Sensor Data

54

Figure 4.3 illustrates how the format uses the 32 bits of a single-precision floating-
point number. In the remainder of this section, we therefore assume this binary rep-
resentation of floating-point numbers. However, there is no direct dependency on this
representation and our approach should also work for other, recent alternatives in rep-
resenting and processing real numbers, e.g., posits [44].

We base the compression component of our system on a proven [119, 121] compres-
sion approach, consisting of 1) a fast reversible reorganization step and 2) the usage
of a production-grade general-purpose compressor. This approach reduces the imple-
mentation complexity, but it is very well suited for noisy sensor data that often covers
only a relatively low dynamic range when compared to the full range offered by the
binary floating-point representation. The base scheme is similar to the approach taken
by the Blosc library [119] or the shuffle filter in HDF5 [121].

The rationale behind our approach is to prepare the streamof floating-point numbers
so that the general-purpose compressor is much more efficient on some parts of the
reorganized data stream—both in terms of compression effectiveness and speed. For
this, we take a fixed-length window of data for a single series of values and reorganize
the floating-point binary representations of this series. Our reorganization scheme is
called Byte Stream Split: it splits a contiguous block of a stream of values into multiple,
more “similar” streams of bytes, as visualized in Figure 4.4. These intermediate byte
streams are then concatenated and compressed using a general-purpose compressor,
e.g., zstd.

In the specific example in Figure 4.4, the first bytes of the 4-byte IEEE 754 repre-
sentation of three very similar floating-point values are identical (0x40). The second
bytes are very similar (0x15 and 0x13). In contrast to that, for the other two bytes
(representing the least significant bits in the mantissa), there is no easy-to-recognize
pattern. Reorganizing the stream as indicated in the example, the first half of the con-
catenated stream contains mostly very similar values, which is efficient and fast to
compress. The second half remains hard to compress since it contains the mantissa’s
noisy (high-entropy) part.

Stream 1

Stream 2

Stream 3

40 13 44 CE 40 13 EA 7F

40 40

13 13

44 EA

CE 7F

Stream 0

40 15 45 1A

40

15

45

1Aone floating-point value

noisy part

Figure 4.4 Single-precision floating-point example for Byte Stream Split. The example shows
how the beginning of a simple stream of floating-point values is transformed into four sep-
arate byte streams. The values are: 2.3323427 =0x4015451A, 2.3010745 =0x401344CE and
2.3111875 =0x4013EA7F.

For reconstruction, we just decompress the compressed stream and combine the
bytes from the resulting byte streams to reconstruct the original floating-point stream.

4.2 Two-Step Floating-Point Compression

55

This reconstruction just requires information about the block size as well as the data
type, or, more precisely, the size of one value in bytes, of the stream.

An alternative and similar splitting approach we investigated is component split. For
this, values are not split on byte boundaries, but rather on the component boundaries
of the floating-point representation. For single-precision values, this would result in a
stream with only the sign bits, one stream with only the exponents, and three streams
with the mantissa information (one stream with seven bits, two with eight bits). While
splitting on component boundaries intuitively appears to be promising, there are a
couple of disadvantages of this approach. First, the sequence containing the sign bits
and the one containing the 7-bit mantissa part both require padding for block sizes
that are not a multiple of eight. Second, this approach is harder to map efficiently to
hardware since it requires non-aligned bit accesses. Third, preliminary experiments
also showed that the compression efficiency is not better than the Byte Stream Split
approach, as visualized in Figure 4.5. Because of these reasons, we did not further
investigate the component split approach in more detail.

Ratio Write
throughput

Read
throughput

0

1

2

3

R
el

at
iv

e
pe

rf
or

m
an

ce

better
worse

Byte Split Component Split

Figure 4.5 Preliminary comparison of the two different floating-point splitting approaches for
a range of floating-point datasets (see Section 4.4.5). Each dataset is represented by one dot, the
mean of all dots of one group is represented by a horizontal bar. For every dataset, we measure
the relative improvement when compressing the transformed stream compared to when com-
pressing the original stream. While compression ratio is improved for both approaches equally
well, Byte Stream Split performs better on average regarding both write and read throughput.

In summary, Byte Stream Split is a conceptually extremely simple, yet effective, ap-
proach when combined with a standard compression algorithm (as we show in Sec-
tion 4.4). The basic implementation just requires a simple nested loop structure that
can be implemented in few lines of code in any programming language. This simplic-
ity was one of the key arguments that convinced the Apache Parquet community to
include the approach as the first—and thus far, only—encoding applicable for floating-
point data. Nonetheless, the approach can also be mapped to highly efficient machine
code, as we explain in the next section.

4 Efficient Storage of Industrial Sensor Data

56

4.3 Implementation in Apache Parquet
Apache Parquet [129] is a widely used columnar storage format in the data analytics
community. Apache Parquet is a column-oriented storage format integrated into pop-
ular computing and data analytics frameworks such as Apache Spark, Apache Arrow
and Pandas, and is suitable for efficient representation of tabular data.

We implement the two-step compression approach in a fully working system based
on Apache Parquet. Since our approach extends the specification of the format, we
first sketch aspects of the format that are required to understand our implementation.
Then, we explain how the implementation of the proposed reorganization step can be
mapped efficiently to vectorized instruction sets of modern CPU-architectures.

4.3.1 Apache Parquet: Format Details

Column A
Row Group 1

Magic number

Footer length

Magic number

Footer

Row Group 0

Row Group 1

Row Group N

Row Group 0

Column A Column B Column S
Page: Unit of
encoding and
compression

Footer

Row Group 0
metadata

Row Group 1
metadata

Row Group N
metadata

Row Group N metadata

Column A
meta

Column B
meta

Column S
meta

Column A meta:
 - Datatype
 - Number of values
 - Offset of first data page
 - compressed/uncompressed size
 - key-value meta information

A
pa

ch
e

Pa
rq

ue
t

Fi
le

Column BColumn A

Page 0

Page 1

Page X

Figure 4.6 Individual components and construction of the Apache Parquet file format, adapted
from the Apache Parquet file format documentation [116].

From a logical, high-level perspective, an Apache Parquet file contains a list of rows,
each conforming to a schema of fields. Fields are possibly nested, making it possible
to represent more complex and hierarchical objects. This allows the format to support
storage of complex hierarchical object structures. Fields can be optional, in which case
the value for a particular row can remain undefined. Furthermore, field values can
contain multiple values of the defined type if the field is repeated. If a field is neither
optional nor repeated, it is required: there must be exactly one value for each row
in the schema. If all fields are required, an Apache Parquet file represents a simple
table structure with no empty table cells. So far, we only use required fields in HAQSE.
Having the ability to leave individual cells in the table empty (having optional fields)
is an interesting option for future extensions to HAQSE, though.

4.3 Implementation in Apache Parquet

57

What is more interesting to our implementation of efficiently storing floating-point
sensor data is the physical layout of Apache Parquet (see Figure 4.6). The logical list
of rows is split up into row groups, implementing the desired storage format from Sec-
tion 4.1. A row group, in turn, consists of a set of column chunks. Each column chunk
holds all data for a particular column inside a certain row group. Again, a column chunk
is further divided into several data pages. A data page contains the actual encoded
data values, metadata information, and serves as the smallest unit of compression. In
Apache Parquet, there are two complementary steps for transforming a CPU-usable,
in-memory representation of data values to the persistent representation on disk (and
vice versa): data encoding and data page compression. In the simplest case, data en-
coding is just the plain mapping and uses the in-memory binary representation. For
certain types of data, encodings can also work as lightweight compression methods
like run-length-encoding or dictionary compression [115]. Data page compression just
takes the data stream resulting from the encoding step and applies one of several sup-
ported standard compression schemes such as zstd [24], lz4 [77] and others [118]. Data
pages can be decompressed individually, allowing efficient projection to columns and
selective queries.

All structural information of an Apache Parquet file is stored in its footer. This footer
contains the schema information and offsets of the row groups in the file. Beyond that,
the footer may contain statistical information like minimum and maximum for each
column in every row group. This information can speed up selecting matching row
groups for range-based queries.

The specification of Apache Parquet is steadily extended and evolving. While there
are many more interesting aspects in the format, the features sketched here already
make it an appropriate choice for HAQSE.

4.3.2 Two-Step Compression

For the implementation of our two-step compression scheme, we use the encoding
and compression functionalities of Apache Parquet. Our implementation is based
on the C++ implementation of Apache Parquet, which is part of the Apache Arrow
project [112]. With that, we rely on the general-purpose compressors integrated into
Apache Arrow, greatly simplifying our implementation.

We implement Byte Stream Split as a new encoding in Apache Parquet. In contrast
to other encodings in Apache Parquet, this encoding does not reduce the data size
on its own, but prepares the input for compression. The implementation consists of an
encoder for writing and a decoder for reading. Again, we use the existing infrastructure
in Apache Parquet to store the size of blocks—in this case, the page size—necessary for
decoding data.

To ensure that the additional Byte Stream Split step is implemented efficiently, we
evaluate three alternative implementations: a simple implementation using two nested
loops and two manually vectorized implementations using Streaming SIMD Exten-

4 Efficient Storage of Industrial Sensor Data

58

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 4 1 5 2 6 3 7 8 C 9 D A E B F

0 2 64 1 3 75 8 A EC 9 B FD

0 1 32 4 5 76 8 9 BA C D FE

0 1 32 4 5 76 8 9 BA C D FE

unpacklo_epi8
unpackhi_epi8

unpacklo_epi8
unpackhi_epi8

unpacklo_epi8
unpackhi_epi8

unpacklo_epi64
unpackhi_epi64

xmm0 xmm1 xmm2 xmm3

Figure 4.7 Single-precision floating-point Byte Stream Split encoder transformation sequence
using SSE unpack intrinsics. This processes 16 single-precision floating-point values simulta-
neously. The grayed-out arrows represent the same operations in the respective stages, and
the annotations are left out for clarity.

sions [57] (SSE) and Advanced Vector Extensions [57] (AVX) instruction sets. The sim-
ple implementation loops over the input, splits each floating-point value into its con-
stituent bytes and scatters them to the corresponding streams (cf. Figure 4.4). While
this simple implementation serves as a baseline that can be used on any system, we
determined that the compiler does not efficiently auto-vectorize all code paths. One
example is the encode path for double-precision data, which is significantly slower
than our hand-tuned version. The SSE and AVX implementations use a combination of
shuffle, unpack and permute intrinsics with different lane and stride sizes.

As an example, we describe the single-precision version utilizing SSE-intrinsics, us-
ing a sequence of dependent stages. This transformation sequence requires four stages
for the encode-transformations (see Figure 4.7) and two stages for the decode-transfor-
mations (see Figure 4.8). It processes 16 consecutive single-precision values simultane-
ously, split up into four 128-bit SSE registers. After loading data into the registers, the
encoder applies four steps using unpack intrinsics to distribute the bytes. The encod-
ing transformation finishes after four stages. At that point, each SSE register contains
the bytes of 16 floating-point values for each corresponding output stream. Then, the
encoder stores the register contents in the intermediate buffers. The decoder works
analogously but only requires two stages (see Figure 4.8).

We evaluate the different implementations in Section 4.4.3.

4.4 Storage Efficiency and Throughput Evaluation

59

0 1 32 4 5 76 8 9 BA CD FE

0 2 4 8 9 A B C D E F

0 1 2 3 4 5 6 7 8 9 A B C D E F

unpacklo_epi8
unpackhi_epi8

unpacklo_epi8
unpackhi_epi8

xmm0 xmm1 xmm2 xmm3

1 3 5 6 7

Figure 4.8 Single-precision floating-point Byte Stream Split decoder transformation sequence
using unpack intrinsics. This processes 16 single-precision floating-point values simultane-
ously. The grayed-out arrows represent the same operations in the respective stages, and the
annotations are left out for clarity.

4.4 Storage Efficiency and Throughput Evaluation

In this section, we provide an empirical evaluation of our implementation. We focus
on the compression step individually in this part of the thesis and postpone a more
extensive evaluation of the streaming aspect until Section 5.5. We propose a number
of evaluation questions in Section 4.4.1 that help to characterize the various aspects
of our approach’s performance. Then, we describe our experimental setup and go over
the evaluation aspects one by one. We finish this section with a short discussion of our
results and findings.

4.4.1 Evaluation Questions

Our experiments in this chapter are organized around the following compression ques-
tion sets (CQSG):

• CQS1: How efficiently can Byte Stream Split be mapped onto the instruction set
of different CPU architectures? How does the performance depend on the block
size used for Byte Stream Split? How much can the manually vectorized versions
speed up Byte Stream Split in comparison to the compiler-provided automatic
vectorization?

• CQS2: How do dataset properties influence the effectiveness of Byte Stream Split
in the context of Apache Parquet?

• CQS3: Howmuch canByte StreamSplit improve the compression ratio of general-
purpose compressors for a list of publicly available datasets? Howdoes it compare
to other, specialized lossless floating-point compressors?

4 Efficient Storage of Industrial Sensor Data

60

• CQS4: How much does it speed up compression and decompression for an exam-
ple sensor dataset from a real-world industrial application? Which compression
algorithms and settings work best?

• CQS5: How does our compression approach compare to other systems in terms
of storage efficiency for the example sensor dataset?

4.4.2 Experimental Setup
Our approach is meant to apply to high-end server systems and low-power edge com-
puters. Thus, we evaluate performance on two types of systems: One is equipped with
a powerful server CPU. The other is a passively cooled low-power edge system, typ-
ically found in industrial installations. The details of those two systems are listed in
Table 4.1.

Table 4.1 Configurations of the systems used for evaluations

Server System Edge System

CPU Intel® Xeon® Gold 6136 Processor
3.00GHz, 12 cores (24 threads)

Intel® Atom® x5-E3940 Processor
1.60GHz, 4 cores (4 threads)

RAM 4×16GiB DDR4 @ 2666MT/s 2×4GiB DDR3 @ 1866MT/s
TDP 150W 9.5W
ISA SSE & AVX SSE
Network 10Gbit Ethernet 1Gbit Ethernet

Both systems run Ubuntu 20.04 and use the performance CPU frequency scaling gov-
ernor. Our experiments are implemented in C++, compiled with g++ compiler version
9.3.0 and use the options ‘-O3 -march=native’. As our implementation of Byte Stream
Split is upstream in the Apache Arrow and Parquet-MR6 libraries, we use the Conda
packages arrow-cpp and pyarrow version 0.17.1 and link against this version of the
library. Unless specified otherwise, we use default parameter values in the libraries for
our experiments.

We use the 0-order entropy � (-) (or short just entropy) to estimate the compress-
ibility of datasets - [100]. It is calculated as

� (-) = −
∑
G∈-

? (G) log ? (G),

where ? (G) is the relative frequency of each unique value G of the set of values - . The
0-order entropy estimates how random the data is and how well it can be compressed
using entropy coding. It is only an estimate because this is not the actual entropy for
sources with memory, where consecutive samples are not independent of each other.

6Parquet-MR contains the Java implementation of Parquet.

4.4 Storage Efficiency and Throughput Evaluation

61

4.4.3 CQS1: Performance of Byte Stream Split

At first sight, adding a further processing step in the encoding/compression pathmight
seem like imposing quite a bit of additional overhead. However, our experiments show
that the overhead is low, assuming the memory must be copied to another buffer any-
way. To illustrate this, we design a separate microbenchmark, testing different imple-
mentation alternatives for the encoding and decoding paths of Byte Stream Split. We
measure throughput of encode and decode stages, which helps to understand the im-
pact of our vectorization scheme. The first version implemented is just a simple nested
loop structure without explicit vectorization. In this version, we rely on the compiler to
automatically generate efficient code. The other two implementation variants explic-
itly use SSE or AVX intrinsics, respectively. We test our implementation on blocks of
memory of different sizes on both of our evaluation systems to better understand the
runtime behavior. We average the throughput over 256 runs of encoding (or decoding)
a buffer of the specified block size. Input and output buffers are both accessed before
the measurement to ensure warm caches. The results of these experiments are shown
in Figure 4.9.

Figure 4.9 reveals several interesting properties of our Byte Stream Split encoding.
First, smaller block sizes can be processed with higher throughput. This is due to the
CPU cache hierarchy, where smaller block sizes fit entirely in the CPU’s cache. This
also indicates, at least for larger block sizes, that the encoding is bound by memory
bandwidth instead of computational intensity. When the block sizes are small enough,
though, we can observe that the decode step is faster than the encode step. This can
be explained by noting that fewer instructions need to be executed for the decode
step (cf. Figures 4.7 and 4.8). Furthermore, encoding (and decoding) single-precision
data is faster than encoding (decoding) double-precision data for small buffer sizes. In
addition to that, we can observe that the fastest vectorized implementations are almost
as fast as memcpy for larger block sizes. It should also be noted that the compiler
cannot automatically vectorize the double-precision version of the encode path7. This
justifies adding amanual SSE implementation for that case to improve performance. In
contrast, as expected for the memory-throughput bound encoding kernels, using AVX-
instructions does not lead to a huge increase in performance on the Xeon platform.

To summarize these results, our approach can be efficiently implemented on archi-
tectures with support for vector instructions. Considering that compression and de-
compression rates of standard compression algorithms are considerably lower than the
rates wemeasure here, we expect that Byte Stream Split will not harm the compression
or decompression throughput. We confirm this expectation in later experiments.

7General remark: we experienced lower performance with gcc 7.5 for some code paths, so compiler
technology is improving in that aspect.

4 Efficient Storage of Industrial Sensor Data

62

0

5

10
A

to
m

L1 L2

Encode

L1 L2

Decode

101 102 103 104
0

10

20

30

X
eo

n

L1 L2 L3

101 102 103 104

L1 L2 L3

Th
ro

ug
hp

ut
 [

G
B

/s
]

Blocksize [KiB]

memcpy autovect. float
autovect. double

SSE float
SSE double

AVX2 float
AVX2 double

Figure 4.9 These graphs show encode (left plots) and decode (right plots) performance of exe-
cution on the two systems, Atom (top) and Xeon (bottom). The different Byte Stream Split im-
plementation alternatives are represented using differently colored measurement points. Each
graph shows the throughput of the different implementation alternatives for different block
sizes. The caching hierarchies of the systems are highlighted using light green background
colors and Lx annotations to better explain the performance. Note the different scales for the
throughput axis on the two different systems. The AVX measurements are only performed on
the Xeon system since this instruction set is not available on the Atom CPU.

4.4.4 CQS2: Influence of Dataset Properties on Byte Stream Split
Effectiveness

This section analyzes the impact of various dataset properties on the effectiveness of
the presented Byte Stream Split approach. We perform this analysis in the context of
Apache Parquet, which we have chosen as the long-term storage format for HAQSE.
We take a short excerpt of raw sensor data (see Figure 2.1) for this analysis, normalizing
it to zero mean and a standard deviation of one. The dataset is approximately normally
distributed as shown on the right of Figure 2.1. The resulting dataset used for these
experiments contains 1 000 000 single-precision floating-point samples, i.e., it consumes
4MB when stored in an uncompressed way.

4.4 Storage Efficiency and Throughput Evaluation

63

For each analysis, we save the data to an Apache Parquet file and change certain
dataset properties as well as Apache Parquet format settings. Our experiments write
data using five different configurations:

• uncompressed: no encoding, no compression. This just serves as a baseline.
• dict: Apache Parquet dictionary encoding, no additional compression. This is
advantageous for large row group sizes, so we report this as an alternative light-
weight compression method.

• dict+zstd: Apache Parquet dictionary encoding, zstd compression. Same as
above, but data pages are additionally compressed using zstd.

• zstd: no encoding, zstd compression. This serves as a general-purpose compres-
sion baseline.

• bss+zstd: Byte StreamSplit encoding, zstd compression. Our proposed approach.

We report the achieved compression ratio with respect to the uncompressed 4MB
dataset size, dividing the size of the resulting Apache Parquet file by 4MB. Sensible
values for constant parameter values are determined by preliminary experiments.

Impact of Relative Values Scale

For this analysis, we vary the standard deviation of the dataset, i.e., we change the
absolute value range. We do this by scaling the complete dataset with a constant factor,
keeping the mean value at zero. We use an Apache Parquet row group size of 250 000.
The results of this analysis are shown in Figure 4.10.

10 1 100 101 102 103

Absolute value range

1.00

1.05

1.10

1.15

1.20

C
om

pr
es

si
on

 r
at

io

uncompressed dict dict+zstd zstd only bss+zstd

Figure 4.10 Influence of relative dataset scale on the compression ratio of the various tested
encoding/compression alternatives. The x-axis shows the absolute value range, i.e.,<0G (3B) −
<8=(3B) for the values in the tested dataset 3B .

This plot shows that the different scale factors have almost no influence on the com-
pression ratio of any tested compression variant. This similarity is expected since the
scale factor primarily changes the value of the exponent part of the numbers. The

4 Efficient Storage of Industrial Sensor Data

64

distribution in the composing bytes (which determines our approach’s effectiveness)
does not change. The entropy for all resulting datasets (with different scale factors)
is constant at ≈16.9. Our proposed approach bss+zstd is the best method in Apache
Parquet.

Impact of Average Value Magnitude

Contrasting the previous experiment, we now change the signal’s magnitude. We do
this by adding a constant to all values of the dataset. The standard deviation is kept
at one. As before, we use an Apache Parquet row group size of 250 000. The results of
this analysis are plotted in Figure 4.11.

10 1 100 101 102 103 104 105

Dataset mean value

1

2

3

C
om

pr
es

si
on

 r
at

io

9

11

13

15

17

En
tr

op
y

uncompressed dict dict+zstd zstd only bss+zstd Entropy

Figure 4.11 Influence of average value magnitude on the compression ratio of the various
tested encoding/compression alternatives.

This plot shows that an increasing absolute value leads to gradually improved com-
pression effectiveness of our approach. The value’s increased magnitude can explain
this improved effectiveness. There are not enough bits in the mantissa to represent all
the information of the original value anymore, leading to higher quantization errors
and reducing the entropy in the generated dataset. A single-precision floating-point
number can only represent roughly seven decimal digits. The effectiveness of dictio-
nary encoding and entropy coders (e.g., zstd) improves with reduced entropy. Our
bss+zstd approach provides gradual improvements already for datasets where the ef-
fectiveness of dictionary encoding is unchanged. Like before, bss+zstd is always the
best method.

Impact of Compression Unit Size

In this last part of the effectiveness evaluation, we evaluate the impact of the com-
pression unit size. For this, we vary the row group size that is used for writing the
resulting Apache Parquet file. We take the normalized dataset for this experiment: the

4.4 Storage Efficiency and Throughput Evaluation

65

dataset has a mean of zero and a standard deviation of 1. We vary the row group size
in exponential steps from 4000 to 1 000 000.

104 105 106

Row group size

0.8

1.0

1.2

1.4

C
om

pr
es

si
on

 r
at

io

uncompressed dict dict+zstd zstd only bss+zstd

Figure 4.12 Influence of row group size on the compression ratio of the various tested encod-
ing/compression alternatives.

The results in Figure 4.12 show several interesting aspects. First, the row group size
has a significant impact on the achieved compression ratio for dictionary-encoded data.
For row group sizes smaller than roughly 250 000, the additional storage space required
by the dictionary leads to a total storage space consumption higher than the uncom-
pressed baseline. However, this additional dictionary overhead pays off for row group
sizes larger than ≈550 000. In these cases, the dictionary-encoded alternatives provide
the best compression ratio. Our proposed approach bss+zstd inherits the properties of
the underlying compressor (zstd in this case): The row group size has a minor influence
on the resulting compression ratio (but, again, larger row group sizes are beneficial).

Summary

This section summarizes the insights gained regarding the effectiveness of Byte Stream
Split:

• Byte Stream Split performs well regardless of the dataset size to compress (in
Apache Parquet, this corresponds to the row group size). This is in contrast to dic-
tionary encoding, which works especially well for larger row group sizes (where
values repeat more often).

• Linearly scaling a dataset does not impact the effectiveness of our proposed ap-
proach.

• Byte Stream Split works well for datasets with a small value range compared to
themean value. This is common for sensormeasurements with values fluctuating
around a constant signal component.

4 Efficient Storage of Industrial Sensor Data

66

• Our experiments in this section show that applying Byte Stream Split before zstd
is always better than only using zstd. Apart from that, our approach inherits the
properties of the underlying compressor.

In the next section, we confirm and extend these results by evaluating our approach
for different floating-point data sets.

4.4.5 CQS3: Compression Ratio Performance

In this section, we compare our approach against other methods for lossless floating-
point data compression. We use a collection of publicly available datasets for evaluat-
ing our Byte Stream Split approach in terms of compression ratio.

Datasets

The datasets provided by Burtscher et al. [17] were originally used to benchmark the
FPC [17] and SPDP [23] lossless floating-point compressors. They contain single-pre-
cision [18] and double-precision [19] samples from three categories: observational data,
results of numeric simulations andmessages with numeric data. The datasets are listed
in Table 4.2. This table contains the dataset size inMB and the 0-order entropy (see Sec-
tion 4.4.2).

Experiment

We compress each dataset, in both variants, single and double precision with each
of the following compression alternatives: zfp [73], fpc [17], fpzip [74], SPDP [23],
ZStandard [24] (using default settings, tagged zstd), and a combination of Byte Stream
Split and ZSstandard (tagged with bss + zstd). We calculate the compression ratio as
the size of the uncompressed dataset divided by the size of the compressed result.

Results

The resulting compression ratios are plotted in Figure 4.13 (omitting results for the
alternatives zfp and fpc8).

The results show several interesting properties of our approach. First, applying Byte
Stream Split before the actual compression is better than just applying ZStandard for
almost all tested datasets. The only exceptions are the num plasma and the obs er-
ror double-precision datasets, where zstd alone achieves a slightly better compression
ratio than bss+zstd. In a majority of cases (19 out of 26 tested datasets), the bss+zstd
approach yields the best compression ratio. It is noteworthy that bss+zstd does not

8The results for zfp are not competitive for any of the datasets. For fpc, there are only results for double
precision.

4.4 Storage Efficiency and Throughput Evaluation

67

Table 4.2 Uncompressed size and entropy of floating-point datasets [17] used for experimen-
tally evaluating Byte Stream Split. Single-precision datasets are half the size of the respective
double-precision dataset reported here.

Dataset Size (MB) Entropy (bits)
double-precision double single

Observational data (obs): measurements from scientific instruments

error 59.28 17.804 17.785
info 18.05 18.068 18.068
spitzer 189.00 17.359 17.359
temp 38.08 22.251 22.185

Numeric simulations (num): results of numeric simulations

brain 135.27 23.971 23.580
comet 102.38 22.039 21.880
control 152.12 24.140 24.082
plasma 33.46 13.651 13.650

Parallel messages (msg): numeric messages sent by a node in a parallel system

bt 254.05 23.667 22.754
lu 186.13 24.470 24.293
sp 276.67 25.030 23.282
sppm 266.07 11.238 8.400
sweep3d 119.91 23.411 19.691

clearly fail for any of the datasets. In case it is not the best alternative, it is almost
always very close in achieved compression ratio to the best alternative. Exceptions are
obs error and obs info datasets, where SPDP compresses considerably better. It should
be noted, though, that SPDPwas designed for this list of datasets. The double-precision
version of these two datasets compresses best with fpc (not shown in the figure; com-
pression ratios are 2.28 and 2.04 for obs error and obs info, respectively). For all other
datasets, fpc is not among the best-performing alternatives.

4.4.6 CQS4: Compression Performance on Sensor Data

In this section, we investigate the overall performance of our two-step compression
approach for a real-world, industrial sensor dataset. As before, we measure compres-
sion ratio. Additionally, for this set of experiments, we also measure compression and
decompression throughput. We write to and read from persistent storage since this
is closer to the real-world usage scenario than just keeping data in memory. We use
a relatively large time window of 1GB of data (250 million single-precision values) of

4 Efficient Storage of Industrial Sensor Data

68

3
10

100 } single precision

} double precision
fpzip

fpzip

spdp

spdp

zstd

zstd

bss + zstd

bss + zstd

msg
bt

msg
lu

msg
sp

msg
sppm

msg
sweep3d

num
brain

num
comet

num
control

num
plasma

obs
error

obs
info

obs
spitzer

obs
temp

1

1.5

2

C
om

pr
es

si
on

 r
at

io

Figure 4.13 Comparison of Byte Stream Split/zstd (bss + zstd) with other lossless compression
alternatives. Note that the lower part of the plot has a linear scale while the upper part is
scaled logarithmically to better show the differences for highly compressible datasets. The
lighter-colored bars (left half for each dataset) indicate the results for single-precision datasets.
Solid colored bars (right half) show results for double-precision datasets.

the raw sensor data stream (see Figure 2.1) as benchmark dataset, corresponding to
roughly 163 minutes of uninterrupted data sampled at 25.6 kHz.

We test different encoding/compression configurations using the following approach:
Using a test driver implemented in Python, we load 1GB of data into an Apache Ar-
row Table object, and call write_table() from the pyarrow.parquet package with
the respective encoding and compression settings. This results in data being written
to an Apache Parquet file on a local Solid-State Drive (SSD). This Apache Parquet file
contains all data in a single row group. After that, we fully read the file that has been
just written to measure read performance. To avoid operating system buffer caching
effects, we clear the Linux page cache after writing and before reading the files9. This
also ensures that all data must be read from persistent storage. The compression ratio
is computed as the number of bytes in the Apache Arrow table divided by the size of
the resulting Apache Parquet file. For throughput measurements, we take the uncom-
pressed data size and divide it by the time needed for compressing and writing/reading
and decompressing to/from persistent storage. We average these throughput results
across ten runs.

The results of this compression performance evaluation are visualized in Figure 4.14.
They show that our approach improves the best state-of-the-art variants in all three
metrics: compression ratio, write and read throughput.

With respect to compression ratio, the results show that all tested general-purpose
compression algorithms benefit from first applying Byte Stream Split. This underlines
that our approach does not depend on any particular general-purpose compressor but
can be applied to a wide range of compressors. In addition to that, applying Byte
Stream Split works well regardless of compression level (for those compression algo-
rithms that have a compression level setting: zstd [24], gzip [34], and Brotli [4]). In-

9When working with files in Linux, the page cache [128] caches file contents from slow persistent
storage devices in RAM. This hides latencies and considerably speeds up working with files located
on, e.g., Hard Disk Drives (HDDs).

4.4 Storage Efficiency and Throughput Evaluation

69

1.0

1.5
C

om
pr

.
R

at
io

0

100

W
ri

te
[M

B
/s

]

0

100

R
ea

d
[M

B
/s

]

0

250

W
ri

te
[M

B
/s

]

N
on

e
D

ic
t

D
ic

t
zs

td
zs

td
 1

zs
td

 3
zs

td
 4

zs
td

 5
zs

td
 1

0
zs

td
 1

5
gz

ip
 5

gz
ip

 9
B

ro
tl

i 1
B

ro
tl

i 5
B

ro
tl

i 1
0

LZ
4

Sn
ap

py

0

250

R
ea

d
[M

B
/s

]

 T
hr

ou
gh

pu
t

A
to

m

 T
hr

ou
gh

pu
t

X
eo

n

baseline IEEE754 & compression byte stream split & compression

Figure 4.14 Comparison of compression ratio, write and read throughput for Atom and Xeon
platforms across a set of encoding/compression combinations. The first measurement (None) is
there for reference, providing a baseline of the I/O-system’s speed. We are using dictionary en-
coding—a fast and lightweight alternative encoding in Apache Parquet—as an additional base-
line.

stead, applying Byte Stream Split improves the compression ratio more than any im-
provement in changing compression level could yield. Additionally, our approach en-
ables significant improvements for fast and easy compression algorithms like LZ4 [77]
and Snappy [39]. These two compression algorithms almost do not compress the data
streams at all without preprocessing. We also want to note that all tested combinations
with Byte Stream Split provide higher compression ratios than the best alternative in
Apache Parquet without Byte Stream Split (Brotli with a compression level of 10). The
left three bars show the alternatives available in Apache Parquet before the addition
of Byte Stream Split. It is evident that the presented method represents a significant
improvement for efficiently storing floating-point data in Apache Parquet, making it
an interesting format choice for many applications requiring such storage.

Looking at write and read throughput, applying Byte Stream Split improves through-
put numbers in almost all cases, even though an additional processing step is per-
formed. For the system with the Atom CPU, there are some combinations where the

4 Efficient Storage of Industrial Sensor Data

70

additional step slightly decreases the write throughput (zstd 1, Snappy). This slight
throughput reduction is due to the less powerful CPU being fully utilized in these cases.
On the contrary, for the powerful Xeon CPU, writing with Byte Stream Split enabled is
always faster. A similar behavior can be observed for reading and decompressing data:
only Byte Stream Split combined with LZ4 and Snappy perform slightly worse when
writing on the Atom system. Everything else is faster with Byte Stream Split.

Next, we look at a combination of throughput and compression ratio results. For the
few combinations where read or write throughput are minimally reduced, we argue
that the improved compression ratio will be worth the additional effort. For all other
cases, activating Byte Stream Split for the tested dataset is always better in all three
metrics.

We conclude that Byte Stream Split is beneficial if the throughput gap between stor-
age and CPU is large. Moreover, our method is well-suited for simple, high-throughput
compression algorithms, extending the design space especially on systems with less
powerful CPUs.

4.4.7 CQS5: Storage Efficiency Analysis for Real-World Dataset

For this last set of experiments, we analyze the storage efficiency of different state-
of-the-art systems and our approach as implemented in Apache Parquet. In contrast
to the previous experiments, for this part of the evaluation, we analyze a complete
dataset coveringmultiple sensors and including 64 bit timestamp information. We take
a representative, real-world dataset that consists of roughly one hour of sensor data.
This data comes from 14 sensors monitoring the combustion process of a gas turbine
(for details of the installation we took the data from, see Section 7.4) at a sampling
rate of 25.6 kHz. The original dataset is available in a proprietary, binary format (Argus
Data Format (ADF)), described in more detail in Section 7.2.3. In this dataset, all sensor
values are represented as 32 bit single-precision floating-point values. As a baseline, the
raw size for this dataset is approximately 3600 s× 25 600Hz× (14× 4 B+ 8 B) = 5.9GB.

We convert or load the dataset into various storage formats or systems. First, we re-
port the size of two variants of the original ADF format: once uncompressed and once
compressed with zstd [24]. Then, we provide results for a variety of Apache Parquet
encoding and compression alternatives. As a baseline, we use an uncompressed Apache
Parquet file, using the PLAIN encoding and no compression for any of the columns. We
also report the result when compressing all sensor columns with zstd and encoding
the timestamp column with the DELTA_BINARY_PACKED method available in Apache
Parquet. Finally, we apply Byte Stream Split to all sensor columns before compress-
ing them with zstd, and again use delta encoding for the timestamp column. We also
import data into three different state-of-the-art time series management systems: In-
fluxDB (using the ILP), QuestDB (manually defining the schema to force single pre-
cision for floating-point columns) and TimescaleDB (via SQL). We additionally apply
manual chunk compression for TimescaleDB [125] and report that result. We measure

4.4 Storage Efficiency and Throughput Evaluation

71

the required storage space on disk after the import is finished with the method listed
in Table 4.3.

Table 4.3 Different storage systems and format and how storage size is measured.

System/Format Measured via

ADF uncompr. File size
ADF zstd File size
Parquet uncompr. File size
Parquet zstd File size
Parquet bss+zstd File size
QuestDB du db/<id>/ (see [41, 94])
InfluxDB du engine/data/ (see [41, 55])
TimescaleDB SELECT before_compression_table_bytes + before_compression_toast_bytes

FROM chunk_compression_stats('<id>');

TimescaleDB compr. Chunks are manually compressed [125], then:
SELECT after_compression_table_bytes + after_compression_toast_bytes

FROM chunk_compression_stats('<id>');

0

2

4

6

8

Si
ze

 [
G

B
]

A
D

F
(u

nc
om

pr
.)

A
D

F
(z

st
d)

Pa
rq

ue
t

(u
nc

om
pr

.)

Pa
rq

ue
t

(z
st

d+
de

lt
a-

ts
)

Pa
rq

ue
t

(b
ss

+z
st

d+
de

lt
a-

ts
)

Q
ue

st
D

B
 F

lo
at

s

In
flu

xD
B

Ti
m

es
ca

le
D

B

Ti
m

es
ca

le
D

B
 (c

om
pr

.)

Raw Data Size (baseline)
Measured Sizes

Figure 4.15Comparison of storage efficiency between different storage system alternatives for
a real-world dataset.

The results of this analysis are visualized in Figure 4.15. They reveal several inter-
esting properties. First, the uncompressed ADF consumes less space than the raw data
baseline. This can be explained by a very high storage efficiency for the timestamp in-
formation in the ADF format (for details, see Section 7.2.3). Compressing ADFwith zstd
brings the storage consumption further down to 3.9GB. When stored uncompressed in
Apache Parquet, the required storage size is approximately equal to the raw data size,

4 Efficient Storage of Industrial Sensor Data

72

as expected. The first compressed Apache Parquet alternative (compressing the sensor
columns with zstd and applying delta encoding for the timestamp column) shrinks the
size to 3.8GB, slightly less than the compressed ADF file. Applying the presented Byte
Stream Split encoding to the floating-point columns before compressing them with
zstd further reduces the required size to 2.9GB. This represents the most efficient way
concerning storage space consumption among all tested alternatives. Out of the three
time-series management systems, in their respective default configuration, QuestDB
performs best. Since it does not compress the data, the required storage space is ap-
proximately equal to the raw data baseline. It should be noted that QuestDB requires
the table to be defined using a CREATE TABLE statement. Otherwise, when implicitly
created using the ILP, float fields would be stored as doubles, doubling the required
storage space. In contrast to that, InfluxDB does not offer that option. Yet, the required
storage size is not doubled because the underlying TSM files use compression for both
timestamps and sensor values. TimescaleDB performs worst in our experiment and
requires 8.6GB. This value excludes storage space required for database index data.
When enabling compression for the hypertable and manually triggering compression
(in contrast to automatic compression happens after a configurable time has passed
for the to-be-compressed chunk), the required storage space can be reduced to 3.9GB,
which is the best value for all time series management systems.

4.4.8 Evaluation Summary
To summarize our evaluations in this chapter, we conclude that the presented two-
stage approach represents a storage-efficient and performant way to store floating-
point data. The Byte Stream Split processing step can be implemented efficiently on
contemporary hardware architectures. It provides a simple, yet effective preprocess-
ing step for a wide range of general-purpose compressors. Apache Parquet proves to
be a good choice as long-term storage format, especially when comparing it to the
storage requirements of other time series management systems. We also showed that
the approach works well for a typical sensor processing dataset. We thus choose the
combination of Byte Stream Split and zstd for floating-point sensor data together with
the DELTA_BINARY_PACKED encoding for timestamps as the default configuration for
storing data in HAQSE.

73

5 Sensor Data Stream
Transformation & Processing

In this chapter, we discuss all aspects related to sensor data stream processing. This
is a crucial component of our system, as it performs all processing steps that are nec-
essary to enable efficient data retrieval when querying sensor data from the system.
These steps are layout transformation, windowed batch aggregation, and compression.
In Section 5.1, we first give an overview of the complete data input pipeline and the
involved components. In Section 5.2, we discuss the successive steps the data of a
single sensor stream passes through: starting from sensor stream input until finally
writing data to persistent, compressed and long-term storage. Then, we propose a
compute-efficient hierarchical, windowed batch aggregation scheme, which we explain
in Section 5.3. In Section 5.4, we describe the environment in which we perform our
evaluation and explain the tools that are necessary for our experiments. Then, in Sec-
tion 5.5, we extensively evaluate individual aspects of our implementation. Finally, in
Section 5.6, we compare our system to other state-of-the-art time series data manage-
ment systems in terms of ingestion performance.

Publication Information
Parts of the approach described in this chapter have previously been published
in [66]. In this work, the author designed and developed the principal approach
for streaming sensor data to Apache Parquet files. While this work builds the
basis for the streaming architecture described in this chapter, it still misses
several important aspects covered in this dissertation.

5.1 Overview of Sensor Data Stream Processing

Figure 5.1 shows a sketch of the data flow for a single sensor source stream in HAQSE.
This stream of multivariate sensor measurements originates from a single source and
is received by HAQSE via the interface defined in Section 3.2. It is first transformed
to the sensor-ordered layout described in Section 4.1.2 and buffered in memory. After
that, it passes through a temporary storage area, storing the transformed sensor data in
temporary files. Multiple such files are finally combined, compressed and permanently
stored in compacted storage. This scheme (first green row in Figure 5.1) enables efficient
sensor stream ingestion and concurrent query processing.

