
A Quantum-Logic Gate
between Optical Photons

Based on Cavity Rydberg Blockade

Thomas Eugen Stolz

Dissertation

Max-Planck-Institut für Quantenoptik, Garching
and Physik Department, Technische Universität München

October 2023



Cover illustration: The title cover displays an artist’s view of the coupled atom-cavity
system.

ii



 

Technische Universität München 

TUM School of Natural Sciences 

 

 

 

 

A Quantum-Logic Gate between Optical Photons Based on 

Cavity Rydberg Blockade  

 

 
Thomas Eugen Stolz 

 

 

 

Vollständiger Abdruck der von der TUM School of Natural Sciences der Technischen 

Universität München zur Erlangung eines 

                                               Doktors der Naturwissenschaften (Dr. rer. nat.) 

genehmigten Dissertation. 

 

 

Vorsitz:                     Prof. Dr. Michael Knap 

 

Prüfer*innen der Dissertation: 

 

1.     Hon.-Prof. Dr. Gerhard Rempe 

2.     Prof. Dr. Peter Fierlinger 

 

 

Die Dissertation wurde am 26.04.2023 bei der Technischen Universität München eingereicht 

und durch die TUM School of Natural Sciences am 06.10.2023 angenommen. 

 





Abstract
This thesis reports on the experimental realization of a quantum-logic gate between
optical qubits. The physical mechanism of this gate relies on electromagnetically induced
transparency and Rydberg blockade in an ultracold ensemble of 87Rb atoms, which are
trapped inside a moderate-finesse bow-tie resonator. For the first time, the efficiency
achieved with a quantum nonlinear system surpasses the state-of-the-art in linear optical
quantum computing.

The qubits are implemented in the polarization degrees of freedom of individual photons.
A spatial dual-rail setup directs these photons either onto the resonator or into a bypass
rail and subsequently recombines the two paths. The temporal gate protocol consists of
three steps. First, a control photon is reversibly stored inside the atomic ensemble as a
Rydberg excitation. In the second step, a target photon is reflected from the resonator
during the storage time. If a control excitation is present, Rydberg blockade induces a
conditional π phase shift. In the third step, the control photon is retrieved.

This gate is characterized by an average efficiency of 41.7(5)% and a postselected process
fidelity of 81(2)%. Polarization-entangled Bell states are produced with postselected
fidelities between 78(3)% and 82(2)%. An extension of the gate to multiple target photons
is demonstrated, resulting in the production of Greenberger-Horne-Zeilinger states of 3, 4,
and 5 photons with fidelities of 62.3(4)%, 54.6(1.4)%, and 54.8(5.3)%, respectively.

Zusammenfassung
Im Rahmen dieser Arbeit wurde ein Quantenlogikgatter zwischen optischen Qubits experi-
mentell realisiert. Der physikalische Mechanismus dieses Gatters beruht auf elektromag-
netisch induzierter Transparenz und Rydberg-Blockade in einem ultrakalten Ensemble
von 87Rb-Atomen, die in einem Bow-Tie-Resonator mit moderater Finesse gefangen sind.
Zum ersten Mal übertrifft die mit einem nichtlinearen Quantensystem erreichte Effizienz
den Stand der Technik im linearen, optischen Quantencomputing.
Die Qubits sind in den Polarisationsfreiheitsgraden von Photonen implementiert. Ein

räumlicher Dual-Rail-Aufbau lenkt diese Photonen entweder auf den Resonator oder
in einen Bypass-Pfad und rekombiniert anschließend die beiden Pfade. Der zeitliche
Ablauf des Gatters besteht aus drei Schritten. Zunächst wird ein Control-Photon als
Rydberg-Anregung reversibel im atomaren Ensemble abgespeichert. Im zweiten Schritt
wird während der Speicherzeit ein Target-Photon am Resonator reflektiert. Wenn eine
Control-Anregung vorhanden ist, führt Rydberg-Blockade zu einer π-Phasenverschiebung.
Im dritten Schritt wird das Control-Photon wieder ausgelesen.
Das Gatter zeichnet sich durch eine durchschnittliche Effizienz von 41.7(5)% und eine

postselektierte Prozessfidelity von 81(2)% aus. Polarisationsverschränkte Bell-Zustände
werden mit einer postselektierten Fidelity zwischen 78(3)% und 82(2)% erzeugt. Eine Er-
weiterung des Schemas auf mehrere Target-Photonen ermöglicht die Herstellung von
Greenberger-Horne-Zeilinger-Zuständen mit 3, 4 und 5 Photonen bei Fidelities von
62.3(4)%, 54.6(1.4)% und 54.8(5.3)%.
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Chapter 1

Introduction
Optical qubits are attractive information carriers for future quantum technologies because
they uniquely combine information transfer and processing capabilities. Optical fiber
technology makes photons well suited for transmitting quantum information in a future
quantum internet [76, 165] or between processing units of a distributed quantum computer
[17, 19, 124]. Even the intriguing prospect of an all-optical quantum computer [107] has
seen remarkable progress in recent years, culminating in the demonstration of quantum
computational advantage for a specific mathematical problem in the framework of Gaussian
boson sampling [175]. However, performing arbitrary computations, such as Shor’s
algorithm [140], requires universal quantum computing schemes [104].

A popular such scheme is the circuit model of quantum computation, in which a sequence
of quantum-logic gates is applied to a number of quantum bits (qubits). Mathematically,
a gate is represented by a unitary transform that is applied to the quantum state of the
system. An arbitrary computation becomes possible once a universal gate set is available.
One example of such a universal gate set consists of single-qubit unitaries along with a
two-qubit controlled NOT (CNOT) gate [104].

According to DiVincenzo’s criteria [24], a central requirement for a practical implemen-
tation is the ability to apply these unitary transforms in a well controlled way. If optical
photons are used as qubits, constructing single-qubit unitaries is relatively simple. For
example, when choosing a polarization encoding, any single-qubit unitary can be realized
as a sequence of at most three waveplates [142]. In contrast, implementing optical CNOT
gates is a significant challenge. This is because if one intends to follow the obvious idea of
implementing the gate based on an optical nonlinearity, then this nonlinearity must be large
at the single-photon level. Over the past 20 years, several strategies have been pursued
toward optical CNOT gates but apart from linear optical quantum computing (LOQC)
schemes, which are inherently probabilistic, only two proof-of-principle demonstrations
using a quantum nonlinear system have been reported. Moreover, the low efficiency of all
previous experimental implementations is still a major issue in the field of optical quantum
information processing. In the following Secs. 1.1 – 1.3, the quest for efficient optical
CNOT gates is outlined. As an aside, it is noted that there has also been progress with
photon-photon gates in the microwave domain recently, see Ref. [122].
In spite of these challenges, optical CNOT gates are extremely attractive devices. Not

only are they crucial building blocks of all-optical quantum computers. They could also
boost the efficiency of optical Bell-state detection, which has a fundamental efficiency
limit of 50% if only linear optical components are used [14]. A high-efficiency Bell-state
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Chapter 1 Introduction

analyzer would be useful for quantum repeaters [51], which will probably be required to
realize long-distance quantum communication [11] and a quantum internet [76, 165].

1.1 Linear Optical Quantum Computing
A well established approach toward optical CNOT gates is LOQC. Here, effective nonlin-
earities are induced by measurements. In 2003, the authors of Ref. [106] demonstrated
the first two-photon quantum gate with this approach. In their experiment, two photonic
input qubits are sent into a linear optical setup, which consists only of beam splitters
and wave plates. This setup has four possible exit points, two of which are the outputs
of the gate. If one photon is detected at each of the two output ports, the gate was
successful and a CNOT operation is obtained. Ideally, this happens with a probability of
1/9. Although Ref. [106] does not give a number for the experimentally achieved efficiency,
we may speculate that it came close to the theoretical limit, because the few components
required for the optical setup are commercially available at good quality and low loss. It
was later shown theoretically that 1/9 is, in fact, a rigorous upper bound for the efficiency
of such a scheme [74], if only linear optics and postselection are used.

Despite its elegance and simplicity, this scheme is not immediately useful for quantum
computation. If a quantum circuit is constructed by simply cascading probabilistic LOQC
gates, the success probability of the circuit becomes exponentially small with the number
of gates. Hence, an exponential amount of time or resources would be required, eradicating
any potential speed-up compared to a classical device. This issue was solved by the seminal
work of Knill, Laflamme, and Milburn in 2001 [78], which is known as the KLM protocol.
It theoretically shows how scalable LOQC can be achieved by combining several key ideas.
The first idea is to generate entangled states of several photons by repeatedly attempting
probabilistic gates until success. In the KLM scheme, such states are prepared as auxiliary
resource states and stored in a quantum memory until they are needed for the computation.
The second idea is known as the teleportation trick [49], which is to construct a CNOT
gate by using Bell measurements, conditional single-qubit operations, and an entangled
resource state prepared as described above. This leaves the problem that deterministic
Bell measurements are impossible using just linear optics [14, 93]. However, KLM came up
with a teleportation scheme that allows for an arbitrarily small error probability when a
sufficiently large resource state, prepared as described above, is used. In addition to purely
linear optical components, this technique requires photon number resolving detectors
and classical feedforward, i.e. conditional switching of components in the optical circuit.
Finally, the KLM scheme proposes to alleviate the small remaining failure probability by
using error correcting codes, which ensure the scalability of the protocol.

Over the course of the years, improvements to the KLM scheme have been theoretically
developed which decrease the resource requirements to some extent [55, 79, 107, 117].
Some of these fall into the category of measurement based quantum computation and
dispense entirely with the use of CNOT gates [13, 103, 118, 172]. Instead, the experimental
challenge is shifted to the preparation of a large entangled cluster state which is required
as an input for the computation. Cluster states of up to 12 polarization-entangled photons
have been realized so far [66, 90, 147].

2
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While the KLM protocol shows theoretically that high efficiency CNOT gates can be
built using linear optics, this turns out to be very difficult in practice. Although some
advanced CNOT gate schemes have been experimentally demonstrated over the last 20
years [86], their efficiency stayed below the threshold of about 11% originally achieved
in Ref. [106]. In contrast to the efficiency, the postselected process fidelity of a CNOT
gate achieved in LOQC has been improved over the course of the years, starting from
87% in Ref. [105] to e.g. 98.85% in Ref. [115]. A likely explanation why it is difficult to
improve the efficiency are the resource requirements. For example, implementing a single
CNOT gate with a success probability above 95% requires on the order of 104 physical
operations in the KLM protocol [55, 79]. Along with this, a large number of ancillary
single-photon input states are needed, which have to be generated using high-quality
single-photon sources. In front of this backdrop, Ref. [79] concluded that “the physical
resources for the original KLM protocol, albeit scalable, are daunting. For linear optical
quantum computing to become a viable technology, we need more efficient quantum gates.”
Current research pursues this goal with essentially two approaches. On one hand,

integrated photonics [75, 112] may render the resource requirements of probabilistic LOQC
protocols more manageable. On the other hand, advancing quantum nonlinear systems
may lead to optical CNOT gates that are not inherently probabilistic. For the remainder
of this introduction, we focus on the latter approach, which has seen remarkable progress
in recent years.

1.2 Quantum-Nonlinear Systems
As Maxwell’s equations in vacuum are linear, photons do not interact with each other
in vacuum.1 A nonlinear medium offers a potential solution to this issue. Already in
the late 1980s, Refs. [97, 169] proposed to implement logic gates between photons using
cross-phase modulation in a nonlinear crystal. Based on the Kerr effect, it was imagined
that the presence of a single control photon induces a refractive index change in the crystal
that leads to a phase shift for another photon. Such a conditional phase shift may be
regarded as originating from an effective photon-photon interaction, which is mediated
by light-matter coupling. By placing the crystal inside a spatial dual-rail setup [79], a
controlled-phase gate [104] between two polarization qubits can be realized. If the phase
shift is π, a controlled-π-phase (CPHASE) gate is obtained, which turns into a CNOT
gate when combined with appropriate single-qubit unitaries. Unfortunately, typical Kerr
nonlinearities are tiny at the single photon-level [79]. In optical fibers, conditional phase
shifts on the order of 10−7 rad per photon were reported [95]. Ref. [107] concluded in
2007 that “no known or foreseen material has an optical nonlinearity strong enough to
implement this conditional phase shift”.
This perspective has changed dramatically. Over the past 20 years, several quantum-

nonlinear systems have been developed, which can produce large conditional phase shifts

1For completeness, it bears mentioning that quantum electrodynamics predicts an interaction between
photons when the photon energy is large enough such that spontaneous formation of electron-positron
pairs becomes significant. This was first recognized by Euler and Kockel [30]. However, this effect is
far too weak for optical photons to make use of it under realistic conditions.
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at the single photon level. Already in 1995, Ref. [157] achieved a conditional phase shift of
π/10 per photon using the nonlinearity of a single atom enhanced by a high-finesse cavity.
Conditional phase shifts of a similar size have been observed with a single quantum dot
coupled to a photonic crystal nanocavity in 2008 [40]. Using a single atom coupled to a fiber-
based whispering gallery mode resonator, a conditional π phase shift was demonstrated in
2014 [161]. A different strategy is to use electromagnetically induced transparency (EIT)
[35] in an ultracold atomic gas in free-space. With this technique, measured single-photon
phase shifts have reached roughly 10−5 rad [31, 89, 138]. Extensions to a double-Λ system
[88] or to a resonator-enhanced scheme [9] achieved conditional phase shifts per photon of
π/8 and π/3, respectively. Combining EIT with atomic Rydberg states, conditional phase
shifts up to π [152] have been demonstrated in our laboratory, as highlighted in the next
section.
A usually unwanted side effect in all the above systems is the nonzero photon-loss

probability. For certain parameters, the presence or absence of a single photon may even
change the loss probability for another photon. We refer to this difference in the loss
probability as conditional loss. This effect may be utilized to realize a single-photon switch,
which has been demonstrated with an ultracold atomic ensemble in a high-finesse cavity
[16], a single atom coupled to a silica microsphere resonator [139] and also with a single
atom coupled to a photonic crystal nanocavity [153]. The same can be achieved using
Rydberg EIT, see Sec. 1.3.
If a system exhibits conditional loss, this can be converted into a conditional π phase

shift by placing the system inside a one-sided optical resonator. This was recognized by
Hofmann [60] as well as Duan and Kimble [26], who proposed to implement optical CNOT
gates based on this idea. As an experimental platform, they envisioned a single atom
inside a high-finesse optical resonator. Once full control over the atom is attained, such a
system becomes a toolbox for the preparation and manipulation of nonclassical states of
light and matter, opening up a plethora of possibilities for quantum information processing
and quantum networks [121]. These prospects have sparked tremendous experimental
progress. As a consequence, these systems have reached a level of maturity that resulted in
the first implementation of an optical CNOT gate based on a quantum-nonlinear system
in 2016 [53].
In this implementation, the photon-photon gate is decomposed into two atom-photon

gates, single-qubit operations, a projective measurement, and classical feedback conditioned
on the measurement outcome. Two photons are successively reflected from a high-finesse
Fabry-Pérot cavity, state rotations are performed on the atom, and finally a conditional
state rotation is applied to the first photon, depending on the outcome of a state mea-
surement on the atom. Hypothetically, there is no fundamental limit to the efficiency of
this scheme. However, the experimentally achieved value of < 5% was lower than the
LOQC record of 11%. This is explained by several technical issues. First, the empty
high-finesse cavity reflects only about 70% of the photons due to mirror imperfections. A
similar reflection probability is obtained, when an atom is coupled to the cavity because
the achievable cooperativity in this cavity is limited. Finally, the scheme requires storing
the first photon for several microseconds until the atomic state detection is completed.
A long fiber with about 40% transmission was used as a storage device, through which
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1.3 Rydberg Quantum Photonics

both photons had to pass. These issues might be overcome in the future by technical
improvements.
Another CNOT gate based on a quantum-nonlinear system was demonstrated in our

laboratory in 2019 based on Rydberg EIT with an ultracold atomic ensemble in free space
[151]. This result is one of many recent highlights from the field of Rydberg quantum
photonics, which is the topic of the next section.

1.3 Rydberg Quantum Photonics
The field of Rydberg quantum photonics is in many ways inspired by the possibility to
implement quantum gates between neutral atoms using Rydberg interactions, which was
proposed in Ref. [67] and first demonstrated in 2010 [65, 167]. This Rydberg-atom based
quantum computing platform has attracted growing interest in recent years because it
promises to combine high-fidelity quantum gates [85] with the flexibility and scalability
provided by individual atoms trapped in reconfigurable tweezer arrays [6, 29] or in optical
lattices [130]. Two review articles about this platform can be found in Refs. [1, 128].
The strong and long-range interactions between Rydberg atoms can be mapped onto

optical photons by using Rydberg EIT in an ultracold atomic ensemble, as first proposed
in Ref. [39]. When photons enter such a medium, they turn into quasi-particles termed
Rydberg polaritons [47] which are composed of a propagating photon and an atomic
Rydberg excitation. Hence, they inherit the strong and long-range interactions between
atomic Rydberg states. This provides a fascinating way to observe interacting photons.
These interactions can be tailored, resulting in attractive [33], repulsive [15] or dissipative
[111] character. At suitable parameters, interesting many-particle states of light are
predicted to emerge [108].

A central concept in this field is Rydberg blockade, which was first observed in Ref. [155].
Once a Rydberg excitation is created in an atomic ensemble, the strong and long-range
Rydberg-Rydberg interaction inhibits the formation of a second Rydberg excitation in
its vicinity. In resonant Rydberg EIT this leads to a reduced transparency at high input
photon rates [114]. The range of this blockade effect is characterized by the Rydberg
blockade radius, which is typically around 10 µm. An interesting regime of operation
emerges when the size of the atomic ensemble becomes smaller than the blockade radius.
In this situation, the atomic ensemble becomes an effective two-level system because only
one Rydberg excitation can be created. Such a system is called a superatom [128].

The first experiments on Rydberg EIT were performed with a single light field passing
through the atomic ensemble. However, the versatility of this platform can be greatly
enhanced by employing techniques for the storage and retrieval of light [34, 48]. For
instance, strong antibunching of the retrieved light has been observed when using high
lying atomic Rydberg states for storage [27]. Sending a second light field through the
ensemble during the dark time between storage and retrieval, large conditional loss [7, 45,
150] and conditional phase shifts of π/2 [148] and π [152, 160] have been realized.

Over the past 20 years, there have been many proposal for optical two-qubit gates using
Rydberg EIT in free space [39, 47, 56, 73, 82, 100, 102, 109]. Recently, such a scheme was
finally realized in our laboratory [151]. The average efficiency achieved in this experiment
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was < 3%. As with the single atom in a high-finesse resonator, this efficiency is lower than
the LOQC record of 11%. The dominant limitation in this experiment originates from
dephasing induced by interactions between Rydberg and ground-state atoms [7, 98, 133]
at the required high atomic density.

1.4 This Work
This work reports on the experimental demonstration of a CNOT gate between optical
photons based on a Rydberg superatom inside a moderate-finesse bow-tie resonator. As
proposed in Refs. [22, 54, 101, 162], the cavity makes it possible to harvest the nonlinearity
of Rydberg EIT more efficiently. The resulting cavity Rydberg EIT system combines the
atom-cavity approach and the Rydberg EIT approach in an advantageous way. Thanks to
the cavity enhancement, high atomic densities which are detrimental to Rydberg coherence
are not required. Thanks to the collective atomic enhancement, a moderate-finesse cavity
is sufficient and some technical difficulties associated with high-finesse cavities can be
avoided.

The protocol of this experiment consists of three steps. In the first step, a control photon
is transferred into a collective Rydberg excitation of the superatom using an EIT-based
storage protocol. In the second step, a target photon is reflected from the cavity. In the
third step, the control photon is retrieved. Overall, this realizes a conditional π phase shift.
A spatial dual-rail scheme is used to obtain a CPHASE gate for polarization qubits based
on this mechanism. It is shown that this strategy indeed leads to considerably higher
efficiency than all previous implementations of optical CNOT gates.

Our two-photon CNOT gate has a straightforward generalization to a CNOT gate with
multiple target qubits [104]. Based on this generalization, we create Greenberger-Horne-
Zeilinger (GHZ) states of presently up to 5 photons. This demonstrates that the drastically
improved performance of the gate makes a different class of experiments possible, which
with previous optical gates could not have been performed in a realistic data acquisition
time. Our work does not set a new record for the photon number in entangled many-
photon states. In our experiment, this number is mainly limited by the unfavorable photon
statistics of the coherent input states that we use to characterize the gate. If, for instance,
a deterministic single-photon source was used instead, it should be possible to generate
much larger entangled states. In front of this backdrop, it is remarkable that among the
previous experiments [136, 147, 164, 170, 171, 174], which produced entangled states of
more than 4 photons, there is not a single one which relies on a CNOT gate for photons.
They all employed alternative techniques. Ref. [66] combined a probabilistic entangling
gate with a single-photon source but still did not achieve entanglement of more than 4
photons. In this sense, our work does set a new record.
This work is organized as follows. Chapter 2 presents an extensive theory model of

the system, which is used to identify an optimal parameter regime for the gate. Based
on these insights, a new experimental setup was designed which is described in chapter
3. This new design required implementing various techniques for cooling and trapping
atoms inside the optical resonator, which is the subject of chapter 4. Characterization
measurements of the cavity Rydberg EIT system are shown in chapter 5 and set the
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stage for chapter 6, which presents results on the optical CNOT gate. This includes
the preparation of entangled Bell states and an extensive characterization of the gate
operation using quantum process tomography. Finally, we prepare entangled GHZ states
of several photons as a first demonstration of the improved capabilities provided by our
efficient scheme. Chapter 7 discusses potential future directions and possibilities for further
improving the gate.
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Chapter 2

Theory
This chapter presents theoretical concepts which are particularly relevant for this work.
The optical resonator, Rydberg states, and electromagnetically induced transparency (EIT)
constitute the basic ingredients of the experiment and are discussed in the first three
sections 2.1, 2.2, and 2.3. Combining these concepts leads to a variety of interesting
physical phenomena. Using methods described in Sec. 2.4, an incoming photon can be
stored reversibly inside the resonator. While a photon is stored, cavity Rydberg blockade
is obtained for subsequent photons as described in Sec. 2.5. Based on this effect, a
photon-photon quantum gate can be realized by choosing suitable experimental parameters
and by using a spatial dual rail scheme, see Sec. 2.6. Finally, section 2.7 deals with the
nontrivial question of how to optimize the gate performance in the presence of experimental
imperfections.

Most of chapter 2 summarizes models and results from the literature [8, 22, 36, 43, 54,
141]. However, parts of Secs. 2.5 and 2.7 are original work developed in the course of this
thesis.

Figure 2.1: Model of the optical resonator. The outgoing field amplitude Eout
results from interference at the I/O coupler between the reflected incoming field Ein
and the transmitted intracavity field Ecirc. Propagation, transmission and reflection
of light fields are indicated by red arrows and result in a change of the field amplitude
and phase. This is accounted for by multiplying field amplitudes with complex
coefficients (green). The transmission through the atomic medium (blue) is given by
the coefficient ta.
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2.1 Optical Resonator
We consider an optical ring resonator inside which we place an atomic medium. Figure 2.1
shows an example configuration with four mirrors. A classical, monochromatic signal light
field Ein = 1

2Einε exp (−iωt) + c.c. with angular frequency ω, complex amplitude Ein, time
t, and complex polarization vector ε is reflected from the input/output (I/O) coupling
mirror of the resonator. We assume that all optical elements are linear and conserve the
light polarization vector ε. Moreover, we assume perfect transverse mode matching and a
lossless I/O coupler.

The amplitudes of the outgoing light field Eout and the light field circulating inside the
resonator Ecirc can be calculated from Ein in a straightforward fashion using methods from
classical optics, cf. Ref. [141]. In essence, light field amplitudes are propagated between
points in space by multiplication with complex numbers.
The intracavity field is

Ecirc = itinrHtae
iφ

1− rinrHtaeiφ
Ein (2.1)

and the outgoing field is1 Eout = −REin with the cavity reflection coefficient

R = tarHe
iφ − rin

1− rinrHtaeiφ
. (2.2)

Here, rin (itin) is the complex coefficient for reflection from (transmission through) the I/O
coupler, rH is the product of the complex coefficients for reflection from all highly reflecting
(HR) cavity mirrors, and ta is the complex coefficient for the transmission of the electric
field amplitude through the atomic medium, relative to free space propagation. Without
loss of generality, we use a phase convention with rin > 0, tin > 0 and rH > 0, such that
the phase of R matches Refs. [22, 46, 54]. A lossless I/O coupler fulfills r2

in + t2in = 1.
The evolution of the field amplitude in one cavity round trip is described by rinrHtae

iφ

with the empty-cavity round-trip phase φ which has the property

eiφ = exp
(

2πi ∆c

∆ωax

)
. (2.3)

Here, ∆c = ω − ωc denotes the detuning of the signal light from a given empty-cavity
resonance with frequency ωc. Two neighboring axial empty-cavity modes are separated
in ω by the axial mode spacing ∆ωax = 2π/trt, where trt = Lc/c is the round-trip time,
where c is the vacuum speed of light, and where Lc is the round-trip cavity length.

We introduce the loss-rate coefficients κin, κH , and κ = κin + κH for the intracavity field
amplitude caused by rin = exp(−κintrt), rH = exp(−κHtrt), and rinrH = exp(−κtrt). We
abbreviate

Fin = ∆ωax

2κin
= −π

ln(rin) , (2.4)

FH = ∆ωax

2κH
= −π

ln(rH) , (2.5)

1The minus sign is a matter of convention. For instance, moving the reference plane in space at which
Eout is defined by half a wavelength would alter the sign of Eout.
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Figure 2.2: Resonant cavity reflectivity R as a function of intra-cavity loss L for
rin =

√
0.99, ta =

√
1− L and rH = 1. The sign of R flips at the impedance-matching

point ta = rin. |R| approaches unity only if losses are either very large or very small.

F = ∆ωax

2κ = −π
ln(rinrH) . (2.6)

Hence, in the absence of atoms, an intracavity photon has a branching ratio of

β = κin

κin + κH
= FH
FH + Fin

(2.7)

for decay through the I/O coupler as opposed to loss from an imperfect HR mirror.
Assuming F � 1, the half width at half maximum (HWHM) linewidth of the empty-cavity
resonance in the intracavity field energy as a function of ω is κ = κin/β. The empty-cavity
finesse is F = βFin.

A key idea of this work is that by modifying ta the cavity reflectivity R can be changed.
This idea is also illustrated in Fig. 2.2. We temporarily assume ∆c = 0. For a critical
value ta = rin/rH we find R = 0. Smaller (larger) values of ta yield an undercoupled
(overcoupled) situation with R < 0 (R > 0). Hence, switching from an overcoupled to an
undercoupled cavity leads to a π phase difference of the outgoing signal light field. This
idea was used in Refs. [26, 60] to propose phase switching using the quantum state of a
single-atom in a cavity.

2.2 Rydberg States
2.2.1 General Properties
A Rydberg state is an atomic state in which one electron is promoted to a large principal
quantum number n. The wave function of the Rydberg electron has an enormous size
compared to the atomic ground state. Here, we consider Rydberg states of the single
valence electron of 87Rb which has a nuclear spin I = 3

2 . The core only weakly influences
the Rydberg electron, resulting in a small hyperfine splitting of less than 0.5 MHz for S
states with n > 45 [87] and a hydrogen-like level structure. We therefore characterize
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the Rydberg states by n, `, s = 1
2 , j, and mj, where ` is the orbital angular momentum

quantum number, s is the electron spin quantum number, and j and mj are fine structure
quantum numbers. The binding energy of Rydberg states can be calculated using [8, 41]

En,`,j = −hcRy

(n− δn,`,j)2 (2.8)

where h is the Planck constant, c is the speed of light, Ry = R∞M/(M + me), R∞ =
10 973 731.6 m−1, M is the mass of the atomic core, me is the mass of the electron, and
δn,`,j is the quantum defect. Properties of Rydberg states often scale with a power law of
the effective principal quantum number n∗ = n− δn,`,j [8].
Calculating approximate Rydberg wave functions for not too small radii is possible

with the method explained in Refs. [8, 10]. An implementation of this method is, for
instance, found in the open-source software package ARC (Alkali Rydberg Calculator,
version 3.0.0) [125]. From these wave functions, radial parts of the electric dipole matrix
elements between Rydberg states can be obtained.
Due to the weak binding of the electron, Rydberg atoms are easily polarized by an

external electric field E. For small electric fields, the energy shift compared to zero field
can be expressed as

∆EStark = −1
2α0E

2 (2.9)

with the static electric polarizability α0 which depends on the quantum numbers of
the Rydberg state. A practical method for determining Stark shifts of Rydberg states
by diagonalizing the Stark Hamiltonian within a subspace of the Rydberg manifold is
described in Ref. [176]. Again, we use the implementation of this method in Ref. [125],
which determines α0 from a quadratic fit to the energy shift as a function of the electric
field.

2.2.2 Electrically Tuned Förster Resonance
In this section, the concept of an electrically tuned Förster resonance is briefly introduced
and important consequences of our choice of quantum numbers are explained. Further
details and a more general overview of Förster resonances in rubidium can be found in
Refs. [43, 44, 110], which pioneered studies of an electrically tuned Förster resonance at
these quantum numbers experimentally.
We consider two Rydberg atoms at an internuclear distance R. The electrostatic

interaction between the two Rydberg atoms is to leading order described by a dipole-dipole
coupling [8, 120, 163]2

Vdd(R) = 1
4πε0

d1 · d2 − 3d1,zd2,z

R3 , (2.10)

where ε0 is the dielectric constant and d1 and d2 are the electric dipole moments of atoms
1 and 2. The z-axis points along the internuclear axis.

The quantum state of the atom pair is characterized by |γ1,mj1,γ2,mj2〉, where the kth
atom has quantum numbers |γk〉 = |nk, `k, sk, jk〉 and where mjk is the Zeeman quantum
2The prefactor 1/4πε0 is omitted in Refs. [8, 120, 163] which use atomic units.
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number associated with jk. Vdd couples |γ1,mj1,γ2,mj2〉 to other pair states, which we
denote with primed quantum numbers |γ′1,m′j1,γ′2,m′j2〉 in an analogous way. The structure
of Vdd leads to the selection rules ∆` = (`′k− `k) ∈ {−1,+1}, ∆j = (j′k− jk) ∈ {−1, 0,+1},
and ∆mj = (m′jk −mjk) ∈ {−1, 0,+1} for k = 1 and k = 2 [8]. We treat the problem in a
coupled basis |γ1, γ2, J,M〉, where J and M are the quantum numbers corresponding to
the total angular momentum J = j1 + j2. This is advantageous because M = mj1 +mj2
is a conserved quantity for the atom pair [8]. We abbreviate |γ1, γ2, J,M〉 = |γ, J,M〉 and
|γ′1,γ′2,J ′,M ′〉 = |γ′, J ′,M ′〉.

We are interested in how Vdd influences the atom-pair state |γ, J,M〉. Due to the selection
rule for ∆`, the diagonal matrix elements of Vdd vanish. The off-diagonal coupling to
atom-pair states |γ′, J ′,M ′〉 leads to new eigenstates of the system. The energy difference
between two coupled atom-pair states ∆EF = Eγ′ − Eγ is called the Förster defect. If all
off-diagonal matrix elements are much smaller than their respective Förster defects, which
is typically the case for large R, then second-order perturbation theory yields the van der
Waals interaction [120, 163]

∆EvdW = −C6

R6 , (2.11)

which is the energy shift of the perturbed eigenstate associated with |γ, J,M〉. This energy
shift comes along with small admixtures of coupled states |γ′, J ′,M ′〉.