5 Sensor Data Stream Transformation & Processing

74

In addition to that, as mentioned above, data is aggregated into streams of multiple
levels of coarser time resolutions. This happens in the batch aggregation component,
sketched on the left of Figure 5.1. Whenever an aggregation window for one or multiple
aggregation levels is terminated, this component emits the result of this last aggrega-
tion window. These aggregation results are subsequently processed in the same way
as the original source stream regarding storage and query handling (bottom, lighter
green rows in Figure 5.1).

The details of query processing are discussed in Chapter 6. However, data queries
rely on a data structure that is populated and updated during stream ingestion: the
Stream Segment Index (sketched in the right part of each row of Figure 5.1), one index
instance per stream level. Hence, already in this section, we explain how the Stream
Segment Index is updated as data is received and flowing through the stages. This
enables queries to retrieve a consistent state of all available segments.

ery component

Aggregation
Level L

Aggregation
Level 2

Aggregation
Level 1

full raw data
compressed,

not aggregated

asyncasync

ery
Interface

temporary data
persistence

Sensor
data
input

Batch
Aggregation

Aggregation
(min,max,
mean, …)

Aggregation
(min,max,
mean, …)

Aggregation
(min,max,
mean, …)

to
columnar

to
columnar

to
columnar

temporary data
persistence

temporary data
persistence

In-Memory
data

In-Memory
data

In-Memory
data

Temp
storage

Temp
storage

CompactionTemp
storage

Compaction

Compaction

Compacted
Storage

Compacted
Storage

Compacted
Storage

temporary data
persistence

CompactionTemp
storage

Compacted
Storage

In-Memory
data

to
columnar

Stream Segment
Index (Agg Lvl L)

Stream Segment
Index (Agg Lvl 2)

Stream Segment
Index (Agg Lvl 1)

Stream Segment
Index (Source)

Level
Selection

A
gg

re
ga

ti
on

s
Fu

ll
re

so
lu

ti
on

se

ns
or

 d
at

a

Figure 5.1 Overview of stream ingestion in HAQSE.

Each of the streams (original source stream and aggregated versions) is handled by
the same processing logic. Many parts of this pipeline can be parameterized to meet
the performance requirements of the application, adapted to the stream characteristics
and adjusted to the underlying hardware resources and capabilities. The details of this
processing pipeline are described in the following sections.

5.2 Three-Stage Stream Ingestion Pipeline
As explained in Section 4.1.2, we use a sensor-ordered layout for persistent storage.
Contrary, as discussed in Section 3.2.1, the natural order of a sensor data stream in in-
dustrial sensor monitoring systems is time-ordered. As outlined in that section, sensor
samples k arrive in one of two forms: as atomic samples for one particular instant k8

or as sample batches k8 ..8+1B−1 with a batch size 1B . In the first case, each sample con-
tains exactly one value a8 for each sensor and the timestamp CB8 . In the latter case, the
sample batch covers 1B consecutive samples, containing 1B timestamps (CB8 ..8+1B−1) and

5.2 Three-Stage Stream Ingestion Pipeline

75

multiple, associated measurements a8 ..8+1B−1 for each sensor. The challenge of HAQSE’s
ingestion pipeline is to process these incoming samples such that—eventually—they are
stored in the sensor-ordered and compressed storage format described in Section 4.1.2.
In addition to that, we already need to consider the basics of the query functionality of
HAQSE (which we will describe in more detail in Chapter 6). For this query function-
ality, it should be possible to retrieve all data in the system at all times, independent of
where in the ingestion pipeline it is located at query time. The next subsections present
a three-stage approach we designed to consume high-rate sensor data streams, while
being able to query all that sensor data. After that, we show what technologies we use
to realize this approach in HAQSE.

5.2.1 Layout Transformation to Sensor-Ordered Buffer
First, when data is received on the interface, it is decoded from the message represen-
tation to an internal, native representation. Depending on the chosen message format,
this decoding might be trivial (in case the message representation is identical to the
native representation) or already require some data processing (in case a different mes-
sage format is chosen). Once decoded, the native representation of the sensor values
are buffered in a preallocated, temporary buffer. This buffer is allocated when receiving
the first message from the stream. It is organized such that values from one sensor are
placed contiguously inmemory, as visualized in Figure 5.2. It allows a certain number of
samples to be buffered in memory, depending on the configurable temporary row group
size1, that determines the number of rows in this buffer. This buffering carries out the
layout transformation from the time-ordered input layout to the sensor-ordered lay-
out in the buffer. In other words, the individual measurement values of the different
sensors in the schema for one k8 are scattered into the sensor-ordered layout of the
buffer.

Together with the schema of the sensor stream, the temporary row group size de-
termines the physical size in bytes of the buffer:

buffersize = temporary row group size × schema_bytesize

where

schema_bytesize = sizeof(type(CB)) +
∑
f∈S

sizeof(type(f)).

This temporary buffer can optionally be backed by a memory-mapped file, avoiding
filling the operating system’s swap space unnecessarily in case physical memory is
limited. This is useful, especially for large temporary row group sizes. Backing the
memory by a file can reduce the amount of memory that needs to be physically present

1We borrowed the term row group size from the Apache Parquet terminology, where data is organized
in row groups, each of which has a certain row group size.

5 Sensor Data Stream Transformation & Processing

76

…

…ti
…ti+1

ti+2

Input
Sensor Data Stream

Schema

Schema size (incl. timestamp)

Buffer filled
with samples

Buffer
still
empty

Timestamp

Te
m

po
ra

ry

R
ow

 G
ro

up
 S

iz
e

ti
ti+1
ti+2

ti ti+1ti+2

View on linearized temporary
buffer as it resides in memory

Preallocated
temporary buffer

Figure 5.2 Sketch of how input stream data is mapped to the temporary buffer. The black
arrows indicate the physical organization of the stream and the buffer. The right part of the
figure illustrates how the sensor-ordered layout actually resides in the linear memory space.

in RAM, but requires the operating system to write back memory to persistent storage
regularly. While this limits the achievable throughput, it can be helpful for slower
sensor data streams.

Once a new temporary buffer is started and filled with at least one row, a new stream
segment is added to the Stream Segment Index. As explained in more detail in Sec-
tion 6.1, stream segments store the range covered by the respective sensor data. For
row groups stored in the temporary buffer discussed in this section, this range is open-
ended since we expect the stream to be arriving at a fast pace, and we want to avoid
fast-changing updates to the stream index. The added segment is identified by the
timestamp CB8 of the first samplek8 contained in the buffer. The end timestamp of this
segment is left empty.

5.2.2 Intermediate Buffering In Temporary Columnar Files

Once the temporary buffer is filled completely (or the stream is terminated), it is writ-
ten to temporary files in persistent storage. These temporary files serve as an extended
buffer between the fast, temporary buffer (which is limited in size) and the compressed,
long-term compacted storage. There are several reasons why it is advantageous to
write uncompressed data to temporary files instead of directly to compressed files.
First, most recent data segments are highly likely to be queried. This could be for
near-real-time analyses, for dashboard applications showing current values or other—
in many cases autonomously—recurring queries that retrieve the most recent history.
Thus, it makes sense to provide access to these segments with as little overhead as pos-
sible. Second, having an intermediate storage buffer, the final compacted row group
size can be independent of the temporary row group size. This increases the flexibility
of the processing pipeline. Moreover, it potentially increases storage efficiency in the
compressed representation, as the share of constant overheads in the compression for-
mat diminishes. Finally, reading partially written compacted files requires managing

5.2 Three-Stage Stream Ingestion Pipeline

77

this information somewhere. While this would be possible (all necessary information
is available), it unnecessarily complicates the implementation.

Temporary files are designed to contain multiple temporary row groups. The binary
representation of these row groups does not necessarily need to be identical to the one
in the temporary buffer. However, for performance reasons, the general data layout
should reflect that of the temporary buffer. In addition to that, it must be possible
to read contents from these files while they are still not completed. Otherwise, with-
out additional metadata or structural information, it would not be possible to retrieve
data for segments that are stored in these temporary files. This is achieved by having
repeated headers in the file, indicating the size of the following parts with the actual
sensor data. This layout requires unfinished temporary files to be read from front to
back when queried. For such queries, iterating over too many row groups in temporary
files could be unfavorable for performance. Hence, after a certain number of temporary
row groups has been persisted to a temporary file, structural information is appended
in a footer and this file is closed. Then, a new file is created and the next fully buffered
temporary row groups are written to the new file.

Buffer 1

Buffer 2

time

Buffer filled
completely

Transposed buffer wrien
to persistent storage

In stream context:
Buffer is filled with incoming sensor data

In writer background thread:
persist buffer

Filling Buffer 1 Filling Buffer 1Filling Buffer 2 Filling Buffer 1 Filling Buffer 2 Filling…stream context
writer thread Writing B1 Writing B2 Writing B2Writing B1 Writing…

Figure 5.3 Illustration of double buffering scheme. While one of the buffers is filled with new
sensor data received from the stream, the other one (which has already been filled previously),
is written out to a temporary file.

It is possible to have multiple instances of preallocated temporary buffers. This
makes it possible to write fully buffered data in the temporary buffer to the current
temporary file, while another temporary buffer instance can already ingest (and trans-
form the layout of) more data, as illustrated in Figure 5.3. This double-buffering scheme
helps to increase the processing throughput in certain situations. We analyze this in
detail in Section 5.5.

Once a temporary buffer has been fully written to a temporary file, the following
actions are performed in an atomic update step on the Stream Segment Index:

• The entry for the fully written temporary buffer is removed from the Stream Seg-
ment Index. There may already be another entry for a temporary buffer in the
index for consuming stream data; this is left untouched.

5 Sensor Data Stream Transformation & Processing

78

• If the temporary file existed before and thus, the entry for it is present in the
Stream Segment Index, it is removed, as it contains outdated information of the
temporary file. In particular, the covered segment range is not correct anymore.

• An updated entry for the temporary file is added to the Stream Segment Index,
reflecting the correct time span covered by the temporary file.

This is done in one atomic step, protected by a data structure guaranteeing mutual
exclusion. After the index is updated, the filled temporary buffer that was just written
to a temporary file is available again for ingesting sensor stream data.

When a temporary file is finished (which implies renaming the file currently being
written to), the following actions are performed:

1. Create a hard link2 to the file using its new name. The new name is the first
timestamp contained in the file.

2. Atomically update the Stream Segment Index:
• Remove entry for unfinished file.
• Add entry for renamed file.

3. Unlink the file system entry with the old filename.

The whole process of writing data to temporary files creates a list of several tem-
porary, uncompressed files. Since we target compressed files for long-term storage, in
the next step, these files are compacted. This compaction step is described next.

5.2.3 Compaction: Combining and Compressing Sensor Data
from Intermediate Files

Once a certain, configurable number of temporary files is filled, these files are combined
in a compacted file. These compacted files act as the long-term storage destination of all
stored sensor streams. The contents of such a compacted file use the final data layout
described in Section 4.1.2, using a compacted row group size to organize the resulting
row groups. While not required, in most practical cases, this compacted row group
size will be larger than the temporary row group size of the temporary buffer and files.
Furthermore, it is reasonable—but, again, notmandatory—to define the compacted row
group size to be an integer multiple of the temporary row group size.

In addition to that, these compacted files are compressed, such that the long-term
storage requirements are minimized. As presented in Section 4.1.2, the actual com-
pression is performed independently for each column, i.e., the timestamp column and
each sensor column are compressed separately. This enables changing compression
parameters individually for each sensor.

2A hard link to a file is an independent directory entry (inside the same file system) to the file (more
precisely, its contents). Creating a second hard link to a file makes it possible to reference a single
file by multiple names [11].

5.2 Three-Stage Stream Ingestion Pipeline

79

1 class Compactor:
2 """Manages compaction cfg and state"""
3 def compact_files(self, list_of_files, target, row_group_size):
4 """Compact files in `list_of_files`, write to output file `target`.
5 Each row group of the output file is filled with a maximum of `row_group_size` rows. """
6 self.list_of_files = list_of_files
7 self.schema = extract_schema(list_of_files)
8 self.row_group_size = row_group_size
9 idx_state = IndexState()

10 while idx_state.file_index < len(self.list_of_files): # iterate as long as more data is available and
11 idx_state = self._fill_next_row_group(idx_state, target) # fill target rowgroup by rowgroup
12
13 def _fill_next_row_group(self, idx_state, target) -> IndexState:
14 """Fill one row group of target"""
15 row_group_writer = target.append_rowgroup()
16 for c in self.schema.columns: # iterate over columns
17 wrtr = row_group_writer.next_col() # create a column writer
18 new_state = self._fill_col_chunk(wrtr, c, idx_state) # new_state should be equal for all columns
19 return new_state
20
21 def _fill_col_chunk(self, col_writer, col, idx_state) -> IndexState:
22 """Fill one column of the current row group, write to `col_writer`"""
23 new_state = idx_state
24 remaining_size = self.row_group_size
25 while remaining_size > 0 and new_state.file_index < len(self.list_of_files):
26 # there is space in row group and more data available
27 cur_file = self.list_of_files[new_state.file_index]
28 rb = read_rb(cur_file, new_state.record_batch_offset)
29 col_data = rb.column(col)
30 offset = new_state.rb_row_offset
31 vals_to_take = min(len(col_data) - offset, remaining_size)
32 col_slice = col_data[offset:offset+vals_to_take]
33 col_writer.write(col_slice)
34 new_state.advance(vals_to_take, len(col_data), cur_file.rb_count())
35 return new_state

Listing 5.1 Compaction algorithm.

The actual algorithm for compacting files is outlined in Listing 5.1, with a compaction
index state helper structure shown in Listing 5.2. When compacting a list of temporary
files, after initializing the necessary state (lines 6–9), we fill the target file row group by
row group (line 11). This is done as long as there are remaining rows in one of the files
to be compacted (line 10). For each of the row groups to be filled, in turn, we iterate
over all columns in the file schema (line 16) and fill them with data from the temporary
files (line 18). Filling the columns (line 21) reads data as long as the column chunk is
not fully filled and there is still data to read (line 25). The actual reading happens in
units of record batches of the temporary files. These temporary files are opened as
memory-mapped files. This has the advantage that only memory for columns that are
actually read are mapped to physical memory. For other columns of the record batch,
this is delayed until the respective column is read. We write as many values as there is
space in the current row group, or all data in the current record batch that has still not
been written, whatever value is smaller (line 31). In case there is not enough data to

5 Sensor Data Stream Transformation & Processing

80

fill the last row group of the resulting file, the actual number of rows in that last row
group is smaller than the configured row group size. After reading selected contents
from the temporary file (lines 29 and 32), and writing them to the column chunk of the
current row group (line 33), the index state is advanced (line 34). This progresses the
state object defined in Listing 5.2 to the next set of rows (line 9), record batch (line 11)
or temporary file (line 14). The writing step in line 33 performs all data encoding and
compression steps.

1 @dataclass
2 class IndexState:
3 """This class tracks how much has already been read"""
4 file_index: int = 0
5 record_batch_offset: int = 0
6 rb_row_offset: int = 0
7
8 def advance(self, vals_taken, num_rows_in_rb, num_rb_in_file):
9 self.rb_row_offset += vals_taken # progress row offset in currect record batch

10 if self.rb_row_offset >= num_rows_in_rb: # if record batch is exhausted
11 self.record_batch_offset += 1 # progress to next record batch
12 self.rb_row_offset = 0 # and start over with first row
13 if self.record_batch_offset >= num_rb_in_file: # if current file is exhausted
14 self.file_index += 1 # progress to next file
15 self.record_batch_offset = 0 # and start with first record batch

Listing 5.2 Compaction algorithm state helper structure.

After the compact_files() function has returned, the target Apache Parquet file is
closed. We use fdatasync() to ensure that all data actually lands on persistent storage.
Once that call returns, we can assume that the compacted file is fully written to storage
and the following actions are performed:

1. The Stream Segment Index is updated atomically:
• The entries representing the temporary files are removed.
• A new entry for the compacted file is added.

2. The temporary files are removed from the file system.

This compaction process is a resource-intense task. It reads all data from temporary
storage, which may need actual reading from persistent storage, depending on how
large the page cache of the operating system is. This aspect is experimentally evaluated
in Section 5.5.6. Furthermore, executing encoding and compression steps require a
considerable amount of CPU processing resources. Finally, the resulting file is written
to persistent storage, again putting load on the I/O-system. For these reasons, and since
we do not want to interrupt stream ingestion, compaction is performed in a separate
background thread.

5.2 Three-Stage Stream Ingestion Pipeline

81

5.2.4 Implementation in HAQSE using gRPC, Apache Arrow &
Apache Parquet

In this section, we describe how we implement the three-stage streaming approach
just presented. For receiving sensor streams we define a gRPC client-streaming proto-
col (see Appendix A.2). Themessage stream of this protocol requires a stream definition
as the first message. After that, the actual sensor samples or sample batches can be re-
ceived by HAQSE. The actual samples or sample batches are represented by an opaque
byte buffer, providing flexibility with respect to the actual encodings in the gRPC mes-
sage. Per default, this buffer just contains the C representation in little-endian format
of all data sent. This ensures that the overhead for receiving data is small. For sam-
ple batches, data is organized in a sensor-ordered layout, similar to the targeted data
layout.

The temporary buffer for transforming the layout is just a single contiguous byte
buffer. For writing timestamps and the individual sensor values, we calculate offsets
into the buffer. These offsets, however, must be aligned to multiples of the alignment
requirement of the respective data type for reading from the buffer. For that reason,
we add padding such that each column ends on an eight-byte boundary (ensuring that
both alignof(double) and alignof(int64_t) are satisfied). This guarantees that every
(next) column starts with the same alignment. This is sufficient for writing all sup-
ported data types. Columns can optionally be aligned on the size of full cache lines.
We did not notice any performance effects of aligning column buffers on cache lines,
though.

It also would be possible to allocate separate buffers for each column. This, how-
ever, incurs an increased cost when the number of columns becomes large, because the
number of virtual memorymappings that need to be managed by the operating system
increases accordingly.

The row counter of the temporary buffer is implemented using an atomic integer,
std::atomic_size_t. Together with a release-acquire memory order [28, 58], this ensures
that querying data retrieves all rows written up to the point of the query. In contrast to
protecting the row counter increment with a lock, this works without a context switch
to the operating system and thus, has a low overhead.

Once the temporary buffer is filled, it is written to temporary files in the Apache
Arrow IPC format [9]. This format consists of a stream of column-orientedApache Arrow
Record Batches, corresponding to the buffered row groups we use for transforming the
data layout. It can be read without any additional information just by reading the
stream from front to back. Additionally, before the file is closed, a footer is written
after all record batches. It contains an index that points to the individual record batches
of the stream. This speeds up searching for a particular timestamp in a finished file:
since we know that the timestamps are ordered, we can exploit binary search instead
of linearly iterating over record batches.

5 Sensor Data Stream Transformation & Processing

82

Finally, we compact multiple Apache Arrow IPC format files to one Apache Parquet
file according to the algorithm explained in Section 5.2.3. An important implementation
detail is to indicate to the operating system when the already compacted parts of a file
are not needed anymore. This is done via the madvise() system call [76], using the
MADV_DONTNEED advice for fully read memory pages. This keeps the resident set size low
and considerably speeds up compacting large temporary files.

Locking the Stream Segment Index is achieved by employing a std::shared_mutex.
Read accesses acquire a shared lock on the shared_mutex, updating the index requires
an exclusive lock.

5.3 Hierarchical Windowed Data Aggregation

As discussed in Chapters 1 and 2, in many analytics scenarios, it is necessary to query
large timespans3. However, it is not always necessary or even prohibitive to use the full
temporal resolution of sensor data streams. Instead, in many cases, it is sufficient to
retrieve windowed aggregations of sensor data streams. This can dramatically reduce
the amount of data that needs to be transferred to a client requesting data. In situations
like interactive data exploration, it might be both satisfactory and necessary to rely
on precomputed aggregation results: Satisfactory because small inaccuracies will not
change the user’s perception of the visualized timeline. Necessary because latencies of
more than 100ms may be detrimental to the user’s flow of thought [33]. In HAQSE,
the required hierarchical aggregates on tumbling windows of the input stream are thus
computed already during data ingestion and are eponymous for HAQSE’s name.

In our approach, we exploit our assumption that the input sensor stream is sampled
at a relatively stable sampling rate of 1

ΔC . In our aggregation component, we compute
windowed aggregations for several derived levels of user-configurable aggregation res-
olutions ΔCl . These aggregation resolutions are not required to have a certain relation
to each other. In practice, however, using a fixed factor between aggregation level res-
olutions has several advantages. First, it is easier to understand for users. Second,
this also makes the computation of aggregations more efficient. Finally, it makes most
sense regarding the ratio between query performance and storage efficiency.

For real-world setups, the number of aggregation levels can quickly grow to more
than ten. Thus, it is important to ensure an efficient and scalable approach for com-
puting these aggregations. In HAQSE, we exploit the sensor-ordered, columnar data
layout that we described in the previous section for this.

3Timespans are only large with respect to the sampling rate of a certain data stream. A timespan of
one year is relatively small when data is sampled daily, only containing 365 values or a bit more than
1.4 kB (assuming single-precision, without timestamp information). In contrast, one year of data of
a sensor stream sampled at 100 kHz contains more than three trillion values and requires more than
12 TB of uncompressed storage space (single-precision, without timestamps).

5.3 Hierarchical Windowed Data Aggregation

83

5.3.1 Formalization of Batch Aggregation

We first establish the necessary concepts and terminology to explain our approach.
We define an aggregation window specification l = (ΔCl , >l) that uniquely partitions

time into tumbling windows. These windows are aligned to an arbitrary, but fixed ori-
gin of time >l , e.g., Unix-epoch or a defined duration after that. ΔCl is the length of the
window specification, indicating both the size of the aggregation windows created by
l and the timestamp difference between two consecutive aggregation results. Based
on such a window specification l and a certain timestamp CB , Wl

CB is an actual aggre-
gation window. We define the so-called window id that uniquely identifies a certain
window W:

83
(
Wl

CB

)
=

⌊ CB

ΔCl

⌋
.

Using this definition, two aggregation windows W derived from the same window

specification l are identical iff 83

(
Wl

CB0

)
= 83

(
Wl

CB1

)
.

We also define the greatest common sub-window of a set of window specifications
S = {l1, l2, ...l=} with matching l> :

l̂ = 623l (S) = 623l (623l (623l (l1, l2), ...)l=)

where 623l (G,~) represents the function to calculate the greatest common divisor of
the window sizes ΔCl of the respective window specifications G and ~.

time

L1 Window

Sample times

time
Sample times

L1 Window

…

Figure 5.4 Example of greatest common sub-window l̂ for two sets of hierarchical window
specifications.

5 Sensor Data Stream Transformation & Processing

84

If the window specifications are defined such that larger window specifications are
multiples of the smallest aggregation window specification, l̂ is equal to the aggre-
gation window specification with the smallest ΔCl . This is visualized in the upper
example of Figure 5.4. In other cases, such as in the lower part of Figure 5.4, this is not
the case.

When aggregating, a set of different aggregation functions F = (51, 52, . . . 5=) is eval-
uated independently for each sensor f in the respective schema. All 5: ∈ F must be
associative and commutative so that it is possible to compute and combine partial re-
sults. The actual computations of aggregation functions 5: ∈ F happen for a particular
aggregation window Wl . We call the samplesk8 .. 9 that fall into the aggregation win-
dow Wl the aggregation batch. All samples k8 .. 9 in an aggregation batch have the
same window id i.e., 83 (Wl

CB8
) = 83 (Wl

CB 9
) ∀8 .. 9 . For each f in the schema, the respec-

tive functions in F are applied iteratively on all measurement values af of the samples
k8 .. 9 in the aggregation batch:

5: (. . . 5: (5: (af8 , af8+1), a
f
8+2) . . . , a

f
9)

Since each 5: in F is associative and commutative, we can pre-aggregate these re-
sults based on l̂ into so-called preaggregations. One (if the window specification l

is identical to l̂) or multiple (for all other window specifications) such preaggrega-
tions can subsequently and iteratively be merged into the actual aggregation results.
This makes it possible to reduce the number of computations in comparison to a naive
implementation, where each aggregation level is calculated individually on the input
samples.

5.3.2 Aggregation Process

This section describes the actual procedure of calculating aggregations. For calculating
the various aggregation levels, we track the so-called aggregation state for each of the
aggregation levels individually. This aggregation state consists of the current window
W identified by its id 83 (W) and the accumulated intermediate result. For each sensor
sample k that is received from the stream, we perform the sequence of actions that is
visualized in the flow chart in Figure 5.5. This sequence is triggered only once per
received sample batch k8 .. 9 , as soon as all samples of the batch have been put into the
temporary buffer.

For each received sample k with timestamp CB , we calculate the id of the corre-
sponding window Wl̂

CB of the greatest common sub-window specification l̂ . If the
internal aggregation state is not initialized (e.g., in case this is the first sample ever
received), we initialize this state with the calculated window id 83 (Wl̂

CB). Additionally,
we also initialize the state of each of the actual aggregation levels ! using their respec-
tive window-ids 83 (Wl!

CB). Next, we check whether the processed samplek triggers an
aggregation. This is the case if the window Wl̂

CB is different from the one stored in the

5.3 Hierarchical Windowed Data Aggregation

85

Yes

No
Aggregation state

initialized?

Initialize state with
calculated window-id

Yes "triggers"
aggregation?

Perform aggregation
on most recent slice
in temporary buffer

New sample
 with

timestamp ts

Calculate
window-id for ts

and
Inizialize state of
each Aggregator:

Calculate
window-id for ts and

agg-window

No

Emit result for
aggregation level

ts triggered
new window in

aggregator?

No

Yes
Done

For each aggregation

Merge preaggregated
result into all level

aggregations

Figure 5.5 Flow chart showing batched aggregation process.

aggregation state, i.e., if the window-id calculated for CB is larger than the one currently
stored in the aggregation state. This never happens if the state was previously unini-
tialized. Additionally, since we perform computations on the in-memory buffers, if the
last row of these in-memory buffers is written, this also triggers an aggregation. These
two different conditions for triggering an aggregation are visualized in Figure 5.6.

Whenever the sample triggers an aggregation, we take all samples that belong to
the window Wl̂

CB from the respective temporary buffer and perform the actual calcu-
lation on the batch of samples for each function in F . The result is a preaggregated
calculation result. This preaggregated calculation result is merged into the result state
of all the actual aggregation levels.

Once that is done, all actual aggregation levels are checked: if 83 (Wl!

CB) is larger than
the state stored for the respective level, the window is terminated. This means that the
final aggregation result of the previous window (which was just fully calculated) is
emitted. This value is then processed in the same way as samples from the original
input stream, as discussed in Sections 5.1 and 5.2.

When a samplek does not trigger an aggregation, nothing is done. Depending on l̂

and the size of the temporary row group buffer, this case happens relatively often and
is one of the reasons why this aggregation logic has a low overhead. We expect this ap-
proach to scale well because of two further reasons. First, aggregations are computed

5 Sensor Data Stream Transformation & Processing

86

ti
m

e

New sample
triggers batch
aggregation

because is not
contained in

current window;
 not contained

in batch/window

aggregation window,
not necessarily

aligned to temporary
row group buffer

Te
m

po
ra

ry
B

uff
er

A
gg

re
ga

ti
on

B
at

ch

New sample
triggers batch
aggregation

because temporary
buffer is completely

filled;
 contained in

batch/window

Te
m

po
ra

ry
B

uff
er

A
gg

re
ga

ti
on

B
at

ch

previous aggregation
window

aggregation window
reaches beyond

temporary bufferti
m

e

Figure 5.6 The two possible ways an aggregation is triggered. Left: the timestamp CB8 of the
samplek8 is not part of the active window, so all buffered samples falling into the active window
that are contained in the temporary buffer are used for computing aggregations. This does not
include k8 . Right: the sample k8 fills the temporary buffer, all samples falling into the active
window—includingk8—are aggregated.

on contiguous in-memory arrays of relatively recently added sensor values. This im-
plies that there is a high chance that this data is available in caches. Furthermore, the
linear access pattern can be executed very efficiently on modern CPU architectures.
Additionally, this access pattern makes it easy for the compiler generate machine code
that exploits vectorized instructions for the actual computation of aggregations. Sec-
ond, the actual computation of mergeable aggregations only happens once. The results
are then reused multiple times for the various aggregation levels. This works especially
well for standard cases where increasingly coarse aggregation levels are multiples of
each other.

5.4 Experimental Setup

In this section, we describe our experimental setup to extensively evaluate the various
parameters of HAQSE. We also use this setup to compare HAQSE to other time series
management systems with respect to sensor stream ingestion rates.

We begin with an overview of the general architecture and the components involved
(Figure 5.7). As it can be seen in this figure, data generation is performed by a Data
Generator component, which generates a stream of emulated sensor data. We explain
this component in more detail in Section 5.4.2. Since the different databases in our
comparison in Section 5.6 have different input protocol interfaces, we need to prepare
the generated sensor data stream to be compatible with the respective input protocol.
This is done by a stream adapter component that generates an appropriate sensor data
stream, further explained in Section 5.4.3. We perform our experiments on a variety of
different hardware configurations, as explained in Section 5.4.1.

5.4 Experimental Setup

87

Node 2:
sense-edge9/10

Node 1: sk1

Data Generator

HAQSE

InfluxDB

estDB

InfluxDB

TimescaleDB

gRPC

ILP via HTTP POST

ILP via TCP Socket

SQL, Stream API

 Data Generator
 Features:

generation rate:
- configurable
- unlimited
Batched generation
statistics monitoring
configurable schema
size
configurable output
format

Data Generator gRPC

Data Generator

Data Generator

estDB

TimescaleDB

Figure 5.7 Setup of input stream benchmarks. Data generator and stream adapters are always
running on caps-sk1. The actual databases under test run on another system.

Table 5.1 Overview of the different machines we use for our stream ingestion experiments.

Name CPU (all Intel®) Cores (Threads) RAM [GiB] Persistent Storage

caps-sk1 Xeon® Silver 4116 12 (24) 12 × 8 1 TB HDD
sense-edge9 Core™ i5-8365UE 4 (8) 1 × 8 1 TB HDD, 256GB SSD
sense-edge10 Atom® E3845 4 (4) 1 × 8 1 TB HDD, 64GB SSD

5.4.1 Hardware and Software Environment

The experiments performed in this chapter run on a number of different nodes, con-
nected via the faculty network4 as sketched in Figure 5.8. The systems available for
these experiments are listed in Table 5.1. All systems listed in this table are connected
to the faculty network via a Gbit Ethernet network interface card. The node caps-sk1
runs Ubuntu 20.04. The other two nodes, sense-edgeX, run Ubuntu 22.04. The HDDs
employed for storing sensor data use the ext4 file system [122]. The operating system
is installed on a separate SSD for the two sense-edgeX systems. caps-sk1 is used to
run the data generator presented in Section 5.4.2 together with the stream adapters
presented in Section 5.4.3. During the experiments, the machines are mostly used ex-
clusively for our benchmarks, but this cannot be guaranteed; the same holds for the
faculty network. The actual time series management systems are all deployed using
container images. Both sense-edgeX systems use Docker 20.10 to run these containers.

We needed to take special care in case of all experiments that write data to (and read
from) disk in this chapter. Details of this, together with baseline throughput numbers,
are presented in Section 5.4.4.

4We use the network of the main computer science building at TUM for our experiments.

https://ark.intel.com/content/www/us/en/ark/products/120481/intel-xeon-silver-4116-processor-16-5m-cache-2-10-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/193559/intel-core-i58365ue-processor-6m-cache-up-to-4-10-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/78475/intel-atom-processor-e3845-2m-cache-1-91-ghz.html

5 Sensor Data Stream Transformation & Processing

88

Faculty network
Gbit Ethernet

caps-sk1

sense-edge9

sense-edge10

Gbit
Ethernet

Figure 5.8 Sketch of the network topology for the experiments in this chapter.

5.4.2 Data Generator

For the evaluation of our system, we require a data source that is easy to control and
can deliver a high data rate. Since one of the key features of our system is the ingestion
of sensor data streams with a high stream rate or high schema cardinality (or both),
the source for our experiments must be able to deliver such a high stream rate. Thus,
to simulate varying input stream workloads for our system, we design and implement
a data generator that implements the gRPC client streaming interface introduced in
Section 3.2. This generator has the following functionality that can be controlled via
command line interface (CLI) configuration parameters:

• Stream schema It is possible to configure the stream schema, and most im-
portantly, vary the number of sensors for which a data stream should be gen-
erated. In all our experiments, we generate data for schemas that consist of a
varying number of single-precision floating-point sensors (32 bit =̂ 4 B per value).
We restrict our tests to single-precision floating-point values since this is the
main use case we are targeting. The stream schema of cardinality # consists
of columns named v0, v1, …, v(N-1) and will be named teststreamN, unless
otherwise noted.

• Sampling rate The stream’s average sampling rate can be emulated. This is
done by repeatedly pausing stream generation for the required time after a slice
spanning onemillisecond of data has been generated. Although this rudimentary
sample rate control mechanism can not perfectly mimic the behavior of real-time
sensor analysis systems, it is sufficient for our benchmarking purposes. There is
also the possibility to have an unlimited stream rate, which means that the gen-
erator simply generates data as fast as it can, without any artificial pauses. We
use this unlimited stream rate extensively in our experiments in order to assess
the throughput limits of the state of the art and our system.

• Batch size As discussed earlier, the client streaming interface supports batched
input. As we will see in our evaluation results, this is an important feature for

5.4 Experimental Setup

89

efficient stream processing. For that reason, our data stream generator also sup-
ports an arbitrary batch size. Thismakes it possible to perform an in-depth design
space exploration for varying batch sizes.

• Payload coding The actual payload data generated from the data generator uses
IEEE 754 for floating-point data. This is the same as the internal representation
of the generator and the adapter component (see Section 5.4.3). While it might be
interesting—especially for low-bandwidth scenarios—to create and examine dif-
ferent on-the-wire representations for sending data, we leave this as future work.
The various adapter implementations (described in the next section) targeting
existing systems transform the binary encoding to the required text protocol for
the experiments.

• Setting parameters for HAQSE HAQSE can be configured using a variety of
parameters changing functionality and performance. The generator supports set-
tings these parameters on a per-stream-basis. This makes it possible to execute
a variety of parameter studies, as Section 5.5 will show.

• Data generation statistics logging The generator supports logging stream sta-
tistics in a regular, configurable interval. This makes it possible to retrieve per-
formance characteristics during and at the end of stream generation. We use this
as one method to analyze behavior over time of stream consumption as well as
to retrieve benchmark summary results. Logging is implemented by printing the
last set of statistics after a configurable time interval has passed. If there are no
new statistics (because, e.g., no new batch has been sent since the last output),
the current output iteration is skipped. We use an interval size of one second for
all experiments in this chapter.

Especially the last point of this list is important for our experiments: The generator
statistics log output serves as the base for all our evaluations. On the one hand, this
allows reporting experiment summaries. On the other hand, it also allows analyzing
behavior over time in the experiments.

Our data generator produces sequences of normally distributed random numbers.
A certain amount of data is generated once and reused for subsequent invocations
to ensure that random number generation is not the bottleneck in our system. For
most of our tests, the actual values of the generated data do not matter. They only
matter when writing compressed representations of the data to persistent storage and
measuring the achieved throughput. For these experiments (Sections 5.5.6 and 5.5.7),
we report the resulting compression rates.

For large payload sizes, we decouple gRPC message generation from the sending
logic and execute both in a separate thread of execution. We synchronize this producer-
consumer scenario with the help of a shared message queue. The generator is imple-
mented in C++20 and uses gRPC 1.45.

5 Sensor Data Stream Transformation & Processing

90

5.4.3 Stream Adapters

For comparing HAQSE to state-of-the-art time series management systems (which we
present in Section 5.6), we developed several sensor stream adapters. All these adapters
consume the gRPC-protocol-based data stream as produced by the data generator (see
Section 5.4.2). When a new stream is started, the adapters first connect to the respec-
tive time seriesmanagement system and perform all system-specific initialization steps
like authentication or table creation. The adapters then process the gRPC data stream
and generate the protocol that is required by the respective client interface. They re-
ceive and buffer the incoming data stream (which may be batched in arbitrarily sized
chunks) and produce batches of the respective client protocol. All tested time series
management systems use a text-based protocol. The size of the output batches is con-
figurable and independent of the adapter input batch size. Choosing a good protocol
batch size depends on the respective database; it is essential to tune this parameter for
achieving good input performance (see Section 5.6). We implement the adapter in C++
to ensure low runtime and memory overheads5.

Specifically, we implement the adapter for InfluxDB, QuestDB, TimescaleDB and
HAQSE. For HAQSE, the adapter would actually not be necessary, but we add it for
fairness reasons and because it decouples data generation from actually sending sensor
data to HAQSE. Our implementation for the other adapters uses two threads, synchro-
nized via a shared queue. In one of the threads, the adapter generates the respective,
text-based, batched input protocol message strings and puts them into the queue. In
the other thread, one prepared protocol string is taken from the queue and sent us-
ing the respective transport protocol. This design ensures that the adapter component
is not a throughput bottleneck in our setup since it decouples the compute-intense6

protocol string generation from the actual sending.
For HAQSE, we simply forward the received gRPC stream by copying and reassem-

bling the gRPC message.
For InfluxDB, we manually implement generation of input batches. Each input

batch consists of several input rows, encoded using the ILP (cf. Listing 5.3). These
ILP batches are then sent to InfluxDB via Hypertext Transfer Protocol (HTTP) POST
requests. Our implementation uses curl [103] to send these requests.

ForQuestDBwe use the c-questdb-client package (version 2.1.1) for C++ clients.
This generates the ILP7 internally via API calls and handles sending the generated ILP
batch via a Transmission Control Protocol (TCP) stream socket. In contrast tomanually

5A first version based on Java client APIs for the respective time series management systems turned
out to be problematic, especially for high-throughput configurations. One reason was a memory
allocation problem in a dependency of the gRPC Java library, using direct byte buffers [87]. These
byte buffers were not released fast enough, eventually leading to an out-of-memory error.

6The main processing step that makes string generation compute-intense is the conversion of floating-
point data to text. Details are described when answering PQ3 in Section 5.4.5.

7On their website, the QuestDB authors state that data input via the ILP is the fastest available alter-
native.

5.4 Experimental Setup

91

generating the ILP in the case of InfluxDB, the QuestDB client library internally uses
double-precision values for their API. As a result, the generated ILP is larger than the
alternative with single-precision values we generate manually.

For writing data to TimescaleDB, we use the libpqxx library to connect to our in-
stance of TimescaleDB and interact with it. We implement input via the stream_to [63]
library interface, which showed the best performance results in our tests, especially
when compared against regular SQL INSERT statements.

teststream4 v0=3.14159,v1=2.1828182,v2=1.414,v3=3.456789 594796279880000000\n

Listing 5.3 One example line for the ILP for a schema of four sensors (v1-v4) named
teststream4. The last integer in the ILP indicates the timestamp. The ILP is used for InfluxDB
and QuestDB.

Regarding the implementation, it is interesting to note that creating textual repre-
sentations for IEEE 754 floating-point numbers is actually a compute-intensive work-
load. For generating the ILP for InfluxDB and for generating SQL statements for
TimescaleDB, we use the libfmt [120] library. Internally, libfmt uses the dragonbox
algorithm [62] for fast string generation of floating-point numbers. The c-questdb-
client library is implemented in Rust [104] and uses the Ryū algorithm [2]. Both
have been shown to be significantly faster than using standard serialization methods
integrated into programming languages (like, e.g., std::to_string(float)) [2, 62]. For
all three cases, input string generation, however, remains a computationally intensive
task, as we will show in Section 5.4.5.

Data generation and any stream preparation always happens on a single node, the
actual time series management systems are (inmost cases) running on a different node.
This setup tries to emulate the typical setting in industrial sensor data processing,
where sensor processing systems send sensor data streams to a processing and storage
node, located in the same network or in the cloud. It would also be possible to let the
adapter component run on the receiving node (the same node as the database). How-
ever, we chose to keep this setup as sketched in Figure 5.7 since this is closer to real
deployments. Furthermore, running the components like that reduces the amount of
processing the receiving node has to perform.

5.4.4 Validating the Experimental Setup: HDD Performance

Several of our experiments write data to persistent storage. More specifically, HAQSE
writes data to the locally installed HDDs. We chose HDDs in our experiments since
they represent a typical storage medium in real industrial deployments. Our exper-
iments in Section 5.5 show that, in many cases, throughput is limited by the write
throughput of the installed HDD. As others have investigated before [36, 108, 135],

5 Sensor Data Stream Transformation & Processing

92

write throughput on HDDs is not constant across all physically available blocks. Blocks
that are located on the outer part of the disk can be written faster, as the linear velocity
of the outer lanes is faster than that of the inner lanes of the platters8. Since we do
not want our experiments to be influenced by variations in HDD write throughput, we
only use the first 100GB (10%) of the HDD. We achieve this by creating a partition
that only uses the first 10% of the logical block addresses. This partition is formatted
with ext4. The blocks of this partition are located on the outer parts of the platters and
deliver a relatively stable write throughput, as shown below.

Our experiment for determining the write throughput baseline is very simple. We
just write to a file that is located on the 100GB ext4 partition of the installed HDD and
measure the time this takes. We do this with the help of dd [75], using the following
command:

1 dd bs=1M count=$cnt if=/dev/zero of=/hdd/ext4-part/testfile conv=fdatasync

The output of this command shows the number of bytes written as well as the mea-
sured duration. Since we’re mainly interested in throughput when writing large files,
we vary $cnt from 50 to 10 000. This results in files with sizes from 50MB to 10GB. We
execute the command 100 times for each of the tested sizes.

50 100 200 500 1000 2000 5000 10000
Test size [MB]

80

90

100

110

W
ri

te
 T

hr
ou

gh
pu

t
[M

B
/s

]

Figure 5.9 HDD write throughput test results. Each size is tested 100 times. The horizontal
bars show 5th, 50th (median) and 95th percentiles.

The results of this experiment are plotted in Figure 5.9 and show several aspects.
First, for this simple test, the achieved throughput slightly depends on the size of the
written file. Similarly, the variance in results is larger for smaller test file sizes. Both
of this can be explained by the constant overheads9 associated with each test that just

8The angular velocity of a HDD is constant. As a result, the same length passes the write-head in a
shorter amount of time on the outer lanes of the platters.

9These overheads are HDD seek times, file system overheads like file creation, and other constant
processing overheads.

5.4 Experimental Setup

93

have a larger impact on the smaller files (the experiment for the smallest tests took
less than a second). The rates are within a relatively stable range, both overall and
even more within a particular tested size. The variance was considerably larger when
utilizing the whole disk.

We want to highlight that the chosen experimental setup generates performance
results that will not reflect behavior in real systems. Employing a (mostly empty) par-
tition that uses only the first 10% of the HDD represents the best case in terms of
write throughput. We still perform our benchmarks in this environment. This is the
only tractable way to create comparable results and exclude effects that stem from in-
consistent HDD write throughput values. Our main goal is to assess the performance
of HAQSE; this is only reasonably possible with reproducible experiments.

5.4.5 Validating the Experimental Setup: Generator & Adapters

Before we do any actual evaluations, we want to ensure that our experimental setup
is suitable for measuring the ingestion throughput of the various existing time series
management systems andHAQSE. For this, we perform a set of preliminary tests on the
evaluation environment itself to ensure that it is not the bottleneck in our experiments.
We want to answer these preliminary questions first:

• PQ1: At what rate can our data generator generate data?

• PQ2: At what rate can the gRPC data stream be sent via Gbit Ethernet?

• PQ3: At what rate can the adapters for the state-of-the-art systems generate the
respective input format?

By answering these questions, we establish a baseline that allows us to assess the
results of the later experiments with respect to this baseline. This makes it possible
to interpret the results of the HAQSE parameter studies accordingly. Furthermore, it
enables a fair comparison between HAQSE and the state-of-the-art systems.

We perform all our measurements via the logging output of the generator. This ap-
proach is appropriate since this best reflects how real stream sources would perceive a
time series management system as a stream sink. The generated stream receives back-
pressure from the system under test via gRPC, so the measured stream rate on the
generator will eventually be identical to the ingest rate at the stream sink. This mea-
surement methodology has the side effect that at the beginning of the experiments,
the measured throughput values might be higher than what the time series manage-
ment systems are able to sustain. For that reason, we average our measurements over
a time period that is long enough for the measured rate to stabilize (specified for each
experiment separately).

5 Sensor Data Stream Transformation & Processing

94

23 27 211

Batch Size (#samples in one batch)

22

25

28

211

214

217

Sc
he

m
as

iz
e

(#
flo

at
in

g-
po

in
t

se
ns

or
s

in
 s

ch
em

a)

0

500

1000

1500

2000

M
B

/s

(a) Achievable data stream rates with data gen-
erator on a single node color-coded depending on
schema and batch size. Missing data in the top
right of the plot is due to a too large payload size
of over 1GiB.

1K 100K 10M
Payload size [B]

0

500

1000

1500

2000

Pa
yl

oa
d

R
at

e
[M

B
/s

]

GBit Ethernet limit

Batch size
1
2
4

8
16
32

64
128
256

512
1024
2048

4096
8192
16384

(b) Achievable data stream rates with data gen-
erator on a single node. For reference, we also
show the theoretical limit for Gbit Ethernet.

Figure 5.10 Analysis of generator speed on a single node.

PQ1: At what rate can our data generator generate data?

In order to answer the first question, we perform a set of experiments measuring the
performance of our data generator. For this, we implement a throughput-test receiver
server for the gRPC service interface that just drops all received stream messages sent
by the generator. This gRPC test receiver can receive a maximummessage size of 1GiB
and is implemented in C++. For this experiment, we let both the gRPC test receiver
and data generator run on sense-edge9 to avoid any network throughput limits. We
then vary the schema size in powers of two from 1 to 217 and the batch size from 1 to
16 384. For each combination of schema and batch size, we let the generator run for
30 seconds at unlimited generation rate and record the average throughput numbers
after each run. The results for these experiments are visualized in Figure 5.10.

As shown in Figures 5.10a and 5.10b, the achieved throughput generally increases
with schema and batch size up to a payload size of slightly more than 100 kB. Small
payload sizes result in limited throughput values because of the larger impact of con-
stant gRPC processing overheads. We tested this by sending the same message re-
peatedly, avoiding any non-gRPC-related overheads. This resulted in almost identical
throughput numbers.

This already reveals one interesting property of HAQSE: small gRPC payloads will
limit the achievable throughput just because data cannot be transmitted at higher rates
with gRPC for such cases. Furthermore, it shows that small payload sizes should be
avoided when high throughput is required, and that we need to choose large enough
batch sizes to avoid a bottleneck in the ingestion protocol.

5.4 Experimental Setup

95

Medium-sized packages (around 100 kB) achieve very high numbers in this experi-
ment. This can be explained by the reduced impact of constant processing overheads
on the one hand. On the other hand, data sizes are still small enough to fit in the caches
of the respective processing cores (256 KiB L2 cache per core). As payload sizes increase
further, these caching advantages diminish. For medium-sized payloads, using larger
batch sizes is beneficial for throughput. This is due to constant processing overheads
in data generation, which have a negative influence especially for small batch sizes.

The rate reduction for larger payload sizes (>10MB) is caused by two aspects. First,
just generating large payloads causes the data rate to drop since CPU caches are not
large enough to hold all that data anymore (the shared L3 cache has a size of 6MiB).
In addition to this, just sending larger gRPC messages alone (without the generation
overhead) also causes the rate to drop. Parallelizing message generation from the ac-
tual sending is thus beneficial for large payload sizes: processing-intense sections are
executed in parallel on different cores of the CPU.

However, as it can be clearly seen in Figure 5.10b, the rate is greater than the theo-
retical limit of Gbit Ethernet for almost all cases. The only exception to this are cases
where the payload size is less than approximately 300 B. We conclude that this is suf-
ficient for most evaluated scenarios.

PQ2: At what rate can the gRPC data stream be sent via Gbit Ethernet?

Next, we analyze how the data generation rate differs when source and target are lo-
cated on different nodes connected over Gbit Ethernet. This is an interesting baseline
when interpreting the performance results for HAQSE later on. So, in this paragraph,
we repeat the experiment from above, but let the data generator run on caps-sk1. All
other experimental parameters stay the same.

The results visualized in Figure 5.11 show the achieved rates when sending the gener-
ated samples over the previously specified gRPC protocol. The throughput saturates at
roughly 117.6MB/s. This is very close to the practical limit of the network: measuring
the TCP bandwidth between the two nodes with iperf 2.0.13 [10] yields a maximum
of 117.65MB/s. For small payload sizes—resulting from either small schema or batch
sizes—again, the rate is considerably lower due to constant overheads in sending and
processing smaller packets. For large payload sizes, interestingly, the rate is also lim-
ited by gRPC—repeated sending of the same large message yields similar performance
results.

As a consequence of this and the previous experiment, we conclude that the batch
size should be chosen depending on the schema size when evaluating throughput of
other components of the system. Ideally, the batch sizes should be chosen such that
the payload size is around 100 kB.

5 Sensor Data Stream Transformation & Processing

96

23 27 211

Batch Size (#samples in one batch)

22

25

28

211

214

217

Sc
he

m
as

iz
e

(#
flo

at
in

g-
po

in
t

se
ns

or
s

in
 s

ch
em

a)

20

40

60

80

100

120

M
B

/s
(a) Achievable data stream rates with data gener-
ator sending data via Gbit Ethernet, color-coded
depending on schema and batch size.

1K 100K 10M
Payload size [B]

0

25

50

75

100

125

Pa
yl

oa
d

ra
te

 [
M

B
/s

]

GBit Ethernet limit

Batch Size
1
2
4

8
16
32

64
128
256

512
1024
2048

4096
8192
16384

(b) Achievable data stream rates with data gen-
erator sending data via Gbit Ethernet. For refer-
ence, we also show the theoretical limit for Gbit
Ethernet.

Figure 5.11 Analysis of generator speed when sending generated samples over Gbit Ethernet.

PQ3: At what rate can the adapters for the state-of-the-art systems generate
the respective input format?

The input format and protocol depend on the respective database, as annotated in Fig-
ure 5.7. InfluxDB and QuestDB use the ILP for ingesting data, TimescaleDB inherits its
ingestion functionality from PostgreSQL and uses SQL or a similar, text-based stream
format. For InfluxDB, one or multiple ILP lines are sent via an HTTP POST request. For
QuestDB, these ILP lines are sent through a TCP stream. For TimescaleDB, the pqxx
library uses the PostgreSQL native wire format [124] to send SQL statements or the
input stream format [63], the latter one providing amuch better ingestion performance.

In order to assess the performance of our setup, we measure individual parts of the
experimental data pipeline. For InfluxDB, we measure generation rate of ILP and how
fast it can be sent via HTTP POST requests. For this, we create a dummyHTTP receiver
in Python that just drops the received protocol messages. We batch 500 lines of the ILP
into one POST request for this to avoid the protocol overhead to be too dominant for
these tests because of small packet sizes10. For QuestDB, we do the same: we let the
adapter generate the ILP string and send it through a TCP stream. On the other end
of the stream, we use a dummy TCP receiver (again, implemented in Python), that just
ignores all incoming data. Again, we asynchronously flush this buffer only after every
500 lines. For TimescaleDB, we test how fast SQL statements or stream protocol text
can be generated. TimescaleDB requires the PostgreSQL native wire format for input.
Since this is the only option to talk to PostgreSQL (and thus TimescaleDB), we consider
this as part of the database and do not measure it separately in this section. For these

10We provide a more detailed evaluation of the dependence on the batch size in Section 5.6

5.4 Experimental Setup

97

experiments, we let the generator run for 60 s for each parameter combination. We
show our results in Figures 5.12 and 5.13.

22 25 28 211 214
0

20

40

60

80

100

120

D
at

a
ra

te
 [

M
B

/s
]

ILP for InfluxDB (HTTP POST)

22 25 28 211 214

Schemasize (#floating-point sensors in schema)

ILP for QuestDB (TCP Stream)

22 25 28 211 214

SQL

Data generation rate Send rate Encoded data rate on interface Theoretical Gbit Ethernet limit

Figure 5.12 Data generation and transmission rates as a function of schema size for ILP (sep-
arately for InfluxDB and QuestDB) and SQL11. The green dotted lines represent the calculated
rate on the interface, based on the raw rate (dark blue) and the encoding efficiencies from Fig-
ure 5.13 for the respective schema size. It is clearly visible that small schemas (and therefore
small messages) are a bottleneck for the ILP protocol for InfluxDB. ILP for QuestDB (sent via
TCP) is much more performant (for small schemas) and fully saturates the Gbit Ethernet con-
nection for all tested schema sizes. For large sizes, the send rate for QuestDB is slower than
the ILP version over HTTP used for InfluxDB. The reason is that the QuestDB version always
sends double-precision numbers and thus has a less efficient textual representation.

These results reveal several interesting aspects of our adapter implementation and
the employed protocol.

Even for only generating the protocol string, the adapters achieve raw data rates
around 50MB/s. Additionally, the generated string has an encoding overhead of a
factor of 2.5–8, depending on protocol, schema size, and the actual data values (see
Figure 5.13). Consequently, when data is being sent over Gbit Ethernet, sending the
encoded values is limited by the throughput limit of Gbit Ethernet. This is indicated
by the respective dotted lines in Figure 5.12. Especially for the QuestDB send case, the
encoded rate almost fully saturates the network interface.

When including the actual send overhead, it also becomes evident that the protocol
overhead of HTTP POST requests in case of InfluxDB ismuch higher than the approach
chosen by QuestDB with a raw TCP socket, especially for small HTTP packet sizes.

Another thing to note is that the c-questdb-client library only provides an inter-
face for sending double-precision data, thus unnecessarily increasing the size of the
generated ILP string.

11As explained in the text, we do not measure the send rate for SQL. Consequently, the plot for SQL
does not show send rate or encoded data rate on interface.

5 Sensor Data Stream Transformation & Processing

98

20 22 24 26 28 210 212 214

Schema size (#floating-point sensors in schema)

0

2

4

6

8

Pr
ot

oc
ol

 e
nc

od
in

g
ov

er
he

ad
(v

s.
 n

at
iv

e
re

pr
es

en
ta

ti
on

) Native encoding
ILP (double prec.)
ILP (single prec.)
SQL

Figure 5.13 Encoding overhead as a function of the schema size for ILP (double precision,
as generated for QuestDB), manually generated ILP (single precision, used for InfluxDB) and
SQL. The overhead of the ILP is higher when generated with the QuestDB client library since it
interprets and serializes values as double precision. In contrast to this, the manually generated
ILP uses single precision, resulting in a more efficient encoding. Since batched ILP input is just
a concatenation of individual ILP lines, there are no gains in efficiency with larger batch size.
For SQL, the constant overhead of the INSERT command is higher (the plots show values for
inserting a single row), but since no column names need to be specified, the efficiency improves
with greater schema sizes. For SQL batched input, the constant overhead for small schema sizes
would diminish further (not visualized in this plot).

Summary To summarize these preliminary experiments, we are able to show that
data generation and string generation with rates of up to 50MB/s (as raw payload en-
coding) are fast enough for saturating Gbit Ethernet network connections. As we will
show in the next section, all these rates lie factors above the achievable rates of the
existing time series management systems under test. This underlines that our exper-
imental environment is suitable for comparing HAQSE fairly against the other time
series management systems in Section 5.6.

5.5 Stream Consumption: HAQSE Parameter
Evaluation

In this section, we extensively evaluate HAQSE with respect to its stream ingestion
performance and how it depends on the various parameters. The goal of this section is
to analyze the limits of each of HAQSE’s components and how the achieved throughput
depends on the parameters relevant to the respective component. This information can
be used as a guideline during deployment to identify sets of parameters suitable for a
certain application scenario. We also aim to identify parameters that do not have a

5.5 Stream Consumption: HAQSE Parameter Evaluation

99

large impact on throughput: these parameters can be left at reasonable default values
without negatively impacting performance.

In this section, all tests are performed with HAQSE running on sense-edge9 (see Sec-
tion 5.4). Since many processing steps in HAQSE deliver higher throughput values than
Gbit Ethernet, we perform some experiments in two different setups. On the one hand,
we let the generator run locally—on the same node as HAQSE—on sense-edge9. This
makes it possible to identify the throughput behavior of the various components in
HAQSE without the input stream being limited by Gbit Ethernet throughput. On the
other hand, we let the generator run on caps-sk1. This shows how the respective com-
ponent would behave in a more realistic scenario when data is received via Ethernet.
In both cases, since we want to find out the throughput limits of HAQSE, the genera-
tor uses the unlimited generation rate option. The maximum possible generation rate
depends on schema and batch size, as shown in Figure 5.10. We report the average
ingestion throughput, calculated as the total number of bytes divided by the duration
of the gRPC client streaming call. The total number of bytes is the number of sent sam-
ples multiplied by the schema size in bytes, including the 8 B timestamp (as specified
in the input interface protocol, see Section 3.4.1). Since we only use single-precision
floating-point values for these experiments, the size per sample is (8+ 4× schemasize)
B. Streaming duration in the generator is measured as the difference between the wall-
clock time before data generation starts and just after the gRPC streaming call returns.
At that point, all data processing in HAQSE has finished.

For the rest of this section, we systematically evaluate the individual components of
the ingestion pipeline, following the steps shown in Figure 5.1. Before that, we classify
the various parameters into different categories.

5.5.1 Parameter Classification and Methodology

There are several parameters that may have an influence on sensor stream ingestion
performance. First, there are application-dependent parameters that are defined by the
application, like the number of sensors in the schema and the sampling rate. Second,
there are configuration parameters in HAQSE that determine how a certain stream is
processed, e.g., how many aggregation levels should be calculated for a certain input
stream. Third, there are internal configuration parameters that determine how HAQSE
processes data, which may depend on application-specific or other configuration pa-
rameters. These have no impact on the functionality of stream processing, but affect
performance. One example of such a parameter is the temporary row group size or
how many temporary files are compacted into one compressed file. These parameters
can be chosen freely within the limits of the underlying hardware.

When evaluating the effect of a certain parameter on the resulting performance, we
keep other parameters constant. Unless otherwise noted, we choose these constant
parameters based on the results of other or preliminary experiments. More specifi-
cally, we use typical values that provided reasonable performance in these preliminary

5 Sensor Data Stream Transformation & Processing

100

23 27 211 215

Schema size

21

23

25

27

29

211

In
pu

t
st

re
am

 b
at

ch
 s

iz
e

100 10K 1M 100M
Payload size [B]

20

40

60

80

100

120

R
at

e
[M

B
/s

]

Batch size
1
2
4
8

16
32
64
128

256
512
1024
2048

0

20

40

60

80

100

R
at

e
[M

B
/s

]

Figure 5.14 Throughput of only the layout transformation step when receiving data via the
network interface.

experiments. Since the number of sensors is one of the most important parameters
defined by the application, we perform all experiments in this chapter for a large range
of varying schema sizes.

5.5.2 Layout Transformation Evaluation: Batch Size

In this experiment, we evaluate the first part of the pipeline: At what rate can HAQSE
transform the layout of the incoming sensor stream? How does this depend on the
schema size? How does the input batch size influence this?

For this set of experiments, we only perform the layout transformation step—no
aggregations are calculated, no data from the temporary buffers is written to persis-
tent storage, and consequently, no compaction or compression happens. Instead, the
contents written to the temporary buffer are just ignored and overwritten by the next
samples of the input stream. Consequently, only one such temporary buffer is required.
We fix the temporary row group size to 1024: this means that every column is mapped
to one or two full memory pages (4 KiB) on the utilized system12.

We vary the batch size of the generator as well as the input schema size in increasing
powers of two. We let each combination of parameters run for 10 s and report the
average rate achieved at the end. It is not necessary to run each experiment for longer—
there is no I/O buffering that might influence the throughput, and the observed rate
does not change when running the experiments for a longer duration. The results of
this experiment with the data generator running on caps-sk1 (data being sent via Gbit
Ethernet) are visualized in Figure 5.14.

12Columns containing 4 B values, i.e., all sensor columns (single-precision floating-point), consume one
full memory page. Columns containing 8 B values, i.e., the timestamp column (64 bit integer), con-
sume two memory pages.

5.5 Stream Consumption: HAQSE Parameter Evaluation

101

23 27 211 215

Schema size

21

23

25

27

29

211

In
pu

t
st

re
am

 b
at

ch
 s

iz
e

100 10K 1M 100M
Payload size [B]

0

500

1000

1500

R
at

e
[M

B
/s

]

Batch size
1
2
4
8
16
32

64
128
256
512
1024
2048

0

500

1000

1500

R
at

e
[M

B
/s

]
Figure 5.15 Throughput of only the layout transformation step when data is generated locally.

This figure shows that up to a payload size of roughly 0.5 kB, the throughput is
heavily limited by the rate of the incoming data stream (cf. Figure 5.11). Then, up
to a size of approximately 100 kB, the layout transformation step can sustain the full
practical network bandwidth of 117.6MB/s for all combinations of batch and schema
sizes. For very large schema sizes (the right end of the various batch size lines in the
right plot of Figure 5.14), the rates start to drop. This behavior can be explained by a
disadvantageous but unavoidable access pattern to CPU caches, where recently used
cache lines get repeatedly and systematically evicted from the various cache hierarchy
levels. This ismost problematic for small batch sizes, where only few values are updated
in a particular cache line before it is replaced with the contents of another location in
the temporary buffer. After that, for payload sizes larger than 10MB, we observe a
combination of two effects. First, the generator is not capable of delivering a high-
enough data rate via Ethernet, as seen in Figure 5.11. Second, very large message
payload sizes do not fit into operating system buffers. Since receiving data via gRPC
and applying layout transformation in HAQSE are handled sequentially in this case,
processing is slowed down further by the induced waiting times.

To investigate the potential performance of this step for faster networks, we repeat
the same experiment, but let the generator run on the same node as HAQSE (both
run on sense-edge9). This avoids the network bandwidth limitation apparent from Fig-
ure 5.14 and shows the potential performance of this processing step if there would
be no network throughput limit. The results of this set of experiments are shown in
Figure 5.15.

For small payloads—again, as seen previously in Figure 5.10—this shows that the
throughput is limited, caused by the constant gRPC message processing overhead.
Contrary to this, the throughput for larger payload sizes increases significantly. The
behavior generally is very similar to the one shown in Figure 5.10, however, with a
slightly reduced throughput peak. The reduction is relatively small, however, and the
throughput achieved by HAQSE’s layout transformation step is well above the Gbit

5 Sensor Data Stream Transformation & Processing

102

24 29 214

Schema size

25

27

29

211

213

215

Te
m

po
ra

ry
 r

ow
 g

ro
up

 s
iz

e
[#

 r
ow

s]

25 27 29 211 213 215

Temporary row group size [# rows]

0

20

40

60

80

100

120

R
at

e
[M

B
/s

]

Schema size
1
2
4
8

16
32
64
128

256
512
1024
2048

4096
8192
16384

32768
65536
131072

40

60

80

100

R
at

e
[M

B
/s

]

Figure 5.16 Behavior of HAQSE with varying temporary row group sizes, the sensor stream
is received via Gbit Ethernet. The missing data points in the top right of the left plot indicate
regions where HAQSEwas not able to allocate a buffer of the requested size and thus prohibited
streaming.

Ethernet limit for almost all cases where gRPC message generation and processing is
not the limiting factor. The notable exceptions are observed for experiments with small
batch sizes. Again, this is caused by the limit in gRPC transmission of small messages.

Summary To summarize the result in this section, we note that the overhead in
small payload sizes limits the achievable throughput. Consequently, small schema
sizes profit from sufficiently large input batch sizes. For the following experiments in
this section, we thus choose a batch size such that the gRPC payload size is at least
10 kB. This ensures that the respective results are not negatively influenced by a limit
introduced by a suboptimal batch size.

5.5.3 Layout Transformation Evaluation: Size of Temporary
Buffers

We now evaluate the effect of differently sized temporary buffers. For these experi-
ments, we fix the batch size at 64 since this provided a relatively stable rate across all
schema sizes in the previous experiment. We vary the size of the temporary row group
buffer in powers of two, and do the same for the schema size. All other parameters are
kept identical to the previous experiment. The results for the experiments performed
over network are shown in Figure 5.16.

These plots show several interesting aspects regarding the choice of the temporary
row group size. First, for very small temporary buffers (product of small schemas and
small temporary row group size) as well as for temporary buffers with less than 64
rows (lower left and bottom row of left plot in Figure 5.16), the throughput is signifi-
cantly lower than for larger temporary row group sizes (≥ 256). This is due to constant

5.5 Stream Consumption: HAQSE Parameter Evaluation

103

26 213

Schema size

26

29

212

215

Te
m

po
ra

ry
 r

ow
 g

ro
up

 s
iz

e
[#

 r
ow

s]

25 27 29 211 213 215

Temporary row group size [# rows]

0

250

500

750

1000

1250

1500

R
at

e
[M

B
/s

]

Schema size
1
2
4
8
16
32
64
128
256

512
1024
2048
4096
8192
16384
32768
65536
131072250

500

750

1000

1250

1500

R
at

e
[M

B
/s

]
Figure 5.17 Behavior of HAQSE with varying temporary row group sizes, the sensor stream
being generated locally. The missing data points in the top right of the left plot indicate re-
gions where HAQSE was not able to allocate a buffer of the requested size and thus prohibited
streaming.

processing overheads once a row group is fully buffered—HAQSE was not designed for
such small row groups, as this would invalidate the advantages of the desired columnar
layout.

Then, for very large temporary buffers, there is not enough physical memory to hold
the complete buffer, so the operating system needs to start swapping out memory-
pages to disk. This can be seen in the top right area in the left plot and the right-most
data points for the three largest schema sizes in the right plot of Figure 5.16. Swapping
out pages to disk reduces the rate to approximately 60MB/s. Finally, as seen in the
previous sections, the rate for larger schema cardinalities is slightly reduced (even if
the buffer still fully fits into the available memory), especially for large temporary row
group buffers.

Again, we are interested in actually seeing the throughput bottleneck in HAQSE
without the Ethernet limitation. For this, as before, we repeat the experiment, but
let the data generator run on the same node as HAQSE, sense-edge9. The results are
plotted in Figure 5.17.

These plots show that increasing the temporary row group size generally improves
performance across all tested schema sizes. Increasing it beyond a certain size, how-
ever, neither yields further benefits nor dramatically reduces the achieved throughput.
The exact temporary row group size of this saturation point depends on the schema
size. The maximum throughput is achieved with temporary row group sizes ≥ 29

(largest tested schema size) or ≥ 212 (medium-sized schemas). Increasing the tempo-
rary row group size beyond 8192 does not yield benefits for any of the tested schema
sizes. Again, when physical memory is not sufficient to hold the complete temporary
row group buffer, throughput degrades dramatically.

To still allow transforming input data to very large temporary buffers, it is possi-
ble to buffer data in memory-mapped files and let the operating system take care of
writing data out to disk. Preliminary experiments in that direction indicate that this

5 Sensor Data Stream Transformation & Processing

104

works, but reduces throughput considerably. For streams that do not require such high
data rates—especially streams originating from aggregation—this is an interesting al-
ternative to consider. We postpone a more detailed analysis of this alternative way of
buffering to future work; for now, we assume to have enough physical RAM available.

Summary To summarize the results of this section, we note that any choice of a tem-
porary row group size of at least 256 is large enough for realistic scenarios where data
is received via Ethernet. Values below that or above the physical limit of the under-
lying hardware should be avoided. Increasing the value beyond a schema-dependent
maximum value ranging from 512 to 4096 does not yield any throughput benefits for
this particular step in the processing pipeline. A schema-independent default value of
1024 seems like a reasonable choice, considering the experimental results.

5.5.4 Persisting Data to Temporary Files

In all experiments so far, HAQSE processed data purely in-memory, no data has been
written to persistent storage. In this section, we analyze how writing data from the
temporary buffer to temporary files behaves in HAQSE. For this, we perform several
experiments for different combinations of parameters. When writing temporary row
groups to persistent storage, all writes are buffered in the operating system page cache.
We keep the operating system defaults for the virtual memory subsystem, which is
responsible for writing back dirty pages to disk. Since we do not manually force data to
disk via fdatasync() or a similar method (cf. Section 5.2), measuring the throughput
requires longer running experiments13. So, in contrast to the previous experiments, we
now let each combination of parameters run for two minutes. We use a batch size of
64 for the generator.

We assess the impact of the following parameters:

• First, we let HAQSE write out the temporary buffers directly in raw form, without
any additional processing or transformations. Raw output is implemented using a
single write() call. This appends the complete temporary buffer to a file. This test
yields a baseline that we use to assess the overhead associated with writing data
to Apache Arrow IPC format files. WhenHAQSEwrites data in the Apache Arrow
IPC format, we measure the accumulated overhead stemming from two sources:
the processing overheads in the Apache Arrow library and the slightly increased
amount of data (caused by the additional metadata information) required to be
written.

13It takes some time until there are enough dirty pages in the page cache in order for the Linux kernel
flusher thread to start writing back data to the actual storage device [128]. Only when no more free
pages for writing data to are available, and the buffers of the storage device are filled, the backpres-
sure coming from write rate limit of the storage device is measurable.

5.5 Stream Consumption: HAQSE Parameter Evaluation

105

23 27 211 215

Schema size

0

25

50

75

100

Th
ro

ug
hp

ut
 [

M
B

/s
]

raw, sync
raw, async
arrow, sync
arrow, async

Figure 5.18Comparison between raw and arrow serialization as well as synchronous and asyn-
chronous writing: there is almost no differente between the various variants.

• Second, we examine the impact of using a second temporary row group buffer.
This second buffer makes it possible to write out data to temporary files asyn-
chronously in a background thread while ingestion happens in the other buffer.

• Finally, we vary the temporary row group size. This enables us to see the impact
of different temporary buffer sizes on write throughput.

Figure 5.18 shows the difference between Apache Arrow IPC format and writing the
temporary row group buffer in raw form. This is done for both the synchronous (one
temporary buffer) and the asynchronous (two temporary buffers) case. The row group
size is fixed to 1024. This shows that having two buffers and asynchronously writing
out data has no measurable impact on the achieved throughput for most cases. The
only exception is when writing a schema size of 217, where the performance of the
synchronous case slightly decreases. Additionally, writing out data in Apache Arrow
IPC format does not have a huge impact on the measured throughput. This shows that
using the Apache Arrow IPC format is an appropriate format choice for persisting data
to temporary files. For larger schema sizes, the slightly reduced performance is within
measurement inaccuracies.

Figure 5.19 shows the impact of using an increased temporary row group size. As
the plot shows, up to a certain schema size, there is no measurable difference between
different row group sizes. For larger schemas, using a larger row group size of 16 384
leads to smaller average throughput numbers. Using a second temporary buffer and
writing data to disk asynchronously, this effect is only visible for larger schema sizes.

This result indicates that having a larger total temporary row group (product of
schema size and row group size) is detrimental towrite throughput. This can be avoided
by asynchronous write back or simply by choosing smaller row group sizes.

The experiments so far were performed with the data generator running on caps-sk1.
We repeated the experiment with the data generator running locally on sense-edge9.
The results look almost identical, which reveals that the throughput is really limited by

5 Sensor Data Stream Transformation & Processing

106

23 27 211 215

Schema size

0

25

50

75

100

Th
ro

ug
hp

ut
 [

M
B

/s
]

Temp. row group size
1024, sync
1024, async
16384, sync
16384, async

Figure 5.19 Influence of temporary row group size on throughput when persisting files to
Apache Arrow IPC format files: large temporary row group sizes lead to reduced performance.

the HDD write throughput, not the Ethernet limit on the input interface (whose limit
is only slightly above that of the HDD).

Summary As long as the chosen temporary buffer sizes remain within reasonable
limits, our results indicate that there is not much benefit in using double buffering
in the application layer. Instead, operating system and library buffering is enough
for both input and output. For input, data is buffered in the network stack of the
operating system as well as in the gRPC library. For output, data is buffered in the
operating system’s page cache. Copying data from and to these buffers is orders of
magnitude faster than disk throughput and Gbit Ethernet. Consequently, as long as
the temporary buffer is reasonably sized14, the existing operating system and library
buffers and threads are sufficient. A value of 1024 for the temporary buffers also works
well for this part of the pipeline and thus confirms the results from Section 5.5.3.

5.5.5 Batch Aggregation Isolated

In this section, we evaluate the batch aggregation processing step and how the various
configurable parameters influence the achieved throughput. We systematically evalu-
ate the various parameters that have an influence on the performance in the following
subsections. To ensure that we only measure the impact of the aggregation-related
functionality, we do not write out any data to persistent storage and use a single tem-
porary buffer for this set of experiments, as in Sections 5.5.2 and 5.5.3. Again, we report
the average throughput measured in the generator. For each set of parameters, we let
the experiment run for 60 seconds.

14The temporary buffer size must be large enough so that constant overheads can be amortized. It must
also be small enough so that the required memory copy is fast enough to not block the application
for too long.

5.5 Stream Consumption: HAQSE Parameter Evaluation

107

In comparison to all other parts of the processing pipeline, the aggregation step has
a relatively high computational intensity, performing many floating-point operations.
For that reason and due to thermal throttling, during the experiment time, the CPU fre-
quency was not fully stable. After the 60 seconds duration of the experiments, though,
the reported average throughput stabilized and the reported values were reproducible
reliably.

As discussed in Section 5.3.2, the stream input batch size has an influence on how
often aggregation is triggered, so we first analyze the impact of this parameter. After
that, we vary the various aggregation-specific parameters and analyze their behavior
on throughput. We analyze the impact of the following parameters:

• Number of aggregation levels

• First aggregation factor

• Subsequent aggregation factors

• Temporary row group size

We let the generator run locally since, as apparent from the results, the throughput
is mostly considerably larger than Gbit Ethernet limit.

Influence of Input Batch Size

To understand the impact of varying input batch sizes on the possible aggregation
throughput in HAQSE, we first fix all aggregation-specific parameters and vary the
input batch and schema size. We compute aggregations for a single aggregation level,
setting the aggregation factor to 64. The temporary row group size is set to 1024. We
vary the batch size as powers of two from 1 to 1024 and perform tests for schema sizes
from 1 to 32 768 single-precision floating-point fields (again, using powers of two). The
results of this experiment are visualized in Figure 5.20.

The plots show that aggregation throughput heavily depends on the input batch
size. This can be explained by the fact that after every received batch, aggregation is
potentially performed for the new data. In particular, this means that the constant
overhead for triggering aggregation is accumulated as the batch sizes become smaller.
Depending on the schema size, the throughput improves up to a certain batch size.
For small schema sizes, throughput is improved for batch sizes as large as 1024. For
larger batch sizes, performance begins to diminish again. This result shows that there
are several possibilities to improve the performance of the batch aggregation compo-
nent. First, it is apparent that the constant overheads play an important role. Thus, if
possible, these overheads should be identified and reduced. Furthermore, it would also
be possible to decouple the calculation of aggregation batches from the input batches,
i.e., to calculate aggregation only after a minimum number of samples or after a cer-
tain time. Generally, as long as the batch size is small enough (less than 1024 in our
experiments), throughput is highest for medium-sized schemas (32–256).

5 Sensor Data Stream Transformation & Processing

108

22 25 28 211 214

Schema size

0

100

200

300

400

Th
ro

ug
hp

ut
 [

M
B

/s
]

102 104 106 108

Payload size [B]

Batch size
4096
2048
1024
512
256
128
64
32
16
8
4
2
1

Figure 5.20 Influence of batch and schema size on achieved throughput of batch aggregation.
Both plots show the results of the same experiments, once as a function of schema size (left),
and once as a function of payload size (right).

23 27 211 215

Schema size

0

100

200

300

Th
ro

ug
hp

ut
 [

M
B

/s
]

Aggregation level count
1 2 4 8 16

Figure 5.21 Impact of aggregation level count on the aggregation throughput.

For all subsequent experiments in this section, we choose a batch size of 64.

Impact of Number of Aggregation Levels

For this experiment, we vary the number of aggregation levels. We fix the first aggre-
gation factor to 64, all subsequent aggregation factors are 2. The temporary row group
size is 1024. The results are plotted in Figure 5.21.

This plot shows that increasing the number of aggregation levels slightly impacts
overall throughput, while the general behavior across different schema sizes remains
similar. Compared to the impact of a smaller or larger schema size, throughput is
much less impacted by changing the number of aggregation levels. The additional
impact of increasing the number of levels decreases for a larger number of aggregation
levels. This is expected since the amount of work increases only logarithmically with
additional aggregation levels.

5.5 Stream Consumption: HAQSE Parameter Evaluation

109

22 25 28 211 214

Schema size

0

100

200

300

400

500

Th
ro

ug
hp

ut
 [

M
B

/s
]

First aggregation factor
16 32 64 128 256

Figure 5.22 Impact of different values for the first aggregation factor.

A higher number of aggregation levels also requires more temporary buffers. For
that reason, and since for large schema sizes the available physical memory was not
sufficient to allocate the required buffers, there are no results for large schema sizes
and many aggregation levels in Figure 5.21.

Impact of First Aggregation Factor

For this experiment, we vary the first aggregation factor, i.e., how many samples are
contained in an aggregation window of the first aggregation level. In the previous
experiment, this was 64; now, we vary that factor in powers of two from 16 to 256. We
fix the number of aggregation levels to one. As before, the temporary row group size is
1024. The results are plotted in Figure 5.22.

The plot shows that the influence of the first aggregation factor is significant on the
achieved throughput. This is expected since the actual computation of aggregations
happens in batches of the respective factor. This means that for smaller factors, this
calculation happens more often and produces more aggregation data. The behavior is
consistent across different schema sizes, but for very small first aggregation factors (16
and 32), there is no real peak anymore for medium-sized (32–1024) schemas.

Impact of Subsequent Aggregation Factor

Next, we vary the other aggregation factors, which determine the size of the aggre-
gation window for subsequent aggregation levels. For these experiments, the first ag-
gregation factor is set to 64. We use a total of six aggregation levels and, as above,
a temporary row group size of 1024. The results of these experiments are shown in
Figure 5.23.

5 Sensor Data Stream Transformation & Processing

110

22 25 28 211 214

Schema size

0

100

200

300

Th
ro

ug
hp

ut
 [

M
B

/s
]

Other aggregation factor
2 4 8 16

Figure 5.23 Impact of other aggregation factors on the achieved throughput.

23 27 211 215

Schema size

0

100

200

300

400

Th
ro

ug
hp

ut
 [

M
B

/s
]

Temporary row group size
512 1024 2048 4096 8192 16384

Figure 5.24 Aggregation temporary row group size.

This plot shows that the throughput is only slightly impacted by varying the other
aggregation factors. This means that this factor can be chosen more or less freely
without too much negatively impacting performance15.

Temporary Row Group Size

In this experiment, we evaluate the impact of the temporary row group size on the
aggregation performance. We use a temporary row group size of at least 512 since
smaller row group sizes might have a negative impact on the achievable throughput,
as discussed previously (cf. Figure 5.17). We calculate one aggregation level with a
factor of 64 and increase the temporary row group size in powers of two, up to 16 384.
The results are shown in Figure 5.24.

15If the same range of aggregation resolutions should be covered and a smaller factor between aggrega-
tion levels is chosen, a greater number of aggregation levels is required. This, as discussed previously,
does have an impact on the achievable rate (cf. Figure 5.21).

5.5 Stream Consumption: HAQSE Parameter Evaluation

111

This plot shows that larger temporary row group sizes generally yield higher through-
put rates. For larger schema sizes (starting at roughly 512 in our experiments) the
throughput for different row group sizes is converging. This result is different from the
observations from Section 5.5.3, where throughput did not increase noticeably for row
group sizes beyond a value of 4096. Nevertheless, a value of 1024 that was previously
(Sections 5.5.3 and 5.5.4) found to work well also provides good performance numbers
for aggregation.

Aggregation Summary

While the individual subsections contain all the details, we want to summarize the
results of our aggregation experiments here.