A Förster resonance [37] occurs, if one Förster defect is small compared to the associated
coupling matrix element. In this situation, we assume that the interaction with all
other pair states is negligible.3 If everything else is fixed, decreasing |∆EF | increases the
magnitude of the energy shift near a Förster resonance. In other words, the interaction is
enhanced. For ∆EF = 0, the new eigenstates are equal superpositions

1√
2

(|γ, J,M〉 ± |γ′, J ′,M ′〉) (2.12)

with energy shifts
∆Edd = ±C3

R3 . (2.13)

For reasons discussed in Sec. 2.7, we choose the quantum numbers 482S1/2 and 502S1/2
also studied in Refs. [43, 44] for the experiment.4 As both atoms are in S states, a direct
coupling only exists for atom-pair states in which both atoms are in P states. The smallest
Förster defect at zero electric field ∆EF (0) = h× 103 MHz is found for the combination
of 482P1/2 with 492P1/2. Hence, we consider

|γ〉 = |482S1/2,502S1/2〉, |γ′〉 = |482P1/2,492P1/2〉. (2.14)
3This approximation is justified if the Förster defect is sufficiently small. For somewhat larger Förster
defects, it typically suffices to include only a few other pair states. There are two reasons, why this
works. First, basic quantum mechanics tells us that far detuned couplings have only a small impact
onto the dynamics of the system. Second, pair states with a large energy difference typically also
feature a large difference in at least one of the two principal quantum numbers. This reduces the radial
wave function overlap and therefore the interaction matrix elements. See Refs. [8, 43] for details.

4There is a sequence of electrically-tuned Förster resonances in 87Rb with `1 = `2 = 0, j′1 = j′2 = 1/2,
n2 = n1 + 2, n1 = (49,48,47, . . . ), ∆EF (0)/h = (30,103,190, . . . ) MHz, E = (0.37,0.73,1.07, . . . ) V/cm,
and C3/h = (1.28,1.17,1.07, . . . ) GHz µm3
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A special feature of our particular choice of quantum numbers is that we have j1 = j2 =
j′1 = j′2 = 1

2 for all relevant pair states, which implies |mj1| = |mj2| =
∣∣∣m′j1∣∣∣ =

∣∣∣m′j2∣∣∣ = 1
2 .

As a consequence, the Zeeman degeneracy of the states |γ, J,M〉 and |γ′, J ′,M ′〉 is not
lifted if an electric field is applied. Hence, the direction of the electric field vector becomes
irrelevant. If this was not the case, the Zeeman states of |γ′, J ′,M ′〉 would cause Förster
resonances at different electric fields, see Refs. [43, 44, 110].
Using Ref. [125], we find the following static electric polarizabilities

α48S1/2 = h× 38.01 MHz cm2 V−2, α50S1/2 = h× 50.59 MHz cm2 V−2, (2.15)
α48P1/2 = h× 219.95 MHz cm2 V−2, α49P1/2 = h× 255.70 MHz cm2 V−2. (2.16)

The Förster defect in the presence of an electric field of magnitude E is

∆EF (E) = ∆EF (0)− 1
2∆αE2, (2.17)

where ∆α = α48P1/2 + α49P1/2 − α48S1/2 − α50S1/2 . Hence, the Förster resonance is located
at

E =
√

2∆EF (0)
∆α = 0.73 V

cm . (2.18)

Note that this technique of electrically tuning a Förster resonance requires the signs of
∆EF (0) and ∆α to be equal.

We now turn to calculating the matrix elements of Vdd with respect to |γ, J,M〉 and
|γ′, J ′,M ′〉. For the states of interest, the only possible combinations are J = 0 and M = 0
or J = 1 and M ∈ {0,± 1}. This leads to six nonzero matrix elements given by5

〈γ′, 1,−1|Vdd|γ, 1,−1〉 = 〈γ′, 1, 1|Vdd|γ, 1, 1〉 = −C3

R3 , (2.19)

〈γ′, 1, 0|Vdd|γ, 1, 0〉 = 2C3

R3 (2.20)

and their complex conjugates, with the dipole-dipole coefficient

C3 = e2

4πε0
·Rn1,`1,j1

n′1,`
′
1,j
′
1
·Rn2,`2,j2

n′2,`
′
2,j
′
2
· 2

9 . (2.21)

Here, e is the elementary charge, Rn1,`1,j1
n′1,`

′
1,j
′
1
and Rn2,`2,j2

n′2,`
′
2,j
′
2
are radial matrix elements of atom

1 and 2, and the factor 2
9 is the result for the angular part, see App. A for details. The

other 58 matrix elements vanish. The fact that the moduli of the matrix elements in Eqs.
(2.19) and (2.20) differ by a factor of two implies that the interaction is anisotropic.6

5By choosing different phases for the angular parts of the basis states |γ, J,M〉 and |γ′, J,M〉, the phases
of the matrix elements in Eqs. (2.19) and (2.20) can be changed. Hence, these phases have little
physical relevance. We use the same phase convention as Ref. [28].

6To illustrate the effect of the anisotropy, we consider the example of an initial state in the |γ〉 manifold
together with vanishing Förster defect and time-independent interatomic distance. Because of the
anisotropy, the expectation value of J precesses around the internuclear axis. In addition, the
population oscillation between the |γ〉 and |γ′〉 manifolds [119] may contain more than one frequency
component because of the anisotropy.
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Without loss of generality, the global phases of the radial wave functions are chosen
such that all radial matrix elements become real. We find using Ref. [125]

R
48S1/2
48P1/2

= 2340 ea0, R
50S1/2
49P1/2

= 2304 ea0, (2.22)

where a0 is the Bohr radius, and

C3 = h× 1.168 GHz µm3. (2.23)

Finally, we define the atom-pair states with exchanged quantum numbers7

|γex〉 = |502S1/2, 482S1/2〉, |γ′ex〉 = |492P1/2,482P1/2〉, (2.24)

Matrix elements of the form 〈γ′ex|Vdd|γ〉 or 〈γ′|Vdd|γex〉 are evaluated using

R
48S1/2
49P1/2

= −278 ea0, R
50S1/2
48P1/2

= −325 ea0, (2.25)

and
Cex

3 = h× 1.960× 10−2 GHz µm3. (2.26)
For M = M ′ = ±1 we obtain a coupling scheme

|γ〉 |γ′〉

|γ′ex〉 |γex〉.

Cex
3

C3

Cex
3

C3

(2.27)

For M = M ′ = 0, the scheme is similar with a factor of −2 in front of C3 and Cex
3 . In

principle, these couplings can give rise to population transfer from |γ〉 to |γex〉. This is
also referred to as excitation hopping or exchange interaction in the literature [110, 148].8
However, as we have

Cex
3 ≈

C3

59.6 , (2.28)

hopping is strongly suppressed for our quantum numbers. For this reason, we consider
only the coupling of |γ〉 to |γ′〉.

7In Ref. [8], bosonically symmetrized states of the form
√

1
2 (|γ〉+ |γex〉) are used. As our atomic ensemble

is far above the critical temperature for Bose-Einstein condensation, the spatial wave functions of the
atoms have very little overlap. Hence, Bose-Einstein statistics is practically irrelevant and we can
pretend that the atoms are distinguishable.

8Ref. [148] used an atom-pair state composed of an S and a P state, resulting in a direct coupling from
|γ〉 to |γex〉. Ref. [119] used identical D states in |γ〉 such that |γ〉 = |γex〉.
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2.3 Cavity Rydberg EIT
We consider electromagnetically induced transparency (EIT) with an ensemble of three-
level atoms inside an optical resonator. Cavity EIT was first studied theoretically in Ref.
[91] and observed experimentally in Refs. [59, 168]. Following the general approach of Ref.
[91] and building upon results from Refs. [8, 36], we briefly derive the optical response of
a cavity Rydberg EIT system in the weak-signal limit. In the context of our gate protocol,
we use these results to calculate the pulse shape of the target photon after reflection from
the cavity.
We consider an atomic three-level system consisting of a ground state |g〉, an excited

state |e〉 with 1/e lifetime for population decay 1/Γe, and a Rydberg state |r〉 with 1/e
lifetime for population decay 1/Γr, in order of ascending energies. The signal transition
|g〉 ↔ |e〉 (coupling transition |e〉 ↔ |r〉) with dipole matrix element dge (der) and resonance
frequency ωge (ωer) is driven by a monochromatic light field with complex electric field
amplitude E0,s (E0,co), Rabi frequency Ωs = −d∗geE0,s/~ (Ωco = −d∗erE0,co/~), and angular
frequency ω (ωco).
The linear electric susceptibility9 χ of an ultracold ensemble of such three-level atoms

with density % is obtained from a quantum master equation treatment [36], similar to App.
B. This includes decay of the density matrix element ρrg according to ∂tρrg = −1

2γrgρrg,
where γrg = Γr + γrdeph with a dephasing rate γrdeph. The result is [8]

χ = χ0
iΓe

Γe − 2i∆s + |Ωco|2
γrg−2i(∆s+∆co)

(2.29)

with the signal (coupling) detuning ∆s = ω − ωge (∆co = ωco − ωer) and

χ0 = 2% |dge|2

ε0~Γe
. (2.30)

The electric susceptibility is related to the refractive index by [36] n =
√

1 + χ ≈ 1 + 1
2χ,

where the approximation is typically quite good in our experiments because the atomic
density is relatively low. Assuming a transversely homogeneous medium of length Lm, the
amplitude transmission coefficient relative to free space propagation is ta = exp(i ω2cχLm)
so that

ta = exp

− dtΓe/2
Γe − 2i∆s + |Ωco|2

γrg−2i(∆co+∆s)

 (2.31)

with the resonant optical depth dt = Lm%σabs and with the absoption cross section
σabs = 2ω |dge|2 / (ε0~cΓe).
The reflectivity of a cavity Rydberg EIT system in the weak-signal limit is obtained

by inserting Eq. (2.31) into Eq. (2.2). Under the assumptions dt � 1, F � 1, and
9We neglect the nonlinear optical response [32, 137] caused by the Rydberg-Rydberg interaction here.
In our experiments, the incoming photon rate of the signal light field is typically very low. Hence,
the probability for having more than one signal photon inside the medium at the same time is small.
The nonlinearity required for the quantum gate emerges from the modification to the linear optical
response in the presence of a previously stored control excitation, see Sec. 2.5.
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|∆c| � ∆ωax, the reflectivity simplifies to

R = −1 + 2β
1 + Ceff − i∆c/κ

, (2.32)

where we introduced the complex effective cooperativity

Ceff = −F
π

ln ta. (2.33)

Fig. 5.2 in Sec. 5.2 presents cavity Rydberg EIT spectra which are well described by a
model based on Eq. (2.32).
Note that equivalent results are obtained from a fully quantized model [22] based on

cavity input-output theory, when the Hilbert space is restricted to quantum states that
contain at most a single excitation. The quantized model assumes a single longitudinal
cavity mode, which is justified for dt � 1, F � 1, and |∆c| � ∆ωax. One considers N
atoms at positions r`, each of which is coupled to the cavity mode by the coupling constant
g` = g ·m(r`)/m(0). Here, m(r`) is the transverse mode function of the cavity, see Sec.
3.2, and

g =

√√√√ω |dge|2 ∆ωax

2π2w2
cε0~c

(2.34)

is half the vacuum Rabi frequency at the center of the cavity mode waist with 1/e2 radius
of intensity wc. The equivalence of the two models can be observed by setting Ωco = 0
and ∆c = ∆s = 0 for all atoms. In this situation, Ceff in Eq. (2.32) becomes the collective
cooperativity [156]

C = dtF
2π (2.35)

and the model from Ref. [22] reproduces Eq. (2.32) with

C = C1Neff , (2.36)

where C is real and positive, Neff = ∑
` |g`|

2 /g2 is the effective number of maximally
coupled atoms, and C1 = g2

κΓe/2 is the cooperativity of a single, maximally coupled atom.
Alternatively, one can assume that all atoms are placed at the center of the cavity

mode waist such that g` = g, which contradicts our previous assumption of a transversely
homogeneous medium. In this situation, we find

C = dt,effF
2π = g2N

κΓe/2
(2.37)

with an effective optical depth
dt,eff = N

2σabs

πw2
c

. (2.38)

The fact that both models produce consistent results is not surprising. For instance, it
is well known that “vacuum-Rabi splitting due to atom-cavity coupling can be understood
both quantum mechanically, in terms of dressed states of an atom-cavity system, as well
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as classically, in the context of a modified index of refraction, for a single atom as well as
for large N” [156], see also Refs. [2, 145]. For cavity EIT, the origin of the equivalence is
the same, see also a related discussion in Ref. [46].

While the treatment so far assumed monochromatic signal light, we now consider pulsed
signal light. Assuming that the incoming target pulse has a slowly varying temporal
envelope ut(t), we want to calculate the slowly varying temporal envelope uR(t) of the
light which is reflected from the cavity. To this end, we introduce the frequency domain
versions

ũt(ω) = 1√
2π

+∞ˆ
−∞

ut(t) exp(iωt)dt (2.39)

and similarly ũR(ω). The incoming pulse is normalized according to

+∞ˆ
−∞

|ut(t)|2 dt =
+∞ˆ
−∞

|ũt(ω)|2 dω = 1. (2.40)

As we consider the weak-driving limit, the cavity Rydberg EIT system is linear, so that
the response to a pulse can be obtained by a simple superposition of monochromatic
components. Hence

ũR(ω) = R(ω)ũt(ω). (2.41)
As uR(t) follows from this relation by applying an inverse Fourier transformation, the
normalization of uR(t) typically differs from Eq. (2.40). This reduced norm represents loss
of photons inside the cavity caused by spontaneous emission or by imperfect HR cavity
mirrors.
For γrg = 0, ∆co = 0, β = 1, and for atom-cavity resonance ωc = ωge, which implies

∆c = ∆s, we expand R = 1 + i 2
κF

∆s +O(∆2
s), which we rewrite as

R(∆s) = exp
(
i

2
κF

∆s

)
+O(∆2

s) (2.42)

with the cavity EIT linewidth

κF =
(

1
κ

+ 2CΓe
|Ωco|2

)−1

. (2.43)

If the input signal pulse envelope varies sufficiently slowly such that its Fourier spectrum is
narrow compared to κF , deformations of the output pulse are negligible and the dominant
effect is a pulse delay10

td = 2
κF
. (2.44)

10This immediately follows from Eq. (2.42) together with the Fourier transform property ut(t− td) =
1√
2π

+∞́

−∞
ũt(ω) exp(iωtd) exp(−iωt)dω.
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2.4 Storage and Retrieval of Photons
We now extend the above-discussed situation of cavity Rydberg EIT to a time-dependent
coupling light field. As discussed in Ref. [46], coherent storage and retrieval of signal light
pulses can be achieved by employing appropriately shaped coupling light pulses. In our
gate protocol, this technique is applied to the control photon.
The dynamics of the system are governed by the Heisenberg equations of motion [46]

Eout(t) =
√

2κinE(t)− Ein(t), (2.45)

∂tE = (i∆c − κin − κH) E + i

√
1
2κΓeCP +

√
2κinEin, (2.46)

∂tP =
(
i∆s −

Γe
2

)
P + i

√
1
2κΓeCE + i

Ωco

2 S, (2.47)

∂tS =
(
i∆co + i∆s −

γrg
2

)
S + i

Ω∗co
2 P. (2.48)

Here, Ein is the quantized incoming signal field, Eout is the quantized outgoing signal field,
E is the quantized intra-cavity field, P is the annihilation operator for one Dicke-state
excitation in |e〉, and S is the annihilation operator for one Dicke-state excitation in |r〉. In
principle, the fact that decay terms are included in these Heisenberg equations of motion
would require Langevin noise terms. However, for the purpose of calculating efficiencies
and for suitable initial conditions [46], one can simply take the expectation value of the
original Heisenberg equations and finds that the noise terms vanish. Hence, for practical
purposes the operators in Eqs. (2.45)–(2.48) can be replaced by complex numbers.
Our model is a minor extension of Ref. [46] insofar as it contains more detunings and

it contains the term −κHE in Eq. (2.46), which describes decay of the intracavity field
through the HR cavity mirrors. In the steady state ∂tE = ∂tP = ∂tS = 0 and with the
ansatz Eout(t) = REin(t), this model reproduces Eqs. (2.31)–(2.33).

We introduce the smooth envelope uc(t) of the incoming signal light pulse by Ein(t) ∝ uc(t)
with the normalization condition from Eq. (2.40) and the property uc(t) = 0 for t < 0 or
t > Tc, where Tc is the duration of the pulse. We assume that the desired outgoing signal
envelope is identical to the incoming pulse shape and has the form Eout(t + tr) ∝ uc(t),
where tr is the time at which the retrieval begins. In the dark time tdark = tr − Tc between
storage and retrieval, we assume Ein(t) = 0 and Ωco = 0. For a given temporal envelope
Ωco(t) of the coupling Rabi frequency, we numerically solve Eqs. (2.45)–(2.48). The
combined efficiency of storage and retrieval ηsr is the ratio of the energy in the output
pulse to the energy in the input pulse.

Calculating the temporal envelope Ωco(t) of the coupling Rabi frequency which maximizes
the storage efficiency ηs is a nonlinear optimal control problem, solving which is generally
nontrivial. To obtain analytic results, we follow Ref. [46] and adiabatically eliminate E
and P from the model by setting ∂tE = ∂tP = 0. This is justified, e.g. if we assume
the bad-cavity limit

√
CΓe/2κ� 1 and if we assume that the normalized control pulse

envelope uc(t) varies slowly.
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Assuming resonant light fields ∆c = ∆s = ∆co = 0, we calculate the storage efficiency in
this adiabatic limit along the lines of Ref. [46] and find

ηs,ad = β
C

C + 1e
−γrgTc

ˆ Tc

0
dteγrgt |uc(t)|2 (2.49)

along with the optimal storage coupling pulse

Ωco(t) = −
√

Γe(C + 1) eγrgt/2uc(t)√´ t
0 dt

′eγrgt |uc(t)|2
. (2.50)

Similarly, we calculate the retrieval efficiency in this adiabatic limit

ηr,ad = β
C

C + 1

(ˆ Tc

0
dteγrgt |uc(t)|2

)−1

(2.51)

along with the optimal coupling pulse for retrieval with envelope uc(t)

Ωco (t+ tr) = −
√

Γe(C + 1) eγrgt/2uc(t)√´ Tc
t
dt′eγrgt |uc(t)|2

. (2.52)

The solution of Eq. (2.48) during the dark time leads to an additional decay of the retrieval
signal according to

ηdark = e−γrgtdark . (2.53)
Hence, the overall write-read efficiency in this adiabatic limit is

ηsr,ad = ηs,adηr,adηdark =
(
β

C

C + 1

)2
e−γrg(Tc+tdark). (2.54)

Note that the integrals appearing in Eqs. (2.49) and (2.51) canceled here. The appearance
of the exponential factor in Eq. (2.54) is plausible because each temporal component of
the pulse is delayed by Tc + tdark and experienced dephasing during this time.

2.5 Cavity Rydberg Blockade
Next, we consider cavity Rydberg EIT similar to Sec. 2.3, but with the important difference
that a stationary Rydberg excitation in state |r′〉 was previously created in the atomic
ensemble. In this setting, the excitation |r′〉 suppresses the formation of a second excitation
|r〉 due to the long-range Rydberg-Rydberg interaction. This effect is called Rydberg
blockade [155]. Ref. [22] developed a cavity model for such a blockade situation. This
model consists of two steps; first, the cavity reflection coefficient Rk(ω) for the target light
is calculated under the hypothetical assumption that the control photon is stored in the
kth atom; second, the outgoing target wave packet is calculated taking into account that
the control photon is actually stored in a Dicke state and that the experimental data are
postselected upon detection of a retrieved control photon.
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In the first step, Ref. [22] assumes that the Rydberg-Rydberg interaction is well ap-
proximated as a van der Waals interaction. As our experiment is operated near a Förster
resonance, this calculation of Rk(ω) requires a generalization, which we discuss in Sec.
2.5.1. Among other things, this generalization leads us to an expression for the blockade
radius in Sec. 2.5.2, which serves as a guideline as to the kind of cloud radii, for which a
superatom model is a good approximation.
The second step of the calculation in Ref. [22], however, applies to our experiment

without any changes except that the expression for Rk(ω) is different. We summarize this
calculation in Sec. 2.5.3.

2.5.1 Cavity Reflection Coefficient Assuming Storage in a Particular
Atom

Under the hypothetical assumption that the control photon is stored in the kth atom, we
can define a cavity reflection coefficient Rk(ω) for monochromatic target light with angular
frequency ω in analogy to Eq. (2.41). Ref. [22] calculated Rk(ω) assuming a van der Waals
interaction. We generalize this calculation to the presence of a Förster resonance. This is
discussed in detail in App. B. The central result for Rk(ω) is found in Eqs. (B.19), (B.25),
and (B.23).

2.5.2 Blockade Radius
In a superatom geometry, the calculation simplifies drastically because Eq. (B.19) reduces
to αk` = α2level, which is independent of k and `. Here α2level(ω) of Eq. (B.30) is the
dynamic polarizability of a two-level atom and αk`(ω) is the dynamic polarizability of the
`th atom illuminated with target light, given that the control photon is stored in the kth
atom. Hence, it is an interesting question how large the spatial extension of the atom
cloud can be for the superatom model to be a good approximation.

To answer this question, one defines a blockade radius. It describes the distance between
the kth and lth atoms over which the blockade effect loses its strength. This blockade
strength has to be expressed in terms of some figure of merit. If we use the dynamic
polarizability αk` as the figure of merit, we find a blockade radius of, see Eq. (B.31)

Rb =
∣∣∣∣∣
( 2C3

~Ωco

)2 Γe − 2i∆s

γF − 2i∆F

∣∣∣∣∣
1/6

, (2.55)

where γF is a dephasing rate associated with the Förster-resonant atom-pair states |γ′〉.
The above-defined blockade radius is a quantity which depends only on the properties

of an atom pair. The optical response of the cavity Rydberg EIT system, however,
additionally depends on the number of atoms N and the properties of the cavity. One can
incorporate this dependence in the definition of an alternative quantity, for which we use
Rk(ω) as the figure of merit. This yields a quantity which we call the collective blockade
radius Rcoll. According to Eq. (B.36), it is given by

Rcoll = RbC
1/6, (2.56)
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where Rb is the blockade radius of Eq. (2.55) and C is the collective cooperativity. As C
is proportional to the number of atoms, this represents a collective enhancement of Rb,
which otherwise depends only on C3 and single-atom properties.

2.5.3 Outgoing Target Wave Packet
We now calculate the outgoing target wave packet, taking into account that the control
photon is actually stored in a Dicke state and that the experimental data are postselected
upon detection of a retrieved control photon. To this end, we start from the quantum
state of the atomic ensemble after storage of the control photon. Ideally, it is a Dicke state
of the form [21, 133]

|S〉 =
N∑
k=1

αk|gN−1,r′k〉 (2.57)

where the complex coefficients αk fulfill ∑N
k=1 |αk|

2 = 1 and where |gN−1, r′k〉 denotes a
state of the atomic ensemble, in which the kth atom carries the excitation |r′〉 and the
other N − 1 atoms are in the ground state |g〉.
After the target photon has been sent onto the cavity, the combined quantum state of

the atomic ensemble and the target photon is

|ΨS〉 = crefl|Ψrefl〉+ closs|Ψ(1)
loss〉. (2.58)

Here, crefl and closs are complex coefficients which fulfill |crefl|2 + |closs|2 = 1, the normalized
state |Ψrefl〉 represents the possibility that the target photon is reflected from the cavity,
and the normalized state |Ψ(1)

loss〉 represents the possibility that the target photon is lost
due to atomic spontaneous emission or imperfect cavity mirrors. The state of the incoming
target photon is

+∞ˆ
−∞

dωũt(ω)a†ωe−iωt|ø〉. (2.59)

Here, |ø〉 is the vacuum of all optical modes and a†ω is a bosonic creation operator for a
target photon with angular frequency ω in the outgoing spatial mode. Combining this
with Eq. (2.41) yields

crefl|Ψrefl〉 =
N∑
k=1

αk|gN−1, r′k〉 ⊗
+∞ˆ
−∞

dωRk(ω)ũt(ω)a†ωe−iωt|ø〉, (2.60)

see also Eq. (S44) in Ref. [21]. Note that the state in Eq. (2.60) features entanglement
between the reflected target pulse and the atomic state, because Rk(ω) depends on k and
ω simultaneously.
In our gate experiment, we attempt to store and retrieve the control photon. In the

absence of a target photon, the combined probability for storage and retrieval of the
control photon is ηsr. In the rest of Sec. 2.5, we assume that ηsr is solely due to the values
of β and C according to Eqs. (2.49) and (2.51) and we neglect any contribution from
dephasing of |S〉 during the storage time.
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To calculate the state of the system after the retrieval attempt in the presence of a
target photon, we need the scalar product between |ΨS〉 and the initial Dicke state |S〉,
because atomic states orthogonal to |S〉 are not coupled to the control output mode [21,
133]. If retrieval is successful, the final state of the atoms is |gN〉 and the retrieved control
photon is in a normalized quantum state, which we denote as |φc〉. From Eq. (2.58), we
find

|Ψfinal〉 =
√

1− p2ph|Ψ(2)
loss〉+√ηsr|φc〉 ⊗ |gN〉〈S|crefl|Ψrefl〉, (2.61)

where p2ph is the probability that none of the two photons is lost and the normalized state
|Ψ(2)

loss〉 represents the possibility that at least one photon is lost. Combining Eqs. (2.58)
and (2.60), we obtain

〈S|crefl|Ψrefl〉 =
+∞ˆ
−∞

dωũb(ω)a†ωe−iωt|ø〉, (2.62)

in analogy to Eq. (2.59), where we abbreviated

ũb(ω) = ũt(ω)
N∑
k=1
|αk|2Rk(ω). (2.63)

Note that the lossless component of Eq. (2.61) is a product state. The entanglement that
was present in Eq. (2.60) is automatically absorbed in |Ψ(2)

loss〉 when postselecting upon
survival of both photons.

In the limit of a perfect superatom geometry, Rk(ω) is independent of k. Hence, we can
write Rb(ω) instead of Rk(ω), and Eq. (2.63) simplifies to

ũb(ω) = Rb(ω)ũt(ω), (2.64)

which is analogous to Eq. (2.41) for ũR(ω) without blockade. Hence, storing the control
photon changes the properties of the reflected target photon. This is the origin of the
conditional π-phase shift, on which the gate is built. Note, however, that the target photon
leaves the retrieval efficiency ηsr of the control photon unchanged in this case.
Without such a perfect superatom geometry, however, the fact that a target photon

was reflected from the cavity does change the retrieval efficiency of the control photon,
which is due to the k-dependence of Rk. This k-dependence effectively modifies the
amplitudes and phases of the summands in |Ψrefl〉 such that the overlap with the Dicke
state |S〉 decreases. This yields a combined storage and retrieval efficiency ηsr,t(ω) that
is by definition postselected upon successful reflection of a target photon, i.e. the target
photon is not lost.11 Without deriving an expression for ηsr,t(ω), we can generalize the
above definition of Rb(ω) to non-superatom geometries by setting

ũb(ω) =
√
ηsr,t(ω)
ηsr

Rb(ω)ũt(ω). (2.65)

11A non-postselected version of ηsr,t(ω) cannot be obtained by considering only ũb(ω) because that misses
those components of |Ψfinal〉 in Eq. (2.61), in which the control photon is retrieved while the target
photon is lost. The dependence of ηsr,t(ω) on the angular frequency ω of the target photon is plausible
because far detuned target light should have a negligible effect.
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While this decomposition of ũb(ω) into
√
ηsr,t(ω) andRb(ω) clarifies the underlying physical

concepts, this decomposition is of little relevance for our experiment because that only
relies on ũb(ω). Hence, experimental or theoretical studies of ηsr,t(ω) are beyond the scope
of the present work.

2.6 Photon-Photon Gate
2.6.1 Protocol
This section explains how a quantum-logic gate between two photons can be implemented
using the above-described techniques. Our scheme is a minor modification of the proposal
in Ref. [22]. The key idea is that a cavity converts conditional loss into a conditional π
phase shift, see also Fig. 2.2. Using Rydberg blockade to create intra-cavity loss conditioned
on the presence of a previously stored control photon, we obtain a CPHASE gate for the
photon number states |0〉 and |1〉 of the control and target photon.
Using the spatial dual-rail setup shown in Fig. 2.3, we map between incoming and

outgoing polarization qubits and internal dual-rail qubits. Polarizing beam splitters (PBSs)
at the input and output of the gate transmit (reflect) the horizontally (vertically) polarized
|H〉 (|V 〉) component of the qubits. Hence, it is only for the component |HV 〉 = |H〉⊗ |V 〉
of the two-photon input state that both qubits interact with the cavity. In our notation for
a two-photon state such as |HV 〉, the control photon is always listed first. The resulting
quantum-logic gate is ideally characterized by a linear map from pure states onto pure
states, defined by

|HH〉 7→ |HH〉
|HV 〉 7→ eiπ |HV 〉
|V H〉 7→ |V H〉
|V V 〉 7→ |V V 〉.

(2.66)

Note that some optical elements, such as waveplates and lenses, are not drawn in Fig. 2.3.
For a definition of our polarization conventions, including diagonal |D〉, anti-diagonal |A〉,
left-handed circular |L〉, and right-handed circular |R〉, see App. D.
The timing sequence of the gate operation consists of three steps. In the first step,

a light pulse containing the control photon is sent into the system. A PBS maps the
incoming polarization qubit onto a dual-rail qubit. One rail bypasses the cavity, the other
impinges onto the cavity, where the photon is stored using the techniques described in
Sec. 2.4. In the second step, a light pulse containing the target photon enters the system.
A PBS maps the incoming polarization qubit onto a dual-rail qubit. One rail bypasses
the cavity, the other is reflected from the cavity, acquiring the conditional π phase shift.
The two components are recombined on a PBS, which converts the dual-rail qubit back
into a polarization qubit. In the third step, the stored component of the control photon
is retrieved from the cavity and recombined with the bypass component at the output
PBS, which converts the dual-rail qubit back into a polarization qubit. To match the
delay caused by storage and retrieval, the bypass contains a long fiber that causes a
corresponding delay.
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Control
qubit

Target
qubit

Figure 2.3: Scheme of the gate. The control (target) photon travels through the
setup from left to right (right to left). Polarizing beam splitters (blue squares) map
between incoming and outgoing polarization qubits and internal dual-rail qubits. One
rail of each qubit impinges onto the cavity, the other rail bypasses the cavity. If the
control qubit impinges onto the cavity, it is stored in a Rydberg state. Subsequently,
the target photon enters the system. A conditional π phase shift is experienced if
both qubits are in their cavity rails. After the interaction with the target photon,
the control photon is retrieved. The bypass rail of the control qubit is delayed in an
optical fiber to match the delay resulting from storage. The octagon represents the
vacuum chamber.