• The chosen batch size has a high impact on the achieved throughput: especially
small batch sizes of less than ten are prohibitive in terms of performance. This
is partly due to gRPC input, but partly also due to the fact that aggregation pro-
cessing is coupled to the input batch size. Batch sizes larger than 256 do not yield
any benefit but instead, lead to slightly reduced throughput values.

• The number of aggregation levels to compute only has a moderate impact on
throughput. It should be noted, however, that increasing the number of aggrega-
tion levels has a high impact on the memory footprint of the application.

• In contrast to this, the first aggregation factor has a large impact on the achieved
throughput. This property needs to be taken into account when configuring
HAQSE for a certain use case. In contrast to this, other factors have almost no
impact on the performance.

• In contrast to previous experiments, a higher temporary row group size is ben-
eficial for aggregation performance. However, also considering memory footprint
and the previous results, 1024 manifests as a reasonable choice for the temporary
row group size.

• Generally, medium-sized schemas (16–512) work best. This leads to a bell-shaped
performance curves in many of our result plots (Figures 5.21 to 5.24)

When the batch size is chosen reasonably, almost all measured throughput values
lie above the theoretical Gbit Ethernet throughput limit. This indicates that generally,
aggregation is not expected to have a huge negative impact on the overall performance
of sensor stream ingestion in HAQSE.

5 Sensor Data Stream Transformation & Processing

112

5.5.6 Compaction Isolated

In this section, we evaluate the throughput of the compaction process. As we want to
understand the influence of the various parameters on the compaction process in an
isolated fashion, we design a separate set of experiments for this part of the evaluation.
These experiments mimic how the compaction process would be executed in HAQSE.
They avoid other processing tasks that would run concurrently in HAQSE like, e.g.,
layout transformation or concurrently writing to (the next set of) temporary files, so
these experiment represent the best case of processing compaction.

All processing logic in these experiments is performed in a single process and con-
sists of the following two steps: first, temporary Apache Arrow IPC format files are
created; then, the contents of these files are compacted and written to a single Apache
Parquet file. For each benchmark run, we generate sensor samples with the same logic
that is used in our data generator (cf. Section 5.4.2). We create temporary files in
the same way and order HAQSE would create them and write the generated data to
these files. This ensures the operating system caching behavior is similar to the real
case. This means that when compaction starts—depending on the employed parame-
ter values—some parts of the to-be-compacted files are still available in the page cache
in physical memory. After that, we measure the execution time of the compaction
function, reading the data just written to temporary files and writing it to compacted
Apache Parquet files. At the end of the compaction, data for the compacted file reaches
the disk by a call to fdatasync() (like for normal operation inside HAQSE). Thus, the
measured duration includes all necessary disk write times.

For this set of experiments, we compress sensor data using the following combina-
tion of parameters (cf. Section 4.4.6): floating-point sensor values are compressed using
Byte StreamSplit and zstd, timestamps use the Apache Parquet DELTA_BINARY_PACKED
encoding [115]. Unless otherwise noted, the total achieved compression ratio is around
1.90. We report throughput rates as raw number of bytes to write divided by the exe-
cution time of the compaction call. For that reason, and because data is compressed
before writing it to disk, some numbers reported here are significantly higher than
what we presented in Section 5.4.4.

We evaluate the behavior with respect to the following parameters:

• Total data size. A larger total size results in more data being written to tem-
porary files, subsequently read from these files and finally written to compacted
Apache Parquet files. With a growing total size, the share of temporary file con-
tent that can be kept in the operating system page cache is reduced. This means
that the parts not available in the page cache need to be read from the actual
persistent storage medium on compaction. In contrast, for smaller total sizes,
the page cache might be able to fully contain the required data pages in physical
memory so that fewer bytes actually need to be read from disk.

5.5 Stream Consumption: HAQSE Parameter Evaluation

113

• Temporary file count. Assuming a fixed total size and temporary row group
size (and thus, total number of temporary row groups), there are different ways
how these temporary row groups can be distributed to temporary files. This ex-
periment shows how well our system handles cases with few huge files or a lot
of very small files.

• Schema size. Larger schema sizes result in larger strides reading column data
from subsequent row groups of temporary files. This is decreasing memory lo-
cality and makes file system prefetching less effective when reading temporary
files.

• Temporary row group size. As above, a smaller temporary row group size
might make disk prefetching less effective, as data from more temporary row
groups needs to be loaded for filling a single compacted column. This depends
on the chosen schema size.

• Compacted row group size. Larger compacted row group sizes reduce the
constant processing overheads of filling and compressing the compacted column
chunks. On the other hand, data from more temporary row groups must be read,
potentially leading to an increased pressure on the page cache.

We evaluate each of the listed parameters in the following subsections, also con-
sidering dependent or related parameters for each. We repeat each combination of
parameters three times (except for the experiments for the total size tests, which are
repeated five times). The measured throughput values are distributed similarly to the
results in Section 5.4.4. To preserve clarity, we use the median of our measurements for
visualization in the following plots. This is robust to outliers and thus is a reasonable
representative value for the measurements.

Total Size

We start by analyzing the impact of the total data size to compact. For this experiment,
we use a schema size of 128, a temporary row group size of 1024 and a compacted row
group size of 65 536. We perform the experiment for three different temporary file count
values: once with having all temporary data in a single file, once with four temporary
files, and once with 16 temporary files. We start the experiments for a total number of
temporary row groups of 64 and increase that number in powers of two up to 32 768.
This corresponds to a total uncompressed data size ranging from 32.5MiB to 16.25GiB.
The results are plotted in Figure 5.25.

This plot show that for a small enough total size to compact, the achieved through-
put is substantially higher than for very large total sizes (≥ 8GiB). The reason is, as
mentioned before, that for a total data size that does not fit in the available physi-
cal memory of 8GiB, data is written to and read back from the storage disk. Apart

5 Sensor Data Stream Transformation & Processing

114

102 103 104

Total size [MB]

0

25

50

75

100

125

150

Th
ro

ug
hp

ut
 [

M
B

/s
]

Physical
RAM limit

1 file
4 files
16 files

Figure 5.25 Compaction performance as a function of total size to compact.

from that, the throughput is highest for a medium total size of approximately 250MB
with 154MB/s. The actual HDD write throughput that is necessary for this is around
80MB/s as data is compressed with a rate of roughly 1.92. The number of temporary
files compacted to one compressed Apache Parquet file does not have a significant
impact on the general behavior. For sizes of around 1GB, using only a single file is
beneficial compared to using multiple files. We analyze the impact of the number of
temporary files next.

File Count

We now measure the impact of the number of temporary files on compaction through-
put. Again, we fix the schema size to 128, use a temporary row group size of 1024 and a
compacted row group size of 65 536. As the total size has a significant influence on the
performance, we perform the test for four different total sizes: 250MB, 1GB, 5GB and
10GB. We vary the number of files in the following way: we start with one file, such
that all necessary row groups are contained in a single temporary file and increase the
number of files in a roughly exponential fashion. We end with as many files as row
groups, such that there is only one row group per temporary file. The results of these
experiments are shown in Figure 5.26.

This plot shows a few interesting properties. First, for very large temporary files
(number of files is very low, left part of plot area), the performance is very good. This
can be attributed to the intelligent management of row groups in the temporary files
that are already fully read. As discussed in Section 5.2.3, we use madvise to tell the
operating system when certain page ranges are not needed anymore. This makes it
possible for the operating system to keep only a small part of the temporary files in
the page cache. A previous version that did not implement this performed poorly for
very large files, as it put high pressure on the page cache. Then, except for a total size
of 1GB, performance is relatively stable. Only for a very large number of files and a
large total size of 10GB (where each temporary file contains a diminishing amount of

5.5 Stream Consumption: HAQSE Parameter Evaluation

115

100 101 102 103 104

Number of files

0

50

100

150

Th
ro

ug
hp

ut
 [

M
B

/s
]

250 MB 1 GB 5 GB 10 GB

Figure 5.26 Compaction performance as a function of file count.

0

100

200

Th
ro

ug
hp

ut
 [

M
B

/s
]

270 MB 1 GB 5 GB 10 GB

23 27 211 215

Schema size

2
3
4
5

R
at

io

Figure 5.27 Compaction performance as a function of schema size.

data), the achieved throughput goes down noticeably. This can be explained by the
accumulated constant overheads of opening many small files from disk.

Thus, it is advisable to keep the number of temporary files to compact small for
deployments if ingestion throughput is important.

Schema size

Being one of the main parameters determined by the application, the schema size in-
fluences performance considerably, as shown by the previous experiments. We also
assess the impact of this parameter on the compaction performance. We use a tem-
porary row group size of 1024, a compacted row group size of 65 536 and use a single
temporary file. We repeat the experiments for four different total sizes: 270MB, 1GB,
5GB and 10GB. The results are shown in Figure 5.27.

5 Sensor Data Stream Transformation & Processing

116

28 210 212 214 216

Temporary row group size

0

25

50

75

100

125

150

175

Th
ro

ug
hp

ut
 [

M
B

/s
]

250 MB 1 GB 5 GB

Figure 5.28 Compaction performance as a function of temporary row group size.

This plot shows—as expected when looking at the results of previous experiments—
that larger total sizes can not be compacted as fast as smaller total sizes. This is due
to data being read from persistent storage instead of RAM during compaction. Inter-
estingly, for schemas larger than 256, the achieved throughput is again reduced quite
a bit. This can be explained by prefetching mechanisms of the operating system not
being as effective for the access pattern exhibited in these cases.

For total sizes that fit into the available physical memory, this cannot be observed
for schemas of similar size. However, for schemas larger than 8192 fields, a similar ef-
fect can be observed. For schemas smaller than eight fields, where the total size of a
compacted row group in our experiments is less than 3MB, the achieved throughput
is also slightly more limited in the 5GB and 10GB case. Contrary to this, for all ex-
periments with a smaller total size, the achieved rate is considerably higher for small
schemas. This can be explained by the efficient encoding of timestamp data. The differ-
ence between consecutive timestamps created by our data generator is always exactly
ΔC . For that reason, these timestamps can be compressed very efficiently using Apache
Parquet’s DELTA_BINARY_PACKED encoding. Since the timestamp column represents a
large share of the total data size for small schema sizes, the total compression ratio is
higher for such small schema sizes. This is shown in the bottom plot of Figure 5.27.
As the amount of data that needs to be written to persistent storage is reduced dras-
tically, and since we report throughput values for the uncompressed size, these values
are higher for small schema sizes.

Temporary row group size

For measuring the impact of the temporary row group size, we fix the compacted row
group size to 65 536. We vary the temporary row group size from 128 to 65 536. The
schema size is fixed at 128. We repeat the experiments for three different total sizes:
250MB, 1GB and 5GB. We always use a single temporary file. The results are shown
in Figure 5.28.

5.5 Stream Consumption: HAQSE Parameter Evaluation

117

211 213 215 217 219

'Compacted' row group size

0

50

100

150

Th
ro

ug
hp

ut
 [

M
B

/s
]

250 MB 1 GB 5 GB

Figure 5.29 Compaction performance as a function of compacted row group size.

It can be seen that the temporary size does not have a huge influence on the overall
throughput. Only very small temporary row groups slightly reduce the achieved per-
formance. When the temporary row group size is closer to the compacted row group
size of 65 536, the achieved throughput is best. For all tested parameter combinations,
the throughput is higher than what Gbit Ethernet can achieve in our experimental
setup. Consequently, regarding compaction, the choice of temporary row group size
has only a minor influence on achievable throughput. The previously determined de-
fault temporary row group size value of 1024 also works well for compaction.

Compacted row group size

Finally, we evaluate the impact of the compacted row group size on throughput. For
this, we fix the temporary row group size to 1024 and set the schema size to 128. We
vary the compacted row group size from 1024 to 1 048 576. We repeat the experiment
for the same total sizes as in the experiments from the previous section: 250MB, 1GB
and 5GB. The results are visualized in Figure 5.29.

The plot shows that except for very small compacted row group sizes of up to 8192,
where constant processing overheads have a noticeable impact, throughput is largely
independent of the chosen compacted row group size. As seen before, the performance
varies for different total sizes to compact. Varying the compacted row group size has
only a minor influence on the resulting throughput.

Summary of Isolated Compaction Experiments

In this section, we summarize the insights gained from all the compaction experiments.

• One of the most important aspects regarding compaction performance is to keep
the total data size to compact small enough, i.e., below the limit of physical mem-
ory. The problem for larger total sizes is caused by the currently implemented

5 Sensor Data Stream Transformation & Processing

118

compaction trigger logic in HAQSE: compaction is only triggered when all data
to compact is available. Alternatively, it would be possible to trigger the com-
paction process for one compacted row group as soon as enough data for one
such compacted row group is available. This would increase the chances that
data is still fully available in the operating system’s page cache. We defer this
optimization to future work.

• The number of files to compact should be kept small. This ensures that the con-
stant overheads associated with opening files amortizes over the amount of data
in one such file. Similarly, our results show that for compaction, temporary files
cannot be too large, as long as they are smaller than the physical memory limit.

• The compacted row group size should be large enough. A size of 65 536 worked
well for all our tested cases. Increasing it further did not provide major perfor-
mance improvements, but also did not degrade performance.

• Similarly, the temporary row group size should not be chosen too small. All our
experiments with a temporary row group size of at least 1024 worked well. Sizes
above that all work well regarding compaction in our experiments.

• Even though it is determined by the application, we want to note that large
schema sizes (more than 8192 columns) reduce throughput considerably (depend-
ing on other parameters).

Overall, the results presented in this section show that the compaction step can be
executed fast enough for data received via the Gbit Ethernet interface for many config-
urations. For completeness, it should be noted that in real deployments, compaction
performance will not be as stable and the resulting throughput values may be consider-
ably lower. As mentioned in Section 5.4.4, this is due to HDDs not being able to deliver
stable performance for all available blocks. We want to note again that compressing
data is highly beneficial, increasing the throughput beyond that of the employed HDD.

5.5.7 Full Pipeline Test

Up to this point, we have tested all ingestion-related components of HAQSE individ-
ually. In this section, we perform experiments that test the ingestion pipeline as a
whole. This shows the effective overall throughput HAQSE can deliver in our experi-
mental setup. We provide experimental results for a variety of scenarios and evaluate
how the individual parameters influence the resulting performance. For all tests in
this section, the data generator runs on caps-sk1. This limits the maximum achievable
performance to approximately 117.65MB/s (cf. Section 5.4.5).

From the previous experiments, we derive a default set of parameters. The tempo-
rary row group size is 1024, and we use only a single temporary buffer. For compaction,

5.5 Stream Consumption: HAQSE Parameter Evaluation

119

we use a compacted row group size of 16 384 and target a compacted size of 200MB.
Aggregation is disabled, and by default, we use an input batch size of 32. For each ex-
periment, we then vary one of these parameters to assess its influence on performance.
Each combination of parameters is run for ten minutes.

Input Batch Size

We start by investigating the impact of the input batch size on ingestion throughput.
We use a small set of different batch sizes to show the behavior of HAQSE. The results
of our experiments are plotted in Figure 5.30.

22 25 28 211 214

Schema size

25

50

75

100

125

Th
ro

ug
hp

ut
 [

M
B

/s
]

Input batch size
1 4 16 32 128 512

Figure 5.30 Impact of input batch size on overall ingestion throughput.

This figure shows that for smaller input batch sizes, the rate is limited by the gRPC
interface for smaller schema sizes (as previously discussed in Section 5.5.2). Using an
input batch size of 32 or more fully saturates the Gbit Ethernet input interface for all
schema sizes up to approximately 4000. This confirms our previous results. For schema
sizes of 8000 or more, the rate is limited by another factor: as seen in Section 5.5.6, com-
paction for larger schema sizes limits throughput. For a batch size of 1, the throughput
never reaches the Gbit Ethernet limit.

Temporary Row Group Size & Temporary File Writing Strategy

We evaluate the next step in the processing pipeline: data is put into temporary buffers
and persisted to temporary files. There are two main parameters: the temporary row
group size as well as the number of temporary buffers. We test two different temporary
row group sizes: 1024 and 16 384.

As shown in Figure 5.31, there is no measurable performance difference when chang-
ing the temporary row group size. This confirms the results of Section 5.5.3. Schema
sizes larger than 4000 are again limited by compaction performance.

5 Sensor Data Stream Transformation & Processing

120

22 25 28 211 214

Schema size

0

25

50

75

100

125

Th
ro

ug
hp

ut
 [

M
B

/s
]

Temporary row group size
1024 16384

Figure 5.31 Impact of temporary row group size on overall ingestion throughput. The last two
points for the case with a temporary row group size of 16 384 are missing because the resulting
compacted file sizes (consisting of only a single row group) are larger than 1GB and thus are
badly comparable.

22 25 28 211 214

Schema size

25

50

75

100

125

Th
ro

ug
hp

ut
 [

M
B

/s
]

Input batch size & temporary file strategy
1, sync 1, async 32, sync 32, async

Figure 5.32 Impact of strategy for writing temporary row groups to temporary files on overall
ingestion throughput.

As shown in Figure 5.32, having a second temporary buffer is only beneficial for small
batch sizes. The impact is so small that, in most cases, this second buffer is not worth
the additional memory required.

Compacted File Size

In this set of experiments, we evaluate the impact of the compacted file size. For this,
in addition to the baseline size of 200MB, a larger file size of 2GB is used.

The results in Figure 5.33 show that throughput goes down noticeably for larger
compacted file sizes. This is expected when considering the results from Section 5.5.6.

5.5 Stream Consumption: HAQSE Parameter Evaluation

121

23 27 211 215

Schema size

25

50

75

100

125

Th
ro

ug
hp

ut
 [

M
B

/s
]

Input batch size,
compacted size

1,
200 MB
1,
2000 MB
32,
200 MB
32,
2000 MB

Figure 5.33 Impact of compacted row group size on overall ingestion throughput.

0 30 60 90 120 150 180
Time [s]

0

25

50

75

100

Th
ro

ug
hp

ut
 [

M
B

/s
]

0

50

100

150

200

C
PU

 L
oa

d
[%

]

First compaction starts

Second compaction
triggered, ingestion blocked

First compaction done

Second compaction
starts, ingestion resumes

Ingest throughput CPU load

Figure 5.34 Timeline for configuration with a large compaction setting (compacted target size
of 2GB, input batch size 32, schema size 1).

Figure 5.34 shows the behavior over time for one particular combination of parame-
ters16: the input batch size is 32, the compacted target size is 2GB, and the schema size
is 1. This plot shows the first 200 seconds of that experiment and indicates very clearly
that performance is actually limited by compaction. Compacting data is slower than
data ingestion in this case. As shown in Figure 5.34, the first compaction starts after a
little less than 20 seconds. The CPU load rises to above 200% at that point, showing
that HAQSE can effectively exploit multiple cores on the employed CPU (cf. Table 5.1).
After approximately another 18 seconds, the second compaction is triggered, causing
the ingestion to be blocked. Only after the first compaction is done after roughly 85
seconds, ingestion resumes for approximately 18 seconds. To summarize this behav-
ior, the compaction queue is repeatedly filled faster than the compaction background
thread can process it. This, in turn, causes data ingestion to be blocked as long as the
previous compaction process is not finished.

16This specific set of parameters is chosen because it shows the behavior in a very pronounced way. For
other parameter combinations, the resulting compaction intervals are considerably shorter or not
noticeable at all.

5 Sensor Data Stream Transformation & Processing

122

Aggregation

As the last experiment in this section, we activate aggregation in HAQSE for the re-
ceived streams. We set the first aggregation factor to 100. All subsequent factors are
set to ten, and we increase the number of aggregation levels up to six.

22 25 28 211 214

Schema size (batch size 1)

25

50

75

100

125

Th
ro

ug
hp

ut
 [

M
B

/s
]

22 25 28 211 214

Schema size (batch size 32)

Number of aggregations levels
Baseline (no agg.) 2 4 6

Figure 5.35 Impact of aggregation on overall ingestion throughput.

As the results in Figure 5.35 show, this slows down overall throughput. Calculating
multiple aggregation levels, however, has no negative impact on performance.

Full-Pipeline Experiments Summary

In general, the results gathered in the full pipeline experiments from this section con-
firm the results from the previous, component-wise results. Especially the compaction
workload turns out to be one of the primary throughput limiting factors in certain con-
figurations. Independent of any other parameters, performance drops considerably for
schema sizes of more than 4096. This drop is due to compaction blocking input, as
observed in Section 5.5.6.

5.5.8 Summary of HAQSE Parameter Evaluation
In this section, we summarize the results of this section and draw conclusions regarding
good parameter choices for HAQSE.

• Throughput for small payload sizes is limited by gRPC overhead. This is in par-
ticular relevant for small schema sizes: if possible, larger batch sizes of at least 32
should be chosen.

• A temporary row group size of 256 or more is fast enough for Gbit Ethernet use
cases. Increasing the size beyond a certain point (4096 formedium-sized schemas)
does not yield any benefits. When the temporary buffer does not fit into mem-
ory, performance suffers drastically. Our experiments suggest that a temporary

5.5 Stream Consumption: HAQSE Parameter Evaluation

123

22 25 28 211 214

Schema size

103

105

107

102

104

106
Sa

m
pl

in
g

ra
te

 [
H

z]

Batch size
1 32

Figure 5.36 Supported sampling rate of HAQSE depending on schema size and input batch
size.

row group size of 1024 represents a good default value. This was confirmed by
experiments for layout transformation, when persisting data to temporary files
and in our isolated aggregation experiments.

• Using two temporary buffers and writing data to temporary files in an asyn-
chronous fashion is not necessary. Copying to and from operating system buffers
(network stack, page cache) is fast enough and having an additional temporary
buffer can be considered a waste of memory.

• Regarding compaction, our full pipeline tests show that this step in the ingestion
pipeline is the limiting factor for schemas larger than 4000. The results of our iso-
lated compaction experiments indicate that the chosen approach of compacting
data only when a certain number of temporary files has been accumulated can
be improved.

• When aggregation is enabled, ingestion throughput is slightly reduced in com-
parison to ingestion only. The actual number of aggregation levels, on the other
hand, does not have a large impact on throughput.

• Our results generalize to different network types: slower networks are expected
to further limit throughput. Faster networks, e.g., 10Gbit Ethernet, remove the
network bottleneck on ingestion. However, as our full pipeline experiments show,
most workloads will be limited by the disk throughput during compaction.

Figure 5.36 shows the sampling frequency HAQSE supports for the following con-
figuration: using a single temporary buffer with a temporary row group size of 1024,

5 Sensor Data Stream Transformation & Processing

124

a compacted target size of 200MB, a compacted row group size of 65 536, without
aggregation. Up to a schema size of 32, HAQSE supports sampling rates of more than
400 kHz when using the worst-case input batch size of one on the tested system. When
using larger input batch sizes, the supported sampling rates are even higher for small
schema sizes. Even for a schema size of 16 384, the sampling rate may still be around
1000Hz. These values indicate that on the tested system, HAQSE is fast enough for all
requirements of current applications (cf. Section 2.2.2).

5.6 Stream Consumption: Comparison with
State-Of-The-Art

In this section, we compare our system to the three state-of-the-art time seriesmanage-
ment systems InfluxDB,QuestDB and TimescaleDB in terms of data ingestion through-
put. Specifically, we want to answer the following research questions:

• RQ1: At what rate can state-of-the-art time seriesmanagement systems consume
sensor data streams? How does this depend on input batch size and schema size?

• RQ2: How does HAQSE compare to this?

• RQ3: What influence does the chosen hardware have on the rate?

For this, we employ the evaluation environment and components described in Sec-
tion 5.4. Specifically, we use the setup sketched in Figure 5.7. For these experiments,
our aim is to run the systems under test using their default configuration. We deploy
each of them using the officially provided Docker images. We only slightly change
some configuration parameters in order to avoid timeouts or out-of-memory failures.
Versions and details are listed in Table 5.2. Unless noted otherwise, the databases run
on the sense-edge9 system and use the integrated HDD as storage location. This setup
best matches the targeted industrial deployment scenario.

For this comparison, as before, we configure our data generator to generate single-
precision floating-point numbers (4 B per value). We let it generate data in batches of
128 samples. As we showed in Section 5.4.5, this batch size ensures that the achieved
data generation rate is large enough to not negatively influence our experiment results.

Table 5.2 Versions and configuration parameters for databases under test.

Database Version Configuration

InfluxDB influxdb:2.3 INFLUXD_STORAGE_WRITE_TIMEOUT=60s

QuestDB questdb/questdb:6.5.3 QDB_LINE_TCP_MSG_BUFFER_SIZE=1048576

TimescaleDB timescale/timescaledb:2.7.2-pg14 timescaledb.enable_2pc=false

HAQSE haqse:v22.280 aggregation=false

5.6 Stream Consumption: Comparison with State-Of-The-Art

125

10 1

100

101

Th
ro

ug
hp

ut
 [

M
B

/s
]

ILP (POST to InfluxDB) ILP (TCP stream to QuestDB) TimescaleDB (stream_to)

28 210 212 214 216

Batchsize

10 1

100

101

Th
ro

ug
hp

ut
 [

M
B

/s
]

ILP (POST to Dummy)

21 23 25 27 29 211213215

Batchsize

ILP (TCP stream to Dummy)

28 210 212 214 216

Batchsize

TimescaleDB (SQL)

Schema
size

4096
512
64
8
1

Figure 5.37 Sustained throughput depending on schema and batch size for InfluxDB,QuestDB
and TimescaleDB (top row). The bottom row shows the baseline rate without actual database
for the two ILP cases (InfluxDB and QuestDB). For TimescaleDB, it shows the achievable rate
using SQL insert statements. The two TCP stream experiments (center plots) test a wider range
of batch sizes. This is to show for which combination of parameters this ingestion protocol is
less performant (generally, it is very stable performance-wise).

5.6.1 RQ1: State-Of-The-Art System Ingest Rates
In this subsection, we want to answer RQ1: at what rate can state-of-the-art time se-
ries management systems consume sensor data streams? For answering this question,
we test multiple parameter configurations for the various state-of-the-art time series
management systems. In particular, we vary schema size of the stream and the batch
size used to send data to the respective system17. For this set of experiments, we let
each test run for 30 seconds. Note that we still generate with a batch size of 128 at the
generator to ensure no bottleneck between generator and adapter.

In addition to testing the rate achieved with the actual time series management sys-
tem, we also provide a baseline for each of the three systems: For InfluxDB, this base-
line is a HTTP POST server that just drops all received HTTP packets. ForQuestDB, we
test sending to a TCP receiver dropping all received data. For TimescaleDB, we provide
numbers showing the throughput achieved by using SQL.

The results for these experiments are shown in Figure 5.37. As these plots show,
InfluxDB, QuestDB and TimescaleDB ingestion throughput differs to a large extent.
There are several interesting insights these plots reveal:

• The behavior for InfluxDB and QuestDB differs significantly. This is notable, in
particular, since bothQuestDB and InfluxDB use the same textual representation

17This is the output batch size of the adapter, not to be confused with the generator batch size

5 Sensor Data Stream Transformation & Processing

126

of the input stream (ILP). The reason for this difference can be best explained by
inspecting the result plots for the respective dummy receivers. For InfluxDB, the
overhead imposed by the HTTP POST requests leads to a significantly reduced
throughput for small schema sizes and small batch sizes. Since the dummy re-
ceiver does no real work with the received stream data, it is apparent that the
input method alone (HTTP POST) drastically limits the possible throughput to
a large extent. In contrast to this, for QuestDB, the ILP is sent via a TCP socket
stream. This enables throughput behavior that is almost not affected at all, nei-
ther by the batch size nor by schema size. Only very small payload sizes (product
of schema size and batch size) are limited in throughput, similar to small payload
sizes in HAQSE’s gRPC input protocol.

• Again looking at the results of the dummy receivers, the maximum rate for In-
fluxDB slightly outperforms that of QuestDB. The reason for the different lim-
its are the different encoding overheads for QuestDB and InfluxDB, as previ-
ously shown in Figure 5.13. In both cases, though, the maximum throughput for
the encoded ILP without the respective protocol overhead (HTTP/TCP) (almost)
fully saturates the Gbit Ethernet connection bandwidth (113.3MB/s for InfluxDB,
117.2MB/s forQuestDB). Comparing that to the values that can be achieved with
the actual data base as receiver of the stream, we see that for both systems, the
ILP does not seem to be the only bottleneck: for both systems, the achieved rates
are well below the dummy receiver rates.

• For TimescaleDBwith SQL, themaximumachievable rates are considerably lower
than for the other two alternatives. Using the standard SQL method for stream-
ing data to the tables saturates at around 2MB/s for large schema or batch sizes.
As promised by the libpqxx documentation, the stream_to method for ingest-
ing data delivers a significantly higher throughput, especially for larger schema
and batch sizes.

• For TimescaleDB, large batch sizes led to high memory utilization. For very high
batch sizes and schema sizes, errors occurred such that some test runs failed.

• QuestDB performs best for small schema sizes, in contrast to the other two sys-
tems. For InfluxDB, the rate is mostly dependent on the HTTP packet payload
size. If this payload size is large enough, the maximum rate on InfluxDB does not
seem to depend on the chosen schema size. For TimescaleDB, larger schema car-
dinalities are beneficial for throughput. This can be explained by the row-oriented
nature of the underlying PostgreSQL database.

To summarize these experiments, QuestDB delivers a highly stable ingestion rate of
around 15MB/s, almost independent of the chosen parameters. In particular, it also
performs well for small batch sizes. Compared to the other two systems, QuestDB de-
livers the highest ingestion rate: InfluxDB reaches approximately 5MB/s, TimescaleDB

5.6 Stream Consumption: Comparison with State-Of-The-Art

127

21 23 25 27 29 211 213

Schemasize (#floating-point sensors in schema)

0

25

50

75

100

125

In
ge

st
io

n
ra

te
 [

M
B

/s
]

HAQSE (batchsize 32)
HAQSE (1)

QuestDB (128)
TimescaleDB Stream (65536)

InfluxDB (8192)
GBit Ethernet limit

Figure 5.38 Throughput comparison of HAQSE with InfluxDB, QuestDB and TimescaleDB.

yields around 8MB/s for certain configurations. In addition to that, InfluxDB and
TimescaleDB heavily depend on the schema and the chosen batch size.

5.6.2 RQ2: Comparison of HAQSE With State-Of-The-Art
Systems

Wenow fix the batch size parameter from the previous experiments to values where the
respective databases show good throughput values. For InfluxDB, we fix this value to
8192, for QuestDB we use 128 (QuestDB shows good performance for almost all batch
sizes, though). For TimescaleDB, we use the stream_tomethod and set the batch size to
65 536. Using these parameters, we compare the ingestion throughput to two ingestion
configurations of HAQSE (using an input batch size of 1 and 32), varying only the
schema size. To have a fair comparison, we do not activate aggregation in HAQSE for
this set of experiments. Furthermore, we set the temporary row group size in HAQSE
to 1024 and use a compacted row group size of 16 384. We use an uncompressed target
size of 500MB for compacted files and write all data to a single temporary file before
that.

The results of this experiment are shown in Figure 5.38. It can be clearly seen that
even for a batch size of 1, HAQSE outperforms existing databases in almost all con-
figurations and reaches throughput values as high as 100MB/s. For a batch size of
128, HAQSE achieves ingestion rates that fully saturate the Gbit Ethernet interface for
almost all tested schema sizes. The next best contender is QuestDB with achieves a
relatively stable ingestion rate of 10.5MB/s to 18.6MB/s, even though the batch size is
relatively low.

5 Sensor Data Stream Transformation & Processing

128

1

10

100

ra
te

[M
B

/s
],

 s
z=

16
sense-edge9 sense-edge10

1

10

100

ra
te

[M
B

/s
],

 s
z=

25
6

InfluxDB
(batchsize 8192)
TimescaleDB
(65536)
QuestDB
(128)
HAQSE
(1)
HAQSE
(32)
GBit Ethernet
limit

Figure 5.39 Throughput comparison of HAQSE with InfluxDB, QuestDB and TimescaleDB on
different hardware configurations. Note the logarithmic scale on the y-axis.

After that, TimescaleDB follows with amaximum input rate of 7.9MB/s. It should be
noted, though, that for smaller schema sizes, this rate is considerably lower. Further-
more, there are several factors to be aware of. First, we use a batch size of 65 536 for
sending data to TimescaleDB. This is magnitudes larger than for any of the other tested
systems. Second, we use the stream_to interface. This works since our adapter is im-
plemented in C++ and uses the pqxx library. However, it will be muchmore challenging
to implement this for clients written in different languages like Java or Python. Third,
PostgreSQL—and thus also TimescaleDB—only supports schemas up 1600 columns.
Larger schemas would need to be split up into multiple database tables.

Lastly, InfluxDB achieves rates of up to 4.2MB/s. Another thing to note is that In-
fluxDB failed to ingest a data stream with 16 384 sensors. For larger batch sizes, this
problem appears even for smaller schemas, indicating that too large messages cannot
be handled on the system under test. Thus, for large schema sizes, large batch sizes
should be avoided. Large batch sizes also lead to an increased memory consumption.

We did not investigate the limiting component (and whether there is a single com-
ponent that limits throughput) for any of the state-of-the-art systems. It should be
noted, though, that none of the systems can come close to the performance HAQSE
offers, simply because the encoding overhead of text-based protocols prohibits rates
that come close to raw Gbit Ethernet.

5.6.3 RQ3: Influence of Hardware on Ingestion Rate

We now expand the comparison from above. In particular, we are interested in un-
derstanding the impact of the available processor on the ingestion rates. We do this
by running the databases on systems with a less powerful CPU, sense-edge10. The
generator still runs on caps-sk1, and we repeat the experiments from above.

5.6 Stream Consumption: Comparison with State-Of-The-Art

129

The results of this are visualized in Figure 5.39. It is apparent that HAQSE out-
performs existing systems also on less powerful hardware. The less powerful CPU on
sense-edge10 degrades performance of all tested systems, indicating that the process-
ing speed is important for all time series management systems under test.

5.6.4 Comparison Summary
We summarize our comparison results in this section.

• The text-based input methods of existing systems have a high influence on the
best possible ingestion rate, limiting achievable throughput considerably. Fur-
thermore, using HTTP POST for InfluxDB is a bad choice for small batch sizes
in terms of throughput. Other systems cannot achieve rates anywhere near the
maximum throughput of HAQSE due to the input protocol alone.

• However, the input protocol is not the (only) limiting factor for the tested config-
urations.

• HAQSE achieves higher rates because it has less strict durability guarantees. In-
fluxDB and TimescaleDB guarantee that data is synchronized to disk after the
insertion call finished successfully (response to the HTTP POST request for In-
fluxDB, transaction ok status code for TimescaleDB). QuestDB uses a slightly
more relaxed method, relying ”on OS-level data durability” [95]. This needs to be
taken into account when interpreting the results.

HAQSE fills a gap in the design space for applications that do not require durability
guarantees as strictly as offered by the examined system. Our results also show that
HAQSE works well across a range of different hardware configurations.

131

6 Querying Sensor Data

In this chapter, we explain how our system enables fast and efficient data retrieval. In
Section 6.1, we present an overview of the query functionality, discuss the core data
structure that enables fast data queries and explain the basic query handling logic.
After that, in Section 6.2, we explain how our system supports distributed queries. In
Sections 6.3 and 6.4, we evaluate our ideas.

Publication Information
Parts of the approach and experiments described in this chapter have previously
been published in [66] and [65].

6.1 Efficient Query Processing
As discussed in Section 2.3, there is a set of requirements regarding data retrieval that
we want to satisfy with HAQSE (Requirements 10 to 15). The work described in the
previous two chapters builds the foundation for fulfilling some of these requirements.
Having quick responses to queries (Requirement 10) requires a data format suitable
to support this and an ingestion layer that processes the incoming sensor streams ac-
cordingly. To query most recent ranges and historical data efficiently (Requirement 11)
requires an appropriate processing logic when consuming sensor streams. Finally, pro-
viding approximate answers to range-based queries (Requirement 12) is only efficiently
possible if suitable approximations are calculated before the query is executed.

However, while a lot of preparatory work has already been presented, the actual
query logic and the supporting data structures are described in this section. These are
essential to create an efficient query system.

6.1.1 Stream Segment Index

As described in Section 2.3, our main focus regarding data retrieval are range-based
queries. The primary data structure that enables fast range-based access to the stored
sensor streams is the Stream Segment Index. A rough sketch of how the Stream Seg-
ment Index is organized is visualized in Figure 6.1.

For this Stream Segment Index, we exploit that stored sensor streams are continuous
streams that have a natural ordering with respect to the sensor sample timestamp CB8 .
For each level of the aggregation hierarchy (see Section 3.2.3), a separate such Stream

6 Querying Sensor Data

132

Stream
Segment

Index

In
de

x
St

ru
ct

ur
e

U
nd

er
ly

in
g

St

or
ed

Se

ns
or

 S
tr

ea
m

Compacted
Segments

Temporary
Segments

Unfinished
Temporary
Segment

Apache Parquet Files Apache Arrow Files

Unfinished Apache Arrow File

In-memory
Buffer

In-Memory
Segment

more recent dataolder data

Figure 6.1 Overview of the Stream Segment Index in HAQSE.

Segment Index is created. Specifically, for each level of the aggregation hierarchy, the
stored sensor stream is split along the time dimension into disjoint stream segments.
Each such stream segment represents an ordered continuous segment of a stored sen-
sor stream (of either the original sensor stream Ψ$ or a precalculated aggregation Ψ�

from the sensor stream hierarchy Ψ�). A segment-id identifies each stream segment.
We use the start timestamp of the segment as id since this uniquely identifies the seg-
ment. Furthermore, each segment contains all information for accessing the sensor
samples of the segment. For file-based segments, this is the filename; for in-memory
streams this is a pointer to the buffer containing the samples. Additionally, segments
contain the covered time range as meta-information.

Based on these segments, we use a red-black-tree [12] to build an in-memory index
that sorts segments according to their start timestamp. This helps to locate segments
for range-based queries quickly. The index and the contained stream segments are
independent of the actual underlying physical storage type. This allows simultane-
ous usage of different storage technologies. In fact, for supporting online use cases
(Requirement 11), most recent parts of the data are stored in memory buffers, while
historical data is stored in compressed form on permanent storage.

In comparison to the total number of samples stored in the system, the Stream Seg-
ment Index only contains a tiny fraction of entries. During ingestion, there is usually
one entry for the in-memory buffer. Here, the ratio of number of samples per index
entry is typically lowest: there is one entry per row group size samples. After that,
there is one index entry per Apache Arrow or Apache Parquet file, each one containing
potentially several million samples. An important feature of these two storage formats
regarding fast lookup is that they include information about the file structure. This
makes further drill-down to the queried range in these files very efficient.

6.1 Efficient Query Processing

133

This index may be accessed concurrently by the query (for reading from it) and in-
gestion (for writing) components. For that reason, there needs to be a mechanism that
ensures that concurrent reads andwrites do not lead to an inconsistent state of the data
structure. In HAQSE, we do that by locking a mutex data structure when accessing the
index. For reads, the mutex is locked in shared mode, allowing multiple concurrent
reads. For writing, the lock needs to be acquired exclusively.

6.1.2 Query Processing Logic

There are two possible ways to retrieve data from HAQSE: using a range-based query
or a hierarchical range-based query (cf. Definitions 8 and 11). The main difference in
terms of processing the query is the selection of the queried aggregation level. The rest
of the query processing is handled identically.

The level selection is done as specified in Definition 11: the appropriate aggregation
level of the multi-resolution aggregation hierarchy is determined from the query by
using the level with the largest resolution smaller than the requested query resolution
ΔCmax.

Once the appropriate stored sensor stream Ψ of the sensor stream hierarchy Ψ� is
determined, HAQSE executes the following steps to prepare the query response. First,
from the corresponding Stream Segment Index, a list of candidate segment ids match-
ing the query range (cf. Listing 6.1) is retrieved. This list of candidate segments contains
all segments that have a non-empty intersection with the query range.