2.6.2 Fidelity and Efficiency
To quantify how closely the implementation of the gate resembles the ideal π phase gate in
Eq. (2.66), Ref. [22] studied the Choi-Jamiolkowski process fidelity FCJ [42] and a second
version of the fidelity FswapPsuc which is relevant for entanglement swapping based on
Bell-state detection. For our experiment, we also consider the state fidelity obtained when
trying to produce a maximally entangled Bell state. Within the assumptions of our model
the Bell-state fidelity is equivalent to the process fidelity from Ref. [22], as shown in App.
C.
Ideally, a maximally entangled output state is obtained, if each qubit is in a 50:50

superposition of the basis states |H〉 and |V 〉. We consider the input state

|ψin〉 = |DD〉, (2.67)

for which Eq. (2.66) predicts the output state |ψBell〉 = 1√
2(|HA〉 + |V D〉). The actual

output state of this entangling gate operation is described by a density matrix ρout and
the fidelity with which this state matches the ideal output state is the Bell-state fidelity
[42, 71]

F = 〈ψBell|ρout|ψBell〉. (2.68)
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If the output state is a pure state, then ρout = |ψout〉〈ψout| and Eq. (2.68) simplifies to

F = |〈ψBell|ψout〉|2 . (2.69)

We apply this to the scheme in Fig. 2.3 for a monochromatic target light field with angular
frequency ω. We obtain

F (ω) =
∣∣∣∣∣cHtH − cHtV

∑N
k=1 |αk|

2Rk(ω) + cV tH + cV tVR(ω)
4

∣∣∣∣∣
2

, (2.70)

where cH , cV , tH , and tV are positive numbers. c2
j (t2j) with j ∈ {H, V } is the probability

that the control photon is not lost (the target photon is not lost outside the cavity), if
this photon is in state |j〉. If we assume that all beam splitters, waveplates, and mirrors
outside the cavity are lossless, then we obtain cH = √ηsr, cV = √ηdelay, and tH = tV = 1,
where ηdelay is the transmission through the delay fiber.

So far we neglected that the light fields are pulsed. In App. C, two options are discussed
how Eq. (2.70) can be generalized for pulsed light fields. These options differ with respect
to how much emphasis is put on the envelope of the outgoing light pulses. Here, we
consider only the version of the fidelity that we measure in our experiments. According to
App. C, we can express this fidelity as

F =
+∞ˆ
−∞

dω |ũt(ω)|2 Fp(ω) (2.71)

with
Fp(ω) = |Q(ω)|2 + |Qb(ω)|2

16 + CcQ
∗(ω)Qb(ω) + c.c.

16 , (2.72)

where we abbreviated
Q(ω) = cV tH + cV tVR(ω), (2.73)

Qb(ω) = cHtH + cHtV
N∑
k=1
|αk|2Rk(ω), (2.74)

Cc =
∞̂

−∞

u∗delay(t)uretr(t)dt. (2.75)

Here, udelay(t) is the outgoing envelope of the part of the control light pulse that is
transmitted through the delay fiber, while uretr(t) is the outgoing envelope of the control
pulse retrieved from the cavity. Both envelopes are normalized according to Eq. (2.40).

The frequency integral in Eq. (2.71) mainly accounts for a reduction of the fidelity due
to a conditional delay of the target pulse. To see this, consider the delay in the cavity
EIT situation from Eq. (2.44). This delay is absent for strong cavity Rydberg blockade,
because the intra-cavity field is strongly suppressed in that situation and the target pulse
is essentially just reflected from the I/O coupler. As a result, the temporal overlap between
the components |H〉 and |V 〉 of the target pulse is reduced. This leads to a reduction
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of the fidelity. As this delay is conditioned on the qubit value of the control photon, it
cannot simply be compensated by local modifications to the outgoing target pulse envelope.
Note that this conditional pulse delay can become arbitrarily small by making κ and Ωco
large according to Eq. (2.43). Hence, this does not set a fundamental limit on the gate
performance.
Beyond this conditional delay, loss of photons is often a much more relevant source

of imperfections. Hence, it is advantageous to postselect results upon detection of both
photons. The efficiency η of the gate is the probability that none of the two input photons
is lost. According to App. C, it can be written as

η =
+∞ˆ
−∞

dω |ũt(ω)|2 η(ω) (2.76)

with

η(ω) =
|cHtH |2 +

∣∣∣cHtV ∑N
k=1 |αk|

2Rk(ω)
∣∣∣2 + |cV tH |2 + |cV tVR(ω)|2

4 . (2.77)

For the fidelity in the postselected subensemble, we obtain

Fpost = F

η
, (2.78)

see App. C. It turns out that Fpost and η are identical to Fswap and Psuc in Ref. [22].

2.7 Optimal Parameters for the Experiment
The proposals [22, 54] mostly concentrated on developing a mathematical framework
for modeling the proposed scheme and analyzing the effect of a finite strength of the
Rydberg-Rydberg interaction. In addition, they estimated the performance of the gate,
predicting a fidelity of F > 99% in Ref. [54] and a postselected fidelity of F > 99%, an
additional error due to finite bandwidth below 2%, and a combined storage and retrieval
efficiency of 90% in Ref. [22].

Here, we include dephasing, lack of adiabaticity during storage and retrieval, and photon
loss in optical components into the model of Ref. [22]. As a result, the question of how
to choose experimental parameter values to maximize the fidelity of the gate becomes
nontrivial. We discuss this optimization procedure below and find that even in the presence
of these experimental imperfections, a fidelity of the entangling gate operation of F > 50%
can be achieved with moderate effort and F > 90% seems possible in the long run.
Note that some experimental imperfections are beyond the present scope. Examples

of such imperfections are laser phase noise, atom number fluctuations, and the imperfect
single-qubit visibility, which was observed in Ref. [133] without clearly identifying its
physical origin.
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2.7.1 Simplifications to the Model
Studying how the gate performance depends on the pulse shape of the photons is beyond
the scope of this work. Hence, we choose a specific envelope uc(t) = us(t, Tc) for the control
and ut(t) = us(t− Tc, Tt) for the target pulse, where us(t, T ) is a single-cycle sinusoid of
the form

us(t, T ) =
√

2
T

sin
(
π

T
t
)
×

1, 0 ≤ t ≤ T

0, otherwise.
(2.79)

This looks very similar to a Gaussian near the peak but, in contrast, does not have infinitely
long tails, which would be problematic as we require finite length pulses.
For the purpose of the calculation, we would like to simplify our model of Rydberg

blockade from App. B. To this end, we note that atoms outside the blockaded region
still contribute to the overall optical depth of the medium, increasing the conditional
pulse delay and making it harder to achieve high cavity EIT reflectivity |R|2. Hence,
a superatom geometry is advantageous, in which all atoms experience perfect blockade
regardless of which atom carries the Rydberg excitation. This is fulfilled if the size of the
atomic ensemble is smaller than the blockade radius such that Rk` < Rb for all atoms. In
this situation, Eq. (B.29) yields αk` ≈ α2level. Using Eqs. (B.23), (B.24), and (B.30), we
find

Rb =
N∑
k=1
|αk|2Rk = −1 + 2β

1 + Ceff,b − i∆c/κ
(2.80)

with
Ceff,b = C

Γe
Γe − 2i∆s

. (2.81)

As another simplification, we assume resonant light fields ∆c = ∆s = ∆co = 0. We note
that it is possible to choose nonzero detunings and still obtain a π phase shift between Eqs.
(2.80) and (2.32). Therefore, assuming resonant light fields is not strictly required to obtain
a quantum-logic gate. However, lifting this assumption in our numerical optimization did
not lead to a clearly improved fidelity but made the system more susceptible to variations
in the number of atoms.

2.7.2 Choice of Free Parameters
The goal of our numerical calculation is to find experimental parameters which maximize
the fidelity F from Eq. (2.71). To this end, we choose a set of fixed parameters and vary
all remaining input parameters. In essence, the four free parameters for this optimization
are the duration Tc and Tt of the control and target light pulses, the reflectivity of the
I/O coupler characterized by Fin, and the resonant optical depth of the atomic medium dt.
This choice of free parameters is motivated by the following three major trade-offs.

• The decay of the control retrieval efficiency according to Eq. (2.54) favors short light
pulses, while long light pulses are desirable to avoid a reduction of the storage and
retrieval efficiency due to non-adiabatic effects and to avoid a reduction of F due to
the conditional target pulse delay.
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• Low cooperativity C ∝ dtFin enables high cavity EIT reflectivity |R|2 and small
target pulse delay, while high cooperativity is desirable to achieve high reflectivity
|Rb|2 in the presence of Rydberg blockade.

• Low cavity finesse Fin reduces the impact of imperfect HR cavity mirrors, while high
cavity finesse reduces losses when the cavity is blockaded.

2.7.3 Fixed Parameters
For the choice of the cavity parameters FH and ∆ωax, two considerations are particularly
important. First, to avoid losses at the HR cavity mirrors, these should have the highest
possible reflectivity, such that FH � Fin. Second, a large cavity EIT linewidth κF is
desirable, because the incoming light pulses need to spectrally fit into this linewidth to
avoid a reduction of the storage and retrieval efficiency due to non-adiabatic effects and to
keep the conditional target pulse delay small. According to Eq. (2.43), the cavity linewidth
κ constitutes an upper bound for κF , so κ should be large. At a given finesse Fin, this
implies making ∆ωax as large as possible. For technical reasons discussed in Sec. 3.2, we
achieve the numbers in Tab. 2.1.
When aiming at large κF , one should also make Ωco large according to Eq. (2.43).

Technical limitations such as available laser power make a value of Ωco,max/2π = 20 MHz
seem realistic, as achieved in Ref. [152]. Hence, we choose |Ωco| = Ωco,max for the target
photon. For the control photon, it is a known problem that Ωco(t) from Eqs. (2.50) and
(2.52) diverges at the beginning of storage and at the end of retrieval [46]. Hence, we clip
|Ωco(t)| to a maximum value |Ωco(t)| ≤ Ωco,max. This turns out to have little effect on the
achieved storage and retrieval efficiency, just as in Ref. [46].

The transmission ηdelay through the delay fiber depends on the length of the fiber and the
required delay. At a signal light wavelength of 780 nm, optical fibers with a loss of −4.3 dB

km
are commercially available. This corresponds to ηdelay = exp(−αfLf) where Lf is the
length of the delay fiber and where the attenuation coefficient is αf = 1

10 ln(10)× 4.3 km−1.
With a refractive index of nf = 1.5 in the delay fiber, the fiber length must correspond to
the total delay Tc + Tt. Hence Lf = (Tc + Tt)c/nf and

ηdelay = e−γf (Tc+Tt) (2.82)

with γf = αfc/nf = 1/(5.0 µs). Compared to the delay fiber, losses at the remaining
optical elements outside the cavity, such as beam splitters, waveplates, and mirrors, are
expected to be negligible. Hence, we use cH = √ηsr, cV = √ηdelay, and tH = tV = 1.
The dephasing rate γrg causes exponential decay of the overall write-read efficiency

during the dark time tdark according to Eq. (2.53). Hence, tdark should be kept as short as
possible. This implies tdark = Tt. Similarly, the coherence time 1/γrg between the atomic
ground and Rydberg states should be as long as possible. To achieve this, the temperature
of the atomic ensemble has to be low and the optical dipole trap should either be operated
at suitable parameters or it should be turned off completely during the experiment [133].
Moreover, the atomic density should not be too high because otherwise increased dephasing
may occur, originating from the interaction between the Rydberg electron and nearby
ground-state atoms [7, 98]. As a reference point, Ref. [133] found experimentally that this
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Fixed input parameters:
1/Γe = 26 ns 1/γrg = 30 µs 1/γf = 5 µs
∆ωax/2π = 1.5 GHz Ωco,max/2π = 20 MHz FH = 2× 104

Main optimization results:
F = 0.64 Fpost = 0.94 η = 0.68
Optimized free input parameters:
Fin = 230 Tc = 0.5 µs Tt = 1.0 µs
Other parameters at the optimum:
C = 11 β = 0.989 Cc = 0.993
|R|2 = 0.95 |Rb|2 = 0.69 ηsr = 0.76
ηsr,ad = 0.81 ηdark = 0.999 ηdelay = 0.74

Table 2.1: Input parameters and results of the numerical optimization. The values
of |R|2 and |Rb|2 quoted here are for monochromatic resonant light.

kind of dephasing vanishes in 87Rb below a peak density on the order of % = 1× 1011 cm−3

for principal quantum numbers below 80, resulting in a coherence time of 1/γrg = 30 µs at
a temperature of 0.2 µK. To avoid limitations on the achievable optical depth at low atomic
density, it is advantageous to use an atomic transition that features a large absorption
cross section σabs. In 87Rb, an obvious choice is the cycling transition on the D2 line at
780 nm with 1/Γe = 26 ns and σabs = 2.9× 10−9 cm2.

In addition to using low density, one can reduce the probability of ground-state atoms
interacting with the Rydberg electron by using Rydberg states with relatively low principal
quantum numbers, for which the wave function of the Rydberg electron extends over a
smaller volume compared to high principal quantum numbers. To obtain a large Rydberg-
Rydberg interaction at low principal quantum numbers, it is advantageous to employ a
Rydberg state pair that features a Förster resonance, such as the pair |482S1/2,502S1/2〉
introduced in Sec. 2.2.

2.7.4 Numerical Optimization
We use the following approach to calculate the fidelity F as a function of the free parameters
Tc, Tt, Fin, and dt. First, we numerically solve Eqs. (2.45)–(2.48), (2.50), and (2.52) with
tdark = Tt to obtain ηsr and Cc. Next, we use Eqs. (2.31), (2.2), (2.80), (2.81), (2.82),
(2.72)–(2.74), and (2.77) to calculate ta, R, Rb, ηdelay, Fp(ω), and η(ω). Finally, we
numerically solve the integrals in Eqs. (2.71) and (2.76) to obtain F and η.

A frequent problem with this strategy is that the optimal value for the optical depth dt is
typically not much smaller than unity but rather somewhere above 2. This is problematic
for two reasons. First, the model of Eqs. (2.45)–(2.48) becomes a poor approximation and,
second, the high optical depth will tend to increase dephasing due to the required higher
atomic density. For these reasons, we typically restrict the optical depth in the numerical
optimization to dt ≤ 0.3 and unsurprisingly find that the maximum of F subject to this
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constraint is found at
dt = 0.3. (2.83)

Tab. 2.1 shows the results of the numeric optimization. Before discussing the origin of
the infidelity, we first note that

√
CΓe/2κ = 6.4 shows that this parameter regime is not

in the bad-cavity limit. Nonetheless, in Tab. 2.1, ηsr deviates only moderately from ηsr,ad
and Cc hardly deviates from 1. From this, we conclude that using the control coupling
envelopes from Eqs. (2.50) and (2.52) is still a good approximation to the optimal control
problem, despite some lack of adiabaticity.

We now discuss the origin of the infidelity. First, we note that Cc ≈ 1, which means that
Fp(ω) in Eq. (2.71) is well approximated by F (ω) in Eq. (2.70). Next, we note that ηsr
and ηdelay happen to be almost identical. Hence, ηsr ≈ ηdelay can be factored out of F (ω)
in Eq. (2.70) and out of η(ω) in Eq. (2.77). Hence, ηsr and ηdelay in Tab. 2.1 are easily
identified as the largest sources of the infidelity because all remaining effects together
contribute only a factor 0.85 to F and 0.91 to η.
To understand what limits ηsr, we note that ηsr does not deviate much from ηsr,ad

and consider the decomposition of ηsr in Eq. (2.54). As ηdark is negligible, the dominant
problem lies in the fact that C is not larger.
It is a natural question to ask why the optimization does not find a better overall

performance at larger C, which at fixed dt and FH is equivalent to larger Fin. The answer
is that while this would obviously increase ηsr,ad and according to Eqs. (2.80) and (2.81)
also Rb, such an increase in C would also decrease the ratio ηsr/ηsr,ad and it would decrease
the cavity EIT bandwidth κF so that the unwanted conditional target pulse delay would
be increased. This would result in an overall decrease of F .

It turns out that higher fidelity at larger C is possible, if longer pulses are used such that
non-adiabatic effects and conditional pulse delay become less severe. This requires a longer
coherence time 1/γrg. If dephasing can be overcome, the ultimate limit for γrg is set by the
radiative 1/e lifetime of the Rydberg states. For example, for a principal quantum number
around 70 in rubidium in a room-temperature environment, this yields γrg ≈ 140 µs, see
e.g. Ref. [150]. Along with this, we assume that the delay fiber is replaced by storage
and retrieval in a copy of the atom-cavity system. This copy, however, serves only as a
quantum memory without any need for Rydberg blockade. Hence, one can realize much
larger C simply by increasing the length of the medium, without increasing its density.
Hence, we approximate this quantum memory as ηdelay = 1. We also remove the constraint
on dt. All other parameters in Tab. 2.1 are left unchanged. A numerical optimization
of F yields dt = 5, Fin = 100, Tc = 3 µs, Tt = 14 µs, F = 0.935, and η = 0.941. If these
numbers can be achieved in the future, this would be a tremendous step forward for optical
quantum information processing.

31





Chapter 3

Experimental Setup
The experiments in this work were performed at the Max Planck Institute of Quantum
Optics in a laboratory, which was previously used for experiments with Bose-Einstein
condensates (BECs) [94, 135]. In recent years, ultracold atomic ensembles above the
critical BEC temperature were employed to study Rydberg EIT at the single-photon level
[8, 132, 149]. As a consequence, substantial parts of the setup required for this work, such
as laser systems and experiment control software and hardware, were already present in
the lab. However, the previous vacuum chamber did not offer enough room to house the
cavity, so a new vacuum system had to be installed along with the optical resonator. As a
consequence, new setups for preparation and characterization of the atomic ensemble had
to be designed and implemented. This required removing most of the components on the
main part of the optical table, see Fig. 3.1.
This chapter starts with an overview of the new setup in Sec. 3.1. Subsequently, the

design of the optical resonator is discussed in Sec. 3.2. Sec. 3.3 describes the vacuum
chamber along with the viewports and the bake-out process. The electric field control and
particle detection capabilities of the new setup are covered in Secs. 3.4 and 3.5. Sec. 3.6
gives an overview of the laser systems. Finally, Sec. 3.7 explains how the optical setup
required for the scheme in Fig. 2.3 is implemented in the experiment.

Figure 3.1: Photos of the main part of the optical table taken in April 2020 (left)
and in June 2021 (right).
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Figure 3.2: Schematic overview of the experimental setup. The drawing is a
horizontal cut through the CAD design of the vacuum chamber in the atomic plane.
The ion pump and vacuum components connecting the chamber to a vacuum gauge
and to an angle valve for initial evacuation are omitted. Further details are provided
in the text.

3.1 Overview
Fig. 3.2 shows a horizontal cut through the vacuum system. The following key ideas
motivated this design. First, we wanted to decrease the cycle time for the preparation of
an atomic ensemble compared to the previous setup by using a two-dimensional magneto-
optical trap (2D MOT) [23] and by employing a fast laser-cooling method [159] instead
of comparatively slow evaporative cooling in a magnetic trap. Second, high 87Rb vapor
pressure in the main chamber is avoided in order to obtain long trapping times and to rule
out deposition of 87Rb on the cavity mirrors. Third, a compact main vacuum chamber
combined with large DN100CF viewports at the top and bottom allow for relatively good
optical access.
Preparation of an atomic ensemble starts with a 2D MOT in a commercial cell (Cold

Quanta, CASC-1000-RB) which contains two rubidium dispensers. Four permanent magnet
rods (not drawn) generate the magnetic field gradient required for the 2D MOT. The
cell is connected to the main chamber via an all-metal gate valve (VAT Vakuumventile,
48124-CE01, custom made with magnetic permeability below 1.05), such that the cell
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can be exchanged while keeping the rest of the system under vacuum, avoiding a full
bake-out. The cold atomic beam emerging from the 2D MOT passes through a small
vacuum aperture with a diameter of 0.75 mm, which prevents excessive entry of 87Rb
into the main chamber and which is integrated into the 2D MOT cell. Subsequently,
atoms are collected in a standard three-dimensional MOT (3D MOT) at the center of
the main chamber, which coincides with the mode waist of the optical resonator and is
located approximately 30 cm from the 2D MOT. Atoms that are not captured in the 3D
MOT can pass through a hole in the resonator mount toward the ion pump. This avoids
accumulation of atoms inside the resonator mount where they could potentially end up on
the cavity mirrors. Two water cooled coils outside the vacuum generate the magnetic field
gradient required for the 3D MOT.

The 3D MOT overlaps with a crossed-beam optical dipole trap (ODT) with a wavelength
of 1064 nm, into which atoms are continuously cooled by the MOT. Only one of the two
ODT beams is drawn in Fig. 3.2, the other beam is perpendicular to the drawing plane.
The atom number of the atomic ensemble in the ODT is optimized by a final 3D MOT
cooling stage with reduced repumping power. Next, the magnetic field is switched off and
polarization gradient cooling reduces the atomic temperature. Subsequently, the MOT
light is switched off and further cooling in the ODT is achieved using the first two stages
of Raman cooling described in Ref. [159] but in a crossed-beam ODT. Lowering the power
of the ODT after the Raman cooling further reduces the atomic temperature, yielding a
suitably prepared ensemble for the experiment. The atomic ensemble can be imaged along
the vertical axis using an absorption imaging system described in Ref. [126].
The light fields containing the control and the target photon are coupled into the

resonator through a DN40CF viewport at the side of the vacuum chamber. The resonator
mirrors are held in a monolithic titanium mount, which is firmly attached to the wall
of the chamber via an aluminum bridge. One of the mirrors is glued to a piezoelectric
actuator (piezo) which is used to adjust the cavity resonance frequency.
The Rydberg coupling light at 480 nm exits from a fiber coupler (Schäfter+Kirchhoff,

60FC-4-M12-33) with a spot size of approximately 750 µm. The control (target) coupling
light passes through a PBS for polarization cleaning and through a telescope consisting of
two spherical singlet lenses with focal lengths of 150 mm and −50 mm (−100 mm), before
it enters the vacuum chamber. To focus the coupling light onto the atomic ensemble,
plano-convex lenses (Newport, KPX016AR.14), which are AR coated for 430 nm to 700 nm
and have a focal length of 19 mm, are positioned behind the concave cavity mirrors, as
shown in Figs. 3.2 and 3.6. Initial alignment of the coupling beams is achieved by coupling
resonant signal light into the cavity and then superimposing the coupling beam with the
signal light transmitted through one of the concave cavity mirrors. The spot size of the
coupling light at the atomic position is fine-adjusted by translating one of the lenses along
the optical axis such that a large EIT Rabi frequency is observed in the EIT spectra in
Sec. 5.2.
To provide electric field control capabilities, the resonator mount contains several

electrodes, which are insulated from the cavity mount with Vespel parts. Kapton insulated
wires, which are not drawn in Fig. 3.2, connect the electrodes to an electric feed-through
flange. By applying an electric field, Rydberg atoms can be ionized and the resulting ions
or electrons can be detected using a channel electron multiplier (channeltron). To avoid
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Figure 3.3: Calculated fundamental cavity mode (red) in the tangential plane.
The colored area contains 99.999% of the power. The design is symmetric with
respect to the x-axis. The distance between the concave (convex) cavity mirrors is
30.75 mm (63.00 mm) and their radius of curvature is −25 mm (50 mm). The angle
of incidence is 4.5°. All mirror centers lie in the (x,z)-plane. The round-trip length
of the resonator is 188.7 mm, resulting in an axial mode spacing of 1.59 GHz. The
cavity waist wc = 8.5 µm and the atomic ensemble are located at (x,z) = (0,0). For
the D2 line of 87Rb, this yields an atom-cavity coupling constant of g/2π = 1.0 MHz
according to Eq. (2.34). The cavity mode has an additional waist midway between the
convex mirrors which is slightly astigmatic and has a spot size of 0.10 mm (0.12 mm)
in the tangential (sagittal) plane.

stray electric fields from the required high voltage (HV) and to avoid compromising optical
access, the channeltron does not have a direct line-of-sight to the atomic position. Hence,
ions or electrons have to be steered towards the channeltron by an additional deflection
electrode. More details are provided in Sec. 3.4.

3.2 Optical Resonator Design
The optical resonator constitutes the core of the experimental setup. Modifying it becomes
difficult once the vacuum system is closed, so careful design is critical. As discussed in Sec.
2.7, high gate performance requires low intra-cavity loss and a large axial mode spacing.
These requirements are reflected in many of the design choices discussed below.

3.2.1 Resonator Geometry
We first explain, why a bow-tie resonator geometry is favorable. As discussed in Refs. [8,
68, 133, 173], the thermal atomic motion causes a decay of the retrieval efficiency of the
stored control photon according to

ηsr ∝ exp(−t2/τ 2
R), τR = 1

kRσv
, σv =

√
kBT/m, (3.1)

where kB is the Boltzmann constant, T is the atomic temperature, m is the atomic mass,
and ~kR is the net photon recoil transferred during storage of the control photon. In
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order to obtain long coherence time, kR should be minimal. In our atomic excitation
scheme, this is achieved for counter-propagating signal and coupling light fields. This
requirement rules out the use of a standing-wave resonator, such as a Fabry-Pérot cavity,
in which there are two counter-propagating components of the signal light field. While
one can achieve minimal kR for one of these components, the other component would
always have maximal kR, yielding fast decay of the retrieval efficiency. Hence, we use
a traveling-wave cavity, i.e. a ring resonator. In principle, a configuration with three
instead of four mirrors might seem like a good choice because every mirror introduces
additional intra-cavity loss. However, such a three-mirror resonator does not allow for a
small angle of incidence, which is favorable because this reduces astigmatism and facilitates
a small polarization mode splitting. The latter is because differential reflection phase shifts
between s- and p-polarization tend to be smaller for a small angle of incidence. Hence, we
chose a bow-tie geometry and send the coupling light through the concave cavity mirrors
to achieve minimal kR, see Fig. 3.2.
We experimentally tested several different geometries in order to find a configuration

that simultaneously yields small mode waist, low intra-cavity loss, and small polarization
mode splitting. A small mode waist is beneficial because this increases g according to
Eq. (2.34), which decreases the number of atoms required to reach a given collective
cooperativity. Some of the early geometries and details about the methods used for
designing and characterizing these resonators can be found in Ref. [64]. Fig. 3.3 shows
the geometry of the final resonator, which is installed in our vacuum chamber, along with
the calculated fundamental resonator eigenmode. For a planar resonator, the transverse
resonator eigenmode can be separated into two components: the transverse component that
lies in the resonator plane (tangential plane) and the transverse component perpendicular
to the resonator plane (sagittal plane). For each of these components, the eigenmode is
defined as the mode that reproduces itself after one round trip through the resonator. If
such a mode exists for both components, the resonator is stable, see chapter 19 in Ref.
[141]. Details about how to calculate resonator eigenmodes using the ABCD or ray-transfer
matrix formalism can be found in Refs. [38, 64, 141].
Our design represents a compromise between a small angle of incidence and avoiding

mode clipping. Clipping can occur due to the finite aperture of the concave mirrors or at
the side of the concave mirror substrates when the beam travels between the concave and
convex mirrors. While the use of concave mirrors is necessary to obtain a stable resonator,
the additional use of two convex mirrors allows for a shorter cavity, which increases ∆ωax.

As pointed out in the supplement of Ref. [69], which uses a similar resonator design, it
is important to keep a distance on the order of 10 mm between the atomic position and
the nearest surface. This reduces uncontrolled stray electric fields presumably resulting
from patch charges on surfaces, which could otherwise cause an increased dephasing rate
γrg. Hence, we chose a radius of curvature of −25 mm for the concave mirrors, which leads
to a distance of approximately 15 mm between the atoms and the nearest mirror surface.
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3.2.2 Mirrors
To obtain low intra-cavity loss, high-quality mirrors are required. Our cavity mirrors were
manufactured and coated by LAYERTEC, polished to a specified root mean square (RMS)
surface roughness below 0.3 nm.
The design goal for the HR cavity mirror coatings was a reflectivity of > 99.99%, a

transmission of 10 ppm, and a differential phase shift between the reflected s- and p-
polarized components of ∆ϕs−p < 0.1° (zero-phase mirror). Unless otherwise noted, the
stated numbers refer to a wavelength of 780 nm under 4.5° angle of incidence. A ring-down
measurement with four HR mirrors from the same coating run yielded a decay time of
2.0 µs, corresponding to a finesse of FH = 2× 104 which translates to a reflectivity of
99.992% per mirror. To achieve these numbers, it was crucial to clean the reflecting mirror
surfaces before mounting the substrates. The best cleaning results were obtained with
a cleaning polymer (Mountain Photonics, FirstContact). Regularly verifying the results
under a dark-field microscope was helpful to optimize the cleaning technique.
While the achieved numbers are sufficient for the experiment, it should be noted that

state-of-the-art HR mirrors achieve reflectivities above 99.999%. This becomes possible by
manufacturing extremely precise mirror surfaces, using e.g. superpolishing. Although this
is difficult on substrates with a small radius of curvature, Ref. [158] recently demonstrated
just that. The authors report on a near-concentric Fabry-Pérot cavity consisting of two
mirrors with 10 mm radius of curvature, an RMS microroughness of 0.10 nm, and losses of
5 ppm at 1064 nm. This promises significant potential for future improvements of FH in
our gate scheme.
The coating design for the I/O coupler has a reflectivity of 98.2% and a differential

reflection phase shift of ∆ϕs−p = 0.1°. We decided against a zero-phase mirror because
this would have increased the tolerances on the reflectivity according to the manufacturer.
Assuming perfect HR mirrors, these numbers result in an expected finesse of F = 349, a
full width at half maximum (FWHM) linewidth of 2κ = 4.6 MHz and an expected splitting
between the polarization eigenmodes of the resonator of ∆ωpol = ∆ωax∆ϕs−p/2π =
2π × 0.4 MHz� 2κ.

The backsides of all mirror substrates are plane polished and anti-reflection (AR) coated
for 780 nm and 480 nm. This avoids etalon effects for the coupling light at 480 nm, which
has to pass through the concave mirrors, see Fig. 3.2. At 480 nm, the HR coatings have a
reflectivity of 10%, while the I/O coupler coating is designed for a reflectivity below 1%.
This suppresses a cavity mode at this wavelength.

3.2.3 Alignment
The four cavity mirrors need to be positioned in space according to the design in Fig. 3.3.
To get an impression of the required positioning accuracy, we study the effect of mirror
displacements in the x-, y-, and z-direction onto the resulting cavity eigenmode.

First, we consider the position of the optical axis of the cavity eigenmode. The optical
axis is a ray defined by the requirement that it reproduces itself after one round trip
through the resonator, governed by reflections at each mirror surface according to Snell’s
law. Ideally, the optical axis touches the center of each mirror. However, displacing or
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Figure 3.4: Impact of mirror displacement onto cavity eigenmode position. Moving
one of the concave mirrors by just 40 µm in the x- (a) or y-direction (b) leads to a
large shift of the optical axis (red) of the cavity eigenmode. (c) plot of the mode
shift, defined as the distance between the center of one of the concave mirrors and
the point at which the optical axis touches the mirror surface. The shift is large if
one of the concave mirrors is displaced (red) and small for a displacement of the
convex mirrors (blue). For each type of mirror, displacements along the x-axis (solid)
have a larger impact than along the y-axis (dashed).

tilting one of the mirrors shifts the optical axis toward the mirror edges. We numerically
calculate this shift using geometric ray tracing. As an example, we study the effect of mirror
displacements in Fig. 3.4. Parts (a) and (b) illustrate the mode shift for a displacement of
one of the concave mirrors along the x- and y-direction. Note that the optical axis stays in
the x-z-plane in (a) but follows a nonplanar path in (b).1 As shown in Fig. 3.4 (c) shifting
a concave mirror has a much larger effect than shifting a convex mirror. In comparison,
shifts below 50 µm along the z-direction have a negligible effect for all mirrors.
However, larger shifts along the z-direction can lead to strong astigmatism or even an

unstable resonator. To study this, we consider changes of the distance between the two
concave or convex mirrors, while keeping the alignment ideal and the angle of incidence
constant. This is illustrated in Fig. 3.5. Again, the requirements for the concave mirrors
are more stringent than for the convex mirrors. The region of stability has a width of
about 0.9 mm and 16.6 mm, respectively. Close to the edge of the stable region, the mode
becomes highly astigmatic.