1 def query_segs(q_range):
2 segments = []
3 seg_id = first_segment(seg_index, q_range)
4 while not beyond_query_end(seg_id, q_range):
5 p = create_from_id(seg_id)
6 segments.append(p)
7 seg_id = next_seg(seg_id)
8 unsatisfied_rg = calc_unsatisfied_rg(segments)
9

10 return segments, unsatisfied_rg

Listing 6.1 Find matching segments for query range

For this, we determine the first candidate segment via the red-black tree index (Line
3) and then iterate over the segments in the tree as long as the segments are in range
(Line 4). For each of the segments in the range, we create a segment provider from the
segment id (Line 5) and put it into the resulting list of candidate segments (Line 6). The
calculated candidate segments contain the timestamp range covered by available data,
so we can already calculate what parts of the query cannot be satisfied at that point

6 Querying Sensor Data

134

(Line 8). Thus, this information can instantly be sent to the client as metadata before
any data needs to be read from segment data storage. Similarly, we also handle when
the requested resolution cannot be satisfied by the available data. In this case, we still
provide data with the best resolution available but inform the client that better resolu-
tions might be available on other nodes. The client can then already start processing
the lower-resolution data.

1 def query_data(q_range, signals, segments):
2 result = []
3 for s in segments:
4 seg_data = s.query_data(q_range, signals) # specification of projection/filtering
5 result.push_back(seg_data) # collecting exec plans for segments
6 return QueryPlan(result) # return a stream handle

Listing 6.2 Server Query handling

In the second step, we perform actual data querying, as described in Listing 6.2. For
each of the candidate segments (Lines 3–5), we create an execution plan. This execution
plan consists of several parts:

• Reading samples: the underlying files or buffers are prepared for reading the
actual sensor samples in the segment. For segments that are backed by files, this
triggers opening the files in a background thread.

• Projection: The underlying stored sensor stream is projected to the requested
sensors f8 .. 9 of the query specification. This projection is pushed down to the
storage layer such that only the respective columns of the respective storage files
are actually read once the results are streamed to the client.

• Filtering: Filters are set up such that only samples that are part of the queried
range are part of the result. These filters are also pushed down to the storage
layer in order to avoid reading any unnecessary data.

Once this execution plan is constructed, we return a result stream handle to the client.
This means that the client can then start reading result data, and only then data is
actually read from storage.

6.2 Distributed Querying
Our approach for distributed querying mainly targets scenarios as described in Fig-
ure 6.2. In these cases, certain parts of hierarchical sensor streams are sent to stor-
age and compute cloud hierarchies for further processing or analysis. Consequently,
various views on the sensor measurements exist on different geo-distributed nodes in

6.2 Distributed Querying

135

Site B

Cloud

Site A

local query

query to cloud

online
monitoring

Fast
LAN

Slower
Internet

Se
ns

or
da

ta
 f

lo
w

Figure 6.2 Distributed Sensor processing and analysis scenario overview. Sensor data is con-
tinuously flowing from the sensors to the cloud along the storage and compute continuum.
Our system provides the same view of the data, no matter which part of the infrastructure is
queried (first) and where the requested data is actually stored.

an edge-to-cloud continuum. For HAQSE, we design a simple mechanism that allows
clients to retrieve data that is distributed across such an edge-to-cloud continuum.

When a client sends a query to a certain node, the query is processed locally, only
on that particular node. Local processing is performed as described in Section 6.1. The
query response consists of two parts: a quick metadata response and the actual local
sensor data query result.

An overview of distributed query execution logic is visualized in Figure 6.3. The
core idea is that all logic for distributed data retrieval is located and executed on the
client-side. This way, there is no need for communication among the servers during
query processing, greatly reducing overall complexity: no shared state needs to be
managed, and the communication follows a simple client-server model. The client
drives querying the various servers. It can already start processing data once it has
received results from the first queried node. This is especially useful for interactive
scenarios like visualization. Once results from other nodes are available, they can be
used to progressively update the visualization.

1 def query(q, url):
2 result_list = []
3 queried_nodes = set() # set of already queried nodes
4 query_node(q, url, result_list, queried_nodes)
5 return result_list

Listing 6.3 Entry points for client query logic

6 Querying Sensor Data

136

Edge

8.2

CloudIntermediate

5.1

8.1

4
1 5.2

6.1: Look up local data 2: Look up local data 6.2: Look up local data

Result
Sensor Data

ery

Result
Metadata

7.1
7.2

3

Client

Figure 6.3 Sequential steps of distributed querying. The client first requests data from one
of the nodes, in this case, the Intermediate node in the middle (step 1). Then, the query is
processed locally (step 2). As first part of the query response, HAQSE sends the appropriate
metadata (steps 3). This metadata contains information about the other nodes and allows the
client to forward the query to these nodes, in this case, Edge and Cloud (steps 5.1 and 5.2).
Since this is possible by only reading the Stream Segment Index, the client receives this first
part of the response quickly and can forward the modified queries immediately. This happens
simultaneously to receiving actual sensor data from the first queried node (step 4). The other
nodes process the query (6.x) and send metadata (7.x) and result set data (8.x).

1 def query_node(q, url, result_list, queried_nodes):
2 if url in queried_nodes:
3 return # query each node only once
4 queried_nodes.update([url])
5 result = perform_query(q, url) # executes query in background thread
6 result_list.append(result) # future to retrive q-result
7 # schedule forwarding once metadata is received
8 forward_query_on_receive(q, result, result_list, queried_nodes)

Listing 6.4 Client query logic for querying a single node

The client starts with querying any of the nodes in the infrastructure hierarchy (List-
ings 6.3 and 6.4). Typically, the node that is closest in terms of latency is queried first.
When this query cannot be fully satisfied by the queried node, the metadata response
contains information about which other nodes exist and what range to query. With
an appropriate implementation of the queried server, this metadata response can be
sent very quickly, before any actual data is sent. The client then modifies the query
accordingly and sends it to the respective nodes (Listing 6.5). For this, it uses the orig-
inal query and adapts the time range so that only the unsatisfied parts are requested.
This process continues until all parts of the query range are satisfied or there are no
other nodes to query.

6.3 Evaluation of Single Node Querying

137

1 def forward_query_on_receive(q, result, result_list, queried_nodes):
2 nodes = extract_nodes(result)
3 for ts_s, ts_e in extract_ranges(result):
4 modified_query = modify_query(q)
5 for n in nodes:
6 query_node(modified_query, n.url, result_list, queried_nodes)

Listing 6.5 Query forwarding logic

6.3 Evaluation of Single Node Querying
In this section, we evaluate performance for data retrieval from a single HAQSE server.
For this, we investigate the impact of the various configurable parameters in HAQSE.
In particular, we focus on the storage-related parameters since these have the highest
influence on query performance. Network latencies and throughput limitations are
not considered here; these aspects are evaluated in Section 6.4. We first explain the
evaluation environment used for our experiments. Then, we describe our experiments
and discuss the results.

6.3.1 Evaluation Environment
We perform all our experiments in this section on the sense-edge9 node also used in the
evaluation of the previous chapter (see Section 5.4.1). For each experiment, we generate
one ormultiple datasets with a specific combination of parameters. We do this with the
help of the data generator from Section 5.4.2. A Python-based query client performs
multiple queries on the generated datasets. As shown in Figure 6.4, this query client
executes its logic on the same node sense-edge9.

Single physical host
Docker,

controlled
Network

HAQSE
ery client

(Python)
Apache Arrow Flight
via gRPC (HTTP/2)

Parquet Arrow

Figure 6.4 Rough sketch of the single node evaluation environment.

Python Query Client

The query client is implemented in Python (version 3.9), using the pyarrow and pyarrow
flight packages (version 11.0.0). It runs on the same physical machine as the Docker
container running HAQSE to avoid any uncontrolled network bandwidth and latency
effects (see Figure 6.4).

6 Querying Sensor Data

138

Measurement Methodology and Metrics

For every query, we measure the total query time CA . CA is the duration from start
of the query until all result data is received from the queried HAQSE server. We use
the function perf_counter() from the Python time package to measure runtimes of
queries: We take one measurement just before sending the query, and one measure-
ment right after the last part of the result set has been received. CA is the difference
between the two perf_counter() measurements. Queries are executed sequentially
from a single query client. This means that only one query is active at the same time.
We report the results in form of value distributions, indicating maximum, minimum
and median values.

Datasets and Query Definitions

The datasets used in this section are generated by the generator from Section 5.4.2. All
generated datasets only store the original resolution. No aggregations are calculated
since this is not necessary for the aspects we want to investigate in this section. The
datasets created in this section consist of sensor streams with different schema sizes.
All sensors in the generated datasets use single-precision floating-point (32 bit, 4 B)
as data type. This is expected to be the most frequently used data type in real-world
deployments. Unless otherwise noted, we use the following default parameters for the
datasets1 used in our experiments and query definitions:

Apache Arrow settings We use a record batch size of 1024 and do not use compres-
sion for generating the Apache Arrow IPC format files.

Apache Parquet settings We use a default row group size of 65 536. The Apache Par-
quet data page size is set to the default value of 1MiB. By default, we compress all
data in the compacted Apache Parquet files. Timestamps are encoded using the
DELTA_BINARY_PACKED [115] encoding. All sensor measurements use the Byte
Stream Split encoding together with zstd (see Chapter 4 for details). We use the
library’s default compression level settings for zstd.

Query settings By default, the query range is selected randomly and uniformly from
the total available range. This ensures that all data is equally likely to be queried,
reducing the chance of biased measurements for specific query ranges. Each
query is repeated twice. Depending on the total dataset size, for the first query,
it is rather unlikely that the queried time range is in the operating system’s page
cache. For the subsequent identical query, in contrast, it is highly likely that the
data required to process the query is already available in the page cache. Exe-
cuting each query twice makes it possible to evaluate the difference between the
two scenarios. Other query parameters (and parameter ranges) are determined
by executing preliminary experiments and deducing reasonable values.

1Experiments in the previous chapters (see Sections 4.4 and 5.5) showed that these values work well for
ingestion and compression. Therefore, we take the same values for our query experiment datasets.

6.3 Evaluation of Single Node Querying

139

Query results contain one 4 B floating-point value per requested sensor. Additionally,
independent of the request, result sets contain a 8 B nanosecond timestamp per sam-
ple. The total uncompressed data size as well as the result set size can be calculated
according to the following formula:

total_byte_size = sample_count × (8B + schema_size × 4B)

All generated data is stored on and served from the installed 1 TB HDD.

6.3.2 In-Memory Segments

When sensor samples are received in HAQSE, they are first put into a temporary buffer,
managed by the in-memory segment (see Figure 6.1). Since all data is available in
memory, retrieving data from this segment does not require reading any data from
persistent storage. Nevertheless, data needs to be filtered and selected according to
the two dimensions specified in the query: time range and selected sensors. Select-
ing the sensors happens by assembling a new temporary record batch that discards all
sensor columns not required in the result set. The time range is filtered by scanning
the timestamp column and generating a filter mask. This filter mask is applied to all
selected sensor columns. Querying data from these in-memory segments thus repre-
sents a good baseline with respect to all other types of segments; retrieving data from
all other segments always requires opening at least one file from the storage directory
and thus, will always be slower.

To measure query speed, we use a buffer with an in-memory row group size of 8192
and generate a sensor stream with a schema size of 8. We generate 8191 samples
and then pause (but do not terminate) data generation. This makes sure that samples
remain in the buffer and avoids the contents of the buffer being written to a temporary
Apache Arrow file.

We then query with the following parameters. The query filters for a time range rep-
resenting 1000 samples. Furthermore, the query selects three sensors from the stream
schema. We perform 200 such queries and record CA . Since data is already in memory,
there is no difference between first and subsequent query for this case.

Queries take around 920 µs on average, with a median of 895 µs and a 95th percentile
of 1180 µs. This shows that almost all queries can be handled in less than 1ms on the
given setup when answered from the in-memory segment.

6.3.3 Page Cache Effects

Query performance heavily depends on the performance of the underlying storage
hardware. In many interactive scenarios, however, similar parts of the data are re-
quested repeatedly. For example, subsequent queries might only slightly alter the re-
quested query time range. In such cases, a large part of the queried data is already

6 Querying Sensor Data

140

Uncached Cached
0

20

40

60

80

100
To

ta
l q

ue
ry

 t
im

e
[m

s]

(a)Difference in CA between retrieving 1000 rows
(20 kB) for the first time (no data in page cache)
and for subsequent queries (data is present in
page cache).

Uncached Cached
0

200

400

600

Th
ro

ug
hp

ut
 [

M
B

/s
]

(b) Throughput difference when reading 106

rows (20MB) for the first time (likely no data in
page cache) and for subsequent queries (data is
present in page cache).

Figure 6.5 Influence of page cache on query performance.

present in the operating system’s page cache. Consequently, fewer or even no further
parts need to be loaded from actual storage, speeding up such subsequent queries.

With the experiments in this subsection, we evaluate the performance difference
between uncached and cached data queries. For this, we generate a large dataset of
100GB. The generated stream uses a schema size of eight and stores data in uncom-
pressed Apache Parquet files. The database consists of 400 files of 250MB each. In to-
tal, this dataset contains 2.5 billion samples or 20 billion single-precision floating-point
sensor measurements. Performing the experiment on such a large data set ensures that
not all parts of the data can be in page cache at the same time (there are only 8GiB
of RAM on the sense-edge9 system we use for testing). We perform 100 queries and
execute every query twice. The first query is thus very likely to request data that is not
present in the page cache, while the second one is very likely to hit data in the page
cache2.

The results of this experiment are shown in Figure 6.5. Figure 6.5a shows the dif-
ference in distribution of CA for a query of 1000 samples. For uncached data, 50 % of
queries takemore than 35ms, with some taking longer than 100ms. On the other hand,
data that is present in cache usually takes less than 10ms and in some cases less than
4ms. Our implementation of HAQSE performs as many I/O operations as possible in
background threads. This includes opening Apache Arrow and Apache Parquet files
and locating the start offset inside the file. This part of query processing cannot be
avoided either in the cached case.

Similarly, for throughput of larger result sets, reading cached data is considerably
faster (see Figure 6.5b). Retrieving data from storage is clearly limited by the disk’s
throughput: the median value of 45MB/s is slightly below the throughput that can be

2Without actually monitoring page faults, it is not guaranteed that data for a particular query comes
from the page cache. However, the resulting measured distributions are sufficiently different, so we
do not consider it necessary to actually monitor page faults.

6.3 Evaluation of Single Node Querying

141

delivered by the underlying HDD. Once data is available in the page cache, data can
be retrieved with a throughput varying from 300MB/s to 750MB/s.

In both cases, it is evident that there is a large difference in performance between
the two cases. For interactive data exploration tasks, where we expect similar parts of
the data to be retrieved in subsequent queries, this effect is highly beneficial for the
experienced performance. In most of the following experiments, we exploit data being
available in page cache, but we specify what numbers we report in each case.

6.3.4 Unfinished Apache Arrow Segment

Sensor data in HAQSE passes through a number of different storage steps in its lifecycle
(cf. Figures 3.5 and 6.1). The first of these steps where data is persisted to disk is storage
in unfinished Apache Arrow files. In contrast to the later two steps (finished Apache
Arrow and Apache Parquet files), there is no structural information that can be used to
quickly locate the relevant parts that contain the time range of interest3. This lack of
structural information means that finding the queried time range requires sequential
iteration over the file contents until the respective part is located. With an increasing
size of temporary Apache Arrow files, also the amount of data that must be iterated
grows.

In the experiments in this section, we analyze this behavior. For this, we create three
different databases, each containing a single Apache Arrow file: one with 500MB, one
with 2.5GB, and one with 10GB. Each database contains a stream with 16 sensors.
We perform 100 different queries, each retrieving 1000 samples for three sensors.

0 20 40 60 80 100
Position of queried range in file [%]

0.0

0.5

1.0

1.5

To
ta

l q
ue

ry
 t

im
e

[s
]

Temp. file size
500MB
2.5GB
10GB

Figure 6.6 Behavior of linear search in unfinished temporary files.

3It would be possible to manage such structural information externally and use this information to
speed up finding segments in unfinished Apache Arrow files. We do not deem this useful for now,
considering the added implementation complexity.

6 Querying Sensor Data

142

The results are shown in Figure 6.6. They show that the total query time linearly
depends on the start position of the queried range. In all three cases, the linear iter-
ation behavior corresponds to roughly 75–80 million samples (rows) per second being
iterated. This rate depends on the schema size: increasing the schema size leads to a
decreasing iteration rate.

Repeatedly accessing the range does not improve query speed. This is due to all
required timestamp data being likely in page cache anyway in this scenario. Further-
more, loading the actual measurement values once the correct time range is located
does not contribute noticeably to the experienced query time. The few outliers that
do not follow the linear behavior (not all visible in plot, as some of them are cut off)
happen more often towards the end of the file. This supports the hypothesis that most
timestamp data is already in page cache in this experiment, but data at the end of the
file is not in all cases.

The results in this section show that linear search in the underlying data files is not
a scalable approach for quickly locating the respective time range. As a consequence
of these results, it is advisable to not let the size of temporary files grow too large, i.e.,
configure a limit around 250MB if query performance for such recent data is important.
Another viable approach would be to store structural information externally, e.g., in
the Stream Segment Index. We keep that optimization as future work. The following
sections show that Apache Arrow and Apache Parquet files perform significantly better
by exploiting structural information in the footer.

6.3.5 Apache Arrow vs. Apache Parquet

Apache Arrow and Apache Parquet files both have structural information in the footer
to avoid the problemswith large file sizes as indicated in the previous subsection. While
Apache Arrow files only provide pointers to the contained record batches, Apache Par-
quet files also provide column statistics. These make it possible to determine the first
row group that matches a range-based query by only using this statistics information.
In the experiments in this section, we evaluate the performance difference between the
two approaches.

For this we create twoHAQSE data sets, eachwith 16 sensors and comprising roughly
35 million samples. This corresponds to 2.5GB of uncompressed timestamp and mea-
surement value data. One of the datasets consists of a single Apache Arrow file, the
other one consists of a single Apache Parquet file. We perform 100 queries on each
data set for two different result set sizes (103 and 106 samples). Each query retrieves
data for three sensors and is executed twice.

The results of this experiment are shown in Figure 6.7. For the small result set size,
Figure 6.7a shows the distribution of CA for the different cases. It is apparent that
querying the Apache Arrow file has the largest spread in the uncached case. Interest-
ingly, the cached Apache Arrow case is the best performing in this experiment. This
can be explained by the fact that when data is in cache, it can be used as-is, with-

6.3 Evaluation of Single Node Querying

143

Arrow Parquet
0

20

40

60

To
ta

l q
ue

ry
 t

im
e

t
 [

m
s]

Uncached
Cached

(a) Difference in CA between retrieving 103 sam-
ples (20 kB) for Apache Arrow and Apache Par-
quet files.

Arrow Parquet
0

200

400

600

Th
ro

ug
hp

ut
 [

M
B

/s
] Uncached

Cached

(b) Throughput difference when reading 106

samples (20MB) for Apache Arrow and Apache
Parquet files.

Figure 6.7 Comparison between retrieving data from Apache Arrow and Apache Parquet.

out any further processing like decompression. In case of the Apache Parquet dataset,
queries have a very consistent behavior with respect to CA . There is no large difference
between the cached and uncached case. This can be explained by the fact that locat-
ing the correct row group only requires information from the footer. This information
very likely resides in the page cache for all queries (except for the very first). For the
larger result set, the Apache Parquet case clearly outperforms the Apache Arrow case,
providing almost twice the throughput. Again, the achieved throughput for Apache
Parquet is very consistent around a rate of 550MB/s.

The consistent behavior of retrieving data from Apache Parquet can be explained by
the availability of statistics information in the parquet footer. Only few parts of the
file need to be read in order to find the correct location in the file. These parts of the
footer are very likely already in the page cache, so no data needs to be loaded from
disk. Additionally, reading the measurement values then only requires reading few
compressed pages from actual storage and decompressing them. Since data is stored
compressed, a larger range can be held in the page cache.

6.3.6 Influence of Parquet Parameters

Apache Parquet files can be parameterized in several ways. In this section, we look
at each of these parameters and quantify its influence on query performance. We
examine the influence of the Apache Parquet footer size, row group size, data page size
and compression.

Parquet Row Group Size and Footer Overhead

There is a trade-off between the number of row groups in a file and the size of each
row group. The two conflicting goals are the following:

6 Querying Sensor Data

144

• On one hand, the number of row groups should be kept small, as every row group
results in a small storage overhead in the footer of the Apache Parquet file. This
footer is read every time the file is opened.

• On the other hand, the size of row groups should be small enough such that the
statistical information in the footer is useful for quickly locating a certain time
range. In the extreme case of only one very large row group, the information in
the footer is almost useless for locating a certain timestamp.

As shown in Section 6.3.5, the statistical information in the footer of Apache Parquet
files helps to quickly locate time ranges in the file. While this is beneficial in many
cases, a large footer increases the constant overhead when opening an Apache Parquet
file. In order to show the influence of this, we create several data sets, each containing
250 million rows, but each with a different row group size. This implies that for files
with very large row group sizes, there are only few row groups in the file. The stream
uses a schema size of eight, so each file contains 10GB of uncompressed data. We
request 1000 and 1 000 000 samples containing three sensors. We perform 25 different
queries and repeat each query twice. We compute median, and 5th and 95th percentile
of each second query and plot the results in Figure 6.8.

212214216218220222224226
Row group size

102 103 104 105 106

Number of row groups in file

10 2

10 1

100

To
ta

l q
ue

ry
 t

im
e

t
 [

s] Result set size
1000 1000000

Figure 6.8 Total query time CA depending on row group size in a 10GB Apache Parquet file.
The bottom x-axis shows the number of row groups in the respective file, the top x-axis shows
the corresponding row group size.

This figure shows that both extremes—very large and very small row group sizes—
lead to suboptimal query performance. Having only few, but very large row groups
(towards left side of the plot) makes locating the queried time range inefficient. The
timestamp column of a very large row group needs to be scanned sequentially, includ-
ing the decompression of a large amount of unneeded data. Currently, all column data
(of the queried sensors) of every row group that has matching statistics is read from the
Apache Parquet file. While this can be optimized further, it would require substantial

6.3 Evaluation of Single Node Querying

145

engineering effort in the underlying Apache Parquet library implementation. Instead,
it is advisable to keep row group sizes small. On the other end, having a high number
of row groups in the file (towards right side of the plot) slows down initial reading of
metadata. This is underlined by the fact that there is almost no variation in query time,
regardless of the result set size. The footer is up to 45MB in this case for a row group
size of 212 (corresponding to approximately 2.5 million row groups). In this specific
example, row group sizes between 216 and 222 perform best.

This evaluation shows that both a very large number of row groups per file and
very large row group sizes should be avoided for best query performance. This can
be achieved by using row group sizes in the range found above and limiting the total
number of rows per file.

Influence of Parquet Data Page Size

The smallest readable unit in Apache Parquet files are so-called data pages [114]. In this
part of our evaluation, we investigate the trade-off between many small and few large
data pages. Data pages have no influence on locating the queried time range. While the
Apache Parquet format generally would support it, statistics in data page headers are
not implemented currently. Data pages represent the unit of compression, i.e., when
reading data, one complete data page is decompressed as an atomic processing step.
This means that the page size mainly has an influence on sequential read throughput.

For this experiment, we thus try to provoke large sequential reads in Apache Parquet
files: we use large values for the row group size to have many long scans. This best
shows the influence of differently-sized data pages. We generate multiple databases
with eight sensors and 25 million samples, i.e., 1 GB of uncompressed measurement
values. This data is present in a single Apache Parquet file with a row group size of
223. We vary the data page size of these files from 4KiB to 16MiB. We query one
million rows and three sensors. Each query is performed twice, and we only include
the duration of the second query in our results. The resulting distribution of the query
time is shown in Figure 6.9.

212 214 216 218 220 222 224

Parquet data page size [B]

0.0

0.1

0.2

To
ta

l q
ue

ry
 t

im
e

t
 [

s]

Figure 6.9 Data Page size experiment results.

6 Querying Sensor Data

146

bss+zstd
Delta

bss+zstd
None

None
Delta

None
None

0

2

4

6

8

10

To
ta

l q
ue

ry
 t

im
e

t
 [

m
s]

(a) Difference in CA when retrieving 103 rows
(20 kB) for different timestamp/sensor measure-
ment compression combinations.

bss+zstd
Delta

bss+zstd
None

None
Delta

None
None

0

200

400

600

800

Th
ro

ug
hp

ut
 [

M
B

/s
]

(b) Throughput difference when reading 106

rows (20MB) for different timestamp/sensor
measurement compression combinations.

Figure 6.10 Influence of compression options on query performance.

These results show that smaller page sizes are generally less performant than larger
page sizes. The difference, however, is negligible when compared to the influence of
other factors. In addition to this, large data pages only have an influence on sufficiently
large row groups. Even without any compression, the default value of 1MiB implies
that all row group sizes ≤ 131 072 only contain a single data page for 64 bit timestamp
data4. For compressed data, this row group size limit is increased by the factor of the
compression ratio. This means that there is no reason to change the default value of
220 (1MiB).

Influence of Apache Parquet Compression

As last parameter that is specific to the Apache Parquet file format, we examine the
effect of compression on the query performance. For this, we create four databases
with varying compression settings. Each database contains 16 sensors and 14 million
samples, i.e., 1 GB of uncompressed data in four equally sized files. For timestamp
compression, we evaluate the uncompressed and DELTA_BINARY_PACKED encoding al-
ternatives, for floating-point compression we use uncompressed and the combination
of Byte Stream Split and zstd (cf. Section 4.4.7). We define 100 queries retrieving three
sensors and 103 or 106 samples. We report the results for the second query (even if
there is no huge difference for this experiment between cached and uncached results).
The resulting distributions are shown in Figure 6.10.

The results show that querying uncompressed data performs best, both with respect
to the total query time CA for small result sets and for throughput of large result sets.
Using bss+zstd compression for floating-point data slightly increases the query time

4One 64 bit timestamp consumes 8 = 23 B. 1MiB = 220 B → There is space for 220
23 = 217 = 131 072 rows

in one data page with a default size of 1MiB.

6.3 Evaluation of Single Node Querying

147

and reduces throughput. This can be explained by the fact that when data is served
from the page cache, the additional decompression step incurs overhead that is not nec-
essary when using uncompressed data. Decoding the delta-encoded timestamps does
not have a large negative influence on the resulting performance on average. However,
the slowest queries are considerably slower (CA is 4–5 times higher) and provide less
throughput when compared to the uncompressed case.

6.3.7 Scaling Stored Stream Schema
Streams with a high schema cardinality increase the amount of data in the footer of
Apache Parquet files. Since all this footer information is read when opening files for
data retrieval, it takes longer to open files for streams with a high schema cardinality
(cf. Section 6.3.6). In the experiments in this section, we quantify the impact of large
schemas on the query performance.

For this, we create several sensor stream databases containing 1 to 65 536 sensors
(using increasing powers of four). Each database is designed to contain 1GB of un-
compressed measurement values, split up into four files of 250MB each. We create
50 queries, each one retrieving 1000 samples of one sensor from the respective stream.
Each query is performed twice, and we report results for the second query. The results
are shown in Figure 6.11.

20 22 24 26 28 210 212 214 216

Schema size of stored stream

10 2

10 1

To
ta

l q
ue

ry
 t

im
e

t
 [

s]

Figure 6.11 Influence of schema size of stored stream on total query time CA .

The results show that the query time increases considerably with increasing schema
size. This is despite the fact that the number of total rows in databases with a larger
schema is considerably lower (less than 4000 samples for the largest schema). This can
be explained by the increasing size of the Apache Parquet footer that needs to be read
on each query when opening the file, confirming the results from Section 6.3.6.

6.3.8 Scaling Result Set Size
There are twomain dimensions within which result sets can grow: on the one hand, the
number of requested samples can be increased, on the other hand, the number of sen-

6 Querying Sensor Data

148

sors can be increased. We evaluate the performance for scaling these two dimensions
in this section.

An overview of the behavior is shown in Figure 6.12. This plot is generated from
experiments on the dataset described in the query schema paragraph below.

20 21 22 23 24 25 26 27 28 29

Number of queried sensors

103

104

105

106

4 106

N
um

be
r

of
 q

ue
ri

ed
 s

am
pl

es

10 2

10 1

100

101

To
ta

l q
ue

ry
 t

im
e

t
 [

s]

Figure 6.12 Overview of impact of result set size on total query time CA . The result set size
depends on two dimensions: number of samples and number of sensors in the result set. The
plot shows the color-coded distribution of CA for each paramter combination (each small dot
in the colored rectangles represents one experiment run).

This plot shows that scaling the number of queried rows performs much better. We
investigate two specific configurations in more detail below.

Scaling Number of Requested Samples

The number of samples required for analytic tasks varies considerably depending on
the exact application. In this part, we evaluate how well HAQSE scales when increas-
ing the number of samples to be retrieved. To test this, we create a database of ap-
proximately 140 million samples with a schema of 16 sensors. This corresponds to
an uncompressed size of 10GB, and each Apache Parquet file in the dataset contains
250MB of uncompressed data. We query four sensors from the database. We increase
the number of samples to retrieve from the database in powers of 10. For each combi-
nation of parameters, we create 50 queries and execute each one twice. We take results
from each second query and plot the results in Figure 6.13.

Figure 6.13a shows the total query time CA as a function of the number of retrieved
samples. For few queried samples (≤ 104), the query time is roughly constant: the
number of samples queried has no measurable influence on the query time CA for such
small results. After that, the time approaches a linear behavior with an increasing
number of samples. This can also be seen in Figure 6.13b: for many samples retrieved
(107 – 108), the throughput approaches a rate of 800MB/s.

This result shows that HAQSE is able to fulfill Requirement 10 (Query Speed): small
queries can be executed in few milliseconds, larger queries provide high throughput.

6.3 Evaluation of Single Node Querying

149

103 104 105 106 107 108

Number of queried samples

10 2

10 1

100

Q
ue

ry
 t

im
e

t
 [

s]

(a) Influence of number of samples in result set
on total query time CA .

103 104 105 106 107 108

Number of queried samples

10

100

Th
ro

ug
hp

ut
 [

M
B

/s
]

(b) Influence of number of samples in result set
on query throughput.

Figure 6.13 Influence of number of samples in result set on query performance. Uncompressed
result set size ranges from 24 kB to 2.4GB.

20 21 22 23 24 25 26 27 28 29

Number of queried sensors

10 2

10 1

100

Q
ue

ry
 t

im
e

t
 [

s]

(a) Influence of number of sensors in result set
on CA for queries retrieving 1000 rows. Uncom-
pressed result set size ranges from 12 kB to 2MB.

20 21 22 23 24 25 26 27 28 29

Number of queried sensors

0

200

400

600
Th

ro
ug

hp
ut

 [
M

B
/s

]

(b) Influence of number of sensors in result set on
query throughput for queries retrieving 106 rows.
Uncompressed result set size ranges from 12MB
to 2GB.

Figure 6.14 Influence of number of sensors in result set on query performance.

Scaling Query Schema

For this set of experiments, where we scale the queried sensor schema, we create a
dataset with an uncompressed total size of 10GB. We create roughly five million sam-
ples for 512 sensors. Each Apache Parquet file in the dataset contains 250MB of un-
compressed data. We increase the number of queried sensors in powers of two from 1
to 29. We retrieve 103 and 106 samples. For each combination of parameters, we create
25 queries, uniformly and randomly selecting a query range. Each query is executed
only once, in order to show uncached behavior (in contrast to the many cached results
before). The results are shown in Figure 6.14.

The results for few queried samples (1000) are shown in Figure 6.14a. They show that
up to a certain number of queried sensors (roughly 10), the query time CA increases only
slightly. After that, the query time CA increases linearly with the number of queried
sensors. Overall, there are large variations in the results due to the fact that we perform

6 Querying Sensor Data

150

every query only once. While there is a certain chance that parts of the data are in the
page cache, most of the queried data is not and needs to be loaded from the HDD that
is used as storage medium.

In Figure 6.14b, the throughput for a larger amount of queried samples (106) is shown.
These results show that median throughput slightly increases up to a certain point
(26 sensors). For schema sizes larger than 27, the median value decreases. In addition
to that, the variability in throughput increases drastically. This can be explained by
the fact that for very broad result schemas that contain many rows, the pressure on
the page cache is very high. The uncompressed result set of each query contains more
than 2GB of data. All this data must be loaded from (compressed) storage, in some
cases (but not in all) invalidating large parts of the contents previously available in the
page cache.

6.3.9 Concurrent Ingestion and Data Retrieval

In this section, we present a very basic analysis of how querying data influences data
ingestion and vice versa. For this, we let our data generator from Section 5.4.2 gener-
ate a sensor stream of eight sensors. The generator runs locally on the same system
and produces batches of 128 samples. In the first phase of the experiment, the data
generator generates sensor samples for 120 s. After that, in the second phase, we still
continue generating data, but in addition to that, start querying data. We do this for
60 s, and then stop data generation. In the third phase, we continue performing data
queries for roughly 60 more seconds. HAQSE is configured to write data to Apache
Arrow files containing roughly 20MB. Five such files are compacted to Apache Par-
quet files, resulting in an uncompressed target size of 100MB. We query one sensor
and 1000 samples, uniformly and randomly selecting a query range. Each query is
executed once. The results for this experiment are shown in Figure 6.15.

0 50 100 150 200 250
Time [s]

0

25

50

75

100

125

Th
ro

ug
hp

ut
 [

M
B

/s
]

Data Generation Generation &
Queries

Queries

Data generation rate
Query rate

0

25

50

75

100

125

Q
ue

ry
 r

at
e

[1
/s

]

Figure 6.15 Timeline of concurrent sensor stream consumption and querying.

They show that HAQSE consumes the generated stream at roughly 125MB/s. This
results in approximately 15GB of uncompressed data or 375 million samples. When
queries start after 120 s, data consumption in HAQSE is slightly reduced to 115MB/s.

6.3 Evaluation of Single Node Querying

151

During that time frame, data can be queried at roughly 20 to 30 queries per second. As
soon as data generation is stopped, the query rate increases to roughly 40 queries per
second.

0 200 400 600
Query time [ms]

101

102

103

Fr
eq

ue
nc

y
(lo

g
sc

al
e)

0 200 400 600
Query time [ms]

Queries onlyQueries & data generation

0.0

0.5

1.0

C
um

ul
at

iv
e

D
en

si
ty

D
is

tr
ib

ut
io

n

Figure 6.16 Distribution of total query times CA for two different scenarios. Both plots show
the absolute frequency (light blue bars, left y-axis) and the cumulative distribution (darker blue
line, right y-axis) of measured query times CA . The x-axis shows query time bins with a width of
eight milliseconds. Scenario on the left: queries are executed while HAQSE is consuming sensor
streams. Scenario on the right: only queries are executed, no other processing is happening
simultaneously.

Figure 6.16 shows the query time distribution for second and third phase. The ma-
jority of queries can be executed in less than 10ms in both cases. However, the two
distributions show that a few queries take considerably longer (> 400ms) when exe-
cuted while data is consumed in HAQSE. This also becomes evident when looking at
percentiles. While the 90Cℎ percentiles of 18.3ms and 17.9ms are still close together,
the 95Cℎ percentiles (140ms and 19.9ms) are already far apart.

The overall parameter space for concurrent sensor stream ingestion and data queries
is vast. The experiment here covers the most critical aspects and ranges that affect the
real-world scenarios targeted in this thesis. We leave it to future work to explore this
space more exhaustively (targeting different scenarios and trade-offs).

6.3.10 Single Node Query Evaluation Summary

This section summarizes the results from all experiments in Section 6.3.

• There is a considerable positive effect of repeatedly querying similar time ranges
due to the operating system’s page cache. This is especially beneficial for inter-
active data exploration scenarios.

• In general, queries producing small result sets fully yield these results in less than
50ms. If data is already available in the operating system’s page cache, data for
most queries can be delivered in approximately 10ms.

6 Querying Sensor Data

152

• Query throughput for large (cached) results is well above the Gbit Ethernet band-
width limit, indicating that, for such scenarios, throughput will be limited mostly
by that bandwidth limit.

• Making use of the chosen compression approach does not slow down queries for
most practical uses.

• Reading large Apache Parquet file footers is slow. It is interesting to explore
whether it is possible to optimize this and how much can be gained for large
schema sizes. Before such optimizations are implemented, it is advisable to avoid
too large Apache Parquet footers. This is achieved both by limiting the number
of row groups per Apache Parquet file and by keeping the number of sensors per
file reasonably low (< 104).

• It should be avoided to let unfinished Apache Arrow files grow too big since se-
quentially scanning these files directly impacts total query time. Similarly, row
group sizes of Apache Parquet files should not be chosen to be too large. Values
around the tested default of 65 536 represent a good compromise.

• Changing the data page size of Apache Parquet does not have a huge impact on
query performance. The default value of 1MiB represents a reasonable default.

• Concurrent querying reduces ingestion performance, but does so only slightly.

Many aspects of the query performance evaluated in this section can be attributed
to the performance characteristics of the storage format we choose for HAQSE. All the
processing that is performed in stream consumption to eventually write sensor streams
to Apache Parquet files now pays off when retrieving data from HAQSE.

6.4 Evaluation of Distributed Querying

In this section, we evaluate the distributed querying capabilities of HAQSE. In contrast
to the evaluations in the previous section, the experiments here focus on the interaction
between the query client and multiple instances of HAQSE.

6.4.1 Evaluation Environment

We let multiple HAQSE instances and the query client run on a single system. There-
fore, we use a relatively powerful system for the experiments in this section.

6.4 Evaluation of Distributed Querying

153

Base system

We perform all our tests on a system with two Intel Xeon Gold 6136 CPUs (running at
3.00GHz) with 320GiB of RAM. The system is running Ubuntu 20.04. Our prototype is
compiled with g++ version 10.3.0 with compiler flags -O3 -flto -march=native and
linked against libarrow 7.0.0. The server is deployed in a Docker container (also running
Ubuntu 20.04) to have a controlled network environment, as described next.

Network Environment

We design the experiments in this section to emulate geo-distributed deployment sce-
narios. Thus, we require a network environment with controllable latency and band-
width. In our experiments, we artificially emulate these network properties. We do this
by running our prototype inside a Docker container, using the tc-tool to set delays and
shape traffic accordingly.

Data and Storage

We generate a random dataset to build a sensor stream database. Following an actual
use case, this database contains values representing 16 artificial floating-point sensors.
Details about the generated hierarchical stored sensor stream are shown in Table 6.1.
The data spans roughly 34 days of sensor data. The sampling rate is 20 kHz (resolution
of 50 µs), a typical rate for monitoring the combustion dynamics in gas-turbines5. This
data corresponds to more than 950 Billion raw 32 bit floating-point measurements or
4.3 TB of raw data (including 64 bit timestamp information). Additionally, our database
consists of 13 precomputed aggregation levels with five aggregations (min, max, mean,
stddev, count) for each level and sensor. The first aggregation level has a resolution of
3.2ms, i.e., the window for this first aggregation level contains one set of aggregations
for every 64 raw samples. Further aggregation levels aggregate four samples of the
previous level, the coarsest resolution thus is at roughly 14 hours and 55minutes. In
total, the database consists of 4.8 TB of data. This data is stored in uncompressed
Apache Parquet files with a row group size of 312 500 on a NAS attached via a 10Gbit
Ethernet connection and mounted via SMB version 3.0.

Measurement Methodology and Metrics

For every query, we measure the total query time CA (as introduced previously) as well
as the metadata response time CM . As before, these times are measured using the
function perf_counter() from the Python time package. CM indicates the duration
from query start until the metadata response has been received (see Figure 6.3). This

5This sampling rate is derived from our motivating example.

6 Querying Sensor Data

154

Table 6.1 Evaluation dataset and aggregation levels.

Level Resolution Sample Size Factor Number
Number Count to previous of files

0 50.0 µs 6.0·1010 4.30 TB – 7639
1 3.2ms 9.4·108 366 GB 64 120
2 12.8ms 2.3·108 91.4GB 4 30
3 51.2ms 5.9·107 22.8GB 4 8
4 204.8ms 1.5·107 5.71GB 4 2
5 819.2ms 3.7·106 1.43GB 4 1
6 ≈ 3.3 s 9.2·105 358 MB 4 1
7 ≈ 13.1 s 2.3·105 89.3MB 4 1
8 ≈ 52.4 s 5.7·104 22.3MB 4 1
9 ≈ 209.7 s 1.4·104 5.60MB 4 1

10 ≈ 14.0min 3.6·103 1.42MB 4 1
11 ≈ 55.9min 8.9·102 369 kB 4 1
12 ≈ 3.7 h 2.2·102 107 kB 4 1
13 ≈ 14.9 h 55 41 kB 4 1

first metadata response does not contain sensor data, but only query result meta in-
formation like the projected stream schema. We design our queries in such a way that
the result contains data for three sensors and 1000 data points from the queried data
stream. We report the results in the form of value distributions, indicating maximum,
minimum, and median values.