Fig. 3.6 shows how the resonator mirrors are aligned in the experimental setup. Three
of the mirrors are positioned in fitting holes inside a monolithic titanium mount. Titanium
is chosen as a material because it is nonmagnetic and compatible with ultra-high vacuum.
The resonator mount was manufactured using a five-axis CNC milling machine that
typically achieves a precision of 20 µm. The features relevant for positioning the cavity
mirrors were milled in a single setup. The fourth resonator mirror is glued2 onto a piezo

1In Fig. 3.4 (a), the mode shift is along the x-axis because the mode cannot leave the x-z-plane for
reasons of symmetry. Although we did not find a similar argument for (b), our calculation shows that
the mode shift is predominantly along the y-axis in this case.

2We picked a high-temperature epoxy (Thorlabs, 353NDPK) for glueing, using a temperature ramp with
25 ◦C steps of 20 min each from 25 ◦C to 150 ◦C and back.
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Figure 3.5: Stability of the optical resonator design. The plots show the calculated
mode waist in the sagittal and tangential plane as a function of the distance between
the concave (a) and convex (b) cavity mirrors. In the gray shaded regions, the
resonator is unstable. Vertical dashed lines mark our target design.
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Figure 3.6: Alignment of the cavity. Shown is a technical drawing of the cavity
mount consisting of a side view (top) and two cuts along the indicated axes A-A and
B-B. Resonator mirrors are drawn in red. Three mirrors are positioned in fitting
holes and fastened with Vespel retaining rings (dark brown). Two lenses (blue),
which focus the EIT coupling light onto the atomic ensemble, are placed behind the
concave mirrors. Spacer rings ensure the correct working distance to the atomic
position. The fourth resonator mirror is glued onto a piezo (yellow). Fine alignment
of the resonator is achieved by inserting pieces of thin Kapton foil (green) between
one of the conave mirrors and the cavity mount and between the piezo cap and the
cavity mount.
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Figure 3.7: Transmission (a) and reflectivity (b) of the cavity for the control (red)
and target (blue) beam path. These data were taken with the cavity inside the
vacuum chamber after bake-out. The signal laser frequency is varied by ramping the
frequency of a radio-frequency local oscillator (LO) which determines the set point
of the laser lock. Lines are Lorentzian fits to the data points.

(PI Ceramic, PICMA P-885.10 piezo stack actuator, dimensions 5 × 5 × 9mm, 6.5 µm
travel at 100 V), the backside of which is glued onto an aluminum cap. The outer contour
of the cap is matched to a fitting hole in the cavity mount. To achieve accurate alignment
of the piezo mirror relative to the cap, a glueing mask with a fitting hole was used.

After mounting the mirrors, the position of the cavity mode was determined by coupling
a laser beam into the resonator with high mode matching efficiency and looking at the
direction of the incoming beam relative to the resonator mount. It turned out that the
resonator eigenmode was shifted in x- and y-direction similar to Fig. 3.4 (a) and (b). The
nonplanarity of the eigenmode due to the shift in y-direction contributed to an overall
polarization mode splitting of about 4 MHz. This increased polarization mode splitting
is due to a round-trip geometrical polarization rotation, see Ref. [70]. To reduce the
mode shift, pieces of thin Kapton foil were inserted in front of one of the concave mirrors
and between the piezo cap and the cavity mount, as indicated in Fig. 3.6. After several
iterations, an almost centered cavity mode was obtained with a polarization mode splitting
of just 0.3 MHz.

3.2.4 Characterization
After assembly and bake-out of the resonator inside the vacuum system, we couple signal
light into the resonator with high mode matching efficiency, see Sec. 3.2.5, and observe the
reflected and transmitted light using photodetectors. The resonator length is stabilized
during these measurements using the technique described in Sec. 3.7.1.
Fig. 3.7 shows the obtained signals. Lorentzian fits to the transmission data yield a

FWHM cavity linewidth 2κ = 4.534(5) MHz (2κ = 4.659(14) MHz) for the control (target)
path, resulting in an average finesse of F = 346. This agrees well with the specifications of
the I/O coupler coating. The polarization eigenmode splitting is 0.915(4) MHz, which is
larger than before the cavity was inserted into the vacuum chamber. This may indicate that
thermal material expansion during bake-out resulted in a slight change of the resonator
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Figure 3.8: Cavity mode matching signal for the control beam path. The trans-
mission through one of the HR cavity mirrors is recorded with an oscilloscope
(Teledyne-LeCroy, HDO4104A-MS) using an avalanche photodetector (Thorlabs,
APD130A) while scanning the signal laser frequency over one axial mode spacing.
(a) the height of the peaks corresponding to the fundamental transverse cavity mode
is determined at a high voltage range setting on the oscilloscope. The solid line
is a fit using Eq. (3.6). (b) using a high resolution voltage range setting on the
oscilloscope and averaging 46 traces, several peaks corresponding to higher order
transverse modes can be identified. The solid line is a fit according to Eq. (3.7).
Using Eq. (3.8) a mode matching efficiency of 98.9(2)% is obtained.

alignment. The on-resonance loss for reflected light is determined from Lorentzian fits to
the reflection data, yielding 6.55(4)% (7.14(3)%) for the control (target) path. Assuming
that each of the three HR mirrors contributes equally to the observed loss and that the
I/O coupler is lossless, we obtain an HR mirror reflectivity of 99.990% (99.989%) from
these numbers.

3.2.5 Mode Matching
High fidelity operation of the quantum gate requires that the transverse modes of the
incoming control and target signal laser beams are matched to the transverse cavity
eigenmode with high efficiency. For each beam, this is achieved by inserting two lenses into
the beam path outside the vacuum chamber and by carefully optimizing their positions
using micrometer screws. Similarly, the alignment of each incoming beam is optimized
using two mirrors in kinematic mounts. The signals shown in Fig. 3.8 serve as a guide for
this optimization.
To define the term mode matching efficiency, we write the electric field of a laser

beam propagating along the positive z-axis as E(x,t) = 1
2E(x)ε exp(−iωt) + c.c. with

E(x) ∝ m(x) exp(iωz/c), where m(x) is the complex spatial mode function and ε is
the polarization vector, see Sec. 2.1. In the paraxial approximation, the eigenmodes of
planar ring resonators are typically Hermite-Gauss modes [38, 141]. We express these
eigenmodes as mk,`(x) with k,` ∈ Z+

0 , where (k,`) is the transverse mode order and m0,0
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is the fundamental cavity mode. Assuming the normalization
∞̂

−∞

dx

∞̂

−∞

dy |mk,`(x,y,z)|2 = 1 ∀z, (3.2)

the mk,`(x) form an orthonormal basis for the space of transverse mode functions and we
can expand the incoming laser beam mode

min(x) =
∞∑

k,`=0
ak,`mk,`(x) (3.3)

with

ak,` =
∞̂

−∞

dx

∞̂

−∞

dy m∗k,`(x)min(x). (3.4)

We define the mode matching efficiency

ηmode = |a0,0|2 . (3.5)

The mode matching setup was designed according to the following considerations. The
incoming (outgoing) signal laser beams are coupled out of (into) polarization maintain-
ing single-mode optical fibers using fiber couplers with a focal length of f = 12 mm
(Schäfter+Kirchhoff, 60FC-4-M12-10). The free-space beam typically has a waist of
1.2 mm in front of the fiber couplers. To match the incoming beams to the cavity mode, it
is important to note that the I/O coupling mirror acts onto the incoming beams like a
plano-convex lens. To calculate the required beam parameters before the I/O coupler, we
model the I/O coupler as a thick lens with refractive index nfs = 1.45 of fused silica glass,
using the ABCD matrices for curved interfaces from Chapter 15 in Ref. [141]. For the
incoming control beam, we find a required beam waist in the tangential (sagittal) plane of
wtang = 31.1 µm (wsag = 31.4 µm) at a distance of ztang = 12.7 mm (zsag = 14.3 mm) from
the plane back side of the I/O coupler. For the target beam, the corresponding values are
wtang = 126 µm, wsag = 136 µm, ztang = 13.3 mm, and zsag = −10.9 mm. The sign of ztang
or zsag is negative if the corresponding waist, or a virtual image thereof, lies inside the
mirror substrate or inside the cavity. Otherwise it is positive. These numbers show that
perfect mode matching would require astigmatic beam shaping. However, we decided to
use an axially symmetric incoming beam because the resulting mode matching error is
only about 1%, as shown in App. E.

The focal lengths of the mode matching lenses are chosen such that they can be inserted
into the beam path at suitable positions, see Fig. 3.13. We find that a combination of a
plano-concave and a plano-convex spherical singlet lens with focal lengths of −200 mm
and 150 mm (150 mm and −100 mm) for the incoming control (target) beam is favorable.
To minimize optical loss, these lenses have AR coatings at 780 nm (Laseroptik) with a
specified reflectivity below 0.1% per surface.
To characterize the achieved mode matching efficiency, we compare the on-resonance

cavity transmission signal of the fundamental mode to the signals from higher order modes,
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which appear at different resonance frequencies as shown in Fig. 3.8 (b). We determine
the height of the fundamental mode peak from Fig. 3.8 (a) by fitting the expression

U0(ω) = Uoffs,0 + U0,0
1

1 + (2F sin(2π((ω − ω0,0)/∆ωax)/π)2 , (3.6)

which is derived from Eqs. (2.1) and (2.3)–(2.6) assuming ta = 1 and ∆c = ω−ω0,0. When
focusing the signal light transmitted through the cavity onto the photodetectors, we ensure
that the spot size is much smaller than the size of the detector chip. Hence, we assume that
each transverse component mk,`(x) of the incoming beam causes the same photodetector
voltage per incoming power. We fix the obtained values for U0,0, F , and ∆ωax from the
previous fit and fit

Uho(ω) = Uoffs,ho +
∑
k,`

Uk,l
1

1 + (2F sin(2π(ω − ωk,l)/∆ωax)/π)2 , (3.7)

to the data in Fig. 3.8 (b) for all transverse orders (k,`) that are visible in the data. The
mode matching efficiency is

ηmode = U0,0∑
k,` Uk,`

. (3.8)

From a typical data set as shown in Fig. 3.8, we obtain ηmode = 98.9(2)%. We regularly
achieve very similar numbers with this method for both the control and the target beam
path. Although the experimental setup is temperature stabilized, we observe that ηmode
typically drops by a few percent on a timescale of several days. Hence, we regularly
re-optimize the alignment.

The statistical error on ηmode estimated by the fit is presumably smaller than potential
systematic errors. For instance, higher order transverse modes have a larger spatial extent
and are therefore more likely to clip at the apertures in the cavity mount, see Fig. 3.6.
This would cause a lower signal voltage on the photodetector per incoming power and
would lead to an overestimation of the mode matching efficiency. Further improving ηmode
probably requires astigmatic input beam shaping, see App. E.

3.3 Vacuum Chamber
The experiments in this work require ultra-high vacuum (UHV) pressure levels to reduce
the atom loss rate from the dipole trap due to collisions with background gas molecules.
Fig. 3.9 shows the vacuum system. Prior to assembly, all suitable components were
cleaned in an ultrasonic bath and heated to 200 ◦C in a separate bake-out chamber. After
assembly, the system was connected to a turbo pump through the DN40CF angle-valve and
baked out for two weeks at 120 ◦C. The 2D MOT cell dispensers, the ion pump, the non
evaporable getter (NEG) module of the ion pump, and the vacuum gauge were degassed by
applying a current during the bake-out, heating these components to a higher temperature
than the rest of the system. The NEG module was activated during cool-down, with the
rest of the vacuum system at 80 ◦C. After bake-out, the angle valve was closed and the
turbo pump disconnected. The final pressure reading of the Bayard-Alpert gauge was
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Figure 3.9: 3D model view of the vacuum system, adapted from Ref. [126]. The
main chamber shown in the center is an octagon with two large DN100CF viewports
at the top and bottom. It consists of stainless steel with low magnetic permeability
(316 LN ESR). Inside, the resonator mount and the channeltron assembly are visible.
Outside the chamber, the brass frames (beige) of the 3D MOT coils are located. A
DN40CF T-piece, shown in the upper right corner, connects a Bayard-Alpert vacuum
gauge and an angle valve for initial evacuation. On the opposite side of the main
chamber, a 19 pin electric feedthrough (VACOM, CF40-MPC2-19-SE-CE-SSG) is
visible. The ion getter pump (SAES Getters, NEXTorr Z 100) is drawn in red at
the bottom right. In the far left of the image, the 2D MOT glass vacuum cell is
located. It is connected to a DN16CF T-piece, attached to an angle valve (VAT,
54124-GE02-0001) and the all-metal gate valve, which leads to the main chamber.
Copper wires (brown) of the HV feedthrough (VACOM, CF16-HV6-4-CE-CU13)
for the channeltron are visible behind the gate valve. The whole vacuum system is
supported by several posts, which are clamped onto the optical table. The height of
these posts is chosen such that the atomic position and the cavity mode waist are
located 5 inch = 127 mm above the optical table.
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below 5× 10−10 mbar for a filament emission current of 1 mA.3 The ion pump indicates
a pressure below 1× 10−10 mbar. At these parameters, we measure trapping lifetimes in
excess of 30 s.
Optical access to the cavity and to the atomic ensemble is provided by six viewports

(MPF Products, custom made). All viewports consist of fused silica glass connected to
a low magnetic permeability stainless steel (316 LN ESR) flange using a brazed solder
seal, which is also nonmagnetic. We deliberately avoided the ferromagnetic solder material
Kovar, which is known to develop leaks when exposed to rubidium. All viewports are AR
coated on both sides. The two DN40CF viewports for cavity access, top and bottom in
Fig. 3.2, have a specified reflectivity per surface of < 0.1% at 780 nm and 480 nm. The AR
coating of the other viewports (2x DN100CF, 1x DN40CF, 1x DN16CF) is designed for
a reflectivity per surface of < 1% in the range 480 nm to 532 nm and 770 nm to 1064 nm.
All these numbers refer to 0° angle of incidence and are applicable for all beams except
the Raman and MOT beams which pass through the DN100CF viewports under 45°, see
Fig. 4.3. For these beams, a reflectivity per surface up to 2% is expected.

3.4 Electric Field Control
To utilize the Förster resonance described in Sec. 2.2.2, the electric field at the atomic
position needs to be accurately controlled. To this end, four pin electrodes and two bar
electrodes are integrated into the cavity mount. A voltage can be applied to each electrode
individually. The resulting electric field is obtained from a numerical solution of Laplace’s
equation for the electrostatic potential U in charge-free regions of space

∇2U(x) = 0, (3.9)

using a relaxation algorithm [83]. To this end, we use the implementation and utilities
provided by the software SIMION.
For the simulation, relevant parts of the CAD model of the vacuum chamber are

converted to a grid of points with a resolution of 0.1 mm. Each point of the grid is either
vacuum or assigned to one of twelve electrodes. Fig. 3.10 shows an annotated 3D rendering
of the electrode geometry.

Thanks to the properties of Laplace’s equation, the electric field vector E(x0) = ∇U(x0)
at the atomic position x0 is a linear function of the 11-dimensional vector of electrode
potentials P . We express this linear dependence as

E(x0) = Mconv · P , (3.10)

where Mconv is a 3× 11 matrix. From the simulation, we find

Mconv =
(

0.00011 −1.2 −0.78 −0.77 −1.2 12 12 0.0031 0.011 −0.017 −0.38
0.0011 −3.0 −1.3 1.4 3.2 −8.8 8.9 −0.015 0.026 0.046 0.035
−0.0029 −1.1 1.0 1.0 −1.1 0.14 0.18 0.0022 0.0074 −0.12 −0.064

)
m−1. (3.11)

3Setting a larger emission current of 10 mA yields higher pressure readings. Although a larger current
should increase the sensitivity of the pressure measurement, we believe that the obtained values are
not reliable because the power dissipated by the current also drastically heats up the tube, to which
the gauge is attached. To avoid an increased pressure inside the main chamber due to the hot tube,
we leave the gauge turned off completely for operating the system.
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Figure 3.10: Electrode definition for the electric field simulation with SIMION. The
image shows a 3D rendering of the simulation grid. Electrodes are shown in different
colors.

The electrostatic potentials in P are defined relative to the potential of the vacuum
chamber and the resonator mount. The order of the entries of P and of the columns
of Mconv is consistent with the enumeration of the electrodes 2–12 in Fig. 3.10 and the
coordinate system is oriented as indicated in Fig. 3.2.

3.5 Field Ionization and Particle Detection
This sections covers tools for field ionization and particle detection that are integrated
into the vacuum chamber. Although these tools were not used for the experiments in this
thesis, they might become useful for future experiments. The purpose of this section is
to provide documentation of the technical implementation and guidelines for operation.
Related work and technical designs can be found in Refs. [5, 58, 77, 92].
Due to the weak binding of the Rydberg electron, Rydberg atoms can be ionized by

applying moderate electric fields. For a given principal quantum number n, the required
electric field Eion can be estimated classically as [5, 41]

Eion(n) = 1
16

e

4πε0a2
0

(n− δ0)−4 . (3.12)

Using the quantum defect δ0 = 3.16 [8], we find Eion = 80 V
cm for n = 48. According to Eq.

(3.11), an electric field of that magnitude is created when applying 330 V to the two bar
electrodes shown in Fig. 3.10.
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Figure 3.11: Photograph and technical drawing of the channeltron assembly. The
channeltron is mounted onto the HV feedthrough flange and slides into a Macor
spacer, which insulates the shielding cap (electrode 11 in Fig. 3.10) from the vacuum
chamber. A cut along the indicated axis A-A illustrates the electrical connections.

The resulting ions or electrons can be detected using particle detectors such as channel-
trons or multi-channel plates. Our setup contains a channeltron (PHOTONIS, MAGNUM
5901), which is shown in Fig. 3.11. It consists of a funnel-shaped input, six helical channels,
and an electrically insulated collection anode. The channel output is operated at a positive
voltage between 1.5 kV and 3 kV compared to the channel input. If a particle hits the
input funnel, secondary electrons emerge from the surface and are accelerated down the
channels. Successive collisions with the channel wall, which serves as a continuous dynode,
result in a multiplication of the initial electrons. At the end of the channel, electrons
are collected by the anode. Hence, the anode needs to be supplied with a slightly larger
positive voltage than the channel output. In practice, this is often achieved by placing a
bias resistor between the positive supply voltage, which is connected to the anode, and the
channel output. Our channeltron has an internal bias resistor of 10% to 20% of the total
channel resistance, which is specified between 18 MΩ and 50 MΩ. This leads to a bias
current of roughly 100 µA through the channel. By measuring the anode current, particles
hitting the input funnel can be detected. Detailed information about the operating theory
of channeltrons can be found in Ref. [58].

As shown in Fig. 3.2, the channeltron does not have a direct line-of-sight to the atomic
position. Hence, ions or electrons have to be steered towards the channeltron using a
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Figure 3.12: Simulation of (a) electron and (b) ion detection. The plot is a
horizontal cut through the atomic plane (y = 0). Black lines mark the contours
of electrodes and the color code indicates the electrostatic potential. A voltage of
−330 V (330 V) is applied to the bar electrodes, accelerating electrons (ions) in the
positive x-direction. With the deflection electrode at −115 V (115 V), the trajectories
bend in z-direction such that the electrons (ions) hit the channeltron in the upper
right corner. For detecting electrons (ions), the input of the channeltron is at 0 V
(−2 kV). For each particle type, 100 trajectories were simulated, with a random
starting position following a Gaussian distribution with 10 µm standard deviation
centered at the coordinate origin.

deflection electrode, similar to Ref. [92]. To verify that this works, particle trajectory
simulations were performed with SIMION. The results are shown in Fig. 3.12.

3.6 Laser Systems
The laser systems employed in this work have already been described in Refs. [8, 132, 149].
This section briefly explains minor modifications implemented in this thesis.

In previous experiments, the external cavity diode laser (ECDL) of the signal laser
system at 780 nm (Toptica, DL pro) and the ECDL of the control coupling laser system4

at 960 nm (Toptica, TA pro and SHG pro) were frequency stabilized using a reference
cavity with a spacer made of ultra low expansion glass (Stable Laser Systems, ULE cavity),
see Refs. [132, 149]. This cavity provides excellent frequency stability on short timescales,
which enables locking the two ECDLs to a FWHM linewidth < 2 kHz at an RMS integrated
phase noise below 150 mrad measured out-of-loop between 50 kHz and 5 MHz [132].
The ULE cavity based locking approach has two disadvantages. First, a residual

cavity drift of up to ±600 Hz
h requires occasional corrections to the locking setpoints and,

second, it is difficult to lock both Rydberg coupling lasers onto the same ULE cavity.

4In Refs. [132, 149], this laser was actually used for the target photon. In this work, it is used for the
control photon.
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Hence, the second coupling laser (Toptica, TA-SHG pro) was previously locked onto the
cavity-stabilized coupling laser using an offset phase lock. When addressing the atom-
pair state |672S1/2,692S1/2〉, the offset frequency was 24 GHz. For the atom-pair state
|482S1/2,502S1/2〉 used in this work, the required frequency offset is 68 GHz. This follows
from Eq. (2.8), taking into account that the lasers emit light at 960 nm, which is frequency
doubled to 480 nm. At such a high offset frequency, it becomes difficult to generate an
error signal for the offset phase lock with good signal-to-noise ratio.
In front of this backdrop, we decided to phase lock the target coupling laser onto a

new frequency comb (Menlo Systems, FC1500-250-ULN), which became available during
this work and which has improved noise properties compared to our old comb. When
the target coupling laser is phase locked to the frequency comb, it inherits part of the
comb noise. The test report provided by Menlo indicates an in-loop RMS integrated
phase noise of 80 mrad at 1 MHz bandwidth between the comb and its optical reference
oscillator. Assuming that the reference oscillator has much lower noise than the comb, this
number can be regarded as an estimate for the RMS integrated phase noise of the comb.
To generate light at 960 nm, a part of the comb spectrum is amplified and then frequency
doubled. It is expected that this will at least double the RMS integrated phase noise [131,
146]. Hence, comb noise is probably worse than the noise of our lasers locked onto the
ULE cavity. This leaves room for future improvements concerning the phase noise of the
target coupling laser.
To generate light for the Raman cooling scheme in Sec. 4.4, the previous ground

state coupling laser (Toptica, DL pro) [132, 149] was tuned to a wavelength of 795 nm
and stabilized onto the new frequency comb using an offset phase lock. Likewise, the
stabilization light for the dual-rail setup, see next section, is derived from the previous
stabilization laser for the Mach-Zehnder interferometers in Ref. [132] (Toptica, DL pro),
which was tuned to a wavelength of 770 nm for this work.

3.7 Optical Setup for the Quantum-Logic Gate
3.7.1 Dual-Rail Setup and Cavity Lock
The control and the target qubits are implemented as weak coherent laser pulses containing
less than one photon per pulse on average. These pulses are created using two independent
double-pass AOM tracks. After the AOM track, each beam has a power of about 1 mW and
is coupled into a polarization maintaining 50:50 fiber beam splitter. One of the outputs of
each beam splitter is connected to a photodetector (Thorlabs, PDA10A) for monitoring
the pulse shape. The other output is connected to two fiber-based attenuators which
reduce the pulse energy to the single-photon level. Polarization maintaining single-mode
fibers transport the single-photon pulses to the optical setup shown in Fig. 3.13, which
implements the dual-rail scheme introduced in Sec. 2.6.
The input polarization states of the two qubits are prepared using a combination of a

half- and a quarter-wave plate after a polarizing beam splitter cube (PBS) for polarization
cleaning. The four PBSs from Fig. 2.3 marking the inputs and outputs of the quantum
gate are implemented as polarizing plate beam splitters at Brewster’s angle (Brewster PBS,
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Figure 3.13: Dual-rail setup. Explanations are provided in the text.

purchased from Perkins Precision Developments). In addition to the cavity mode matching
lenses introduced in Sec. 3.2.5, two lenses with focal lengths of 200 mm are placed in the
target bypass path to optimize the mode matching with the beam exiting from the cavity
path. A half- and a quarter-wave plate before and behind the cavity convert between the
linear input and output polarization states and the circular polarization states required to
address the atomic transition.

To keep the optical path length differences between the cavity path, the control bypass,
and the target bypass constant, two mirrors glued onto piezo stacks (PI Ceramic, PICMA
P-888.91) are used as actuators for two feedback loops. The error signals for these feedback
loops are generated with stabilization light at 770 nm. Each of the two stabilization
beams is sent onto its respective input Brewster PBS in a superposition polarization state
|ψin〉 = (|H〉+ exp(iφin)|V 〉)/

√
2. Assuming equal transmission through the |H〉 and |V 〉

path,5 the resulting output polarization state is |ψout〉 = (|H〉+ exp(i(φin + ∆φ))|V 〉)/
√

2,
where ∆φ = 2π∆L/λ is the phase shift due to the path length difference ∆L. Using a
combination of a half-wave plate and a PBS, the output power in states |D〉 and |A〉
is measured with two detectors. Subtracting the two measured powers yields a signal
proportional to

|〈D|ψout〉|2 − |〈A|ψout〉|2 = cos(φin + ∆φ), (3.13)
which has zero crossings at φin +∆φ = π(2n+1)/2 with n ∈ Z. One of these zero crossings
is used for keeping ∆L constant using a proportional-integral (PI) controller. The setpoint
5For the control path, this is a poor assumption. However, it is easy to modify the input state such that
the desired output state is obtained.
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Figure 3.14: Cavity lock error signal when scanning the cavity length by varying
the piezo voltage. As the stabilization beam couples to many higher-order transverse
cavity modes, several PDH features can be identified in the signal. Any of the zero
crossings can be used for locking. One axial mode spacing corresponds to 8.5 V.

of this feedback loop can be adjusted by rotating one of the input waveplates to change φin
or, alternatively, by changing the detection basis from D/A to other 50:50 superpositions
of |H〉 and |V 〉.

The target stabilization beam additionally generates the error signal for the cavity lock
using a Pound-Drever-Hall (PDH) [25] locking technique. This technique requires phase
modulation of the input light, which we achieve using a free-space electro-optic modulator
(EOM) driven at 25 MHz and located before the input fiber. This modulation does not
affect the target path length stabilization because the modulation frequency is larger than
the bandwidth of the selected photodetector (Thorlabs, PDB210A). Likewise, interference
between the cavity and the bypass polarization components does not affect the cavity
lock error signal, because the bypass polarization is filtered out before the cavity lock
photodetector (Thorlabs, APD130A) using a PBS.

For the target stabilization beam, combining and separating the 780 nm and 770 nm light
is achieved using D-shaped mirrors. As a result, the stabilization beam travels through the
dual-rail setup with a vertical offset of about 2 mm compared to the qubit beam. Hence,
the stabilization beam is not well mode matched to the fundamental transverse cavity
mode. This is advantageous to avoid light shifts and photon scattering at the atomic
position caused by the 770 nm light, which has an input power of about 10 µW. Instead,
the stabilization beam couples to several higher order transverse cavity modes. Each of
these modes generates a PDH signal at a different resonance frequency, as shown in Fig.
3.14. Any of the zero crossings in this signal can be used for stabilizing the frequency
difference between the cavity resonance and the stabilization laser. The absolute cavity
resonance frequency is set by adjusting the stabilization laser frequency, which is referenced
to the frequency comb using an offset phase lock.

In contrast to the target stabilization beam, the control stabilization beam needs to be
well mode matched to the control qubit beam because both beams are coupled into the
control bypass fiber. Hence, we use dichroic filters (Semrock, MaxDiode LD01-785/10,
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measured transmission 99.7% at 780 nm) for combining and separating these beams. To
avoid light shifts and photon scattering at the atomic position, it is advantageous to use a
very low input power of about 1 pW at 770 nm. We detect this stabilization light using two
single-photon counting modules (Excelitas, SPCM CD-3515H) after a non-polarization-
maintaining single-mode fiber. A field-programmable gate array (FPGA) generates an
error signal proportional to the difference between the SPCM count rates, using an infinite
impulse response filter (exponentially weighted moving average) with a time constant of
8 ms.

The PI controllers for the control and target path stabilization as well as for the cavity
lock are implemented digitally using two FPGA-based test and measurement boards (Red
Pitaya STEMLab 125-14) running the open-source software package PyRPL. The PDH
error signal for the cavity lock is digitally demodulated on the FPGA. The Red Pitaya
boards have two 14 bit digital-to-analog converter outputs with a 2 V output voltage
range. The output voltage is amplified to a range of 0 V to 10 V using an analog circuit.
For the cavity lock, this voltage range covers slightly more than one axial mode spacing.
For the control and target path stabilization, it corresponds to a little more than two
wavelengths. If the feedback loop reaches one of the boundaries of the output voltage range,
the control software automatically relocks the system near the center of the range. Such a
relock event leads to a change of the stabilized path length by one wavelength at 770 nm.
However, at 780 nm this corresponds to a phase shift of 2π(1 − 770/780) = 81 mrad. If
too many relock events occur, these phase shifts accumulate to an intolerably high value.
To reduce relocking, the optical table, the optical resonator, and the control bypass delay
fiber are temperature stabilized. For the cavity lock, relocking is never required under
these conditions. However, the control path lock still suffers from relatively strong drifts
due to the long optical fiber, requiring several relock events per minute. When operating
the experiment, we therefore measure the control qubit output polarization at 780 nm
several times per minute and readjust the setpoint of the feedback loop by rotating the
half-wave plate before the control stabilization detectors. This procedure is automated
using a computer-controlled rotation stage.

3.7.2 Efficiency of Optical Components and Detectors
Keeping optical loss under control is important when aiming at a high efficiency optical
quantum gate. For each qubit, the gate setup starts at the respective input Brewster PBS
and ends at the output Brewster PBS. For a resonant and empty cavity, the control qubit
transmission through the gate setup is 90% for H polarization and 63% for V polarization.
The corresponding values for the target qubit are 97% for H polarization and 91% for
V polarization. Optical loss is caused by the transmission of 65% through the delay
fiber, the resonant empty-cavity reflection loss of about 7%, the transmission through the
lenses in the target bypass path of 99%, the Brewster PBS transmission of 99.7%, and the
reflectivity of the mirrors outside the vacuum chamber of about 99.9%. The residual loss
in the cavity path can be explained by a loss of about 0.1% per surface for each of the
22 AR coated surfaces, including four mode matching lenses, four waveplates, two passes
through the vacuum viewport, and two passes through the plane side of the I/O coupling
cavity mirror.
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To measure the output state produced by the quantum gate, we use photonic state
tomography [3] for each qubit. To this end, two duplicate tomography setups consisting of
a computer-controlled half- and quarter-wave plate and a PBS are located after the output
of the gate. For detection, the beams are coupled into polarization maintaining single-
mode optical fibers which are spliced to the input fibers of a superconducting nanowire
single-photon detection (SNSPD) system. This system was purchased from Quantum Opus
and consists of a cryostat (QO-CRYO-HC4E2) and eight detection channels (QO-NPD-
780-HDE), four of which are used for this experiment. The specified detection efficiency
is 90% for 780 nm at a timing resolution of 70 ps and a maximum dead time of 25 ns.
Including fiber coupling and splicing losses of 15%, we estimate a total detection efficiency
of 77% for each of the four channels.