6.4.2 Multinode Baseline

In this subsection, we analyze the behavior of our system under different network envi-
ronments. Specifically, we change network delay and bandwidth. To better understand
the influence of both of these parameters, in this section, we apply artificial delay and
bandwidth limits independently. For all experiments in this section, we always per-
form the exact same query to ensure reproducible response times. We request 1000
data points for three sensors for a fixed range of roughly ten days. Results of que-
ries hitting aggregated data contain min, max and mean, leading to a result set size of
1000 × (8 B + 3 × (3 × 4 B)) = 44 kB.

6.4 Evaluation of Distributed Querying

155

100 101 102 103 104 105 106

One-way delay [µs]

103

104

105

106
Ti

m
e

[µ
s]

sa
m

e
ho

st

LA
N

W
ifi

In
te

rn
et

t
t
Roundtrip
delay bound

Figure 6.17 CA and CM for different network delays.

101 102 103 104 105 106 107

Throughput limit [kbit/s]

101
102
103
104
105

Ti
m

e
[m

s]

10 Gbit1 GbitVDSLADSL56 k Modem

t t t large result t large result Bandwidth bound

Figure 6.18 CA and CM for different network bandwidth limits for two result sizes 44 kB (1000
data points) and 44MB (large result, 1 000 000 data points).

Varying network delay

In Figure 6.17, we show the behavior of our system under varying network delays. The
figure shows that short network delays (those typically found in wired local networks
like Ethernet) do not have a noticeable impact on CA or CM . When data is transferred
via a connection similar to a typical Internet connection [5], virtually all latency is
introduced by the network.

Varying network bandwidth

Figure 6.18 shows the results when changing network bandwidth. Similar to the case
above, transferring the query results fully saturates the connection (up to a certain
bandwidth that depends on the query result set size). This means that CA depends
almost entirely on the bandwidth. Since the metadata size is magnitudes smaller, CM
is also a lot faster for lower bandwidth connections. The additional graphs for large
result in Figure 6.18 yield a result set size of 1 000 000 samples with otherwise identical
settings.

6 Querying Sensor Data

156

102 103 104 105 106 107

Bandwidth [kbit/s]

101
102
103
104
105

D
el

ay
 [

µs
]

1

0.1 t
 [

s]

Figure 6.19 CA (single host) for different bandwidth and delay combinations.

Varying Network Bandwidth and Delay

Figure 6.19 shows the combination of various network bandwidth and delay settings. In
the bottom right of this plot, there is a lighter area where the network is good enough
and does not have a negative impact on CA . Low network bandwidths (towards the
left border of the plot) impact result data transfer times, increasing CA . High network
delays (towards the top of the plot) induce large roundtrip times and thus, dominate
query times, regardless of the available bandwidth.

6.4.3 Two-Node Analysis

This section analyzes how our system behaves in a two-node setup. This case applies
to the classic edge-cloud scenario, where data is generated and initially stored in a
remote edge environment and where aggregated overview data is available on a cloud
instance. For this set of experiments, the cloud node contains levels 4–13. The edge
node contains all levels of the dataset from Table 6.1. For these experiments, the query
client is assumed to be located “near the cloud” and thus, queries the cloud node first.

We request 1000 data points at a resolution of 51.2ms (level 3), which the cloud
can only answer with an unsatisfying resolution of 204.8ms (250 data points of level
4), and thus informs the client to request more detailed data from the edge server.
Typically, the cloud instance will be reachable via a high bandwidth connection, while
the connection to the edge system is often much more limited when accessed via the
Internet.

As our previous analyses show, both network delay and available bandwidth have
an impact on CA , so we systematically investigate the impact of each of these aspects.

Delay

We first show the impact of network delay without limiting the bandwidth. On the
left of Figure 6.20, the plot shows CA for receiving data from the cloud. On the right,
it shows CA for receiving data from both cloud and edge. As the client needs to wait
for the response of the cloud before requesting data from the edge, the two roundtrip
delays add up, which can be seen on the right plot. In contrast, the response from the

6.4 Evaluation of Distributed Querying

157

103 104

103

104
D

el
ay

 E
dg

e
[µ

s]

Response Cloud

103 104

Response Cloud & Edge

0.1

0.2

0.3

t
 [

s]

Delay Cloud [µs]

Figure 6.20 CA from cloud (left) and cloud and edge (right).

cloud is entirely independent of the delay to the edge node since the two queries are
fully decoupled.

Bandwidth

As shown in previous work, delays to both cloud and edge systems can vary consider-
ably [5] when accessed over the Internet. In addition to that, systems might also be
queried locally with a very low delay.

This is why we perform our bandwidth experiments for multiple delay scenarios. We
define three representative delay scenarios: Local Network (RTT of 0.4ms), Low-Latency
WAN (RTT of 10ms) and High-Latency WAN (RTT of 60ms). We perform our experi-
ments for all nine combinations of cloud/edge latency scenarios. For each scenario, we
vary the bandwidth on both nodes from 128 kbit/s to 1Gbit/s.

The results for this experiment are shown in Figure 6.21. The qualitative behavior
is similar in all nine scenarios, but minimal values for CA (top right area of each plot)
depend on the respective delay scenario. In contrast, in low-bandwidth settings, the
network delay has no significant impact anymore, as the time to transfer results dom-
inates. The slight asymmetry in each of the nine plots stems from the fact that four
times more data needs to be transferred from the edge. The missing noise in the high-
bandwidth areas (top right) in all the high-latency scenarios shows that the latency of
our system does not have a notable impact on overall CA in these cases.

6.4.4 Real-World Multi-Node Case

We evaluate our system in a setting with three server nodes, as sketched in Figure 6.22.
This scenario is adopted from a real-world use case for monitoring gas-fired power
plants. On-site, a standard local network with 1Gbit/s bandwidth is deployed. Sen-
sor data is stored in an edge node (Node 1) as well as an intermediate on-site server
equipped with additional storage space (Node 2). Overview data is available in a cloud
instance (Node 3).

6 Querying Sensor Data

158

103

104

105

106
Local Network

Cloud:
Low Lat. WAN High Lat. WAN

Local N
etw

ork
Edge:

103

104

105

106

Low
 Lat. W

A
N

103 104 105 106

103

104

105

106

103 104 105 106

Bandwidth Cloud [kbit/s]
103 104 105 106

H
igh Lat. W

A
N

10 1

100

t
 [

s]

B
an

dw
id

th
 E

dg
e

[k
bi

t/
s]

Figure 6.21 CA for different latency scenarios of cloud (columns) and edge (rows) nodes. For
each plot in the 3 × 3 grid, we vary bandwidth for edge and cloud nodes from 128 kbit/s to
1Gbit/s.

We derive a dataset from the one described in Table 6.1 by selecting specific time
spans and aggregations levels for each of the nodes. The resulting datasets are listed
in Table 6.2, and the ranges covered are sketched in the right part of Figure 6.22. Node 1,
being closest to the data source, contains all aggregation levels but only covers a limited
time span of the most recent data. The second node contains all levels except for the
raw data (L0) and covers a slightly longer time span. The last node in the hierarchy
misses the most recent data (which might not have been transmitted yet) and contains
only coarse aggregations.

We define three representative query session scenarios (labeled QSx). The query
sessions emulate an interactive user zooming into or out of the data, requesting three
sensors in a resolution that results in at least 1000 data points. The three query session
scenarios are shown in blue in the top row of Figure 6.23. The first scenario (QS1)
queries data only available on the third node and zooms into the data in several steps.
This emulates root-cause analysis for historical data, where a local user investigates an
event for which only a rough timeframe was specified. In the second scenario (QS2), an
on-site user starts from an overview of the complete time range and zooms in deep to a
certain event. In the last scenario (QS3), the user zooms out from real-time monitoring

6.4 Evaluation of Distributed Querying

159

1 GBit
2.5 ms

Node 3
(Cloud)

L0

LN

L1

L0

LN

L1

L0

LN

L1

time

Remote
Client

100 MBit
2.5 ms

 Local, on-site network
Node 1
(Edge)1 GBit

0.1 ms

Node 2
(Intermediate)

1 GBit
0.1 ms

On-Site
Client

1 GBit
0.1 ms

1.5 MBit
20 ms

nowolder data

Figure 6.22 Setup of the experiment for Section 6.4.4. On the left, we show the network topol-
ogy settings using typical values between clients and the three server nodes. On the right, we
roughly sketch (in green) which part of the data (time range, aggregation level) is available on
which of the three servers.

to investigate the history of a certain sensor. The hatching in the first row of the plot
also sketches which parts of the data are available on which node.

In addition to the query session scenarios, we define three query node scenarios
(QNx): in each query node scenario, the first query is directed at one of the three server
nodes in our system, using the client that is closest to the respective server (Table 6.3).
The first two nodes (Node 1 and Node 2) are queried from a client in the same local
network. Node 3 is queried from a remote user connected via the Internet. The sketch
in Figure 6.22 also shows network topology, bandwidth, and delay between the client
and servers. The effective bandwidth and aggregated round-trip-times (RTT) are listed
in Table 6.3.

We perform each combination of QSx and QNx—i.e., a total of nine experiments—
and visualize the resulting query times CA in the lower three rows of Figure 6.23.

We do not control the exact number of points but try to find an aggregation level
that best matches the query. As a consequence, the query result size varies to some
degree. This explains the zigzag pattern and spike that can be seen, e.g., on the bottom
right plot, where data size and transfer rates impact CA .

For QS2, when Node 1 is queried first, the query is forwarded to Node 2. This ad-
ditional local roundtrip to Node 1 is hardly noticeable: the plot below (QS2, Node 2),
where the roundtrip is not necessary, shows very similar values for CA .

In cases when a certain query can be fully satisfied from a particular node, no other
query is performed, independent of which node serves the data. This can be observed

6 Querying Sensor Data

160

Table 6.2 Data distribution for Section 6.4.4.

Node ID Total Size Resolutions Timespan

Node 1 2.08 TB 50 µs 2022–02–09
(Edge) – 14.9 h (all) – 2022–02–23

Node 2 410GB 3.2ms 2022–01–26
(Intermediate) – 14.9 h – 2022–02–23

Node 3 88MB 13.1 s 2022–01–20
(Cloud) – 14.9 h – 2022–02–14

Table 6.3 Client Server Connectivity Map for Section 6.4.4.

1st Node Client Agg RTT [ms] Bandwidth [Mbit/s]
queried Local Remote Local Remote

Node 1 On-Site ≈ 0.4 ≈ 45.2 1000 1.5
Node 2 On-Site ≈ 0.4 ≈ 45.2 1000 1.5
Node 3 Remote ≈ 45.2 ≈ 10 1.5 100

inQS2, where themid-level resolutions (Query numbers 3–12) can be fully served either
by Node 2 or Node 3.

In the design of our system, fast responses have been a primary goal, even if the first
result is only an approximation. The bottom-row plot for QS2 (remote client) shows
that our system supports exactly this use case. When the resolution on the cloud is
not sufficient anymore to fully satisfy the query, the data can nevertheless be used
as a first approximation of the requested data and can be completed once the higher
resolution data (received later) is available. The same behavior, even more noticeable
for the user, is experienced on the remote client for the first few queries for QS3, where
the first result from Node 2 is available a lot earlier than the result from Node 1.

Overall, there are notable differences in CA across the various query scenarios and
nodes queried. However, most of these differences are due to varying bandwidth and
delay settings, while the overhead of our system is minimal.

6.4 Evaluation of Distributed Querying

161

Jan 21

Feb 01

Feb 12

Feb 23
QS1: Historical Data on Cloud QS2: On-Site & Cloud QS3: Recent Data On-Site

0.01

0.1

1 Zoom in Zoom in Zoom out

Q
N

1:
O

n-Site
N

ode 1

0.01

0.1

1

Q
N

2:
O

n-Site
N

ode 2

1 5 10

0.01

0.1

1

1 5 10 15 20 25
Query Number in Query Sequence

1 5 10 15 20 25 30 35

Q
N

3:
R

em
ote

N
ode 3

ti
m

e
[s

]

Data on Node 1
t Node 1

Data on Node 2
t Node 2

Data on Node 3
t Node 3

Query Range
First t Last t

Figure 6.23Multi-node use case query details and results for three different query sessionsQSx
(three columns). The three plots in the first row visualize two aspects: the query ranges used for
the successive queries (marked in blue) and data time windows available on the three server
nodes (hatched in gray). Data time windows are shown depending on the requested query
resolution/level. The three bottom rows show CA in the query sequence for each experiment.
The green background indicates the queried level.

163

7 Integration into Industrial
Infrastructure Monitoring Systems

This thesis is based on research performed in an application-oriented, industrial con-
text. HAQSE addresses challenges derived from analyzing various real-world applica-
tions in this industrial context. The resulting approaches and scientific contributions
can possibly benefit several parts of the sensor data processing pipeline in a wide range
of industrial applications. As proof of concept, this chapter describes how the devel-
oped system can be integrated into an exemplary industrial sensor processing pipeline.
We take the specific example from the introduction chapter (Section 1.1): a combustion
monitoring system used in heavy-duty gas turbines. Such a system is developed by,
e.g., IfTA GmbH. We demonstrate one possibility of how HAQSE could be integrated
into that particular solution. More specifically, we describe how HAQSE is integrated
into the existing system to receive, preprocess and store the generated sensor data.
We also discuss how the existing analysis infrastructure can use HAQSE’s hierarchical
approximate query functionality and show how this improves sensor data analysis sce-
narios. In fact, many aspects of HAQSE are motivated by the experiences of engineers
working with systems such as the one developed by IfTA GmbH.

This chapter is organized as follows. First, in Section 7.1, we discuss how—in general—
HAQSE can be integrated into sensor processing systems. Then, in Section 7.2, we de-
scribe the most relevant components of IfTA’s state-of-the-art combustion monitoring
and protection system for gas-fired power plants. This overview helps to understand
how HAQSE can be integrated into this solution. Next, in Section 7.3, we specifically
explain how HAQSE can be integrated with the various components of IfTA’s monitor-
ing infrastructure. Finally, in Section 7.4, we demonstrate how HAQSE is integrated
into the sensor data processing pipeline of a production-grade gas-fired power plant.

7.1 General Integration Guideline

Integrating HAQSE into an existing sensor processing pipeline requires a few steps.
This section outlines what aspects need to be considered and how integrating HAQSE
works in general. First, it is important that the rest of the system meets the require-
ments HAQSE assumes. Then, in the next step, the sensor stream input interface needs
to be implemented to be able to stream sensor samples to HAQSE. Another essential
part is retrieving data from HAQSE. Thus, the interface for querying original and ag-

7 Integration into Industrial Infrastructure Monitoring Systems

164

gregated data streams needs to be implemented. Finally, like for any other storage
system, it is also necessary to specify application requirements and configure HAQSE
accordingly. We describe each of these steps in the following subsections.

7.1.1 Meeting HAQSE’s Requirements
There are a few requirements that need to be fulfilled in order forHAQSE to be deployed
in practice. These primarily reflect the aspects we discussed in Section 2.1.

Defined stream schema: The schema of a data stream needs to be clearly defined
and may not change. If a schema change is required, a new stream must be
created with a separate stream id. Schema changes include a change in the list
of sensors (addition or removal of sensors; change in sensor name or type) and a
change in the sensor source stream resolution.

Single source stream: HAQSE assumes each stream to only have one source. In
HAQSE, different sources would be managed as different streams. In fact, sepa-
rate sources often actually represent separate streams as they measure different
phenomena. If, on the other hand, multiple such streams are indeed related, it
can be desirable to integrate these streams into a single sensor source stream.
This integration must happen in a separate system that prepares a single sensor
source stream to send to HAQSE. This integration can happen in two dimensions:
If the measured entity is the same, and the different streams contain samples
with different timestamps, these different samples can be integrated by demul-
tiplexing them into a single stream. Care needs to be taken regarding the order
of timestamps (also see below). The other alternative is that multiple streams
measure different phenomena but do so using identical sampling times. In this
case, the different streams can be merged into a single stream, de-duplicating
the timestamp information of the two streams. However, depending on the use
case, keeping multiple streams and sending them as separate sensor streams to
HAQSE might be more appropriate.

Synchronous, strictly increasing timestamps: Similar to other systems [95, 126], a
stored sensor stream in HAQSE is required to have sensor values sampled syn-
chronously. This means that measurements from different sensors must have
identical or synchronous timestamps. In addition to that, for each sensor stream,
timestamps must be strictly increasing. For multi-source streams, this can be
hard to guarantee for a variety of problems like clocks being out of sync or differ-
ent transmission delays. On the contrary, while it is also challenging, it is much
easier to ensure for single-source streams.

Once these aspects are considered and ensured, in the next step, stream ingestion
can be implemented.

7.1 General Integration Guideline

165

7.1.2 Stream Ingestion
To insert sensor samples into HAQSE, the input interface presented in Section 3.4.1
needs to be implemented. Both a live sensor source stream and an existing sensor
sample database can be used as the data source. The input interface is implemented
utilizing a gRPC service. The actual sensor streaming is implemented with the help of
a client streaming remote procedure call (RPC), i.e., a sensor data source executes an
RPC method provided by HAQSE and uses it to stream sensor samples to HAQSE.

Specifically, this client streaming protocol consists of two parts, a stream definition
and the actual sensor stream with measurement values:

1. First, the stream definition must be created based on the available data stream.
It consists of the details defined in Section 3.2: the stream id, the stream schema
and the stream resolution. In addition to that, it is possible to set further stream
configuration parameters with this message. These are mainly the definition of
the windowed aggregations to compute as well as the exact storage-related pa-
rameters like compression, row group and file sizes.

2. After the stream definition message has been sent, the actual sensor measure-
ment values can be sent. This can happen either in sensor-ordered batches or
by sending each sample individually. As shown in Section 5.5, if the generated
stream rate is high, sending data in larger batches to HAQSE is highly beneficial.

To implement a data source, the gRPC interface specified in Appendix A.2 can be
used to generate interface code in the programming language used for the respective
client.

7.1.3 Query Processing
For retrieving data from HAQSE, an Apache Arrow Flight client has to be implemented
in any of the supported programming languages. This client needs to execute the DoGet
RPC as demanded by the Apache Arrow Flight specification. The query is specified as a
JSON object. This contains the stream id and sensor names to retrieve data for. In addi-
tion to that, the time range of interest, as well as the number of data points to retrieve,
are part of the query. More details regarding the implementation of the query inter-
face are presented in Section 3.4.2. HAQSE responds with a stream of record batches.
These record batches contain the requested data and can be processed however the
respective application requires it. If data from multiple sources must be retrieved, the
distributed querying logic from Section 6.2 must be implemented on the client.

7.1.4 Application Specific Configuration
Once the basic interfaces are connected, it is necessary to identify the application pa-
rameters and other internal HAQSE settings. These parameters are discussed in the

7 Integration into Industrial Infrastructure Monitoring Systems

166

respective previous chapters. It is also essential to configure HAQSE according to the
availability of hardware resources or even select appropriate hardware for deployment.

7.2 IfTA Infrastructure for Monitoring and Protecting
Gas-Fired Power Plants

In this chapter, we demonstrate how HAQSE can be integrated into an existing sensor
data processing system. Thus, this section describes the IfTA ArgusOMDS system de-
veloped by IfTA GmbH. We first provide a brief company overview (Section 7.2.1) and
present the essential components of the IfTA ArgusOMDS system in Section 7.2.2. In
Section 7.2.3, we explain the necessary details of the current file and stream format of
the IfTA ArgusOMDS system to understand the integration details better. We describe
the actual integration in Section 7.3

7.2.1 Application Context: IfTA GmbH

IfTA GmbH is a small company located in Puchheim, near Munich, Germany. It was
founded in 1996 by Dr. Jakob Hermann based on his university research on active sup-
pression of combustion dynamics in stationary gas turbines [45, 46, 99]. IfTA GmbH
develops high-end vibration measurement technology. The developed system’s use
cases comprise combustion dynamics monitoring, rotor dynamic and torsional vibra-
tion analysis, among many others. Until today, its main field of application is monitor-
ing and protecting the combustion process in stationary, heavy-duty gas turbines. IfTA
GmbH develops both hardware and software to cover the complete sensor processing
pipeline, starting after the sensor and ranging to sophisticated visualization and analy-
sis solutions. Beyond that, IfTA GmbH continuously researches various related areas
and offers consulting services for any kind of vibration problem. One fundamental
product of IfTA GmbH is the IfTA ArgusOMDS system, which we describe next.

7.2.2 Existing Monitoring, Protection and Analysis
Infrastructure: IfTA ArgusOMDS

The IfTA ArgusOMDS monitoring and protection system is a configurable and mod-
ular system of co-designed hardware and software. This system makes it possible to
protect different classes of applications that require vibration monitoring. It can be
integrated with other monitoring and control systems installed at a particular facil-
ity like a power plant or test bed. The system is specifically optimized for monitoring
heavy-duty turbines in gas-fired power plants. It consists of several components, as
sketched in Figure 7.1.

7.2 IfTA Infrastructure for Monitoring and Protecting Gas-Fired Power Plants

167

Gas
Turbine

TrendViewer
ITA DSP ITA Data Server

DataHub

Sensor Data &
Analysis Results

via EthernetSignalMiner

GT Condition data

Persistent
Storage on

HDD

Control
GT Controller

Analysis results
via industrial Fieldbus

Continuous
Monitoring

Historical
Event

Analysis Monitoring &
Analysis Client

Sensor
Cables

Figure 7.1Overview of the IfTA ArgusOMDSmonitoring and protection system. The red boxes
indicate hardware components of the IfTA ArgusOMDS; the blue boxes indicate the most im-
portant software components.

Figure 7.2 Example hardware configuration of an IfTA ArgusOMDS system [51].

At the core of the protection logic, the IfTA SignalMiner software is responsible for
real-time analysis and protection. IfTA SignalMiner runs on special, real-time capable
digital signal processing hardware. An exemplary hardware configuration is shown in
Figure 7.2. It continuously analyzes short, tumbling or overlapping windows of sen-
sor data. This sensor data is sampled from physically connected sensors1 via inte-
grated analog-digital conversion hardware channels. The analysis results calculated
by IfTA SignalMiner comprise frequency spectra, frequency band analysis and many
other application-dependent analyses. The raw sensor measurements and analysis re-
sults are used for two main purposes. First, via a real-time fieldbus network2, they are
sent to the gas turbine control system. This is done to inform the control system about
problems in the combustion process or physical structure of the turbine in a timely
manner, guaranteeing protection of the monitored machine. Second, raw sensor mea-
surements and analysis results are sent to an instance of IfTA DataHub, running on a
separate, industrial server computer. In IfTA DataHub, additional sensor data streams
are collected and augment the raw sensor data and analysis results produced by IfTA
SignalMiner. The sensor streams that flow into IfTA DataHub are stored persistently

1These are, e.g., acceleration sensors or high-temperature piezoelectric pressure sensors.
2Or an alternative connection to the gas turbine control system.

7 Integration into Industrial Infrastructure Monitoring Systems

168

(and optionally aggregated over time) for later analysis tasks. This is done in a ring-
buffer fashion, such that the oldest values get deleted on a regular basis. It uses time-
ordered ADF files, as described in Section 7.2.3. At the same time, the sensor streams
are provided as Argus Online Protocol (AOP) streams to further components in the
system. One exemplary use of this stream is IfTA TrendViewer. This visualization and
analysis software uses the stream to continuously visualize the most recent analysis
results. In addition, IfTA TrendViewer can also be used to analyze and visualize histor-
ical sensor data streams, e.g., for investigating the root cause of a damage event. IfTA
TrendViewer is typically executed on client devices like workstations or notebooks and
connected through the internal plant network to IfTA’s data server.

Generally, there is one IfTA ArgusOMDS system per monitored gas turbine. Thus,
when multiple turbines are to be monitored and protected, all described components
are replicated. However, parts like the IfTA data server hardware may be shared, as we
will show in Section 7.4 for a specific deployment case.

7.2.3 IfTA Argus Data Format & Argus Online Protocol

In the IfTA ArgusOMDS system, sensor data streams are stored in a proprietary format:
the Argus Data Format (ADF). In addition to that, IfTA DataHub offers the ability to
send data streams containing live sensor data. This is done using the so-called Argus
Online Protocol (AOP). While the AOP implements a concept similar to the Sensor
Source Stream (Definition 4), the ADF represents a Stored Sensor Stream (Definition 7).
The actual data stream sent in the AOP protocol is thus structurally very similar to
the ADF: the ADF can simply be thought of as a serialized AOP stream or vice versa,
streaming an ADF results in something very similar to the AOP3. Therefore, in the
following, we only explain the necessary details for the ADF structure, as visualized in
Figure 7.3. This explanation is also valid for the AOP.

ADF Header

Data Chunk Stream 1
Data Chunk Stream 2
Data Chunk Stream 3

Data Chunk Payload

Data Chunk Header:
timestamp and other
data chunk meta info

Encoded value(s)

Encoded value(s)

Encoded value(s)

Encoded value(s)

Stream1 definitions
Definitions:
 • List of streams
 • Sensors in each stream
 • Meta info for each sensor

Stream2 definitions
Stream3 definitions

Last Data Chunk (S2)

Sensor stream contents

Figure 7.3 Rough sketch of ADF files and AOP stream.

3There are some minor technical differences in the implementation of the two formats. These are
irrelevant to the discussions here.

7.2 IfTA Infrastructure for Monitoring and Protecting Gas-Fired Power Plants

169

Logically, an ADF file consists of several independent, multiplexed or interleaved
sensor streams. On the highest level, the format consists of a header followed by the
actual stream contents. The header contains information about the different sensor
streams contained in the file as well as metadata about each of the sensors for every
stream. The actual stream content consists of a sequence of data chunks. Each data
chunk belongs to one of the sensor streams in the file. Data chunks of one such stream,
especially those originating from the IfTA ArgusOMDS system, have strictly increasing
timestamps. A data chunk is made up of a data chunk header and the actual stream
payload. The header contains the stream identification (associating the data chunk
with a stream), a timestamp that is valid for all the contents in the respective data
chunk as well as additional information irrelevant to this discussion here. The stream
payload then contains a binary representation of the actual sensor values. All data
chunks of a certain stream have the same payload size.

In ADF, each sensor is represented by one of several possible signal types. This
information determines how the stream payload is interpreted; it is encoded in the file
header. Most interesting for the discussion here are the types Raw Signal, Spectrum
Signal and Value Signal (also see Figure 7.5):

• Raw Signals contain a short window of a raw sensor signal, typically containing
as many samples as one IfTA SignalMiner analysis window. Like for all other
signal types, the respective header in the stream format only contains a single
timestamp. This timestamp indicates the timestamp of the first raw sample in
the data chunk. The timestamps of the subsequent measurement values in the
chunk are derived based on the sampling rate. This sampling rate is specified in
the meta information of the sensor stream, contained in the ADF header.

• Spectrum Signals represent frequency spectrum data. Such signals also contain
multiple values, one amplitude value per frequency line of a spectrum. Again,
important spectrum information like frequency resolution or the number of fre-
quency lines is stored in the meta information available in the header of the sen-
sor stream. The timestamp in the data chunk header is identical for all values in
the spectrum.

• Value Signals are the simplest type of sensor. They only contain a single value per
sensor and data chunk. The timestamp in the data chunk header is valid for all
sensor values in the payload of the data chunk.

Due to the ordering of data chunks and the structure of the ADF, the format is a time-
ordered or row-oriented format for Spectrum and Value Signals. For Raw Signals, data
is actually partly sensor-ordered since all values of one sensor are contiguous for Raw
Signals in the payload.

The ADF header stores additional information for all sensors. This information in-
cludes the measurement value unit, typical value ranges and textual sensor descrip-

7 Integration into Industrial Infrastructure Monitoring Systems

170

tions. Since HAQSE does not (yet) have the ability to store such data, we do not need
to discuss these aspects of the ADF in more detail.

The last data chunk of the ADF ends the file or stream. There is no footer or similar
terminating part.

7.3 Integrating HAQSE into IfTA Monitoring
Infrastructure

This section describes how HAQSE has been integrated into the state-of-the-art moni-
toring system IfTA ArgusOMDS. Before we start explaining the details of this integra-
tion, we discuss what tasks HAQSE can replace or augment in the existing infrastruc-
ture.

HAQSE’s main objective is long-term storage and management of large-scale sensor
data. In the current system, this task is (at least to some degree) performed by IfTA
DataHub. For our integration into the rest of the existing system, we deploy HAQSE as
a valuable additional component in the whole system. This decision implies that some
data is stored redundantly in the two separate systems. Still, it makes the transition
of the complete infrastructure—which includes several other tools, especially in the
post-processing pipeline—much easier.

HAQSE Workstation (new) ITA Workstation (existing)

DataHub
Persistent
Storage on

HDD

Argus Online
Protocol Online Monitoring &

Historical event analysis
HAQSE

ADF to
HAQSE

Set of ADF Files

Online to
HAQSE gRPC

Monitoring &
Analysis Client

uses
Apache Arrow Flight

Figure 7.4 Rough sketch of how HAQSE is integrated into the existing software infrastructure
of IfTA. The components sketched in green are added for HAQSE.

We integrate the two systems as shown in Figure 7.4. This figure shows HAQSE
running on a separate physical machine. This deployment is one possible alternative
rather than a strict requirement. Letting both systems run on a single machine is also
a conceivable deployment alternative. There are two possible ways to get sensor data
into HAQSE. First, it is possible to connect to the AOP stream offered by IfTA DataHub.
Second, data can also be ingested from a set of permanently stored ADF files. Since
both approaches have valid application scenarios, we implement both of them. Finally,
the visualization and analysis client IfTA TrendViewer can be extended with function-
ality to query hierarchical sensor data from HAQSE.

The rest of this section is structured as follows. First, in Section 7.3.1, we explain
how sensor data streams or collections of ADF files can be prepared for ingestion to

7.3 Integrating HAQSE into IfTA Monitoring Infrastructure

171

HAQSE. Next, in Section 7.3.2, we show that HAQSE can be used as a data source for
driving interactive, exploratory data analysis of timespans that would have been un-
thinkable before. Lastly, in Section 7.3.3, we lay out how HAQSE builds the foundation
for training a machine-learning-based anomaly detection system that uses combustion
spectrum data. This new anomaly detection component dramatically benefits from the
improved query functionality of HAQSE andwould only be possible with amuch higher
effort in the current system.

7.3.1 Data Input: Connection to Argus Data Format & Argus
Online Protocol

In a first step, it is necessary to get data into HAQSE. As outlined above and sketched
in Figure 7.4, there are two possible ways to achieve this: reading from a collection of
ADF files or connecting to and reading from an AOP stream. In both cases, the sensor
signals described in the header of the ADF/AOP stream and selected for writing to
HAQSE need to be mapped to HAQSE’s sensor stream input model (cf. Section 3.2.1).
As the two alternatives are structurally very similar (see Section 7.2.3), we make no
distinction between the two approaches in the following explanation.

We describe mapping the three data types presented in Section 7.2.3 to their respec-
tive representation in HAQSE. This mapping logic is visualized in Figure 7.5.

• For Raw Signals, the data represents multiple consecutive measurements of a sin-
gle sensor, resulting in multiple rows of one sensor stream column in the HAQSE
data model. However, in HAQSE, all timestamps are stored explicitly, whereas
in ADF, only one timestamp is stored. Consequently, we generate the derived
timestamp values for all samples in a data chunk, as visualized in the top part
of Figure 7.5. Moreover, since values are already partly sensor ordered, we can
use the batched input in HAQSE’s input stream protocol. Generating batches
of the size equal to the number of values in one Raw Signals data chunk makes
input into HAQSE more efficient and requires very little layout transformation
processing.

• Spectrum Signals also contain multiple values, but each of these values belongs
to the same timestamp. In HAQSE, sensors are always fixed-size scalar values.
This fixed-size requirement makes it necessary to split up spectrum signals into
separate sensor streams. Each of these sensor streams in HAQSE represents one
of the contained frequency lines of the mapped spectrum signal. For mapping
Spectrum Signals to HAQSE, we thus create a schema with one sensor per fre-
quency line, as illustrated in the center of Figure 7.5. Data chunks of this type
result in an input batch size of one.

7 Integration into Industrial Infrastructure Monitoring Systems

172

Representation in HAQSE's data modelRepresentation in ADF
Va

lu
e

Si
gn

al
s

Sp
ec

tr
um

 S
ig

na
ls

R
aw

 S
ig

na
ls

TS r0 r1 r2

ts0 r0.0 r1.0 r2.0

ts1 r0.1 r1.1 r2.1

ts2 r0.2 r1.2 r2.2

ts3 r0.3 r1.3 r2.3

ts4 r0.4 r1.4 r2.4

ts5 r0.5 r1.5 r2.5

ts6 r0.6 r1.6 r2.6

ts7 r0.7 r1.7 r2.7

ts0

r0.0, r0.1, r0.2, r0.3,
r0.4, r0.5, r0.6, r0.7

r1.0, r1.1, r1.2, r1.3,
r1.4, r1.5, r1.6, r1.7

r2.0, r2.1, r2.2, r2.3,
r2.4, r2.5, r2.6, r2.7

ts0

s0.0, s0.1, s0.2, s0.3,
s0.4, s0.5, s0.6, s0.7

s1.0, s1.1, s1.2, s1.3,
s1.4, s1.5, s1.6, s1.7

s0 s1
TS 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

ts0 s0.0 s0.1 s0.2 s0.3 s0.4 s0.5 s0.6 s0.7 s1.0 s1.1 s1.2 s1.3 s1.4 s1.5 s1.6 s1.7

ts0

v0.0 v1.0 v2.0 v3.0 v5.0v4.0

TS v0 v1 v2 v3 v4 v5

ts0 v0.0 v1.0 v2.0 v3.0 v4.0 v5.0

ts1 v0.1 v1.1 v2.1 v3.1 v4.1 v5.1

generated timestamps:
tsx = ts0+x×Δt

two spectrum signals ➜

ts1

v0.1 v1.1 v2.1 v3.1 v5.1v4.1

one sensor column per
frequency line per spectrum

One ADF
data chunk

Figure 7.5 Different signal types in ADF and how they are mapped to HAQSE. The left part
shows the ADF data chunk representation; the right part shows the representation in HAQSE’s
data model.

• Value Signals are the most straightforward case. They are mapped one-to-one
from ADF to a HAQSE. Similar to Spectrum Signals, value signals generate indi-
vidual input samples without batching.

As discussed, a sensor stream in HAQSE requires all sensors in a schema to be sam-
pled at identical timestamps, and it requires all sensors to have a value for each time-
stamp. Thus, only sensors that fulfill this property can be put into a common schema.
As a consequence, specifically for the ADF format, Raw Signals need to be in a sepa-
rate sensor stream chunk (containing only Raw Signals) in order to be able to map this
chunk (as a single sensor stream) to HAQSE.

Another requirement discussed previously (Section 2.1) is thatHAQSE expects strictly
increasing timestamps for the input data stream. We should note that all sensor streams
that originate from IfTA SignalMiner fulfill this property. This is achieved by a control

7.3 Integrating HAQSE into IfTA Monitoring Infrastructure

173

loop on the real-time hardware. This loop ensures that the sample clock4 is ticking—
on average, over a long time period—exactly at the desired frequency. Long-term time
drifts are avoided by controlling this loop with a global master clock. This global mas-
ter clock is synchronized to some global time source via, e.g., a protocol like Network
Time Protocol [82] (NTP).

As visualized in Figure 7.3, an ADF file stream contains many multiplexed sensor
streams. For streaming data to HAQSE, we demultiplex this stream and generate mul-
tiple HAQSE compatible streams. For each of these resulting streams, a gRPC client
streaming call is created.

For actually connecting to an AOP stream or reading a collection of ADF files, we
create two separate CLI programs: an AOP adapter online2haqse and an ADF file reader
adapter, adf2haqse. Both of these programs first read the ADF header (either from
the AOP stream or the ADF file). Using the information in the header and the CLI
configuration of the respective program, a stream description message is created and
sent as the first message in the gRPC client streaming protocol. Then, the programs
iterate over the contained data chunks, filtering for chunks (and signals in the selected
chunks) configured to be sent to HAQSE. For each of these data chunks, the data chunk
header is read first, extracting the timestamp information. Then, all selected signal
values are read, and a gRPC message is created and sent via the client stream.

The resulting input streams have very different properties. They differ in schema
size (very wide schema for Spectrum Signals, rather narrow schema for Raw Signals),
sampling rate, and use different batch sizes for input. Thus, our adapter programs
(acting as HAQSE gRPC clients) can be adjusted to allow configuring how HAQSE
should process and store the respective streams. This includes storage parameters like
row group size, compression algorithms as well as aggregation hierarchy settings.

Both adapter programs connect to a running HAQSE instance. For adf2haqse, the
adapter requires a list of files to iterate. For online2haqse, the adapter connects to a
running IfTA DataHub instance and uses one of the available AOP streams. Once all
supplied files have been processed or the AOP input stream terminates, the gRPC client
stream ends. At that point, all data is available in HAQSE.

7.3.2 Fast Interactive Exploratory Data Analysis
In this section, we describe how IfTA TrendViewer (see Section 7.2.2) can be extended
to support HAQSE as data source. We first explain the typical interactive visualization
workflow in IfTA TrendViewer based on ADF or AOP data sources. Then, we show the
scalability issues of the current approach. Finally, we sketch how a HAQSE data source
could be designed to overcome these scalability issues.

4The sample clock is responsible for driving the actual analog-digital signal conversion performed on
the real-time hardware. In the IfTA ArgusOMDS system, this clock guarantees that all attached
sensors are sampled at exactly the same instant (only ignoring errors introduced by different clock
signal line lengths).

7 Integration into Industrial Infrastructure Monitoring Systems

174

Visualization Workflow in IfTA TrendViewer

Figure 7.6 shows the user interface of IfTA TrendViewer. Before visualizing any data,

Figure 7.6 Graphical user interface of IfTA TrendViewer. The left green box highlights the
data source explorer: this shows a hierarchy of all available streams and sensors from the ADF
file. The right green box shows the plotting area: in this example, two signals are visualized in
two plots. The small green box shows that IfTA TrendViewer displays the exact value of the
current cursor position. This screenshot of IfTA TrendViewer is shown with permission from
IfTA GmbH.

the user needs to create a data source (left part of the window). Currently, data sources
in IfTA TrendViewer can be classified into two different categories. As one option, data
is loaded from one or multiple files. This can be, e.g., ADF or CSV files. Alternatively,
data can also directly come from a sensor source stream. IfTA TrendViewer can for
example connect to an AOP stream offered by IfTA DataHub. This is implemented by
writing the received data into a temporary file and reading data from that temporary
file for visualization. In the following, we focus on the file-basedmethod, as the stream-
based method is internally handled in a similar way.

To create a data source, the user opens one ormultiple files (or selects a sensor stream
published via the AOP). As explained above, these files contain several sensor streams
and cover a certain time range. When opening an ADF file, an index is constructed,
creating a mapping from the contained timestamps to the positions of the data chunks
inside the file. This requires reading through the entire file once. It is also possible to

7.3 Integrating HAQSE into IfTA Monitoring Infrastructure

175

use compressed files. In that case, these compressed files must first be decompressed
completely in a local temporary folder; then, the uncompressed file is used as data
source. Additional files need to be loaded when other time ranges are required for
visualization.

Once a data source is created, the contained sensor streams and sensors can be
explored in the data source explorer (see Figure 7.6, left part). One or multiple such
sensors are then selected for visualization in one or multiple plots (see Figure 7.6, right
part). For the discussion here, we restrict ourselves to the so-called trend plot, which
shows the sensor values over time. Such a trend plot shows one line per selected sensor.

One of the key features of IfTA TrendViewer is the ability to interact with the plot
and explore the available data. These interactions include zooming in and out of the
time axis or shifting the time axis. All these actions modify the visualized time window.
Furthermore, the same can be done on the value axis. If the data source is a live sen-
sor stream received via the AOP, this updating can be done automatically so that IfTA
TrendViewer updates the plot periodically with the most recent values5. When inter-
acting with the plot with the time axis cursor, IfTA TrendViewer also shows the exact
value of the plotted signal at the respective instant (this is also shown in Figure 7.6).