54



Chapter 4

Preparation of Ultracold Atoms inside
the Optical Resonator
A crucial prerequisite for the quantum gate is the ability to prepare an ultracold atomic
ensemble inside the resonator. To this end, a number of techniques for laser cooling
and trapping are employed, which are well established and described extensively in the
literature [50, 81, 96, 159]. This chapter explains how these techniques are implemented
in our experimental setup.
The first two sections 4.1 and 4.2 describe the 2D and 3D MOT. These techniques

produce a relatively large atomic ensemble inside the optical resonator and transfer a part
of it into an optical dipole trap, as explained in Sec. 4.3. Inside the dipole trap, the Raman
cooling scheme introduced in Sec. 4.4 further reduces the atomic temperature and prepares
the ensemble in the desired spin state. As a last preparation step, Sec. 4.5 explains how
lowering the power of the dipole trap leads to an expansion of the atomic ensemble, after
which the target temperature is reached. Sec. 4.6 describes how the atoms are positioned
at the cavity mode waist. To verify that all preparation steps were successful, a normal
mode spectrum is finally observed and analyzed in Sec. 4.7.

4.1 2D MOT
2D MOTs are widely used to produce cold atomic beams for loading a 3D MOT. This
technique allows for fast loading rates while maintaining UHV pressure at the 3D MOT
position. For an extensive description of 2D MOTs, see Refs. [23, 61, 134, 166].
As mentioned in Sec. 3.1, our implementation uses a commercial 2D MOT package

bought from Cold Quanta. It consists of a permanent magnet assembly, creating a specified
magnetic field gradient of 37 G

cm , and a glass cell, into which two rubidium dispensers are
integrated. The atomic beam leaves the glass cell through an exit hole with a diameter of
0.75 mm.

The optical setup for the 2D MOT is shown if Fig. 4.1. Each of the four cooling beams
has a power of 50 mW at a red detuning of 11 MHz from the cycling transition of the D2
line. To obtain a high flux of cold atoms, a large cooling volume is helpful. We achieve this
by using elliptically shaped beams with spot sizes (1/e2 radius of the intensity) of about
18 mm along and 6 mm perpendicular to the cell axis. The repumping beam is overlapped
with the cooling light. It has the same beam size and a total power of 4 mW. To enhance
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Figure 4.1: Optical setup for the 2D MOT. The drawing shows a side view of the 2D
MOT cell (black rectangle). Four permanent magnet rods (black circles) generate the
required magnetic field gradient. Cooling and repumping light (red) is superimposed
on a polarizing beam splitter (PBS). Four appropriately oriented cylindrical lenses
create a large beam that is elongated along the cell axis. A combination of a half-
wave plate (HWP) and a PBS splits the incoming light into a horizontal and a
vertical cooling beam. Quarter-wave plates (QWPs) generate the required circular
polarization. Both cooling beams are retroreflected by a combination of a QWP and
a mirror. The cold atom flux from the cell is enhanced by sending a push beam
(green) along the cell axis, which points into the drawing plane.

the cold atom flux, a resonant push beam with a power of 7 mW and a spot size of 1 mm
travels along the cell axis.
According to Cold Quanta, an atom flux up to 4× 109 atoms

s can be achieved with this
2D MOT cell design. In our setup, we measure a 3D MOT loading rate of 4× 107 atoms

s as
shown in Fig. 4.2. As this is sufficient for the experiment, we put no effort into increasing
the loading rate further. For instance, we operate only one of the dispensers at a relatively
low current of 2.3 A.
It bears noting that we expect to transfer only a part of the atomic beam to the 3D

MOT, because there is an aperture with 6 mm radius in the resonator mount and because
not every atom that makes it through this aperture is captured. On its way toward the 3D
MOT, the cold atomic beam typically expands at a divergence angle of 35 mrad according
to Cold Quanta. This yields a beam diameter of about 10 mm after a traveled distance
of 30 cm, see Fig. 3.2. Moreover, during the travel time of 35 ms obtained from Fig. 4.2
the atomic beam bends downwards by about 6 mm due to the gravitational force. To
avoid further deflection of the beam due to magnetic field gradients, we chose nonmagnetic
materials for the vacuum tubes and the gate valve, through which the beam has to travel.

4.2 3D MOT
A 3D MOT simultaneously cools and traps atoms. We employ this technique to collect
atoms from the cold atomic beam in order to transfer them into an optical dipole trap
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Figure 4.2: Loading curve (red) of the 3D MOT. The dashed line is a linear fit to
the data points between 40 ms and 100 ms, yielding a delay of 35 ms and a loading
rate of 4× 107 atoms

s . At longer times, the measured atom number in the 3D MOT
saturates and the cloud becomes larger than the region observed by the camera.

for the following cooling steps. Our setup offers the advantage that the 3D MOT can
be operated directly at the mode waist of the optical resonator, because the resonator
mount offers enough optical access for the cooling laser beams. As we require only a
comparatively low atom number and density for the experiment, the 3D MOT performance
is relatively uncritical. The scope of this section is therefore limited to a basic description
and characterization. For an in-depth explanation of MOTs, see e.g. Ref. [96].
Fig. 4.3 illustrates the beam paths for cooling and trapping inside the main chamber.

The 3D MOT trapping light has a total power of 15 mW and a red detuning of 15 MHz
during the loading phase. Each beam has a spot size of about 7 mm, truncated by an
aperture inside the cavity mount with 14 mm diameter. The repumping beam has a spot
size of about 5 mm and a power of 1.5 mW. At a current of 8 A, the MOT coils generate a
magnetic field gradient of ∂xBx = −9 G

cm , ∂yBy = 6 G
cm , and ∂zBz = 3 G

cm along the x-, y-,
and z-axis.1 This implies that the current direction is clockwise when looking at the coils
from the atomic position. The cooling beams along the coil axes are L polarized and the
beams perpendicular to the coil axes are R polarized.
To characterize the cooling performance, we record absorption images of the atomic

ensemble and determine the RMS cloud radius σ and the atom number from a 2D Gaussian
fit. Assuming that the atoms are released at time t0 from a harmonic trap, the increase of
the cloud radius as a function of time t > t0 is given by

σ(t) =
√
σ2

0 + kBT

m
(t− t0)2, (4.1)

where σ0 is the initial RMS radius, kB is the Boltzmann constant, T is the temperature
and m is the atomic mass. By varying the time of flight t, the atomic temperature is

1The long MOT coil has inner diameters of 300 mm and 120 mm, a winding number of 70, and a resistance
of about 1Ω. The short coil has inner diameters of 80 mm and 120 mm, a winding number of 261, and
a resistance of about 2Ω. To reduce heat transfer onto the optical table at a typical operating power
of 190 W, both coil frames are water cooled.
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Figure 4.3: Beam paths for cooling and trapping inside the main chamber. Two cuts
through the CAD drawing of the vacuum chamber along the indicated axes A-A and
B-B are shown. Some components of the vacuum system are omitted for clarity, such
as the 2D MOT appendix, the channeltron, the electrodes, and the vacuum gauge.
Solid (dashed) colored lines denote laser beams in (outside) the drawing plane. The
3D MOT beams (red) are retroreflected after passing through the chamber, such that
only three input beams are required. Two of these beams enter the system through
the top viewport under an angle of 45°. These beams are superimposed with Raman
cooling light (orange). The repumping light for the 3D MOT enters the chamber at
a slightly steeper angle through the same viewport. The horizontal dipole trap beam
(purple) is focused by an air-spaced lens doublet (Thorlabs, ACA254-150-1064) with
a focal length of 150 mm. A small part of the dipole trap light power is reflected
from a dichroic mirror and sent onto a camera for monitoring. The remaining light is
transmitted and superimposed with the third 3D MOT beam, just before both beams
enter the chamber through a DN40CF viewport. The cold atomic beam (yellow) from
the 2D MOT reaches the center of the chamber at an angle of 19° to the horizontal
3D MOT beam. The vertical dipole trap (purple) is prepared on a breadboard above
the chamber (not drawn), where also the imaging system is located, and is focused
through the top viewport by an achromatic lens doublet (Thorlabs, AC254-075-AB)
with a focal length of 75 mm. The optical pumping beam and the imaging beam
enter the chamber through the bottom viewport.
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Figure 4.4: Optimization of polarization gradient cooling. The RMS radius of the
ensemble after release from the trap is determined from absorption images by fitting
a circular (a) and elliptical (b) 2D Gaussian function. The data in (a) is taken 40 ms
after the cooling light is turned off. Hence, smaller cloud radius corresponds to lower
temperature. By varying the current Ix, Iy, and Iz through the compensation coils
along the x-, y-, and z-axis, the points with best cooling performance are identified
from a quadratic fit (dashed lines). At this optimum, a time-of-flight measurement
(b) is performed with 5× 107 atoms. The solid line is a fit using Eq. (4.1), yielding
a temperature of 1.8(1) µK and 1.6(1) µK along the x- and z-direction. The inset
shows a color coded absorption image of the ensemble after 25 ms, in which the white
ellipse marks the RMS radius of the 2D Gaussian fit.

determined from a fit of Eq. 4.1. After MOT loading, we typically obtain 4× 107 atoms
at a temperature of 180 µK.
Absorption images were initially recorded with a preliminary setup, which had a

magnification of 1/3.6 and used a single plano-convex lens with a focal length of 100 mm.
This imaging system was used to record the data in Fig. 4.4, at a MOT coil current of
10 A. It was later replaced by the imaging system described in Ref. [126], which has a
magnification of 4.7 and a resolution in the atomic plane (FWHM of the point spread
function) of 4.7 µm limited by the 16 µm pixel size of the camera (Andor iXon DV887
EMCCD) and by the numerical aperture of the imaging system of 0.167. As shown in Fig.
4.3, the imaging beam travels along the positive y-axis and has a power of about 100 µW
at a spot size of 3.7 mm.
After loading the 3D MOT, polarization gradient cooling (PGC) [20, 96] is performed.

To this end, the MOT coil current is turned off in 0.2 ms, the red detuning of the cooling
light is increased to 70 MHz, and the power is ramped from 50 mW to 5 mW in 10 ms,
similar to Ref. [135]. To optimize the cooling performance, the background magnetic field
is compensated at the 3D MOT position using three pairs of compensation coils.2

2Two rectangular coil pairs, with inner diameters of 789 mm and 219 mm, a coil separation of 845 mm,
a winding number of 180, and a resistance of 6.6Ω per coil generate a magnetic field along the x-
and z-axis. A pair of square coils with an inner diameter of 804 mm, a coil separation of 240 mm, a
winding number of 39, and a resistance of 2.3Ω produces a field along the y-axis. The atomic position
is located in the center of each coil pair. Using microwave spectroscopy with an atomic ensemble at
the cavity mode waist, we find that the compensation coils produce a magnetic field per current of
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Fig. 4.4 (a) shows this optimization. Quadratic fits (dashed lines) to the data points near
the minimum yield optimal compensation coil currents of 0.10 A, −0.48 A, and −0.70 A. At
the optimum, the achieved temperature is characterized with a time-of-flight measurement
shown in Fig. 4.4 (b). Due to the non-uniform magnetic field gradient produced by
the MOT coils, the atomic ensemble in the trap is elongated in the z-direction. This
becomes important for the analysis in (b), because some data points are recorded at short
expansion time. Elliptical 2D Gaussian fits are employed to extract the RMS cloud radii
σx and σz along the x- and z-direction. The solid lines are fits using Eq. (4.1). Along the
x-direction, we find an initial RMS cloud radius of σ0,x = 0.42(3) mm, t0 = −26(3) ms, and
T = 1.8(1) µK. Similarly, we obtain an initial RMS cloud radius of σ0,z = 0.83(3) mm),
t0 = −26(3) ms), and T = 1.6(1) µK along the z-direction.
From Eqs. (11.6) and (11.7) in Ref. [96] one expects that the ratio of the equilibrium

ensemble size in a MOT is related to the magnetic field gradients according to

σ2
0,x

σ2
0,z

=
∣∣∣∣∣∂xBx

∂zBz

∣∣∣∣∣ . (4.2)

The agreement between the value 0.26(4) obtained for the left-hand side and 1/3 for the
right-hand side is fair.
The nonzero values obtained for t0 are plausible, because the atomic ensemble already

expands during PGC, as turning off the magnetic field gradient eliminates the spatial
confinement of the 3D MOT. Due to the initially higher temperature, it appears to the fit
as if this expansion time was longer than the actual PGC time of 10 ms.

4.3 Optical Dipole Trap
4.3.1 Beam Path
To obtain an atomic ensemble that is smaller than the Rydberg blockade radius, a crossed-
beam optical dipole trap (ODT) at a wavelength of λODT = 1064 nm is used. It consists
of a vertical and a horizontal beam, both of which are tightly focused at the atomic
position, as shown in Fig. 4.3. The beams are derived from two different lasers, which run
at sufficiently different frequencies such that interference between the two beams has a
negligible effect onto the atomic density distribution.

The horizontal trapping beam is derived from a single frequency Nd:YAG laser (Innolight,
Mephisto 2000) at a wavelength of 1064 nm. The beam is coupled out of a polarization-
maintaining single-mode fiber near the vacuum chamber, using a fiber collimator (Thorlabs,
F810APC-1064) with a focal length of 36.6 mm. The outcoupled beam has a spot size
of about 6 mm. After polarization filtering with a PBS, the beam profile is narrowed
along gravity using two cylindrical lenses with focals lengths of 100 mm and −50 mm.
Next, two spherical lenses with focals lengths of −50 mm and 100 mm expand the beam

0.740(5) G
A , 1.386(3) G

A , and 0.676(3) G
A in x-, y-, and z-direction, defined by the coordinate system

in Fig. 3.2. A magnetic field of approximately zero is obtained for currents of 0.09 A, −0.41 A, and
−0.67 A. This corresponds to a background magnetic field vector of B = (−0.07, 0.57, 0.45) G when
the coils are turned off.
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Figure 4.5: Trapping frequencies in the crossed-beam ODT. The plot shows a
measurement of the atom number after modulating the intensity of both trapping
beams for 400 ms at various frequencies. Parametric heating [129] removes atoms
from the trap, when the modulation frequency equals twice the trapping frequency.
Due to the gravitational sag, heating also occurs when the modulation frequency
equals the trapping frequency along the y-axis. The observed dips correspond to
ωy, 2ωy, 2ωx, and 2ωz in order of ascending frequency. The resonance frequencies
(ωx, ωy, ωz)/2π = (0.313(4), 0.228(2), 0.595(2)) kHz are obtained by fitting a sum of
three Lorentzians (solid line) to the data between 300 Hz and 1600 Hz.

to spotsizes of 6 mm and 12 mm. This beam is then sent onto the final focusing lens
(Thorlabs, ACA254-150-1064 air spaced doublet) shown in Fig. 4.3. After the lens, a
dichroic mirror overlaps the 1064 nm light with the horizontal 3D MOT beam. Due to
imperfect AR coatings, a small part of the 1064 nm power is reflected from the first surface
of the dichroic mirror. This reflex is used to obtain an estimate for the beam size at the
atomic position. We measure beam waists of wy,0 = 15 µm and wz,0 = 11 µm along the y-
and z-axis.

For the vertical trapping beam, an Ytterbium-doped fiber laser (Azurlight Systems, ALS-
IR-20-SF) at 1064 nm is employed. The beam is coupled out of a polarization-maintaining
single-mode fiber on the breadboard above the vacuum chamber, using a fiber collimator
(Schäfter+Kirchhoff, 60FC-0-M20-08) with a focal length of 20 mm. The outcoupled
beam has a spot size of about 3 mm. After polarization filtering with a PBS, the beam
profile is slightly expanded using two spherical lenses with focal lengths of −200 mm and
250 mm. Next, the trapping beam is reflected from a piezo tip/tilt mirror for accurate
beam positioning in the atomic plane. A dichroic mirror superimposes the trapping
beam with the counter-propagating imaging beam. An achromatic doublet lens (Thorlabs,
AC254-075-AB), which is also the primary lens of the absorption imaging system, focuses
the trapping beam onto the atomic ensemble. To determine the spot size at the atomic
position, a mirror was temporarily placed after the piezo tip/tilt mirror and the reflected
beam was focused onto a camera by a duplicate of the achromatic doublet lens. We observe
a radially symmetric beam profile with a waist of wv,0 = 12.5 µm along the x- and z-axis.
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4.3.2 Dipole Trapping Potential
To calculate the trapping potential, we assume that the horizontal beam is an elliptical
Gaussian mode with intensity [50, 141]

Ih(r) = 2Ph
πwy(x)wz(x)e

−2
(

y2

wy(x)2
+ z2
wz(x)2

)
, (4.3)

where Ph is the power, wy(x) = wy,0
√

1 + x2/x2
R,y and wz(x) = wz,0

√
1 + x2/x2

R,z are
the spot sizes, and xR,y = πw2

y,0/λODT and xR,z = πw2
z,0/λODT are the Rayleigh lengths.

Similarly, we assume a vertical Gaussian beam with intensity

Iv(r) = 2Pv
πwv(y)2 e

−2 x
2+z2

wv(y)2 , (4.4)

where Pv is the power, wv(y) = wv,0
√

1 + y2/y2
R is the spot size, and yR = πw2

v,0/λODT is
the Rayleigh length. The dipole potential [50]

Udip(r) = −Re(α)
2ε0c

(Ih(r) + Iv(r)) (4.5)

with the complex dynamic polarizability α is expanded to second order for small values of
x, y and z

Udip(r) ≈ Udip(0) + 1
2m

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
, (4.6)

with the atomic mass m = 86.91 u of 87Rb and the trapping frequencies

ωi =
√
ω2
i,h + ω2

i,v (4.7)

for i ∈ {x, y, z}. Here, we abbreviated the trapping frequencies of the horizontal beam

(ωx,h, ωy,h, ωz,h) =
√
−Uh,0

m

√√√√ 1
x2
R,y

+ 1
x2
R,z

,
2
wy,0

,
2
wz,0

 , Uh,0 = −Re(α)
ε0c

Ph
πwy,0wz,0

(4.8)
and the trapping frequencies of the vertical beam

(ωx,v, ωy,v, ωz,v) =
√
−Uv,0
m

(
2
wv,0

,

√
2

yR
,

2
wv,0

)
, Uv,0 = −Re(α)

ε0c

Pv
πw2

v,0
. (4.9)

The density distribution for N atoms in a harmonic trap is [50]

n(r) = npeake
− x2

2σ2
x
− y2

2σ2
y
− z2

2σ2
z , npeak = N

(2π)3/2σxσyσz
, σi =

√
kBT

mω2
i

, (4.10)

and, for temperatures far above quantum degeneracy, the peak phase space density is

D = npeakλ
3
dB = N

(
~ω̄
kBT

)3

(4.11)

62



4.3 Optical Dipole Trap

200 100 0 100 200
x (µm)

0

1

2

D
en

si
ty

 (1
0

12
 c

m
−

3
)

(a)

300

250

200

Po
te

nt
ia

l (
µK

)

200 100 0 100 200
x (µm)

0

5

10

D
en

si
ty

 (1
0

12
 c

m
−

3
)

(b)

60

55

50

45

Po
te

nt
ia

l (
µK

)

200 100 0 100 200
x (µm)

50
0

50

z 
(µ

m
)

(c)

0

2

O
D

200 100 0 100 200
x (µm)

50
0

50

z 
(µ

m
)

(d)

0

2

O
D

Figure 4.6: Atomic density distribution in the crossed-beam ODT before (a,c) and
after (b,d) Raman cooling. The shaded area in (a) and (b) shows the calculated
atomic density profile along the horizontal trap axis. The solid line indicates the
trapping potential U(x,0,0)/kB. Corresponding in-situ absorption images are shown
in (c) and (d).

with ω̄ = (ωxωyωz)1/3 and the thermal de Broglie wavelength λdB =
√

2π~2/mkBT .
For the experiments presented in chapter 6, N = 260 atoms at 0.44 µK are prepared

in the crossed-beam ODT, using the techniques described in Secs. 4.4 and 4.5. The final
power of the horizontal and vertical trapping beam is 4.5 mW and 5 mW, respectively.
Using the real part of the dynamic polarizability Re(α) = 687.3 a.u. from Ref. [4], with
1 a.u. = 1.649× 10−41 J/(V/m)2, we calculate (ωx,h, ωy,h, ωz,h)/2π = (0.01, 0.34, 0.46) kHz,
(ωx,v, ωy,v, ωz,v)/2π = (0.44, 0.01, 0.44) kHz, and (ωx, ωy, ωz)/2π = (0.44, 0.34, 0.64) kHz.3
The agreement with the measured trapping frequencies, see Fig. 4.5, is moderate. At
a temperature of 0.44 µK, RMS ensemble radii of (σx, σy, σz) = (3.3, 4.5, 1.7) µm are
obtained from the measured trapping frequencies. The three values are smaller than the
estimated blockade radius of 7 µm, see Sec. 5.5. For 260 atoms, the peak density in the
trap is npeak = 6.5× 1011 cm−3 and the peak phase space density is 1.4× 10−2.

4.3.3 Dipole Trap Loading
Both dipole trapping beams are already turned on during the MOT loading phase. After
0.5 s of loading, the MOT parameters are altered for 30 ms similar to Ref. [81] in order to
enhance the transfer of atoms into the ODT. In particular, we increase the red detuning
to 50 MHz and drastically reduce the repumping power to 1 µW. We refer to this stage as
MOT compression. Subsequently, PGC is performed. Also here, we found that changing

3A numerical calculation which includes gravitational sag yields an about 10% lower value for ωy and a
trap depth of 0.9 µK.
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the parameters improves the transfer into the ODT. Hence, a longer PGC time of 50 ms
and a lower initial cooling power of 20 mW are used.
As our cooling scheme can produce larger atomic ensembles than necessary for the

experiment, we deliberately lower the trapping beam powers during the loading phase in
order to obtain the desired final atom number. For the measurements in chapter 6, the
horizontal (vertical) beam has an initial power of 0.23 W (0.05 W). In daily alignment,
these values are often varied to fine-tune the number of atoms.

For the subsequent MOT compression and PGC phase, the beam power is increased to
its maximum value of 0.45 W (0.1 W). Keeping the crossed-beam ODT on for 150 ms after
PGC, we measure a trapped atom number of 2.1× 104 at a temperature of 46 µK. From
a numerical calculation of the atomic density distribution n(r) ∝ exp(Udip(r)/kBT ) using
Eqs. (4.3)–(4.5), we find that this corresponds to npeak = 2× 1012 cm−3 and D = 4× 10−5.
The calculated density profile along the x-axis is shown in Fig. 4.6 (a). We note that a
dimple-trap configuration is obtained, in which a low-density reservoir is in contact with
a high-density trapping region. This may have a beneficial impact onto the evaporation
dynamics in this trap, similar to Refs. [18, 80] which used more elaborate dimple-traps for
all-optical production of BECs.

4.4 Raman Cooling
To reach the above mentioned parameters for the experiments in chapter 5, an improvement
of the peak phase space density of more than two orders of magnitude is necessary. Hence,
an additional cooling method is required. To this end, we employ the first two stages of
the Raman cooling scheme reported in Ref. [159] in our crossed-beam ODT. This relatively
new scheme is extremely simple and fast, which makes it attractive for many ultracold
atom experiments. In fact, we do not exploit the full potential of the method, which is
able to produce BECs. As an additional benefit, it already optically pumps the atomic
ensemble into the desired Zeeman state.
In our setup, we initially implemented, optimized, and characterized Raman cooling

using only the horizontal ODT beam. The results are presented in detail in Ref. [126].
The vertical ODT beam was added later. This section starts with an explanation of
the Raman cooling scheme. Next, its optimization and the results from Ref. [126] are
briefly summarized. Finally, the extension of the scheme to the crossed-beam ODT is
discussed. Note that the type of Raman cooling considered here is not to be confused with
sideband-resolved Raman cooling schemes, see e.g. Ref. [63], which can achieve similar
performance but require much higher trap frequencies.

4.4.1 Physical Mechanism
The basic idea of the scheme is to use a Raman transition for Doppler cooling. Similar
techniques have already been demonstrated three decades ago [72, 84]. Traditional Doppler
cooling as in a MOT uses an atomic two-level transition between a ground state |1〉 and
an excited state |2〉. In this situation, the achievable temperature is on the order of the
Doppler limit kBT = ~Γ/2 [96], which is determined by the excited state decay rate Γ.
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Figure 4.7: Atomic level scheme for Raman cooling. (a) Relevant levels for a cooling
cycle. Weak π light and strong σ− light induce a velocity selective Raman coupling
(red arrows) which transfers population from state |1〉 to |3〉, removing kinetic energy
because of a red two-photon detuning, somewhat similar to Doppler cooling. Atoms
are repumped to state |1〉 by spontaneous scattering of σ− photons on the |2〉 ↔ |3〉
transition. The probabilities for spontaneous decay (blue arrow) to the states |1〉,
|3〉, and |52S1/2, F = 1,mF = −1〉 are 1/3, 1/6, and 1/2 respectively [96]. Further
explanations are provided in the main text. (b) Complete hyperfine and Zeeman
manifolds for the 52S1/2 and 52P1/2 states in 87Rb. Black bars mark the levels from
(a). Optical pumping into state |1〉 is achieved by residual spontaneous scattering of
the fairly far detuned σ− Raman light.

For Raman cooling, a third atomic energy level |3〉, which is usually another ground state,
is added to the scheme. A cooling cycle consists of a velocity-selective Raman transition
from |1〉 to |3〉, which removes kinetic energy, followed by a repumping process via the
excited state |2〉. By decreasing the repumping rate, which takes the role of Γ in traditional
Doppler cooling, the Doppler limit can become arbitrarily small in a Raman cooling scheme.
Instead, the final temperature is on the order of an effective recoil temperature, which
stems from the energy deposited during the repumping process.
In the scheme from Ref. [159], the states |1〉 = |52S1/2, F = 2,mF = −2〉, |2〉 =
|52P1/2, F

′ = 2,m′F = −2〉, and |3〉 = |52S1/2, F = 2,mF = −1〉 in 87Rb are used. Atomic
level diagrams are shown in Fig. 4.7. The transitions |1〉 ↔ |2〉 and |2〉 ↔ |3〉 have
very similar resonance frequencies and belong to the D1 line at a wavelength of 795 nm.
The Raman transition is induced by a weak π-polarized light field with Rabi frequency
Ωπ and a high intensity σ−-polarized light field with Rabi frequency Ωσ. Both beams
are red detuned from the atomic transitions by about ∆ = −4.33 GHz. This value was
identified by Ref. [159] as beneficial because it reduces losses due to inelastic light-assisted
collisions by avoiding photoassociation resonances. Although we just copied that detuning
without further investigation, we indeed observed a degradation of the cooling performance
whenever the cooling laser jumped to a different frequency.

The two-photon Rabi frequency of the Raman transition is ΩR = ΩπΩσ/(2∆) and the
two-photon detuning is δR = ∆ω − ω31, where ω31 = ω3 − ω1 is the angular resonance
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frequency of the transition |1〉 ↔ |3〉 and ∆ω = ωπ−ωσ is the angular frequency difference
between the two Raman beams. If the wave vectors of the π and σ− beam are kπ and
kσ, the Raman coupling acts resonantly onto atoms with a two-photon Doppler shift
kR · v = δR, where kR = kπ − kσ and v is the atomic velocity. Hence, specific velocity
classes of atoms can be selectively addressed by tuning δR.
The strong σ−-polarized light field additionally performs a second task, which is the

repumping process |3〉 → |1〉. Due to the large detuning ∆, a relatively high intensity
of 4.7 W

cm2 is required to obtain a scattering rate of Γsc = 4.1 ms−1 as in Ref. [159]. This
simultaneously causes a light shift of δLS = ∆Γsc/Γ = 2π × (−500 kHz) on state |3〉 [159].
As the σ−-polarized light does not couple to |1〉 due to dipole selection rules and because
the polarization is carefully aligned to be σ− in the experiment, there is no light shift on
state |1〉. Hence, δLS contributes to the Raman detuning δR. For that reason, it is crucial
that the σ− beam has a sufficiently homogeneous intensity across the atomic ensemble.
Conveniently, the σ− light pumps atoms into state |1〉 also from all other Zeeman

states of the ground state manifold. All these processes occur with significant scattering
rates because the hyperfine splittings of the ground- and excited-state manifold are not
much larger than ∆. Moreover, these optical pumping rates exhibit negligible velocity
dependence because the light is far detuned. As a consequence, the cooling scheme prepares
the atomic ensemble in state |1〉 and no additional optical pumping steps are required.
After a stimulated Raman transition from state |1〉 to |3〉, it takes an average of 3 scattering
events to transfer an atom back to state |1〉. As explained in the supplement of Ref. [159],
this translates to an effective recoil limit of 2.8 µK.

Unlike textbook explanations of standard Doppler cooling, the scheme does not require
counter-propagating light beams. This is because of the presence of the dipole trap. In one
dimension, a harmonic trap periodically reverses the direction of the velocity which means
that all atoms can be cooled in one dimension without a need for counter-propagating
beams. In a three-dimensional harmonic potential described by Eq. (4.6), the components
of the atomic motion along the x-, y-, and z-axes are decoupled from each other. To achieve
cooling along all three axes, all trapping frequencies must differ from one another and
the transferred momentum during a velocity selective Raman transition ~kR must have a
nonzero component along each axis. This is ensured by choosing kπ and kσ appropriately.

4.4.2 Implementation and Characterization
As indicated in Fig. 4.3, the π-polarized Raman light is overlapped with two of the MOT
beams. This solution is chosen because it requires little optical components and no
additional optical access. As a result, this light field is not really π polarized at the atomic
position. But this has little effect on the performance of the cooling scheme because the
light field generates a negligible spontaneous scattering rate and because its σ+ and σ−
components can only induce very far red-detuned Raman transitions due to the large
Zeeman splitting. As each of the two beams is retroreflected, four different directions of
kπ are available, even though this would not be required to achieve cooling along all three
trap axes, as explained above. The σ−-polarized pumping beam is overlapped with the
imaging beam and propagates along the positive y-axis.
Both Raman light fields are power stabilized. The σ−-polarized pumping beam has a
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Figure 4.8: Optimization of Raman cooling. The panels on the left-hand side show
the atomic temperature (a), atom number (b), and peak phase space density (c) after
stage 2, as a function of the frequency difference between the two Raman beams. The
optimal phase space density of D = 0.15 is achieved at ∆ω/2π = 2.04 MHz, which
approximately coincides with the minimum of the atomic temperature in (a). The
panels on the right-hand show the evolution of temperature (d), atom number (e),
and peak phase space density (f) as a function of the total cooling time. Adding a
second Raman stage (blue datapoints) with modified parameters starting at 200 ms
increases the achieved D by almost an order of magnitude. Cooling beyond 500 ms
(gray shaded region) leads to little improvement in D.

power of 10 mW and an elliptical waist at the atomic position with spot sizes of wx = 2 mm
and wz = 180 µm along the x- and z-axis. This ensures a large intensity while keeping the
beam profile sufficiently homogeneous across the trapped ensemble, as discussed in the
previous section. For an atom in state |3〉, the calculated scattering rate is Γscat = 1/(0.6 ms)
and the light shift is δLS = 2π × (−0.19 MHz). The two π beams have a total power up
to 1 mW. By applying a magnetic field of 3.38 G along the negative y-axis, a differential
Zeeman shift of δZ = 2π × 2.36 MHz between the states |1〉 and |3〉 is created. Overall,
this results in a Raman detuning of δR = δZ + δLS −∆ω. To adjust δR, the frequency
difference ∆ω between the π beam and the σ− beam is varied using an AOM.
Similar to Ref. [159], we optimize the achieved phase space density by dividing the

cooling time into two stages with different beam powers, trap depth, and Raman detuning.
This makes sense because the atomic density and velocity distributions change during the
cooling process, shifting the optimal cooling parameter values away from the initial setting.
For instance, a larger Raman detuning is favorable in the beginning because this addresses
atoms at high velocity and transfers them to lower velocity. As the ensemble gets colder,
less atoms with the addressed velocity are available and the cooling speed drops, making
a lower Raman detuning beneficial. For lower detuning, a lower Raman Rabi frequency
narrows the transition linewidth and reduces unwanted coupling to low-velocity atoms,
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which would otherwise be heated. To reduce light-assisted collisions as the atomic density
increases, it is helpful to reduce the atomic density by decreasing the trapping confinement.
For each stage, the cooling parameters are optimized for maximum final phase space

density. As an example, Fig. 4.8 (a)–(c) illustrates the optimization of the Raman detuning
during the second cooling stage. To understand the dependence of the temperature in (a)
on ∆ω, we note that, first, for very small ∆ω, the light is too far detuned to have an effect,
second, for increasing ∆ω the number of atoms addressed by the Raman light increases,
which causes cooling, and third, for too large ∆ω, the two-photon detuning of the Raman
light is no longer red, thus causing heating. This has the following consequences for the
atom number in (b). When increasing ∆ω, starting from small values, the initial decrease
in temperature causes the density of the atomic sample to increase because of the presence
of the dipole trap. This causes increased atom loss, presumably due to light-assisted
inelastic collisions. At larger ∆ω, the temperature returns to the value, which it had
without cooling. This causes the atom number to recover, too, at least somewhat. For
even larger ∆ω, the temperature increases above its value without cooling, which causes
atom loss due to evaporation. This explains the appearance of the local maximum of the
atom number seen in (b).

Similar measurements were done for the power of the cooling beams and the dipole trap,
see Ref. [126]. It bears noting that residual π- or σ+-polarized components of the pumping
beam heat the sample by pumping atoms out of the dark state |1〉. Hence, we optimized
the polarization and the magnetic field direction by applying Raman pumping light for a
certain time and minimizing the resulting atom loss. In contrast, changing the magnitude
of the magnetic field did not lead to a significant change of the cooling performance.
We now summarize the results of the optimization, which is described in detail in Ref.

[126]. Both stages use a pumping beam power of 10 mW. Stage 1 runs at a π beam power
of 1 mW, a trapping beam power of 0.45 W, and ∆ω = 1.98 MHz. As illustrated in Fig.
4.8 (d)–(f), stage 2 is applied after 200 ms. Here, the cooling parameters are changed to a
π beam power of 0.2 mW, a trapping beam power of 0.27 W, and ∆ω = 2.04 MHz. After
the total cooling time of 500 ms, a temperature of 2.0 µK is achieved with 2.5× 104 atoms,
resulting in a peak phase space density of D = 0.15.4

4.4.3 Cooling in the Crossed-Beam Trap
Instead of repeating the complete optimization for the crossed-beam ODT, we found that
it was straightforward to reach sufficient performance for the experiments in chapter 6 by
simply choosing suitable powers for the ODT beams, without modifying the other cooling
parameters. To avoid atom loss, it makes sense to operate the trapping beams at full
power in the beginning, while the atomic temperature is not yet much lower than the trap
depth. However, as the atomic temperature drops during the first Raman cooling stage,
the high atomic density region of the dimple potential may give rise to an increased loss
rate due to inelastic collisions. Hence, the power of both trapping beams is lowered for
stage 2.

4There is a mistake in the main text of Ref. [126], which lists a slightly higher phase space density at a
higher temperature and a lower atom number.
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Figure 4.9: Evolution of (a) atom number and (b) temperature after expansion
in the crossed-beam ODT. In the first 500 ms, the atom number decays relatively
fast indicating evaporation from this shallow trap. Subsequently, atom number and
temperature stabilize. The solid line in (a) is an exponential fit to the data between
500 ms and 1500 ms, yielding a 1/e lifetime of 1.2(1) s.

With a horizontal (vertical) beam power of 100 mW (5 mW) during stage 2, we finally
obtain 1.8× 104 atoms at a temperature of 3.4 µK. From our numerical calculation of the
atomic density distribution in the trap, these numbers result in npeak = 1× 1013 cm−3 and
D = 1× 10−2, see Fig. 4.6 (b). The phase space density is already close to the value used
for the experiments in chapter 6.

4.5 Expansion in the Dipole Trap
According to Eq. (3.1), high retrieval efficiency of the control photon requires low atomic
temperature. As we can prepare many more atoms with the Raman cooling method than
needed, it makes sense to trade atom number for lower temperature. This is achieved by
decreasing the horizontal beam power, which reduces the confinement and depth of the
ODT. As a consequence, the atomic medium expands and high-velocity atoms escape from
the trap.

We linearly ramp the horizontal ODT power from 100 mW to 4.5 mW in 100 ms. Com-
pared to the final trapping frequencies, this ramping time is relatively slow. Hence, we
assume that the change of the trapping potential is to a good approximation adiabatic.
However, compared to the timescale on which thermalization of the ensemble is expected
to occur, the ramp is fast. Hence, we expect that there is little evaporative cooling.
In such a situation, the peak phase space density should be approximately conserved.
Starting at D = 0.01, we expect a final temperature of T = (N/D)1/3~ω̄/kB. At the atom
number of N = 260, which we use for the experiment, we expect T = 0.5 µK from these
considerations, which is close to the measured value T = 0.44(2) µK. At this temperature,
Eq. (3.1) predicts a thermal coherence time for the stored control photon of τR = 31 µs,
when assuming minimal two-photon recoil kR = 2π(1/480 nm− 1/780 nm).

Fig. 4.9 shows the evolution of atom number and temperature as a function of the hold
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Figure 4.10: Overlap between dipole trap and cavity mode. Panel (a) shows results
from a measurement that reveals the position of the cavity mode (white area) on the
camera image, as explained in the main text. The center of the cavity mode (green
crosshair) is determined from a fit. The inset contains a zoom into the region marked
by the white rectangle. Panel (b) shows an average of ten in-situ absorption images
of atomic ensembles in the crossed-beam ODT, for the same zoomed region on the
camera image. The atomic position is close to the previously determined center of
the cavity mode (green crosshair).

time in the final trap. Because of the fast initial evaporation, we wait 500 ms before we
perform experiments with the ensemble.

4.6 Overlap between Dipole Trap and Cavity Mode
The final task left for completing the preparation of the atomic sample is to overlap it
with the cavity mode. We achieve this by making use of the absorption imaging system.

As a first step, the location of the cavity mode on the camera image is determined. To
this end, atoms are prepared in the 3D MOT and then pumped into the F = 1 hyperfine
ground state, which does not couple to the imaging light. An absorption image is taken
while sending 5 nW of repumping light into the cavity, which for this measurement is tuned
on resonance with the repumping transition. Atoms which couple to the cavity mode are
repumped and hence become visible in the absorption image, as shown in Fig. 4.10 (a).
This reveals the position of the cavity mode.

As a second step, the horizontal position of the ODT is moved to the center of the cavity
mode on the camera image. To this end, atomic ensembles are prepared as in a usual
experiment, i.e. following the steps in Secs. 4.1–4.5 and without sending repumping light
into the cavity. After each preparation cycle, an absorption image reveals the position
of the atomic ensemble trapped in the ODT. An example of such an absorption image
is shown in Fig. 4.10 (b). In an iterative procedure, the alignment of the ODT beams is
changed until the position of the atomic ensemble in the camera image coincides with the
previously determined position of the cavity mode waist.
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Figure 4.11: Normal modes of the atom-cavity system. Plotted are (a) the relative
output power and (b) the phase φ of the output state when sending D-polarized target
light into the dual-rail setup, while scanning the signal detuning ∆c/2π. The solid
lines in (a) and (b) show fits to the data using Eqs. (4.12) and (4.15), respectively.
The fit to the data in (a) yields a cooperativity of C = 20.8(3).

In a third step, the vertical ODT position is optimized by maximizing the observed
normal mode splitting when reflecting target signal light from the cavity, see Sec. 4.7.

4.7 Normal Modes of the Atom-Cavity System
As a final result of this chapter, a normal mode spectrum of the coupled atom-cavity
system is shown in this section. This measurement reveals the cooperativity of the
system and confirms that the previously described preparation steps were successfully
implemented. To this end, the cavity resonance is tuned near the cycling transition
|g〉 ↔ |e〉, where |g〉 = |52S1/2, F = 2,mF = −2〉 and |e〉 = |52P3/2, F

′ = 3,m′F = −3〉.
Driving this transition requires σ− light. The polarization convention for σ− is relative to
the positive z axis (see Fig. 3.2) which essentially represents the direction of the atomic
spins. The polarization convention for L and R, however, is relative to the wave vector of
the light. As the control (target) signal light has a wave vector parallel (antiparallel) to
the positive z axis, it is R (L) polarized. In addition, a magnetic field of 1.0 G pointing
along the positive z-axis is applied. Due to the polarization mode splitting of the cavity,
see Fig. 3.7, only one of the two signal light fields can be exactly on resonance with the
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atomic transition. Our choice is such that the control photon is resonant. Hence, there is
a small atom-cavity detuning ∆ac = ωge − ωc = 2π × 0.9 MHz for the target photon.
The experimental sequence for the data shown here and in chapter 6 is the following.

After 500 ms of MOT loading and 500 ms of Raman cooling, the ODT is expanded in
100 ms. As the magnetic field is B = (0,−3.4, 0) G during Raman cooling, the next step is
to rotate the magnetic field vector to B = (0, 0, 1.0) G while holding the atomic ensemble
in the expanded crossed-beam ODT. To conserve the atomic spin polarization, this rotation
is performed slowly in 200 ms and a small magnetic field is avoided at all times. As there
is fast initial evaporation in the expanded ODT, see Sec. 4.5, the atomic medium is held
in the ODT for another 300 ms before starting the data acquisition stage, which takes 1 s.
At the beginning of this stage, an atom number of 258(7) at a temperature of 0.44(2) µK
was inferred from absorption images. During this period, a sequence of control and target
signal and coupling light pulses is repeatedly sent onto the atomic medium, at a repetition
rate of 10 kHz.
The data in Fig. 4.11 (a) and (b) are recorded using 1 µs long D polarized target light

pulses containing 0.19 photons on average with a temporal envelope according to Eq. (2.79).
These pulses are sent through the target path of the dual-rail setup and the intensity and
polarization of the output light field is measured as a function of the signal laser detuning
from the cavity resonance.
The expected output power of the light pulses is

Pout(∆c) = 1
2Pin

(
TH + TV

|Rempty|2
|R(∆c)|2

)
, (4.12)

where the measured on-resonance transmission through the cavity path (bypass) is TV =
0.91 (TH = 0.97), the measured on-resonance reflectivity of the cavity is |Rempty|2 = 0.932,
and the cavity reflection coefficient R(∆c) is given by Eq. (2.32) with β = 0.983, κ/2π =
2.3 MHz, and

Ceff = C
Γe

Γe − 2i(∆c −∆ac)
(4.13)

according to Eqs. (2.31), (2.33), and (2.35) with Ωco = 0 and ∆s = ∆c −∆ac. In Fig. 4.11
(a), we plot Pout(∆c)/Pin and obtain C = 20.8(3) from a fit using Eq. (4.12).

The output polarization state is

|ψout〉 = aH |H〉 − aV eiφ|V 〉+ |ψloss〉, (4.14)

where aH and aV are two real and positive constants and |ψloss〉 represents loss. We
measure the phase φ using quantum state tomography of the output photons.5 Taking
into account the path length difference ∆Lt = 73 cm between the cavity path and the
bypass, we expect to obtain

φ(∆c) = φ0 + arg(R(∆c)) + ∆Lt
c

∆c. (4.15)

5More precisely, we measure the normalized Stokes parameters SHV , SDA, and SRL [12, 57] of the output
polarization state and use SDA = −V cosφ and SRL = V sinφ, where V is the visibility.
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The offset phase φ0 is determined by the setpoint of the target bypass path length
stabilization. For the data in Fig. 4.11 (b), a fit using Eq. (4.14) with the previously
obtained value C = 20.8 yields φ0 = 0.9(1)π.

We can also obtain an estimate for the expected cooperativity from the measured atom
number by taking into account the atomic density distribution in the trap. To this end,
we replace

N∑
`=1
|g`|2 →

ˆ
d3r n(r)g2 exp

(
−2x

2 + y2

w2
c

)
(4.16)

in Eq. (2.35), where the z-dependence of the cavity mode function has been neglected
because the atomic sample size is much smaller than the Rayleigh range. Combining this
with n(r) from Eq. (4.10) yields

C = N
g2

κΓe/2
w2
c√

(w2
c + 4σ2

x)(w2
c + 4σ2

y)
. (4.17)

With g/2π = 1.0 MHz, κ/2π = 2.3 MHz, Γe/2π = 6.07 MHz, σx = 3.3 µm, σy = 4.5 µm,
wc = 8.5 µm, and N = 260, we find C = 20. This agrees well with the value of C obtained
in the above fit.
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Chapter 5

Characterization of the Cavity Rydberg
EIT System
This chapter presents calibration and characterization measurements of the cavity Rydberg
EIT system which forms the basis for the optical CNOT gate in chapter 6. The complete
temporal input pulse shapes of the gate protocol are provided in Sec. 5.1. The gate
performance is optimized following the considerations presented in Sec. 2.7. Among other
things, this implies that the temporal pulse shape of the control coupling light is chosen
according to the model in Ref. [46]. The required input parameters for this model are
extracted from two different types of measurements. First, cavity Rydberg EIT spectra
are shown in Sec. 5.2. Second, a measurement of the decay of the write-read efficiency in
a storage-and-retrieval experiment as a function of the dark time is presented in Sec. 5.3.
Characterization measurements of the control and target signal pulses exiting the gate are
provided in Sec. 5.4. Finally, cavity Rydberg blockade is discussed in Sec. 5.5.

5.1 Input Pulse Sequence
The complete temporal input pulse sequence of the gate protocol, see Sec. 2.6, is shown
in Fig. 5.1. The signal input pulse envelopes are chosen according to Eq. (2.79) with
T = Tc = Tt = 1 µs for the control and target qubit. The control (target) pulse contains
n̄c = 0.14 (n̄t = 0.13) photons on average. The control (target) signal detuning from
the transition |g〉 ↔ |e〉, where |g〉 = |52S1/2, F = 2,mF = −2〉 and |e〉 = |52P3/2, F

′ =
3,m′F = −3〉, is ∆s/2π = 0 (∆s/2π = −0.9 MHz) such that each photon is resonant on
the corresponding polarization eigenmode of the cavity, see Sec. 4.7.
The coupling light at 480 nm is sent through the concave cavity mirrors as described

in Sec. 3.1. The control (target) coupling light addresses the transition from |e〉 to
|r′〉 = |482S1/2, F = 2,mF = −2〉 (|r〉 = |502S1/2, F = 2,mF = −2〉). As with the signal
light in Sec. 4.7, this implies that the control (target) coupling light is R (L) polarized
at the atomic position. The control (target) coupling detuning is set to ∆co/2π = 0
(∆co/2π = 0.9 MHz). These values of ∆co are needed to match the single-photon detuning
of the signal light. Hence, two-photon resonance ∆co + ∆s = 0 is obtained for the control
and the target photon.
Unless otherwise noted, all data in this chapter were taken using the general atomic

preparation procedure described in Sec. 4.7, at a magnetic field of B = (0, 0, 1.0) G
and at an electric field of E = (0.2, 0, 0.7) V

cm , see Sec. 6.3. According to Eqs. (2.9) and
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Figure 5.1: Input pulse sequence. Characterization measurements of the incoming
control (circles) and target (triangles) signal and coupling light pulses are shown.
Panel (a) contains the incoming signal photon rate as a function of time. The solid
lines are fits of |us(t)|2 from Eq. (2.79) to the data. In panel (b), the normalized power
of the control (target) EIT coupling light is shown, where Ωco,max/2π = 20.8 MHz
(Ωco,max/2π = 43.0 MHz). The solid purple line is the optimal coupling pulse
calculated numerically with Eqs. (2.50) and (2.52), which is truncated at a maximum
of Ωco,max. The solid blue line is a fitted rectangular pulse.

(2.15), Stark shifts ∆EStark/h of −10.1 MHz and −13.5 MHz on the states |r′〉 and |r〉 are
expected due to this electric field.
To optimize the write-read efficiency of the control photon, optimal coupling pulses

are calculated using the model in Sec. 2.4. This requires a value for the coherence time
1/γrg. Two different methods for measuring γrg will be discussed in Secs. 5.2 and 5.3,
which yield 1/γrg = 0.6 µs and 1/γrg = 7 µs in the presence and absence of EIT coupling
light, respectively. When calculating optimal coupling pulses, we use the latter value
1/γrg = 7 µs based on the following considerations. As shown in Fig. 5.1, the optimal
coupling pulse reaches its maximum power only for a relatively small fraction of the pulse
duration and has much lower power for most of the remaining time. The previously quoted
value of 1/γrg = 0.6 µs from Sec. 5.2 was measured at the maximum coupling power of
30 mW. Hence, 1/γrg = 0.6 µs would be a poor approximation for modeling storage and
retrieval. However, obtaining γrg from a fit to an EIT spectrum at low coupling power is
difficult because the fit essentially determines γrg from the dip at zero detuning, which
becomes quite narrow in this situation and is therefore hard to resolve.1 As a pragmatic
solution, we use the value 1/γrg = 7 µs measured in the absence of coupling light to
calculate approximately optimal coupling pulses. From the model in Sec. 2.4, we expect
that this does not reduce the achieved write-read efficiency much.

1The linewidth of the dip in the EIT spectrum at zero detuning is essentially given by the cavity EIT
linewidth κF . According to Eq. (2.43), κF decreases with Ωco and eventually becomes smaller than
the spectral resolution of the measurement, which is limited, for instance, by laser frequency noise.
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Figure 5.2: Cavity Rydberg EIT spectra (a,b) for the target photon and (c,d) for
the control photon. (a) and (c) show the relative power and (b) and (d) show the
phase of the light reflected from the cavity as a function of the signal detuning ∆c/2π.
An EIT feature at zero detuning is clearly observed, which causes a 2π phase boost
when tuning ∆c through zero. Fits (lines) reveal the coupling Rabi frequency Ωco,
the coherence time 1/γrg, and the cooperativity C.

The other input parameters for the the model from Sec. 2.4 are C = 21, κ/2π = 2.3 MHz,
κH/2π = 40 kHz, and ∆c = ∆s = ∆co = 0. Combining this with Tc + tdark = 2.0 µs,
Eq. (2.54) predicts ηsr,ad = 66.1%. From the numerical solution of Eqs. (2.45)–(2.48)
ηsr = 64.7% we conclude that the adiabatic approximation works well in this parameter
regime.
As explained in Sec. 2.7, the target coupling Rabi frequency should be as large as

possible. Hence, we use a rectangular target coupling pulse with a power of 70 mW, which
is limited by our laser system. The duration of this pulse is chosen long enough to ensure
good overlap with the delayed component of the target signal pulse, see Eq. (2.44).

5.2 Cavity Rydberg EIT
We record two cavity Rydberg EIT spectra, one with each coupling light field. Similar to
Sec. 4.7, we determine the amplitude and phase of the signal light reflected from the cavity
when varying the signal detuning over a range of 80 MHz. To obtain phase information, D
polarized signal light is sent into the target signal beam path, see Figs. 2.3 and 3.13, and
the polarization at the output is measured. Signal light transmitted through the bypass
serves as a phase reference. This requires sufficient temporal overlap between the cavity
component and the bypass component. Had we used the control signal beam path, there
would have been very little temporal overlap between the two components due to the 2 µs
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Chapter 5 Characterization of the Cavity Rydberg EIT System

delay caused by the long fiber. For that reason, the target beam path is used to record
both EIT spectra.2
In the present Sec. 5.2, we deviate from the pulse sequence described in Sec. 5.1. For

the control coupling data, the signal light pulses have a rectangular shape with 1 µs length
and contain 0.7 photons on average, while the target data is recorded with 1 µs long signal
pulses that are shaped according to Eq. (2.79) and contain 0.19 photons on average. The
fact that the signal pulse shapes are different for the control and target coupling data is
not expected to impact the measurement results in a relevant way. Rectangular Rydberg
coupling pulses with a duration of 1.5 µs are superimposed with the signal light pulses.
The resulting cavity Rydberg EIT spectra are shown in Fig. 5.2.3 We model the data

using Eqs. (4.12) and (2.32) with

Ceff = C
Γe

Γe − 2i(∆c −∆ac) + |Ωco|2
γrg−2i(∆co+∆c−∆ac)

(5.1)

according to Eqs. (2.31), (2.33), and (2.35). A simultaneous fit to the power and phase data
for each Rydberg state yields Ωco/2π = 20.6(4) MHz (Ωco/2π = 43.0(4) MHz), 1/γrg =
0.6(2) µs (1/γrg = 0.21(5) µs), C = 23.6(6) (C = 21.1(9)), and φ0 = 0.748(3)π (φ0 =
0.917(2)π) for the data with control (target) coupling light. The remaining parameters of
the fit model are fixed to the same values as in Sec. 4.7.
The control (target) coupling light power was Pco = 30 mW (Pco = 70 mW) in this

measurement. We estimate the control (target) coupling beam waists at the atomic
position using the matrix element der for the transition |e〉 ↔ |r′〉 (|e〉 ↔ |r〉). The
angular part of this matrix element is 1/

√
3 [8] and the radial part is obtained from

RnS
5P = 0.014 × (50/n)3/2a0 [128]. We find der = 7.3× 10−32 C m (der = 6.9× 10−32 C m)

for the Rydberg state addressed by the control (target) coupling light. Assuming that the
atoms are positioned at the intensity maximum cε0 |Eco|2 /2 = 2Pco/πw

2
co of a Gaussian

beam with waist wco and electric field amplitude |Eco| = ~ |Ωco| /der, we obtain wco = 20 µm
(wco = 14 µm).
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Figure 5.3: Decay of the write-read efficiency ηsr during the dark time between
storage and retrieval. A Gaussian fit according to ηsr(tdark) = ηsr(0) exp(−t2dark/τ

2)
yields ηsr(0) = 42(1)% and the 1/e decay time τ = 7.0(2) µs.

5.3 Decay of Coherence during the Dark Time between
Storage and Retrieval

The fit to the data in Fig. 5.2 yielded a value for the coherence time 1/γrg = 0.6(2) µs
between |g〉 and |r′〉. According to Eq. (2.53), an alternative method for obtaining γrg is
to consider storage and retrieval using the state |r′〉, vary the dark time tdark, and measure
the corresponding decay of the write-read efficiency ηsr . Such a measurement is shown in
Fig. 5.3. An approximately Gaussian decay with a 1/e time of 7.0(2) µs is observed.
This is considerably longer than the value obtained from the data in Fig. 5.2. An

important difference between the two measurements is that the EIT coupling light is
turned on at its full power of 30 mW when recording the EIT spectrum, potentially
inducing additional dephasing [133]. Such a contribution to the dephasing rate is expected
to decrease as a function of the laser power. For zero coupling power we find the value
1/γrg = 7 µs by measuring the dark-time decay shown in Fig. 5.3.

The measured decay time is considerably shorter than the thermal coherence time
τR = 31 µs predicted by Eq. (3.1). However, the atoms are not truly in the dark during

2It would be possible to use the control signal beam path instead. To this end, one could send a second
signal input pulse onto the gate 2 µs prior to the usual signal-and-control pulse. In this scenario, the
bypass light of the first input pulse would have good temporal overlap with the cavity-path light of the
second input pulse. Hence, one would obtain phase information. Note that, in essence, this scenario
represents a delay line interferometer, which makes the visibility quite sensitive to phase noise of the
laser generating the signal light.

3To measure these data, we linearly ramp the signal detuning from −40 MHz to 40 MHz while holding
one prepared atomic ensemble in the trap for 1 s. There is some asymmetry in the spectra in Fig.
5.2 (c) and (d). This is likely due to the high average input photon number of 0.7 per pulse, which
resulted in evaporative loss of atoms caused by scattering of photons during the frequency ramp. For
the quantum gate experiments, we choose much lower input photon number. Moreover, the gate
performance depends only weakly on the cooperativity. Hence, a moderate atom loss is not a major
concern.
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Chapter 5 Characterization of the Cavity Rydberg EIT System

the time tdark because the crossed-beam ODT is always on continuously and induces a
position dependent differential light shift between the ground and Rydberg state which
contributes to the dephasing rate. A minor extension to the model of Ref. [133] predicts a
value for γrg that is fairly close to our measurement.

For the quantum gate experiment, a relatively short dark time of Tt = 1 µs is used in
order to limit loss inside the control bypass delay fiber, see Sec. 2.7. As 1/γrg during the
dark time is considerably longer than Tt, the gate efficiency would not profit much from
an increased coherence time at this point. In the future, the efficiency may be improved
by replacing the long delay fiber with a high-efficiency quantum memory, as discussed
at the end of Sec. 2.7. After such an upgrade, γrg is expected to become an important
limiting factor for the efficiency of the gate.

The coherence time can be increased, for instance, by turning off the dipole trap during
the dark time. In this situation, a 1/e time of 36(2) µs has been observed in our apparatus.4
This reproduces an important result from Ref. [133]. This is a nontrivial observation
because the surfaces near the atomic ensemble in the new apparatus are made of titanium,
whereas in the old vacuum chamber, used in Ref. [133], they were made of glass. As
observed in Ref. [69], such surface effects can drastically impact the Rydberg coherence
time.

5.4 Output Pulses
Here, we characterize the outgoing control and target signal pulses in the absence of
Rydberg blockade. This is interesting for identifying imperfections that are independent
of the photon-photon interaction. Rydberg blockade is avoided for the data presented here
even though the full pulse sequence shown in Fig. 5.1 is used. To understand this, it is
instructive to clarify two points. The first point is that we do not postselect data upon
detection of one control and one target photon here, in contrast to the analysis in Secs.
5.5–6.6. As we use coherent input pulses containing much less than one photon on average,
the probability that the control or the target pulse contains zero photons is much higher
than the probability of having one photon in each pulse. The second point is that the
input polarization states are chosen such that one photon is always in its bypass. Instead
of sending this photon into its bypass, one could just as well omit the corresponding signal
light pulse. However, data with both photons present are also useful for quantum process
tomography in Sec. 6.4.5

4In this measurement, many parameters were different than in the rest of this chapter, such as the atomic
density, temperature, trapping geometry, etc. Moreover, the Rydberg state |r′〉 = |672S1/2〉 was used
for storage. Due to the larger principal quantum number, the retrieval efficiency oscillates around
a Gaussian decay as a function of time in this measurement. The 1/e time of this Gaussian decay
was 36(2) µs. The observed oscillations are well known and originate from molecular states bound by
the interaction between the Rydberg electron and surrounding ground-state atoms [8, 98, 132]. Such
oscillations are absent in Fig. 5.3 due to the lower principal quantum number.

5Fig. 5.4 is generated from a subset of the same raw data that are also used to generate Figs. 6.1 and 6.4.
Fig. 5.4 (a) contains data for the input polarization settings |DH〉, |AH〉, and |RH〉; (b) for |RH〉; (c)
for |V D〉, |V A〉, and |V R〉; and (d) for |V R〉.
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Figure 5.4: Characterization of the outgoing (a,b) control and (c,d) target signal
pulses. The incoming control (target) photon is in a 50:50 superposition of H and
V for the data in the panels on the left (right) hand side. (a) and (c) contain the
outgoing signal photon rates for different polarization components. (b) and (d) show
the degree of polarization Π and the phase φ, exemplarily for R polarized input. The
solid lines are fits of |us(t)|2 from Eq. (2.79) to the data. The shaded area in (a) is a
theory prediction assuming 1/γrg = 7 µs. Detailed explanations are provided in the
main text.

5.4.1 Storage and Retrieval
First, we analyze the outgoing control signal pulse. The input control signal light is in a
50:50 superposition of H and V polarization. The input target signal light is H polarized
and bypasses the cavity. Fig. 5.4 (a) shows the H and V components of the outgoing
control signal light. Orange (blue) data points correspond to light that was routed through
the cavity path (bypass).
As expected, the bypass component V is delayed by 2 µs due to the optical fiber. The

theoretical prediction for the cavity component from Eqs. (2.45)–(2.48) is marked by the
orange shaded area. The discrepancy between this prediction and the measured data is
presently not well understood. We extract a write-read efficiency of ηsr = 39(1)% which
is quite a bit lower than the theoretical expectation of about 65% from Sec. 5.1. We
observe that there is significantly more leakage during the storage interval between 0 µs
and 1 µs than the model predicts, which suggests that part of the excess loss occurs already
during storage. The observed deviation of the model from our data may be a result of the
assumption 1/γrg = 7 µs, which was measured at Ωco = 0.
To obtain complete information about the control output polarization state, we addi-

tionally measure the degree of polarization

Π =
√
S2
HV + S2

DA + S2
RL, (5.2)

where SHV , SDA, and SRL are the normalized Stokes parameters [12, 57], and the phase
φ, defined by Eq. (4.14). In this measurement, we use R polarized input control signal
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light. As shown in Fig. 5.4 (b), the degree of polarization is high for the times at which
there is appreciable overlap between the two components in (a). A weighted average of
the plotted data points yields Π = 0.942(7) and φ = 0.455(4)π. The ideal output state R
would correspond to φ = π/2. As discussed in Sec. 2.4.2 of Ref. [149], a nonzero coupling
detuning ∆co leads to a phase shift tdark∆co on the retrieved photonic output state. We
used this effect to fine tune the control coupling laser frequency, aiming at ∆co = 0.

5.4.2 Cavity Rydberg EIT
Next, we analyze the outgoing target signal pulse. Again, the target input pulse is in
a 50:50 superposition of H and V polarization. The control signal light is V polarized
and bypasses the cavity. The outgoing H and V components of the target signal light
are shown in Fig. 5.4 (c). Again, orange (blue) data points correspond to light that was
routed through the cavity path (bypass).
The amplitude of the outgoing cavity component is reduced due to losses in optical

components and due to an on-resonance cavity EIT reflectivity of |R|2 = 90(1)%. Moreover,
a pulse delay td = 0.20(1) µs of the V component relative to the bypass component H is
visible in the data.6 The agreement with the expectation td = 0.18 µs from Eq. (2.44) is
good. For the times at which there is appreciable overlap between the two components,
the data in Fig. 5.4 (d) show the degree of polarization and the phase φ of the output for
R polarized input. A weighted average of the plotted data points yields Π = 0.974(5) and
φ = 0.442(4)π, both of which are close to the ideal values. We note that obtaining the
ideal output phase π/2 requires tuning the setpoint of the bypass path length stabilization
such that an offset phase of φ0 = π is obtained, see Eq. (4.14). Moreover, we note that the
delay between the H and V components of the target output pulse is expected to vanish
in the presence of a stored control excitation, see Sec. 2.5.