Scalability Challenges With Current Data Sources

The current file-based approach in IfTA TrendViewer has two main scalability issues.
First, opening files (which may involve decompression) and creating the required map-
ping from timestamps to data chunks scales linearly with the file size. Second, reading
measurement values from files for visualization also requires iterating over the com-
plete part of the file that represents the time span to be visualized.

In this section, we primarily look at the overhead when reading measurement values
from files. While opening large files may also interrupt the user’s workflow, this only
needs to be done once if intelligent caching strategies are implemented. For plotting
sensor data in a trend plot, IfTA TrendViewer iterates over all samples for the respective
sensor(s) in the selected time range. This approach works reasonably well for short
time ranges as long as the number of data points is manageable (see below). However,
when the time range spans billions of samples6, iterating over the data quickly becomes
a bottleneck. In addition to that, as discussed previously, the ADF is optimized for
writing, not for reading individual signals.

For visualizing data such as in Figure 7.6, IfTA TrendViewer iterates over the whole
part of the selected time range. The exact algorithm for drawing these lines is irrelevant
for the performance aspects we analyze here: iterating over the measurement values

5IfTA TrendViewer can, for example, show the most recent 30 seconds of sensor data and update this
plot every 200ms.

6In the actual deployment example we present in Section 7.4, more than two billion raw data samples
are generated per day.

7 Integration into Industrial Infrastructure Monitoring Systems

176

in the file alone scales linearly with the amount of data and, thus, with the required
time span.

We performed a simple experiment to illustrate the problem. On a typical work-
station that stores data on an HDD, we iterated over an increasing amount of sensor
samples and measured the execution time of such an iteration. The workstation is
equipped with an Intel® Core™ i7-9700K CPU, running at 3.60GHz. It has 32GiB of
2666MHz memory and is running Windows 10. The data is located on an internal 3.5”
500GB Western Digital HDD. The resulting execution times are shown in Figure 7.7.

101 102 103 104 105 106 107 108

Data length [# Samples]

0.01

0.1

1

10

100

ti
m

e
[s

]

First load, data read from disk

Subsequent load, hits pagecache

Figure 7.7 Time for reading data from storage for plotting as a function of data points to read.
The background color indicates how the delay is perceived by users, using the 100ms limit
found in human-computer interaction literature [20, 33, 81].

This plot shows several aspects. First, there is a significant difference between read-
ing data for the first time compared to subsequent reads. This is because the data is
buffered in the operating system’s page cache. For interactive data exploration, data
is very likely to be present in page cache when updating the plot contents, so we now
focus on the lower curve in the plot. Up to roughly 20 000 samples, there is no real
difference in data loading times. Up to approximately 106 samples, reading data gets
slower but is still fast enough for interactive settings [33]. For longer time windows to
be visualized, the time for reading the data increases further, significantly degrading
the user experience. It should be noted that cases with numbers such as 108 are not
purelymade up: when visualizing one hour of measurement values sampled at 25.6 kHz
for a single sensor, sizes are already in that order of magnitude.

While the exact execution times and thresholds will vary depending on the specific
environment, it is clear that the general linear behavior will stay the same.

Creating a HAQSE Data Source for TrendViewer

To be able to use data from HAQSE in IfTA TrendViewer, we create a new data source.
This data source requires specifying the address of a running HAQSE server. Instead
of opening an ADF file, users create a HAQSE data source. Once created, the available
data streams and the underlying signals are queried from the server. This has the
advantage that the time to create such a HAQSE data source is independent of the

7.3 Integrating HAQSE into IfTA Monitoring Infrastructure

177

amount of data available on the server. Users do not need to wait for the file to be
loaded (or even for data to be decompressed). Creating such a data source takes a
constant amount of time, typically in the order of a few seconds.

For the actual visualization, an appropriate query is created based on the current
plot width and selected time range. The query can then retrieve min and max pre-
aggregated values. If the query result actually uses pre-aggregated data, the min and
max values can be used directly as input to the visualization layer. The resulting plot
represents a very good approximation of the visualization result generated with the
original resolution stream data. When visualizing large timespans, this is orders of
magnitudes faster since the amount of data that needs to be loaded from HAQSE de-
pends solely on the size of the plot7. As our results in Section 6.3 show, the latency
caused by the roundtrip to the server and back is mainly determined by the network
latency. We argue that this delay is hardly noticeable to users in local network envi-
ronments.

A few aspects are currently missing in HAQSE to make its integration with IfTA
TrendViewer smoother. We discuss these in Section 8.1.

7.3.3 Driving Machine-Learning-Based Anomaly Detection

HAQSE can also be used in more data-heavy scenarios. In this section, we describe an
anomaly detection algorithm using HAQSE as a data source for training and inference.

As a first measure, the monitoring data and analysis results acquired and gener-
ated by the IfTA ArgusOMDS system are used for real-time protection. This real-time
protection reacts within hundreds of milliseconds and detects quickly developing prob-
lematic behavior that may lead to machine damage. However, the spectrum data gen-
erated by IfTA ArgusOMDS can also be used to detect slowly developing changes in the
observed behavior leading to damage events. An excerpt of a timeline of such a slowly
developing damage event is shown in Figure 7.8. For such slowly developing problems,
long time windows are required for algorithm development. IfTA GmbH develops a
machine-learning-based anomaly detection algorithm.

This algorithm must be trained on several weeks of spectral data, thus requiring a
significant amount of data (for a specific turbine monitoring configuration, see Sec-
tion 7.4). The data pipeline that is used to train this algorithm uses HAQSE to retrieve
aggregated versions of spectral data: Since the algorithm’s goal is to detect slowly de-
veloping changes in the data, it is trained on averaged spectrum values. HAQSE can
be configured to generate such aggregations on data ingestion, considerably reducing
the amount of data that needs to be loaded for training the machine learning algo-
rithm. Instead of raw values, only aggregated values are used for training. This can
result in a data reduction factor of up to three orders of magnitude regarding data that

7Provided an appropriate sensor stream hierarchy is available on the chosen HAQSE server.

7 Integration into Industrial Infrastructure Monitoring Systems

178

024681012141618

Time until emergency shutdown [days]

Fr
eq

ue
nc

y

 normal operation first problems appear in spectrum
 problems get worse,
 until emergency shutdown

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
m

pl
it

ud
e

Figure 7.8 Excerpt of a frequency spectrum showing a slowly developing damage event. A
planned shutdown roughly six days before the emergency shutdown could have been used to
inspect the machine if the problem had been detected in the spectrum at that point. Even
two days before the emergency shutdown, there would have been enough time to schedule a
planned stop and investigate the problem that was (then) clearly visible in the spectrum.

needs to be read for training the machine learning model. Consequently, this data size
reduction can shorten model training time considerably.

Since inference aims to detect slowly developing changes inmachine behavior, a new
prediction is generated in regular intervals. All spectrum data available for a particular
turbine is used to calculate an anomaly score. For this application, HAQSE is queried
regularly and provides the most current (non-aggregated) values for frequency spectra
and operating data.

In summary, HAQSE provides a solid platform that can be used both for efficient
training and inference in machine learning scenarios.

7.4 Integrating HAQSE into the Sensor Processing
Pipeline of a Gas-Fired Power Plant

Using the integration tools presented in Section 7.3.1, we deploy HAQSE in the gas-
fired power plant of a municipal services company. Specifically, we integrate HAQSE
on a separate workstation in the IfTA ArgusOMDSmonitoring infrastructure located at
Heizkraftwerk Süd (HKWSüd), operated by StadtwerkeMünchenGmbH (SWM) [102].
With this, we show that HAQSE meets the requirements of and can be integrated into
a real-world industrial monitoring application.

The monitored plant site at HKW Süd consists of two combined cycle gas turbines,
named GT61 and GT62. They both use the same turbine type, a GE 9E [35] (see Fig-
ure 7.9). Each turbine has a nominal maximum power output of roughly 140MW. The
plant operates in a combined heat and power scheme, additionally acting as a source
for district heating, supplying several neighborhoods in Munich with heat. Each gas
turbine comprises 14 combustion cans, and a pressure sensor monitors each of these
cans.

7.4 Integrating HAQSE into the Sensor Processing Pipeline of a Gas-Fired Power Plant

179

Figure 7.9 GE 9E gas turbine [35].

ITA Workstation

DataHub
Ethernet

SignalMiner

EthernetPlant Condition Data
System

14 Sensor
Cables

Ethernet

Analysis results

SignalMiner DataHub

14 Sensor
Cables

Persistent
Storage on

HDDGT Controller

Control GT Controller

Control

Analysis results

Continuous
Monitoring

Historical
Event

Analysis Monitoring &
Analysis Client

Gas
Turbine

Gas
Turbine

Figure 7.10 IfTA monitoring infrastructure at SWM.

The signals from these sensors are collected and analyzed in real-time by the IfTA
ArgusOMDS monitoring system, one separate instance per turbine. The deployment
for this particular site is sketched in Figure 7.10. The real-time monitoring hardware
components are duplicated such that each turbine has one independent protection
instance. Each such instance has a separate connection to the turbine’s controller to
communicate analysis results. In contrast to this, the two IfTA DataHub instances are
running on a single workstation.

Both IfTA ArgusOMDS systems at HKW Süd are configured in the following way
(summarized in Table 7.1). They sample the 14 sensors at a sampling frequency of
25.6 kHz and continuously analyze tumbling windows of 8192 single-precision (32 bit)
floating-point samples (corresponding to an analysis window length of 320ms). For
each window, a frequencymagnitude spectrum is calculated, resulting in a spectrum of

7 Integration into Industrial Infrastructure Monitoring Systems

180

Table 7.1 Analysis specification of IfTA monitoring and protection system at HKW Süd of
SWM.

Setting Value

Sampling rate 25 600Hz
Analysis window length 320ms
Analysis rate (320ms)−1 = 3.125Hz
FFT Length and window sample count 8192
Size of output spectrum (per sensor) 3200 Lines
Number of sensors per turbine 14 (one sensor per can)
Approximate data rate per GT 2MB/s

3200 single-precision floating-point frequency lines8. Based on the raw sensor stream
and the calculated spectrum, IfTA SignalMiner computes more complex analyses in the
time and frequency domain. All analysis results are sent to IfTA DataHub. In addition
to that, some of these analysis results are communicated to the gas turbine controller.
Simple analysis results and condition data contribute only little to the overall data
rate. The major contributors are the raw data values and the frequency spectrum data.
Hence, the total data rate HAQSE needs to process in this setup can be estimated as
follows9:

Araw = 25 600
values

s
× 4 B

value
= 102.4 kB/s

Aspectrum = 3200
values
0.320 s

× 4 B
value

= 40.0 kB/s
(7.1)

Summing this up for two turbines, we get:

A1GT = 14 × (Araw + Aspectrum)
= 14 × (102.4 kB/s + 40.0 kB/s)
= 1993.6 kB/s
≈ 2MB/s

Atotal = 2 × A1GT

≈ 4MB/s

(7.2)

As shown in Section 5.5, HAQSE should be able to easily consume this rate, even
with many aggregation levels and compression active.

8The upper ≈20% of the full frequency magnitude spectrum of 4192 lines are cut off due to the prop-
erties of the low-pass filter that is applied on the raw sensor samples to avoid aliasing effects in the
frequency domain.

9When including additional analysis results, the resulting data rate is slightly (2–3%) higher.

7.4 Integrating HAQSE into the Sensor Processing Pipeline of a Gas-Fired Power Plant

181

For the particular case of the HKW Süd, we use the online2haqse adapter and read
the following six streams per turbine to put them into HAQSE (cf. Table 7.1):

• Raw sensor signal stream, containing 14 sensors (encoded as Raw Signals). A data
chunk thus contains 14 × 8192 single-precision floating-point values per sensor,
or roughly 460 kB.

• Spectrum stream, containing 14 frequency spectra (Spectrum Signals), each con-
sisting of 3200 single-precision floating-point frequency lines. Such a data chunk
has a size of roughly 180 kB.

• Four additional streams containing mostly scalar analysis result signals and con-
dition data (Value Signals), only marginally contributing to the overall data rate.

The two IfTA SignalMiner instances create streams with identical names. Therefore,
the online2haqse adapter prefixes these streams with the respective turbine name (GT61
or GT62).

Utilizing the results from Section 4.4, we use the Byte Stream Split encoding and
combine it with zstd for all floating-point sensors. The timestamp column uses a bit-
packed delta-encoding (DELTA_BINARY_PACKED). All other columns are stored in an
uncompressed way. One day of turbine data consumes roughly 176.5GB of storage
space when stored in uncompressed ADF files. When compressing these files with
zstd, this size can be reduced to 127.9GB. Storing the same data in HAQSE (without
aggregation) consumes 112.1GB, i.e., requiring only 63.5 % of the initial, uncompressed
size. This further reduction in contrast to the zstd compression alone can be explained
by the Byte Stream Split encoding for floating-point data. Adding aggregations (min,
max, mean, stddev, and count) increases the consumed storage space to 129.6GB for
one day of gas turbine data. This storage size is a bit more than what the compressed
ADF database consumes but enables quick overviews of the whole day (or even longer
time spans) of sensor data.

183

8 Future Work and Conclusions

This chapter concludes the work presented in this dissertation. In Section 8.1, we out-
line shortcomings and discuss potential future research and development directions.
Finally, in Section 8.2, we summarize the work and results presented in this thesis.

8.1 Future Work

Even though HAQSE improves over the state of the art in many aspects, there are
still a lot of opportunities for improvement. Like any complex software project, this
comprises software engineering improvements, but also includes other conceptual or
technical aspects. We list these aspects in the following paragraphs.

Lossy Compression So far, our two-stage compression method in HAQSE has only
been used for lossless compression. However, we also expect our approach to be ef-
fective for lossy compression with almost no modifications. This can be achieved by
dropping the contents of the least significant bits of the mantissa. In order to validate
this, the performance for this lossy scheme would need to be compared against other
existing lossy compression algorithms like SZ3 and zfp [72, 73]. In addition to that, the
influence of the amount of information loss on the respective application needs to be
investigated.

Persisting Stream Segment Index In its current form, the Stream Segment Index
is entirely stored in volatile memory (RAM). This has the following two implications:
First, starting up HAQSE needs to open all files to recreate the index (even though not
all file contents need to be read). When the number of files HAQSE manages is large,
this process considerably slows down the creation of the Stream Segment Index and,
thus, the startup of HAQSE. Second, for very large databases, the Stream Segment In-
dex may unnecessarily require a large amount of RAM. Persisting the Stream Segment
Index can help to avoid these two problems.

Memory Improvements for Stream Consumption Consuming sensor streams in
HAQSE requires multiple kB per sensor in the stream schema. While this is unprob-
lematic for small sensor schemas or systems with a lot of RAM available, it can be
prohibitive especially for wide stream schemas or smaller systems. It would thus also

8 Future Work and Conclusions

184

be worthwhile to investigate alternative ingestion methods that require less memory.
Similarly, as shown in Section 5.5.6, the current approach for compacting data is not
optimal for large compacted file sizes. Combining data from temporary files as soon as
enough sensor samples are available might make compaction more memory-efficient
and thus, faster.

Query Processing Range-based queries can be processed very quickly in HAQSE.
There is, however, potential to explore query performance in more depth, especially re-
garding concurrent querying/ingestion scenarios. In addition, evaluating HAQSE with
respect to multiple concurrent queries remains to be investigated.

The query interface, however, is limited to range-based data retrieval using the cus-
tom query protocol. To make adoption in third-party tools easier, offering a standard
query interface would be desirable (e.g., SQL). Initiatives like Apache Arrow Flight
SQL [117] offer a standardizedway to achieve this with the employed technology stack.
Another natural addition, once an interface as described above is available, is a more
sophisticated query processing component. There is a general trend in the database
processing field: query execution engines are being implemented in open source li-
braries such as Apache Arrow DataFusion [113] or Velox [79, 89] and thus, become
a commodity. Integrating such a query engine in HAQSE can substantially improve
its query capabilities. The underlying storage and in-memory processing technology
provide a good starting point for integrating such systems.

Application Examples HAQSE is based on clearly defined concepts regarding sen-
sor stream input and range-based data retrieval. While we show its utility for a real-
world application in Chapter 7, other potential application scenarios could benefit from
using HAQSE. One such example is data center monitoring, where HAQSE could be
used as a solution for efficient long-term storage of monitoring metrics (e.g., as a com-
ponent of projects like DCDB [84]). Furthermore, it would be interesting to see how
HAQSE can be integrated as sensor storage system in large-scale physics experiments.

General HAQSE currently does not handle sensor metadata like units, signal de-
scription, or relations between stored sensor streams. For users of these sensor streams,
this information is crucial when interpreting data. Furthermore, it enables improved
user interfaces by supporting interaction based on metadata information. In addition
to that, applications using sensor data stored in HAQSE like IfTA TrendViewer need to
be adapted to make the most of the new possibilities HAQSE offers.

8.2 Conclusions
HAQSE makes it possible to consume, process and store high-volume sensor streams,
and it makes the stored sensor data accessible via a query interface. As we show in

8.2 Conclusions

185

the respective evaluation sections, it handles each aspect very efficiently. It can con-
sume sensor data at the rate of Gbit Ethernet, which is at least eight times faster than
any other time series management system we tested (Section 5.6). Similarly, it stores
data more efficiently than any other time series management system (Section 4.4.7).
Our method makes it possible to compress data to 50% of its uncompressed size when
applied to a typical industrial dataset. The second best (existing) options achieve only
around 66% in that case. We showed that the employed compression works for a va-
riety of different data sets (Section 4.4.5) and is faster than any other method (Sec-
tion 4.4.6). By relying on pre-computed windowed aggregations, HAQSE can respond
to range-based data queries at latencies that enable interactive data exploration, in-
dependent of the size of the requested time range. Our approach for integrating data
from multiple, distributed instances enables distributed queries. By deploying HAQSE
in real-world production environments (Chapter 7), we show that our approach satis-
fies the requirements of real applications. All these results make it possible for con-
temporary and future sensor processing applications to increase sensor sampling fre-
quencies and data rates further, supporting hundreds of kHz for schemas that contain
up to 100 single-precision floating-point sensors. For smaller schema sizes, HAQSE
even supports sampling rates in the MHz range (Section 5.5.8). HAQSE is expected to
speed up sensor data analysis considerably. Thus, it helps operators and engineers in
decision-making and developing new sensor analysis methods.

187

Appendices

189

A Implementation Details of HAQSE

A.1 HAQSE File System Layout
We store metadata information (especially schema information) in HAQSE together
with the data files containing the actual measurement values (Apache Parquet or tem-
porary files, see Chapter 5 for details). Stream ids and resolutions are stored as folder
names in the file system. The resulting file system layout looks like this:

haqse-root
<stream-id-1>

o..contains source stream
<source-resolution>

<first-ts-in-file-1>.parquet
<first-ts-in-file-2>.parquet
...

a..contains all aggregated streams
<agg-resolution-1>

<first-ts-in-agg-file-1>.parquet
<first-ts-in-agg-file-2>.parquet
...

<agg-resolution-2>
<agg-resolution-3>
...

<stream-id-2>
<stream-id-3>
...

A.2 gRPC Input Protocol Definition
The following protobuf code represents the full gRPC protocol definition for the sensor
input interface of HAQSE.

1 syntax = "proto3";
2 package ifta.haqse.streamproto;
3

4 // only use lite messages (we don't need descriptors for now)

A Implementation Details of HAQSE

190

5 option optimize_for = LITE_RUNTIME;
6

7 service ServerInput {
8 rpc StreamSensorData(stream SensorStreamElement) returns (StreamStatus) {}
9 }

10

11 enum BufStrategy {
12 OneMemBuffer = 0;
13 OneFileBuffer = 1;
14 OneMemBufferNonTemporal = 2;
15 }
16

17 enum Compression {
18 None = 0;
19 zstd = 1;
20 lz4 = 2;
21 brotli = 3;
22 }
23

24 enum Encoding {
25 Plain = 0;
26 bss = 1;
27 delta_packed = 2;
28 }
29

30 message ParquetComprSettings {
31 Encoding e = 1;
32 Compression c = 2;
33 int32 c_lvl = 3;
34 bool dict_enabled = 4;
35 }
36

37 message WriterCfg {
38 uint32 bufCount = 1;
39 uint32 rowGroupSize = 2;
40 uint32 rowGroupsPerTempFile = 3;
41 uint32 tempFilesPerCompacted = 4;
42 uint32 rowGroupSizeCompacted = 5;
43 BufStrategy bufStrategy = 6;
44 ParquetComprSettings defaultCmpr = 7;
45 map<string, ParquetComprSettings> typeComprMap = 8;
46 string colWrtrStrategy = 9;
47 string syncStrategy = 10;
48 }
49

50 message AggDef {
51 uint64 resolution_nanos = 1;
52 WriterCfg writerCfg = 2;
53 }
54

A.2 gRPC Input Protocol Definition

191

55 message AggStoreCfg {
56 WriterCfg srcWriterCfg = 1;
57 repeated AggDef aggs = 2;
58 }
59

60 enum FieldType {
61 Bool = 0;
62 Int8 = 1;
63 Int16 = 2;
64 Int32 = 3;
65 Int64 = 4;
66 UInt8 = 5;
67 UInt16 = 6;
68 UInt32 = 7;
69 UInt64 = 8;
70 Float32 = 9;
71 Float64 = 10;
72 TimeStampNanos = 11; // nanoseconds since UTC 1970-01-01 00:00
73 }
74

75 message SchemaField {
76 string name = 1;
77 FieldType type = 2;
78 }
79

80 message StreamSchema {
81 repeated SchemaField fields = 1;
82 }
83

84 enum ContentType {
85 PlainBinary = 0; // little endian plain C encoding
86 MsgPack = 1; // experimental, just for testing
87 }
88

89 message StreamDefinition {
90 string stream_id = 1;
91 StreamSchema schema = 2;
92 uint64 resolution = 3;
93 ContentType content_type = 4; // maybe this can be part of the actual sensor data
94 AggStoreCfg agg_cfg = 5;
95 }
96

97 message SingleSampleData {
98 int64 timestamp = 1;
99 bytes stream_content = 2;

100 }
101

102 message SampleBatchData {
103 uint64 sample_count = 1;
104 bytes timestamps = 2;

A Implementation Details of HAQSE

192

105 bytes values = 3;
106 }
107

108 message SensorStreamElement {
109 oneof StreamDefOrContent {
110 // implementation needs to enforce that first message is always the StreamDefinition
111 StreamDefinition stream_definition = 1;
112 // all messages after the first one need to be SensorData messages
113 SingleSampleData single_sample = 2;
114 SampleBatchData batch_samples = 3;
115 }
116 }
117

118 enum StatusCode {
119 Ok = 0;
120 Failed = 1;
121 Unknown = 2;
122 NotImplemented = 3;
123 StreamIncompatible = 4;
124 }
125

126 message StreamStatus {
127 string message = 1;
128 StatusCode code = 2;
129 }

A.3 Example HAQSE Query Client

The following short snippet shows how a basic HAQSE query client (without support
for retrieving data from distributed instances) could be implemented in Python. This
simple client just requires the pyarrow.flight package and its dependencies to be avail-
able. An example query is shown in Section 3.4.2.

1 import pyarrow.flight as flght
2 import json
3

4 def query(url: str, query: dict):
5 clnt = flght.FlightClient(url) # create apache arrow flight client
6 query_json = json.dumps(query).encode("utf-8") # encode query
7 query_response = clnt.do_get(flght.Ticket(query_json)) # perform request
8

9 # read record batches from resulting stream object and return as a list
10 return [rb for rb in query_response]

A.4 Query Sequence

193

A.4 Query Sequence
The following sequence diagram shows the sequence of actions when retrieving data
from HAQSE.

Client Server

Client FlightClientThrd FlightServer HAQSE

Client FlightClientThrd FlightServer HAQSE

do_get()

result_iterator remote_do_get()

wait for results perform_query()

Status

loop [as long as there is more data]

ReadNext()

RecordBatch

RecordBatch

RecordBatch

consume RecordBatch

ReadNext()

null

EndOfResults

EndOfResults

Figure A.1 Sequence diagram showing the interaction between client and server when query-
ing data from a single HAQSE server.

195

Acronyms

ADF Argus Data Format. 70–72, 168–176, 181
AOP Argus Online Protocol. 168, 170, 171, 173–175
API Application Programming Interface. 9, 90, 91
AQP approximate query processing. 31
AVX Advanced Vector Extensions [57]. 58, 60–62, 198
CLI command line interface. 88, 173
CPU central processing unit. 7, 10, 19, 25, 26, 56, 57, 59–62, 69, 70, 80, 86, 95, 101,

107, 121, 128, 129, 153, 176, 198
CSV comma separated values. 28, 174
FFT Fast Fourier Transform. 3, 14, 20
HDD Hard Disk Drive. iii, 68, 87, 91–93, 106, 114, 118, 124, 139, 141, 150, 176
HKW Süd Heizkraftwerk Süd. 178–181
HPC High Performance Computing. 19, 29
HTTP Hypertext Transfer Protocol. 90, 96, 97, 125, 126, 129
ILP Influx Line Protocol. 28, 70, 72, 90, 91, 96–98, 125, 126
IoT Internet of Things. 35
ISA Instruction Set Architecture. 60
JSON JavaScript Object Notation [59]. 37, 45, 46, 165
NTP Network Time Protocol [82]. 173
RAM random-access memory. 7, 26, 40, 60, 68, 76, 87, 116, 140, 153, 183
RPC remote procedure call. 165, 197
SIMD Single Instruction, Multiple Data. 10
SQL Structured Query Language. 28, 91, 96, 98, 125, 126, 184
SSD Solid-State Drive. 68, 87
SSE Streaming SIMD Extensions [57]. 57, 58, 60, 61, 198
STFT short-time Fourier transform. 20
SWM Stadtwerke München GmbH. iii, 178–180
TCP Transmission Control Protocol. 90, 95–97, 125, 126
TDP thermal design power. 21, 60
TSM Time-Structured Merge Tree [56]. 27, 28

197

Glossary
Apache Arrow Apache Arrow is a development platform for in-memory analytics. 35,

43, 46, 51, 56, 57, 60, 68, 81, 104, 132, 138–143, 150, 152

Apache Arrow columnar format The Apache Arrow columnar format [9] includes
a language-agnostic in-memory data structure specification, metadata serializa-
tion, and a protocol for serialization and generic data transport. 43, 197

Apache Arrow Flight Apache Arrow Flight [8] is an RPC framework for high-per-
formance data services based on Apache Arrow data, and is built on top of gRPC
and the Apache Arrow IPC format format. 34, 43, 46, 165, 184

Apache Arrow IPC format See Apache Arrow columnar format. 81, 82, 104–106, 112,
138, 197

Apache Parquet Apache Parquet [116, 129] is an open-source, column-oriented data
file format designed for efficient data storage and retrieval. The contained colum-
nar data is stored in one or multiple row groups. 10, 28, 34, 42, 43, 47, 51, 55–57,
59, 62–65, 68–73, 75, 80, 82, 112, 114, 116, 132, 138, 140–150, 152, 153, 189, 197, 198

Byte Stream Split An encoding for Apache Parquet, which helps to improve compres-
sion for floating-point sensor data. 10, 47, 54, 55, 57–63, 65–70, 72, 112, 138, 146,
181

Column Chunk A column chunk in the Apache Parquet format stores the data of one
column of a row group and consists of one or multiple data pages. 197, 198

Data Page A data page represents one logical unit of encoding and compression in
Apache Parquet. One or multiple data pages make up a column chunk. 197

gRPC gRPC is a modern open source high performance RPC framework that can run
in any environment [43]. 34, 43, 45, 81, 88–90, 93–95, 99, 101, 102, 106, 111, 119,
122, 126, 165, 173, 189, 197

IfTA ArgusOMDS Monitoring and protection system developed by IfTA GmbH. Its
main application is monitoring the combustion process in heavy-duty gas tur-
bines for electricity generation. An overview is presented in Section 7.2.2. 166–170,
173, 177–179

Glossary

198

IfTA DataHub Data collection and aggregation server of IfTA GmbH. 167, 168, 170,
173, 174, 179, 180

IfTA GmbH IfTA Ingenieurbüro für Thermoakustik GmbH is a small innovative com-
pany in Puchheim, Germany. It creates innovative systems for oscillation mon-
itoring, specifically for protecting stationary, heavy-duty gas turbines against
thermoacoustic instabilities. More background is provided in Section 7.2.1. Web-
site: https://www.ifta.com. iii, 11, 163, 166, 174, 177, 197, 198

IfTA SignalMiner Monitoring and protection firmware developed by IfTAGmbH run-
ning on IfTA’s realtime capable hardware. 167, 169, 172, 180, 181

IfTA TrendViewer IfTA’s visualization and analysis software. This can be used for
both online monitoring and analysis of historical data. 168, 170, 173–177, 184

Protocol Buffers Protocol buffers are Google’s language-neutral, platform-neutral,
extensible mechanism for serializing structured data. 43

Row Group A row group represents a continuous slice of multiple rows of the com-
plete schema stored together as one unit in the Apache Parquet format. It consists
of one or multiple column chunks. 51, 75, 197

Stream Segment Index A tree-based indexing data structure thatmanages segments
of sensor data for fast retrieval. 10, 40, 41, 74, 76–78, 80, 82, 131–133, 136, 142, 183

Vector Instruction Vector instructions are processor instructions that exploit the vec-
torized processing capabilities of modern CPUs, e.g., instructions from the Intel
SSE or AVX vector instruction sets. 10, 61

https://www.ifta.com

199

Bibliography

[1] Daniel Abadi et al. “The Design and Implementation of Modern Column-Ori-
ented Database Systems”. In: Foundations and Trends® in Databases 5.3 (Jan.
2013), pp. 197–280. doi: 10.1561/1900000024.

[2] Ulf Adams. “Ryū: Fast Float-to-String Conversion”. In: Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion. PLDI 2018. Philadelphia, PA, USA: Association for Computing Machinery,
2018, pp. 270–282. isbn: 9781450356985. doi: 10.1145/3192366.3192369. url:
https://doi.org/10.1145/3192366.3192369.

[3] Pritom Saha Akash, Wei-Cheng Lai, and Po-Wen Lin. Online Aggregation based
Approximate Query Processing: A Literature Survey. 2022. doi: 10.48550/ARXIV.
2204.07125.

[4] Jyrki Alakuijala and Zoltan Szabadka.Brotli Compressed Data Format. RFC 7932.
July 2016. doi: 10.17487/RFC7932. url: https://rfc-editor.org/rfc/
rfc7932.txt.

[5] Ahmed Ali-Eldin, Bin Wang, and Prashant Shenoy. “The Hidden Cost of the
Edge: A Performance Comparison of Edge and Cloud Latencies”. In: Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis. SC ’21. St. Louis, Missouri: Association for Computing
Machinery, 2021. isbn: 9781450384421. doi: 10.1145/3458817.3476142. url:
https://doi.org/10.1145/3458817.3476142.

[6] Michael P Andersen and David E. Culler. “BTrDB: Optimizing Storage System
Design for Timeseries Processing”. In: 14th USENIX Conference on File and Stor-
age Technologies (FAST 16). Santa Clara, CA: USENIX Association, Feb. 2016,
pp. 39–52. isbn: 978-1-931971-28-7. url: https://www.usenix.org/conferen
ce/fast16/technical-sessions/presentation/andersen.

[7] Vo Ngoc Anh and Alistair Moffat. “Index compression using 64-bit words”. In:
Software: Practice and Experience (2010), n/a–n/a. doi: 10.1002/spe.948.

[8] Apache Software Foundation. Arrow Flight RPC. Accessed April, 2023. 2023. url:
https://arrow.apache.org/docs/format/Flight.html.

[9] Apache Software Foundation. IPC File Format. Accessed December, 2022. 2022.
url: https://arrow.apache.org/docs/format/Columnar.html#ipc-file-
format.

https://doi.org/10.1561/1900000024
https://doi.org/10.1145/3192366.3192369
https://doi.org/10.1145/3192366.3192369
https://doi.org/10.48550/ARXIV.2204.07125
https://doi.org/10.48550/ARXIV.2204.07125
https://doi.org/10.17487/RFC7932
https://rfc-editor.org/rfc/rfc7932.txt
https://rfc-editor.org/rfc/rfc7932.txt
https://doi.org/10.1145/3458817.3476142
https://doi.org/10.1145/3458817.3476142
https://www.usenix.org/conference/fast16/technical-sessions/presentation/andersen
https://www.usenix.org/conference/fast16/technical-sessions/presentation/andersen
https://doi.org/10.1002/spe.948
https://arrow.apache.org/docs/format/Flight.html
https://arrow.apache.org/docs/format/Columnar.html#ipc-file-format
https://arrow.apache.org/docs/format/Columnar.html#ipc-file-format

Bibliography

200

[10] iPerf authors. iPerf. Accessed January, 2023. 2023. url: https://iperf.fr/.

[11] Maurice J. Bach. The design of the UNIX operating system. Prentice-Hall, 1986,
p. 471. isbn: 0132017997. url: https://archive.org/details/designofunix
oper00bach/page/128.

[12] Rudolf Bayer. “Symmetric Binary B-Trees: Data Structure and Algorithms for
Random and Sequential Information Processing”. In: Acta Informatica. 1971.

[13] Jadeed Beita et al. “Thermoacoustic Instability Considerations for High Hydro-
gen Combustion in Lean Premixed Gas Turbine Combustors: A Review”. In: Hy-
drogen 2.1 (Jan. 2021), pp. 33–57. doi: 10.3390/hydrogen2010003.

[14] Michael Borkowski, Christoph Hochreiner, and Stefan Schulte. “Minimizing
Cost by Reducing Scaling Operations in Distributed Stream Processing”. In:
Proc. VLDB Endow. 12.7 (Mar. 2019), pp. 724–737. issn: 2150-8097. doi: 10.14
778/3317315.3317316. url: https://doi.org/10.14778/3317315.3317316.

[15] Norman Bourassa et al. “Operational Data Analytics”. In:Workshop Proceedings
of the 48th International Conference on Parallel Processing. ACM, Aug. 2019. doi:
10.1145/3339186.3339210.

[16] Andrea Bruno et al. “TSXor: A Simple Time Series Compression Algorithm”. In:
String Processing and Information Retrieval. Ed. by Thierry Lecroq and Hélène
Touzet. Cham: Springer International Publishing, 2021, pp. 217–223. isbn: 978-
3-030-86692-1.

[17] Martin Burtscher and Paruj Ratanaworabhan. “FPC: AHigh-Speed Compressor
for Double-Precision Floating-Point Data”. In: IEEE Transactions on Computers
58.1 (Jan. 2009), pp. 18–31. doi: 10.1109/TC.2008.131.

[18] Burtscher, Martin. Scientific IEEE 754 32-Bit Single-Precision Floating-Point Data-
sets. Accessed June, 2020. 2020. url: https://userweb.cs.txstate.edu/
~burtscher/research/datasets/FPsingle/.

[19] Burtscher,Martin. Scientific IEEE 754 64-Bit Double-Precision Floating-Point Data-
sets. Accessed June, 2020. 2020. url: https://userweb.cs.txstate.edu/
~burtscher/research/datasets/FPdouble/.

[20] Stuart K. Card, George G. Robertson, and Jock D. Mackinlay. “The information
visualizer, an information workspace”. In: Proceedings of the SIGCHI conference
on Human factors in computing systems Reaching through technology - CHI ’91.
ACM Press, 1991. doi: 10.1145/108844.108874.

[21] Ugur Cayoglu et al. “Data Encoding in Lossless Prediction-Based Compression
Algorithms”. In: 2019 15th International Conference on eScience (eScience). 2019,
pp. 226–234. doi: 10.1109/eScience.2019.00032.

https://iperf.fr/
https://archive.org/details/designofunixoper00bach/page/128
https://archive.org/details/designofunixoper00bach/page/128
https://doi.org/10.3390/hydrogen2010003
https://doi.org/10.14778/3317315.3317316
https://doi.org/10.14778/3317315.3317316
https://doi.org/10.14778/3317315.3317316
https://doi.org/10.1145/3339186.3339210
https://doi.org/10.1109/TC.2008.131
https://userweb.cs.txstate.edu/~burtscher/research/datasets/FPsingle/
https://userweb.cs.txstate.edu/~burtscher/research/datasets/FPsingle/
https://userweb.cs.txstate.edu/~burtscher/research/datasets/FPdouble/
https://userweb.cs.txstate.edu/~burtscher/research/datasets/FPdouble/
https://doi.org/10.1145/108844.108874
https://doi.org/10.1109/eScience.2019.00032

201

[22] Surajit Chaudhuri, Bolin Ding, and Srikanth Kandula. “ApproximateQuery Pro-
cessing: No Silver Bullet”. In: Proceedings of the 2017 ACM International Confer-
ence onManagement of Data. ACM,May 2017. doi: 10.1145/3035918.3056097.

[23] Steven Claggett, Sahar Azimi, and Martin Burtscher. “SPDP: An Automatically
Synthesized Lossless Compression Algorithm for Floating-Point Data”. In: 2018
Data Compression Conference. IEEE. IEEE,Mar. 2018, pp. 335–344. doi: 10.1109/
DCC.2018.00042.

[24] Collet, Yann.Zstandard-Fast real-time compression algorithm. AccessedApril 2020.
2020. url: https://facebook.github.io/zstd/.

[25] COMMISSION IMPLEMENTINGDECISION of 10 February 2012 laying down rules
concerning the transitional national plans referred to in Directive 2010/75/EU of
the European Parliament and of the Council on industrial emissions. Accessed
Feburary 2023. Feb. 10, 2012. url: https://eur-lex.europa.eu/eli/dec_
impl/2012/115.

[26] Graham Cormode et al. “Synopses for Massive Data: Samples, Histograms,
Wavelets, Sketches”. In: Foundations and Trends in Databases 4.1-3 (2011), pp. 1–
294. doi: 10.1561/1900000004.

[27] Intel Corporation. Intel oneAPI DPC++/C++ Compiler. A Standards-Based, Cross-
architecture Compiler. 2023. url: https://www.intel.com/content/www/us/
en/developer/tools/oneapi/dpc-compiler.html (visited on 04/20/2023).

[28] cppreference.com.Release-Acquire Ordering. AccessedDecember, 2022. 2022. url:
https://en.cppreference.com/w/cpp/atomic/memory_order#Release-
Acquire_ordering.

[29] D. Cutting and J. Pedersen. “Optimization for dynamic inverted index mainte-
nance”. In: Proceedings of the 13th annual international ACM SIGIR conference on
Research and development in information retrieval - SIGIR ’90. ACM Press, 1990.
doi: 10.1145/96749.98245.

[30] Sheng Di and Franck Cappello. “Fast Error-Bounded Lossy HPCData Compres-
sionwith SZ”. In: 2016 IEEE International Parallel and Distributed Processing Sym-
posium (IPDPS). IEEE, May 2016, pp. 730–739. doi: 10.1109/IPDPS.2016.11.

[31] Sheng Di and Franck Cappello. “Optimization of Error-Bounded Lossy Com-
pression for Hard-to-Compress HPCData”. In: IEEE Transactions on Parallel and
Distributed Systems 29.1 (Jan. 2018), pp. 129–143. doi: 10.1109/TPDS.2017.
2749300.

[32] Avrilia Floratou et al. “Dhalion: Self-Regulating Stream Processing in Heron”.
In: Proc. VLDB Endow. 10.12 (Aug. 2017), pp. 1825–1836. issn: 2150-8097.

https://doi.org/10.1145/3035918.3056097
https://doi.org/10.1109/DCC.2018.00042
https://doi.org/10.1109/DCC.2018.00042
https://facebook.github.io/zstd/
https://eur-lex.europa.eu/eli/dec_impl/2012/115
https://eur-lex.europa.eu/eli/dec_impl/2012/115
https://doi.org/10.1561/1900000004
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://en.cppreference.com/w/cpp/atomic/memory_order#Release-Acquire_ordering
https://en.cppreference.com/w/cpp/atomic/memory_order#Release-Acquire_ordering
https://doi.org/10.1145/96749.98245
https://doi.org/10.1109/IPDPS.2016.11
https://doi.org/10.1109/TPDS.2017.2749300
https://doi.org/10.1109/TPDS.2017.2749300

Bibliography

202

[33] Valentin Forch et al. “Are 100 ms Fast Enough? Characterizing Latency Percep-
tion Thresholds in Mouse-Based Interaction”. In: Engineering Psychology and
Cognitive Ergonomics: Cognition and Design. Springer International Publishing,
2017, pp. 45–56. doi: 10.1007/978-3-319-58475-1_4.