5.5 Cavity Rydberg Blockade
5.5.1 Conditional π Phase Shift
We now consider cavity Rydberg blockade. Reflecting one target photon while a control
excitation is stored inside the cavity is expected to induce a π phase shift on the |HV 〉
component of the two-photon output state. To verify this, we prepare the input state |RV 〉
and measure the phase of the control output photons, postselecting upon the detection of
a single target photon in state |V 〉. We find φ = −0.42(4)π.7 This value is consistent with
a conditional π phase shift, for which we would expect φ = −π/2.

6Note that this delay does not set a fundamental limit to the gate fidelity. When using a long-lived
quantum memory instead of the delay fiber, one would obtain better gate performance for longer pulses,
which would make the fractional delay much smaller and less of an issue for the fidelity. Presently, the
gate fidelity is dominantly limited by other effects.

7If we perform an analogous measurement on the target photon by preparing |HR〉 and postselecting
upon detection of a single control photon in state |H〉, we find φ = −0.52(3)π.
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5.5.2 Conditional Loss
Apart from inducing a conditional π phase shift, reflecting one target photon during the
dark time increases the loss probability of the two photons. For a perfect superatom
geometry, we would expect that this increase is solely due to a reduction of the target
cavity reflectivity from |R|2 = 90% to |Rb|2 = 83%, which is predicted by Eq. (2.80) for
our measured cooperativity of C = 21. Together with the measured ηsr = 39% we would
expect a two-photon survival probability of 32%. However, we measure a significantly
lower value of 17(2)%.
This discrepancy may be a consequence of an imperfect superatom geometry. As

discussed in Sec. 2.5.3, ηsr is reduced to ηsr,t in this situation, see Eq. (2.65). In addition,
also |Rb|2 is reduced because the distance between the stored Rydberg excitation and some
atoms is larger than the blockade radius, such that Eq. (2.80) does not hold anymore.
However, measuring ηsr,t and |Rb|2 separately is nontrivial. As ηsr,t is by definition
postselected upon successful reflection of a target photon, see Sec. 2.5.3, one would need
to infer it from a coincidence rate. To this end, one would need to obtain |Rb|2 from
an independent measurement. However, when aiming at measuring |Rb|2, we do not
use a single-photon source for the control photon and suffer from an imperfect storage
efficiency. Postselecting data upon detection of a retrieved control photon would not solve
this problem because then we would measure the same coincidence rate as above. Hence,
the contributions of ηsr,t and |Rb|2 to the observed conditional loss are presently unknown.
We stress that conditional loss does not set a fundamental limit to the gate efficiency.

To understand this, we once more assume a perfect superatom geometry, which implies
that ηsr,t = ηsr and that Rb is given by Eqs. (2.80) and (2.81). In this situation, |Rb| can
become arbitrarily close to unity by choosing large enough C. As discussed at the end of
Sec. 2.7, a high-efficiency gate is possible at large C if a long coherence time 1/γrg can be
achieved.

5.5.3 Blockade Radius
To obtain an estimate for the blockade radius in our experiment using Eq. (2.55), we require
a value for γF . In practice, determining γF is not easy. We temporarily assume that γrg and
γF are both dominated by electric field noise. Hence, one naively expects γF = |αγ′−αr′

αr
|γrg,

where the static electric polarizabilities are (αr′ ,αr,αγ′) = (0.15,0.20,1.9)× 1012 a.u. for
the states (|r′〉,|r〉,|γ′〉), see Sec. 2.2.2. Here, one atomic unit is 1.649× 10−41 J(m/V)2 and
we neglected the static ground state polarizability of 319 a.u. Using γrg from the fit to the
data in Fig. 5.2, we obtain 1/γF = 25(6) ns and Rb = 7 µm. Really, γrg is not dominated
by electric field noise because repeating the measurement of Fig. 5.2 at approximately zero
electric field, so that the sensitivity to electric field fluctuations is much reduced, yields
no big improvement regarding γrg. However, the value of γF extracted from the above
estimate is so large that it seems unlikely that other mechanisms produce a larger value of
γF . Hence, we believe that 1/γF = 25(6) ns and Rb = 7 µm are worst-case estimates.
The measured two-photon survival probability, see Sec. 5.5.2, suggests that a perfect

superatom geometry is not a terribly good assumption. Indeed, the RMS ensemble radii
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(σx, σy, σz) = (3.3, 4.5, 1.7) µm found in Sec. 4.3.2 are smaller but not much smaller than
our estimate for the Blockade radius Rb = 7 µm.
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Chapter 6

Quantum-Logic Gate between Optical
Photons
This chapter presents the central results of this thesis, namely experimental results on an
optical CNOT gate with an average efficiency above 40%. Some contents of this chapter
have been published in Ref. [143]. Sec. 6.1 presents truth tables, which contain classical
probabilities of obtaining different output states for a certain input state. Subsequently,
we study the non-classical phenomenon of entanglement generation in Sec. 6.2. Sec.
6.3 shows how an electrically tuned Förster resonance is used to maximize the gate
fidelity. A complete characterization of the gate operation is provided in Sec. 6.4 using
quantum process tomography. As the high gate efficiency is an outstanding feature of
this implementation, an extensive discussion of this topic is presented in Sec. 6.5. Finally,
an extension of the scheme to a CNOT gate with multiple target qubits leads to the
production of Greenberger-Horne-Zeilinger (GHZ) states of up to 5 photons in Sec. 6.6.

Input
DH

AH
DV

AV OutputDH
AH

DV
AV

CNOT
(b)

0.0

0.5

1.0
P

Input
HD

HA
VD

VA OutputHD
HA

VD
VA

CNOT
(c)

0.0

0.5

1.0
P

Input
HH

HV
VH

VV OutputHH
HV

VH
VV

CPHASE
(a)

0.0

0.5

1.0
P

Figure 6.1: Truth tables. (a) Postselected truth table in the controlled phase
(CPHASE) basis. The average fidelity is 99.4(4)%. (b) Postselected truth table in
a CNOT basis. The average fidelity is 87(1)%. (c) Postselected truth table in an
alternative CNOT basis. The average fidelity is 86(2)%.
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Figure 6.2: Bell state tomography. (a,c,e,g) Real and (b,d,f,h) imaginary parts
of the reconstructed postselected output density matrices for the input states (a,b)
|DD〉, (c,d) |DA〉, (e,f) |AD〉, and (g,h) |AA〉. Ideally the output states would be
the four orthogonal Bell states |Ψ+〉, |Φ+〉, |Ψ−〉, and |Φ−〉 of Eq. (6.1).

6.1 Truth Tables
Fig. 6.1 shows postselected truth tables measured in three different bases. To measure
these data, one of the indicated states is used as an input, and the measured probabilities
of obtaining the indicated output states in a measurement are displayed. The average
fidelity of each truth table is the arithmetic mean of the four labeled probabilities. For the
data presented here and in the following sections, we discard the leakage counts during
the storage interval between 0 µs and 1 µs in Fig. 5.4. Apart from this, we always include
the full temporal output pulse shapes in our data analysis.
The postselected CPHASE truth table in Fig. 6.1 (a) is interesting because it is very

close to ideal, thus excluding a variety of otherwise possible sources of experimental
imperfections. This insight will be useful below. This is expected from the setup because
photons do not jump from one rail to the other. Hence, deviations from a perfect CPHASE
truth table come mostly from imperfections in PBSs and waveplates. The CNOT truth
tables show the conditional π phase shift associated with cavity Rydberg blockade. For the
input states in Fig. 6.1 (b), the phase shift manifests itself as a conditional flip |D〉 ↔ |A〉
of the control polarization if the target photon is in state |V 〉. An analogous flip can be
observed on the target polarization in (c) if the control photon is in state |H〉.

6.2 Bell-State Generation
Generating an entangled output state from a separable input state is an important
capability of a CNOT gate. Fig. 6.2 shows the postselected output density matrices
obtained in quantum state tomography [104] for the input states (a,b) |DD〉, (c,d) |DA〉,
(e,f) |AD〉, and (g,h) |AA〉. From these input states, an ideal gate would produce the four
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Figure 6.3: Electrically tuned Förster resonance. For |DD〉 input, the state fidelity
with the ideal output (|HA〉+ |V D〉) /

√
2 obtained from quantum state tomography

is shown for different electric field values. The frequencies of the two coupling lasers
were reoptimized for each datapoint to compensate for the changed Stark shifts of
the addressed Rydberg states. A maximum of the state fidelity is observed near an
electric field of 0.73 V

cm , which is the expected position of the Förster resonance.

orthogonal Bell states

|DD〉 7→ |Ψ+〉 = 1√
2 (|HA〉+ |V D〉)

|DA〉 7→ |Φ+〉 = 1√
2 (|HD〉+ |V A〉)

|AD〉 7→ |Ψ−〉 = 1√
2 (|HA〉 − |V D〉)

|AA〉 7→ |Φ−〉 = 1√
2 (|HD〉 − |V A〉) .

(6.1)

From the data presented in Fig. 6.2, we calculate the corresponding Bell-state fidelity
according to Eq. (2.68). For the input states |DD〉, |DA〉, |AD〉, and |AA〉, we find
F = 79(2)%, F = 82(2)%, F = 81(2)%, and F = 78(3)%, respectively. The fact that
these fidelities exceed 50% amounts to witnessing two-qubit entanglement.

6.3 Electric Field and Förster Resonance
To enhance the Rydberg-Rydberg interaction with the electrically tuned Förster resonance
described in Sec. 2.2.2, we apply voltages of −2.43 V, −33.4 V, and −31.1 V to the two bar
electrodes, the pin electrode 1, and the pin electrode 4 in Fig. 3.10. All other electrodes
are held at 0 V. According to Eqs. (3.10) and (3.11), this results in an electric field vector
of E = (0.2, 0, 0.7) V

cm , the magnitude of which is 0.73 V
cm in accordance with Eq. (2.18).

By varying the electrode voltages, we verified that the maximum entangling gate fidelity
is indeed obtained at this electric field, as shown in Fig. 6.3.
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Figure 6.4: Quantum process tomography. Real and imaginary parts of the elements
of the postselected 16×16 process matrix χps. The basis for the matrix representation
is chosen such that for the ideal gate, one matrix element would equal unity and all
others would vanish. The postselected process fidelity is 81(2)%.

6.4 Quantum Process Tomography
Instead of characterizing the output state for only a few selected input states, we now
fully analyze the performance using quantum process tomography [104, 105, 113, 123].
The latter gives a complete characterization of the quantum process, i.e. it yields a map E
from the 4× 4 density matrix ρin at the input to the 4× 4 density matrix ρout = E(ρin) at
the output. The map E is assumed to be linear. Hence, to characterize E , it suffices to
experimentally determine ρout using quantum state tomography for a basis of 16 matrices
ρin.
The thus reconstructed map E can be written in a chi-matrix representation as [104]

E(ρ) =
16∑

i,j=1
AiρA

†
jχi,j, (6.2)

where the 4× 4 matrices Ai are chosen at will to form a basis A of operators. The complex
expansion coefficients χi,j form the 16 × 16 process matrix χ [42]. Of course, the χi,j
depend on the choice of the basis A. From the experimental data for a basis of 16 matrices
ρin, we calculate a linear, unbiased estimator for χ by inverting a linear system [104],
see also Ref. [143]. Once χ has been determined, ρout = E(ρin) can be predicted for an
arbitrary ρin using Eq. (6.2).
Possible loss of photons is represented by tr(ρout) ≤ 1, i.e. E is typically not trace

preserving [104]. If the basis A was orthonormal, i.e. if tr(A†iAj) = δi,j, then one would
obtain tr(χ) = 4η̄ with the average efficiency η̄ of Eq. (6.4). We normalize the process
matrix upon postselection to correct its trace, i.e. we consider the postselected process
matrix χps = χ/η̄.
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We choose Ai = UBi, where the unitary 4× 4 matrix

U =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 (6.3)

describes the operation of the ideal two-qubit gate in the (|HH〉, |HV 〉, |V H〉, |V V 〉) basis
and where the 4 × 4 matrices Bi are the 16 tensor products which can be formed from
the single-qubit Pauli matrices I, X, Y , and Z in the (|H〉,|V 〉) basis, i.e. B1 = I ⊗ I,
B2 = I ⊗X, B3 = I ⊗ Y , ..., B16 = Z ⊗ Z. The 1

2Ai form an orthonormal basis. Hence
tr(χps) = 1. This choice of the Ai is beneficial because for the ideal process matrix, it
yields the simple expression χid

i,j = δ1,iδ1,j.
The elements of χps are shown in Fig. 6.4 with the Bi used as labels. A simple model,

which includes only the four measured efficiencies of the CPHASE basis states and two
single-qubit visibilities Vc = 86(4)% and Vt = 78(3)% for the control and the target qubit
agrees fairly well with the measured χps, see Ref. [143].
Now, we turn to the process fidelity. If the basis A was orthonormal, then the process

fidelity would be [42] Fpro = 1
16tr(χidχ). Hence, Fpro = tr(χidχ) for the basis A chosen

here. The postselected version thereof is the postselected process fidelity F ps
pro = tr(χidχps).

Using that E is typically a completely positive map [104], one can show that this yields
F ps

pro ≤ 1. Using χid
i,j = δ1,iδ1,j, one obtains F ps

pro = χps
1,1 [105, 123]. Hence, Fig. 6.4 yields

F ps
pro = 81(2)%. This is clearly above the classical limit of 50%. Multiplying F ps

pro with
the average efficiency η̄ of Eq. (6.4) yields a process fidelity without postselection of
Fpro = 34(1)%, which is much better than in all previous measurements of CNOT gates
with optical photons, in which Fpro never exceeded 11%.

We note that it is not a coincidence that the postselected Bell state fidelities in the
previous section equal the postselected process fidelity within the uncertainties. This is
expected because the CPHASE truth table of our gate is to a very good approximation
ideal, as shown in Fig. 6.1 (a). For a mathematical proof of this equivalence, see Ref. [143].

6.5 Efficiency
The efficiency of the gate is the probability that no photon is lost inside the gate, if
one control and one target photon impinge onto the gate. The gate is the part of the
setup which is shown in Fig. 2.3. The efficiency also includes optical elements like lenses
and waveplates which are not drawn in Fig. 2.3 for simplicity, see Fig. 3.13. The only
components which are not included in the efficiency are the light source and the detection
setup. This makes sense because neither light sources nor detectors need to be cascaded
in a sequence of gates.

The efficiency η depends on the input density matrix ρin and can be written as η(ρin) =
tr[E(ρin)]. For comparing different experiments, one can introduce various figures of merit,
which attempt to express the most relevant information about the function η in just one
number. Obvious choices include the maximum, the minimum, and various averages. We
define the average efficiency η̄ =

´
dψη(|ψ〉〈ψ|), where the integral is over the uniform
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(Haar) measure [154] of all normalized input state vectors, similar to the definition of the
average fidelity [42]. For any orthonormal basis of state vectors |vi〉, the average efficiency
can be rewritten as [143]

η̄ = 1
4

4∑
i=1

η(|vi〉〈vi|). (6.4)

Instead of considering only η̄, one can characterize the full function η for all ρin. As the
map from ρin to η(ρin) is a linear form, it can be written as η(ρin) = tr(Θ†ρin) with a 4× 4
matrix Θ, which we call the efficiency matrix. As η(ρin) is real for all Hermitian ρin, Θ
is Hermitian. For a full characterization of the efficiency function it suffices to measure
η(ρin) for a basis of 16 input density matrices ρin. From this, Θ can be reconstructed
by inverting a linear system. If a process matrix has already been determined, one finds
Θ = ∑16

i,j=1A
†
jAiχi,j [143].

In our experiment, the postselected CPHASE truth table in Fig. 6.1 (a) is to a good
approximation ideal. Hence, the matrix representation of Θ in the CPHASE basis is to
a good approximation diagonal [143]. To give the full information about Θ, it therefore
suffices to quote only these diagonal elements, i.e. the efficiencies obtained if one of the
CPHASE basis states is used as an input state. These are measured to be

ηHH = 35.1(7)%, ηHV = 15.7(1.4)%, ηV H = 61.1(1)%, ηV V = 54.9(1.0)%. (6.5)

According to Eq. (6.4), the arithmetic mean of these four efficiencies is the average efficiency
η̄ = 41.7(5)%.
These values are obtained when choosing the experimental parameters to maximize

η̄. If, instead, one was interested in maximizing the minimum eigenvalue ηmin of Θ, one
would have to choose different parameters. We find e.g. ηmin = 24.4(2.2)% for a target
coupling Rabi frequency of 20 MHz and an atom number of 500, resulting in a collective
cooperativity of 40. At these parameters, we obtain

ηHH = 38.2(0.7)%, ηHV = 24.4(2.2)%, ηV H = 61.1(1)%, ηV V = 34.4(0.5)% (6.6)

and η̄ = 39.5(6)% along with a Bell-state fidelity of 73(1)% for the output state generated
from the input state |DD〉.

We now discuss how ηHH , ηHV , ηV H , and ηV V were measured. First, we note that ηV H
refers to a situation in which both photons are in their bypass rails. Hence, this number is
independent of the performance of the atom-cavity system and can be expressed as

ηV H = Tc,V Tt,H , (6.7)

where Tc,V is the transmission through the control bypass path and Tt,H is the transmission
through the target bypass path. Using a continuous optical input power of about 1 mW, we
measure Tc,V = 0.630(1) and Tt,H = 0.970(1) with a power meter (Thorlabs, PM160). This
yields the above value for ηV H . Along with this, we measure the on-resonance transmission
through the control (target) cavity path in the absence of atoms Tc,H = 0.900(1) (Tt,V =
0.910(1)), which will be useful below.
The other three efficiencies ηHH , ηHV , and ηV V depend on the performance of the

atom-cavity system. Therefore, measurements at the single-photon level are required. One
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might consider measuring the average number of photons per pulse before the input and
after the output of the gate using a single-photon detector. However, this method would
be prone to systematic errors in the calibration of the detection efficiency, which typically
depends critically on the alignment of the incoming beam with respect to the detector.
Hence, we use a method that does not require such a calibration. The basic idea is that if
one considers the ratio of two count rates that were measured with the same single-photon
detector without changing the alignment, then the detection efficiency cancels. Following
this idea, we express the remaining efficiencies as

ηHH = Nc,H

N ref
c,H

Tc,HTt,H , (6.8)

ηV V = Nt,V

N ref
t,V

Tc,V Tt,V , (6.9)

and
ηHV = CHV

Cref
HV

Tc,HTt,V . (6.10)

Here, Nc,H (N ref
c,H) is the average number of detected control photons in state |H〉 when

running the gate protocol without a target photon in the presence (absence) of a prepared
atomic ensemble, excluding (including) counts during the storage time interval. Similarly,
Nt,V (N ref

t,V ) is the average number of detected target photons in state |V 〉 when running
the gate protocol without a control photon in the presence (absence) of a prepared atomic
ensemble. Moreover, CHV (Cref

HV ) is the average number of detected coincidence events with
exactly one control photon in state |H〉 and exactly one target photon in state |V 〉, when
running the gate protocol with both photons at the input and in the presence (absence) of a
prepared atomic ensemble. To obtain a smaller statistical uncertainty for the denominator
of Eq. (6.10), we use that the counting statistics in the absence of atoms follows a Poissonian
distribution1 and substitute Cref

HV = N ref
c,H exp (−N ref

c,H)N ref
t,V exp (−N ref

t,V ).
Our data acquisition procedure is such that we interleave cycles with and without

preparation of an atomic ensemble. To obtain the numbers in Eq. (6.5), we evaluate a
part of the data set shown in Figs. 6.2 and 6.4, in which both photons are initially in
50:50 superpositions of |H〉 and |V 〉 and in which both tomography setups were set to
the H/V basis.2 This has the advantage that the average photon number in the cavity
path is only half as large as at the gate input, reducing the probability for unwanted
multi-photon events.3 We measure Nc,H = 0.0182(2), N ref

c,H = 0.0453(8), Nt,V = 0.0421(3),
N ref
t,V = 0.0439(7), and CHV = 3.5(3)× 10−4, which yield Eq. (6.5).
1This assumption is justified because our input light pulses are coherent states.
2The evaluated input states are |DD〉, |DA〉, |AD〉, |AA〉, |RR〉, |RD〉, and |DD〉. The astute reader
may notice that this implies that the measured Nc,H (Nt,V ) contains an unwanted contribution due to
an occasionally present target (control) photon inside the cavity path, which results in a systematic
underestimation of the efficiency ηHH (ηV V ). However, this effect is small due to the low input photon
number.

3An evaluation of a different part of the same data set, using only the input state |HV 〉, yields a slightly
smaller value of ηHV because of a higher probability of multi-photon events in the atom-cavity system.
As the goal of our experiment is to determine the performance which the gate would have if the input
pulses were single-photon Fock states, the value quoted in Eq. (6.5) is much more relevant.
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Figure 6.5: Multi-photon entanglement. To verify genuine N -photon entanglement,
we study parity oscillations. To this end, we measure all photons in the same
polarization basis (|bϑ,+〉,|bϑ,−〉) with |bϑ,±〉 = (|H〉 ± eiϑ|V 〉)/

√
2, where ϑ is real.

The measurement outcomes yield the generalized Stokes parameters S(N)
ϑ = 〈M⊗Nϑ 〉,

where Mϑ = |bϑ,+〉〈bϑ,+| − |bϑ,−〉〈bϑ,−| is the single-qubit operator describing the
projection of the Stokes vector along a suitable direction. Dots show measured values
of S(N)

ϑ for 3 ≤ N ≤ 6 as a function of ϑ. The lines are fits according to Eq. (6.12).

Experimentally, two-photon coincidences are detected at an average rate of 560 s−1 per
incoming photon pair. This number is factors of 520 and 1.3 × 104 larger than in Refs.
[53] and [151], respectively, thus making much more demanding experiments possible in a
realistic data acquisition time.

6.6 Production of GHZ States
The two-photon gate implemented here is easily extended to a multiple-target CNOT gate
[104], thus allowing us to directly produce multi-photon entanglement. This scalability
provided by our scheme is advantageous because fewer resources are required compared
to cases where several two-qubit gates are cascaded. In particular, an N -photon GHZ
state |ΨN〉 = (|H〉⊗N + |V 〉⊗N)/

√
2 can be generated by sending one control photon

and N − 1 target photons onto the gate in an input state with polarization |D〉⊗N . We
choose to assemble all target photons in one pulse. The target pulse lasts long enough
that interactions among target photons are negligible. Hence, each target photon simply
acquires a π phase shift conditioned on the presence of the same control photon. As a result,
the input state |D〉⊗N is mapped onto the output state (|H〉|A〉⊗(N−1) + |V 〉|D〉⊗(N−1))/

√
2.

A simple single-qubit unitary applied to all outgoing target photons converts this into the
above GHZ state |ΨN〉.

To detect an N -photon GHZ state, we again use input pulses with a Poissonian photon
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number distribution. But this time, we postselect upon the detection of exactly one control
and exactly N − 1 target photons. The measurements for N ∈ {3,4,5} use n̄c = 0.31 and
n̄t = 0.41. As a matter of fact, all N ≤ 5 data are extracted from the same raw data by
postselecting upon different numbers of detected photons. The measurement for N = 6 is
from a different data set, using n̄c = 0.28 and n̄t = 0.88.

To verify the N -photon entanglement, we study parity oscillations [99, 127, 164]. From
the experimental data in Fig. 6.5, we calculate the coherence

CN = 1
N

N−1∑
k=0

(−1)kS(N)
kπ/N (6.11)

and obtain C3 = 47.5(6)%, C4 = 39.2(2)%, C5 = 37(8)%, and C6 = 21(4)%. For simplicity,
we fit

S
(N)
ϑ = p cos(Nϑ) (6.12)

with a free fit parameter p ∈ [0,1] to the data in Fig. 6.5. This simple curve is expected, e.g.
if ρout = p|ΨN〉〈ΨN |+ (1− p)I, where I is the identity matrix. As an alternative to the
direct calculation of CN with Eq. (6.11), one can insert the fit curve into this calculation.
This yields CN = p and makes use of all the available data instead of only the points for
ϑ = πk/N with k ∈ {0,1,2,...,N − 1}. We used this method only for processing the N = 6
data.
Our data clearly rule out a completely incoherent mixture for all these values of N ,

because that would imply CN = 0. In addition, we measure the populations of the states
|H〉⊗N and |V 〉⊗N and use the results to calculate

PN =
〈
(|H〉〈H|)⊗N + (|V 〉〈V |)⊗N

〉
. (6.13)

Combining these results, we determine the postselected state fidelity [99, 127, 164]

FN = 〈ΨN |ρout|ΨN〉 = 1
2(PN + CN) (6.14)

and obtain F3 = 62.3(4)%, F4 = 54.6(1.4)%, F5 = 54.8(5.3)%, and F6 = 35.9(3.7)%.
FN > 50% implies genuine N -photon entanglement [99, 127, 164]. Assuming that the
statistical uncertainties quoted here correspond to a Gaussian distribution, the p-value,
i.e. the probability of FN < 50%, is (10−207, 5× 10−4, 0.18) for N = (3,4,5). A simple
model, taking efficiencies and single-qubit visibilities into account agrees well with the
experimental data, see Ref. [143].
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Conclusion and Outlook
In this work, an optical CNOT gate based on cavity Rydberg EIT was realized and
characterized. For the first time, a quantum nonlinear system outperforms the efficiency
reached in CNOT gates based on LOQC experiments. However, further improvements to
the efficiency are required before practical applications come into reach.

The current performance is limited by the short coherence time of less than 1 µs observed
while the EIT coupling light is on. If this issue can be resolved and if the coherence time
can be extended to the value of 7 µs observed during the dark time between storage and
retrieval, this would be a big step forward. Even longer coherence times around 30 µs are
possible if a repulsive dipole trap is used or if the trap is turned off completely during
the experiment [133]. The ultimate limit is the Rydberg-state lifetime. With a longer
coherence time, a more favorable parameter regime becomes available that allows for much
higher gate performance. If one additionally replaces the delay fiber by a storage device
with lower loss, such as a high-efficiency quantum memory [62], the theory model developed
in Chapter 2 suggests that an efficiency above 90% might be feasible in this situation.
Beyond that, the Rydberg-state lifetime may be extended in a cryogenic environment,
in which blackbody-induced decay can be suppressed. Moreover, even the small loss
induced by the cavity itself may be reduced by employing state-of-the-art cavity mirrors,
as discussed in Sec. 3.2.2.

The apparatus developed in this work is not limited to photon-photon gates, but is quite
generally useful as an efficient light-matter interface. In the superatom regime, the atomic
ensemble can be regarded as a quantum two-level system that can be coherently prepared
and manipulated, as demonstrated in Ref. [160]. The coherence time of this two-level
system may be extended beyond the Rydberg lifetime by using a Rydberg-dressed atomic
ground state, similar to the proposal in Ref. [101]. In this regime, the system may be used
as an efficient quantum network node.
Combining our system with a high-brightness single-photon source may enable the

production of GHZ states beyond 5 photons. High-fidelity GHZ states can, for instance,
be useful for quantum metrology. Similarly, our gate could fuse several one-dimensional
cluster states, for instance produced with the scheme of Ref. [147], into a two-dimensional
cluster state. Such a state would be a precious resource for measurement based quantum
computing.

Finally, other types of nonclassical states of light may be produced with our system. An
intriguing option are optical Schrödinger cat states, which have been proposed as resources
for optical quantum computing. If cat states with |α| > 2.5 can be realized, deterministic
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quantum computing using linear optics and photon detection becomes possible [116].
Previous experiments with optical photons stayed well below this threshold [52, 144]. As
losses induce decoherence on optical cat states, a high efficiency setup is crucial. Our
experimental setup may offer an efficient method for the production of optical cats, using
a protocol similar to Ref. [52].
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Appendix A

Calculation of Interaction Matrix
Elements
We want to calculate matrix elements of the dipole-dipole operator. A similar calculation
is also shown in Appendix B of Ref. [8]. However, the result deviates from Ref. [163] by
a factor of 2. To check which result is correct, the calculation is repeated here with a
slightly different approach, which is, in a way, more direct and does not rely on 6-j and
9-j symbols. The results of our calculation agree with Ref. [8].
It is instructive to rewrite Eq. (2.10) in Cartesian coordinates1

Vdd = e2

4πε0R3 (x1x2 + y1y2 − 2z1z2). (A.1)

This can be expressed in terms of spherical harmonics Y m`
` (θ, φ)

Vdd = e2

4πε0R3 r1r2

(
−4π

3

)
(Y 1

1 Y
−1

1 + Y −1
1 Y 1

1 + 2Y 0
1 Y

0
1 ). (A.2)

Here, Y m1
1 Y m2

1 is shorthand for Y m1
1 (θ1, φ1)Y m2

1 (θ2, φ2). Matrix elements between atom-
pair states are evaluated using the position representation of a single-atom Rydberg state

〈x|n,`,s,j,mj〉 = un,`,j(r)
∑
m`,ms

C
j,mj
`,m`,s,ms

Y m`
` (θ, φ)|s,ms〉, (A.3)

where un,`,j(r) is the radial wave function,2 the spin part |s,ms〉 is kept in representation-free
form, and the

C
j,mj
`,m`,s,ms

= 〈`,m`,s,ms| `,s,j,mj〉 (A.4)
are Clebsch-Gordan coefficients. This results in a separation of the matrix elements into a
radial and an angular part

〈γ′,m′j1,m′j2|Vdd|γ,mj1,mj2〉 = − e2

4πε0R3 ·R
n1,`1,j1
n′1,`

′
1,j
′
1
·Rn2,`2,j2

n′2,`
′
2,j
′
2
·D · δs′1,s1δs′2,s2 (A.5)

1Note that the coordinates for the Rydberg electron of atom 1 and 2 refer to two different coordinate
systems, each of which has its origin at the respective atomic core.

2The index j represents the fact that there is spin-orbit coupling which leads to j dependent radial
wave functions and energies, i.e. fine structure. Calculating un,`,j(r) is possible, for instance, with the
method described in Chapter 2.2.2 of Ref. [8].
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with the single-atom radial matrix elements

Rn,`,j
n′,`′,j′ =

∞̂

0

u∗n′`′j′(r)run,`,j(r)r2dr (A.6)

and the angular part

D =
∑

m′
`1,m`1,m

′
`2,m`2,ms1,ms2

(
C
j′1,m

′
j1

`′1,m
′
`1,s
′
1,ms1

C
j′2,m

′
j2

`′2,m
′
`2,s
′
2,ms2

)∗
·
(
W

(1)
1 W

(2)
−1 +W

(1)
−1W

(2)
1 + 2W (1)

0 W
(2)
0

)
· Cj1,mj1

`1,m`1,s1,ms1
C
j2,mj2
`2,m`2,s2,ms2

,

(A.7)

where the sums over m′s1 and m′s2 have already been collapsed using

〈s′,m′s| s,ms〉 = δs′,sδm′s,ms , (A.8)

the superscript k ofW (k)
q denotes the index of the atom, and we abbreviated the single-atom

solid-angle integral

Wq =
˛
dΩ
√

4π
3

(
Y
m′`
`′

)∗
Y q

1 Y
m`
` . (A.9)

Specifically for ` = m` = 0, we use that the spherical harmonics are orthonormal and
obtain

Wq = 1√
3
δ`′,1δm′

`
,q. (A.10)

Matrix elements in a coupled basis are obtained from

〈γ′, J ′,M ′|Vdd|γ, J,M〉 = − e2

4πε0R3 ·R
n1,`1,j1
n′1,`

′
1,j
′
1
·Rn2,`2,j2

n′2,`
′
2,j
′
2
· D̃ · δs′1,s1δs′2,s2 (A.11)

with
D̃ =

∑
m′j1,mj1,m

′
j2,mj2

(
CJ ′,M ′

j′1,m
′
j1,j
′
2,m
′
j2

)∗
·D · CJ,M

j1,mj1,j2,mj2 . (A.12)
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Appendix B

Model of Cavity Rydberg Blockade

B.1 Hamiltonian
We consider Rydberg EIT similar to Sec. 2.3, but with the important difference that there
is another atom nearby which is prepared in |r′〉. Hence, we have a two-atom Hamiltonian
that includes atom-light coupling between pair states |gr′〉, |er′〉, and |rr′〉, as well as an
atom-atom interaction given by Vdd in Eq. (2.10), which couples |rr′〉 to other atom-pair
states.

In our experiment, the atoms have a random spatial distribution. Hence, the internuclear
axis for a given atom pair may include some angle ζ with the wave vector ks of the EIT
signal light. The polarizations of the light fields in our experiment are chosen such that
the atom-pair state |rr′〉 would correspond to the quantum number M = −1, if the z-axis
was chosen along ks.1 The connection between the state |rr′〉 and the states |γ,J,M〉
of Sec. 2.2.2 with the z-axis chosen along the internuclear axis is made by rotating the
coordinate system by the angle ζ. This rotation is expressed by a Wigner D-matrix, see
e.g. Eq. (2.45) in Ref. [8], yielding

|rr′〉 = cos2 ζ

2 |γ, 1,− 1〉+ sin ζ√
2
|γ, 1,0〉+ sin2 ζ

2 |γ, 1,1〉. (B.1)

To obtain a more compact notation, we rewrite Eq. (B.1) as

|rr′〉 = dc|γ, 1, c〉+ d0|γ, 1, 0〉, d0 = sin ζ√
2
, dc =

√
1− |d0|2, (B.2)

where we abbreviated the normalized pair state

|γ, 1, c〉 = c−1|γ, 1,−1〉+ c1|γ, 1, 1〉, c−1 =
cos2 ζ

2
dc

, c1 =
sin2 ζ

2
dc

. (B.3)

Similarly, we introduce the normalized pair state with primed quantum numbers

|γ′, 1, c〉 = c−1|γ′,1,− 1〉+ c1|γ′,1,1〉 (B.4)
1We temporarily choose the z-axis along ks. We prepare the ensemble in |52S1/2,F = 2,mF = −2〉 and
use a two-photon transition with σ− polarized signal light and σ+ polarized coupling light to address
the two Rydberg states via the excited state |52P3/2,F

′ = 3,mF ′ = −3〉. Hence, we can only address the
stretched spin states |n2S1/2,F = 2,mF = −2〉 which are equivalent to |n2S1/2,mj = −1/2,mi = −3/2〉
in fine-structure notation, where mi is the Zeeman quantum number of the nuclear spin. For an atom
pair, mj1 = mj2 = − 1

2 implies M = −1.
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Appendix B Model of Cavity Rydberg Blockade

with the same coefficients c1 and c−1. We further abbreviate the pair states
|rc〉 = |γ, 1, c〉, |r0〉 = |γ, 1, 0〉, |fc〉 = |γ′, 1, c〉, |f0〉 = |γ′, 1, 0〉 (B.5)

and obtain
|rr′〉 = dc|rc〉+ d0|r0〉. (B.6)

We now drop the r′ from the notation of |gr′〉, |er′〉, and |rr′〉 for brevity. Using the
atom-light interaction terms from Ref. [36] and the matrix elements of Vdd from Sec. 2.2.2,
we obtain the following two-atom Hamiltonian in the electric-dipole approximation

H =~ωge|e〉〈e|+ ~ωgr (|rc〉〈rc|+ |r0〉〈r0|) + ~ωgf (|fc〉〈fc|+ |f0〉〈f0|)

− 1
2
[
(E0,se

−iωt + c.c.)d∗ge|e〉〈g|+ (E0,coe
−iωcot + c.c.)d∗er|r〉〈e|+ H.c.

]
+ ~

2 (Ωfc|fc〉〈rc|+ Ωf0|f0〉〈r0|+ H.c.) .

(B.7)

The zero of energy is chosen as the energy of state |g〉. Hence, ~ωge is the energy of |e〉,
~ωgr = Eγ is the energy of |rc〉 and |r0〉, and ~ωgf = Eγ′ is the energy of |fc〉 and |f0〉.
dge (der) is the electric dipole matrix element of the signal (coupling) transition. The
atom-atom interaction Rabi frequencies are

Ωfc = − 2C3

~R3 , Ωf0 = −2Ωfc = 4C3

~R3 . (B.8)

For simplicity, we omitted an additional coupling term caused by the coupling light in Eq.
(B.7). We choose this approach because the goal of our calculation is to derive an analytic
expression for the blockade radius and we expect that this coupling term has a negligible
effect onto the blockade radius.2
2To see why an additional coupling exists, consider the orthogonal complement |r⊥〉 = d0|rc〉 − dc|r0〉 of
the state |rr′〉 in the two-dimensional space spanned by |rc〉 and |r0〉. Much like the coupling light
couples the state |rr′〉 to the state |er′〉, it couples the state |r⊥〉 to an atom-pair state |e⊥〉. The
state |e⊥〉 is somewhat similar to |er′〉 but can be entangled and can contain single-atom states which
involve Zeeman substates other than those in |er′〉. In principle, this coupling can become relevant
because the state |r⊥〉 can become populated by the dipole-dipole interaction if ζ 6= 0. When including
this coupling, then the |5P3/2〉 components of the state |e⊥〉 will undergo spontaneous emission into a
variety of Zeeman substates of the atomic ground state.

A naive calculation of the steady-state solution of this model would yield a poor spin polarization
in the atomic ground state. However, this is unrealistic because in the experiment, the number of
atoms in the ensemble is typically much larger than the number of photons in the input signal light
pulse. This shows that there is a separation of time scales. The experiment is deliberately kept much
shorter than the time scale on which the spin polarization of the atomic ground state is lost. But the
experiment lasts long enough that the states involved in EIT and Rydberg blockade come to their
stationary state. Hence, we obtain a more realistic model for our experiment by calculating a steady
state when replacing the population decay of state |e⊥〉 by a dephasing of state |e⊥〉. Technically, this
is achieved by dropping the corresponding decay of diagonal elements of the density matrix from the
model, while keeping the decay of off-diagonal elements.
For the parameters of our experiment, the resulting dephasing of state |e⊥〉 has little effect. To

illustrate this, we assume that the coherent coupling between states |r⊥〉 and |e⊥〉 is slower than the
dephasing of state |e⊥〉. Hence, one can adiabatically eliminate state |e⊥〉. Effectively, this means that
the coupling to state |e⊥〉 disappears from the model and is replaced by an increase in the dephasing
rate of state |r⊥〉, which in essence corresponds to an increase in the dephasing rates of states |rc〉 and
|r0〉. In Sec. B.4.2, it will turn out that the dephasing rates of states |rc〉 and |r0〉 have little effect on
the blockade physics.
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B.2 Dynamic Polarizability

In an interaction picture and using the rotating-wave approximation the Hamiltonian
becomes

Hint =− ~∆s|e〉〈e| − ~∆gr (|rc〉〈rc|+ |r0〉〈r0|)− ~∆gf (|fc〉〈fc|+ |f0〉〈f0|)

+ ~
2 (Ωs|e〉〈g|+ Ωco|r〉〈e|+ Ωfc|fc〉〈rc|+ Ωf0|f0〉〈r0|+ H.c.)

(B.9)

with the two-photon detuning ∆gr = ω + ωco − ωgr = ∆s + ∆co and the sum of the
two-photon detuning and the Förster defect ∆gf = ω + ωco − ωgf = ∆gr + ∆F , where
∆F = ∆EF/~.

B.2 Dynamic Polarizability
The dynamics of the atomic density matrix ρ in the interaction picture is described by the
quantum master equation [36]

∂tρ = 1
i~

[Hint, ρ] +D(ρ). (B.10)

For an operator a, we abbreviate

La(ρ) = 2aρa† − a†aρ− ρa†a (B.11)

and assume a dissipator

D(ρ) = Γe
2 Lσ(ρ) + γrc

2 LPrc(ρ) + γr0
2 LPr0(ρ) + γfc

2 LPfc(ρ) + γf0

2 LPf0(ρ), (B.12)

where
σ = |g〉〈e|, Pk = |k〉〈k|, k ∈ {rc, r0, fc, f0}. (B.13)

σ annihilates an excitation on the signal transition. Hence, Lσ represents spontaneous
emission. Pk projects onto state |k〉. Hence, LPk represents dephasing. γk is a dephasing
rate.

We now calculate the steady-state solution of this quantum master equation in the limit
of weak signal drive

ε = |Ωs|
Γe
� 1. (B.14)

To this end, we use the ansatz

ρgg = 1 +O(ε2), ρjj = O(ε2), j ∈ {e,rc, r0, fc, f0} (B.15)

for the populations and

ρjg = O(ε), ρjk = O(ε2), j,k ∈ {e,rc, r0, fc, f0} (B.16)

for the off-diagonal elements. One can show that this ansatz is self-consistent. Neglecting
terms of order ε2 we find in the steady state

ρeg = −iΩs

Γe − 2i∆s +
∑

p∈{c,0}

|Ωcodp|2

γrp−2i∆gr+
|Ωfp|2

γfp−2i∆gf

. (B.17)
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Appendix B Model of Cavity Rydberg Blockade

In particular, ρer0 = ρerc = O(ε2) implies that the expectation value of the electric-dipole
moment reads 〈d〉 = ρegdgee

−iωt + c.c. + O(ε2). We rewrite this as 〈d〉 = 1
2d0e

−iωt + c.c.
with amplitude d0. Using the fact that ρeg is proportional to E0,s, we obtain d0 = αE0,s
with the complex dynamic polarizability

α = −2 |dge|2

~Ωs

ρeg. (B.18)

B.3 Atomic Transmission and Cavity Reflection
We now consider an ensemble of atoms. Let the stationary Rydberg excitation |r′〉 be
carried by the kth atom. Let αk` denote the polarizability of the `th atom. This means
that the Ωfp depend on the distance between the kth and the `th atom and that the dp
depend on the angle ζk` between ks and the internuclear axis connecting the kth and the
`th atom. Hence, we now write Ωk`,p and dk`,p instead of Ωfp and dp. Hence, for ` 6= k

αk` = α0
iΓe

Γe − 2i∆s +
∑

p∈{c,0}

|Ωcodk`,p|2

γrp−2i∆gr+
|Ωk`,p|2
γfp−2i∆gf

(B.19)

with α0 = 2 |dge|2 /~Γe. The kth atom, which is in the dark state |r′〉, however, does not
interact with the EIT signal light. Hence,

αkk = 0. (B.20)

We consider an ensemble of atoms with homogeneous density %, such that the number of
atoms in a given volume V is N = %V . The macroscopic polarization P is defined as the
dipole moment per volume [36]. Therefore, it has the property Pk = 1

2Pk,0e
−iωt + c.c. with

a complex coefficient Pk,0. Hence, Pk,0 = ε0χkE0,s with the complex dynamical electric
susceptibility

χk = %

ε0N

N∑
`=1

αk`. (B.21)

The atomic transmission is then

tk = exp
(
− dt

2N

N∑
`=1

αk`
iα0

)
. (B.22)

In analogy to Sec. 2.3, the cavity reflection coefficient is

Rk = −1 + 2β
1 + Ck − i∆c/κ

(B.23)

where
Ck = C

N

N∑
`=1

αk`
iα0

. (B.24)
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B.4 Blockade Radius

This expression holds as long as all the coupling constants |g`| are identical. If not, we
generalize the above result to

Ck = 1
κΓe/2

N∑
`=1
|g`|2

αk`
iα0

. (B.25)

Inserting Eq. (B.19), we obtain

Ck = 1
κ

N∑
`=1
` 6=k

2 |g`|2

Γe − 2i∆s +
∑

p∈{c,0}

|Ωcodk`,p|2

γrp−2i∆gr+
|Ωk`,p|2
γfp−2i∆gf

. (B.26)

As a simple crosscheck, we consider d0 = 0 and the van der Waals limit γfp � |∆gf |. We
obtain

Ck = 1
κ

N∑
`=1
6̀=k

|g`|2

Γe/2− i∆s + |Ωco|2
γrc/2−i(∆gr+∆k`)

(B.27)

with ∆k` = − |Ωk`,c|2 /4∆gf . Inserting this into our Eq. (B.23) yields an expression for
Rk which is identical to Eq. (2) in Ref. [22]. Using Eq. (B.8), we find

~∆k` ≈ −
C6

R6
kl

, C6 = |C3|2

~(∆F + ∆gr)
, (B.28)

where Rk` is the distance between the kth and the `th atom. If the Förster defect ∆F is
much larger than the two-photon detuning ∆gr, then the expression for C6 is consistent
with Eq. (2.40) in Ref. [8].

B.4 Blockade Radius
Based on the atom-pair property αk` from Eq. (B.19), we will now derive an expression for
the blockade radius. For simplicity, we assume γrc = 0 and two-photon resonance ∆gr = 0.
In a first attempt, we ignore the anisotropy of the dipole-dipole interaction. Technically,
this can be achieved by assuming d0 = 0 or by replacing the right-hand side of Eq. (2.20)
by −C3/R

3. We obtain
αk`
α2level

= 1
1 +

(
Rk`
Rb

)6
eiφ
, (B.29)

where we abbreviated the polarizability in the absence of EIT coupling light Ωco = 0

α2level = α0
iΓe

Γe − 2i∆s

, (B.30)

φ = arg(γfc − 2i∆F )− arg(Γe − 2i∆s), and Rb given by

Rb =
∣∣∣∣∣
( 2C3

~Ωco

)2 Γe − 2i∆s

γfc − 2i∆F

∣∣∣∣∣
1/6

(B.31)
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which is equivalent to Eq. (2.55) with γF = γfc. The quantity Rb denotes a typical radius
in the blockade problem. Hence, we refer to it as the blockade radius.

To relate this to the literature, we consider the van der Waals limit γfc � |∆F |. We use
C6 from Eq. (B.28) and use our above assumption γrg = 0 to obtain

Rb =
∣∣∣∣∣ 2C6

~Ω2
co

(Γe − 2i∆s)
∣∣∣∣∣
1/6

. (B.32)

This agrees with Ref. [47], which writes Ω = Ωco/2. For |∆s| � Γe Eq. (B.32) agrees with
Refs. [7, 111] and for |∆s| � Γe Eq. (B.32) agrees with Refs. [33, 151].

B.4.1 Anisotropy of the Dipole-Dipole Interaction
Next, we show that taking into account the anisotropy of the dipole-dipole interaction has
little effect on the blockade physics. We assume γf0 = γfc and find

αk`
α2level

= 1
1 + eiφ

R6
k`

R6
b

(|dk`,c|2 + 1
4 |dk`,0|2)

(B.33)

with Rb from Eq. (B.31). Because of |dk`,c|2 + |dk`,0|2 = 1 the sum in the denominator
of Eq. (B.33) is a weighted average over two terms. The anisotropy of the interaction is
expressed by the fact that the two averaged terms differ by a factor of 4. It is noteworthy
that the weighted average is nonzero for all values of the angle ζk`. In other words, the
interaction appearing in Eq. (B.33) has no nodal lines.
Calculating Ck involves averaging αk` over the index ` according to Eq. (B.25). The

result depends on the index k, the geometry of the atomic cloud, and the wave vector of
the signal light. Typically, however, the effect of the anisotropy of the interaction on Ck
is quite weak. In the one limiting case of the weighted average, |dk`,c|2 = 1 for all atom
pairs, we recover the previous result, Eq. (B.29); in the other limiting case, |dk`,c|2 = 0
for all atom pairs, again, we obtain Eq. (B.29), but now with Rb increased by a factor of
41/6 ≈ 1.26. A more typical scenario is some sort of an average between the two limiting
cases. Here, Rb will be larger than in Eq. (B.31) but by a factor even smaller than 1.26.
We conclude that the anisotropy has little effect on the blockade physics. Hence, we
neglect the anisotropy of the interaction throughout the rest of this work.

B.4.2 Dephasing of the Rydberg State
In deriving Eq. (B.29), we assumed that the dephasing rate of the Rydberg state γrc
vanishes. Now, we take this dephasing rate into account and show that it has little effect
on the blockade physics for the parameters of our experiment. Ignoring the anisotropy of
the interaction by considering |dk`,c|2 = 1, we obtain

αk`
α2level

=
(

1 + e−iα

G+ (Rb/Rk`)6e−iβ

)−1

, G =
∣∣∣∣∣γrc(Γe − 2i∆s)

Ω2
co

∣∣∣∣∣ , (B.34)
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where we abbreviated α = arg(Γe − 2i∆s) and β = arg(γfc − 2i∆gf ). For the parameters
of our experiment during the target pulse, we obtain G ≈ 3× 10−3, see Sec. 5.2. Hence, G
is nonnegligible only if Rk`/Rb & G−1/6 ≈ 2.6. At such large radius, there is no blockade
physics. We conclude that while γrc can have a substantial effect on the EIT transmission
and, thus, on the performance of the gate, it has negligible effect on the blockade physics
for the parameters of our experiment.

B.5 Collective Blockade Radius
The above-defined blockade radius is a quantity which depends only on the properties of
an atom pair. The optical response of an atomic ensemble, however, additionally depends
on the number of atoms N . In the following, we incorporate this dependence on N in
the definition of an alternative quantity, which we call the collective blockade radius.3
For simplicity, we assume that all atoms are placed at the same distance Rk` = R to the
excitation |r′〉, such that Ωk` = Ωf , and we assume that all atoms are equally coupled
to the cavity with g` = g. Moreover, we consider C � 1, a perfectly one sided cavity
β = 1 and resonant light ∆c = ∆s = ∆co = 0. As we saw above, the anisotropy of the
dipole-dipole interaction leads to only a small effect, which we neglect by setting dk`,0 = 0.
Hence we shorten the notation to Ωk`,c = Ωk`, γfc = γf , and γrc = γr.
According to Eqs. (B.23), (B.25), (B.30), and (B.29), perfect blockade Rk` = 0 cor-

responds to Ck = C, and Rk ≈ −1, which implies arg(Rk) ≈ π. Vanishing blockade
Rk` →∞ corresponds to Ck → 0, and Rk ≈ +1, which implies arg(Rk) ≈ 0. Hence, we
postulate

Re(Rk) = 0 (B.35)
as a criterion for the collective blockade radius. Note that if Im(Rk) 6= 0, then this will
be equivalent to arg(Rk) = π/2. We assume |Ωco|2 /γrΓe � C because otherwise the
photon-photon gate would have poor performance, as discussed in Sec. 2.7. From Eq.
(B.35) we find

Rcoll =
∣∣∣∣∣
( 2C3

~Ωco

)2 Γe
γf − 2i∆F

C

∣∣∣∣∣
1/6

. (B.36)

Comparison with Rb from Eq. (2.55) with ∆s = 0 shows that Rcoll = RbC
1/6. As C is

proportional to the number of atoms, this represents a collective enhancement of Rb, which
otherwise depends only on C3 and single-atom properties.

3While we consider an atomic ensemble in a cavity, one can also apply a similar concept to free-space
EIT. In the latter context, Ref. [114] used Rb = (C6/~γT )1/6, where γT is the measured linewidth of
the EIT transmission feature, which depends on the atom number.
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Appendix C

Fidelity and Efficiency for Pulsed Light
Fields
We derive expressions for the fidelity and efficiency of the π phase gate described in Sec.
2.6, considering quantum states of single-photon pulses

|ψ〉 =
+∞ˆ
−∞

dωũ(ω)e−iωta†ω,p|ø〉, (C.1)

where ũ(ω) is the pulse envelope in the frequency domain, which is normalized according
to Eq. (2.40), and a†ω,p is a bosonic creation operator for one photon in the considered
spatial mode with angular frequency ω and polarization p, which can be H or V , for
instance. We abbreviate for the control photon

|Hωc〉 = e−iωcta†ωc,H |ø〉, |Vωc〉 = e−iωcta†ωc,V |ø〉 (C.2)

and for the target photon

|Hωt〉 = e−iωtta†ωt,H |ø〉, |Vωt〉 = e−iωtta†ωt,V |ø〉, (C.3)

with the creation operators a†ωc,H and a†ωc,V (a†ωt,H and a†ωt,V ) for one photon in the
spatial mode of the control (target) photon with polarization H and V . We generalize
the monochromatic input state |DD〉 of Eq. (2.67) to pulsed target light. Hence, the
two-photon input state for an entangling gate operation reads

|Ψin〉 = 1
2

+∞ˆ
−∞

dωcũc(ωc) (|Hωc〉+ |Vωc〉)⊗
+∞ˆ
−∞

dωtũt(ωt)(|Hωt〉+ |Vωt〉), (C.4)

where ωc (ωt) is the angular frequency of the control (target) photon and ũc(ωc) (ũt(ωt))
is the pulse envelope of the incoming control (target) photon. Note that this notation
is valid because the control and target photon occupy different spatial modes according
to Fig. 2.3, such that the Hilbert spaces spanned by (|Hωc〉, |Vωc〉) and (|Hωt〉, |Vωt〉) are
orthogonal. Within each Hilbert space, the state vectors have the property

〈pω′ | qω〉 = e−i(ω−ω
′)t δpq δ(ω′ − ω), p, q ∈ {H, V }, (C.5)
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which follows from the commutation relation
[
ap,ω′ ,a

†
q,ω

]
= δpq δ(ω′ − ω).

Ideally, the output state is

|ΨBell〉 =
+∞ˆ
−∞

dωc

+∞ˆ
−∞

ũc,out(ωc)ũt,out(ωt)|ψBell,ωc,ωt〉 (C.6)

with
|ψBell,ωc,ωt〉 = 1

2 (|HωcHωt〉 − |HωcVωt〉+ |VωcHωt〉+ |VωcVωt〉) (C.7)

where |HωcHωt〉 is shorthand for |Hωc〉 ⊗ |Hωt〉, etc.
The actual time-dependent output state of the π phase gate shown in Fig. 2.3 for pulsed

target and control light is

|Ψout〉 =
√

1− η |Ψloss〉

+
+∞ˆ
−∞

dωc

+∞ˆ
−∞

dωt

[
ũretr(ωc)cH

ũt(ωt)tH |HωcHωt〉+ ũb(ωt)tV |HωcVωt〉
2

+ ũdelay(ωc)cV
ũt(ωt)tH |VωcHωt〉+ ũR(ωt)tV |VωcVωt〉

2

]
,

(C.8)

where |Ψloss〉 is the quantum state when at least one photon is lost, η is the probability
that no photon is lost, ũretr(ωc) (ũdelay(ωc)) is the envelope of the control pulse retrieved
from the cavity (delayed in the optical fiber) normalized according to Eq. (2.40), ũR(ωt)
is the envelope of the outgoing target pulse for cavity Rydberg EIT defined in Eq. (2.41),
and ũb(ω) is the envelope of the outgoing target pulse for cavity Rydberg blockade defined
in Eq. (2.63). Note that this state features not only the desired entanglement between
the polarization degrees of freedom of the two photons, but also unwanted entanglement
between the polarization of the control photon and the pulse envelope of the target photon
because ũb 6= ũR.
As a generalization of Eq. (2.69), we define the fidelity

Fenv = |〈ΨBell|Ψout〉|2 , (C.9)

which includes a penalty if the outgoing pulse envelopes do not match the envelopes in Eq.
(C.6). Using 〈ΨBell|Ψloss〉 = 0 and Eq. (C.5), we simplify Eq. (C.9) under the assumptions
cH = cV = tH = tV = 1, ũretr(ωc) = ũdelay(ωc) = ũc,out(ωc), and ũt(ωt) = ũt,out(ωt). We
find

Fenv =

∣∣∣∣∣∣∣
+∞ˆ
−∞

dω |ũt(ω)|2 2 +R(ω)−∑k |αk|
2Rk(ω)

4

∣∣∣∣∣∣∣
2

(C.10)

which is identical to the expression for the Choi-Jamiolkowski process fidelity FCJ for this
gate in Ref. [22]. Hence, in this special case, the state fidelity Fenv between the ideal and
actual output states for a properly chosen input state is identical to the process fidelity
FCJ. This identicalness is not a coincidence. Instead, it results from the fact that the

108



model here and the model in Ref. [22] assume that the CPHASE truth table is ideal, as
discussed in Ref. [143].
In order to measure Fenv in an experiment, one would have to overlap the outgoing

light pulses with suitable reference light with envelopes according to Eq. (C.6) and then
perform appropriate measurements. A problem with Fenv is that different applications
might require different envelopes uc,out and ut,out. As long as one does not have a specific
application in mind, it is unclear for which envelopes Fenv should be measured.

Hence, in our experiment we apply no reference light and we ignore the arrival time of
each photon, when measuring the polarization of each photon. Ignoring the arrival time is
equivalent to ignoring the frequencies ωc and ωt. Hence, calculating the efficiency from
the outcomes of these measurements yields

F = 〈Ψout|PF |Ψout〉 (C.11)

with the projector

PF =
+∞ˆ
−∞

dωc

+∞ˆ
−∞

dωt|ψBell,ωc,ωt〉〈ψBell,ωc,ωt |. (C.12)

Using Eq. (C.5) and the unitarity of the Fourier transform (Parseval’s theorem), we
obtain Eqs. (2.71)–(2.75).

It is worth comparing F and Fenv. First, we note that using a Cauchy-Schwarz inequality,
one can show that

Fenv ≤ F. (C.13)
Second, we note that in the limit of monochromatic light fields, the definitions in Eqs. (C.9)
and (C.11) become identical. Third, to give a particularly striking example of the difference
between F and Fenv, we consider the special case in which there is an envelope deformation
that is identical for all outgoing control envelopes ũretr(ωc) = ũdelay(ωc) = ũd(ωc) for all ωc
and which has the property

´
dωcũ

∗
c,out(ωc)ũd(ωc) = 0. This envelope deformation has no

effect on F and at the same time yields Fenv = 0.
To describe postselection of measurement results upon the detection of both photons,

we consider the orthogonal projection operator onto the subspace in which no photon was
lost

Pη =
+∞ˆ
−∞

dωc

+∞ˆ
−∞

dωt
∑

p∈{H,V }
q∈{H,V }

|pωcqωt〉〈pωcqωt |. (C.14)

The efficiency of the gate is
η = 〈Ψout|Pη|Ψout〉. (C.15)

Using Pη|Ψloss〉 = 0, this yields Eqs. (2.76) and (2.77). For cH = cV = tH = tV = 1, η from
Eqs. (2.76) and (2.77) becomes identical to Psuc in Ref. [22].

The output state obtained after postselection upon detection of both photons is obviously
∝ Pη|Ψout〉. Proper normalization yields

|Ψpost〉 = Pη|Ψout〉√
η

. (C.16)
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Appendix C Fidelity and Efficiency for Pulsed Light Fields

Replacing |Ψout〉 by |Ψpost〉 in Eq. (C.11), we define the postselected fidelity

Fpost = 〈Ψpost|PF |Ψpost〉 = F

η
. (C.17)
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Appendix D

Polarization Convention
We use the polarization of a single photon to encode a quantum bit (qubit) of information
[104]. Hence, we define the polarization convention used in this work. Assuming that
the propagation direction of the light field is along the positive z-axis, we express the
normalized polarization vector from Sec. 2.1 as ε = cxex + cyey, with the unit vectors
along the x- and y-axis ex and ey. The complex coefficients cx and cy fulfill |cx|2 + |cy|2 = 1.
These coefficients are the entries of the normalized Jones vector [12, 57] J = (cx, cy). The
following normalized Jones vectors are particularly relevant for this work [12, 57]

JH =
(

1
0

)
, JD = 1√

2

(
1
1

)
, JR = 1√

2

(
1
−i

)
,

JV =
(

0
1

)
, JA = 1√

2

(
1
−1

)
, JL = 1√

2

(
1
i

)
.

(D.1)

The indices refer to the oscillation pattern of the electric field vector, which can be
horizontal (H), vertical (V ), diagonal (D), anti-diagonal (A), right-handed circular (R) or
left-handed circular (L).
The quantum state of a polarization qubit is

|ψ〉 = cx|H〉+ cy|V 〉, (D.2)

where |H〉 (|V 〉) is the quantum state of a single photon with horizontal (vertical) polar-
ization. In analogy to Eq. (D.1), we define single-photon quantum states for the remaining
four Jones vectors

|D〉 = 1√
2

(|H〉+ |V 〉), |R〉 = 1√
2

(|H〉 − i|V 〉),

|A〉 = 1√
2

(|H〉 − |V 〉), |L〉 = 1√
2

(|H〉+ i|V 〉).
(D.3)
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Appendix E

Cavity Mode Matching Limit due to
Astigmatism
We assume that the cavity eigenmodes are well approximated by Hermite-Gauss modes [38,
141] and express the fundamental transverse cavity mode as m0,0(x) = mx(x,z)my(y,z)
with

m`(`,z) = A`√
q`(z)

exp
(
i
ω

c

`2

2q`(z)

)
, ` ∈ {x, y}, (E.1)

where
q`(z) = z − q0,` (E.2)

is the complex beam parameter with q0,` = z0,` + izR,`, zR,` = πw2
0,`/λ is the Rayleigh

range, A` is a normalization constant, z0 is the position of the beam waist along the
z-axis, which coincides with the optical axis, and w0 is the beam waist. Eq. (3.2) implies
|A| = (ωzR,`

cπ
)1/4.

We assume that the incoming beam is non-astigmatic, i.e. it is described by the same
expression m0,0(x) but with q0,x = q0,y = q0, w0,x = w0,y = w0, zR,x = zRy = zR, and
z0,x = z0,y = z0. Evaluating Eqs. (3.4) and (3.5), we obtain

ηmode = ηxηy (E.3)
with

η` =
2√zRzR,`∣∣∣q0 − q∗0,`

∣∣∣ =
√√√√ 1

1 + |q0 − q0,x|2 /(4zRzR,`)
. (E.4)

One can show that ηmode reaches a maximum of

ηmax = 2ηxy
1 + ηxy

(E.5)

for
z0,max = zR,yz0,x + zR,xz0,y

zR,x + zR,y
, zR,max = zR,xzR,y

zR,x + zR,y

2
ηxy

, (E.6)

where we abbreviated

ηxy = 2
√

zR,xzR,y

(z0,x − z0,y)2 + (zR,x + zR,y)2 . (E.7)

Inserting the numbers for q0,x and q0,y given in Sec. 3.2.5, we find ηmode = 99.0% (ηmode =
99.1%) at z0,max = 13.5 mm and w0,max =

√
zR,maxλ/π = 31.6 µm (z0,max = 2.1 mm and

w0,max = 132 µm) for the incoming control (target) beam.
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