[34] Free Software Foundation, Inc.GNUGzip. AccessedMai 2023. 2020. url: https:
//www.gnu.org/software/gzip/.

[35] General Electric. 9E gas turbine. Accessed April 2023. 2023. url: https://www.
ge.com/gas-power/products/gas-turbines/9e.

[36] Jongmin Gim and Youjip Won. “Extract and infer quickly: Obtaining sector ge-
ometry of modern hard disk drives”. In: ACM Transactions on Storage 6.2 (July
2010), pp. 1–26. doi: 10.1145/1807060.1807063.

[37] B. Goeman, H. Vandierendonck, and K. de Bosschere. “Differential FCM: in-
creasing value prediction accuracy by improving table usage efficiency”. In: Pro-
ceedings HPCA Seventh International Symposium onHigh-Performance Computer
Architecture. 2001, pp. 207–216. doi: 10.1109/HPCA.2001.903264.

[38] Adrián Gómez-Brandón et al. “Lossless compression of industrial time series
with direct access”. In: Computers in Industry 132 (Nov. 2021), p. 103503. doi:
10.1016/j.compind.2021.103503.

[39] Google. Snappy, a fast compressor/decompressor. Accessed Mai 2023. 2022. url:
https://github.com/google/snappy/blob/main/README.md.

[40] Google LLC. Protocol Buffers Documentation. Accessed April 2023. 2023. url:
https://developers.google.com/protocol-buffers.

[41] Torbjorn Granlund et al. du. Accessed February 2023. 2023. url: https://man7.
org/linux/man-pages/man1/du.1.html.

[42] gRPC Authors. Core concepts, architecture and lifecycle. Accessed April 2023.
2022. url: https://grpc.io/docs/what-is-grpc/core-concepts/.

[43] gRPC Authors. gRPC. Accessed April 2023. 2023. url: https://grpc.io/.

[44] John L. Gustafson and Isaac T. Yonemoto. “Beating Floating Point at its Own
Game: Posit Arithmetic”. In: Supercomputing Frontiers and Innovations 4.2 (June
2017), pp. 71–86. issn: 2409-6008. doi: 10 . 14529 / jsfi170206. url: https :
//doi.org/10.14529/jsfi170206.

[45] Jakob Hermann. Anregungsmechanismen und aktive Dämpfung (AIC) selbster-
regter Verbrennungsschwingungen in Flüssigkraftstoffsystemen. German. In: Fort-
schrittsberichte VDI. Energietechnik. Vol. 6.364. 1997. isbn: 3183364069.

https://doi.org/10.1007/978-3-319-58475-1_4
https://www.gnu.org/software/gzip/
https://www.gnu.org/software/gzip/
https://www.ge.com/gas-power/products/gas-turbines/9e
https://www.ge.com/gas-power/products/gas-turbines/9e
https://doi.org/10.1145/1807060.1807063
https://doi.org/10.1109/HPCA.2001.903264
https://doi.org/10.1016/j.compind.2021.103503
https://github.com/google/snappy/blob/main/README.md
https://developers.google.com/protocol-buffers
https://man7.org/linux/man-pages/man1/du.1.html
https://man7.org/linux/man-pages/man1/du.1.html
https://grpc.io/docs/what-is-grpc/core-concepts/
https://grpc.io/
https://doi.org/10.14529/jsfi170206
https://doi.org/10.14529/jsfi170206
https://doi.org/10.14529/jsfi170206

203

[46] Jakob Hermann and Stefan Hoffmann. “Implementation of Active Control in a
Full-Scale Gas-Turbine Combustor”. In: Combustion Instabilities in Gas Turbine
Engines: Operational Experience, Fundamental Mechanisms, and Modeling. Ed. by
Timothy C. Lieuwen and Vigor Yang. Vol. 210. American Institute of Aeronautics
and Astronautics, Jan. 2006. Chap. 19, pp. 611–634. isbn: 978-1-56347-669-3. url:
https://www.researchgate.net/publication/294428184.

[47] MoritzHoffmann, Andrea Lattuada, and FrankMcSherry. “Megaphone: Latency-
Conscious StateMigration forDistributed StreamingDataflows”. In: Proc. VLDB
Endow. 12.9 (May 2019), pp. 1002–1015. issn: 2150-8097. doi: 10.14778/332977
2.3329777. url: https://doi.org/10.14778/3329772.3329777.

[48] QunHuang and Patrick P. C. Lee. “TowardHigh-PerformanceDistributed Stream
Processing via Approximate Fault Tolerance”. In: Proc. VLDB Endow. 10.3 (Nov.
2016), pp. 73–84. issn: 2150-8097. doi: 10.14778/3021924.3021925. url: http
s://doi.org/10.14778/3021924.3021925.

[49] “IEEE Standard for a Precision Clock Synchronization Protocol for Networked
Measurement and Control Systems”. In: IEEE Std 1588-2019 (Revision of IEEE Std
1588-2008) (2020), pp. 1–499. doi: 10.1109/IEEESTD.2020.9120376.

[50] “IEEE Standard for Binary Floating-Point Arithmetic”. In: ANSI/IEEE Std 754-
1985 (1985), pp. 1–20. doi: 10.1109/IEEESTD.1985.82928.

[51] IfTA GmbH. Schwingungsmessung mit Argusaugen. Accessed April 2023. 2022.
url: https://www.ifta.com/produkte/systemloesungen/argusomds-
diagnose-schutz.html.

[52] Thomas Ilsche. “Energy Measurements of High Performance Computing Sys-
tems: From Instrumentation to Analysis”. PhD thesis. Dresden University of
Technology, Germany, 2020. url: https://nbn-resolving.org/urn:nbn:de:
bsz:14-qucosa2-716000.

[53] Thomas Ilsche et al. “MetricQ: A Scalable Infrastructure for Processing High-
Resolution Time Series Data”. In: 2019 IEEE/ACM Industry/University Joint Inter-
national Workshop on Data-center Automation, Analytics, and Control (DAAC).
IEEE, Nov. 2019, pp. 7–12. doi: 10.1109/DAAC49578.2019.00007.

[54] InfluxData Inc. InfluxDB. Accessed Juli 2021. 2021. url: https://docs.influx
data.com/.

[55] InfluxData Inc. InfluxDB file system layout. Accessed December 2022. 2022. url:
https://docs.influxdata.com/influxdb/v2.5/reference/internals/
file-system-layout/.

[56] InfluxData Inc. InfluxDB storage engine. Accessed December 2022. 2022. url:
https://docs.influxdata.com/influxdb/v2.5/reference/internals/
storage-engine/.

https://www.researchgate.net/publication/294428184
https://doi.org/10.14778/3329772.3329777
https://doi.org/10.14778/3329772.3329777
https://doi.org/10.14778/3329772.3329777
https://doi.org/10.14778/3021924.3021925
https://doi.org/10.14778/3021924.3021925
https://doi.org/10.14778/3021924.3021925
https://doi.org/10.1109/IEEESTD.2020.9120376
https://doi.org/10.1109/IEEESTD.1985.82928
https://www.ifta.com/produkte/systemloesungen/argusomds-diagnose-schutz.html
https://www.ifta.com/produkte/systemloesungen/argusomds-diagnose-schutz.html
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-716000
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-716000
https://doi.org/10.1109/DAAC49578.2019.00007
https://docs.influxdata.com/
https://docs.influxdata.com/
https://docs.influxdata.com/influxdb/v2.5/reference/internals/file-system-layout/
https://docs.influxdata.com/influxdb/v2.5/reference/internals/file-system-layout/
https://docs.influxdata.com/influxdb/v2.5/reference/internals/storage-engine/
https://docs.influxdata.com/influxdb/v2.5/reference/internals/storage-engine/

Bibliography

204

[57] Intel Corporation. Intel Intrinsics Guide. Accessed Mai 2023. 2023. url: https:
//www.intel.com/content/www/us/en/docs/intrinsics-guide/index.
html.

[58] ISO. ISO/IEC 14882:2020 Programming languages — C++. Sixth Edition. Geneva,
Switzerland: International Organization for Standardization, Dec. 2020. url: ht
tps://www.iso.org/standard/79358.html.

[59] ISO/IEC 21778:2017 - The JSON data interchange syntax. Tech. rep. ECMA, Dec.
2017. url: https://www.iso.org/standard/71616.html.

[60] Daniel Jäger. “Improvement of the Time Accuracy of a Vibration Measurement
System”. In: Bachelor Thesis (2019).

[61] Søren Kejser Jensen, Torben Bach Pedersen, and Christian Thomsen. “Time Se-
ries Management Systems: A Survey”. In: IEEE Transactions on Knowledge and
Data Engineering 29.11 (Nov. 2017), pp. 2581–2600. doi: 10.1109/TKDE.2017.
2740932.

[62] Junekey Jeon. Dragonbox: A New Floating-Point Binary-to-Decimal Conversion
Algorithm. 2022. url: https : / / raw . githubusercontent . com / jk - jeon /
dragonbox/master/other_files/Dragonbox.pdf.

[63] Jeroen T. Vermeulen. libpqxx: pqxx::stream_to Class Reference. Accessed October
2022. 2021. url: https://libpqxx.readthedocs.io/en/6.4/a01211.html#
details.

[64] Samuel C. Johnson et al. “Evaluating rotational inertia as a component of grid
reliability with high penetrations of variable renewable energy”. In: Energy 180
(Aug. 2019), pp. 258–271. doi: 10.1016/j.energy.2019.04.216.

[65] Roman Karlstetter, Robert Widhopf-Fenk, and Martin Schulz. “Querying Dis-
tributed Sensor Streams in the Edge-to-Cloud Continuum”. In: 2022 IEEE Inter-
national Conference on Edge Computing and Communications (EDGE). IEEE, July
2022. doi: 10.1109/edge55608.2022.00035.

[66] Roman Karlstetter et al. “Living on the Edge: Efficient Handling of Large Scale
Sensor Data”. In: 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud
and Internet Computing (CCGrid). IEEE Computer Society, May 2021, pp. 1–10.
doi: 10.1109/CCGrid51090.2021.00010. url: https://doi.org/10.1109/
CCGrid51090.2021.00010.

[67] Roman Karlstetter et al. “Turning Dynamic Sensor Measurements From Gas
Turbines Into Insights: A Big Data Approach”. In: vol. Volume 6: Ceramics; Con-
trols, Diagnostics, and Instrumentation; Education; Manufacturing Materials
and Metallurgy. Turbo Expo: Power for Land, Sea, and Air. V006T05A021. June
2019. doi: 10.1115/GT2019-91259.

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.iso.org/standard/79358.html
https://www.iso.org/standard/79358.html
https://www.iso.org/standard/71616.html
https://doi.org/10.1109/TKDE.2017.2740932
https://doi.org/10.1109/TKDE.2017.2740932
https://raw.githubusercontent.com/jk-jeon/dragonbox/master/other_files/Dragonbox.pdf
https://raw.githubusercontent.com/jk-jeon/dragonbox/master/other_files/Dragonbox.pdf
https://libpqxx.readthedocs.io/en/6.4/a01211.html#details
https://libpqxx.readthedocs.io/en/6.4/a01211.html#details
https://doi.org/10.1016/j.energy.2019.04.216
https://doi.org/10.1109/edge55608.2022.00035
https://doi.org/10.1109/CCGrid51090.2021.00010
https://doi.org/10.1109/CCGrid51090.2021.00010
https://doi.org/10.1109/CCGrid51090.2021.00010
https://doi.org/10.1115/GT2019-91259

205

[68] Nikos R. Katsipoulakis, Alexandros Labrinidis, and Panos K. Chrysanthis. “A
Holistic View of Stream Partitioning Costs”. In: Proc. VLDB Endow. 10.11 (Aug.
2017), pp. 1286–1297. issn: 2150-8097.

[69] Daniel Lemire and Leonid Boytsov. “Decoding billions of integers per second
through vectorization”. In: Software: Practice and Experience 45.1 (May 2013),
pp. 1–29. doi: 10.1002/spe.2203.

[70] Kaiyu Li and Guoliang Li. “Approximate Query Processing: What is New and
Where to Go?” In: Data Science and Engineering 3.4 (Sept. 2018), pp. 379–397.
doi: 10.1007/s41019-018-0074-4.

[71] Panagiotis Liakos, Katia Papakonstantinopoulou, and Yannis Kotidis. “Chimp:
Efficient Lossless Floating Point Compression for Time Series Databases”. In:
Proc. VLDB Endow. 15.11 (Sept. 2022), pp. 3058–3070. issn: 2150-8097. doi: 10.
14778/3551793.3551852. url: https:// doi.org/ 10.14778/ 3551793.
3551852.

[72] Xin Liang et al. “SZ3: A Modular Framework for Composing Prediction-Based
Error-Bounded Lossy Compressors”. In: IEEE Transactions on Big Data (2022),
pp. 1–14. doi: 10.1109/TBDATA.2022.3201176.

[73] Peter Lindstrom. “Fixed-Rate Compressed Floating-Point Arrays”. In: IEEE Trans-
actions on Visualization and Computer Graphics 20.12 (Dec. 2014), pp. 2674–2683.
doi: 10.1109/TVCG.2014.2346458.

[74] Peter Lindstrom andMartin Isenburg. “Fast and Efficient Compression of Float-
ing-Point Data”. In: IEEE Transactions on Visualization and Computer Graphics
12.5 (Sept. 2006), pp. 1245–1250. doi: 10.1109/TVCG.2006.143.

[75] Linux. dd(1) — Linux manual page. Last Accessed March 2023. 2022. url: https:
//man7.org/linux/man-pages/man1/dd.1.html.

[76] Linux. madvise(2) - Linux manual page. Last Accessed February 2023. 2021. url:
https://man7.org/linux/man-pages/man2/madvise.2.html.

[77] LZ4 Authors. LZ4. Accessed Mai 2022. 2022. url: https://lz4.github.io/
lz4/.

[78] Matthias Maiterth. “A reference model for integrated energy and power man-
agement of HPC systems”. en. PhD thesis. 2021. doi: 10.5282/EDOC.28625.

[79] Meta Platforms, Inc. Velox. Accessed April 2023. 2023. url: https://velox-
lib.io/.

[80] Mike Freedman. Building columnar compression in a row-oriented database. Ac-
cessed April 2023. 2019. url: https://www.timescale.com/blog/building-
columnar-compression-in-a-row-oriented-database/.

https://doi.org/10.1002/spe.2203
https://doi.org/10.1007/s41019-018-0074-4
https://doi.org/10.14778/3551793.3551852
https://doi.org/10.14778/3551793.3551852
https://doi.org/10.14778/3551793.3551852
https://doi.org/10.14778/3551793.3551852
https://doi.org/10.1109/TBDATA.2022.3201176
https://doi.org/10.1109/TVCG.2014.2346458
https://doi.org/10.1109/TVCG.2006.143
https://man7.org/linux/man-pages/man1/dd.1.html
https://man7.org/linux/man-pages/man1/dd.1.html
https://man7.org/linux/man-pages/man2/madvise.2.html
https://lz4.github.io/lz4/
https://lz4.github.io/lz4/
https://doi.org/10.5282/EDOC.28625
https://velox-lib.io/
https://velox-lib.io/
https://www.timescale.com/blog/building-columnar-compression-in-a-row-oriented-database/
https://www.timescale.com/blog/building-columnar-compression-in-a-row-oriented-database/

Bibliography

206

[81] Robert B.Miller. “Response time inman-computer conversational transactions”.
In: Proceedings of the December 9-11, 1968, fall joint computer conference, part I
on - AFIPS ’68 (Fall, part I). ACM Press, 1968. doi: 10.1145/1476589.1476628.

[82] David L. Mills et al. Network Time Protocol Version 4: Protocol and Algorithms
Specification. RFC 5905. June 2010. doi: 10.17487/RFC5905. url: https://
www.rfc-editor.org/info/rfc5905.

[83] NERC. Reliability Guideline. Primary Frequency Control. Tech. rep. Version 2.0.
NERC, May 2019. 34 pp. url: https://www.nerc.com/comm/OC/RS_GOP_
Survey_DL/PFC_Reliability_Guideline_rev20190501_v2_final.pdf
(visited on 04/20/2023).

[84] Alessio Netti. “Holistic and Portable Operational Data Analytics on Production
HPC Systems”. Dissertation. München: Technische Universität München, 2022.

[85] J. von Neumann. “First draft of a report on the EDVAC”. In: IEEE Annals of the
History of Computing 15.4 (1993), pp. 27–75. doi: 10.1109/85.238389.

[86] Shadi A. Noghabi et al. “Samza: Stateful Scalable StreamProcessing at LinkedIn”.
In: Proc. VLDB Endow. 10.12 (Aug. 2017), pp. 1634–1645. issn: 2150-8097.

[87] Oracle. ByteBuffer. Accessed January 2023. 2022. url: https://docs.oracle.
com/javase/7/docs/api/java/nio/ByteBuffer.html.

[88] Paul Dix, InfluxData Inc.Announcing InfluxDB IOx - The Future Core of InfluxDB
Built with Rust and Arrow. Accessed December 2020. 2020. url: https://www.
influxdata.com/blog/announcing-influxdb-iox/.

[89] Pedro Pedreira et al. “Velox: Meta’s Unified Execution Engine”. In: Proc. VLDB
Endow. 15.12 (Aug. 2022), pp. 3372–3384. issn: 2150-8097. doi: 10.14778/35548
21.3554829. url: https://doi.org/10.14778/3554821.3554829.

[90] Tuomas Pelkonen et al. “Gorilla: A Fast, Scalable, in-Memory Time Series Data-
base”. In: Proc. VLDB Endow. 8.12 (Aug. 2015), pp. 1816–1827. issn: 2150-8097. doi:
10.14778/2824032.2824078. url: https://doi.org/10.14778/2824032.
2824078.

[91] Kasun S. Perera et al. “Efficient Approximate OLAPQuerying Over Time Series”.
In: Proceedings of the 20th International Database Engineering & Applications
Symposium on - IDEAS’16. ACM Press, 2016. doi: 10.1145/2938503.2938526.

[92] LLVM Project. Clang: a C language family frontend for LLVM. 2023. url: https:
//clang.llvm.org/ (visited on 04/20/2023).

[93] QuestDB. QuestDB. Accessed November 2022. 2022. url: https://questdb.
io/.

[94] QuestDB.QuestDB Root directory structure. Accessed December 2022. 2022. url:
https://questdb.io/docs/concept/root-directory-structure/.

https://doi.org/10.1145/1476589.1476628
https://doi.org/10.17487/RFC5905
https://www.rfc-editor.org/info/rfc5905
https://www.rfc-editor.org/info/rfc5905
https://www.nerc.com/comm/OC/RS_GOP_Survey_DL/PFC_Reliability_Guideline_rev20190501_v2_final.pdf
https://www.nerc.com/comm/OC/RS_GOP_Survey_DL/PFC_Reliability_Guideline_rev20190501_v2_final.pdf
https://doi.org/10.1109/85.238389
https://docs.oracle.com/javase/7/docs/api/java/nio/ByteBuffer.html
https://docs.oracle.com/javase/7/docs/api/java/nio/ByteBuffer.html
https://www.influxdata.com/blog/announcing-influxdb-iox/
https://www.influxdata.com/blog/announcing-influxdb-iox/
https://doi.org/10.14778/3554821.3554829
https://doi.org/10.14778/3554821.3554829
https://doi.org/10.14778/3554821.3554829
https://doi.org/10.14778/2824032.2824078
https://doi.org/10.14778/2824032.2824078
https://doi.org/10.14778/2824032.2824078
https://doi.org/10.1145/2938503.2938526
https://clang.llvm.org/
https://clang.llvm.org/
https://questdb.io/
https://questdb.io/
https://questdb.io/docs/concept/root-directory-structure/

207

[95] QuestDB. QuestDB Storage Model. Accessed November 2022. 2022. url: https:
//questdb.io/docs/concept/storage-model/.

[96] Mark Raasveldt and Hannes Mühleisen. “Don’t hold my data hostage: a case
for client protocol redesign”. In: Proceedings of the VLDB Endowment 10.10 (June
2017), pp. 1022–1033. doi: 10.14778/3115404.3115408.

[97] Xiangnan Ren et al. “Strider: An Adaptive, Inference-Enabled Distributed RDF
Stream Processing Engine”. In: Proc. VLDB Endow. 10.12 (Aug. 2017), pp. 1905–
1908. issn: 2150-8097. doi: 10.14778/3137765.3137805. url: https://doi.
org/10.14778/3137765.3137805.

[98] Y. Sazeides and J.E. Smith. “The predictability of data values”. In: Proceedings
of 30th Annual International Symposium on Microarchitecture. 1997, pp. 248–258.
doi: 10.1109/MICRO.1997.645815.

[99] J. R. Seume et al. “Application of Active Combustion Instability Control to a
Heavy Duty Gas Turbine”. In: Journal of Engineering for Gas Turbines and Power
120.4 (Oct. 1998), pp. 721–726. issn: 0742-4795. doi: 10.1115/1.2818459. url:
https://doi.org/10.1115/1.2818459.

[100] C. E. Shannon. “A mathematical theory of communication”. In: The Bell System
Technical Journal 27.3 (1948), pp. 379–423. doi: 10.1002/j.1538-7305.1948.
tb01338.x.

[101] solidIT. DB-Engines Ranking - Trend of Time Series DBMS Popularity. Accessed
December 2022. 2022. url: https://db-engines.com/en/ranking_trend/
time+series+dbms.

[102] Stadtwerke München GmbH. Der neue Energiestandort Süd – Wandel zur neuen
Energiewelt. Accessed Mai 2023. 2022. url: https://www.swm.de/magazin/
energie/energiestandort-sued.

[103] Daniel Stenberg. Everything curl. 2018. isbn: 978-91-639-6501-2.

[104] Steve Klabnik, Carol Nichols, and the Rust Community. The Rust Programming
Language. Accessed Mai 2023. 2023. url: https://doc.rust-lang.org/book/.

[105] M. Stonebraker and U. Cetintemel. “”One size fits all”: an idea whose time has
come and gone”. In: 21st International Conference on Data Engineering (ICDE’05).
IEEE, 2005. doi: 10.1109/icde.2005.1.

[106] NERCResources Subcommittee.Balancing and Frequency Control. ReferenceDoc-
ument. Tech. rep. NERC, May 2021. url: https : / / www . nerc . com / comm /
OC/ReferenceDocumentsDL/Reference_Document_NERC_Balancing_and_
Frequency_Control.pdf (visited on 04/20/2023).

https://questdb.io/docs/concept/storage-model/
https://questdb.io/docs/concept/storage-model/
https://doi.org/10.14778/3115404.3115408
https://doi.org/10.14778/3137765.3137805
https://doi.org/10.14778/3137765.3137805
https://doi.org/10.14778/3137765.3137805
https://doi.org/10.1109/MICRO.1997.645815
https://doi.org/10.1115/1.2818459
https://doi.org/10.1115/1.2818459
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://db-engines.com/en/ranking_trend/time+series+dbms
https://db-engines.com/en/ranking_trend/time+series+dbms
https://www.swm.de/magazin/energie/energiestandort-sued
https://www.swm.de/magazin/energie/energiestandort-sued
https://doc.rust-lang.org/book/
https://doi.org/10.1109/icde.2005.1
https://www.nerc.com/comm/OC/ReferenceDocumentsDL/Reference_Document_NERC_Balancing_and_Frequency_Control.pdf
https://www.nerc.com/comm/OC/ReferenceDocumentsDL/Reference_Document_NERC_Balancing_and_Frequency_Control.pdf
https://www.nerc.com/comm/OC/ReferenceDocumentsDL/Reference_Document_NERC_Balancing_and_Frequency_Control.pdf

Bibliography

208

[107] Mohammadreza Tahan et al. “Performance-based health monitoring, diagnos-
tics and prognostics for condition-basedmaintenance of gas turbines: A review”.
In: Applied Energy 198 (July 2017), pp. 122–144. doi: 10.1016/j.apenergy.
2017.04.048.

[108] Nisha Talagala, Remzi H. Arpaci-Dusseau, and D. Patterson. Microbenchmark-
based Extraction of Local and Global Disk Characteristics. Tech. rep. UCB/CSD-
99-1063. EECS Department, University of California, Berkeley, 1999. url: http:
//www2.eecs.berkeley.edu/Pubs/TechRpts/1999/6275.html.

[109] Dingwen Tao et al. “Significantly Improving Lossy Compression for Scientific
Data Sets Based on Multidimensional Prediction and Error-Controlled Quan-
tization”. In: 2017 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS). IEEE, May 2017. doi: 10.1109/ipdps.2017.115. url: https:
//doi.org/10.1109/ipdps.2017.115.

[110] Taylor-Davies, Raphael and Lamb, Andrew. Querying Parquet with Millisecond
Latency. Accessed December 2022. 2022. url: https://www.influxdata.com/
blog/querying-parquet-millisecond-latency/.

[111] GCC Team. GCC 11 Release Series. Apr. 21, 2022. url: https://gcc.gnu.org/
gcc-11/ (visited on 04/20/2023).

[112] The Apache Software Foundation.Apache Arrow. Accessed April 2020. 2020. url:
https://arrow.apache.org/.

[113] The Apache Software Foundation. Apache Arrow DataFusion. Accessed April
2023. 2022. url: https://arrow.apache.org/datafusion/.

[114] The Apache Software Foundation. Apache Parquet Data Pages. Accessed April
2023. 2022. url: https://parquet.apache.org/docs/file-format/data-
pages/.

[115] TheApache Software Foundation.Apache Parquet Encodings. AccessedMai 2022.
2022. url: https://parquet.apache.org/docs/file-format/data-pages/
encodings/.

[116] The Apache Software Foundation. Apache Parquet File Format. Accessed April
2023. 2022. url: https://parquet.apache.org/docs/file-format/.

[117] The Apache Software Foundation. Arrow Flight SQL. Accessed April 2023. 2023.
url: https://arrow.apache.org/docs/format/FlightSql.html.

[118] TheApache Software Foundation. Parquet compression definitions. Accessed Feb-
ruary 2023. 2023. url: https://github.com/apache/parquet-format/blob/
apache-parquet-format-2.9.0/Compression.md.

[119] The Blosc Developers. What Is Blosc? Accessed December 2020. 2020. url: htt
ps://blosc.org/pages/blosc-in-depth/.

https://doi.org/10.1016/j.apenergy.2017.04.048
https://doi.org/10.1016/j.apenergy.2017.04.048
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1999/6275.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1999/6275.html
https://doi.org/10.1109/ipdps.2017.115
https://doi.org/10.1109/ipdps.2017.115
https://doi.org/10.1109/ipdps.2017.115
https://www.influxdata.com/blog/querying-parquet-millisecond-latency/
https://www.influxdata.com/blog/querying-parquet-millisecond-latency/
https://gcc.gnu.org/gcc-11/
https://gcc.gnu.org/gcc-11/
https://arrow.apache.org/
https://arrow.apache.org/datafusion/
https://parquet.apache.org/docs/file-format/data-pages/
https://parquet.apache.org/docs/file-format/data-pages/
https://parquet.apache.org/docs/file-format/data-pages/encodings/
https://parquet.apache.org/docs/file-format/data-pages/encodings/
https://parquet.apache.org/docs/file-format/
https://arrow.apache.org/docs/format/FlightSql.html
https://github.com/apache/parquet-format/blob/apache-parquet-format-2.9.0/Compression.md
https://github.com/apache/parquet-format/blob/apache-parquet-format-2.9.0/Compression.md
https://blosc.org/pages/blosc-in-depth/
https://blosc.org/pages/blosc-in-depth/

209

[120] The fmtlib Authors. {fmt}, fmtlib. Accessed November 2022. 2022. url: https:
//github.com/fmtlib/fmt.

[121] The HDF Group. HDF5 User’s Guide. Accessed December 2020. 2020. url: http
s://support.hdfgroup.org/HDF5/doc/UG/HDF5_Users_Guide.pdf.

[122] The kernel development community. ext4 Data Structures and Algorithms. Last
Accessed March 2023. url: https://www.kernel.org/doc/html/latest/
filesystems/ext4/.

[123] The OpenTSDB Authors. OpenTSDB. Accessed April 2020. 2020. url: http://
opentsdb.net/.

[124] The PostgreSQL Global Development Group. Frontend/Backend Protocol. Ac-
cessed October 2022. 2022. url: https://www.postgresql.org/docs/15/
protocol.html.

[125] Timescale Inc. About compression. Accessed December 2022. 2022. url: https:
//docs.timescale.com/timescaledb/latest/how-to-guides/compressio
n/about-compression/.

[126] Timescale Inc. Timescale Docs. Accessed Juli 2021. 2021. url: https://docs.
timescale.com/timescaledb/latest/.

[127] Tobias Oetiker. About RRDtool. Accessed December 2022. 2022. url: https :
//oss.oetiker.ch/rrdtool/.

[128] van Riel, Rik and Peter W. Morreale. Linux Kernel Documentation for /proc/sys
/vm/*. Last Accessed February 2023. 2008. url: https://docs.kernel.org/
admin-guide/sysctl/vm.html.

[129] Deepak Vohra. “Apache Parquet”. In: Practical Hadoop Ecosystem: A Definitive
Guide to Hadoop-Related Frameworks and Tools. Berkeley, CA: Apress, 2016,
pp. 325–335. isbn: 978-1-4842-2199-0. doi: 10.1007/978-1-4842-2199-0_8.
url: https://doi.org/10.1007/978-1-4842-2199-0_8.

[130] Allan J. Volponi. “Gas Turbine Engine Health Management: Past, Present, and
Future Trends”. In: Journal of Engineering for Gas Turbines and Power 136.5 (Jan.
2014). doi: 10.1115/1.4026126.

[131] Jianguo Wang et al. “An Experimental Study of Bitmap Compression vs. In-
verted List Compression”. In: Proceedings of the 2017 ACM International Confer-
ence onManagement of Data. ACM,May 2017. doi: 10.1145/3035918.3064007.

[132] Stefan K. Weber et al. “Data Acquisition System of the CLOUD Experiment
at CERN”. In: IEEE Transactions on Instrumentation and Measurement 70 (2021),
pp. 1–13. doi: 10.1109/tim.2020.3023210.

[133] Kexiang Wei et al. “A review on ice detection technology and ice elimination
technology for wind turbine”. In: Wind Energy 23.3 (Dec. 2019), pp. 433–457.
doi: 10.1002/we.2427.

https://github.com/fmtlib/fmt
https://github.com/fmtlib/fmt
https://support.hdfgroup.org/HDF5/doc/UG/HDF5_Users_Guide.pdf
https://support.hdfgroup.org/HDF5/doc/UG/HDF5_Users_Guide.pdf
https://www.kernel.org/doc/html/latest/filesystems/ext4/
https://www.kernel.org/doc/html/latest/filesystems/ext4/
http://opentsdb.net/
http://opentsdb.net/
https://www.postgresql.org/docs/15/protocol.html
https://www.postgresql.org/docs/15/protocol.html
https://docs.timescale.com/timescaledb/latest/how-to-guides/compression/about-compression/
https://docs.timescale.com/timescaledb/latest/how-to-guides/compression/about-compression/
https://docs.timescale.com/timescaledb/latest/how-to-guides/compression/about-compression/
https://docs.timescale.com/timescaledb/latest/
https://docs.timescale.com/timescaledb/latest/
https://oss.oetiker.ch/rrdtool/
https://oss.oetiker.ch/rrdtool/
https://docs.kernel.org/admin-guide/sysctl/vm.html
https://docs.kernel.org/admin-guide/sysctl/vm.html
https://doi.org/10.1007/978-1-4842-2199-0_8
https://doi.org/10.1007/978-1-4842-2199-0_8
https://doi.org/10.1115/1.4026126
https://doi.org/10.1145/3035918.3064007
https://doi.org/10.1109/tim.2020.3023210
https://doi.org/10.1002/we.2427

Bibliography

210

[134] Sage A. Weil et al. “Ceph: A Scalable, High-Performance Distributed File Sys-
tem”. In: Proceedings of the 7th Symposium on Operating Systems Design and Im-
plementation. OSDI ’06. Seattle,Washington: USENIXAssociation, 2006, pp. 307–
320. isbn: 1931971471.

[135] Henry Wong. Discovering Hard Disk Physical Geometry through Microbench-
marking. Sept. 2019. url: http://blog.stuffedcow.net/2019/09/hard-
disk-geometry-microbenchmarking/ (visited on 03/03/2023).

[136] Xiaodong Yu et al. “Ultrafast Error-Bounded Lossy Compression for Scientific
Datasets”. In: Proceedings of the 31st International Symposium on High-Perfor-
mance Parallel and Distributed Computing. HPDC ’22. Minneapolis, MN, USA:
Association for Computing Machinery, 2022, pp. 159–171. isbn: 9781450391993.
doi: 10.1145/3502181.3531473. url: https://doi.org/10.1145/3502181.
3531473.

[137] Mingming Zhang et al. “CarStream: an industrial system of big data processing
for internet-of-vehicles”. In: Proc. VLDB Endow. 10 (Aug. 2017), pp. 1766–1777.
doi: 10.14778/3137765.3137781.

[138] Kai Zhao et al. “Optimizing Error-Bounded Lossy Compression for Scientific
Data by Dynamic Spline Interpolation”. In: 2021 IEEE 37th International Confer-
ence on Data Engineering (ICDE). 2021, pp. 1643–1654. doi: 10.1109/ICDE5139
9.2021.00145.

http://blog.stuffedcow.net/2019/09/hard-disk-geometry-microbenchmarking/
http://blog.stuffedcow.net/2019/09/hard-disk-geometry-microbenchmarking/
https://doi.org/10.1145/3502181.3531473
https://doi.org/10.1145/3502181.3531473
https://doi.org/10.1145/3502181.3531473
https://doi.org/10.14778/3137765.3137781
https://doi.org/10.1109/ICDE51399.2021.00145
https://doi.org/10.1109/ICDE51399.2021.00145

	Acknowledgments
	Abstract
	Zusammenfassung
	Contents
	1 Introduction
	1.1 Motivating Application Example: Combustion Monitoring in Gas-Fired Power Plants
	1.2 Challenges
	1.3 Approach
	1.4 Contributions
	1.5 Thesis Organization

	2 Context, Requirements and Related Work
	2.1 Definitions
	2.2 Example Application Domains & Scenarios
	2.2.1 Application Domains
	2.2.2 Application Scenarios
	2.2.3 General Properties of Industrial Sensor Data

	2.3 Requirements Analysis
	2.3.1 Long-Term Storage Requirements
	2.3.2 Sensor Stream Consumption Requirements
	2.3.3 Query Requirements

	2.4 Related Work
	2.4.1 Time Series Management Systems
	2.4.2 Compression of Sensor Data
	2.4.3 Other Related Aspects

	3 HAQSE: System Overview
	3.1 Highlights of HAQSE
	3.1.1 Main Concepts and Ideas in HAQSE
	3.1.2 Non-Goals of HAQSE

	3.2 Data Model and System Interfaces
	3.2.1 Sensor Data Stream Input
	3.2.2 Query Interface
	3.2.3 Hierarchical Data Model

	3.3 System Architecture Overview
	3.3.1 Stream Storage
	3.3.2 Stream Processing
	3.3.3 Query System
	3.3.4 Combining Components in a Holistic System

	3.4 Implementation
	3.4.1 Input Interface Definition
	3.4.2 Query Interface Definition

	4 Efficient Storage of Industrial Sensor Data
	4.1 Storage Model
	4.1.1 Adding and Deleting Data
	4.1.2 Data Layout

	4.2 Two-Step Floating-Point Compression
	4.3 Implementation in Apache Parquet
	4.3.1 Apache Parquet: Format Details
	4.3.2 Two-Step Compression

	4.4 Storage Efficiency and Throughput Evaluation
	4.4.1 Evaluation Questions
	4.4.2 Experimental Setup
	4.4.3 CQS1: Performance of Byte Stream Split
	4.4.4 CQS2: Influence of Dataset Properties on Byte Stream Split Effectiveness
	4.4.5 CQS3: Compression Ratio Performance
	4.4.6 CQS4: Compression Performance on Sensor Data
	4.4.7 CQS5: Storage Efficiency Analysis for Real-World Dataset
	4.4.8 Evaluation Summary

	5 Sensor Data Stream Transformation & Processing
	5.1 Overview of Sensor Data Stream Processing
	5.2 Three-Stage Stream Ingestion Pipeline
	5.2.1 Layout Transformation to Sensor-Ordered Buffer
	5.2.2 Intermediate Buffering In Temporary Columnar Files
	5.2.3 Compaction: Combining and Compressing Sensor Data from Intermediate Files
	5.2.4 Implementation in HAQSE using gRPC, Apache Arrow & Apache Parquet

	5.3 Hierarchical Windowed Data Aggregation
	5.3.1 Formalization of Batch Aggregation
	5.3.2 Aggregation Process

	5.4 Experimental Setup
	5.4.1 Hardware and Software Environment
	5.4.2 Data Generator
	5.4.3 Stream Adapters
	5.4.4 Validating the Experimental Setup: HDD Performance
	5.4.5 Validating the Experimental Setup: Generator & Adapters

	5.5 Stream Consumption: HAQSE Parameter Evaluation
	5.5.1 Parameter Classification and Methodology
	5.5.2 Layout Transformation Evaluation: Batch Size
	5.5.3 Layout Transformation Evaluation: Size of Temporary Buffers
	5.5.4 Persisting Data to Temporary Files
	5.5.5 Batch Aggregation Isolated
	5.5.6 Compaction Isolated
	5.5.7 Full Pipeline Test
	5.5.8 Summary of HAQSE Parameter Evaluation

	5.6 Stream Consumption: Comparison with State-Of-The-Art
	5.6.1 RQ1: State-Of-The-Art System Ingest Rates
	5.6.2 RQ2: Comparison of HAQSE With State-Of-The-Art Systems
	5.6.3 RQ3: Influence of Hardware on Ingestion Rate
	5.6.4 Comparison Summary

	6 Querying Sensor Data
	6.1 Efficient Query Processing
	6.1.1 Stream Segment Index
	6.1.2 Query Processing Logic

	6.2 Distributed Querying
	6.3 Evaluation of Single Node Querying
	6.3.1 Evaluation Environment
	6.3.2 In-Memory Segments
	6.3.3 Page Cache Effects
	6.3.4 Unfinished Apache Arrow Segment
	6.3.5 Apache Arrow vs. Apache Parquet
	6.3.6 Influence of Parquet Parameters
	6.3.7 Scaling Stored Stream Schema
	6.3.8 Scaling Result Set Size
	6.3.9 Concurrent Ingestion and Data Retrieval
	6.3.10 Single Node Query Evaluation Summary

	6.4 Evaluation of Distributed Querying
	6.4.1 Evaluation Environment
	6.4.2 Multinode Baseline
	6.4.3 Two-Node Analysis
	6.4.4 Real-World Multi-Node Case

	7 Integration into Industrial Infrastructure Monitoring Systems
	7.1 General Integration Guideline
	7.1.1 Meeting HAQSE's Requirements
	7.1.2 Stream Ingestion
	7.1.3 Query Processing
	7.1.4 Application Specific Configuration

	7.2 IfTA Infrastructure for Monitoring and Protecting Gas-Fired Power Plants
	7.2.1 Application Context: IfTA GmbH
	7.2.2 Existing Monitoring, Protection and Analysis Infrastructure: IfTA ArgusOMDS
	7.2.3 IfTA Argus Data Format & Argus Online Protocol

	7.3 Integrating HAQSE into IfTA Monitoring Infrastructure
	7.3.1 Data Input: Connection to Argus Data Format & Argus Online Protocol
	7.3.2 Fast Interactive Exploratory Data Analysis
	7.3.3 Driving Machine-Learning-Based Anomaly Detection

	7.4 Integrating HAQSE into the Sensor Processing Pipeline of a Gas-Fired Power Plant

	8 Future Work and Conclusions
	8.1 Future Work
	8.2 Conclusions

	Appendices
	A Implementation Details of HAQSE
	A.1 HAQSE File System Layout
	A.2 gRPC Input Protocol Definition
	A.3 Example HAQSE Query Client
	A.4 Query Sequence

	Acronyms
	Glossary
	Bibliography

